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1 Introduction

1.1 Background

Our interest in housing derivatives originates from a simple observation; In general it is possible to

comfortably participate in a market without any particular view on the future development of prices.

I.e. it is possible to over some time hold, produce or consume an asset, commodity or good without

taking an implicit bet on spot market movements. For example a farmer is able to sell his wheat

forward and lock in a certain price when the grain is still in the �eld. A steel plant may use certi�cates

of delivery to manage the exposure to sudden price spikes in the electricity market. And an asset

manager might use options to protect his portfolio from downside risk. Furthermore, in the �nancial

markets the phenomena is taken to the extreme, where almost all risks are tradable. However there

is one market where the concept of tradability of risk is still remarkably undeveloped, the real estate

market. This fact is in some sense counter intuitive both for the real estate market in general and for

the housing market in particular. Although house prices in most western countries have reverted from

historical records, most people will still �nd themselves highly leveraged if deciding to buy instead of

rent. This makes the decision the single most important from a portfolio perspective. Without any

further analysis at this stage, there seems to be reason to assume that the average house owner would

bene�t from passing on some of the housing risk to other parts of the economy. At the same time we

note that individuals in the rental market certainly would improve their portfolio selection by adding

some. With those observations as a starting point we developed an interest in risk management tools

for the housing market.

Before dwelling into the mathematical abstractions that are inevitable in the world of derivatives pricing

it might be worth explaining some issues in a more heuristic way. As we will see later in this thesis the

market for housing derivatives is an incomplete market. In order to understand the implications of this

we must �rst state under which conditions a market is complete. In short a market is complete if every

claim can be replicated. This means that the payo� pro�le of a derivative can be mimiced through

taking positions in other assets on the market, the underlying and the bank account. In a complete

market derivatives are hence redundant and as a consequence there exist unique derivatives prices.

This means that we can derive an exact price for a claim, only by observing information incorporated

in the price process for the underlying, and (almost) without any constraints on investor preferences.

This is a very important feature of complete markets that distinguish them from the market for the

underlying asset itself, which is generally incomplete. For example the price of a stock at a given point

in time cannot be determined as easily as the price of a call option on the same. To value the share we

must know, among other things, investors attitude towards holding undiversi�able market risk, and

even in this setting we will not arrive at a unique price. However in order to price the call option we

only need to impose the restriction that the market is arbitrage free. I.e that investors prefer more to

less; 1 million sek to 1 sek, or a �free lunch� if such is served. The key to this result is that the price

of derivatives must be driven by the same source of risk as the price of the underlying asset and that

this risk may be perfectly hedged away through replication.

To make a market incomplete we only need to remove the tradability of the underlying asset. Since
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the source of risk that drives the price of derivatives no longer can be traded away a simple arbitrage

argument is not valid in this setting. Instead we �nd ourselves in the situation where we need to know

investor's risk preferences. Ie. the premium that investors demand for holding on to the non tradable

risk that drive the price of the derivative. The way to do this is often to adopt a stochastic model

for the underlying asset and derive solutions for the price of derivatives. However as explained these

solutions will not be unique but depend on how investors price risk. This is captured in the model by

an unknown parameter often referred to as the market price of risk. Using market prices from vanilla

contracts this parameter is then inferred. This is commonly referred to as calibrating the model and

once completed the model can be used to price more exotic claims.

It might be appropriate to mention that in practice almost all derivative markets are indeed incomplete.

For example portfolio rebalancing exhibits transaction costs as a hedger at the very least will su�er

from crossing bid o�er spreads. In addition buying and selling cannot be done in an instantaneous

fashion. As a consequence hedging will su�er from the curse of �buying high and selling low�. Volatility

is also often time invariant imposing the risk of those costs to rise over the replication period. Further,

the underlying asset will most certainly pay some not completely deterministic dividend over the

life of the contract. For more exotic derivatives risk exposures are even more complex. From a

theoretical perspective the dimensionality of the pricing problem will grow very fast and it will become

computationally untraceable trying to incorporate all these, and many more, issues. The way this

is handled in practice is to adopt a model that has a reasonable level of sophistication and �t to

market prices of vanilla contracts. The price of the derivative is then recalculated tweaking the models

parameters and variables from their market values (or calculating partial derivatives if a closed form

solution is available) in order to obtain sensitivities to di�erent risk. The individual trader will then

review the positions of his book and price those risks that are not easily hedgable, making exotic

derivatives trading a mixture of art and science.

With these issues in mind we focus our attention on housing derivatives. We will use the information

incorporated in futures prices in order to calibrate two incomplete market models to the housing

market. It should be said that previous research in this particular area is limited as exchange traded

housing derivatives is a fairly new phenomena. We thus aim to contribute to the literature not only

by investigating model calibration but also through evaluating the appropriateness of our suggested

models. The latter is equally important as the models are often cited in the literature on derivatives

pricing. This is also true for the housing market where for example the bene�t of housing derivatives

for portfolio optimization has been assessed with the Black Scholes framework as an approximation.

It should be stressed that by calibration we mean retrieving the parameter vector necessary to price a

given claim in the market. This should be distinguished from the pricing problem where we also need to

derive the pricing equation for the claim. We hence limit the scope of the assessment to retrieving the

parameter vector and analyzing the model assumptions. As already brie�y touched upon the market

for housing derivatives is still in development and as we will See not a deep and liquid market. This

will of course make the calibration task di�cult and render in uncertain parameter estimates. We will

therefore use the theory of good deal bounds to add some extra insights to our analysis.
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1.2 Purpose

In this thesis we will investigate the pricing of derivatives on the S&P/Case-Shiller Composite 10

index (CSI index). We will do this by specifying two di�erent incomplete market models for the CSI

index. The �rst model is an ordinary Geometrical Brownian Motion, the second a Geometric Ornstein

Uhlenbeck process with drift. Our objective is to calibrate the models using price data on futures

contracts trading on the index. When completed, the models may in theory price any given claim in

the market. As a further step we will also derive good deal bounds for futures contracts in these two

di�erent settings.

In short, the purpose of this thesis is hence twofold. First, we specify two models for the index that

seem reasonable from a theoretical as well as practical point of view. Second we calibrate these models

to market data and try to infer how well they are able to explain observed prices on futures.

1.3 Outline

The rest of this thesis will be structured in six sections. In the �rst section we present some theory

and �ndings relating to the housing market in general. Next we describe the data set used. Section

four and �ve are devoted to describing model speci�cation and calibration techniques used for each

model. We also present results. To keep arguments clear and tractable we choose to integrate relevant

derivatives pricing theory in each model section. In part six we derive good deal bounds for each model

and investigate their numerical properties. Section seven is devoted to discussion and conclusion.
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2 Literature review

This section will present some fundamental �ndings from the housing market. It is intended for the

reader to review in order to get an introduction to the special characteristics of housing derivatives

dealt with throughout the thesis.

2.1 The housing market

Representing more than half of the U.S private capital stock and one third of private consumption the

housing market is a fundamental driver of U.S wealth- and income distribution (Englund et al, 1999).

Home equity typically constitutes the largest part of home owner's net worth leaving owner occupied

households sensitive to �uctuations in house prices (ibid). For households below 30 years of age U.S

data show a leverage ratio for housing of 3.0 (Vanini et al, 2006). Despite this fact, there are virtually

no �nancial products for managing housing exposure available to the retail investor.

The consequences of these �ndings are twofold. From an investment perspective it leaves the individual

house owner with a suboptimal portfolio allocation and without e�cient means of unloading excess

housing risk (Case & Shiller, 1993). Evidence from the Swedish market show that for longer holding

periods low risk portfolios contain 15%-20% housing whereas e�cient short term portfolios contain

no housing investment (Englund et al, 2002). Households would therefore bene�t signi�cantly from

being able to manage their housing exposure (ibid). Likewise individuals in the rental market could

substantially improve their portfolio allocation with exposure to real estate investments (Englund et

al, 1999). However these �ndings also have the potential of creating societal imbalances and costs as

aggregate housing risk is not distributed to those investors that are best suited for taking it on (Case

& Shiller, 1993).

2.1.1 Unloading house price risk

Several �nancial products have been suggested in order to mitigate the problem of risk allocation in

the housing market, see for example Case & Shiller (1993), Schiller & Weiss (1999), Vanini et al (2006).

Among these products are exchange traded option and futures contracts, index-linked mortgages as

well as OTC contracts designed to o�set housing exposure.

Index-linked mortgages can be designed in several ways. Common for them all is that they tie the

periodic mortgage payment or the value of the outstanding principal to a predetermined house price

index. By introducing positive correlation between interest payments and the local real estate market,

the contract function as an e�ective hedge against house price �uctuations. The index-linked mortgage

is thus bene�cial to both borrower and lender as it decrease the periodic payment as well as proba-

bility of default during house market downturns (Vanini et al, 2006). However the development of a

functional and liquid market is conditional upon the existence of trusted house price indices as well as

an institutional derivatives market for housing risk (ibid).

Other types of insurance contracts that are suited for the OTC market have also been suggested. The

rationale is the same as for index-linked mortgages as they provide a payo� to the policyholder in

order to o�set a downturn in the housing market. For this bene�t the policyholder will pay a periodic
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or upfront premium. For example Shiller & Weiss (1999) suggest an insurance contract that only have

a payo� when a loss is actually realised by the homeowner.

Exchange traded options and futures are well known risk management tools in equity markets, widely

used by practitioners and with an extensive coverage in the literature. An investor seeking downside

protection may use put options or short futures contracts to manage the risk of his portfolio. In

contrast to the OTC market, liquidity, transparency, counter party risk and other transaction costs

are reduced through the listing procedure. The development of more complex derivative products for

the housing market as those discussed above is to some extent believed to be dependent upon a well

functioning options and futures market (Shiller & Weiss, 1999).

2.1.2 Measuring house prices

The accurate measurement of house prices is a fundamental need in the creation of precise and trust-

worthy indices for derivative contracts to be based upon. This task is however not as straightforward

as may be seen at �rst glance and there are several theoretical and methodological issues to consider

(Englund, 2008).

If we contrast the equity and housing markets the problems that arise with respect to the latter become

apparent. First the real estate stock consists of a large number of heterogeneous assets. If we claim

that for example Ericsson A is trading at 75 SEK this is an unambiguous statement as holding any

share of the stock give rise to the same �nancial claim on Ericsson AB. However claiming that a house

in a speci�ed geographical area is trading at a price of 50 000 SEK/m2 give rise to several questions

when inference on the housing stock is intended. The characteristics as well as the precise location of

the property will have a great impact on the transaction price for the same. From this point of view

it may even be questioned however it is meaningful to speak of a market price for a housing market

on which an index level can be based. Further the trading volume in real estate markets is typically of

much lower magnitude than in �nancial markets. For owner-occupied homes Swedish data show that

only 3%-5% of the stock is trading each year (Englund, 2008). In connection with the heterogeneity

of assets this also gives rise to potential selection biases where units with some speci�c characteristics

are traded more frequently than others. For example, Englund (2008) suggest the potential problem

of a lemons market. All these characteristics give rise to noise that in�uence transaction prices and

obstruct meaningful aggregation of house price data.

