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Abstract 

The Black-Scholes option pricing formula yield lower volatility than volatility observed in the 

market when looking at option prices. Several theories have been presented to explain this 

phenomenon and how the world of finance can use this information. Parameterized volatility 

smile coefficients have been examined in several recent studies but the findings are inconclusive 

and the alleged predictive power of the smile has not yet been fully understood or proved. We 

contribute to the field of forecasting finance by proposing a model where coefficients from a 

parameterized volatility smile contain information that predict the probability and amplitude of 

geometric Brownian motion jump diffusion. Using S&P 500 options- and index data from 2006 

to 2011 we found a negative relationship between curvature on the volatility smile and jump risk 

indicating that the smaller curvature on the volatility smile, the higher the probability for positive 

asset price jumps and vice versa. 
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1. Introduction 

In the mid 1980s very few traders knew about the phenomenon called the volatility smile in the 

option prices. Trading with options was considered difficult as the price is set by the market and 

the underlying mechanics of the asset price development are not accounted for. Options were 

priced according to a Nobel prize winning formula, the Black-Scholes option pricing model1 (BS 

model). The model uses a perfectly hedged option to calculate the price of the option, which 

doesn’t include any volatility smile but rather a flat volatility curve. The volatility smile anomaly 

was discovered after the stock market crash of October 1987 and left many practitioners and 

academics wondering why this shape of the implied volatility over strike prices existed. Ever since 

the October 1987 market crash the volatility smile, that still haunts the minds of traders, has 

served as a reminding grin of the historical devastating crash. 

The BS model assumes constant volatility and would therefore apply historical volatility as the 

future volatility, but using this value one soon finds that far out- and far in-the-money options on 

the market are overpriced relative to the at-the-money option. This implies that if the BS model 

is the true model then arbitrageurs should want to sell these overpriced options and wait for the 

market to restore its flat volatility curve. The problem is that these “mispricings” persists and 

would therefore imply that options do not use the historical volatility but rather another measure 

(or other option pricing formula than BS) for volatility. When first calculated in the late 1980s, 

the implied volatility revealed that the constant volatility assumption in the BS model does not 

seem to hold. The prices indicated that the implied volatilities calculated by inverting the BS 

model increased as the option was out-of-the-money. The further out-of-the-money the option is, 

the higher the implied volatility. The phenomenon of the volatility smile that prevails as a result 

of higher implied volatilities in the out- and in-the-money options, or so called fat-tails in the 

return distribution, has since its discovery been a topic of many finance papers.  

The smile as a whole can be seen as a deviation from the Black-Scholes option pricing formula 

and there has been discussions about whether or not this somewhat unexplainable and mystical 

smile contains any valuable information or not. Theories have been developed to explain the 

existence of the volatility smile. Some argue that the smile exist due to market inefficiencies such 

as transaction costs, illiquidity etc. while other choose to explain the smile with behavior biases in 

traders’ risk appetite. Irrespective of which explanation is true they all seem to converge to the 

conclusion that the smile occurs from a violation of the simplistic assumption of log-normal 
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return distribution in the BS model. The purpose of this paper is to retrieve some of the 

information that is contained in the market by using the smile anomaly in option prices that 

should not exist if prices were set efficiently and follows the BS model. It might be argued that 

the option traders’ future looking view have some predictive power. When the market expects 

higher future volatility and larger jumps in prices the tails of the volatility smile would increase 

and thus create a steeper smile. The steeper the smile the larger is the probability of a high 

volatility regime in the future. Our hypothesis is that there are market inefficiencies and 

information in the volatility smile, for whatever reason, that could be used to understand future 

jumps in stock prices and volatility regime shifts. 

This paper examines the possibility of using the second derivative of a squared line fit to the 

volatility smile as a market mood proxy to foresee future price jump regimes in the market. Our 

hope is that this study might help practitioners and academics to foresee when markets switch 

between high- and low volatility regimes in order to understand the underlying factors of large 

market movements. 

The efficient market hypothesis proposed by Fama (1965) suggests that markets on average 

correctly price assets and that historical data cannot foresee future stock movements but this 

hypothesis has been questioned by the behavioral finance literature as stated by, among others, 

Kahneman & Tversky (1979). Previous research has been made in the field of predicting market 

behavior by using implied volatility derived from option prices. There have however not, to our 

knowledge, been studies using the whole range of options prices, i.e. the volatility smile, to 

predict future high/low market volatility periods. This study contributes to previous studies by 

offering a thorough examination of whether, or not, options prices in the form of a volatility 

smile can predict when the market will enter in to a certain volatility regime where traditional 

Geometric Brownian Motion2 (GBM) model cannot describe the fat-tails that occur in the return 

distribution. We argue that there are two types of volatility regimes. The first regime contains no 

jumps and moves according to the underlying mechanics of the GBM model while the second 

regime is defined as a GBM universe with abnormal jumps that cannot be explained by the GBM 

model. The abnormal price jumps are measured through Geometric Brownian Motion with jump 

diffusion3 (GBMJ) as a parameterization of the stock return dynamics. 

                                                 

2 Henceforth referred to as GBM 
3 Henceforth referred to as GBMJ 
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Our study uses the volatility smiles’ parameterized coefficients to try to predict future S&P 500 

irrational behavior through abnormal price jumps. Instead of launching new theories about asset 

price dynamics in our paper we attempt to find a proxy of the underlying explanatory factors in 

the GBMJ model (i.e. information) and test if an anomaly said to contain information could say 

anything about a model that moves according to information arrival. It is important to point out 

that this paper has not analyzed trading strategies based on the findings and thus the method of 

creating arbitrage on this information has not been tested.  

We test the volatility smile parameter correlation on the next period’s GBMJ model’s jump 

probabilities and amplitudes. In order to find whether or not the volatility smile can predict 

which of two models (GBM or GBMJ) better predict asset price development, several steps were 

required. Firstly a continuous dataset of second derivative coefficients from a squared fitted line 

to the volatility smile were calculated as described in section 4.1. The resulting coefficients were 

then regressed against several sets of jump coefficients derived from applying Maximum 

Likelihood Estimation4 (MLE) for the GBMJ model on S&P 500 index returns.  

