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Abstract 

The classic Black-Scholes model on option pricing from 1973 has been a widely debated 

and scrutinized theory over the past decades. Despite its proved limitations and 

simplifications, it remains the most used pricing model of publicly traded options today. 

One implication of the model is the implied volatility surface, an empirical anomaly 

which has emerged over the past 25 years from the volatility of the underlying 

instrument. In this thesis, our goal is to create a parameterization of the daily volatility 

smiles of the S&P 500 Index option, and study the time-series properties of these 

parameters. We do this by testing the explanatory power of exogenous variables, and by 

using different lag models to predict the shape of the smile. Our results indicate strong 

correlations with our external factors, but a non-conclusive predictive power of the 

inherent parameters. The forecasting properties of the smile seem to remain a mystery. 
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1. Introduction 

Is it possible to predict the shape of the volatility smile, given its shape today? The implications 

of the classic Black-Scholes formula have been a widely debated field of study since its 

inception in 1973. According to their option pricing formula, or rather assumed in their model 

derivation, the implied volatility of options with equal expiration dates but different strike prices 

should be the same. However, as observed on actual traded option prices, the implied volatilities 

show a skew when plotted, hence creating a “smiling” surface over time. This surface holds a 

large amount of information for investors, and is often used as a valuation tool rather than using 

the price of the option. In this thesis we will first create a parameterization of the smile on a daily 

basis, and secondly study which inherent and external factors can aid in predicting the shape of 

the smile using exogenous uni- and multivariate regressions, and also using AR- and VAR-lag 

models.  

1.1 Purpose of study 

Our primary goal with this thesis is to understand what actually drives the volatility surface, and 

to explain the intrinsic properties of our chosen parameters in predicting the shape of the smile. 

Conventional studies in the area have almost exclusively chosen one of two approaches; either 

modelling the cross-section of volatilities, i.e. looking at all option maturities and strike prices on 

a given day and hence neglecting the time-series dimension (Alentorn, 2004), or deciding on a 

certain moneyness and/or time-to-expiration and looking at the time-series progression of that 

single option (Peña, Rubio, & Serna, 1998). To our knowledge only one previous study has been 

done on the two-step regression approach utilized in this thesis (Gonçalves & Guidolin, 2005), 

and they used a different method in their first-step parameterization.  

Rebonato (1999) states that the implied volatility of options is the “wrong number to plug into 

the wrong equation to get the right price”, which summarizes what makes the research regarding 

the matter so interesting. As the volatility surface is a de facto trading tool, on which investors 

and traders base multi-billion dollar decisions (CBOE, 2009), it is somewhat startling that the 

specifics regarding its progression over time is still under scrutiny. With this thesis we hope to 

bring some light on the matter, while also looking at the extent at which external factors, closely 

linked to option pricing, can affect the shape of the volatility surface. 
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1.2 Contribution 

Our results will be able to contribute to a more detailed understanding of the structural change of 

the implied volatility surface and its evolution over time. A deeper comprehension regarding the 

exogenous factors which affect the smile can i) help in creating more precise pricing models for 

options, and also ii) come to use as proxies for investors and traders to judge in which ways risk 

sentiments and prices are moving. Our hope is that these results can add to current research 

regarding option markets in general, and highly liquid markets such as the S&P500 in particular. 

With the addition of some further research on lag power of our exogenous variables, we believe 

that it would be possible to create a parsimonious model to forecast the progression of the 

volatility surface. 

1.3 Outline 

An introduction to our study has been given above and the remainder of our thesis will be 

organised as follows. In Section 2 we will give a more thorough background on the Black-

Scholes model and implied volatility, as well as a summary of previous research on volatility 

surfaces. Section 3 details the data, computed measures and limitations which we have used 

throughout this thesis, as well as our choice of moneyness. In Section 4 we describe our 

parameterization choice for the first step of our regression, the manipulations done to our data, 

and the final regressions testing our parameters. In Section 5 the regression results of our study 

will be reviewed and analysed. The main conclusions of our thesis will then be summarized in 

Section 6 and lastly Section 7 will go further into additional research that can be done related to 

the findings of our thesis. All tables and graphs will be available in the appendix at the end of the 

thesis, following the bibliography.  

2. Previous literature 

A review of previous literature and a brief theoretical overview will be presented below. In 

section 2.1 we begin with a review of the Black-Scholes formula. This section leads us into the 

discussion about implied volatility and its informational content, which is presented in section 

2.2. In section 2.3 we go further into earlier work involving the characteristics of the implied 

volatility surface. Finally we will discuss the implications of our parameterization choice. 
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2.1 Black- Scholes 

Fischer Black and Myron Scholes released their by-now classic paper on option pricing in 1973, 

and revolutionized the pricing and trade of derivatives through their intuitive pricing formula 

(Black & Scholes, 1973). Despite its initially theoretical application and its proven limitations 

when using it on live options, it remains one of the most used option pricing techniques today, 

and its inventors were awarded the 1993 Nobel Price in Economics as a homage to their work. 

The Black-Scholes formula for a European call option is: 

                
                     

where    and    are defined as: 

   
                

  

  

   
                                     

St is the spot price of the underlying
3
, K is the strike price, τ is the time-to-maturity, r is the risk-

free interest rate, q is the dividend yield, and N(d) is the cumulative normal density function
4
 

where the upper integral is denoted d. The intuition behind    and    is that they provide the 

risk-neutral probability measures
5
 of an option’s expiry, much like a moneyness term. 

The model assumes that the underlying follows a geometric Brownian motion
6
 and that all 

options on the same underlying regardless of time-to-maturity
7
 and strike price have the same 

implied volatility. Empirical evidence has however shown that this assumption does not 

correspond with reality (Hull, 2008). As noted by earlier authors, it is the monotonicity
8
 of the 

volatility parameter in the Black-Scholes formula that makes it possible to calculate the implied 

volatility. As the inverse of the formula has no closed-form solution, one cannot simply re-solve 

the formula to obtain the implied volatility, given an option price. However, as the formula 

predicts a flat implied volatility surface, one can use the Newton-Raphson algorithm to invert the 

Black-Scholes formula. This method has been widely accepted by researchers over the years, and 

uses the market price of the call option to compute the implied volatility. 

                                                 
3
 The S&P500 index option in our study 

4
               

  

 
     

  

 
    

5
 Under the martingale probability distribution 

6
 A continuous stochastic process, such as a Wiener process 

7
 Henceforth referred to as TTM 

8
 A function which preserves its given order 
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2.2 Implied volatility 

Implied volatility can be described as the market’s expected future volatility, and is linked to an 

option’s market price. The measure should not be mistaken for historical volatility, given that 

historical volatility is linked to the earlier performance of the underlying, rather than the option 

price. Both measures have been widely studied over the years, and both have received credit for 

being the most accurate forecast of future volatility.  

Whether or not implied volatility is an adequate measure of future volatility has been subject to 

much research. Canina & Figlewski (1993) found that implied volatility practically lacked any 

correlation with future volatility, when studying 17000 OEX call options on the S&P100 index. 

More recent work by Christensen & Prabhala (1998) and Fleming (1998) however find implied 

volatility to be a superior measure compared to historical volatility when it comes to forecasting 

future volatility, in their studies of S&P100 index options. Christensen & Prabhala use longer 

time series and non-overlapping data, and is probably the most comprehensive study on the 

subject to date. 

2.3 The implied volatility surface 

It is stated that the implied volatility of a call option depends on both its time-to-maturity T and 

its strike price K (Derman & Kani, 1998). The function for the implied volatility surface at date t 

visualizes this relationship by the following function: 

  
            

        

Previous work by Rubinstein (1994) and Derman & Kani (1998) have shown that the volatility 

surface is a fluctuating two-dimensional surface forming a smile, a skew or a term structure, 

hence contradicting the Black-Scholes model. The reasoning behind these patterns is that the 

implied volatility of deep in-the-money and out-of-the-money options is higher compared to the 

implied volatility of at-the-money options. When it comes to studying the dynamics of the 

implied volatility surface, notable work has been done by Cont & Da Fonseca (2002), where they 

study the dynamics of implied volatility surfaces for S&P500 and FTSE index options. They 

conclude that the volatility surface is a fluctuating surface and that the shape depends only on a 

few specific factors which correlate with the underlying. They state that the implied volatility is 

positively autocorrelated, meaning that there is a positive correlation between the values of 

implied volatility over time. They also find that the surface shows signs of mean reversion, 
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indicating that the implied volatility will return to its mean over time. No perfect correlation is 

found between movements of the implied volatility and the underlying.  