There are however index methodologies developed for handling these issues. Two major index method-

ologies are used for owner-occupied homes. Hedonic methods use panel data regression to clear trans-

action price data from unit speci�c characteristics (Englund et al, 1999). The procedure however

introduces explicit assumptions on the functional form of the price relation as well as assumptions on

how the market value of di�erent characteristics changes through time and what characteristics that

are priced by the market (ibid). It is further a very data intense technique which requires high quality

data.

To overcome these problems repeat sales indices are used. This methodology is today the most widely

used in commercial and government applications (Englund et al 1999). By comparing transaction

prices of identical housing units, at di�erent points in time, no assumptions need to be made of the
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functional form of the price relation, or the time dependence of the price of unit speci�c characteristics.

2.1.3 S&P/Case-Shiller Home Price Indices

The S&P/Case-Shiller Home Price index series are the leading measure of U.S residential real estate

prices and consist of 23 headline indices, indices of 20 metropolitan statistical areas and 3 composite

indices (S&P, 2010a). The S&P/Case-Shiller National Home Price Index captures approximately 75%

of the value of U.S residential housing stock and is published on a quarterly basis (ibid). For the

purpose of this thesis we will examine the S&P/Case-Shiller Composite 10 (CSI Index) which consist

of repeat sales data from single family homes in the 10 largest U.S metropolitan areas and is published

on a monthly basis (S&P, 2010b).

The main variable used in order to calculate index values are price changes between two arms-length

sales of the same single-family home. For each transaction in the market a search is conducted to �nd

available information regarding previous sales of the same housing unit. If a search match is found

the transaction pair is regarded as a repeat sales pair. Further a weighting scheme of the sales pairs is

employed to construct the index. Since the index is intended to capture market trends less weight is

given to observations for which price movements are considered not to be market driven or come from

idiosyncratic physical changes to a property or neighborhood. The rationale behind the repeat sales

procedure is hence to capture the movement of the housing market keeping unit speci�c characteristics

�xed. For a complete technical description of the repeat sales algorithm used for the CSI index we

refer the reader to S&P (2010b).
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3 Data

Futures and options on the CSI index have been traded on the Chicago Mercantile Exchange (CME)

since 2006. The data set consist of daily observations of CSI index futures and and monthly observations

of the CSI index. The data set contains primary data from CME where the contracts are traded.

Futures prices are observed from 2006-05-22 to 2009-08-03 in a total of 3910 observations. For the CSI

index we use monthly observations from 1987 - 2009. On each trading session settlement prices for

futures contracts with di�erent maturities are observed. Expiration date for historical futures contracts

are not disclosed by CME and may vary according to the occurrence of non scheduled trading days

in end of the month. From examining expiration dates of currently outstanding contracts we observe

that expiry is typically during the last trading week of each month. As a simplifying assumption we

therefore set the expiration date of each contract to the last calendar day of the corresponding month.

Figure 1 present the dimensionality of the futures data

Observation date Contract Price
5/22/2006 AUG06 231
5/22/2006 FEB07 235
5/22/2006 MAY07 236.2
5/22/2006 NOV06 237.6
5/22/2006 AUG06 228
5/22/2006 FEB07 231
5/22/2006 MAY07 232
5/22/2006 NOV06 227

Figure 1: Dimensionality of futures price data

A common practice in commodity markets is to approximate the spot price with the futures price of

the shortest outstanding maturity. This is done since the spot market often is virtually non existing.

As we face the similar problem with CSI index updated only monthly we will adopt this practice. Since

we continuously use the contract with the shortest maturity as a spot approximation we will lose some

observations for each contract. This reduces the set of observed futures prices to 3090 observations.

The �gure on page 50 in Appendix 9 shows the approximation of the spot price over time using this

method.

As true for all large data set we experience some raw data error. The following measures have been

taken in order to minimize the e�ect of these on our estimation. On 2006-08-30 the settlement price

for the AUG06 future is 0 and the same is true for the NOV09 future on 2006-11-29. This is handled

by omitting these observation dates from the estimation procedure. A troublesome fact is that the

market for CSI index derivatives is illiquid. Of course this is far from optimal as it will introduce

greater uncertainty into our estimates. Also it might be questionable whether investors is indeed

pricing derivatives in a rational way in such a market. One can for example argue that possible

arbitrage opportunities cannot be readily exploited and that prices should incorporate a liquidity

premium. However for the purpose of this study we will not investigate these issues further. It should

also be emphasized that it is the only available source of data and our options to turn elsewhere are

hence limited. We also bear in mind that our data set contains the turbulent period of late 2007
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and 2008. The great uncertainty prevailing in �nancial markets during those times will of course be

ampli�ed on a market of this nature.
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4 GBM Model

To price derivatives on the CSI index, we must adopt a theoretical model that well describes the

evolution of the index. As implied by the discussion above, the housing market in some aspects

distinguish itself rather radically from �nancial markets. This makes it hard to justify the standard

Black and Scholes Model (BS model) for valuing housing derivatives. Below we will describe some

notable features of the housing market and how these a�ect the choice of process for describing the

CSI index.

4.1 Model speci�cation

In order to specify a good model for the CSI index it is essential to understand its characteristics,

and hence the underlying sources driving the index process. A common practice, in di�erent contexts,

is to assume that the underlying housing index evolves according to a Geometrical Brownian Motion

(GBM). De Jong, Driessen and Van Hemmert (2004) adopt a GBM when assessing the economic

bene�ts for investors to have housing futures in their investment portfolio. This despite the fact that

the housing market is commonly viewed as an illiquid, heterogeneous market where new information

is slowly incorporated into prices. As documented by Capozza, Hendershott and Mack (2004) the

housing market ,to some degree, depending on factors such as metropolitan area, constructions costs

and population, exhibits serial correlation (positive) and mean reversion. Despite these �ndings we

start out by adopting a GBM for the CSI index. Of course, assuming this simple framework will come

at some costs.

The bene�t of assuming a GBM (under the P−measure), is that if it turns out that the model explains

variation in the observed prices well, we will have a simple and computationally friendly model at hand.

Also, the index process will be identical to the well know framework of the BS model. As housing

derivatives so far has attracted only limited interest from researchers it also seems natural to start out

by adopting well known characteristics for the index process. We evaluate the power of this simple

model in explaining derivative prices before extending the framework.

4.1.1 The Setup

As discussed above we will assume that the CSI index evolves according to an �ordinary� Geometrical

Brownian Motion. If we denote the level of the index by X, the dynamics followed by X will be as

follows:

dX(t) = µX(t)dt+ σX(t)dW (t)P (1)

where µ ∈ R and σ ∈ R+ are constants determined endogenously by the market. The superscript P

indicates that dW (t)P is a wiener process under the objective probability measure P . We will also

assume that there exists a risk free asset on the market with the dynamics

dB(t) = rB(t)dt, where r ∈ Rdenotes the deterministic short rate.
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The aim is to price a given claim on the underlying process, i.e. in some sense the claim we are pricing

�lives� in the market described above. Let L = φ(X(T )) be a given claim, where φ(−)is some arbitrary

deterministic function. Our aim is to �nd a reasonable price for this claim L living on the market

(X,B). Thus we will be concerned with studying the price process Π(t,L) of this claim.

However before doing that, we recall from earlier discussions, that there are some features of the housing

market that distinguishes it from the ordinary Black and Scholes World. The following assumptions,

which are made in the Black-Scholes Model, are not valid within the model above:

1. Trading in the underlying asset. This assumption is in fact one of the most crucial assumptions

made in the BS model. Since the index X cannot be assumed to be an traded asset the usual

arbitrage argument made when deriving the BS PDE does not apply. It is nonsensical to talk

about buying for example x units of the index, since simply put it is impossible.

2. Liquid market for the underlying. This assumption is tightly nested with the assumption of

tradability. As already recognized direct trading in the CSI index is not available. However even

if it would be theoretically possible to replicate the index using real estate assets the market for

real estate is very illiquid.

3. Portfolios can be carried forward in time. Fails as a direct consequence of (1). Although it is

theoretically possible to carry a portfolio of an index proxy through direct investments in the

housing market.

4. Short selling is possible. Short selling is not allowed in the housing market.

In short the market described above is an incomplete market. A heuristic argument for this, can be

given by applying the Meta Theorem (See Björk 2009) to the market. I.e. the number of random

sources R = 1 are greater than N = 0 the number of assets in the market. Loosely speaking, this

means that there are not enough assets on the market to replicate our given claim L = φ(X(T )).

Hence claims living in the market described above are not redundant like in the Black and Scholes

world. The standard BS argument fails since we cannot balance a portfolio consisting of the derivative

and the underlying index to cancel the randomness in the portfolio. In order to price derivatives on

this incomplete market we must instead assume internal consistency between derivatives, i.e. if we

take a market consisting of m > 1 derivatives as given, we have to be sure that there are no arbitrage

possibilities between these derivatives. Di�erently formulated, it should be impossible to set up a

self-�nancing portfolio1 consisting of these derivatives, that earns a risk free rate of return that is

greater than the return of the bank account. Thus by modifying the usual BS argument slightly we

can derive prices for derivatives in incomplete markets. However these prices will not be unique. From

the second fundamental theorem of arbitrage it follows that a market is complete if and only if there

exists a unique martingale measure. Since the market described above clearly is not complete we will

see below that the martingale measure is not unique. This is in fact one of the major problems that we

1See Björk (2009) for details
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have to handle in this thesis, i.e. calibrating the model derived below as to �nd a martingale measure

Q, such that we in theory can price any given claim living in the housing market in a unique fashion.

Using standard arguments in arbitrage theory one can show that a claim living in the housing market

has to satisfy the following PDE:

dF

dt
+ (µ− λσ)x

dF

dx
+

1

2
(σx)2 d

2F

dx2
− rF = 0 (2)

F (T, x) = Φ(x), ∀x ∈ R

By applying the Feynman Kac representation theorem to the deterministic partial di�erential equation

given above, we see that the price process of every claim in the market is given by: F (t,X(t)) =

e−r(T−t)EQt,x [φ(X(T ))] where the dynamics of X under the risk neutral Measure Q is: dX(t) =

{µ− λσ}X(t)dt + σX(t)dW (t). Here dW (t) is a wiener increment under Q. For a derivation of

the results presented above we refer to the appendix section 7.1.1.

There are a couple of things to note regarding the dynamics of X under Q. The Market price of risk λ

is determined by the market and there is a 1:1 correspondence between λ and the Q−meaure. Hence
determining the market price of risk is the same thing as choosing an equivalent martingale measure.

This also means that the price of a particular derivative will depend on the market price of risk. The

market price of risk is not determined within the model. It is the market that determines λ. For a

further discussion regarding this see for example Björk (2009). Thus in order to determine λ we must

conduct an empirical study on the underlying market. Below we will outline the procedure chosen to

determine the Q dynamics of X.

By now, we are mainly interested in deriving a pricing formula for futures prices in the market described

above. From standard theory (see for example Björk (2009)) we know that the price process for futures

contracts is given by F (t, T ) = EQ [L] = EQ [X(T )]. To compute EQ[X(T )] we solve an simple

ordinary di�erential equation (See Appendix) and arrive at the following expression for the future

price process.

