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1 Introduction 
The history of financial instruments dates back to as far as 1750 B.C. when forward contracts 

were created using Mesopotamian clay tablets. Gelderblom and Jonker (2004) report evidence 

that options and forwards were used in grain deals in Amsterdam already in 1550.  By the 

beginning of 1900 active option markets had developed in New York, Paris, London and several 

other European cities. There was a decent level of sophistication in these markets and Kairys 

and Valerio (1997) show that tail events were priced already in 1870s in the US financial 

markets. 

 Since then, derivative markets have grown exponentially and the value of outstanding 

contracts reached USD 583 trillion in June 2010 (Bank for International Settlements, 2010). 

Even though derivatives allow transferring risks to market participants who are able and willing 

to bear them, inaccurate assessment and limitation of risks can lead to financial disasters (e.g. 

cases of Metallgeselschaft, Barings, and Long Term Capital Management). Some of these 

failures can arguably be attributed to lack of understanding of the complex and non-linear risk 

structure of derivative instruments. In this outset, elimination of risk or hedging in derivative 

market has become of utmost importance. Ideally, theory of derivative pricing provides a 

framework for elimination of risks associated with the derivative position that can be achieved 

using both dynamic and discrete hedging techniques. However, practical implementation of 

various hedging strategies is extremely complex due to different market restrictions and market 

microstructure characteristics (e.g. transaction costs, liquidity constraints). The various 

characteristics of markets dictate that there is no uniform hedging framework that would be 

equally efficient across different market classes and regions (see Sim and Zurbruegg (1999), and 

Rao and Thakur (2008)). Thus, pricing and hedging derivative instruments is subject to risk 

associated with the use of misspecified financial models or the so called model risk. According 

to Stix (1998), it can account for 20-40% of losses on derivative positions. Apparently, the use of 

more sophisticated derivative pricing and risk management tools has given rise of yet another 

type of risk.  
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This paper aims at evaluating performance of different hedging strategies in option 

market in Sweden. In particular, by deploying five different hedging techniques we will try to 

answer the question of which type of non-stochastic models and in what market regimes 

provides the best hedging performance for OMX Stockholm 30 (OMXS30) index plain vanilla call 

options traded on the NASDAQ OMX Stockholm. To capture different market characteristics we 

apply not only the traditional Black-Scholes-Merton (BSM) model, but also hedging techniques 

that account for non-normal skewness and kurtosis of index returns, as well as negative 

correlation between implied volatility and the index. Due to the fact that derivative markets 

across regions differ in their characteristics a separate analysis and application of various 

hedging techniques in the Swedish market is relevant and could provide useful insights for 

individuals or institutions willing to trade on the NASDAQ OMX Stockholm. 

The paper begins with characterization of the OMXS30 returns and volatility. Next, we 

develop three hypotheses on model hedging performance. Section four provides a 

comprehensive literature review and is followed by methodology. Section six provides data 

description, which is followed by empirical findings. Section seven includes a review of 

empirical findings on hedging performance. At the end of the paper we provide concluding 

remarks, research limitations, and suggestions for further research.  

2 Characteristics of the OMXS30 Index Returns 
Visual inspection of the plot of OMXS30 index returns (natural logarithm; see Figure 1) indicates 

that large movements are followed by large movements, and low movements are observed 

after low movements. This is the so called volatility clustering, which implies that the OMXS30 

index return volatility varies over time and tends to be mean-reverting. 
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Figure 1: Natural Logarithm of OMXS30 Historical Returns 

 

Table 1 and Figure 2 show the correlation and dynamics of the OMXS30 index and the 

ATM implied volatility of option contracts over the sample period. As predicted by Derman 

(1999), the two are negatively correlated. This implies that adjustments to the original BSM 

delta that account for this relationship (i.e. local delta) are likely to provide significant 

improvements in hedging performance. 

Table 1: Correlation Between the OMXS30 Index and the ATM Implied Volatility 

 

Figure 2: Dynamics of the OMXS30 Index and the ATM Implied Volatility 
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Descriptive statistics for absolute and natural logarithm of both the OMXS30 and the 

ATM implied volatility are reported in Table 2.  

Table 2: Descriptive Statistics for Absolute and Logarithmic Values of the OMXS30 Index and 
the ATM Implied Volatility 

 

Both descriptive statistics and the histograms below imply that returns of the OMXS30 

index are not normally distributed and have excess kurtosis and fat tails. Non-normality in the 

third and fourth moments indicate that hedging approach adjusting for skewness and excess 

kurtosis (i.e. skewness and kurtosis adjusted delta) can deliver a better result than the BSM 

delta hedge. Figure 3 represents the distribution of the OMXS30 index returns since its 

inception on September 30, 1986. These returns have excess kurtosis of 1.35 and non-normal 

skewness of 0.06. 

Figure 3: Log Returns of the OMXS30 Index Since 1986 vs. Normal Distribution 

 

OMXS30 ATM Implied Volatility OMXS30 ATM Implied Volatility

Mean 955 0.28 -0.0001 -0.0002

Median 966 0.25 0.0000 -0.0043

Minimum 568 0.10 -0.0751 -0.5923

Maximum 1312 0.80 0.0987 0.5364

Standard Deviation 171 0.11 0.0183 0.1296

Skewness -0.33 1.79 0.2762 0.0302

Excess Kurtosis -3.57 1.02 0.3399 -1.3197

Level Logarithmic First Differences
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Figure 4 represents the distribution of log returns of the OMXS30 index for the sample 

period. The plot clearly shows that these returns are not normally distributed. 

