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1 Introduction 

Value-at-Risk (VaR) has become the most widely used market risk measurement methodology in 
banks and financial institutions. VaR for a portfolio is a function of volatility of returns of the 
portfolio. Therefore, the task of VaR estimation can be reduced to forecasting volatility.  
Forecasting volatility of financial time series has been one of the most active areas of research in 
finance. In order to capture the empirically observed stylized facts of the financial time series, most 
important of them being volatility clustering and leptokurtosis, various models have been proposed in 
literature. Generalised Autoregressive conditional heteroscedasticity (GARCH) models have been very 
popular to model the time varying variance of the returns as a function of the lagged variance and 
lagged square returns.  
 
Considering the prominence of VaR in risk management and presence of wide variety of alternative 
VaR methodologies, evaluation of the predictive accuracy of VaR models is an important issue in risk 
management. The main challenge in VaR evaluation is that, like in the case of volatility, VaR is a 
latent (unobserved) variable, therefore, it is not possible to calculate its actual realized value.  
 
This thesis seeks to answer the following two questions of Value-at-Risk Modelling 
-Do volatility forecasting models based on GARCH lead to better performance than a Naïve model 
that measures volatility by standard deviation of the past returns?  
-What evaluation framework should be used to test the accuracy of the VaR estimates?  
 
There has been large volume of literature on VaR modelling issues and approaches. There are many 
papers on evaluating different GARCH models for estimation and forecasting of volatility of financial 
assets returns series.  
 
However, regarding evaluation of VaR models, only a few papers have looked at VaR performance in 
practice, most important of these are Berkowitz and O'Brien (2002) and Jaschke, Stahl, and Stehle 
(2003), using daily revenues and VaRs for U.S. and German banks respectively. Most of other papers 
have used simulations or illustrative portfolios to evaluate different VaR models. The returns/P&L 
series data and internal VaR models of banks and financial institutions are not publicly available. 
Therefore, there hasn�t been substantial empirical work on VaR modelling of the actual portfolio 
returns/Profit & Loss distributions and on evaluation of VaR models, which are actually in use in the 
banks.  
 
In this thesis, volatility and VaR modelling using the actual portfolio returns of investment portfolios 
of the Central Bank of Sweden (Riksbank) is performed using univariate GARCH models. The thesis 
takes the reduced form approach of Berkowitz and O�Brien (2002) paper. In the reduced form model, 
volatility or VaR of the portfolio is modelled directly by fitting GARCH on daily returns series rather 
than the common practice of using GARCH to model risk factors of a portfolio in the context of the 
popular variance-covariance approach of VaR modelling. The methodology used in the thesis is also 
in line with the Portfolio aggregation method proposed in Riskmetrics� technical paper (Zangari, P., 
1997).The Portfolio Aggregation approach estimates VaR using the volatility of the portfolio returns 
rather than variance-covariance matrix of the risk factors. Reduced form GARCH models, due to their 
parsimony and flexibility, offer a simple alternative to the structural models. However, there is a need 
to empirically evaluate the performance of these models. 
 
This thesis contributes in this direction by empirically studying the performance of reduced form 
GARCH modelling of the actual investment portfolios of a bank. A comprehensive evaluation 
framework is employed to test the predictive accuracy of volatility forecasts and VaR estimates. To 
test the accuracy of volatility forecasts, various error statistics and hypothesis testing are employed 
and to evaluate VaR estimates, back testing methodology recommended by Basel guidelines as well as 
advanced tests are performed.  
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The outline of the thesis is as follows. In section 2, theoretical background about volatility forecasting 
and VaR is presented. Details about some related previous papers are presented in section 3. Data used 
in the thesis is presented in section 4. Detailed methodology for model estimation and volatility 
forecasting, evaluation of volatility and VaR estimates is presented in Section 5. The empirical results 
and analysis of volatility and VaR estimates from the GARCH models are described in Section 6 and 
section 7 gives conclusions and also presents some suggestions for further research.  
 

2 Theoretical background 

This section introduces various volatility-forecasting models and discusses, in details, GARCH based 
models. This section also gives a brief overview of Value at Risk concept. The section starts with 
salient stylized facts about the volatility of financial assets returns, which needs to be considered while 
specifying volatility forecasting models.  

2.1 Stylized facts of market volatility 

A typical trading portfolio of a bank or investment house is characterised by variety of different types 
of financial assets and derivatives and thus has linear as well as non-linear exposure to a set of market 
factors. Therefore, the portfolio return series usually exhibits non-normal and fat tail characteristics. It 
is important to consider empirically observed stylized facts of market volatility of a financial 
asset/portfolio before specifying a volatility estimation model. A model�s ability to capture important 
empirical stylized facts is a desirable feature. The important stylized facts about of financial assets 
series, which have been documented in numerous studies, are described below. 

2.1.1 Leptokurtosis (heavy tails and sharp peaks) 

The distribution of the financial assets returns is leptokurtosis, i.e., exhibit excess kurtosis (heavy-
tails) and sharp peaked. Typical kurtosis estimates for the financial return series are found to be in the 
range of 4 to 50. A normal distribution has kurtosis value equals 3. Therefore, kurtosis value 
exceeding 3 indicates heavy-tails. In a heavy-tailed distribution, extreme outcomes are more frequent 
than what the use of a normal distribution would predict. Even after correcting returns for volatility 
clustering (e.g. via GARCH-type models and/or fitting fat-tailed distributions), the residual time series 
still exhibit heavy tails. Therefore, this non-Gaussian and heavy-tailed characteristic of financial time 
series makes it necessary to use other measures of dispersion than the standard deviation in order to 
capture the variance of the returns. 

2.1.2 Volatility Clustering  

Extreme returns show high variability, as evident from the heavy tails and non-negligible probability 
of occurrence of extreme values. Also extreme values appear in clusters, extreme returns to be 
followed by other extreme returns, although not necessarily with the same sign. The implication of 
volatility clustering is that the volatility shocks today influences the expectation of volatilities of many 
future periods ahead.  
Return series are not strictly white noise although they show little autocorrelation especially in liquid 
markets. The absence of autocorrelations in returns series gives some empirical support for �random 
walk� theory in which the returns are considered to be independent random variables. However, it has 
been shown empirically that this absence of serial correlation does not imply any nonlinear function of 
returns will also have no autocorrelation. Absolute or squared returns exhibit significant positive 
autocorrelation or persistence (slow decay in autocorrelations). Therefore, due to this nonlinear 
dependence, financial time series have auto correlation in volatility of returns but not in the returns 
themselves. Also, if we increase the time scale i.e. weekly and monthly return series tend to exhibit 
serial correlation. 
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2.1.3 Leverage effects  

It is found in many studies that there are leverage effects (i.e. volatility of returns are negatively 
correlated with the returns of the assets.) in financial time series. A negative shock leads to a higher 
conditional variance in the subsequent period than a positive shock would do. 

2.2 Modelling time varying volatility 

In forecasting volatility, especially in modelling variance of short-horizon asset returns, usually mean 
return is assumed equal to zero. This is justified by the argument that mean return of an asset is 
typically several orders of magnitude lower than its standard deviation.  
 Therefore, the first moment for the return series is usually defined as below. 

ttr    

The most popular class of volatility forecasting models, described below, are discrete-time parametric 

volatility models, which explicitly model the expected volatility, 2
ht  (h-step ahead variance) as a 

non-trivial function of the historical time information set, tF . Therefore, these models parameterize 

the first two conditional moments (mean and variance) of the returns time series. These models can be 
broadly classified into three categories viz. MA/EMWA models, ARCH and Stochastic Volatility (SV) 
models. MA/EMWA and ARCH models are described below.  