Statistically significant results were found for longer maturities implying that curvature for longer 

time-to-maturities could predict high/low regimes for our sample period. Although this is a 

positive result it remains unclear why similar results could not be found for other maturities 

which leave the question of the legitimacy of the test. This study concludes that there is weak 

evidence for the curvature of the volatility smile in helping to predict low and high volatility 

regimes in the sense of asset price jumps. Nevertheless more research has to be done within this 

topic to make more certain conclusions. This study contributes to the forecasting finance 

literature by making an extensive study in forecasting future jumps in stock prices with the 

volatility smile coefficient for the period May 2006 to April 2011. 

1.1 Outline 

This paper begins with a brief study of relevant earlier research in the models used and papers 

explaining the intuition behind their respective uses in section 2. The paper then states the data 

sources used and the methods by which the data has been handled in section 3. We then explain 

how we extracted the option informational content by a parameterization of the volatility smile 

and deriving dynamics of the underlying asset movement by numerical methods in section 4. The 

volatility smile parameter was tested as an explaining factor of the dynamics parameters through a 

series of regressions in section 5. In section 6 we discuss the implications of the findings in 
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section 5 and then the validity and potential problems of these results are discussed in section 7.  

The findings of the paper are finally concluded in section 8. 

2. Previous literature 

Earlier studies have tried to explain the change in volatility for options with same expiry date 

over different strike prices. The resulting volatility smile from such data has been parameterized 

and analyzed but findings have been difficult to interpret. The increase in implied volatility in 

out- and in-the-money options that causes the volatility smile has been a strenuous subject of 

study for many academics in finance. Several papers have been trying to explain the smiles by 

extending the traditional BS model with models that incorporate stochastic volatility (Hull & 

White, 1987), implied binomial tree (Derman & Kani, 1994) or discontinuous jumps (Merton, 

1976) in the stock price. This field of study is in itself a very challenging and intriguing subject 

which requires further research to find a model that is coherent with the observed smile; however 

this paper will not make any attempt in explaining the smile but rather study if there is 

information in the smile that can forecast future volatility regime shifts in stock prices. 

Since option markets are forward looking it forces the traders in these markets to estimate the 

future volatilities to correctly price the options. If information about future events is priced in the 

option market before it is priced in the equity market it naturally follows that the implied 

volatility extracted by inverting the BS model can be a feasible predictor of future volatility. Many 

studies have been done within this subject to test this proposition and the results have been very 

varying, both positive, indicating that the implied volatility is a feasible predictor (Malz, 2001) and 

negative (Chakravarty et al., 2004). Overall the empirical studies on the forecasting power of the 

implied volatility have come to contradicting results but compared with other models it is the 

most accurate forecasts on future volatility for all forecast horizons and performance measures 

considered (Blair et al., 2000). The implied volatility has been used by practitioners as a predictor 

for future volatility since the early eighties (Beckers, 1981) and it is regarded so important that it 

has even been given its own index, the Market Volatility Index5 (VIX). The VIX has been found 

to be a good proxy for market mood as found by Sun & Yu (2010). Sun & Yu found that implied 

volatilities contain information about the future market behavior and the general mood of the 

market. They conclude that if the well informed traders’ mood is contained by the implied 

volatility, the implied volatilities should be able to predict future abnormal returns given that the 

fears of traders are rational. Rational traders are loss averse and will be cautious of e.g. short sales 

                                                 

5 Henceforth referred to as VIX 
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when the volatility is high. A pessimistic or cautious mood is shown through higher prices due to 

volatility and higher implied volatility reflects this cautiousness. 

The problem of pricing options such as calls and puts was presented with a solution in 1973 

when Fischer Black and Myron Scholes presented a paper with the idea to create a perfectly 

hedged risk-neutral portfolio that eliminated systematic risk (Black & Scholes, 1973). As with 

most financial models, the BS model requires some assumptions to make its derivation possible. 

According to the BS model, the stock prices move according to a GBM model as shown in 

equation 1.  

  

 
            ( 1 ) 

The GBM model states that stock prices develop according to a constant drift or return μ and a 

constant volatility σ. The dt term is time and dW is a Wiener random walk parameter.  

The issues with using GBM as the underlying model for pricing options was early recognized for 

its flaws. Option prices in the market did not follow the rationale of the theory and showed that 

the returns were leptokurtic or fat-tailed which was an intrusion to the log normal assumption in 

the model. Merton extended the GBM model by adding a theory to consider the possibility of 

asset price jumps (Merton, 1976) to explain the fat-tails. The resulting model was the GBMJ 

model which adds a new jump variable J to the classical GBM model: 

  

 
                ( 2 ) 

The dq term is a Poisson counter with intensity λ, i.e. the probability that dq=1 is λdt. 

This alternation of the standard GBM model implies that there are normal and non-normal 

market returns. The return when dq=1 is μ+J where J is the addition by the jump. J is assumed to 

be normally distributed with a mean of μJ and variance σJ. 

The GBMJ is not a closed form function and in order to obtain the GBMJ parameters it needs to 

be numerically solved for. A method historically used to obtain population parameters from 

samples is Maximum Likelihood Estimation (MLE) in which candidate parameters are tested for 

their likelihood to be the true population parameters by maximizing a log likelihood function.  
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The log likelihood equation for estimating the parameters in the GBMJ model as defined by 

Craine et al. (2000) is: 

                          
     

  

 

      
     

  

    
              

 

    
     

  
   

     
        ( 3 ) 

The log likelihood equation is a function of the unknown parameters θ. The parameters are: 

                           

                          

                                      

                                

                                            

 

The variances of the parameters are inversely proportional to the observations as described in 

equation 8 in section 4.2. MLE is therefore a very efficient estimation method even for small 

samples. Derivation of the log likelihood function can be found in an article by Jorion (1988). 