F (t, T ) = X(t)e(µ−λσ)(T−t)

This expression for the price will be used when calibrating our model to the data below. When we

computed the price process for a future contract, we assumed that λ is an arbitrary constant. Since

the market is incomplete, λ is not known. We will in this thesis be interested in determining λ, or from

a mathematical point of view we want to specify the equivalent martingale measure Q, so we in theory

are able to price any other derivatives on the market. Below we will present the method adopted in

order to do that.
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4.2 Model Calibration

The price process of X under the equivalent martingale measure Q is de�ned as the solution to

dX(t) = {µ− λσ}X(t)dt+ σX(t)dW (t). If we can specify the parameters of the X -dynamics under

Q, we will be able to price any other derivative on the market. In order to do that we have to specify

the parameter vector ξ = (µ, σ, λ). One approach to do this is to calculate theoretical prices of future

contracts by guessing the parameter-vector ξ, compare these �guessed� prices to those observed in the

market, and then adjust them if it turns out that our guess was wrong. In this special case we do not

have to guess the whole parameter list. Recall that the price process of a future contract was given

by F (t, T ) = X(t)e(µ−λσ)(T−t). If we de�ne θ := µ − λσ, we see that if we can determine a value of

θ that can be considered a �good guess�, then the drift of the X dynamics under Q will be speci�ed.

The upside of just specifying θ is that it relieves us from estimating µ, which usually is estimated with

wide con�dence intervals. In whatever way, we must still estimate σ to be able to fully specify the

Q-dynamics of X. We �rst show how we estimate θ.

4.2.1 Estimation of theta

To specify θ, we have to calibrate our model to a set of observations. In the literature this is commonly

referred to as an inverse problem. In contrast to the pricing problem, where one is interested in pricing

derivatives given some model parameters, here the interest is in backing out the risk neutral parameters

of the model given observed prices on some class of derivatives. In our case futures prices. The general

idea is the following. Given a vector of observed prices Fobs = (F obs1 , ....F obsn ), one is aiming to �nd

a parameter value θ, such that the vector of theoretical prices F(θ) = (F1(θ), ....Fn(θ)) is as close as

possible to the observed prices. In other words the goal is to minimize the distance between the two

vectors. This distance is usually taken to be the euclidean norm in Rn.

Before we state the problem, which has to be solved, we de�ne all variables of interest. We let Θ denote

the parameter space, which in this case is just R. We also index each observation date t by i and each

maturity date T by j, where i, j ∈ {1...n} × {1..m} and such that 0 = t1, < .. < ti < .. < tn = S

and 0 < T1 < .. < Tj < S < .. < Tm. Hence, [0, S] is the time interval during which our data sample

is drawn. 0 is the �rst observation in our sample and S is the last day on which we can observe any

prices. We now state the problem:

minθ∈Θ||Fobs − F(θ)|| =
∑
i,j

(F obs(ti, Tj)− F (ti, Tj , θ))
2 =

∑
i,j

(F obs(ti, Tj)−X(ti)e
θ(Tj−ti))2 (3)

where ||(−)|| is the euclidean norm in Rnand where we in the last two sums, sum over all i and j.

This is nothing more than an ordinary nonlinear least squares problem, which in general requires an

iterative search algorithm to be solved.

However by taking the logarithm of each observation, and in that way assuming a slightly di�erent

error structure, the problem becomes the following:
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minθ∈Θ

∑
i,j

(ln(F obs(ti, Tj))− ln(X(ti))− θ(Tj − ti))2 (4)

Since this is a linear least squares problem (LLP) it has a closed form solution, which is in contrast to

the original problem stated above. It can also be shown that the solution to this problem is a global

minimum. The linear problem above, is commonly referred to as a regression through the origin.

By minimizing the distance between log prices, we will give di�erent weights to the observed values

compared to the original minimization problem. In e�ect, we are making di�erent assumptions about

the error structure. In Problem (4) we assume that the error term is multiplicative, while it is assumed

to be additive in Problem (3). Thus we will generally not obtain the same solutions when solving these

two problems. The minimization problem we choose to solve depends on our assumptions about the

residuals.

Solving (4)is easier than solving (3), because we assume an multiplicative error structure in (4). Since

they generically yield di�erent estimates of θ, we would like to solve both problems and compare the

results. If we try to solve the non linear problem with a suitable search algorithm, like Newtons

Method, a problem that arises, is which value we shall use as an initial guess in the search algorithm.

One good candidate is the value of θ, obtained when solving problem 2.

To overcome the problem of getting stuck in a local minimum when solving the non linear problem,

we choose a range of starting values, and compare the values of the goal function in the di�erent cases.

It may also be worthwhile to comment on the fact that when transforming problem (3) to a linear

problem, inference on θ becomes possible if we make some additional assumptions2. Interpreting the

results may on the other hand be troublesome since we assume a di�erent error structure as opposed

to the original problem.

4.2.2 Estimation of sigma

The sample of Index observations is collected once every month. Thus if we order the sample by time,

the time di�erence between two sample points is 1
12 .

Probably the simplest approach to estimate σ is to note that if one de�ne Ut := ln( Xt
Xt−1

) then

Ut ∼ N((α− σ2

2 )( t
12 − ( t−1

12 ));σ
√

t
12 − ( t−1

12 ), i.e. Ut ∼ N((µ− σ2

2 )( 1
12 );σ

√
1
12 ) . This follows directly

from X(t) evolving according to a GBM under the physical measure P .

If we let ut denote an observation of the random variable Ut, which has a standard deviation of

σ
√

( 1
12 ),then we can estimate the variance of Ut by the sample variance s(ut)2 = 1

n−1

∑
(ut − u)2,

where ut = ln( xt
xt−1

). Note that ut t ∈ {0, 1...n} can be regarded as a randomly drawn sample. This

follows from the independent increments property of the Brownian motion. From statistical theory we

know that s2(Ut) is an unbiased estimator of σ2 i.e. E[s(Ut)
2] = σ2. However s(Ut) is not an unbiased

estimator of σ, but since our sample set is quite large, and the estimator s(Ut) can be shown to be

asymptotically unbiased, this gives support to using it as an estimator.

2The standard OLS assumptions.
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We also see that the variance of Ut is σ2

12 . Thus to get an estimate of σ2 we need to multiply s2 by

12. 3. It can be shown that this estimator also is the maximum likelihood estimator of σ2. We also

calculate a con�dence interval for sigma. We know that (n−1)s2(X)
σ2 ∼ χ2(n − 1), hence a con�dence

interval for sigma assuming that µis unknown is:

Iσ =

 √
(n− 1s√

(χ2
γ/2(n− 1)

,

√
(n− 1s√

(χ2
1−γ/2(n− 1)

 (5)

Where γ is the con�dence level, n denotes the number of observations in the sample, and χ2
γ denotes

the gamma-quartile of the Chi-Square distribution.

When interpreting the con�dence interval of the standard deviation, one should remember, that it is

calculated on the premise that our model is correctly speci�ed. Thus even though we would expect

the con�dence interval above to cover the true σ2 in 95 out of 100 times (if γ = 0.05), it is conditional

upon the model being the correct speci�cation of the index dynamics.

4.3 Calibration results

4.3.1 Full sample

From the procedure outlined above we calculate an estimate of the unknown parameter θ. We use

data from 3090 daily price observations of futures contracts to arrive at an estimate of θ = −0.045

with a standard error equal to 0.0005 when solving the LLP. The estimate obtained through the non

linear estimation is almost identical to the estimate from the LLP estimation.

Assuming a multiplicative error structure has the bene�t that statistical inference on θ is easy. The

estimate of θ, obtained through the LLP, is unbiased and consistent assuming that the independent

variable and the residuals are independent, and that the error terms have �nite variance. When

estimating theta we did not make any explicit assumption about the distribution of the error term.

This is necessary in order to do statistical inference. Unfortunately it turns out that the normal

assumption of the residuals is a quite strong assumption.4 In �gure 19 (Appendix) it is also seen that

the residuals on average are clustered around ≈ −0.02. One can show that the average of the residuals

is almost always di�erent from zero when running a regression through the origin. This is because

generally a regression through the origin does not provide the best �t to data.

In order to assess the validity of the assumption of a time consistent parameter value, we compute

market implied theta for each price observation. I.e we solve for theta individually for each observation.

We plot the daily estimates of theta against time for all future contracts individually. Figure 3 and 4

3 In e�ect we are calculating the sample variance of the random variable de�ned as Vt =
√
12Ut, which has a variance

of σ

4 See �gure 19 in the Appendix. It seen that distribution of the residuals is negatively skewed
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show how theta vary with time for the FEB08 futures as well as the distribution of the daily implied

theta calculated for all contracts.
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Figure 2: Theta for FEB08 contract over time (left) and histogram of daily theta (right)

As apparent from the �gures theta is not constant through time. This is neither to expect as it would

imply a perfect �t of the model. What is more interesting is that the distribution of theta seems to

be fairly concentrated around a mean of -0.06 (stdev 0.04) suggesting that time consistency may on

average be a not too bad assumption when aggregating the information from all contracts. Another

reason not expecting a constant θ, is that we use future prices as spot proxies. Thus, we would expect

a non constant θ, even tough our model would be correctly speci�ed.

Next we evaluate how well the model is able to describe the futures prices in the data set given the

optimized value of θ = −0.045. We estimate how much of the variance in true prices that the model

is able to capture on a daily basis. With an R2 of 93.4% the model seems to have high explanatory

power within the sample. This number should be interpreted with caution, since when omitting the

intercept term, the usual analysis of variance decomposition SST = SSR+SSE is generally not true.5

We compute R2 as:

R2 := 1− SSE

SST
= 1−

∑
(ln[F obs(ti, Tj)]− ln[F (ti, Tjθ)])

2∑
(ln[lnF obs(ti, Tj)]− ln[F avg])2

where ln[F avg] is the arithmetic average of all observations. We also compute the daily relative pricing

error de�ned as
Fobs − F(θ)

Fobs

The rationale behind this measure is of practical as well as theoretical nature. So far we have a statis-

tical measure of how well the model is able to capture the variance in the sample when investigating log

prices. However we would like the pricing error within the estimation period to be of small economical

signi�cance when it comes to untransformed prices too. If the pricing error is large in relative terms it

would be troublesome to argue why the model even should be considered for pricing other contracts.

5SSE, SSR and SST are the common abbreviations for explained sum of squares, residual sum of squares and total
sum of squares.

20



Rel_price_err

Fr
eq

ue
nc

y

-0.10 -0.05 0.00 0.05 0.10 0.15

0
20

0
40

0
60

0
80

0
10

00

Figure 3: Histogram of relative pricing error.

Figure 5 show the distribution of the relative pricing error with a mean of -1.2%. This is of course

a bit troublesome as it suggest that our model on average has a negative pricing bias. As apparent

from the histogram the pricing error is not normally distributed. Inference about the signi�cance of

the estimate is therefore uncertain given that we do no know the true population distribution. To

further investigate this we look at the distribution of Fobs −F(θ).6 Although the observations line up

fairly well along the 45 degree line, the normality assumption is rejected at every reasonable level of

signi�cance. This is also true even when we omit outliers. On the other hand even if the pricing error

is signi�cantly di�erent from zero the bias is economically small considering the nature of the market.