2.2.1 MA/EWMA 

Moving Average (MA) models are one of the simplest models, where forecasted volatility is 
calculated as moving average of the historical variance. In the case of exponential weighted moving 
average (EWMA) models volatility of the next period is forecasted as a MA process of weighted 
square deviations from the mean and the weights decay exponentially with a decay factor . EWMA 
models are more responsive than the simple moving average to sudden changes in volatility. Risk 
Metrics, the most commonly used model in practice employs EWMA model to model the variance 

2
1t  with   = 0.94 and can be represented by the following equation.  

22
0

2
1 ))(1(



  tttt ra    

In fact, the Risk Metrics model is a non-stationary version of GARCH (1, 1), where the persistence 
parameters sum to 1.  

2.2.2 ARCH 

In 1982, R F Engle introduced ARCH class of models in which time-varying conditional variance is 
modelled with the AutoRegressive Conditional Heteroscedasticity (ARCH) processes that use past 
disturbances to model variance of the series. In other words, today�s conditional variance is a weighted 
average of the past squared disturbances. An ARCH (q) model is specified by  

 111   tttr   where 11 )|( 
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2
1  . Therefore, conditional on the past, the ARCH model is 

normal but heteroscedastic. 

2.2.3 GARCH  

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model, first suggested by Tim 

Bollerslev in 1986 is obtained by adding p autoregressive terms for 2
t  to the ARCH (q) model. 

Therefore GARCH (p, q) has the following specification. 
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Just as an ARMA model often leads to a more parsimonious representation of the dependencies in the 
conditional mean than an AR model, the GARCH (p, q) model provides a similar added flexibility 
over the linear ARCH (q) model when parametrizing the conditional variance. The ARCH (q) model 
corresponds to a GARCH (0,q) model. GARCH (p,q) models are used in practice because 
GARCH (p,q) model allows for parsimonious parameterization of an ARCH ( ) model.  
 In practice, low order GARCH models are widely used. GARCH (1,1) model is given by the 
following equation.  
 

 22
0

2
1 ttt    

 

The variance 2
1t  is a weighted average of  

 long term variance 0 /(1- -  ) ,  

 prior variance 2
t  with weight   and  

 squared disturbance term 2
t  with weight   

 
The restrictions on the parameters   and   are 0 <= 0 <= 0 , 0 <=  <= 1, 0 <=  <= 1 and  +   

< 1. These restrictions ensure that the weights are positive and sum to 1. 
The magnitude of   and  determines the short-term dynamics of the forecasted volatility series. A 

large value of   indicates persistence, i.e. Shocks (extreme values) of the conditional variance will 
take long time to die out. Large value of   indicates that the volatility reacts quite fast to the market 
movements.  
The above formula for GARCH (1,1) nicely demonstrates the essence of the volatility clustering 
feature in the GARCH model. If the market has been volatile in the current period, next period's 
variance will be high, which is intensified or offset in accordance with the magnitude of the return 
deviation of the current period. If, on the other hand, today's volatility has been relatively low, 
tomorrow's volatility will be low as well, unless today's portfolio return deviates from its mean 
considerably. The impact of these effects depends on the parameter values. For   +   < 1, the 
conditional variance exhibits mean reversion, i.e., after a shock it will eventually return to its 
unconditional mean. The condition   +   < 1 also ensure that model is covariance-stationary.  
Due to its ability to capture salient features of the return dynamics in very parsimonious and easily 
estimated specifications, GARCH has become the popular model in financial risk management. 

2.2.4 Extensions to the basic GARCH model 

The basic GARCH model is usually a good starting point while modelling volatility but various 
extensions and variants to the basic GARCH(p,q) model have been proposed and used in finance. The 
development of these extensions and variants aim to capture the stylized facts of the financial assets 
distribution in a better manner. One of the major restrictions of the basic GARCH model is that fails to 
capture the asymmetric or leverage effects i.e. asymmetrical response of volatility to the market 
moves. It is It is often noticed in the financial markets that a negative shock leads to a higher 
conditional variance in the subsequent period than a positive shock would do.  
Exponential GARCH or EGARCH, introduced by Nelson in 1991, captures this asymmetric response 
by specifying the conditional variance as a function of not only of the magnitudes of the lagged 
residuals and but also their signs. Many empirical studies have also shown that conditional distribution 
for the error term in the conditional mean equation often has heavier tails than the Gaussian 
distribution as assumed in the basic GARCH model. Although in the basic GARCH model, 
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conditionally normal distributions produce heavy-tailed unconditional distributions, often this is not 
enough to capture the excess kurtosis in the data. Therefore, Symmetric but fat-tailed distributions like 
Student-t or generalized error distribution (GED) has been used instead.  
 In the thesis following variants of GARCH models are used. 
 

 GARCH with normal distributed errors (GARCH) 

111   ttt z  , )1,0(~|1 NFz tt  

2
1

2
10

2
1 ttt     

 
 GARCH with student t distributed errors (GARCH_t) 

111   ttt z  , )(~|1 vtFz tt  

2
1

2
120

2
1 tttt d    

 
 Exponential GARCH with normal errors (EGARCH) 
 

As explained above, exponential GARCH model can capture the asymmetric response of volatility to 
the market moves. Taking logarithms of conditional variances allows asymmetry in response of 
volatility to market moves. With appropriate conditioning of the parameters, the EGARCH 
specification below captures the stylized fact of leverage effects. 

 

111   ttt z  , )1,0(~|1 NFz tt  

   2
12110

2
1 loglog ttttt E    

 
 GARCH in mean (GARCHM)  
 

The GARCH-M model is defined simply by taking the conditional variance as a regressor in the mean 
equation.  

 
 11   tttr   

111   ttt z  , )1,0(~|1 NFz tt  

2
1

2
10

2
1 ttt    

 
 Asymmetric Threshold GARCH (ATGARCH) 
 
Another asymmetric specification for a GARCH model is ATGARCH model. The idea behind this 
model is that asymmetric behaviour of the negative shocks are sources for additional risk.  

111   ttt z  , )1,0(~|1 NFz tt  

 2
1

2
12

2
110

2
1 )()( ttttt D    

Where tD = 1 if 1 t otherwise it is zero. 1  is asymmetry parameter and 2  is threshold 

parameter.  
 
 Asymmetric GARCH (AGARCH) 
 
Asymmetric model captures asymmetrical response of volatility to the market moves. In this 
specification, 2 , the threshold parameter is set to zero.  

 111   ttt z  , )1,0(~|1 NFz tt  
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1

2
12

2
110

2
1 )()( ttttt D    

 With 2 = 0 
 
 Threshold GARCH (TGARCH) 
 

Another asymmetric specification is the threshold GARCH (TGARCH) model, which adds a dummy 
variable to the GARCH process. 
In this specification, 1 , the asymmetric parameter is set to zero.  

 

111   ttt z  , )1,0(~|1 NFz tt  

 2
1

2
12

2
110

2
1 )()( ttttt D    

  

2.3 Value at Risk 

Value at risk (VaR) approach has emerged as industry standard to measure market risk, both for 
capital requirements and for internal risk control, during the last few years. In the 1996 amendment of 
Basel Accord, which outlined market risk capital requirement for the banks, advised the banks to use 
VaR approach for assessment of their market risks and for calculating regulatory capital requirement. 
VaR of a portfolio is defined as the maximum loss on the portfolio that can be expected with a certain 
level of confidence over a certain holding period. 
To introduce some notation, consider a portfolio of risky assets and assume tV  as the value of 

portfolio at time t. Assume that we want to calculate risk for the time period [t, t+1]. We denote the 
loss distribution of the portfolio by )( 11 ttt VVL    and the distribution function for the loss series 

is LF  such that )()( xFxLP L . Then VaR at   ( )1,0( ) can be defined as the  -quantile of 

LF  . In other words, VaR is product of standard deviation of distribution of 1tL series and  -quantile 

of the standardized distribution with unit variance ( ) and zero mean.  