In order to build a continuous database with GBMJ coefficients one needs to divide the data into 

periods. Moving windows have been used in financial research earlier as found in the research by 

Pesaran and Timmermann (1995). Pesaran and Timmermann try to predict future returns by 

using moving window periods. In this paper we have used moving windows as explained in 

section 4.2. 

Models that price options with GBMJ result in a visible volatility smile (Kou, 2002). A drawback 

of such models is that options are more difficult to price than with the traditional BS model and 

need to be numerically solved for. Another method for dealing with fat-tails in return 

distributions and the deviation from the log normal assumption is to use stochastic volatility. The 

stochastic volatility method requires extreme parameters that are implausible for options (Bates, 

1998). Bates found that the jump diffusion model is a better model to predict option prices. The 

jump diffusion model does have its drawbacks. The jump itself is assumed to be normally 

distributed and implicit distributions from the model is inconsistent with large stock index 

returns between 1988-93 (Bates, 1998). The GBMJ model parameters have to be numerically 

estimated and the best current method for estimation is the MLE method (Eraker, 2004; Pratt, 

1976). 
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As discussed earlier the implied volatility has a forward looking power and might forecast future 

volatility. However implied volatility contains merely the information from a single option for 

each expiry without taking into account a wider range of strike prices. Using all option prices 

over the strike prices as summarized by the volatility smile, the volatility smile might be viewed as 

an extension of the implied volatility with more exhaustive information incorporated. The 

following paragraph will extend the discussion on the volatility smile. 

In accordance with its component parts, i.e. implied volatility, the volatility smile should be 

forward looking and contain information about the market expectations. There have been papers 

written on the predictive power of the smile with regards to market disturbances such as crashes. 

Gemmil (1996) discusses the predictive power in the skew of the volatility smile for anticipating 

the 1987 crash. By a parameterization process of the volatility smile, weighing the relative bias of 

the skew, Gemmil found that his model could not predict the crash by option pricing. However, 

later studies have found a predictive power of the slope of the smile by modeling with in and out-

of-the money options to deduct a smile slope that could predict future stock returns (Deuskar et 

al., 2007; Shu yan, 2011). Using data between January 1996 to June 2005 Shu yan (2011) used the 

curvature of the volatility smile as a proxy of the jump risk from the GBMJ model and found that 

there is a negative relationship between the return of a portfolio and the curvature of the slope, 

i.e. low slope portfolios earn a high return and vice versa; high slope portfolios earn a low return. 

This paper is an extension to previous studies and contributes to the research on the predictive 

power of the volatility smile. The approach in this study is to parameterize the smile by extracting 

the second derivative coefficient of the curvature for options using a wide range of strike prices. 

It might be argued that the intensity of the curvature of the smile contains information about 

future GBMJ jumps in stock prices much like the assumption made by Shu yan (2011). Previous 

research by Merton (1976) suggests that there are two types of jumps. The first category includes 

jumps that might be expected from information arrival to the market. These jumps can result 

from new information to the market or due to periods without trade. The jumps can also occur 

when markets are experiencing abnormal shocks and returns are non-normal. The second 

category consists of jumps in markets which result from unexpected events such as terrorist 

attacks, earthquakes etc. Jumps from the first category are sometimes described as predictable 

and might be found by modeling in the historical data. These jumps will be the subject of study 

and also serve as the definition of jumps henceforward. 
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3.  Data 

In order to construct the coefficients of the volatility smiles for different dates and time-to-

maturities, data on plain vanilla options on the S&P500 Composite Index was used. With 

Thomson DataStream Advance 4.0, option-, VIX-, and S&P 500 index-data was extracted for the 

period between May 2006 and present day, April 2011. May 2006 represented the earliest day for 

which option data was available in DataStream and consequently May 2006 was chosen as the 

first date in the data set to maximize the amount of data used in the analysis and capture as much 

information as possible in the historical data.  

3.1 Option data 

Data is given for the exchange traded stock index option6 comprising of daily closing prices of 

each option maturing on the third Friday in every month for the period May 2006 to April 2011. 

This means that the data contains 60 expiry dates and a series of strike prices for every expiry 

date. From initial data there were 10 505 options with daily prices ranging from at least 80 days to 

maturity to expiry date. Prices with longer time-to-maturity than 87 days were excluded from the 

analysis since data did not exist for some options earlier than this date and the further away the 

option got from its expiry date the more prices were missing in the data as can be seen in figures 

1 and 2 in the appendix wherein the data is visualized. After excluding longer time-to-maturities 

we obtained a time series data of 913 935 observations.  

In order to standardize the options data to address the fact that the underlying index itself moves, 

we defined moneyness as percentage in and out-of-the-money relative to its spot price, 

  
 

  
    ( 4 ) 

where M is the moneyness of an option, K the strike price and    index spot price. Trading 

volumes for the options were not used to check for illiquid options that could be mispriced and 

be far away its market equilibrium value owing to low liquidity. Instead moneyness of ± 20%, i.e.   

               ( 5 ) 

were used to ensure that illiquid far out- and in-the-money options were not included in the 

dataset since near the money options are more traded than far out- and in-the-money options. 

                                                 

6 Put options were chosen since there were more data points for puts than for calls. Because of the put-call-parity it 
does not matter which is used when calculating implied volatility so puts and calls can thus be used interchangeably. 
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3.2 S&P 500 & VIX 

The Standard & Poor 500 Composite Index was used to calculate the GBMJ parameters. The 

index measures American companies only and weight the returns with regards to market 

capitalization. The reason for using the S&P 500 was that historical option data is difficult to find 

for other indices and the S&P 500 has been the subject of many analyses, indicating that traders 

on the S&P 500 options might be better informed and convey this information through option 

prices. In order to use MLE as described in section 4.3, the log-returns of the S&P 500 were 

calculated. 

We used the Chicago Board Options Exchange7 (CBOE) VIX with daily index values for the 

whole period to estimate the market expectation of the implied volatility of the S&P 500 Index 

option and the future stock market volatility.  