Another acknowledged study on the dynamics of the volatility surface is Skiadopoulos, Hodges 

& Clewlow (1999), where they perform a Principal Components Analysis (PCA)
9
 on S&P500 

index options to observe how the implied volatility surface moves over time. They find two 

significant features that affect the implied volatility surface; a parallel shift and a Z-shaped slope 

structure. They believe that their findings could give an enhanced understanding of the dynamics 

of option prices, and that more detailed models of the implied volatility surface could be 

constructed as a result of their studies. 

Further, a similar study which also examines the movements of the implied volatility surface 

over time is done by Fengler, Härdle & Villa (2003). They state that too much information is lost 

when applying the PCA, and thus they present their extended model called the Common 

Principal Component Analysis (CPCA), which they apply on DAX index options. With this 

structure they were able to model the implied volatility surface more accurately and predict the 

implied volatility surface simultaneously for different maturities and moneyness. They also 

identify a similar parallel shift and Z-shaped slope as the above mentioned study did. Cont, Da 

Fonseca & Durrleman (2002) form a model with the implied volatility surface as a stochastic 

variable, and use this model to increase the precision of the “sticky moneyness”
10

 rule. The most 

outstanding characteristic of their model was that smiles and term structures of implied volatility 

could be correctly utilized, and hence that they were able to arrive at a good prediction of the 

progression of the implied volatility over time. 

The insufficiencies of the Black-Scholes model initiated the development of deterministic 

volatility function (DVF) option pricing models by Derman & Kani (1998), Dupire (1994) and 

Rubinstein (1994). The framework of these models relies on the assumption that the “...asset 

return volatility is a deterministic function of asset price and time...” (Dumas, Fleming, & 

Whaley, 1998). The previously mentioned authors use S&P500 index options to examine the 

DVF models, and they are actually unable to show that the DVF models are better than the 

Black-Scholes model. 

                                                 
9
 Principal Components Analysis is a statistical method that identifies systematic behavior in the data by reducing 

the original dataset to a smaller set of uncorrelated variables, which decreases the dimensionality of the dataset 

(Dunteman, 1989). 
10

 Sticky moneyness means that the volatility of an option solely depends on its moneyness 
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A study in line with ours is the recent work by Gonçalves & Guidolin (2005). In a two-stage 

approach they first model the implied volatility surface along cross-sections of TTM and 

moneyness, and in a second stage they use a vector autoregressive model (VAR) to study the 

dynamics of the implied volatility surface from stage one. They are able to effectively model the 

implied volatility surface and find that there is a statistical predictability of the implied volatility 

surface’s movements over time.  

2.4 Parameterization 

As the volatility surface is a 3-dimensional entity, one needs to proceed in several steps when 

modeling its movement. An accurate but tedious method is to follow each option strike price 

throughout its life-time and create a time-series containing all options in a given option series. 

This method is limited due to the very large data sample one must use, hence making it difficult 

to find any significance when using exogenous variables in the regression. The solution to this 

problem is to use a parameterization technique, where one approximates the cross-section of the 

volatility smile, i.e. a time slice, by a pre-determined equation. A statistics program is used to fit 

the parameters to the cross-section through a conventional least squares regression technique, 

and the result is a much smaller sample of parameters on which one can conduct further tests. 

There are many different parameterization methods used in prior research, but we will look at 

three separate methods here; Nelson-Siegel, Dumas et al, and Gatheral’s SVI technique. 

Nelson & Siegel (1987), and later Diebold & Li (2005), devised a parsimonious parameterization 

model for the yield curve, i.e. the interest rate over time seen on bonds. The model took the form: 

           
   

  
  

 
  

     
   

  
  

 
  

  
  

       

where   was the moneyness term (or maturity in the case of yield curves), the  -terms are the 

model parameters, and   is a time decay factor, which dictates the time-varying shape of the 

parameterization. The strength of this method is its convergence criteria: as   is a pre-determined 

variable which is not estimated by the regression, the model takes on a quite simple form which 

simplifies the estimation procedure. However, as the model is optimized for the yield curve with 

its humped and S-shaped surface, it is not optimal for the time-varying and 3-dimensional shape 

of the volatility surface. 
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Dumas et al (1998) created a model specifically for the volatility smile, which is an evolution of 

the regular 2-order polynomial regression model. The specification is as follows: 

                 
             

where M and T are moneyness and TTM and the  -terms are the model parameters. In this 

regression, M will be varying over the volatility cross-section, while TTM is a scalar for each 

time slice. The strength of this model is that it explains the 3-dimensional properties of the 

volatility surface through its inclusion of a second dependant variable. Several studies have used 

the Dumas parameterization, in both an un-modified original version (Alentorn, 2004) and a 

customized version (Gonçalves & Guidolin, 2005). 

A third interesting parameterization technique is devised by Jim Gatheral in his 2004 

presentation on implied volatility surfaces for volatility derivatives (Gatheral, A parsimonious 

arbitrage-free implied volatility parameterization with application to the valuation of volatility 

derivatives, 2004). The parameterization that he proposes, which he calls stochastic volatility 

inspired (SVI), is written as: 

                                

The description and intuition behind the parameters are the following: 

  is the overall level of volatility, i.e. the volatility of the ATM-option for that given 

cross-section 

  gives the spread between the asymptotes, i.e. gradient of the change in implied 

volatility 

   shows the orientation of the graph 

   translates the graph to match the  -term 

  (b4) determines the vertex of the graph, i.e. the actual shape and smoothness of the 

smile. 

The strength of the SVI model is that it is specifically devised for the volatility surface, and that 

its parameters are parsimonious and quite intuitive. Also, it has a form which is simple enough to 

make the estimation procedure smooth (Gatheral, 2006). 
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3. Data 

In this section we describe the data which we use throughout this thesis. Section 3.1 details the 

data sources for the option data, and which definitions are used for this dataset. Section 3.2 

describes the definitions which we have used for moneyness, and in what context the different 

definitions have been utilized. Section 3.3 explains the manipulation and adjustments made to 

the data before the first-stage regression. Finally, Section 3.4 details the exogenous data choice 

which we use in our third-stage regression. All data used throughout this thesis is extracted from 

Thomson DataStream Advance 4,0.  

3.1 Option and market characteristics 

We have decided to use SPX Index options in this essay. The option series is based on the S&P 

Composite 500 Index as the underlying, and is noted on the Chicago Board of Exchange
11

. The 

S&P 500 Index
12

 is the most benchmarked index in the world (Dash & Liu, 2008), which 

translate into an option which is very liquid (CBOE, 2009). The liquidity of the option is very 

important when modeling the volatility surface, as the price and implied volatility of un-traded 

options tend to become stochastic and speculative. The SPX options are released with maturities 

ending the third Friday of each month, and exist in increments of 5-50 points, depending on the 

moneyness of the option. The options can be released with widely different TTM; from a few 

weeks to several years. 

For this thesis, we have examined two different option series; 1004C
1314

 and 0804C
15

. The focus 

of the thesis lies on the 1004C option series, and we use the 0804C series mostly as a control 

when modeling. When using highly liquid options like the SPX we can assume that the Put-Call 

Parity generally holds, which means that the implied volatility of a Call and a Put with equal 

maturities must have the same ATM implied volatility (Hull, 2008). As long as this equality 

holds, it is sufficient to use either the Call or the Put to model the smile, and we have chosen the 

Call. Taking into account the exogenous variables used to control for external data, and looking 

at other studies in the area, we feel it is safe to base our study on only two option series. 

                                                 
11

 Henceforth named CBOE 
12

 Henceforth named S&PCOMP 
13

 This translates into the Call option series maturing in April 2010 
14

 090324-100317, 152 options 
15

 071224-080416, 113 options 
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3.2 Option data definitions 

For each option series, date and strike price, we have extracted current option price, daily 

volume, and daily implied volatility. The following definitions have been used (Thomson 

Reuters, 2010): 

Price (Mnemonic MP):  Last traded price provided last trade is within bid/ask range at 

the end of the day. As the CBOE does not display settlement prices for each given trade, 

this is the industry standard in reporting option prices. We will use the pricing of the 

option as an exogenous variable in our third-step regression. 

Implied Volatility (Mnemonic IV): As is described in Section 2.2, implied volatility 

cannot be found using a closed-root solution of the Black-Scholes formula. The data 

taken from Datastream is in turn calculated using MB Risk Management’s Univopt tool, 

which is an industrial and acknowledged pricing and risk system (MB Risk Management, 

2010). The system uses the Newton-Raphson algorithm mentioned in Section 2.2 to find 

the implied volatility given an option price. 

Volume (Mnemonic VM): The volume is calculated as the total cumulative trading 

volume for all individual option series. The volume is used both as an exogenous variable 

in our third-step regression, and as a controlling factor when removing options which are 

deemed to be too speculative. 

These three variables are the only option-related data used in our methods. They are however in 

some cases manipulated, sometimes in conjunction with other data mentioned below. 