11 )()()(   tLt qFqVaR    

 Nominal value of VaR can is then a product of Value of the portfolio at t,  -quantile of the 
standardized distribution and volatility of return series tttt VVVr /)( 11    

11 ')()(   ttt qVVaR    

  
Therefore, as evident from the above expressions, VaR is a function of the volatility forecast and is 
dependant on the assumptions of distribution of loss/return series. Therefore, accuracy of VaR relies 
on accuracy of volatility forecasts.  
A common assumption while calculating VaR is that the return series are normally distributed. 
However, as we have discussed in the earlier sections, the returns show fat-tailed. Therefore, this 
assumption of normality under-estimates VaR and introduce substantial model risk.  
 
In conclusion, this section begins with an overview of salient stylized facts of financial time series. 
The accuracy of a particular volatility model is dependant on the degree to which it is able to captures 
these characteristics of financial time series. Hence, it is important to consider the above-mentioned 
stylized facts while modelling volatility. In this section, different discrete-time parametric volatility 
models were explained. The concept behind GARCH models was presented and various extensions of 
GARCH models were introduced. GARCH models have become popular in financial risk management 
due to their ability to capture salient features of the return dynamics in very parsimonious and easily 
estimated specifications.  
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3 Related Research 
This section presents a brief overview of the various academic papers that have studies volatility 
forecasting and VaR models. After that, a summary of the methodology and results of research papers, 
that are closely related to the thesis are presented.  

3.1 Overview 

Over the years, researchers have approached volatility forecasting from different angles viz. historical 
time series based models like AR/EWMA, GARCH, stochastic volatility, implied volatility models, 
non parametric models, genetic and neural networks based models. The research paper by Poon and 
Granger (2002) does an extensive survey of 93 different papers that studied forecasting performance 
of volatility models. Out of these about 17 papers studied performance of GARCH models. According 
to the paper, although, the conclusions from the papers vary a lot, they have significant common 
characteristics e.g.  
 

 They test a large number of very similar models all designed to capture volatility persistence 
 They use a large number of error statistics each of which has a very different loss function 
 They forecast and calculate error statistics for variance and not standard deviation, which 

makes the difference between forecasts of different models even smaller 
 They use squared daily, weekly or monthly returns to proxy daily, weekly or monthly �actual 

volatility�, which result in extremely noisy volatility estimates. The noise in the volatility 
estimates makes the small differences between forecasts of similar models indistinguishable.  

 
Value-at-Risk (VaR) has become a well-known tool for measuring market risk since the 
implementation of the Basel accord on Capital Requirements (1996). There has been large volume of 
literature on VaR modelling issues and approaches. The internal VaR models and VaR figures of 
banks and financial institutions are, however, not publicly available. Many papers have used 
simulations or illustrative portfolios to evaluate different VaR models. Therefore, there hasn�t been 
substantial empirical work on evaluation of VaR models, which are actually in use in the banks and 
financial institutions.  

3.2 Related Papers 

3.2.1 Wong Sham CM et al (2003) 

This paper evaluates performance of VaR forecasts of nine univariate time series models (random 
walk with constant volatility, AR/ARMA models with constant volatility, and AR/ARMA returns 
model with GARCH (1,1) volatility), using Basel back-testing criteria. The paper has selected a stock 
portfolio, Australia All Ordinary Index (AOI), as a proxy for the portfolio of a bank. The normality of 
the distribution of the portfolio returns is assumed. Therefore, VaR is calculated by multiplying square 
root of the forecasted variance with the Market Value of portfolio and the critical value of the required 
confidence level. Relative VaRs (which refers to the percentage of the portfolio value which may be 
lost after h-day holding period with a specified probability), for long and short positions of portfolio 
on AOI are also calculated. The VaR models are estimated using 4000 observations and one-step 
ahead forecasts are produced. For evaluating reproductive accuracy of the volatility forecasts, Mean 
Square Error (MSE) and Mean Absolute Error (MAE) are calculated. In order to test the accuracy of 
VaR estimates, failure rates and size of the forecast errors are calculated. Dividing the sample period 
into four sub periods tests the robustness of the results and the performance of the models are 
evaluated across these sub periods also.  
The key conclusion of the paper is that ARCH and GARCH models consistently fail back-testing 
whereas models of constant volatility pass back-testing for most of the sub periods.  
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3.2.2 Berkowitz and O�Brien (2002)  

This paper uses the actual daily Profit/Loss (P/L) and VaR of the trading books of six US banks to 
evaluate the internal structural VaR models of the Banks against an ARMA-GARCH (1,,1) model. It 
employs Likelihood- Ratio tests for comparing unconditional as well as conditional coverage of the 
models. The internal VaR models under evaluations are parametric VaR models, based on variance 
and co-variance between the various risk factors affecting the trading portfolios of the bank. Thus, 
these models take into consideration the effect of the change in the portfolio positions. Whereas, the 
ARMA-GARCH (1,1) doesn�t takes this into consideration and model the VaR based on the 
conditional volatility of the historical P&L. Therefore, the null hypothesis in the paper is that the 
internal VaR models perform better than the time series based ARMA-GARCH (1) model. The null 
hypothesis is rejected for almost all banks and the GARCH model based on daily trading P&L 
outperforms internal VaR model for all the banks. 
The results show that GARCH models generally provide for lower VaRs and are better at predicting 
changes in volatility. However, the mean violation rate for the GARCH VaRs also is lower than that of 
the banks� VaRs. The internal VaR models pass test of unconditional coverage (with mean violation 
rate of 0,5% for 99% VaR), however the magnitude of the �failures� (exceedence of losses over VaR) 
were high (between 2-4 standard deviations beyond the mean VaR) and the failures tend to be 
clustered. The clustering of failures indicates that the structural VaR models are not able to capture 
time-varying volatility adequately.  
The average GARCH VaRs are also lower than that of internal VaR models but the striking results are 
that the violations in the GARCH VaRs are not larger than that in banks� internal VaRs models. Thus, 
the paper concludes that GARCH models are better because they imply low level of regulatory capital 
requirement without producing larger violations. Although the GARCH models cannot account for 
positions� sensitivities to current risk factor shocks or changes in current positions, they are more 
parsimonious and accurate to model the dynamics of portfolio P&L.  

3.2.3 Polasek and Pojarliev (2003) 

This paper studies the comparative performance of time series models based on Risk Metrics�s 
EWMA and different GARCH models viz. GARCH with normal errors, GARCH with t-distribution 
errors, asymmetric GARCH and exponential GARCH and Power GARCH. A hypothetic portfolio of 1 
Million USD invested in QQQ (a share that tracks NASDAQ 100 index) is used. The normality of 
returns of NASDAQ 100 index is assumed. Therefore, one day 95% VaR is given by multiplying the 
square root of the forecasted variance by 1.65. Various p and q values for GARCH (p,q) model were 
run and GARCH (1,1) was chosen on the basis of lowest AIC and BIC. Regressing the squared returns 
on a constant and on the forecasted variance compared volatility-forecasting performance of the 
models. The performance of different VaR models is evaluated using failure rate. The likelihood �ratio 
tests of unconditional, independence and conditional coverage for 1%-10% VaR range were done. 
Further, loss function that incorporates penalties (a function of failure rate) and VaR cost (opportunity 
cost due to overestimation of VaR) was also used. GARCH model with normal errors performs best in 
terms of lowest number of failures and loss function. It passes conditional coverage test for 2%-5% 
VaR range. GARCH models in general performed better than Risk Metrics and constant volatility 
models.  