4. Methodology 

4.1 Implied Volatility Smile 

All option prices obtained from DataStream were converted into BSM implied volatility 

calculated using a Newton-Raphson iterative algorithm. Furthermore, a certain set of time-to-

maturities were chosen to plot the implied volatilities around the index, thus creating a volatility 

smile for each set. As described in section 3.1 strike prices with moneyness ± 20% were used to 

control for illiquid far out- and in-the-money options. Therefore the window and data points for 

each plotted smile were moved according to its prevailing daily spot price. Since there is a change 

in the volatility smile owing to the time parameter, different time-to-maturities options were not 

compared with each other to avoid the mismatch problem in many prior studies (Lopes, 2000). 

There are some techniques used by financial engineers to neutralize the time effect by 

discounting the inverse of the square-root of the time parameter (Natenberg, 1994). These 

methods have shown to make the smiles less dependent of the time-to-maturity but will however 

not be employed in this study. The time-to-maturities chosen to be analyzed were 10 days, 21 

days, 30 days, 45 days and 87 days to maturity. It is arguable that shorter time-to-maturity options 

are more liquid than longer dated time-to-maturities and that is why more weight was put on the 

shorter dates. Longer dated options such as 87 days to maturity were included to extend the 

prediction window and in addition capture more information incorporated in the options. 

                                                 

7 Henceforth referred to as CBOE 
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Implied volatility data for each time-to-maturity was extracted within the moneyness boundary 

and modeled in STATA 11. The nature of the plotted implied volatility data for every time-to-

maturity seems to follow a positive second degree curvature which creates the characteristic 

smile-effect. A fitted line regression was run in STATA to find the second degree coefficient of 

the smile; the τ in equation 6.  

                                     
        ( 6 ) 

Using the   coefficient for each month   and each time-to-maturity  , a time-series of coefficients 

over time was created. The information in this coefficient should help in predicting the future 

market behavior as the volatility smile is forward looking. In order to estimate market jumps in 

stock prices we chose to model the market behavior according to the GBMJ model. 

  coefficients that were t-tested and found to be insignificant on the 5% level were removed from 

the data as a rule to eliminate potentially biased data points. The choice is debatable being the 

case that the insignificance in the smiles itself could contain important information. Further tests 

need to be done to exclude the insignificance owing to erroneous data rather than valuable 

information. This analysis is however out of the scope for this paper. 

4.2 Geometric Brownian Motion with Jump diffusion 

Using only GBM to describe stock price movements has been contradicted by several researchers 

(Merton, 1976; Eraker, 2004; Craine, 2000) and furthermore options prices deviate from the fair 

price according to a model that prices options according to an underlying asset that moves 

according to GBM, i.e. The BS-model. In order to capture the fat-tails that result from the 

informational jumps as mentioned in section 2 we used GBMJ as suggested by Merton (1976). 

The model estimation obtains the drift μ, volatility σ for the stock price and the jump 

components respectively. For the jump coefficient we also obtain the intensity of the Poisson 

counter, the λ value. The λ is the probability that the jump coefficient is active and there is a jump 

in the market as described in equation 2.   

It is unclear exactly what information the curvature of the volatility smile contains but a model to 

match information sending from the volatility smile and information received by the market is 

proposed in equation 7. 

  

 
                  ( 7 ) 
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The jump coefficient J depends on X that represent some unobserved factor that temporarily 

affect the market by asset price jumps due to new information arrival as stated by Merton (1976). 

A part of this factor might be mood as suggested by Sun & Wu (2010), it could also be due to 

some other factor that is not observed but partly observable through parameterization of the 

volatility smile shape. 

In order to divide the S&P 500 returns in jump regimes and no-jump regimes we estimated the 

jump probability λ, the jump magnitude μJ, and the jump volatility σJ for moving windows. Each 

window starts the day after the date we use to extract the volatility smile and extends to the 

exercise date the following month.  

Example: If the smile was extracted for the 2008-02 option (strike date was February 15th 2008) 

with time-to-maturity 30 (i.e. January 16th), the smile was assumed to contain information from 

the day after the date we calculated it until the exercise of the next option (i.e. the 2008-03 option 

expiration date: March 21st). The relevant moving window was from Jan 16th 2008 to March 21st 

2008 (65 days window with 47 trading days). The procedure is visualized in figure 3. 

Moving windows are necessary as the MLE of parameters become more dependable the more 

observations one use. The windows are overlapping as shown in figure 3 but using values several 

times did not seem to create biased coefficients (coefficients with no overlap were almost 

identical to the ones with overlap). Using moving windows has the positive effect of lowering the 

variance of the coefficients. There is little literature on how few values that could be used in MLE 

as the method often uses entire populations and not subsamples of it. A reassuring fact is that the 

MLE method is asymptotically effective as it yields a parameter with variance as depicted by Pratt 

(1976) in equation 8. 

          
               

 
    ( 8 ) 

Using the time span described above is intuitive as an option with expiry in 10 days should not 

say much about the period before but rather the expectations for the next period. This is due to 

the options being reflections of forward market conditions conditional on the present conditions. 

This method of using moving windows for jump diffusion modeling by MLE has not, to our 

knowledge, been used before but results in section 5.2 suggest that it can correctly model the 

jumps of the relevant periods. The moving windows let us create continuous data to match with 

the curvature of the smile. 
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4.3 Maximum Likelihood Estimation 

MLE was used to find the GBMJ model parameters for each window. The method uses a 

numerical maximizing function8 and delivers the parameters that have the highest likelihood of 

being correct according to the predefined log-likelihood function. The method is sensitive to the 

length of the estimation windows and too short windows can lead to biased results as the 

variance of the parameters is inversely dependent on the number of observations as seen in 

equation 8. 

4.3.1 MLE initial values 

Deciding on initial values in numerical methods can have a large impact in the efficiency of the 

algorithms. A problem with a random choice of initial parameters when using numerical methods 

is that one might find a local max or min and takes that value for the global maximum or 

minimum. Testing for different initial values can show if the true maximum for the log-likelihood 

function is found and not a local one. All initial values were changed to test for this and the result 

showed that there were only global maxima. The only significant difference when changing the 

initial values were the number of iterations needed and the convergence of the algorithm. 