We also analyze each futures contract in the sample individually in order to see if the model �t any

speci�c contract in the sample better. The following graph show pricing error for AUG07 and NOV11

futures respectively. As apparent the pricing error di�ers substantially between contracts within the

sample.
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Figure 4: Relative pricing error for AUG07 (left) and NOV11 futures

6see appendix for histogram and qq plot
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4.3.2 Sub sample

As discussed above we see that theta seems to be fairly consistent over time. We would however like

to investigate how the optimal estimate of theta depends on the estimation period. In order to do this

we divide the full sample consisting of 3090 observations into a sub sample of 2090 observations. We

carry out the same steps as above for the 2090 observations which gives an estimate of θ = −0.047. We

now use this to make out of sample predictions for the remaining 1000 observations. We also calculate

relative pricing error and get a mean of -1.08%. Figure 21 (Appendix) show the absolute di�erence

between relative pricing error for the NOV11 contract using in sample and out of sample predictions.

From the graphs we can see that the pricing error seems to be consistent for in and out of sample

pricing. This is although not completely unexpected recognizing the small di�erence in the optimal

theta for the di�erent estimation periods. Also the futures pricing model depend in a continuous way

on theta. This can hence not yield us to draw the same conclusion regarding more complex contracts.

However for out of sample prediction the R2 drops dramatically to only 5%. One should remember

that the general market environment prevailing for this period was very volatile. It would hence be

naive to expect parameters estimated during preceding time periods to be valid for this period.

Apart from describing the risk neutral drift of the index process theta will determine the shape of the

futures curve. Our estimate of a negative theta imply that futures prices in our sample are on average

backwardated, meaning that the futures price decline with the maturity of the contract. In a complete

market this is often related to market conditions where there is a shortage of the underlying, and/or a

convenience yield higher than the cost of carry. However the arbitrage arguments that, together with

market characteristics, drive the shape of the futures curve are not valid for our incomplete setting.

This follows directly from the non tradability of the CSI index.
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4.3.3 Estimation of sigma

We use monthly observations of the CSI index from 1 Jan 1987 to 1 Nov 2009 to arrive at an estimate

of σ = 3.13% with a 95% con�dence interval of 2.67% ≤ σ ≤ 3.74%. We also perform the estimation

on the approximated spot price on the time period 2006-05-22 to 2009-08-03 yielding the following

results; daily observations, σ = 8.10%, monthly σ = 7.2%. The estimate from the CSI index is 3.91%

for the same time period.

Further we test the assumption of time invariant volatility. This is done by performing Levene's test of

equal variance on the logarithmic returns. One advantage of using Levene's is that it does not require

the logarithmic returns to be normally distributed. We divide the return series for CSI index in three

sub samples. Sub sample 1 consisting of 1987-01-01 to 1994-09-01 (92 obs), sub sample 2 consisting of

1994-10-01 to 2002-05-01 (92 obs) and sub sample 3 consisting of 2002-06-01 to 2009-11-01 (90 obs).

Appendix section 7.2.1 show the output for Levene's test between the three di�erent groups as well as

for the �rst and second half of the sample. As apparent from the table the null hypothesis of equal

variance between di�erent time periods is rejected at every reasonable level of signi�cance for all pairs

except sub sample 1 and 2. This is however not completely unexpected as we recall the sharp rise and

fall in US housing prices during the last decade, implying that this was a period with unusual high

volatility. For sub sample 1 and 2 the result is however quite interesting. We cannot reject that the

volatility in the housing market was constant from 1987 - 2001, a time period of signi�cant length.

This does not mean that the volatility during this period was constant. It is however relieving that

our assumption of a constant sigma can not be rejected during this period.

From the above we see that the assumption of time invariant volatility is rejected. This is a well

documented phenomena in asset returns and it is also present in the CSI index. On the other hand

we also note that for substantial time periods the assumption of a constant σ in the GBM model may

be appropriate. There are techniques of handling time varying volatility within the model. Examples

are local and stochastic volatility models.

4.4 Model evaluation

4.4.1 Testing for normality in log returns

Below we investigate whether log returns can be assumed to be normally distributed, as predicted by

the model. If this is the case, it would yield some support to the Gaussian speci�cation of the noise

term in (1). When conducting the test for normality we use data on the CSI index over the period

1987 to 2009. We divide the whole sample into two smaller sub samples. The �rst sub sample is

reaching from the start of the index in 1987 until 2006, and the second sub sample is collected during

the period 2006-2009. The reason for subdividing the sample like this is that we want to capture the

e�ect of the rise and fall in house prices during the last decade. As is well known for stock markets,

in times of economic downturns, the usual laws in �nancial markets do not apply. For example it is

known that markets are very volatile in these periods and that the normality assumption is rejected.
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When testing for normality we conduct the following test for the whole sample and each sub sample:

H0 : ln(St/St−1) ∼ Normal

HA : ln(St/St−1) ∼ non−Normal

The empirical distribution for the whole sample of log returns seems to be negatively skewed, i.e.

negative returns seems to be larger (in absolute value) than if returns would have been drawn randomly

from a normal distribution. When conducting the Shapiro wilk test for normality in R7, we get a p-

value of approximately 0. Thus the null hypothesis of returns coming from a normal distribution is

rejected. However by inspecting the graphs on the next page it seems like this is mainly due to the

skewness of the Index-returns. The comparatively large negative returns can be seen in all of the three

graphs in �gure 8 on the following page. By neglecting these observations we would by no means be

able to reject the hypothesis of returns coming from a normal distribution.

In �gure 9 we show similar graphs as those in �gure 8, but for the last subsample (i.e. the period 2006-

2009). It is apparent from these graphs that the normal assumption does not hold. The distribution

is far more skewed to the left as compared to the whole sample.

An interesting fact is that when evaluating the normal assumption for the period prior to 2006, it is

very hard to reject the implicit assumption of log returns coming from a normal assumption. As the

graphs display, the normal assumption seems to �t the data well. For example the theoretical and

sample-quantiles line up on a 45◦ line in the qq-plot as predicted by the model. When conducting the

wilk test for this sub sample, we get an p-value of 0,31 in R which means that we cannot reject the

null hypothesis of returns being lognormaly distributed.

7Statistical Package, see references
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Figure 5: Evaluating the normality Ut during the period 1987-2009

Figure 6: Evaluating the normality of Ut during the period 2006-2009

Figure 7: Evaluating the normality of Ut during the period 1987-2006
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4.4.2 Testing for mean reversion in log index levels

By applying Ito's lemma to the process de�ned by Z(t) := ln[X(t)], we get the process followed by log

index levels. This process is an arithmetic Brownian motion with drift µ − σ2

2 and di�usion σ. The

arithmetic Brownian motion is sometimes referred to as being di�erence stationary. One then refers

to the discrete counterpart of the arithmetic Brownian motion, i.e. �the random walk�. By solving the

SDE satis�ed by Z(t) we get:

Z(t) = Z(s) +

(
µ− σ2

2

)
(t− s) + σ(Wt −Ws)

Its seen that both the variance and the mean depend on t− s, and hence the process is non stationary.

A non stationary process is not mean reverting, which di�erently put means that shocks to the process

do not decay. However by plotting log index levels against time8 we get strong indications that the log

index process is stationary with a deterministic trend, i.e. it seems to revert to a linear trend. This

could however also be a spurious result, as is common phenomenon for many time series having unit

root.

To test the hypothesis that log returns are non stationary, or follows a random walk, we perform a

standard dickey fuller test with a constant term. We run the regression

4zt = α+ Φzt−1 + εt (6)

where 4zt = zt − zt−1 and test whether Φ is signi�cantly smaller than zero. In other words we test

the null hypothesis that the log index series zt is non stationary, against the alternative hypothesis of

a stationary series with a deterministic trend. When performing this test we cannot reject the null

hypothesis at any reasonable level of signi�cance. Estimates and standard errors are reported in the

Appendix. The power of this test is unfortunately very low, furthermore the test is sensitive to the

error terms being white noise. When examining the correllogram of the residuals in �gure 17, it is seen

that the residuals being white noise seems to be a bad assumption.

To accommodate the issues with the dickey fuller test, we also apply the augmented dickey fuller test.

We report the results of these tests in the Appendix. As can be seen we are only able to reject the

null hypothesis of non stationary returns, when the number of lags are equal to 9.

8Figure attached in the Appendix.

26



5 Geometric Ornstein Uhlenbeck Model

In this section the GBM framework is extended to account for mean reversion and linear trends in

house price indices. We will at the outset specify the model. We then take this model to data and

calibrate its parameters. The calibration procedure will di�er from that of the GBM model, which

also implies that the results of the two model calibrations will not be directly comparable. In the end

we will discuss the empirical results of the calibration of the GOU model, and comment on how they

compare to the GBM model.

5.1 Speci�cation of the GOU model.

Although the results in section 1, regarding the GBM speci�cation of the CSI index showed some

explanatory power of prices, we cannot deny the fact that there seems to be a strong linear trend

that the logarithm of the index revert to. Fabozzi et. al. (2010) suggest that an Geometric Ornstein

Uhlenbeck (GOU) process with drift should be adopted to account for mean reversion in house price

indices. We chose to apply a GOU process with drift that has the following representation under the

objective measure:

dZ(t) = {{b(ϕ(t)− Z(t)) +
dϕ(t)

dt
}dt+ σdW̃ (t) (7)

Using the dynamics above we choose to model log prices directly. The reason for doing this is that

it is computationally easier to calibrate the model if we directly model the logarithm of the index

levels. However the process followed by the index X(t) under this representation, could be found by

applying Ito's lemma to the process de�ned by the function f(Z(t), t) = eZ(t). In the model speci�ed

above, we model the long run mean reversion level of log prices, as a deterministic function of time

ϕ : R+ → R.+The parameter, b > 0 can be interpreted as the mean-reversion speed. As the notation

suggests, and for reasons that will become apparent later, it is chosen to be a constant. The long run

mean reversion is dependent on t. We have also added the term dϕ(t)
dt in the SDE above. This is

because, if not, long run index levels may not revert to long run mean reversion levels (Dornier 2004).

We have not yet chosen an explicit speci�cation for ϕ(t). As mentioned above there is evidence (Fabozzi

et.al 2010) that house price indices exhibit log linear trends. These �ndings are also supported for the

CSI index in section 4.4.2. and is further visualized in �gure 23 in the Appendix. Thus we deem a

speci�cation of the form ϕ(t) := pt+ q as appropriate.

There are however dangers of adopting this speci�cation. By assuming a log linear trend it is possible

that one over/under estimates the actual change in the index. For example, during the economic

turbulence post 2006, it is not implausible that a GOU model with linear trend would underestimate

increases in the index, by forcing Index levels to stay close to their long run mean. To mitigate this

issue, one solution is to choose another speci�cation for ϕ(t). We will elaborate more on this later.

From now on we let ϕ(t) := pt+ q, as suggested by Fabozzi et. al. (2010)

In general, the advantages of the GOU model are similar to those of the Geometrical Brownian Motion.