3.2.4 Sarma et al (2003) 

This paper uses a comprehensive VaR model selection framework, with failure rate, likelihood-ratio 
and regression based tests for conditional coverage, loss functions and one-sided non parametric sign 
tests. 16 models based on EWMA (for 50,125,250,500 and 1250 days window), Historical Simulation 
(for 50,125,250,500 and 1250 days window) and AR (1)-GARCH (1,1) for VaR estimation (95% and 
99%) of S&P 500 and Nifty (India�s NSE stock index) indices.  
For both 95% & 99% VaR of S&P 500, no model was able to pass regression based conditional 
coverage tests. For 95% VaR of Nifty Risk Metrics model performed best and survived all tests. For 
99% VaR, AR (1)-GARCH (1) performed best.  
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In conclusion, volatility and VaR forecasting has been approached from different angles in financial 
research with GARCH based modelling being one of the important approaches. The four related 
papers, discussed in details in this section, have studied GARCH models among the other models. 
These papers differ from each other particularly in terms of how the predictive accuracy of the 
volatility or VaR forecasts is evaluated. As seen in most of the other related research papers, these 
papers (except Berkowitz and O�Brien (2002).) use stock market index or hypothetical portfolios. 
Berkowitz and O�Brien (2002) has analyzed the distribution of historical trading P&L and the daily 
performance of VaR estimates of six large U.S. banks. 
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4 Data  
The data consist of log returns of the three investment portfolios primarily consisting of government-
guaranteed securities denominated in the foreign currencies named as Portfolio A, Portfolio B and 
Portfolio C in this thesis. The log returns data of the respective benchmark portfolios (named 
Benchmark A, Benchmark B and Benchmark C) for each investment portfolio are also used. These 
benchmark portfolios incorporate the Bank�s preferences for liquidity, risk and return and performance 
of the investment portfolios are evaluated against the respective benchmark portfolio. Therefore, the 
volatility of a benchmark portfolio can be considered as a good proxy for the volatility of the 
corresponding investment portfolio and thus can be used to estimate VaR of the investment portfolio.  
The data used consist of daily returns of the three investment portfolios and corresponding Benchmark 
portfolios. An out of sample data consisting of 250 daily returns are used for evaluating volatility and 
VaR forecasts. 

4.1 Descriptive Statistics  

From Figure 1 (in Appendix B), it is evident that all the portfolio returns series exhibit volatility 
clustering. The plots of squared returns in Figure 2 also corroborate volatility clustering. Similarly, 
from the density plots and Quantile-Quantile (QQ) plots in Figure 3, it is clear that all the series show 
non-normal and fat-tailed behaviour. The Autocorrelation Function (ACF) and Partial Autocorrelation 
Function (PACF) plots of the return series don�t show significant auto-correlation but the squared 
returns do exhibit auto-correlation, up to lag lengths more than 10. 
It can be followed from the Table 1 below, that all the series exhibits heavy tails (excess kurtosis 
values different from zero). This indicates the necessity of fat-tailed distributions to describe the 
returns series� conditional distribution. It can be seen from table that we can reject the null hypothesis 
of normality in all returns because the p-values are lower than 5%. Table 5 in Appendix B, presents 
the Jarque-Bera test statistic and associated p-value of this test for lags 5, 10, 20, 30 and 50 for both 
returns and squared returns. For most of the return series, we can�t reject the null hypothesis of no 
autocorrelation as the p values are greater than 0.05 .For all squared return series, except in case of 
BENCHMARK A and BENCHMARK C, that we can reject the null hypothesis of no autocorrelation. 
 

Table 1: Descriptive statistics (in-sample period)  

 PORTFOLIO 
A 

BENCHMARK 
A 

PORTFOLIO 
B 

BENCHMARK 
B 

PORTFOLIO 
C 

BENCHMARK 
C 

N 450 450 435 442 444 444 

Mean 0,00021 0,00023 0,00026 0,00027 0,00025 0,00027 

Std. Dev. 0,0022 0,0022 0,0021 0,0021 0,0031 0,0031 

Skewness -0,4133 -0,4166 -0,5195 -0,4965 -0,5709 -0,6096 
Excess 

Kurtosis 
0,7496 0,6975 0,8969 0,8395 0,8361 0,6214 

Jarque-Bera 14,011 (0,0009) 13,630 (0,0011) 18,642 (0,0001) 17,549 (0,0002) 21,796 (0,0000) 26,743 (0,0000) 
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5 Methodology 
This section presents volatility &VaR forecasting and evaluation methodology used in the present 
thesis. VaR modelling of a portfolio based on time-series models involves specifying a parametric 
distribution for the portfolio returns and estimating the parameters of the distribution using historical 
data. The VaR of the portfolio can be then calculated by multiplying the square-root of the conditional 
variance with the appropriate critical value for the standardized distribution. 
In the present thesis, GARCH models are used to forecast volatility for the returns of the investment 
portfolios of the Riksbank. Following types of GARCH (1,1) models are estimated for all six series.  
 

 GARCH with normal distributed errors (GARCH), 
 GARCH with student t distributed errors (GARCH_t),  
 Asymmetric GARCH (AGARCH), 
 Asymmetric threshold GARCH (ATGARCH),  
 Exponential GARCH with normal errors (EGARCH),  
 GARCH in mean (GARCHM) and  
 Threshold GARCH (TGARCH).  

 
The best model is selected on the basis of log-likelihood value and AIC. The selected model is then 
used to produce one-day ahead variance forecast. The sample is then rolled one-day ahead and the 
model is re-estimated and again a one-day ahead forecast is generated and so on. In this way, 250 out-
of-sample one-day ahead forecasts are generated. Out of sample period with 250 observations is used 
to evaluate predictive accuracy of the variance forecasts. The volatility forecasts from the GARCH 
models are compared with a Naïve model, in which the volatility calculated using rolling standard 
deviation of the past n observations (n equals the number of observations in the in-sample data of the 
GARCH model). The volatility evaluation methodology is explained in detail in sections below.  
Daily VaR forecasts are estimated for the out-of-sample period. Daily VaR for a portfolio for time t 
can be calculated on day t-1 by using the volatility forecast for day t done on the day t-1 Three VaR 
forecasts for an investment portfolio are calculated for each day, one using volatility forecast of the 
returns of the investment portfolio. Second, using the volatility forecast of the corresponding 
benchmark portfolio. Third, using the volatility forecast of the Naïve model. VaR forecasts evaluation 
is done using multiple tests, which are detailed, in section below.  
 

5.1 Evaluation of predictive accuracy of Volatility models  

In order to evaluate VaR models, it is important to compare the accuracy of the volatility forecasting 
process underlying in the VaR model. Evaluating volatility forecasts however, poses a challenge. 
Since, volatility is a latent (unobserved) variable, therefore, it is not possible to calculate the actual 
true volatility. Therefore, the ex-post evaluation of volatility forecast accuracy must content with the 
fundamental error-in-variable problem due to this issue. In most of the empirical studies of volatility 
forecasting, daily squared returns are used as a proxy for actual volatility. This thesis also takes same 
approach, as explained below.  

5.1.1 Proxy for Actual Volatility 

Consider the following specifications for the returns 

ttr    and ttt z   

Where tz  is i.i.d. 

   1
2

1
2 ||   tttt FFr   because   0| 1  tF  

 
Therefore,  

      2
1

22
1

22
1

2 ||| ttttttttt FzFzF     
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Because   1| 1
2  tt Fz  tz ~ N(0,1) and 2

tz ~ 2
1  

 

Although 2
t  is an unbiased estimator for 2

t  , it is a noisy estimator due to its asymmetric 

distribution. Therefore, some studies have used intra-day high frequency returns to construct a better 
proxy for the true realized volatility. True volatility is estimated by the sum of intraday squared returns 
at short intervals such as fifteen minutes. Such a volatility estimator has been shown to provide an 
accurate estimate of the latent process that defines volatility. In this thesis, squared daily returns are 
used as a proxy for the true volatility because the intraday returns data was not available. 