Parameters 

The initial values have to be carefully chosen in order for the log-likelihood function to converge. 

Earlier researchers have had difficulties with non-convergence probably due to this. The standard 

initials of all zeros or all ones (or a permutation of these) generate non converging estimates and 

it is advisable to have non equal and positive initial values in order for the method to converge to 

one set of parameter values for each period. 

Maximum daily jumps 

The maximum number of daily jumps in equation 3 (see section 2), Q, is set to 5. The number of 

daily jumps can be altered and in principle set to an infinite amount but this alteration has a 

diminishing effect on the parameters as can be seen in the log-likelihood function in section 2. 

Brigo et al. (2009) used 5 while Crain et al. (2000) used 10.  

4.4 Regression 

To analyze the predictive power of the volatility smile ordinary least squared (OLS) regressions 

were run between variables extracted in the volatility curvature in section 4.1 and the jump 

                                                 

8 We used Matlab’s MAX function for maximization. 
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diffusion parameters from the MLE algorithm mentioned in section 4.3. The regressions 

followed the set-up of our parsimonious model in equation 9. 

                ( 9 ) 

Where    is the jump variable from MLE in the moving estimation window and      is the smile 

coefficient variable taken from the first date of the estimation window. The sign and magnitude 

of    will be the parameter in focus when making inference on the forecasting power of the smile. 

In the first regressions the curvature variables      for TTM 10, TTM 21, TTM 30, TTM 45 and 

TTM 87 were regressed on some more primitive variables such as S&P500 return and VIX - 

representing   in equation 9 - to check for correlation between curvature and index. This is 

mainly to explore if the indexes can be explained by the forward looking curvatures in the 

volatility smile. 

In the second regressions parameters from the MLE were incorporated as the dependent variable 

   in equation 9 and ran on the same curvature variables with different time-to-maturities. A new 

variable was created at this stage to capture the probability, size and direction of the jumps; 

      is the product of lambda   and jump amplitude     and gives a notion of an average 

expected jump. To make the inference of the predictive power of the curvature some lagging 

windows needed to be modeled to capture the correct explanatory rule. The curvatures were 

given for a certain date in every given month, e.g. for the parameter TTM 10, ten days before the 

expiry date (third Friday in each month, see section 3.1) a curvature was generated for the option. 

Furthermore, from section 4.3 jump diffusion parameters extracted from the S&P500 Composite 

Index using moving windows were used as the independent variables in the regressions on the 

dependent curvature variables. The way the windows were constructed is such that for each 

different time-to-maturity the time horizon for which the jump variables were estimated follows a 

logically constructed pattern. The pattern for the windows started from the day after the date for 

which the curvature was extracted and extended to the expiry date for the option with expiration 

one month later. Taking TTM 10 as example figure 3 shows how the moving windows were 

created for TTM10 and thus the time period for which the jump parameters were estimated from. 

To make the regressions consistent, the same pattern was followed for the other time-to-

maturities hence prolonging the estimation windows for longer maturities relative its shorter 

counterparts. 
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Our third analysis was conducted on the volatility smiles on a more aggregate level. New 

variables were created from the earlier extracted coefficient parameters as the independent 

variable      in equation 9. The parameters average smile coefficient and standard deviation of 

the smile coefficient were generated by simply calculating the mean and standard deviation of the 

smiles for each option. This follows the intuition that the average smile coefficient and standard 

deviation for each option during its life time has information contained in a more aggregate level. 

To make the mean and standard deviation calculations more consistent and robust nine more 

time-series of smile coefficients were added between the TTM10 and TTM87 with more weight 

on the shorter dates. 9  These results were subsequently regressed on the indexes and jump 

parameters with the same moving windows as the TTM 10 since the new parameters include 

information up until the date of TTM 10. 

5. Results 

This section presents our results in a logical order following the set-up described in section 4.4. 

Section 5.1 reports the results from the volatility smile dynamics, the coefficients and how the 

smile changes over time with different maturities. Section 5.2 focuses on the jump diffusion 

parameter estimations from MLE with graphs to show when jumps occurred on the S&P500 

Composite index for the sample period. Finally section 5.3 puts the two results from 5.1 and 5.2 

together to examine if there were any relationships and consequently predictive power between 

the volatility smile coefficients and jump parameters.  

5.1 Volatility smile dynamics 

Table 1 reports the descriptive curvature statistics for different maturities. The second degree 

coefficients become smaller and less volatile the further away the option gets from the expiry 

date. Figures 4 and 5 show the decreasing smile coefficient graphically. This follows the intuition 

that the longer (shorter) the maturity the more (less) flat the curvature of the smile. This implies 

that traders become more concerned about a jump in prices the nearer they come to the expiry 

date as more information becomes available about the future. Insignificant values with p-values 

over 5 percentages were removed from the sample when regressing the second degree curvatures 

which explains the difference in number of observations in table 1. 

                                                 

9 The time-to-maturities used was TTM10, TTM 15, TTM 18, TTM 21, TTM 23, TTM 28, TTM 30, TTM 35, TTM 
42, TTM 45, TTM 50, TTM 60, TTM 74 and TTM 87. 
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5.2 Jump diffusion dynamics 

Tables 2-6 summarize the descriptive statistics for the jump components obtained from the MLE 

method. The method used to obtain the jump diffusion parameters yielded noisy data as shown 

in figures 6-8. This paper focuses on jump diffusion components and of these we especially 

looked at the jump amplitude   , and the Poisson intensity  .     varies over time seemingly at 

random as depicted in figure 6.     does, however, contain information on upwards or 

downwards jumps and how big the jumps are and should thus not be completely omitted from 

the study. In section 5.3 we therefore created a variable that captures the effect and the 

probability of the jumps. Figures 9, 10, and 11 show the results from the MLE method for TTM 

45 against the S&P 500 market returns, and     indeed seem rather independent from the daily 

returns as depicted in figure 9. Figure 10 indicate that the   coefficient captures the market 

abnormal returns defined as returns more than two standard deviations from the mean return. 