3.3 Choice of moneyness 

The volatility surface has three dimensions; implied volatility, TTM and moneyness. Implied 

volatility is noted above, whereas TTM and moneyness are subject to calculations.  

TTM is the time until the option matures, measured in years. For this thesis we only look at 

options with less than one year until maturity, and hence the value will be less than one. 

Algebraically, we use: 
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where   is the current date and T is the date of maturity. The difference in days is then divided by 

365, and the TTM is received for that particular day. 

Moneyness is a little more sophisticated, as it can be described using several different methods. 

What we are trying to depict is the amount a certain option is in or out of the money, which is a 

concept which one can label in several different ways. In its simplest form, moneyness describes 

the relation between an option’s strike price and the spot price of the underlying, in absolute 

terms. However, as noted in a paper by Dumas et al (1998), having a strictly linear moneyness 

term creates discrepancies in the model when option maturities grow shorter. Hence, other types 

of models for the moneyness have been created. 

Below we describe the intuition between the main methods, and which ones we use in this essay. 

Black-Scholes standard deviation: As described in Section 2.1, the Black-Scholes model 

is the basis for the volatility surface as depicted in this essay. Defining the moneyness as 

the average of the two d-terms from the Black-Scholes formula, we get the following 

expression for the moneyness (McMillan, 1986): 

  
   

 
     

   
 
     

 
 

In the equation, S is the spot price of the underlying, K is the strike price of the option, r 

is the risk-free rate, T is the time-to-market, and   is the implied volatility. This measure 

calculates the moneyness in normal standard deviations, i.e. a moneyness of 0 means that 

the option is at-the-money and has a 50% chance of ending up in-the-money, and a 

moneyness of 1 equals an 84% chance of ending up in-the-money. In a sense, this is the 

most accurate measure from a Black-Scholes point of view, as it is in fact derived from 

the equation. However, as it subsequently uses the implied volatility as a factor in the 

calculations, and we are using the implied volatility rather than price as the topic in our 

essay, this method is not optimal. 

Gross & Waltners: In their paper Put Volatility Smile and Risk Aversion, Gross and 

Waltners (1995) define moneyness according to the following: 
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Here, F equals the forward price of the underlying, K is the strike price of the option, and 

T is the time-to-maturity. F is calculated according to the following
16

: 

     
       

The variable S is the spot price of the underlying, T is the time-to-maturity, r is the yearly 

risk-free rate, and q is the annual dividend yield on the underlying. The strength of this 

method is that it gives a very intuitive depiction of moneyness, showing the relation 

between forward price and spot price, and accounting for time decay. We use this method 

when looking at which maturities to use in our first-step regression, further specified in 

Section 3.4. 

Gatheral’s k: In Jim Gatheral’s SVI parameterization, which was touched on in Section 

2.4, the following moneyness term is used: 

       
 

 
  

In this case, k is the moneyness term, K is the strike price of the option, and F is the 

forward price of the underlying. Compared to the method proposed by Gross & Waltners, 

this will in fact show the inverse of moneyness as K is the numerator, which will give a 

mirrored version of the smile when modeled. We use the k when using the SVI 

parameterization to model the smile in our first-step regression. 

3.4 Exogenous data choice 

Regarding our choice of exogenous data, we have extracted data partly to calculate variables for 

our regressions, and partly to use as control variables in our third-step regression. Again, all the 

data is extracted from Datastream, and we look at S&PCOMP for the following values: 

Price (Mnemonic PI):  Datastream calculates its own price level for the index, 

which is a weighted average of the different stock in the different indices. 

                                                 
16

 The equation for the future price is used for all future price calculations throughout this thesis 
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Dividend Yield (Mnemonic DY): The dividend yield for an index is the total dividend 

amount for that specific index, expressed as a percentage of the total market value of the 

index. 

Apart from the S&P values, we also look at the risk-free rate and the VIX. As a proxy for the 

risk-free rate, we have used the US Federal Target Rate (Mnemonic USFDTRG), which for our 

purposes is a very close approximation of the theoretical risk-free rate. One issue with using the 

target rate as a proxy is that it changes with quite large increments, as it is the actual rate which 

the Fed chooses. However, for the scope of this essay, the rate has been constant for both 

datasets used, and as such the choice fits our purposes. 

CBOE issues a volatility index called the VIX (Mnemonic CVX), which is a measure of the 

market’s 30-day volatility expectations, as conveyed by the SPX option series. We will use the 

index as a proxy for the market’s general level of volatility in our third-step regression. 

4. Methodology 

In this section we introduce the method used in this essay. We will describe both the practical 

application of our models, and the econometric intuition behind. Section 4.1 describes the 

manipulation to our data, which was done before any actual parameterization was conducted on 

the values. Section 4.2 describes the first step of our regression, which is the parameterization of 

the volatility surface. Section 4.3 describes the descriptive summaries and visualizations done on 

the result of the first-step regression. Section 4.4 details the regressions testing the explanatory 

power of our exogenous values, and the correlation between the parameters. 

4.1 Option data manipulation 

For the two sets of options series mentioned above, TTM for the first observation varies between 

approximately three months to one year. As the range of options for each given day and maturity 

is very large, with over 150 strike prices present, the volumes traded in a substantial part of the 

data is close or equal to zero for many option strikes. As mentioned in Section 3.1, option prices 

and implied volatilities for untraded data becomes very speculative, and is characterized rather 

by stochastic features than values reach by market equilibrium.  

When modeling the smile surface, we have removed options where the moneyness is too far 

away from the spot price. Cont & DaFonseca (2002) use a moneyness limit of +- 0.5 in their 
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paper on the dynamics of volatility surfaces, and remove options outside of this boundary. 

However, as we use another measure of moneyness, we have in part tried to convert their limit to 

our moneyness measure, but also looked at where the volume traded starts to decline. From this, 

we decided on a boundary of ±2, according to the Gross & Waltners definition of moneyness. 

Another consideration we have had when preparing the data for the first-step regression is the 

time component. Compared to several other studies in which all traded options on a given day 

are studied, regardless of their expiry date, we only look at options with equal TTM. For a given 

maturity, CBOE only releases a few options strike prices when the option maturity is first 

introduced on the market. When the TTM comes closer to date of expiry, more options are added 

to the option series, which makes the incremental gaps smaller. While testing our first-step 

regression, we realized that it was very difficult to reach convergence when TTM was large, as 

there were too few options data points to interpolate. Through testing, we found that 

approximately 70 points were needed to reach convergence, i.e. 70 options with different strike 

prices on a given day. 

4.2 First step – Parameterization 

As our ultimate goal is to find a way to predict the progression of the volatility surface, the first 

step is to find a model to fit the smile on a given day, henceforth denoted as a time slice. As 

described in Section 2.4, there are several parameterization techniques used in previous research. 

We have decided to use Gatheral’s SVI technique, as it i) gives a parsimonious depiction of the 

smile with intuitive parameters, ii) uses only moneyness as a dependant variable
17

, and iii) has a 

simple for which enables simpler estimations (Gatheral, 2006). The model to be fitted is the 

following: 

                           

For each day in our sample, a summarized file was created containing the implied volatility for 

each day and strike price, and the corresponding moneyness k for each term, given the 

manipulation stated in Section 4.1. The file was imported into STATA and each day was 

                                                 
17

 Dumas et al use a model where both moneyness and TTM are used as dependant variables. This gives a very 

accurate result of the smile, but since we use TTM as an exogenous control variable, this approach would not fit our 

method 
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estimated using a non-linear least squares technique, according to the following (Alentorn, 

2004): 

                       
 

 

   

 

Here, m is the amount equations in the series; y is the observed implied volatility; prd is the 

actual specified equation; w depicts the moneyness term; and   is the given parameter vector. 

The algorithm for the function minimizes the SSE
18

 between observation    and the model’s 

prediction for the observation using     . STATA performs iterations until the point where the 

convergence criterion is either satisfied, or the maximum numbers of iterations specified are 

exceeded and no convergence is met. From this we obtain an R
2
-value to examine the goodness-

of-fit, which measures how successful the model is at explaining y. The DO-file created for this 

loop is attached in Table 1. 

4.3 Second step – Descriptive summary and visualization 

For each day in our sample, we collect our                     and summarize and sort the 

vectors as to create a time-series for our third-step regression. Before proceeding to our final 

regressions, we perform visualizations of the results in order to receive some understanding 

regarding the shape of the parameters over time, and if any qualitative conclusions can be drawn 

at this stage. 