5.1.2 Error Statistics 

Different error statistics and hypothesis tests based on regression and quadratic loss functions are used 
to assess the predictive accuracy of the models.. To evaluate performance of the different models in 
forecasting conditional variance, models, error statistics used are as follows 
- Mean Square Error (MSE) 
- Median Square Error (MedSE) 
- Mean Absolute Error (MAE) 
- Adjusted Mean Absolute Error (AMAPE) 
- Mean Mixed Error for under-predictions (MME(O)) 
- Mean Mixed Error for over-predictions (MME(U)) 
- Theil- Inequality Coefficient (TIC)  
These computations of AMAPE, MME and TIC are explained in section A1 of Appendix A.  

5.1.3 Non-Parametric tests on error statistics 

It is usually not sufficient to compare two or more competing models by taking intro considering the 
average error statistics like MSE, MAE etc. In order to test the superiority of one model over other, it 
is also important to see if the specified error loss functions (e.g. MSE etc.) are statistically 
significantly better in one model than in other. One of the ways to do is to employ non- parametric 
sign and/or rank tests. In this thesis, one-sided non parametric sign test is used, as used in Sarma et al 
(2003). The null hypothesis of this test is that both models under consideration have same forecasting 
accuracy against a one-sided alternative hypothesis of superiority of one model over the other. 
 

0:

0:

1

0




H

H 
 

Where   is defined as the median of the differential loss function distribution,  tdl , where 

jtitt lldl   , with itl  and jtl  are loss function for model i and j respectively for day t .  

 
 Further, define an process,  ts , where 

 
st = 1 if 0tdl  0 otherwise  
 0 otherwise 
 
The sign statistic is then given by 





250

1t
tij sS  

Under null hypothesis, the standardized ijS , as given below is asymptotically standard normal.  

  

 250*25.0/)250*5.0(  ij
a

ij SS  ~ )1,0(N   
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If 66.1
a

ijS , we can reject the null hypothesis at 5% confidence level. Rejection of null 

hypothesis means that that model i is significantly better than model j  in terms of the given loss 
function. 
The advantage of this sign test is that the distribution of the sign statistic is agnostic to the loss 
function distribution under consideration. 

5.1.4 Mincer- Zarnowtiz regression 

In addition to the above error statistics a regression based performance measure, , known as Mincer- 
Zarnowtiz regression, is used to evaluate conditional bias in the volatility forecasting models. It has 
been largely used for evaluating economics forecasts. However, many studies have also used it and its 
variants for the conditional variance evaluation.  
The forecasted conditional variance is regressed on a constant and on the ex-post true variances( 
proxied by squared returns) for the out-of-sample period and  
 

ttt  


22  where 22
tt r  

  

The necessary condition for 


2
t  to be conditionally unbiased is 0  and 1  . The forecasting 

performance of a model can be measured using 2R  of the regression.  

5.2 VaR evaluation  

Considering the prominence of VaR in risk management and presence of wide variety of alternative 
VaR models, assessment of VaR estimate is an important issue in risk management. The risk arising 
from the faulty forecasts i.e. model risk, is an important issue in risk management in financial 
institutions. The financial regulatory organizations need to make sure that the VaR models used by the 
banks are not systematically biased. Alike evaluation of volatility models, evaluation of VaR forecast 
is not straightforward because actual VaR is unobservable. Various methodologies for VaR evaluation, 
which are used in the thesis, are discussed below. 

5.2.1 Basel Back-Testing 

Back-testing of a VaR model, as recommended by on Basel guidelines for market risk capital 
requirements, requires the model to be accurate( a model is accurate if the actual loss is smaller than 
the VaR forecast) at least at least on 99%( for VaR with 1% significance level) and 95% (for VaR with 
5% significance level) of the time. There should be at least 250 days( around 1-year data) for back 
testing the daily VaR.  
However, this simple approach of evaluating a VaR model is neither powerful nor accurate because to 
pass the back-test, a VaR model needs only to be correct �on average� and also this test doesn�t take 
into account the magnitude of failures and independence of failures.  

5.2.2 Kupiec Test 

More sophisticated tests have been proposed in literature to test the statistical accuracy of the VaR 
forecasts. The Kupiec test is based on a likelihood-ratio test- statistic. To fix notation, consider a series 
of one day ahead VaR forecasts which are estimated at confidence level p1  ( e.g. for 95% VaR, p = 
0,05).  
We can define a �failure process�,  tf  with  Tt ,1  and  

 
 ft = 1 if VaRt  Actual losst 

 0 otherwise  



Rishi Thapar (80212) 
Master Thesis-Volatility and Value at Risk Modelling using univariate GARCH models 

 18 

 
The process  tf  is a binomial process with independent draws of 1s and 0s. Under the null 

hypothesis, VaR estimates are accurate and thus probability of occurrence of �failures� ( when 1tf ) 

on each draw equals p.  

Since the probability of occurrence of n number of failures is nnT pp  )1( , the LR statistic is given 
by  

   nnTnnT
uc TnTnppLR )/()/1(ln2)1(ln2    

 

Under null hypothesis, the above test statistic has a 2  distribution with one degree of freedom.  
 
This test has some limitations. Firstly, since, the failures occur rarely (by design), Kupiec test has poor 
power characteristics, which become worse as the confidence interval being tested increases. We need 
a large sample size for the test to have significant power. 
Secondly and more importantly, this test assumes that the occurrences of failures are unconditional 
because this test provides average and unconditional (i.e. without reference to the information 
available at each time point) coverage by simply counts the failures over the entire period and this test 
lacks power against the dependence between the failures i.e. the zeros and ones come clustered 
together in a time-dependent fashion. 

5.2.3 Christoffersen�s Likelihood-Ratio tests 

Since, VaR are interval forecasts (i.e. one-sided interval forecasts of the portfolio returns), there is 
more information available in the failure process rather than just average coverage. Also, due to the 
presence of persistence and conditional heteroscedastic volatility of portfolio returns, conditional 
probabilities of failures should also be tested. For example, in the periods of high volatility of portfolio 
returns, the VaR forecasts should be larger than over-all average value and vice-verse. A VaR model 
that ignores the time-varying dynamics of the returns, might produce correct unconditional coverage, 
but it may fail to account for persistence and time-varying attributes.  
Christoffersen developed Likelihood-Ratio tests for evaluating unconditional coverage, independence 
and correct conditional coverage. These tests are described in details in Appendix A.  

5.2.4 Loss Function tests 

Apart from the hypothesis based tests of Kupiec and Christoffersen, VaR models can also be evaluated 
using loss functions, that test �economic� significance rather than �statistical� significance and take 
consideration the specific interests (in other others utility function) of the risk managers. Lopez(1999) 
introduced regulatory loss functions that assign a numerical score, which reflects specific regulatory 
concerns, to VaR estimates. A model that has minimum value of the loss function is the better one.  
  
One example of such a loss function, which is used in the thesis, is 
  
Lt = 1+(Actual Losst � VaRt)

2 if VaRt  Actual losst 

 0 otherwise  
 
The above loss function takes into consideration the magnitude of the failure, i.e. by how much the 
actual loss exceeds VaR estimate and thus penalises the model that produces higher magnitude.  
The ability to introduce extra information, i.e. about the magnitude of the failure and flexibility to 
define specification of the loss function are two main advantages of this loss function.  
Two different VaR models can be easily compared by designing a simple hypothesis test based on the 
above mention loss function and by performing a one-sided sign test, which is described in detail in 
the previous section.  
 