Market abnormal returns from figure 10 are shown with its direction and size in figure 12. The 

high   values seem to be well timed to the abnormal returns in figures 10 and 11 and the 

correlation between the two examined factors in figure 11 is -0.44. All these findings suggest that 

the method of using moving windows for MLE to estimate market jumps has some validity and 

that that the regression of the curvature as independent variable and   as dependent have 

information about the predictive power of the volatility smile. This partly confirms the 

assumption made by Shu yan (2011), i.e. that volatility curvature proxy GBMJ jumps in the 

market. 

5.3 Combined dynamics 

Table 7 shows the correlation matrix between the parameters as described in section 4.4. It 

demonstrates a varying correlation between the smiles’ coefficients and MLE jump parameters 

both in size and direction.  

Since correlation in itself says little about the statistical significance when trying to make inference 

table 8 with p-values instead of correlations was created with OLS regression. The tables were 

created from regressing each of the dependent variables (horizontal) on the dependant variables 

(vertical). P-values with significance under the five percentage label are highlighted in bold. 

Although the significant values are numerous yet still ambiguous with no clear pattern over the 

series of different variables there seems to be a consistent significant relationship between the 

coefficients in TTM 30, TTM 45, and TTM 87 on the λ and      .  
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Given these results, we focused on the forecasting power for the smiles coefficients of TTM 30, 

TTM 45 and TTM 87 on parameters   and      . The following paragraphs present and discuss 

the results of the regressions with the main interest on the direction of the relationship i.e. 

significant positive or negative relationships. Table 9 reports extended results from the regression 

on the chosen variables including coefficients and t-values. In equation-form        

        the regression results are reported as following: 

  
                        

         (  10 ) 

  
                        

         ( 11 ) 

  
                        

         ( 12 ) 

  
         

                        
         ( 13 ) 

  
         

                       
         ( 14 ) 

  
         

                       
         ( 15 ) 

where    is the Poisson probability of a jump in the estimation period,      represents the 

second degree coefficient of the smile in the beginning of the estimation period and    
 

corresponds to the magnitude and direction of a jump. Equations 10-12 describe the relationship 

between the smiles coefficient and the Poisson jump probability. For shorter maturities there 

seem to be a negative relationship between   and      i.e. the flatter the coefficient is in the 

beginning of a period, the larger is the probability of a jump during the whole period. TTM 87 on 

the contrary shows a positive relationship between parameters   and      which implicates that 

the steeper the smile 87 days to maturity the larger is the possibility of a jump. The magnitude of 

the coefficient seems to follow a pattern of increasing absolute value the nearer to maturity. Since 

equations 10-12 only describe the relationship of the smile coefficient and the probability of a 

jump in any direction, equations 13-15 incorporate the direction, magnitude and probability in 

the jump by multiplying the parameters     and    
as the dependent variable to describe a notion 

of expected average jump. As     , the term        will keep the sign of   .  

Equations 13-15 describe the forecasting power of the smile coefficient on the average expected 

jump and this time showing a consistent negative relationship between the parameters meaning 

that the flatter the smile is the higher probability there will be for a positive jump in the 

estimation window following and vice versa, the more curvature on the volatility smiles the larger 
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the probability for a negative jump in prices. The magnitude of the coefficients seems to follow 

the same as equation 9-12 i.e. the nearer maturity the larger the magnitude and importance the 

coefficient has on its predictive power. 

Although the coefficient of equation 15 is not significant on a 5 percentage level of significance 

(see table 9) the sign and magnitude of it is consistent with the pattern of earlier maturities. 

6. Implications 

The results from section 5.3 show that there is a predictive power of the volatility smile on the 

jump variables in the following period. Even though it’s puzzling why the results are varying in 

significance over different TTM and variables there is a somewhat consistent pattern over the 

statistical significant values to proceed in making inference. Equations 10-15 all show the same 

pattern of a lower magnitude of the smile coefficient the further away from expiry date. These 

results might be explained by differences in the values of both the dependent and independent 

variable and as described in earlier sections (see section 4.1) different time-to-maturities will not 

be compared and elaborated but rather the sign of the coefficient is important for inference. 

Equations 10-12 portrait a negative relationship between the smile coefficient and the probability 

of a jump in the following period. This rather peculiar and intuition contradictory result implies 

that when the option market discounts a high variability in future prices (i.e. high smile 

coefficient hence a steeper smile) the smaller the probability of a jump will be in the underlying 

during the following period.  

When looking at equations 13-15 the results became more interesting. It followed that the beta 

coefficient to       is negative as before, however in these equations the dependent variable 

incorporates the sign and magnitude of the jump as a new variable     .       is interpreted as 

an expected average jump and takes negative values for expected negative jumps and positive 

values for expected positive jumps. The same logic follows the implications made from equations 

10-12 however since positive and negative jumps were incorporated inference about the direction 

of the jump could be deduced. When the smile coefficient is high (i.e. a steep volatility smile) the 

larger is the probability of a negative jump and vice versa, the smaller the smile coefficient the 

larger the probability of a positive jump. It is remarkable that there was a threshold for the size of 

the smile coefficient for when a negative jump forecast becomes a positive jump forecast. This 

implies that trading strategies with long/short rules can be induced for a certain holding period 

by extracting the smile coefficient in the beginning of the same period. Why there would be a 

higher risk for a positive jump for a flat smile is questionable. Indirectly the results from 
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equations 13-15 tell that the market is more predictive of a negative jump than a positive given 

that a steep smile means that the markets discounts larger moves on the market while flat smile is 

usually seen during less distressed periods during a lower volatility regime. Even though this 

might seem to be contradictory the results are in line with previous research made by Shu yan 

(2011). Shu Yan argued that the implied volatility smile curvature can be regarded as a proxy to 

the jump risk and found similar results to our study, i.e. low slope portfolios earn a high return 

and vice versa; high slope portfolios earn a low return (we obtain the same relationship but with 

jumps instead of returns in the same positive or negative direction). By showing the significant 

relationship between the volatility smile and future jump risk our results consequently confirm 

Shu Yan’s assumption that the curvature of the volatility smile is a feasible proxy for market 

mood and jump risks. 