4.4 Third step – Endogenous and exogenous AR and VAR modeling 

From the parameters obtained in the first-step regression, we merge the values with the 

exogenous variables corresponding to the same dates to create a time-series. For each option 

series, we then have the following variables:  ,  ,  ,  ,  , date, TTM, spot price of S&PCOMP, 

future price of S&PCOMP, VIX, and volume traded. What we are trying to do in this step is to 

understand what actually influences the progression of the respective parameters. We will do this 

by looking at their correlation with the exogenous factors, the lags on each respective parameter, 

and finally the lags of all parameters. 

The first regressions conducted are regular univariate OLS regressions according to the 

following: 

                                                 
18

 Sum of Square Errors 
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Here,    is a vector containing all parameters, i.e.                    , as all of the regressions 

are run separately for each parameter. These regressions are conducted to isolate each exogenous 

factor, to see if there is a correlation between the two in its simplest form. The logarithmic form 

is used to give the equations as simple form as possible, and as we’re only interested in the actual 

relation between the two variables it is a valid manipulation. We apply robust standard errors to 

correct for heteroskedasticity throughout all these regressions. Worth to notice here is that the   

and   received in these regressions are not the same as the parameters in the regression, but 

simple results from the regressions. 

The next regression we conduct is a multivariate version of the above, where we try to see 

whether the exogenous variables are successful together in explaining the parameters movement 

over time. The formula is as follows: 

                                                       

Until this point, our tests have aimed at describing the fit of our model and which external factors 

can help explain the movement of the parameters. What is more interesting for our study 

however is the ability to forecast the movements of the volatility surface over time. We would 

hence like to test the parameters intrinsic ability to influence its own movement, using an 

autoregressive model. The first step is to run a #-lag test on each parameter, where # is a number 

of lags determined by the AIC and BIC criterion. They are calculated as follows (Plasmans, 

2006): 

 

AIC (Akaike Information Criterion)  
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 BIC (Schwartz (Bayesian) Information Criterion) 

              
   

     

 
       

where   
  is the estimated error variance,   is the sample size, and       is the total number of 

estimated parameters. The difference between the two criteria is that AIC tends to suggest 

models which are over-parameterized, while BIC penalizes this to a greater extent. In STATA 

we conduct a lag-order selection statistics test to see which of the criteria returns the lowest 

value. With the given number of suggested lags returned by the test, we then run a AR(#)-

regression on each of the parameters, according to the following equation: 

            

 

   

    

where    is the tested parameter,    are the parameters of the model, c is a constant, p is the 

number of lags, and    is the error term. Hence, according to the criterion given above, we test 

each parameter on a certain number of lags and look at the validity of these betas. 

The last regression we run is a vectorized autoregressive model
19

. This test is done to capture the 

evolution and interdependencies between our several time series parameters, hence combining 

the AR-model with the regular OLS-regression (Plasmans, 2006). A VAR-model of order p can 

be expressed as: 

                              

where c is a k*1 vector,  the   ’s are k*k matrices (for every i =1,…,p) , and   is a k*1 vector of 

error terms
20

. For each of our five parameters, we receive a two-lag result for all other 

parameters, showing the forecasting properties of the parameters between each other. This is the 

last regression performed on our parameters. 

                                                 
19

 Henceforth called a VAR-model 
20

 For a general matrix notation of a p-order VAR matrix, see 

http://en.wikipedia.org/wiki/General_Matrix_notation_of_a_VAR(p) 
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5. Results 

In this section we present the findings of our research and some brief comments on our results. 

Section 5.1 shortly describes the results from the parameterization, and touches on the issues 

found in the regressions. In section 5.2 we give interpretations and visual depictions of our 

parameter results. Finally, section 5.3 details the findings of our exogenous and AR-regressions. 

We have attached a 3-dimensional graph showing the actual progression of the 1004C volatility 

surface in Table 18. 

5.1 First step results 

The results of the parameterizations are found in Table 2. For the option series on which we 

focus, 1003C, we have 68 continuous observations, spanning between 2009-12-11 and 2010-03-

16. As mentioned above, we have removed the last days of option trading, as the parameters 

show very random values which distorts our model. For our controlling option series, 0804C, we 

have a non-continuous sample of 39 observations spanning between 2008-02-04 and 2008-04-16. 

We experienced difficulties when conducting the parameterization on this series, probably 

explained by a deep in-the-money negative skew on the implied volatilities which distorted our 

model. Despite our data manipulation and moneyness restriction of ±2, this issue was very 

present for the 0804C option series.  

When deciding on the validity of the parameters for each time slice, we have focused on the R
2
-

value. The key asset of the parameterization is to create such an accurate model that the 

parameters themselves can act as proxies for the volatility smile in the time series. If that 

property is lost, we will have great difficulties in getting any validity in the third-step 

regressions. The average R
2
 and standard deviation of the R

2
 for the two series are found in 

Table 3. Both series have an average R
2
 of above 0.9, which must be considered as a good fit for 

our parameterization. 

As will be detailed below, the parameterization gives some interesting time-series properties of 

our smile components. The cross-sections which we have parameterized are accurate according 

to the R
2
-statistic, and at least for the 1004C series we have a continuous and sufficiently 

extensive time span on our observations. The evolution of the volatility surface for options which 

are far from expiry tends to be static and contain little information (Rubinstein, 1994), and hence 

we think that the time span used in our regressions is satisfactory for our purposes. 
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5.2 Second-step results 

In the second step, we have examined the parameters from a qualitative perspective, to get a feel 

of their inherent properties and which tests would be appropriate to further understand the 

progression of the smile. From Table 2 one can get a generalized feel of the time series 

progression of the parameters, but naturally the easiest way to investigate their patterns is 

through graphical representations. We will describe the parameters one by one, discuss the way 

they move over time, and summarize our findings. Worth to note here is that we have graphically 

shown the parameter’s progression over elapsed time rather than TTM, as it gives a better visual 

representation of their movement. The regressions in Section 5.3 are however done on TTM. We 

see no correlation between TTM and the R
2
-values received from the regression. The DO-file for 

all these regressions is attached in Table 17.  

5.2.1 The results of  ,   and   

  represents the approximated volatility of the ATM-option at a given point in time, and is 

presented in Table 5. For both option series, the graphs show a slightly downward but stochastic 

trend for the parameter. This would then indicate that the implied volatility of the ATM-option 

decreases when i) the option approaches expiry, ii) the value of the underlying displays volatility 

during the examined period (as it does in both these cases), iii) the exogenous variables described 

in Section 5.3 influences the volatility, or most probably iv) a combination of the above.  

In Table 4 we have shown the implied volatility for the closest ATM-option for each day, and the 

corresponding b0. One can directly see that there is a discrepancy between the two series. Table 

4 also shows the difference for each day, and the results look quite stochastic. Clearly there are 

other explanatory factors to describe the evolution of  , which we will further look into in 

Section 5.3. One possible explanation for the jumpy series could be the effect of volume, or 

rather the lack thereof. When the implied volatility of the observations for each cross-section is 

regressed, the options which are actually traded can vary heavily from day to day, hence creating 

a natural error source in the regression. This would imply that the actual trend of b0 is of clear 

interest, but that individual parameter observations can and will be random in nature. 

  shows the spread between the left and right asymptotes of the smile, which translates into the 

gradient of change in implied volatility. The evolution over time of the parameter is shown in 

Table 6, and it has a logical but interesting shape for both option series. The parameter is clearly 
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exponentially correlated with the time value, which is natural considering the time-varying shape 

of the volatility surface. This parameter is of special interest when the TTM becomes small, as 

the smile tends to be quite steady until this point is reached.  

As can be seen clearly in Table 18, and in accordance with current empirical studies on the 

volatility smile, the surface sees an increased “smile” when the TTM decreases and approaches 

expiry. The  -parameter hence shows a very logical progression over time, as it exponentially 

increases until expiry. The time-series properties of this parameter will be very dependant on the 

choice of time span for the study, as the parameter will be static until – as we can see for our two 

option series – there is approximately one month of trading left. 

  shows the orientation of the graph, i.e. the “tilt”. We have shown its progression in Table 7 for 

both options, and the results are somewhat puzzling. Both graphs are stochastic in nature, but 

still show shape tendencies which seem quite unrelated. The graph for 1004C seems to have 

heteroskedastic properties, as the estimated parameters have an increasing volatility with time. 

This is pointed out with supporting lines for the 1004C graph. 0804C, on the other hand, looks 

like it has a negative parabolic shape, which is also shown with a trend line.  

Regarding the properties of the  -parameter, we can conclude that it i) varies between our two 

option series, and ii) has a role in the model that primarily controls for errors in the   and  -

parameter. As such, the information it carries regarding the future shape of the smile might rather 

be as a controlling factor for the other parameters, rather than being a key determinant in the 

shape. This will be further accentuated in Section 5.3, when looking at the regression results. 