In conclusion, in this thesis, seven candidate GARCH models are examined to forecast volatility and a 
final model is chosen according to of highest log-likelihood values. The one-day ahead volatility 
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forecasts are then obtained from the final chosen model and accuracy of this forecast is determined by 
utilizing comprehensive criteria that include error statistics calculation, Mincer- Zarnowtiz regression 
and sign tests on the error statistics. Daily VaR forecasts are using volatility forecast of the portfolio, 
of the benchmark portfolio and by using naïve forecast.estimated for the out-of-sample period and 
these forecasts are evaluated using a comprehensive VaR evaluation framework. 
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6  Empirical Results 

6.1 Volatility forecasting Models 

GARCH (1, 1) models were evaluated on all of the six log-returns series and log-likelihood values are 
tabulated in table 6 in Appendix B. In some cases, no convergence was reached while fitting GARCH 
models. In those cases, no value of log-likelihood value was reported in this table. 
Table-6 in appendix B shows GARCH_t (1, 1) i.e. GARCH models with student t distribution errors 
performed best in term of highest log-likelihood values for all series. Also, it performed best in terms 
of lowest AIC values for almost all series. Therefore, GARCH_t (1, 1) model is used to perform one-
day ahead volatility forecasts. Table 2 gives the parameters of the GARCH_t (1, 1) models fitted to the 
different series. 
 

Table 2: Parameters for the estimated GARCH_t (1, 1) Models 

 PORTFOLIO 
A 

BENCHMARK 
A 

PORTFOLIO 
B 

BENCHMARK 
B 

PORTFOLIO 
C 

BENCHMARK 
C 

µ 0,00025 0,00027 0,00032 0,00032 0,00042 0,00041 

á0 3,2E-07 4,9E-06 2,4E-07 2,4E-07 8E-07 6,9E-06 

á1 0,03868 -0,0152 0,04608 0,0479 0,07828 -5E-05 

â1 0,89209 0,01522 0,90142 0,8984 0,83998 0,27042 

df 11,2737 10,7789 9,99573 10,2762 8,51358 9,33711 

 
As inferred from the estimated values of the coefficients of the fitted GARCH models, in all portfolio 
series, except for BENCHMARK A and BENCHMARK C, the value of 11    , is more than 0,9. 
This implies that these series exhibit high volatility persistence and that the response function of 
volatility of shocks decays at a relatively slow rate. As the sum tends to 1 the higher is the instability 
in the variance and shocks tend to persist instead of dying out. For example, in case of PORTFOLIO A 
series, 93,011   , meaning that 93% of a variance shock remains the next day.  

The long-term steady state variance in a GARCH (1,1) model is given by )1/( 110
2   . If 

we compare the 
2 value implied by the each of the models above, it comes out to be approx. equal to 

the square of the standard deviation of the sample series. 
The degrees of freedom for the student-t error term, df, can be used to infer about the degree of 
�heavy-tails� in the series. The df value can be used to calculate the fourth moment of the implied by 
the model (   )4/()2(34  dfdft . The calculated value is an inference about the kurtosis of 

the sample series. For example, in case of the PORTFOLIO A model with estimated df value of 
approx. 11, the value of implied kurtosis is 3,825 and thus the implied excess kurtosis equals 0,825 , 
which is sufficiently close to the kurtosis value of the sample, 0,75 as given in the table -1.  

6.2 Volatility Forecasts Evaluation 

Based on the GARCH_t (1,1) models, as specified in Table 2, one-day ahead forecasts were calculated 
using rolling sample. In total 250 out of sample forecasts were obtained. The volatility forecasts from 
the GARCH models are compared with a Naïve model, where the volatility calculated using rolling 
standard deviation of the past n observations (n equals the number of observations in the in-sample 
data of the GARCH model). The square of the log returns was used as a proxy for the �true volatility�. 
 
In order to compare the predictive accuracy of GARCH models vis-à-vis Naïve models, different error 
statistics were calculated. One-sided sign tests were also performed for the error statistics, in order to 
test the statistical significance of the difference in the performance of GARCH and Naïve models. The 
results are presented in Table 3. 
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Table 3: Volatility Evaluation 

 
 PORTFOLIO A BENCHMARK A 

 GARCH NAIVE GARCH NAIVE 

MSE 1.80E-08 1.99E-08 1.79E-08 2.02E-08 

 -8.348  -8.095  

MedSE 3,67E-09 7,09E-09 3,018E-09 6,10E-09 

MPE 2,97E-03 3,61E-03 2,99E-06 0,003721 

 -8,348  -8,095  

AMAPE 0,6139 0,6429 0,6186 0,6508 

 -8,222  -7,463  

MME(U) 0,000454 0,000354 0,000420 0,000323 

 -14,167  -12,376  

MME(O) 0,005624 0,001454 0,005856 0,001525 

 -6,831  -6,451  

TIC 0,001302 0,001256 0,001296 0,001258 

R2 0,272% 0,759% 0,110% 0,801% 

  

 

 
 

 
 GARCH NAIVE GARCH NAIVE

MSE 1.54E-08 1.81E-08 1,57E-11 1.82E-08
 

MedSE 2.34E-09 4.57E-09 2,47E-12 4.72E-09
MPE 2.51E-03 3.43E-03 2.54E-03 3,4E-06

 
AMAPE 0,6007 0,6545 0,6060 0,6564

 
MME(U) 0,000398 0,000276 0,000400 0,000284

 
MME(O) 0,005173 0,001492 0,005214 0,001475

 
TIC 0,001307 0,001254 0,001321 0,001263
R2 0,081% 0,619% 0,036% 0,598%

PORTFOLIO B BENCHMARK B

-13,914 -14,546

-6,831 -7,463

-9,360 -9,866

-8,981 -8,854

-9,360 -9,866

 
 GARCH NAIVE GARCH NAIVE

MSE 1,03E-10 1.05E-07 1.15E-07 1.16E-07
 

MedSE 2.29E-08 4.83E-08 2.568E-08 5.51E-08
MPE 6.44E-03 7.01E-03 6.93E-03 0.007367

 
AMAPE 0,5805 0,5931 0,5841 0,5925

 
MME(U) 0,000567 0,000488 0,000600 0,000536

 
MME(O) 0,008782 0,001974 0,009099 0,001987

 
TIC 0,002062 0,002006 0,002104 0,002053
R2 0,523% 0,000% 0,831% 0,000%

-5,060 -3,668

-2,403 -1,265

-2,783 -1,518

-2,783 -1,012

PORTFOLIO C BENCHMARK C

-2,783 -1,518
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GARCH model for all series have lower MSE, MedSE, MAE, AMAPE, MME (O) and MME (U) 
values compared to Naïve model. All one-sided sign test values, except in case of BENCHMARK C 
are less than -1.65. Therefore, we can reject the null hypothesis at 5% confidence level and may 
conclude that GARCH models are better than Naïve model on these error loss functions. We observe 
that in all portfolios, Naïve models have lower TIC values, therefore, indicating that Naïve models are 
better than GARCH on the basis of this error function. However, one-sided sign tests for this error 
function shows the opposite (except in BENCHMARK C). We may conclude that although the mean 
TIC values for Naïve models are lower compared to GARCH models, the GARCH models are better 
than Naïve models statistically. It is difficult to make a consistent conclusion based on 
Mincer-Zarnowtiz regression regarding the relative performance of GARCH and Naïve models. Naïve 
models seem to perform better for PORTFOLIO A, BENCHMARK A, PORTFOLIO B and 
BENCHMARK B.  
 
In conclusion, GARCH models for almost all portfolios seems to have better predictive accuracy as 
compare to Naïve models on the basis of most of error measures.  

6.3 Value-at- Risk Evaluation 

5% Value at Risk estimates using GARCH and GARCH_B models are calculated as product of the 
volatility forecast, portfolio return and the critical value (which is obtained from the t distribution table 
corresponding to the degrees of freedom of the errors of the fitted GARCH model). To calculate 5% 
Value at Risk based on the naïve model, critical value is taken as 1.65. Please refer to figure 4 (in 
Appendix B) for plots of actual losses and forecasted VaR from the GARCH and Naïve models. 
Table-4 summarizes results from VaR accuracy tests for the different portfolios. 
  