7. Problematization 

As pointed out earlier in this study there are several of problems with running the MLE 

algorithm that might create bias in the extracted jump parameters. Firstly it is a complex method 

that makes advanced estimations from a single input (i.e. log return values). It is questionable if 

there is enough information in such an input to create jump estimations for a certain window. 

The algorithm in the numerical method to maximize the log-likelihood requires input of a start 

value which itself can create bias depending on the unknown distribution of the likelihood 

function. Furthermore, large jumps are rare events so long time series and estimation windows 

are required to make estimations of when jumps occur. Misspecifications in the model can create 

computation errors that are difficult to control for. For example in the estimations made in this 

thesis the    probability values took extreme values for some time windows which is questionable 

and will be heavily weighted when using OLS. Some of these concerns have been expressed in 

earlier research (Shu Yan, 2011) which is why the existence of academic papers about jump 

diffusion models using MLE is very limited.  

When modeling the curvatures of the second degree derivative of the volatility smile statistically 

insignificant curvatures over the 5 percentage level were removed from the time-series data. It is 

debatable whether or not insignificant curvature originates from data error, occurring from 

calculation- or input errors in the dataset, or if it in fact contains valuable information that should 

be taken into account. A systematic study of the cause of these curvatures is needed to draw 

further conclusions. 

The jump parameters in the final regressions used different length of the moving windows for 

different time-to-maturities as described in section 4.2. The difference in window range gave 
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different jump values both in magnitude and probability and could be a source of problems in the 

OLS regressions and the following inferences. 

The smile coefficient in itself incorporates both a positive view and negative view of the 

underlying asset and no information of the direction (i.e. left or right skew) of the smile can be 

interpreted. This might be a problem for the inference. Another approach that is out of the scope 

of this paper would be to make a parameterization of the smile (Gemmil, 1996) by measuring the 

relative weight of the direction of out-of-the-money puts and calls skew to make such a 

conclusion.  

Even though more than 900 000 observations of option prices for the period May 2006 to April 

2011 were used in this study there are still limitations to which conclusions can be drawn from 

the data set. It would be preferable to have a longer time-series to get more robust results and 

more reliable jump estimations from the MLE.  

8. Conclusions 

Mispricing in the option prices and deviation from the Nobel prize winning Black-Scholes option 

pricing model has long been taunting and intellectual challenging for academic scholars and 

practitioners. Previous studies have shown that option traders get information earlier than equity 

traders and other literature has concluded that the implied volatility might be a good predictor of 

realized volatility. In order to extend previous research this study conducted a research on the 

predictive power of the implied volatility smile extracted from S&P option prices to forecast 

certain movements and jumps on the underlying S&P 500 Composite Index.   

As a first step using daily option prices with a large range of strike prices the volatility smile was 

plotted and regressed to extract the second degree coefficient of the smile. To avoid the time 

decay factor same time-to-maturities has been used to construct continuous time series of 

coefficient smiles over the period May 2006 to April 2011. 

Next, jump parameters from the GBMJ model were estimated using MLE for different moving 

windows. These estimations showed a certain set of jumps in the market for the period May 2006 

to April 2011 however with extreme Poisson probabilities for certain periods which might have 

created bias in later regressions. 

Using the steepness of the smile (i.e. the second degree coefficient) as a proxy for the mood of 

the future looking option market regressions were made on the jump parameters from MLE. 

Although many significant relationships were found the results proved to be varying for different 
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time-to-maturities and jump parameters which makes it hard to make clear inferences. This study 

concludes that there is some weak proof of a predictive power of the volatility smile on the 

future volatility regime for longer dated options with between 30 to 87 days to maturity. 

Nevertheless more research has to be done within this topic to make more certain conclusions. 

This study contributes to the forecasting finance literature by making an extensive study in 

forecasting future jumps in stock prices with the volatility smile coefficient for the period May 

2006 to April 2011. 

9. Suggestions for further research 

The findings of this study show that there are some, although unclear, relationships between the 

volatility smile and future market movements. It would be interesting to conduct further studies 

in this subject using longer time-series and modeling with other dependent variables than GBMJ 

parameters.  

Improvements on the techniques in the parameterization of the volatility smile could be another 

field of study. Weighting market views on the tails of the smile would improve the precision by 

taking into account how much more positive or negative the smile is (i.e. left or right skewed). 

This approach would be more intuitive and clearer about future up- or downside risks. Another 

way to proxy for the smile curvature could be to use the newly launched CBOE Skew Index 

which uses CBOE’s own definition and parameterization of the smile slope.  

Further research could be made using options on futures. Derivatives of a higher order have an 

ever more future looking horizon and studies (Szakmary et al., 2003) have shown that the implied 

volatility of options on futures outperform other predictors of the subsequently realized volatility 

on the underlying. 
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μ σ μj σj λ log λ

Mean -0.00091 0.23829 0.27666 0.11988 0.35939 -5.84068

Standard Deviation 0.91710 0.17163 0.24880 0.10987 2.67914 1.68027

Max 2.46804 0.94100 0.93341 0.49945 20.75653 1.31715

Min -3.43840 0.06496 -0.35857 0.00000 0.00000 -8.49242

Observations 60 60 60 60 60 60

Average  number of datapoints 

used to calculate coefficients
40 40 40 40 40 40

Table 2: Descripive Statistics of the GBMJ coefficients from the MLE method for time to maturity 10 

days

μ σ μj σj λ log λ

Mean 0.00534 0.24148 0.19675 0.16175 0.18445 -5.72139

Standard Deviation 0.89777 0.16705 0.41561 0.27571 1.35242 1.70334

Max 1.75152 0.93290 0.77810 1.86627 10.47723 1.02025

Min -3.79940 0.08209 -1.98438 0.00000 0.00000 -8.92530

Observations 60 60 60 60 60 60

Average  number of datapoints 

used to calculate coefficients
52 52 52 52 52 52

Table 3: Descripive Statistics of the GBMJ coefficients from the MLE method for time to maturity 21 