5.2.2 The results of  ,   and our conclusion 

  translates the graph, meaning that it shifts it horizontally. This parameter is linked to   as it 

aims to fit the implied volatility with the corresponding strike price or moneyness. We show the 

parameter regressed on time in Table 8, and both option series show a significantly negative 

linear relation between the parameter and the expired time. As the time series aims to describe 

the shape of the volatility surface over time, and our time dimension is “from left to right”, this is 

a logical shape for the parameter. We would expect the parameter to have a similar linear shape 

regardless of the time period we test for, as the time decrease (TTM) is a linearly decreasing 

function. 
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  is the last parameter, and controls the degree of smoothness of the vertex. In a sense, this 

parameter determines the “level of smile” on the smile. In Table 9, we have visualized the 

parameter over the course of time, and the shape we see is rather scattered, however with the 

negative extreme points becoming smaller as time progresses. The value of this parameter will 

very much be a result of the other four parameters, as it only smoothens the shape determined. 

Both option series show similar graphics. 

What is interesting with the  -parameter is that it controls the gradient of the change close to the 

ATM-option, i.e. it determines the amount of change in moneyness required for an option to 

reach the linear increase obtained in deep OTM/ITM-options. This is an interesting concept, as 

its prediction could help an investor choose which moneyness is appropriate for ex. a hedging 

strategy. 

Conclusively, the result from the parameterizations shows significant and interesting results 

regarding the parameter’s behavior over time. Generally the option series are analogous in their 

shapes, with the exception of  . This could however be an effect of the small sample for the 

0804C series, or perhaps have further explanations in the exogenous variables described in 

Section 5.3. 

5.3 Third step results 

In our final third step, we have examined the effects which the parameters have on each other, 

the way the parameters evolve through lags, and the correlation with exogenous factors. 

Combined with the time-series properties which we observed in Section 5.2, the results in this 

section aim to help explain the variation and progression of the volatility surface. All regressions 

apply robust standard errors to correct for possible heteroskedasticity. 

5.3.1 Univariate regressions 

TTM: We initiated our tests with the univariate regressions between each parameter and the 

exogenous factors. The first variable which we test is TTM, i.e. Time-to-Market. This regression 

is in effect an algebraic interpretation of the graphs obtained in Section 5.2, except that we 

change the time measure from elapsed time to TTM, with the effect being that the regressions 

become “mirrored” compared to the graphs. The results for the five parameters are tabulated in 

Table 10, and as indicated in the section above, all values are significant except   . Looking at 

the R
2
-values,   and   have low explanatory powers of 0.074 and 0.196 respectively, while   has 
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a value of 0.507 and   a very high coefficient of 0.820, which is explained by its function to 

account for time. 

All in all, TTM is a very significant measure in predicting the shape of the smile, which is 

expected. The evolution of the volatility surface over time is a well-studied and empirically 

proven phenomenon, and our results show that we have a parametric model which works well 

with the time-varying nature of the smile. Our conclusion from Section 5.2 regarding the  -

parameter seems true in this regression as well, and the results further point towards the 

parameter’s function as a fit control residual rather than a source of information. It is however 

worth noting that we do not equal its function with the  -term; the error term accounts for the 

unexplained error in the model, whereas the  -parameter corrects the  - and  -parameters. 

VIX: Our next univariate regression is testing the VIX index against our values. As the VIX is a 

proxy for volatility expectations we would expect to see some correlation in this regression, 

which also is the case. As can be seen in Table 11,  ,   and   are all significant on the 5% level, 

although the regression indicates somewhat boosted betas due to the logarithmic proxy. The 

three significant parameters have R
2
-values ranging between 0.180 and 0.304, so the explanatory 

power is moderate at best. Interesting to note is that   is significant, which is a parameter which 

we would expect to be affected by TTM only. 

The VIX seems to explain the key parameters in fitting the smile, which is in accordance with its 

purpose as a volatility indicator. Our hypothesis regarding the insignificance of   is stated above, 

but the result of   is of further interest. As it controls for the gradient of the smile, one would 

assume that the market’s perception of future volatility would influence the rate at which the 

implied volatility would rise. Since   is significant this is true for options further from the ATM-

option, but for options with small values of k – i.e. options close in or out of the money – there is 

no significance. 

Log(Volume): The third univariate regression tests the correlation with the logarithm of volume 

traded. The difference between completely untraded and traded options is significant, as we have 

discussed earlier, but the level of volume is another matter as the pricing mechanisms of the 

market should work regardless of the amount traded, as long as the option is actually traded. The 

results are shown in Table 12, and we do actually have significance on three of our five 

parameters.  ,   and   all show p-values below 0.05, but all three have very small betas, and the 
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R
2
-value does not exceed 10% for any of them. This small, but significant, result could be an 

effect of the volume working as a proxy for TTM, as the volume traded generally increases as 

the expiry date approaches. 

Log(Future): The last univariate regression carried out aims to test the significance of the 

logarithmic future S&P 500 price level on the five parameters. As the volatility surface in our 

case is a predictive volatility measure on the option volatility based on the S&P 500, it is an 

interesting factor to study. The results are presented in Table 13, and we have significant results 

for  ,   and  . All three parameters have R
2
-values below 0.2, but the effect could become 

interesting in combination with the other above mentioned exogenous variables. Again, the large 

betas are most likely inflated by the logarithmic form of the S&P variable. 

5.3.2 Multivariate regressions, AR- and VAR-models 

Having conducted the four univariate regressions, we are interested in looking at the combined 

correlation of the four exogenous variables on the parameters. The results from this multivariate 

regression are found in Table 14, and show a large range in correlation. The correlation between 

  and the combined exogenous variables is non-existent, with a result showing no significant 

betas and an R
2
-value of merely 0.058.   gives an R

2
 of 0.285, with significant correlations with 

TTM and the future S&P price.   is quite well explained with an R
2
-value of 0.656, and 

significant correlations with TTM, S&P and a weak significance with the VIX.   is very well 

explained by the exogenous variables, resulting in an R
2
 of 0.918, although only TTM and the 

S&P are significant. Last,   gives an R
2
 of 0.206, with a significant correlation with TTM and a 

weak significance with the volume. Worth noting when looking at the R
2
 of multivariate 

regressions is that the value increases weakly with the number of regressors in the model, which 

could possibly somewhat distort the value in these regressions. However, as a combined 

goodness-of-fit measure with the p-values which we present, we believe that there is significance 

in looking at the value. 

AR-model: Having looked at the exogenous variables’ ability to fit the time-series of our 

parameters, we are now interested in the properties of the parameters themselves. If we are to 

find a model to forecast the shape of the smile, we need to find the correlation between past and 

current time slices. The method we have chosen is to first look at the lag properties of each 
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isolated parameter using AR-models, and finally test the intra-dependencies of the parameters 

using a VAR-model. 

Having conducted a lag-order significance test, we find the optimal number of lags for which we 

test the parameters. Conducting the AR-regression, the  -parameter indicated the largest 

explanatory lag-power, for which the first, third and fourth lag is significant. As presented in 

Table 15, the parameter receives an R
2
 of 0.807, which implies a high level of predictive power 

through its lags. What makes this result extra interesting is that the  -parameter, given its 

intrinsic quality of predicting the ATM implied volatility, is a predictable value.   shows a 1-lag 

significance, while   shows no significance whatsoever. The  -parameter shows a 1-lag 

significance with a high explanatory power of 0.852, while the final  -parameter exhibits a low 

R
2
 of 0.106, despite being significant in the first lag. 

VAR-model: The results of the VAR regression, tabulated in Table 16, are somewhat puzzling. 

Despite the  -parameter showing high correlations with the exogenous variables and its own 

lags, there is no correlation at all with the two earlier lags of the other four parameters. The same 

holds for  ,   and  , who all are completely uncorrelated with the lags of the other parameters. 

The only parameter which shows any correlation is  , which has a significant beta with the first 

lag of the  -parameter.  

Overall, we find some interesting results from our regressions. Previous work by the likes of 

Gonçalves & Guidolin (2005) and Dumas, Fleming & Whaley (1998) have found significance in 

their respective models when predicting the smile, but we believe that entering external factors in 

the equation further increases the explanatory power of the parameters. In contrast to the above, 

however, we do not find any significant correlation between the lags of the parameters when 

conducting a VAR-regression. A replicating study of Gonçalves & Guidolin (2005), with the 

introduction of external variables in the univariate parameter functions, could hence be an 

interesting attempt at combining the two. 

6. Conclusion 

In this study we have examined the properties of the implied volatility surface, with a focus on 

the ability to forecast its evolution with external factors and lag-models . We have done this by 

conducting a parameterization on the cross-section of the volatility surface, i.e. the time slices, 
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and conducted time-series regressions on the individual parameters using exogenous values and 

AR/VAR-models. To our knowledge, combining the lag-models used with a control for external 

variables has not been done before, and should help us explain some of the time-varying features 

of the volatility smile.  