Table 4: VaR Evaluation 

  PORTFOLIO A PORTFOLIO B PORTFOLIO C 

  GARCH GARCH-B NAIVE GARCH GARCH-B NAIVE GARCH GARCH-B NAIVE 
Nr of failures 10 9 4 8 9 5 3 3 3 

fail. Rate 4,00% 3,60% 1,60% 3,20% 3,20% 2,00% 1,20% 1,20% 1,20% 

kupiec test 0,563 1,138 8,185 1,944 1,944 6,071 10,812 10,812 10,812 
Uncoditional 
Coverage(LRu) 0,563 1,138 8,185 1,944 1,944 6,071 10,812 10,812 10,812 
Independence 
(LRind) 7,136 7,297 0,130 7,422 7,422 8,173 0,073 0,073 0,073 
Uncoditional 
Coverage(LRcc) 7,699 8,435 8,315 9,366 9,366 14,244 10,885 10,885 10,885 

Loss Fn  10,048 9,044 4,011 8,244 8,215 5,105 3,623 3,537 3,533 

Sgarch,garch-b 15,558 15,811 15,811 

Sgarch,naive 15,685 15,685 15,558 

 
The critical value for ucLR (Likelihood Ratio for unconditional coverage) and indLR (Likelihood Ratio 

for independence) is 3, 8415 and for ccLR (Likelihood Ratio for conditional coverage) is 5, 9915. We 

may conclude from the above results that all the three VaR models (GARCH, GARCH-B and Naïve) 
in the case of all three portfolios pass Basel back test because the failure rate is less than 5%.  
In the case of PORTFOLIO A portfolio, both GARCH models (GARCH and GARCH-B) pass 
Kupiec/ unconditional coverage test whereas the Naïve model fails. However, opposite is true for the 
test of independence. For test of correct conditional coverage, both GARCH and Naïve models fail the 
test.  
In the case of PORTFOLIO B portfolio, both GARCH models (GARCH and GARCH-B) pass Kupiec/ 
unconditional coverage test whereas the Naïve model fails. Test of independence and correct 
conditional coverage is failed on all three models.  
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In the case of PORTFOLIO C portfolio, all three models fail Kupiec/conditional coverage test, but 
pass test of independence. Test of correct conditional coverage is failed on all models. 
 
Due to the lower failure rate for Naïve models for all the portfolios, the corresponding loss function 
are also lower for Naïve models than that for the GARCH models.  
The test statistic, bgarchgarchS , , for one-sided sign tests comparing GARCH and GARCH-B models, 

value is greater than -1.65 for all portfolios. Therefore, we can�t reject the null hypothesis at 5% 
confidence level that the loss function is same for GARCH and GARCH-B (in other words, we can 
say that GARCH-B is better than GARCH model).  
Similarly, The test statistic, naivegarchS , , for one-sided sign tests comparing GARCH and naive models, 

value is greater than -1.65 for all portfolios. Therefore, we can reject the null hypothesis at 5% 
confidence level that the loss function is same for GARCH and GARCH-B (in other words, we can 
say that Naive model is better than GARCH model).  
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7 Conclusions & Further Suggestions 

In this thesis, GARCH models for volatility and VaR forecasting were analyzed and compared with 
Naïve model that estimates by moving standard deviation of the past values. The empirical study was 
done on the investment portfolios of Riksbank. Volatility and VaR estimates for an out-of-sample 
period of 250 days were forecasted and evaluated.  

Based on the empirical results and by employing various statistical tests, GARCH models consistently 
performed better than Naïve models in forecasting volatility. The portfolio returns distributions 
showed fat-tails and volatility clustering, which were captured by GARCH models. 
 
Out of the all candidate GARCH models, GARCH_t (GARCH with student t error term) came out to 
be the best model for all data series based on likelihood Ratio criteria. The results are consistent with 
conclusion of many other papers. GARCH_t captured the fat tails of the distribution and time varying 
volatility of the distribution in better way than the other GARCH model that assumes normal error 
distributions.  
 
The error statistics that were used to evaluate the volatility forecasts by GARCH and Naïve model are 
statistically robust and objective and thus serve well for the statistical evaluation of the forecasts. 
However, one needs to consider that these error statistics are limited in their capabilities to give 
evaluation from economic point of view. The parameters of the fitted GARCH model also depend on 
the specific characteristics of the portfolio returns series e.g. length of the sample data, time interval 
between the consecutive data points etc. Therefore, in order to evaluate the models from both 
statistical and economic point of view, a comprehensive VaR evaluation methodology was employed 
in the thesis in addition to evaluation based on error statistics.  
 
Although VaR is a function of volatility, the results of VaR evaluation tests were not entirely identical 
to volatility evaluation tests, as discussed later in this section. The one-day VaR forecasts using Naïve 
model were relatively higher than those forecasted using GARCH models for 2 out of the 3 portfolios. 
Based on this, we may say that Naïve model is relatively more conservative than GARCH models. 
All models passed Basel back-testing for all three portfolios, with Naïve model resulting in lower 
number of failures (failure being when actual portfolio loss is greater than VaR). If we evaluate VaR 
forecasts solely on Basel back-testing, we may conclude that Naïve models have relatively over-
estimated VaR. Although VaR forecasts by GARCH models were less than VaR forecasts by Naïve 
models, GARCH based VaR models also passed Basel back-testing.  
 
If we look at the results of the VaR evaluation based on Loss functions, we may conclude that Naïve 
models have performed better than GARCH models. Over estimation of VaR in Naïve models can 
easily explain this observation. However, one important point to consider here is the loss function 
equation. The loss function equation used in the thesis penalizes under-estimation of VaR, not the 
over-estimation. However, for a bank, both under-estimation and over-estimation of VaR is 
undesirable whereas a financial regulator will be more worried about the under-estimation of VaR. 
Hence, in case a different loss function was used that penalized over-estimation, the results would 
have been different.  
 
The Basel back-testing criterion doesn�t take into consideration the frequency and dependence of the 
failures. Hence, we need to look at the results of Christoffersen�s Likelihood Ratio tests. The GARCH 
models have performed relatively better than Naïve models in these tests. Although, for 2 out of 3 
portfolios, both GARCH and Naïve models failed on conditional coverage tests, GARCH models 
passed likelihood tests for unconditional coverage (or Kupiec) and independence.  
 
In conclusion, if the evaluation tests are considered independently, there is definite lack of agreement 
among the results of the different tests. A practitioner needs to design a specific evaluation framework 
selecting various relevant tests and designing them according to his or her utility/cost function.  
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One proposed suggestion for further research is to compare the GARCH based time series models with 
parametric variance-covariance based methods. Various risk factors, which the given portfolio is 
sensitive to, are identified and VaR is calculated from the variance and co-variances of these risk 
factors.  
 
Although GARCH models are parsimonious, and are able to capture the time varying nature of 
volatility, they fail to capture structural shifts in the time series data that are caused by extreme events. 
Therefore, one possible extension of GARCH modelling will be to extend it with regime-switching in 
the models, as done in some studies.Also, the volatility evaluation methodology can be extended 
further by incorporating better non-parametric tests such as Diebold-Mariano tests. 
Regarding VaR evaluation framework, in addition to the statistical significance tests of the models, it 
is suggested to extend the evaluation with comprehensive economic significance tests by using 
relevant loss functions according to the utility function of the users.  
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9 Appendix  

9.1 Appendix A  

9.1.1 Error Statistics for Volatility Forecasts Evaluation 
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TIC  is a scale invariant measure, with value between 0 and lower the value of TIC  ism better is the 
forecasting ability of the model.  