days

μ σ μj σj λ log λ

Mean 0.00853 0.23480 0.20747 0.12806 6.07180 -5.66664

Standard Deviation 0.71187 0.14266 0.24912 0.11506 42.59050 2.05957

Max 0.98275 0.77818 0.65379 0.54229 329.85688 2.51833

Min -2.86105 0.07820 -0.57382 0.00000 0.00000 -7.89477

Observations 60 60 60 60 60 60

Average  number of datapoints 

used to calculate coefficients
60 60 60 60 60 60

Table 4: Descripive Statistics of the GBMJ coefficients from the MLE method for time to maturity 30 

days
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μ σ μj σj λ log λ

Mean -0.00153 0.23941 0.25601 0.11539 4.71549 -5.43325

Standard Deviation 0.73605 0.15528 0.22824 0.08945 20.77926 2.31577

Max 1.63473 0.75922 1.07379 0.37833 140.95267 2.14907

Min -2.94564 0.07447 -0.16614 0.00000 0.00000 -9.42414

Observations 60 60 60 60 60 60

Average  number of datapoints 

used to calculate coefficients
75 75 75 75 75 75

Table 5: Descripive Statistics of the GBMJ coefficients from the MLE method for time to maturity 45 

days

μ σ μj σj λ log λ

Mean -0.00389 0.24355 0.19974 0.12895 3.09280 -5.01901

Standard Deviation 0.58301 0.15739 0.30325 0.11927 11.70816 2.68180

Max 0.85692 0.77481 1.53927 0.54422 56.52993 1.75228

Min -1.93889 0.07591 -0.53349 0.00000 0.00000 -8.33238

Observations 60 60 60 60 60 60

Average  number of datapoints 

used to calculate coefficients
116 116 116 116 116 116

Table 6: Descripive Statistics of the GBMJ coefficients from the MLE method for time to maturity 87 

days

TTM 10 TTM 21 TTM 30 TTM 45 TTM 87 Mean smile Standard dev

SP500 Index* -0.260 -0.470 -0.288 -0.191 0.116 -0.317 -0.648

SP500 Return* 0.179 0.086 0.289 0.324 0.150 0.245 -0.103

VIX* -0.019 0.041 -0.205 -0.267 -0.305 -0.233 0.472

VIX Change* -0.142 0.005 -0.169 -0.121 0.061 -0.140 -0.084

Jump Coefficient, μ** 0.000 0.084 -0.062 -0.042 -0.041 -0.042 -0.063

Sd Jump, σ** -0.082 -0.131 0.180 0.200 -0.200 0.078 -0.044

Lambda, λ** -0.213 0.061 -0.371 -0.399 0.319 -0.314 -0.023

Log Lambda, log(λ)** -0.129 0.056 -0.237 -0.169 0.173 -0.221 -0.087

μ ∙ λ** 0.007 -0.077 -0.373 -0.450 -0.181 0.005 0.040

* Using Monthly Data

** Using Moving Windows (Smile Date plus one day - Expiry Date following month)

Table 7: Correlations matrix for Smile Coeffients and MLE Jump parameters
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TTM 10 TTM 21 TTM 30 TTM 45 TTM 87 Mean smile Standard dev

SP500 Index* 0.051 0.000 0.035 0.159 0.470 0.014 0.000

SP500 Return* 0.186 0.551 0.036 0.016 0.350 0.064 0.442

VIX* 0.887 0.771 0.136 0.047 0.053 0.076 0.000

VIX Change* 0.296 0.972 0.226 0.377 0.703 0.295 0.531

Jump Coefficient, μ** 0.998 0.556 0.653 0.761 0.798 0.753 0.636

Sd Jump, σ** 0.548 0.359 0.192 0.143 0.209 0.563 0.742

Lambda, λ** 0.115 0.672 0.006 0.003 0.042 0.016 0.865

Log Lambda, log(λ)** 0.343 0.697 0.084 0.218 0.281 0.096 0.518

μ ∙ λ** 0.108 0.593 0.005 0.001 0.257 0.015 0.837

* Using Monthly Data

** Using Moving Windows (Smile Date plus one day - Expiry Date following month)

P values < 5% in bold font

Table 8: P-value for regressions on Smiles Variables

TTM 30 TTM 45 TTM 87

-39.363** -22.311** 9.176*  

(-2.88) (-3.17) (-2.10)

-1.588** -0.804** -0.065
(-2.90) (-3.67) (-1.15)

Observations 54 55 41

† Using Moving Windows (Smile Date plus one day - Expiry Date following month)

t-statistics in parentheses. * p<0.05, ** p<0.01, *** p<0.001

μ ∙ λ†

Lambda, λ†

Table 9: Smiles coefficient predicitve power on Lambda, λ and average expected jump,  μ ∙ λ
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Figures 

Figure 1. Option dataset illustration 1. 

 

 

Figure 2. Figure 1 magnified: Option dataset illustration 2. 
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Figure 3. Moving windows. 

 

 

Figure 4. Mean and Standard Deviation of the Smile Coefficients. 
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Figure 5. Smile development when time-to-maturity decreases. 
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Figure 6. Log λ development over time for different time-to-maturity. 
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Figure 7. μJ development over time for different time-to-maturity. 
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Figure 8. σJ development over time for different time-to-maturity. 
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Figure 9. Average jump amplitude per month from MLE and the S&P daily returns for TTM 45. 

 

 

Figure 10. Probability of jumps (λ) for TTM 45 according to MLE versus the real market “jumps” 

calculated as returns deviating more than 2 standard deviation s from the mean. 

 

 

 

Figure 11. Probability of jumps (λ) for TTM 45 according to MLE and the average S&P returns for 

the corresponding periods. 
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Figure 12. Abnormal daily returns in the periods defined by TTM 45 
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