We first study the univariate regression results for each of the five estimated parameters in our 

model. Only one parameter lacks significance when regressing on TTM, which is expected as the 

volatility surface is a time-varying entity. More interesting is that we find correlation with our 

other three exogenous variables as well. When regressing on the VIX, we get significant betas on 

three of our five parameters, among those the parameter controlling for ATM implied volatility 

and interestingly the parameter controlling for shift in the smile. The correlation between traded 

volume and the parameters is also significant in three cases, which also holds true for our 

regression with the future price of the S&PCOMP. 

Our next area of study is the multivariate regression on the parameters, controlling for all factors 

mentioned above. Here we wanted to study the success at which the external factors could 

correctly describe the movement of the parameters. The R
2
-values ranged from 0.058 to 0.918, 

and in general TTM and the logarithm of the future S&PCOMP were the only significant 

variables in the multivariate setting, whereas the VIX and Volume were completely insignificant 

in this setting. 

Apart from trying to understand the variations of the volatility surface with the help of external 

factors, we have also looked at the predictive power of the parameters which we have estimated. 

We carried out lag-factor estimate tests and used AR-models to look at the #-lag power of each 

parameter. One parameter showed a significant 1-,3- and 4-lag beta, indicating a strong past 

predictive power. Three parameters showed significant 1-lag betas, whereas one parameter 

showed no prior explanatory power. 

Our last test was looking at a vectorized AR-model to study the level of correlation between the 

lags of the parameters, with the ultimate goal of finding a predictive power in their combined 

movements. This test showed very little significance however, with only one parameter showing 

a 1-lag correlation with another parameter at the 5% level.  
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7. Further research 

One problem with conducting this type of research is that the parameterization technique 

determines many of the results in the later stages of the study. One interesting approach would be 

to use several different techniques in the first stage and use the same methods in the later stages, 

as to see how the parameterization influences later results. 

Another point of further interest would be to model a complete volatility surface for each day, 

i.e. using all options traded on a given day, regardless of their TTM. Instead of extrapolating the 

smiles for each day, one would look at the evolution of the entire smile. This study would most 

likely be a more practically oriented approach, as traders do in fact look at all maturities on a 

given day when issuing their orders. When doing a study like this, it might be interesting to 

account for certain day-of-the-week effects as concluded by Berument & Kiymaz (2001). 

A third point of further research is the combination of VAR-regressions and the inclusion of 

external variables. We believe that the external variables do increase the explanatory power of 

the parameters, and a successful combination of the two could definitely bring some new light 

onto the evolution of the smile. 
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9. Appendix 

Table 1 

First-step regression DO-file for option series 1004C 
Programming code from STATA, for the first-step regression of our thesis. The common 

directory must be changed according to data source, and for the estout command to work 

properly one must install the estout feature. The forval-loop can be altered according to the range 

of options one wishes to loop. 

 

STATA DO-file 
 

cd "[DIRECTORY OF CHOICE]" 

 

clear 

 

set mem 500m 

set more off 

 

**ssc install estout 

 

insheet using "1004C-FSTP.csv", delimiter (";") 

 

program nlfstp, rclass 

 

    version 9 

    syntax varlist(min=2 max=2) if 

    local y : word 1 of `varlist' 

    local x : word 2 of `varlist' 

   

    return local eq "`y' = {b0=0.1} + {b1=3}*({b2=0.1}*(`x'-{b3=0.02})+((((`x'-

{b3=0.02})^2)+{b4=0.05}^2)^0.5))" 

    return local title "First-step reg" 

     

end 

 

forval i=1(1)257{ 

nl fstp : iv`i' k`i',nolog iterate(100) eps(.001) 

estout using 1004C-FSTP-Raw.csv, append cells("b se t p ") stats(N r2 converge) title(iv`i') delimiter(";") 

} 

 

save 1004C-fstp, replace 
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Table 2 

Parameterization results from first-step SVI regression 
The first-step parameterization results from the SVI regression. The model regressed is  

                          , and the b0-b4 parameters are listed in order of 

appearance, where   is the dependant variable. First the 1004C option series is listed, and second 

the 0804C series. 

  
1004C Option Series 

 

Time 2009-12-11 2009-12-14 2009-12-15 2009-12-16 2009-12-17 2009-12-18 2009-12-21 

b0 0.121 0.149 0.125 0.131 0.146 0.150 0.135 

b1 1.350 1.070 1.353 1.271 1.273 1.088 1.261 

b2 0.045 0.024 0.087 0.035 -0.013 -0.034 0.237 

b3 0.070 0.062 0.071 0.064 0.060 0.057 0.069 

b4 0.040 0.021 0.035 0.030 0.020 0.015 0.019 

N 68 68 68 68 83 83 83 

R2 0.992 0.992 0.994 0.995 0.989 0.992 0.995 

                

Time 2009-12-22 2009-12-23 2009-12-24 2009-12-25 2009-12-28 2009-12-29 2009-12-30 

b0 0.099 0.136 0.113 0.113 0.124 0.128 0.121 

b1 1.711 1.015 1.456 1.456 1.245 1.128 1.300 

b2 0.255 -0.064 0.168 0.168 0.088 -0.033 0.103 

b3 0.070 0.055 0.061 0.061 0.057 0.054 0.058 

b4 0.032 0.017 0.028 0.028 0.021 0.022 0.025 

N 83 83 83 83 83 83 83 

R2 0.999 0.998 0.999 0.999 0.995 0.998 0.998 

                

Time 2009-12-31 2010-01-01 2010-01-04 2010-01-05 2010-01-06 2010-01-07 2010-01-08 

b0 0.124 0.124 0.131 0.127 0.115 0.143 0.092 

b1 1.243 1.243 1.167 1.182 1.298 2.680 1.567 

b2 -0.015 -0.015 -0.048 -0.025 -0.006 0.147 0.077 

b3 0.060 0.060 0.049 0.048 0.047 0.060 0.046 

b4 0.029 0.029 0.018 0.017 0.026 0.110 0.035 

N 83 83 83 83 83 83 83 

R2 1.000 1.000 0.998 0.998 0.997 0.901 0.999 

                

Time 2010-01-11 2010-01-12 2010-01-13 2010-01-14 2010-01-15 2010-01-18 2010-01-19 

b0 0.131 0.083 0.115 0.099 0.116 0.116 0.120 

b1 1.204 1.914 1.510 1.683 1.463 1.463 1.436 

b2 0.092 0.092 0.158 0.109 0.135 0.135 0.175 

b3 0.042 0.045 0.043 0.042 0.042 0.042 0.039 

b4 -0.013 0.036 0.019 0.025 0.019 0.019 -0.011 

N 83 90 90 90 90 90 90 

R2 0.954 0.996 0.990 0.991 0.985 0.985 0.991 

                

Time 2010-01-20 2010-01-21 2010-01-22 2010-01-25 2010-01-26 2010-01-27 2010-01-28 

b0 0.114 0.150 0.159 0.149 0.163 0.153 0.155 

b1 1.549 1.236 1.698 1.643 1.349 1.473 1.394 

b2 0.094 0.125 -0.108 0.124 0.205 0.122 0.225 

b3 0.040 0.040 0.039 0.045 0.046 0.041 0.049 

b4 0.017 0.001 0.009 0.004 0.000 -0.003 -0.004 

N 90 90 90 90 90 90 90 

R2 0.994 0.950 0.952 0.972 0.924 0.943 0.930 
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Time 2010-01-29 2010-02-01 2010-02-02 2010-02-03 2010-02-04 2010-02-05 2010-02-08 

b0 0.132 0.131 0.154 0.104 0.157 0.167 0.158 

b1 1.987 1.721 1.177 1.919 1.729 1.399 1.835 

b2 0.291 0.171 0.606 0.041 0.045 0.314 0.074 

b3 0.059 0.045 0.053 0.039 0.047 0.052 0.046 

b4 0.016 0.013 0.000 0.029 0.017 -0.005 0.016 

N 90 90 90 90 90 90 90 

R2 0.988 0.974 0.729 0.975 0.965 0.910 0.959 

                

Time 2010-02-09 2010-02-10 2010-02-11 2010-02-12 2010-02-15 2010-02-16 2010-02-17 

b0 0.150 0.162 0.137 0.115 0.115 0.140 0.093 

b1 1.820 1.650 1.863 2.498 2.498 1.855 2.622 

b2 0.227 0.254 0.167 -0.145 -0.145 0.142 -0.075 

b3 0.050 0.047 0.046 0.035 0.035 0.035 0.026 

b4 0.014 0.008 0.015 0.023 0.023 0.009 0.026 

N 90 90 90 90 90 90 90 

R2 0.952 0.965 0.980 0.975 0.975 0.981 0.996 

                