The GBM model is nested in the GOU model. This is seen by setting b = 0 and letting ϕ(t) :=
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pt + q. Precisely as the GBM model it is tractable from a computational perspective. For example

futures prices are easily computed. Another feature of the GOU model is that it, rests on the normal

assumption of log returns. Hence, the model evaluation of the GBM model, concerning the normality

of log returns, also applies to the GOU model. If we assume that the index evolves according to a

GOU process, the risk neutral dynamics of Z, assuming a constant λ �market price of risk�, will be as

follows:

dZ(t) = {b(pt+ q − Z(t))− λσ + p}dt+ σdW (t) (8)

where dW (t) is a wiener increment under the risk neutral measure (compare to dW̃ (t) above which

is under P ). It can be shown that the solution to (8) is given by: Z(T ) = pT + q1 + (z(t) − pt −
q1)eb(t−T ) + σe−bT

´ T
t
ebudW (u). One can also show that Z(T ) is normally distributed, and that the

�rst and second moments of Z(T ) conditioned at the information at time t are given by9:

EQ[Z(T )] = pT + q1 + (z(t)− pt− q1)eb(t−T ) (9)

V arQ[Z(T )] =
σ2

2b
(1− e2b(t−T )) (10)

We would now like to calculate future prices in the market, where the underlying object is governed

by a GOU process. The price of a future contract is given by: F (t, T ) = EQ[X(T )]. If we use that

Z := ln[X(t)], we can calculate the price of a future contract. Since X is log normally distributed,

its �rst moment is given by E[X(T )] = exp
(
E[Z(T )] + V ar[Z(T )]

2

)
. Thus the future price, when the

underlying process is a GOU-process, is:

F (t, T ) = exp(pT + q1 + (ln[x(t)]− pt− q1)eb(t−T ) +
σ2

4b
(1− e2b(t−T ))) (11)

where q1 := q − λσb . Note that q1 is not known, since lambda is unknown, and therefore we can not

calculate prices in the incomplete market described by the dynamics above. In order to do that we

must estimate λ. That is however not enough, to fully specify the Q-dynamics of Z(t) we must specify

the whole parameter list ν = (σ, b, p, q, λ). In the following section, we will in detail explain, how the

calibration of the GOU model will be conducted.
9Derivation of the solution to (8), and the moments of Z(T ), is shown in the Appendix
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5.2 Model calibration

The calibration of the GBM model turned out to be relatively easy, since by de�ning θ := µ − λσ, it
relieved us from estimating µ. To calibrate the GOU model, we have to estimate the whole parameter

list in order to specify the Q dynamics of our model. We will carry out our �calibration scheme� in

two steps:

1. We estimate the parameter list ν1 = (σ, b, p, q), describing the model under P, by the Maximum

Likelihood Method.

2. We then use this parameter list as an input in a minimization problem corresponding to the one

that we solved for the GBM model, and in this way obtaining an estimate of λ.

5.2.1 P-measure parameters

The process that we are observing is according to our model assumptions de�ned as the solution to

the SDE given by (7). Note that we now our trying to estimate the parameter list v1 directly under

P . The SDE in (8) is solved in a similar manner to the one solved in (7) (see Appendix for details).

As mentioned above, the conditional distribution of Z(T ), given the information generated by the

internal �ltration up to time t is normal, with moments as in (9)and (10). Thus, in the case of the

Geometric Ornstein Uhlenbeck process we have explicit expressions for the transition densities , i.e. the

conditional density functions from one given period s to another period t s.t. t > s. The observations

on the CS Index Z are collected at equidistant discrete points in time 0 < t1 < t2 < ... < tn,where

ti− ti−1 = 1/12. Since the underlying process satis�es the so called Markov property and the di�usion

term is Gaussian, we can arrive at an explicit expression for the Likelihood function by an iterative

application of Bayes Theorem (See Appendix):

L(ν1) =
∏
i∈I

p(Zti |Zti−1
; ν1) (12)

where I = {1, 2, ..., n}. The transition density is normal, with mean and variance as shown in (9) and

(10), i.e:

p(Zti |Zti−1
; ν1) =

1√
2πσ1

e
−

(zti
−µi)

2

2σ21 (13)

where ui = pti + q + (zti−1 − pti−1 − q)eb(ti−1−ti) and σ1 = σ2

2b (1 − e2b(ti−1−ti)). Observe that σ1has

the sub-script 1, not i. This is to indicate that σ1 is independent of i, and to distinguish it from σ,

which is one of the parameters in (7). (note that σ1 is independent of time since we have observations

sampled at equidistant points in time). We set ∆ := ti − ti−1. The explicit expression for the log

likelihood function now becomes:
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l(ν1) := ln[L(ν1)] = −nln(2π)

2
− nln(σ1)− 1

2σ2
1

n∑
i=1

(zti − ui)2 =

= −nln(2π)

2
− nln(σ1)− 1

2σ2
1

n∑
i=1

(zti − (pti + q + (zti−1
− pti−1 − q)e−b∆))2 (14)

The goal is to �nd the parameter vector ν1 that maximizes the log-likelihood function (14). This vector

can be found by numerical methods.

Estimates of the standard errors are found by taking the square root of the diagonal elements, of the

Inverse of the Fisher Information Matrix. More formally the standard errors are obtained as:

σ̂ν1i =

(
−E

[(
d2L(ν)

dν2

)
ii

])−1

where σ̂ν1i denotes the standard error for the i : th element of the parameter vector ν1, and
(
d2L(ν)
dν2

)
ii

is the i : th diagonal element of the hessian matrix.

5.2.2 Q-measure parameter

As a �rst step towards the calibration of the GOU model, we extracted the parameters under P , i.e. we

estimated the parameter list ν1 = (σ, b, p, q). However knowing this parameter list is just a necessary

condition in order price derivatives living on the market (X,B). To fully specify the Q − dynamics
of the model, and to be able to attach a unique price to every claim on the market, we also need to

know λ, the market price of risk. We can determine λ by almost exactly mimicking the procedure, by

which, we calibrated the GBM-model to data.

Thus, what we want to do is to �nd the scalar λ, which minimizes the distance between observed

future prices and theoretical future prices, i.e in symbols we want to solve the following problem:

minλ∈Θ||Fobs − F(λ)|| =
∑
i,j

(F obs(ti, Tj)− F (ti, Tj , λ))2

=
∑
ij

(F obs(ti, Tj)− exp(pTj + q1 + (ln[x(ti)]− pti − q1)eb(ti−Tj) +
σ2

4b
(1− e2b(ti−Tj)))2 (15)

Note, that the parameter-space Θ in this case is R. It is also important to emphasize that the sample

obtained and used as input, di�ers from that used when extracting the parameter vector under P. In

the problem above F obs(ti, Tj), denotes the observed futures price at time ti, with a maturity at time

Tj . At every date ti we have several observations of futures contracts with di�erent maturity. This is

why we have indexed the observations above with a double index. What also distinguishes this sample

from the one when estimating the P measure parameters, is that it is not sampled at equally spaced

points in time. (For a more detailed description of the dimensionality of the data set, and the indexing

of the observations, see the data section and the section on the calibration of the GBM model.)
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Now, remember that we have estimated all parameters of the model except λ. As with the GBM

model, we could try to minimize the distance of log prices instead of solving the problem in(15). In

that case there will be a closed form solution for the estimate of λ. This estimate, can then be used as

a starting value when trying to solve the problem above with for example Newtons Method (see the

calibration of the GBM model).

5.3 Calibration results

5.3.1 P-measure parameters

When performing the MLE optimization, we obtained the following estimates of the parameters:

Parameters Estimates/(St.err)
p 0.05/(0.017)
q 4.05/(0.0007)
b 4.11/(1.524)
σ2

1 0.003/(0.368)

Figure 8: Estimates of the GOU- model with ϕ(t) = pt+ q

A heuristic interpretation of the parameters is that, q is the �base-level� of mean-reversion, i.e.starting

at t = 0, we would expect the process to oscillate around 4. The parameter p can be interpreted as

the increase in mean index level per time, i.e. after one year, we would expect the process to oscillate

around 4 + 0.053 = 4.053, and continuing in the same fashion. Di�erently put this means that the

mean level of the Index, increases approximately 5% per year. As explained earlier b is heuristically

thought of as the speed of mean reversion. By comparing with �gure 23 these estimates feels fairly

reasonable. For example it is seen that in 1987, log prices was at a level of 4, and they did in fact

steadily increase the whole sample period (except for the last few years) to a level around 5. A simple

calculation shows that the mean increase per year in log prices was approximately 1/20 = 0.05. This

calculation may seem arbitrary. It can be justi�ed by noting how smooth the evolution of the Index

have been ever since the start of the index in 1987.

In the above table, the standard errors of the estimates are reported in parenthesis. A small standard

error, roughly indicates a high statistical signi�cance.

5.3.2 Q-measure parameter

When minimizing the distance of log prices we get an estimate of lambda equal to −0.03. Since, we as

in the GBM case, can not theoretically justify any explicit assumptions about the distribution of the

residuals in the above least squares minimization, it is not fair to talk about the statistical signi�cance

of the parameter λ. On the other hand we can get a feeling of how well the model prices futures by

evaluating how much of the variation in the observed prices that the model can explain. We compute

the following statistic to capture this:

R2 := 1−
∑

(ln[F obs(ti, Tj)]− ln[lnF (Tj , ti, λ)])2∑
(ln[F obs(ti, Tj)]− ln[F avg])2
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where ln[F avg] =
∑
ln[F obs]
nr.obs. . We compute a R squared of 0,8 for the OU model. This can be compared

to the R2 computed for the GBM model, which was 0,9. Since the GBM model is nested in the GOU

model we expected the R2 to be higher for the GOU model than for the GBM model, but this is not the

case. One explanation for this contradictory result is that the calibration methods used for the models

di�ers. First of all, when it comes to the GBM model we backed out θ by comparing observed and

theoretical prices for the period 2006-2009. Knowing θ was su�cient in order to price futures on the

GBM market. On the other hand when we calibrated the GOU model we estimated the P −measure
parameters of the model for the period 1987-2009, and then compared observed and theoretical future

prices, for the period 2006-2009, to back out the parameter λ. Thus when calibrating the GOU model

we used a longer history of observations from the underlying Index (p measure parameters).

In the end, the fact that we use a longer history of observations from the underlying Index when

calibrating the GOU model, makes the results of the calibrations incomparable. It would have been

possible to calibrate the GBM model in precisely the same way as we calibrated the GOU model.

However it is empirically well known that the estimates obtained for µ usually have very wide con�dence

intervals. Thus we would not gain anything by adopting a similar procedure to the GBM model.

To further asses the validness of the estimate of lambda, we compute daily implied lambda for each

contract over time. It is evident from the �gure below that daily implied lambda for the whole sample is

uniformly distributed around its estimate of −0.03. This is encouraging since it suggests that investors

on average are pricing derivatives with a constant lambda. What is less encouraging is that there is

a wide dispersion in lambda. Thus the assumption of a constant lambda may be fallacious. However

there are reasons not to expect a constant lambda:

1. Investors are irrational, i.e they cannot use the information that they posses e�ciently. For

example if investors had very short memories, a stochastic lambda would be realistic, since they

would constantly revalue their estimates of lambda, and use much less information from the past.

2. The model assumptions are bad. However identifying a good model would not automatically

imply that we should �nd a constant lambda. For example we approximate the spot prices with

future prices with the shortest maturity.