9.1.2 Christoffersen�s Likelihood-Ratio tests 

The test statistic for unconditional coverage, ucLR , is equivalent to that of Kupiec test as described 

above. The test for independence evaluates whether the failures are independently distributed over 
time and hence are unpredictable.  
Based on the failure process,  tf , as described above, we can define the following transition 

probability matrix for the failure process. 
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Where )|Pr( 1 ifjf ttij    1,0, ji   

i.e. conditional probability of state i  being followed by state j . The likelihood function for the 

process is then 01100100
11110101 )1()1( nnnn    

where ijn  = number of times state i  being followed by state j .The LR statistic, indLR  is given by  

 OAind LLLR lnln2   
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Under null hypothesis, the above test statistic has a 2  distribution with one degree of freedom.  
 The test for correct conditional coverage is a joint test of the above two tests. Therefore, the LR test 

statistic, ccLR  is equal to induc LRLR  . Under null hypothesis, the above test statistic has a 2  

distribution with two degrees of freedom.  

9.1.3 Hypothesis tests 

9.1.4 Jarque-Bera test of normality 

The Jarque-Bera test is done to test whether the skewness and kurtosis of the distribution corresponds 
to that of a normal distribution and the test statistic is given by 
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where T is the number of observations, k is the number of estimated parameters, S is the skewness and 
K is the kurtosis. The larger the value of test statistic, the lower the probability is that the given series 

is drawn from a normal distribution. The test statistic of the Jarque-Bera test is 2 distributed with 2 
degrees of freedom under the null hypothesis, that the series is normally distributed. 

9.1.5 Ljung-Box-Pierce Q-test  

This test is performed to test whether the series has significant autocorrelation or not. The test statistic 
is given by  
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Where T is the number of samples, k is the number of lags and ir is the i th autocorrelation. The 

larger the value of test statistic, the lower the probability is that the given series has autocorrelation. 

The test statistic kQ  is 2 distributed with k degrees of freedom under the null hypothesis of no 

autocorrelation.  
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9.2 Appendix B-Tables and Figures 

Figure 1: Log-returns series  
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Figure 2: Squared log-returns  
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Figure 3: Density and QQ plots  

-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075

100

200

Density
A N(s=0.00196)

-0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075

100

200

Density
B_A N(s=0.00199)

-0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050

100

200

Density
B N(s=0.00189)

-0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075

100

200

Density
B_B N(s=0.00188)

-0.010 -0.005 0.000 0.005 0.010

50

100

150

Density
C N(s=0.00281)

-0.010 -0.005 0.000 0.005 0.010

50

100

150

Density
B_C N(s=0.00283)

 
 
 
 
 

-0.0050 -0.0025 0.0000 0.0025 0.0050

.005

.000

.005

QQ plot
A   normal

-0.0050 -0.0025 0.0000 0.0025 0.0050

-0.005

0.000

0.005

QQ plot
B_A   normal

-0.0050 -0.0025 0.0000 0.0025 0.0050

.005

.000

.005

QQ plot
B   normal

-0.0050 -0.0025 0.0000 0.0025 0.0050

-0.005

0.000

0.005

QQ plot
B_B   normal

-0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075

0.01

0.00

0.01
QQ plot

C   normal

-0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075

-0.01

0.00

0.01 QQ plot
B_C   normal

 
 
 
 
 
 
 



Rishi Thapar (80212) 
Master Thesis-Volatility and Value at Risk Modelling using univariate GARCH models 

 33 

 

Figure 4: Portfolio Losses and VaR  
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Table 5: Ljung-Box-Pierce Q-test  

 

 
 
 
 
 
 

 Series #1/1: PORTFOLIO A 
Q-Statistics on Raw data 
 Q (10) = 9,43715 [0,491179 ] 
 Q (20) = 23,7364 [0,254097 ] 
 Q (50) = 52,3696 [0,382168 ] 
--------------- 
Q-Statistics on Squared data 
 Q (10) = 25,3724 [0,00468251 ] 
 Q (20) = 37,413 [0,0104362 ] 
 Q (50) = 56,9089 [0,23349 ] 
  
 
Series #1/1:IBENCHMARK A 
Q-Statistics on Raw data 
 Q (10) = 6,84464 [0,740026 ] 
 Q (20) = 30,2381 [0,0660862 ] 
 Q (50) = 68,9269 [0,0391497 ] 
--------------- 
Q-Statistics on Squared data 
 Q (10) = 12,1007 [0,278372 ] 
 Q (20) = 19,0197 [0,520547 ] 
 Q (50) = 38,8704 [0,872901 ]  
 
Series #1/1: PORTFOLIO B 
--------------- 
Q-Statistics on Raw data 
 Q (5) = 1,24099 [0,940885 ] 
 Q (10) = 5,90924 [0,82283 ] 
 Q (20) = 18,8945 [0,528694 ] 
 Q 50) = 48,841 [0,519919 ]  
--------------- 
Q-Statistics on Squared data 
 Q (5) = 7,5567 [0,182418 ] 
 Q (10) = 16,2504 [0,0926863 ] 
 Q (20) = 23,1894 [0,279591 ] 
 Q (50) = 37,9309 [0,894776 ]  
 

 Series #1/1: BENCHMARK B 
Q-Statistics on Raw data 
 Q (5) = 3,63516 [0,603041 ] 
 Q (10) = 10,1387 [0,428413 ] 
 Q (20) = 21,8573 [0,348302 ] 
 Q (50) = 54,9354 [0,29309 ]  
--------------- 
Q-Statistics on Squared data 
 Q (5) = 10,0176 [0,0747382 ] 
 Q (10) = 18,7785 [0,0431675 ] 
 Q (20) = 27,5731 [0,119897 ] 
 Q (50) = 44,7084 [0,685003 ]  
 
Series #1/1: PORTFOLIO C 
Q-Statistics on Raw data 
 Q (5) = 2,56043 [0,767368 ] 
 Q (10) = 12,5456 [0,2502 ] 
 Q (20) = 25,3432 [0,188617 ] 
 Q (50) = 62,026 [0,118349 ] 
--------------- 
Q-Statistics on Squared data 
 Q (5) = 9,82142 [0,0804562 ] 
 Q (10) = 15,7789 [0,106138 ] 
 Q (20) = 22,6798 [0,30479 ] 
 Q (50) = 44,1006 [0,707974 ]  
 
Series #1/1: BENCHMARK C 
Q-Statistics on Raw data 
 Q (5) = 4,33893 [0,501719 ] 
 Q (10) = 15,7855 [0,105939 ] 
 Q (20) = 27,9033 [0,111709 ] 
 Q (50) = 50,5343 [0,452278 ]  
--------------- 
Q-Statistics on Squared data 
 Q (5) = 15,5836 [0,00813929 ] 
 Q (10) = 19,5632 [0,033666 ] 
 Q (20) = 23,5363 [0,263234 ] 
 Q (50) = 48,8368 [0,520089 ]  
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Table 6: Log-Likelihood Values for Different GARCH models 

 

  GARCH GARCH_t AGARCH ATGARCH EGARCH GARCHM TGARCH 

PORTFOLIO A 2126,44 2129,42 2127,42 2123,77 2125,48 2126,44 2126,57 

BENCHMARK A 2112,42 2115,45 2112,43 2112,46 - 2112,42 2113,63 
PORTFOLIO B 2060,57 2068,38 2065,87 2067,31 - 2063,89 2064,42 

BENCHMARK B 2100,27 2104,49 2101,28 2103,09 2100,6 2100,27 2100,52 
PORTFOLIO C 1965,35 1970,19 1965,71 1965,95 1965,6 1965,35 1965,49 

BENCHMARK C 1942,84 1943,42 1941,43 1943,28 1944,03 1942,84  -  

 
 
 