Time 2010-02-18 2010-02-19 2010-02-22 2010-02-23 2010-02-24 2010-02-25 2010-02-26 

b0 0.093 0.146 0.061 0.038 0.151 0.075 0.111 

b1 2.530 1.655 3.185 3.911 2.293 3.074 2.703 

b2 0.039 0.496 -0.041 -0.167 0.703 0.014 0.146 

b3 0.024 0.035 0.021 0.020 0.038 0.023 0.024 

b4 0.023 -0.004 0.028 0.033 0.005 0.025 0.011 

N 90 90 90 90 90 90 90 

R2 0.982 0.908 0.993 0.997 0.934 0.997 0.980 

                

Time 2010-03-01 2010-03-02 2010-03-03 2010-03-04 2010-03-05 2010-03-08 2010-03-09 

b0 0.091 0.099 0.041 0.051 0.120 0.127 0.019 

b1 2.976 3.020 4.118 3.874 2.372 2.944 5.386 

b2 0.121 0.094 -0.100 -0.005 0.550 0.421 -0.104 

b3 0.020 0.018 0.011 0.012 0.021 0.018 0.003 

b4 0.017 0.015 0.026 -0.024 -0.010 -0.008 0.023 

N 90 90 90 90 90 90 90 

R2 0.975 0.988 0.997 0.993 0.962 0.936 0.997 

                

Time 2010-03-10 2010-03-11 2010-03-12 2010-03-15 2010-03-16     

b0 0.053 0.039 0.051 0.063 0.118     

b1 5.515 6.292 7.401 8.580 9.657     

b2 -0.102 -0.140 -0.219 -0.033 0.000     

b3 0.006 0.004 0.004 0.004 0.004     

b4 0.018 -0.016 -0.012 -0.011 -0.006     

N 90 90 90 90 90     

R2 0.994 0.997 0.992 0.997 0.970     
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0804C Option Series 
 

Time 2008-02-04 2008-02-07 2008-02-08 2008-02-11 2008-02-12 2008-02-19 2008-02-20 

b0 0.140 0.156 0.176 0.165 0.160 0.136 0.158 

b1 2.466 1.613 1.122 1.399 1.298 2.738 1.710 

b2 0.524 0.134 -0.020 0.235 0.037 0.381 0.403 

b3 0.071 0.073 0.070 0.073 0.068 0.069 0.061 

b4 0.002 0.013 0.000 0.003 0.006 0.014 0.000 

N 26 26 26 27 30 33 77 

R2 0.992 0.989 0.993 0.964 0.982 0.974 0.932 

                

Time 2008-02-22 2008-02-25 2008-02-26 2008-02-29 2008-03-03 2008-03-04 2008-03-05 

b0 0.108 0.150 0.140 0.177 0.172 0.165 0.155 

b1 2.968 1.947 2.127 1.457 1.740 2.051 2.185 

b2 0.430 0.439 0.380 0.136 0.232 0.427 0.290 

b3 0.062 0.057 0.054 0.062 0.057 0.059 0.052 

b4 0.019 0.000 -0.004 -0.004 0.004 -0.005 0.007 

N 77 82 82 84 87 87 87 

R2 0.919 0.928 0.958 0.972 0.977 0.912 0.978 

                

Time 2008-03-06 2008-03-07 2008-03-10 2008-03-11 2008-03-12 2008-03-13 2008-03-14 

b0 0.177 0.190 0.195 0.056 0.189 0.196 0.201 

b1 2.298 1.702 2.277 3.148 2.325 1.891 2.824 

b2 0.298 0.303 0.339 0.183 0.414 0.609 0.361 

b3 0.062 0.062 0.066 0.050 0.063 0.060 0.057 

b4 -0.008 -0.002 -0.006 0.043 -0.002 0.000 0.013 

N 87 87 89 89 89 89 89 

R2 0.983 0.946 0.970 0.921 0.898 0.624 0.877 

                

Time 2008-03-17 2008-03-18 2008-03-19 2008-03-24 2008-03-27 2008-03-28 2008-03-31 

b0 0.149 -0.005 0.193 0.147 0.135 0.150 0.157 

b1 3.188 3.697 2.057 2.895 3.513 3.089 2.751 

b2 0.382 0.125 0.248 0.245 0.162 0.146 0.248 

b3 0.068 0.040 0.069 0.043 0.042 0.039 0.042 

b4 0.030 0.054 -0.009 -0.011 -0.016 0.014 0.012 

N 89 89 89 90 90 90 91 

R2 0.892 0.865 0.737 0.951 0.970 0.947 0.973 

                

Time 2008-04-02 2008-04-03 2008-04-04 2008-04-07 2008-04-08 2008-04-09 2008-04-10 

b0 0.037 -0.053 0.128 0.111 -0.027 -0.042 0.044 

b1 4.498 5.896 3.900 5.543 7.487 8.057 6.789 

b2 0.053 0.116 0.240 -0.065 -0.136 -0.156 -0.021 

b3 0.027 0.029 0.027 0.019 0.012 0.010 0.011 

b4 0.030 0.041 0.010 -0.009 -0.028 0.029 -0.019 

N 92 92 92 92 92 92 92 

R2 0.891 0.974 0.944 0.902 0.992 0.980 0.986 

                

Time 2008-04-11 2008-04-14 2008-04-15 2008-04-16       

b0 -0.047 0.042 -0.043 0.158       

b1 8.241 11.152 12.229 21.769       

b2 -0.017 0.000 0.068 -0.194       

b3 0.012 0.011 0.006 0.005       

b4 0.031 -0.019 -0.024 -0.006       

N 92 92 92 92       

R2 0.967 0.967 0.979 0.988       
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Table 3 

R
2
 statistics for parameterization of option series 

R
2
 statistics of the parameterization for each cross-section of the option series. Reported is the 

arithmetic average of the R
2
, the standard deviation, and the minimum and maximum reported R

2
 

of the parameterization. 

R2 statistics for option series 
Series Average Std. Dev. Min Max 
1004C 0.975 0.039 0.729 1.000 

0804C 0.938 0.071 0.624 0.993 
 

Table 4 

Implied volatility of the ATM option for each day modeled against the b0, and 

the difference between the two 
The first graph shows the ATM Implied volatility for each day, and the corresponding b0. The 

second graph shows the difference between the two per day. 
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Table 5 

Graphical interpretation of   (b0) over time for both option series 
The graph shows the evolution of the  -paramter (b0) over the regressed period for each option 

series. The elapsed time is on the x-axis, while the parameter itself is on the y-axis. 
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Table 6 

Graphical interpretation of   (b1) over time for both option series 
The graph shows the evolution of the  -paramter (b1) over the regressed period for each option 

series. The elapsed time is on the x-axis, while the parameter itself is on the y-axis. 
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Table 7 

Graphical interpretation of   (b2) over time for both option series 
The graph shows the evolution of the  -paramter (b2) over the regressed period for each option 

series. The elapsed time is on the x-axis, while the parameter itself is on the y-axis. 
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Table 8 

Graphical interpretation of   (b3) over time for both option series 
The graph shows the evolution of the  -paramter (b3) over the regressed period for each option 

series. The elapsed time is on the x-axis, while the parameter itself is on the y-axis. 
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Table 9 

Graphical interpretation of   (b4) over time for both option series 
The graph shows the evolution of the  -paramter (b4) over the regressed period for each option 

series. The elapsed time is on the x-axis, while the parameter itself is on the y-axis. 
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Table 10 

Regression results from correlation between TTM and parameters 
The table shows the results from the regression             , for all five of the 

parameters. 

Correlation between TTM and parameters, 1004C Option series 

  b0 b1 b2 b3 b4 

  b p b p b p b p b p 

TTM 0.168 0.010 -16.250 0.000 -0.032 0.914 0.221 0.000 0.109 0.000 

_cons 0.090 0.000 4.510 0.000 0.100 0.082 0.011 0.000 0.001 0.768 

N 68 68 68 68 68 

r2 0.074 0.504 0.000 0.820 0.196 

 

 

Table 11 

Regression results from correlation between VIX and parameters 
The table shows the results from the regression                   , for all five of the 

parameters. 

Correlation between VIX and parameters, 1004C Option series 

  b0 b1 b2 b3 b4 

  b p b p b p b p b p 

ln(VIX) 0.305 0.000 -12.192 0.001 -0.083 0.820 0.157 0.000 0.041 0.131 

_cons -0.845 0.000 40.566 0.000 0.355 0.758 -0.452 0.000 -0.112 0.187 

N 68 68 68 68 68 

r2 0.180 0.208 0.001 0.304 0.020 

 

 

Table 12 

Regression results from correlation between volume and parameters 
The table shows the results from the regression                       for all five of the 

parameters. 