3. Lambda is time varying representing changes in investor sentiment.

Another notable feature in the �gure below is that there are many observations with a large negative

lambda. Thus investors are willing to pay to take on the risks associated with some of the future

contracts. Why would any investor be willing to do that? One possible explanation is that they do not

understand that they are paying to engage in these bets (See Wilmott and Ahmad). Another reason

is that investors seek exposure to this risk factor in order to diversify their portfolio.
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Figure 9: Graph showing distribution of daily implied lambda.

As a last step in examining the validness of the estimated λ, we investigate the size and sign of implied

lambda for the di�erent contracts, by plotting lambda against time for each contract (See �gure

Appendix). It is readily seen that a majority of the contracts with a maturity date before 2007 are

valued with a negative lambda, and contrary a majority of the contracts with a maturity ex post 2007

are valued with a positive implied lambda. It is also seen, that lambda seems to be fairly constant or

smooth over time for each contract. This result suggests a reversal in risk appetite and is also re�ected

in the rapid decline of house prices. As suggested by Wilmott and Ahmad, a negative market price of

risk is often associated with economic boom periods of excessive risk taking and bubble building. Thus

the wide dispersion in lambda seen in the histogram above, may be due to a time varying (increasing

over time) lambda.

The R2-value is calculated on the premise that lambda is constant, what other implications in terms

of pricing does this assumption have? The graphs below show future prices implied by the model,

versus observed future prices, assuming that λ = −0.03 and assuming that all other parameters are

set to their estimates in the table on page 31. These graphs con�rms one of the potential problems

with the GOU model that we saw earlier. Assuming that ϕ(t) is linear in t, could have the implication

that future prices implied by the model are under/over priced relative to those observed in the market.

This is clearly seen below. The model systematically under prices the August 06 contract and over

prices the November 09 contract. This can be explained by the rapid increase of the Case Shiller Index,

starting around 2006. The model �forces� prices to stay close to their long run average. This has the

e�ect that when prices increase faster than predicted by the model, future prices and index levels are

set too low, and vice versa.
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contract and a NOV09 contract.

34



6 Good Deal Bounds

We have so far calibrated both the GBM model and the GOU model to data with mixed results. If

we believe that these models can be properly calibrated to observed prices,why do we feel the need for

calculating good deal bounds?

These two methods, in one sense, represent di�erent views on part of the implementer, regarding the

prices observed in the market. When calibrating a given model, we believe that those prices observed

in the market are the �true� ones, and we back out the market price of risk by comparing them to

the theoretical prices. However when calculating good deal bounds we make an assumption about the

market price of risk, and then go to the market to see if there are any prices that represent too good

deals. If this is the case, we regard these derivatives as miss priced. In short when calibrating a model

we believe in the derivative market, when calculating good deal bounds we have more faith in the

theoretical model of the underlying process.

Knowing good deal bounds also has value implications for many di�erent parties in the �nancial

markets. For example a �nancial institution can bene�t from good deal bounds analysis, since they

by knowing them can limit their risks in derivative transactions.

Recently there has been a rapid development in the theory of Good Deal Bounds. The basic idea of

this theory is, as the name suggests, to exclude prices on incomplete markets that yield too good deals.

The need for this theory, stems from the fact that by just precluding arbitrage, the pricing bounds

obtained are too wide to be useful from a practical perspective.

In essence, the theory aims at �nding the highest and lowest arbitrage free processes subject to a

constraint on the Sharpe ratios of the traded derivative.

|SR(t)| < C2

However this problem is intractable from a mathematical point of view, and it also permits portfolios,

composed of the derivative, the underlying, and the money account that has very high sharpe ratios.

This problem can be resolved by putting a bound on the right hand side of the Hansen Jagannathan

inequality, i.e. we bound ||λ(t)|| < C2, utilizing the HJB inequility |SR(t)| ≤ ||λ(t)|| (see Björk 2006),

we then have the following chain of inequalities:

|SR(t)| ≤ ||λ(t)|| < C2

Thus, the problem translates to that of �nding the highest and lowest arbitrage free price process

subject to a bound on the market price of risk. The upper good deal bound for the case when the

underlying follows a GBM, is then de�ned as the solution, to the following maximization problem:
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Problem 5.1

maxλ E
Q[X(T )] (5.1)

dX(t) = {µ− λσ}X(t)dt+ σX(t)dW (t)

||λ||2 < C2 where C ∈ R

For general speci�cations of λ this is a standard stochastic optimal control problem. However in the

scalar case presented above, where the market price of risk is assumed to be constant (that is why we

omit the time -argument of λ), we note that the optimization problem has a trivial solution. We see

that value of λ ∈ R that solves the problem lies in the interval [−C,C].

Since we can solve for the expectation in 5.1 explicitly, i.e. EQt [X(T )] = X(t)e(µ−λσ)(T−t) and we

know that the exponential function is strictly increasing in its argument, we know that the solution

to the problem must be a boundary solution, more precisely the lower boundary (again because ex

is increasing in x) i.e. λ = −C. In a similar way one sees that λ = C solves the corresponding

minimization problem.

Thus in the Geometrical Brownian Motion setting, where λis assumed to be constant, we have the

following pricing bounds for a future contract:

X(t)e(µ−Cσ)(T−t) ≤ F (t, T ) ≤ X(t)e(µ+Cσ)(T−t) (16)

In a similar manner we obtain the corresponding pricing bounds in the Ornstein Uhlenbeck case, also

assuming a constant market price of risk. The problem is formulated exactly the same way, apart from

the dynamics de�ning X(t).
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Problem 5.2

maxλ E
Q[X(T )] (5.1)

dX(t) = (b(pt+ q1 − ln[X(t)]) + p+ σ2

2 )X(t)dt+ σX(t)dW (t)

||λ||2 < C2 where C ∈ R

In this case EQ[X(T )] = exp(pT + q1 + (ln[x(t)]− pt− q1)eb(t−T ) + σ2

4b (1− e2b(t−T ))) as derived above.

Reshu�ing terms EQ[X(T )] = exp{q1(1 − eb(t−T )) + pT + (ln[x(t)] − pt)eb(t−T ) + σ2

4b (1 − e2b(t−T ))}.
Recall that q1 := q − λσ

b . Now it is obvious that the second, third and fourth term in the expectation

do not depend on λ, and the �rst term is a linear function of λ. Thus, since the exponential-function is

a strictly increasing function, we can equivalently maximize the exponent. whether λ = ±C depends

on whether 1− eb(t−T ) is greater or less than 0, or equivalently whether b, the mean-reversion speed,

is greater or less than 0. However b is by de�nition always taken to be positive. Thus 1 − eb(t−T ) is

positive, and therefore the solution to the problem above is λ = −C.

Thus the pricing bounds in the OU-model are:

exp{qL1 (1− eb(t−T )) + ω} ≤ F (t, T ) ≤ exp{qH1 (1− eb(t−T )) + ω} (17)

where qL1 := q − C σ
b and qH1 := q + C σ

b and ω := pT + (ln[x(t)]− pt)eb(t−T ) + σ2

4b (1− e2b(t−T )).
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6.1 Numerical properties of the pricing bounds

This section investigates some numerical properties of the pricing bounds derived for the GOU model

and the GBM model. Most of these properties are fairly obvious when looking at the expressions for

the pricing bounds in 16 and 17. However we will mention all of them for the sake of completeness.

By investigating the properties of the good deal bounds we can also get a better understanding of the

models, especially the GOU model.

Properties of the pricing bounds for the GBM model

In the case of the GBM model it is easy to see how changes in the di�erent parameters will translate

into changes in the pricing bounds. Just look at the expression for the pricing bounds in 16. It is

obvious that an increase in σ (keeping all other variables �xed) will widen the pricing bounds. The

same is true for λ. It is on the other hand not that obvious how changes in µ will a�ect the pricing

bounds. An increase in µ will both shift the pricing bounds upwards and widen the bounds. One way

to see this is the following:

The pricing bounds for the GBM model are:

X(t)e(µ−Cσ)(T−t) ≤ F (t, T ) ≤ X(t)e(µ+Cσ)(T−t) (18)

Say that µ increases by x > 0 units to u+ x. The �new� pricing bounds are now :

X(t)e(µ+x−Cσ)(T−t) ≤ F (t, T ) ≤ X(t)e(µ+x+Cσ)(T−t) (19)

It is true that

X(t)e(µ−Cσ)(T−t) ≤ X(t)e(µ+x−Cσ)(T−t) and X(t)e(µ+Cσ)(T−t) ≤ X(t)e(µ+x+Cσ)(T−t) so the pricing

bounds shifts upwards.

We also have:

X(t)e(µ+x+Cσ)(T−t) −X(t)e(µ+x−Cσ)(T−t) = X(t)e(µ+x)(eCσ(T−t) − e−Cσ(T−t)) >

> X(t)eµ(eCσ(T−t) − e−Cσ(T−t)) = X(t)e(µ+Cσ)(T−t) −X(t)e(µ−Cσ)(T−t)

i.e. the new pricing bounds are also wider.10

Properties of the pricing bounds for the GOU model

We will now investigate the properties of the pricing bounds for the GOU model.The parameters of

the GOU model are p, q, b, σ and λ. By just looking at the analytical expressions, it is not easy to

see, as for the GBM model, how changes in the di�erent parameters will cause changes in the pricing

bounds. Therefore we will with the aid of some graphs illustrate this. However to be able to do that we

must chose a benchmark case, to which all the pricing bounds can be compared. In section 5.3.1-5.3.2

10The inequalities are reversed if x < 0.
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we estimated the parameter list for the GOU model. It seems natural to chose, as the benchmark

case, the pricing bounds obtained when setting the parameter vector equal to the estimated vector in

section 5.3.1. If we let v2 = (b, p, q, σ, C), then v2 is set equal to (4.11, 0.05, 4.05, 0.05, 1) in our base

case. Furthermore we let the level of the log Index levels ln[X(t)] vary between 0 and 6, and the risk

free rate r is set equal to 0, 0411 We also assume that we are standing at t = 0 and that all future

prices that we observe are prices on one year contracts, i.e. T = 1.

We have set C = 1 in our base case. This is for two reasons. First of all lambda was estimated to be

-0.03 for the GOU model, secondly empirical evidence suggests that values of C greater than 2 are rare

on mature markets (See Murgoci (2009)). The value of C that the implementer of the model chose

should in general depend on the severity of the market incompleteness. Since the market for housing

derivatives is highly illiquid, this motivates a higher value of C. Implications of changes in C on the

pricing bounds will be investigated below.
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Figure 11: Showing good deal bounds for our base case. As apparent from the �gure there is huge
di�erence between the complete and the incomplete market prices.

We start o� by investigating how the pricing bounds changes to changes in the parameter b. All the

graphs in this section are found in the Appendix. Figure (24) show good deal bounds for b = 4.11,

b = 2 and b = 0.05 The graphs should be interpreted in the following way: �Given that we stand at

t = 0 and that we have a parameter vector (b, 0.05, 4.05, 0.003, 1), we will, depending on the log prices

at this time, expect to see future contracts trading at prices in the interval obtained by intersecting

the graphs with a vertical line at the observed spot prices at t = 0.� For example if b = 4.11 and the

log price at t = 0 was 4, then we would expect future prices to trade somewhere in the interval [56, 62].

It is hard to tell from the graphs in the Appendix whether the pricing bounds widens or not when b

increases, but a close examination con�rms that they do widen. It is also seen that changes in b causes

the pricing bounds to shift. In general the lower the value of b the more the GOU model resembles the

GBM model. This partially explains why we have Upper Bound > Complete price > Lower bound,

11We need to specify r in order to be able to compute future prices in a complete market setting where F (t, T ) =
X(t)er(T−t).
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when b is low. In the limit when b = 0, we have the GBM model with a local mean of return equal to

p = 0.05, and hence the pricing bounds in this case can also be given by :

X(t)e(0.05−σ)(T−t) ≤ F (t, T ) ≤ X(t)e(0.05+σ)(T−t)

In the complete setting future prices can be calculated as F (t, T ) = X(t)er(T−t). Since r = 0.04 and

σ > 0.0112 we now see why Upper bound>Complete price>Lower bound is true when b is low.

From �gure 11 it also evident that, if we discard the pricing bounds, a high level of b implies that

future prices are valued almost at a constant level, independent of what spot price we actually observe

at t = 0. In contrast, a low b implies that future contracts are valued very di�erently depending on

the spot price observed. An explanation for this is the following. If the market believes that b is high,

then they anticipate that the market will revert back very fast to the mean reversion level at this time

(i.e. approximately 4 at t = 1). Thus if we at t = 0 observe a spot price above 4, say 5, futures prices

will be valued almost as if the spot prices were 4, since it is expected that the spot prices revert back

to the long run mean. In contrast if b is low, the market do not believe that the market will revert

back to its long run mean immediately. This explains why the pricing ranges (not pricing bounds) are

much wider in the graphs where b is high than in the graphs where b is low.

As expected an increase in q, letting all other variables being �xed to the base case, causes the pricing

bounds to shift upwards. This is because if q increases the base level of mean reversion increases, and

hence index levels are expected to oscillate around a higher level. This also causes future prices to

increase. The pricing bounds are less sensitive to changes in q when b is low. This is because when b

is low a change in q will not cause Index levels to oscillate around the new level of q immediately.

Changes in p has the same e�ect on the pricing bounds as changes in q, this could easily be seen

investigating the analytical expressions for the pricing bounds. Reshu�ing terms in (17) we see that

the pricing bounds shifts upwards if T − teb(t−T )is positive, which it is.

It is also apparent in the graphs that the higher the spot prices are, the wider are the good deal pricing

bounds. This is merely due to the exponential nature of the future price process. From a economical

point of view this is not very easy to explain. One idea is the following: The higher the price of the

underlying the greater is the potential downside, and hence the uncertainty is greater.

From the graphs in the Appendix, we see that the pricing bounds widens, when increasing the volatility

parameter (and vice versa). This is to expect since the uncertainty of the payo�s are greater in a high

volatility environment.

By lastly looking at �gure 25 and 26 it is also readily seen that the higher we set C, the bound on

the market price of risk, the wider are the pricing bounds. We can also see this by inspecting the

expressions for the pricing bounds in equation 16 and 17.

12Note that this is not σ1.
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7 Discussion

Although we know from previous studies that the housing market exhibits characteristics that would

imply that the GBM framework should not be considered, or at least modi�ed, we start out by

examining it. The reason is that calibrating the GBM model may be viewed as a point of reference.

Although this thesis is �rst of all concerned with the calibration problem (as opposed to the pricing

problem) the two are clearly intimately connected. Even though in theory any model speci�cation may

be calibrated to market prices we do not only try to parametrize the market's view on housing risk,

but also test how well our di�erent models describes the index evolution. Thus we are interested both

in the parameters estimated through the calibration and how well the pricing dynamics implied by the

models �ts available market data. This may give a hint of the validness of the model assumptions and

is also a �rst step towards introducing more realistic models describing housing index dynamics.

The results from the GBM calibration are mixed. We reject the assumption of normality of log returns

a of the index process. The assumption of log index levels being non stationary is not rejected when

performing the dickey fuller test and the augmented dickey fuller test. It should be recognized that

the evaluation of each of these model assumptions, by them selves, could constitute a whole thesis.

Thus any further investigations are welcomed.

Also the level and movement of futures prices seem to be captured by the model. This is encouraging as

it suggests that this simple framework is able to capture some of the dynamics of futures prices in the

housing market. The parameter theta, which under the GBM speci�cation determines the risk neutral

drift of the index process, cannot be regarded as constant. However the information that we get from

calculating theta on a daily basis suggests that the distribution is concentrated around the estimate.

Optimally we would be able be to isolate the impact of measurement error in input parameters from

the variation in theta. I.e the error that stem from inaccurate measurement of the index levels through

introducing the spot approximations as well as the liquidity and market imperfections hidden in futures

prices. Although we do not perform such analysis we qualitatively argue that theta is fairly constant

considering these sources of disturbance. Of course this may however not necessarily mean that the

model is good. It could simply be an implication of low variation in the input variables. Considering

the high level of explained variation of price predictions within the sample we do not see this as likely.

However the model needs to be further assessed with other contracts to complete the picture.

As a further step, we calibrate the GOU model to data, where also the mean reversion properties of the

housing market is incorporated. We have assumed that the mean reversion is linearly dependent on

t. Previous research (Shiller 2010) and the results in section 4.4.2 lends support to this speci�cation.

What is evident from the calibration of the GOU model is that estimating the parameter list and

introducing mean reversion does not necessarily give a better �t to observed prices. We saw that the

model was unable to give reasonable prices, if at some time the index deviated from its long run mean.

This means that one has to be specially careful of the data set used when estimating the parameters.

This also raises the question whether there is a more realistic speci�cation of the mean reversion

level ϕ(t). Assuming a regime switching mean reversion level may be something to consider in future

research, since the housing market seems sensitive to market shocks.
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In line with the GBM setup, we also explicitly estimate lambda, also known as �the market price of

risk�, for the GOU model. In both models we impose the restriction that lambda is constant through

time although it is possible to allow for a time dependent, or even stochastic, market price of risk. In

this thesis we �nd some evidence in favor of a non constant lambda.

In both models we have also assumed constant volatility, an assumption that was later proven to

fail for the GBM model. There are ways of handling time dependent volatility within the model for

example through modeling the volatility structure as a function of the index level (local volatility

models) or as an independent stochastic process (stochastic volatility models). We however leave these

questions open for further research. Of course we cannot ignore the fact that for both models our

results probably are biased by the recent boom and bust in the US housing market. Sadly no market

for housing derivatives was active prior to this period limiting our data set. It would have been very

interesting to perform the same analysis on the period of 1987-2000 when housing prices were more

stable.

Although theoretically appealing, one cannot neglect the fact the well functioning markets for housing

derivatives are yet to be developed. One, by many possible reasons, that also have modeling impli-

cations, may be that the idiosyncratic variations of housing prices is diversi�ed away in the index

construction. For the individual homeowner this means that hedging may be di�cult using index

derivatives. From a qualitative perspective it is reasonable to believe that engaging in derivatives

transactions is too costly if the �beta� of the individual housing unit is too low. As explained the

CSI index is a composite of 10 of the largest U.S metropolitan areas and may thus not constitute a

good hedging benchmark for individual homeowners. On the other hand we recognize the di�culties

in getting trading volume in smaller and more local indices. From a modeling perspective it would be

possible to introduce several risk factors to capture the certainly more interesting behaviours of such

local indices. The risk when adopting such a model is that it becomes complicated and intractable. In

the end the calibration depend not only on a correct speci�cation of the underlying process but equally

upon the availability of long time series of high quality data. The later of which we were reminded of

during the credit crisis.
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8 Appendix

8.1 Arbitrage Theory Review

We assume the following model:

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t)

dB(t) = rB(t)dt

We will from now on write µ and σ as shorthand for µ(t,X(t)) and σ(t,X(t)). If we assume that there

already exists a liquid market for one particular derivative written on the Case shiller Index, then we

can take

two claims L and Z as given, where:

L = φ(X(T ))

Z = ψ(X(T ))

We then make the following assumptions (following Björk.T 2009):

There is an liquid and frictionless market for both of the claims given above.

Assume that F : R×R→ R and G : R×R→ R are smooth real valued functions of class C1,2, where∏
(t,L) = F (t,X(t)) and

∏
(t,Z) = G(t,X(t)). Applying the Ito Formula to the transformed processes

F and G, we get that:

dF (t) = αFFdt+ βFFdW̃ (t)

dG(t) = αGGdt+ βGGdW̃ (t)

where αF ·F = Ft +µFx + 1
2σ

2Fxx and βF ·F = σFxand similar conditions holds for G. We have here

used the same notation as in Björk (2009).

We now form a self �nancing portfolio consisting solely of F and G, i.e. we set up a portfolio dV (t) =

V (t)(uG(t)dG(t)
G(t) + uF (t)dF (t)

F (t) ),where uR(t) R ∈ {G,F} are the relative portfolio weights de�ned as

uR(t) := hR(t)R(t)
V (t) for R ∈ {G,F}. h(t) = (hG(t), hF (t))is an portfolio strategy, intuitively describing

the dynamics of the number of derivative contracts hold in the portfolio.

Inserting the expressions for dF and dG given by Ito's lemma above, we get the following dynamics

for the self-�nancing portfolio. dV = V {uF (αF dt+ βF dW̃ (t)) +uG(αGdt+ βGdW̃ (t))} = V {(uFαF +

uGαG)dt+ (uFβF + uGβG)dW̃ (t)}

Then in order to cancel all the randomness in the portfolio, we have to impose the following conditions

on the portfolio weights:

uFβF + uGβG = 0

uF + uG = 1

which has a solution if and only if its determinant is nonzero i.e. βF 6= βG. Solving this system for uF

and uG we get:
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uF =
−βG

βF − βG
(20)

uG =
βF

βF − βG
(21)

In order to avoid arbitrage we need to have k = r for this portfolio, i.e. the evolution of the deterministic

portfolio dVt = kVtdt has to have the same drift as the Bank account dB(t) = rB(t)dt in order to

preclude arbitrage opportunities.

By setting the drift term of the self �nancing portfolio equal to the deterministic short rate, and

inserting the expressions for the weights in (20) and (21) we get:

uFαF+uGαG = r =⇒ −βG
βF−βGαF+ βF

βF−βGαG = r =⇒−βGαF+βFαG = r(βF−βG) =⇒−βGαF+rβG =

rβF − βFαG multiplying both sides by −1
βF βG

we have : αF−r
βF

= αG−r
βG

.

Thus in the end we arrive at the conclusion that : Assuming that the market (X,B) is free of arbitrage,

there exists a process λ(t,X(t)) such that for all t ∈ [0, T ]we need to have αF (t,X(t))−r
βF (t,X(t)) = λ(t,X(t)) for

any derivative F in the market. From this relation by inserting the expressions of αF (t) and βF (t) we

can derive the PDE stated in the methodology section. For simplicity and without better knowledge,

we have maken the following assumption of the functional form of lambda λ(t,X(t)) = λ ∨ t ∈ [0, T ]

i.e lambda is time invariant and deterministic. This is motivated in the main text.