Correlation between volume and parameters, 1004C Option series 

  bo b1 b2 b3 b4 

  b p b p b p b p b p 

ln(Vol) -0.001 0.214 0.123 0.013 0.005 0.412 -0.002 0.012 -0.001 0.001 

_cons 0.121 0.000 1.002 0.027 0.042 0.507 0.061 0.000 0.030 0.000 

N 68 68 68 68 68 

r2 0.002 0.038 0.006 0.080 0.040 
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Table 13 

Regression results from correlation between future S&PCOMP and 

parameters 
The table shows the results from the regression                      , for all five of the 

parameters. 

Correlation between future S&PCOMP and parameters, 1004C Option series 

  bo b1 b2 b3 b4 

  b p b p b p b p b p 

ln(S&PFUT) -0.954 0.000 30.181 0.013 -0.986 0.258 -0.276 0.001 -0.031 0.768 

_cons 6.802 0.000 -209.353 0.014 7.009 0.251 1.980 0.001 0.236 0.752 

N 68 68 68 68 68 

r2 0.218 0.158 0.016 0.117 0.001 

 

 

Table 14 

Regression results from correlation between TTM, VIX, volume, future 

S&PCOMP and parameters 
The table shows the results from the regression 

                                                       
for all five of the parameters. 

 

Correlation between TTM, VIX, volume, future S&PCOMP and parameters, 1004C Option series 

  b0 b1 b2 b3 b4 

  b p b p b p b p b p 

TTM 0.160 0.003 -17.521 0.000 0.274 0.384 0.217 0.000 0.111 0.000 

ln(S&PFUT) -0.912 0.031 37.573 0.001 -2.582 0.105 -0.257 0.000 -0.072 0.646 

ln(Vol) 0.001 0.523 -0.012 0.715 0.006 0.338 0.000 0.321 -0.001 0.090 

ln(VIX) 0.013 0.915 4.689 0.082 -0.820 0.185 -0.002 0.912 -0.027 0.538 

_cons 6.443 0.052 -273.414 0.002 20.669 0.107 1.818 0.000 0.599 0.625 

N 68 68 68 68 68 

r2 0.285 0.656 0.058 0.918 0.206 
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Table 15 

Results from lag-order selection tests and correspond AR-regressions on all 

five parameters 
Lag-order selection tests to determine the lower of the AIC and the SBIC criteria. After 

determining the lower criteria, a AR(p)-regression with p lags according to 

            
 
        is run, with the following results. 

 

Lag-order selection tests and corresponding AR-regressions 

for all parameters 

Selection test (b0)   AR-regression (b0) 

Lag p AIC SBIC    Lag b p 

0   -4.081 -4.037   L.b0 0.183 0.003 

1 0.014 -4.388 -4.301   L2.b0 -0.038 0.724 

2 0.717 -4.244 -4.114   L3.b0 0.572 0.001 

3 0.005 -4.684 -4.510   L4.b0 -0.558 0.014 

4 0.006 -5.111 -4.894   _cons 0.116 0.001 

          N 13   
          r2 0.8072   

                

Selection test (b1)   AR-regression (b1) 

Lag p AIC SBIC    Lag b p 

0   3.902 3.946   L.b1 1.057 0.000 

1 0.000 2.457 2.544   _cons -0.025 0.850 

2 0.837 2.608 2.738   N 53   

3 0.118 2.573 2.747   r2 0.840   

4 0.026 2.344 2.561         

                

Selection test (b2)   AR-regression (b2) 

Lag p AIC SBIC    Lag b p 

0   0.037 0.080         

1 0.652 0.175 0.262         

2 0.481 0.291 0.421         

3 0.391 0.388 0.562         

4 0.045 0.231 0.449         

                

Selection test (b3)   AR-regression (b3) 

Lag p AIC SBIC    Lag b p 

0   -5.181 -5.137   L.b3 0.939 0.000 

1 0.000 -6.966 -6.879   _cons 0.002 0.355 

2 0.640 -6.829 -6.699   N 53   

3 0.104 -6.879 -6.705   r2 0.852   

4 0.652 -6.741 -6.523         



41 

 

                

Selection test (b4)   AR-regression (b4) 

Lag p AIC SBIC    Lag b p 

0   -5.432 -5.389   L.b4 0.311 0.007 

1 0.004 -5.926 -5.839   L2.b4 0.110 0.416 

2 0.059 -6.045 -5.915   _cons 0.009 0.018 

3 0.322 -5.967 -5.793   N 39   

4 0.666 -5.827 -5.610   r2 0.1016   

 

 

Table 16 

Results from VAR-regression on all five parameters 
The results from the VAR-regression according to the following formula: 

                             . The results are as follows: 

 
Results from VAR-regression on all five parameters 

    b0 b1 b2 b3 b4 

  Lags Coef. P>|z| Coef. P>|z| Coef. P>|z| Coef. P>|z| Coef. P>|z| 

b0 
L1. -0.031 0.930 6.287 0.113 -1.308 0.294 0.008 0.842 0.010 0.940 

L2. 0.197 0.747 3.750 0.578 0.023 0.991 -0.068 0.292 -0.068 0.756 
                        

b1 
L1. -0.012 0.702 0.955 0.005 -0.135 0.209 -0.001 0.686 0.001 0.949 

L2. 0.008 0.836 0.497 0.251 -0.032 0.812 -0.005 0.219 -0.010 0.482 
                        

b2 
L1. -0.101 0.247 1.190 0.217 -0.510 0.092 -0.035 0.000 0.039 0.218 

L2. 0.162 0.071 -1.460 0.142 0.386 0.216 0.010 0.297 -0.040 0.212 
                        

b3 
L1. 4.103 0.086 -33.999 0.199 9.480 0.255 1.116 0.000 -1.012 0.241 

L2. -3.570 0.181 43.539 0.140 -18.459 0.047 -0.395 0.163 1.061 0.270 
                        

b4 
L1. -0.711 0.356 9.076 0.287 -2.857 0.286 -0.125 0.125 0.267 0.337 

L2. 0.680 0.559 -15.860 0.219 4.393 0.278 0.047 0.706 0.005 0.990 

  _cons 0.074 0.488 -2.257 0.057 0.956 0.010 0.035 0.002 0.035 0.367 
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Table 17 

Third-step regression DO-file for option series 1004C 
Programming code from STATA, for the first-step regression of our thesis. The common 

directory must be changed according to data source, and for the estout command to work 

properly one must install the estout feature. The forval-loop can be altered according to the range 

of options one wishes to loop. 

 

STATA DO-file 

 

cd “[DIRECTORY OF CHOICE]" 

clear 

set mem 500m 

set more off 

 

**ssc install estout 

 

insheet using 1003C-SNDSTP.csv, delimiter (";") 

 

gen datenr=date(time,"ymd") 

format datenr %d 

drop time 

order datenr 

 

gen lnvol=ln(volume) 

replace lnvol=0 if lnvol==. 

gen lnspcomp=ln(spcomp) 

replace lnspcomp=0 if lnspcomp==. 

gen lnspfuture=ln(spfuture) 

replace lnspfuture=0 if lnspfuture==. 

gen lnvix=ln(vix) 

replace lnvix=0 if lnvix==. 

 

global b "b0 b1 b2 b3 b4" 

 

forval i=0(1)4{ 

reg b`i' ttm,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b`i' ttm) delimiter(";") 

} 

 

forval i=0(1)4{ 

reg b`i' lnvix,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b`i' vix) delimiter(";") 

} 

 

forval i=0(1)4{ 

reg b`i' lnvol,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b`i' lnvol) 

delimiter(";") 

} 
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forval i=0(1)4{ 

reg b`i' lnspfuture,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b`i' lnspfuture) 

delimiter(";") 

} 

 

forval i=0(1)4{ 

reg b`i' ttm lnspfuture lnvol lnvix,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b`i' ttm lnspfuture 

lnvol lnvix) delimiter(";") 

} 

 

pwcorr $b,sig 

 

tsset datenr 

 

varsoc b0 

reg b0 L(1/4).b0,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b0 lags) delimiter(";") 

 

varsoc b1 

reg b1 L(1/1).b1,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b1 lags) delimiter(";") 

 

varsoc b2 

 

varsoc b3 

reg b3 L(1/1).b3,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b3 lags) delimiter(";") 

 

varsoc b4 

reg b4 L(1/2).b4,r 

estout using 1003C-SNDSTP-Raw.csv, append cells("b p") stats(N r2) title(b4 lags) delimiter(";") 

 

var b0 b1 b2 b3 b4 

 

save 1004C-sndstp, replace 
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Table 18 

Implied Volatility Surface for option series 1004C 
The implied volatility surface for the 1004C option series, modeled during the time series on 

which we conducted our regressions. 
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