8.2 Heuristic derivation of future price when the underlying is a GBM

As explained the dynamics of X under Q is :

dX(t) = {µ− λσ}X(t)dt+ σX(t)dW (t) (22)

For the purpose of pricing a futures contract we are interested in determining EQ[X(t)]. If we de�ne

zt := EQ[X(t)]. Then we would expect that dzt = dEQ[X(t)] = EQ[dX(t)], because of the linear-

ity of the expectation operator. Furthermore EQ[dX(t)] = EQ[{µ− λσ}X(t)dt + σX(t)dW (t)] =

{µ− λσ}EQ[X(t)]dt+EQ[σX(t)dW (t)]. And because EQ[σX(t)dW (t)] = 0 for any su�ciently inte-

grable process X(t),we have:

dzt = {µ− λσ}EQ[X(t)]dt+ EQ[σX(t)dW (t)] = {µ− λσ}EQ[X(t)]dt = {µ− λσ} ztdt

From basic calculus we know that dzt = {µ− λσ} ztdt has the solution zt = Ce(u−λσ)t, where C =

X(0), since z0 = EQ[X(0)|F0] = X(0). Thus we have that F (t, T ) = EQ[X(T )|Ft] = X(t)e(µ−λσ)(T−t).

To derive the future price process in a more formal way, it is possible to apply the same steps as when

deriving the GOU model below.
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8.3 Dynamics of X(t)

Assuming that dZ(t) = {b(pt + q − Z(t)) + p}dt + σdW (t), and de�ning X(t) := f(t, Z(t)) = eZ(t),

then X has a stochastic di�erential given by:

df = df
dtdt+

df
dzdZ+ 1

2
d2f
dz2 (dZ)2 = 0+ df

dz ({b(pt+ q − Z(t)) + p}dt+ σdW (t))+ 1
2
d2f
dx2 ({b(pt+q−Z(t))+

p}dt+ σdW (t))2 =

= {b(pt+ q − Z(t)) + σ2

2 + p}eZ(t)dt+ σeZ(t)dW (t). Thus

dX(t) = (b(pt+ q − ln[X(t)]) +
σ2

2
+ p)X(t)dt+ σX(t)dW (t) (23)

where we have used the formal multiplication table (dW )2 = dt ,dW · dt = 0 and (dt)2 = 0 presented

in Björk (2009). Note that the above argument by no means constitute a full proof, we have just given

a heuristic explanation why the process followed by Z is as in (23).

8.3.1 Solution to the SDE in (7), where ϕ : R+− > R+ is an arbitrary su�ciently �smooth�

function.

Recall that the dynamics followed by Z under P was:

dZ(t) = {b(ϕ(t)− Z(t)) +
dϕ(t)

dt
}dt+ σdW (t)

If we let X(t) = Z(t)−ϕ(t) then dX(t) = dZ(t)− dϕ(t)
dt dt = −bX(t)dt+σdW (t) (apply Ito's theorem)

and thus:

ebtdX(t) + bebtX(t)dt = σebtdW (t) (24)

It follows that d(ebtX(t)) = σebtdW (t) (note that d() is the Ito-di�erential and the latest implication

is seen by for example applying Ito's lemma). If we set M(t) := ebtX(t), then M(t) = M(s) +´ t
s
σebudW (u) for s < t. Remembering that Z(t) = X(t) + ϕ(t) = e−btM(t) + ϕ(t) = e−bt(M(s) +´ t

s
σebudW (u)) + ϕ(t). Since by de�nition M(s) = ebsX(s) = ebs(z(s) − ϕ(s)), we have Z(t) =

e−bt(ebs(z(s)−ϕ(s)) +
´ t
s
σebudW (u)) +ϕ(t) = ϕ(t) + eb(s−t)(z(s)−ϕ(s)) + e−btσ

´ t
s
ebudW (u)) (Note

the upper and lower integration- limits are s and t in all integrals above)

Remark: If we would have assumed that the drift was dependent on time, i.e. that it was a mapping

b : R+→ R+, then to solve this SDE, we could, with a minor modi�cation, apply exactly the same

argument as above. We would just have to multiply with an integrating factor eB(t) in (24) above,

where B(t) is the anti derivative of b(t).

If we let ϕ(t) := pt+ q, then it is seen, that in this special case, the solution to the SDE is:
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Z(t) = pt+ q + eb(s−t)(z(s)− ps− q) + e−btσ

tˆ

s

ebudW (u)) (25)

8.3.2 The solution to the corresponding SDEunder Q

Assuming that ϕ(t) := pt + q, the risk-neutral dynamics followed by Z can be seen to be dZ(t) =

{b(pt+ q − Z(t))− λσ + p}dt+ σdW (t)

Reshu�ing terms we can rewrite this as:

dZ(t) = {b(pt+ q1 − Z(t)) + p}dt+ σdW (t)

where q1 := q − λσb
Now we know from above that the solution to this SDE simply is (replace q with q1everywhere in

(25)):

Z(t) = pt+ q1 + eb(s−t)(z(s)− ps− q1) + e−btσ

ˆ
ebudW (u)) (26)

8.3.3 Finding the moments of the GOU process under Q

In order to �nd theoretical future prices of futures written on the Case shiller Index, we need to know

the moments of the GOU-process. By a well known lemma (See Björk Chapter 4), we have that if the

process X(t) is de�ned by the following SDE :

X(t) =

ˆ
σ(s)dW (s)

where σ(t) is a given deterministic function, then X(t) is normally distributed with zero mean and

V ar[X(t)] =
´
σ2(s)ds.

By applying the above lemma to Z(t) in (26), it is not hard to see that the moments of Z(t), when

ϕ(t) := pt+ q, are the following:

EQ[Z(T )] = pT + q1 + (z(t)− pt− q1)eb(t−T )

V arQ[Z(T )] =
σ2

2b
(1− e2b(t−T ))

Note: t < T and that t, T has the same meaning as s, t in all the derivations in this Appendix.
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8.4 The likelihood function

The likelihood function is given by L(ν1) = p(Zti , Zti−1
, ...., Zt1 , ν1) By Bayes Theorem we can rewrite

this as:p(Zti , Zti−1
, ...., Zt1 , ν1) = p(Zti |Zti−1

, ...., Zt1 , ν1) · p(Zti−1
, ...., Zt1 , ν1). By iteratively using

Bayes theorem in the same fashion we arrive at: p(Zti , Zti−1
, ...., Zt1 , ν1) = p(Zti |Zti−1

, ...., Zt1 , ν1) ·
p(Zti−1

|Zti−2
...., Zt1 , ν1) · · · ·p(Zt2 |Zt1 ; ν1) · p(Zt1 ; ν1) . Since the Ornstein Uhlenbeck process satis�es

the Markov property, we also have that p(Zti |Zti−1
, ...., Zt1 , ν1) = p(Zti |Zti−1

, ν1) and �nally we see

that p(Zti , Zti−1
, ...., Zt1 , ν1) =

∏
p(Ztn |Ztn−1

, ν1) where we multiply over all n ∈ {1, 2...i}.
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9 Appendix

9.1 Tables and Graphs

9.1.1 Levene's test for equal variances

Sub sample 1 1987-01-01 to 1994-09-01 (92 obs),

Sub sample 2 1994-10-01 to 2002-05-01 (92 obs)

Sub sample 3 2002-06-01 to 2009-11-01 (90 obs)

Test P-Value

Sub sample 1 vs Sub sample 2 0.278
Sub sample 2 vs Sub sample 3 <0.001
Sub sample 1 vs Sub sample 3 <0.001

First half vs Second half of Sample <0.001

Figure 12: Table showing output from Levene´s test

9.1.2 Shapiro Wilk tests for normality conducted in R

Sub Sample Test-Statistic P-Value

1987-2006 0.993 0.306
2006-2009 0.952 0.083

Whole sample 0.951 <0.001

Figure 13: Showing output of Shapiro Wilk Test

9.1.3 Histogram and qqplot for the pricing errors
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Figure 14: Histogram and qq plot showing pricing error.
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9.1.4 Results of the Dickey fuller tests

Coe�cients Estimate Std. Error

Intercept 0.0124 0.00643
Φ -0.00193 0.00137

Figure 15: Results of the �standard� dickey fuller test with a constant term.

Lag order P-value

1 0.442
2 0.907
3 0.943
4 0.782
5 0.546
6 0.441
7 0.261
8 0.096
9 0.029

Figure 16: The augumented dickey fuller test for 1-9 lags.

9.1.5 Correlogram of the residuals in the dickey fuller regression
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Figure 17: Showing correlogram of the residuals in regression6.
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9.1.6 Graph showing spot approximation over time
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Figure 18: approximation of spot price

9.1.7 Plot and histogram of residuals
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Figure 19: Left graph showing plot of residuals where x = T − t, right graph is a histogram of the
residuals. It is readily seen that the distributtion of the residuals is negatively skewed. Furthermore
assuming a homoscedastic variance of the residuals seems troublesome.

9.1.8 Relative pricing error for the GBM model.

Figure 20: Graphs showing in/out of sample pricing error for Feb 09 contract (left) and May 09 contract
(right)
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Figure 21: Graphs showing in/out of sample pricing errors for Nov 08 contract (left) and Nov 09
contract (right)

Figure 22: Graphs showing in/out of sample pricing error for Nov 10 contract (left) and Nov 11
contract (right)

9.1.9 Plot of log index levels
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Figure 23: Graph displaying log prices over time for the Case Shiller Index
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9.1.10 Good deal bounds for di�erent values of b
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Figure 24: Showing good deal bounds for b = 4, 11 (top), b = 2 (middle) and b = 0, 05 (bottom). All
other parameters are set to their values in the base case.
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9.1.11 Good deal bounds for di�erent values of C

Logprice

Pr
ici

ng
 B

ou
nd

s

0 1 2 3 4 5 6

0
10

0
20

0
30

0
40

0

Complete market price
Upper bound
Lower bound

Logprice

Pr
ici

ng
 B

ou
nd

s

0 1 2 3 4 5 6

0
10

0
20

0
30

0
40

0

Complete market price
Upper bound
Lower bound

Figure 25: Pricing bounds when C = 2 left and C = 4 right. All other values are �xed to their values
in the base case.
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Figure 26: Note that the scale on the y axis di�er. Pricing bounds when C = 2 left and C = 4 right
and b is set to 0,05. All other values are �xed to their values in the base case.

9.1.12 Good deal bounds for di�erent values of q
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Figure 27: Pricing bounds when q = 4 left and q = 5 right. All other values are �xed to their values
in the base case.
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Figure 28: Note the scale for the y axis di�er for the graphs! Pricing bounds when q = 4 left and q = 5
right and b is set to 0,05. All other values are �xed to their values in the base case.

9.1.13 Good deal bounds for di�erent values of σ
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Figure 29: Note the scale for the y axis di�er for the graphs! Pricing bounds when σ2
1 = 0, 003 left

and σ2
1 = 0, 03 right. All other values are �xed to their values in the base case.
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Figure 30: Showing pricing bounds when σ2
1 = 0.003 (top),σ2

1 = 0.01 (bottom left) and σ2
1 = 0.03

(bottom right). In all graphs b = 0.05 and the rest of the parameters are set to their base case values.
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9.1.14 Graphs showing implied lambda for the GOU model over time
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Figure 31: Graphs showing implied lambda over time for som di�erent contracts ordered by maturity
date.
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Figure 32: Graphs showing implied lambda over time for som di�erent contracts ordered by maturity
date
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