Figure 4: Sample Period Log Returns of the OMXS30 Index vs. Normal Distribution 

 

2.1 OMXS30 Implied Volatility 

Table 3 in the Appendix illustrates the average BSM implied-volatility values across five 

moneyness and three maturity categories for the entire sample period and selected four sub 

periods, which are selected one year in length.  

BSM implied volatilities demonstrate a U-shaped pattern which corresponds to volatility 

smirk in options market both looking at the whole sample and sub sample periods. Deep ITM 

and OTM calls return the highest implied volatility values. Furthermore, volatility smirks are the 

most pronounced for short-term options indicating higher mispricing compared to the BSM 

model. For given sub periods long-term option implied volatilities demonstrate more of a linear 

shape (see Figure 5 in the Appendix for illustration). Bakshi, Cao, and Chen (1997) report that 

the volatility smirk is indicative of negatively-skewed implicit return distributions and excess 

kurtosis. Thus, an appropriate model for hedging purposes should be based on a distributional 

assumption that controls for negative skewness and excess kurtosis. 
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One can observe that the implied volatility spread between short-term and long-term 

options widens during the crisis period (July 2008 – June 2010), with implied volatility for short-

term options being higher than that for long-term options. An explanation for this pattern 

might be that during turbulent market periods investors are less exposed to gamma risk on 

long-term options, thus, their position is less affected by market movements. 

Figure 6 demonstrates the implied volatility surface for OMXS30 options in the sample 

period. The exact shape changes from day to day and across contracts with different maturities. 

We observe particular swings in the surface that correspond to periods of market turmoil. 

Options with shorter maturity are more volatile across different strike levels compared to 

longer dated options. We see elevated volatility levels as options approach their maturity. 

Figure 6: Implied Volatility Surface for Sample OMXS30 Call Options 

 

Figures 7, 8, and 9 in Appendix plot implied volatility surface of long-, medium-, and 

short-term maturity options during the second half of 2008 and are representative of general 

pattern observed. Based on the plots, short-term options are more volatile than medium- and 

long-term options over comparable sub periods of the sample. The pattern is observed across 
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all sample periods. During market turbulences short-term options are also more sensitive to 

changes in price of the underlying.  

3 Hypotheses 
Characteristics of the OMXS30 index returns and call options suggest that traditional 

hedging models that assume normal distribution of index returns and/or constant volatility 

might not be optimal for hedging OMXS30 call options. There is a need for hedging techniques 

that account for non-normal return distribution and negative correlation between implied 

volatility and the OMXS30 index.  

 Hence, we form three hypotheses regarding hedging model performance: 

Hypothesis 1: Skewness and kurtosis adjusted hedge delivers lower hedging errors than 

the BSM hedge; 

Hypothesis 2: Hedging model accounting for negative correlation between implied 

volatility and the underlying asset delivers lower hedging errors than the BSM hedge; 

Hypothesis 3: On average, regression-based hedge delivers lower hedging errors than 

the BSM hedge. 

The third hypothesis stems from Jarrow (2011) who shows that theoretical estimation of 

hedge parameters using historical estimation procedure is always correct. Thus, a regression 

based hedge that uses market data as inputs would not account for any market characteristics 

on a separate basis, but rather it would include various effects that are priced by the market. 

We expect this approach to provide better results on average compared to the BSM model 

(with performance being less superior in times of high volatility). 

4 Literature Review 

4.1 Black-Scholes-Merton Model 

Despite the fact that Bachelier (1900) had documented several fundamental option pricing and 

hedging concepts already in the beginning of the twentieth century, they were not united into 
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one comprehensive model until the beginning of the 1970’s. A revolutionary step in 

formalization of option pricing and hedging was done by Black, Scholes (1973), and Merton 

(1973) with the introduction of the BSM model. Assumptions behind the BSM model are: 

 possibility to borrow and lend cash at a known and constant risk-free interest rate;  

 price of the underlying asset follows geometric Brownian motion with constant drift and 

volatility, returns of the underlying are lognormally distributed; 

 no transaction costs, taxes or bid-ask spread, no dividend payments;  

 it is possible to buy any fraction of a share;  

 no restrictions on trading and no arbitrage opportunities. 

Even though the practical applicability of the model has been questioned due to its 

restrictive assumptions, the BSM model has served as one of the benchmark tools for pricing 

and hedging options since its inception in 1973 thanks to its straightforward and simple 

application. In order to fit the BSM model to option characteristics observed in the markets 

several extensions of the model have been designed. 

The need for dynamic hedging is one of the most controversial assumptions of the BSM 

model. Black and Scholes (1973) conclude that "it is possible to create a hedged position, 

consisting of a long position in the stock and a short position in calls on the same stock, whose 

value will not depend on the price of the stock." They argued that in order to make the 

portfolio riskless one has to perform a stream of dynamic hedges. Derman and Taleb (2005) 

claim that in reality dynamic hedging is virtually impossible due to limits on continuous trading. 

They also find that from an economic point of view it is difficult to maintain a zero cost position 

due to high transaction costs. Additionally, if hedging is performed in discrete time, the 

portfolio bares risk between rebalancing periods. However, Wilmott (2006) considers that high 

frequency hedging is realistic in highly liquid markets where cost of buying and selling is close to 

nil. However, in less liquid markets the trader would incur loss due to the bid-ask spread and 

hence would be forced to hedge less frequently.  
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Similarly to Black and Scholes (1972), Boyle and Emanuel (1980) use the BSM framework 

to analyze the distribution of returns on a hedged portfolio that is rebalanced at discrete time 

intervals and consists of a European call option and its underlying stock. They find that 

increasing hedging frequency reduces the variability of excess hedge returns. Galai (1983) finds 

that hedging at discrete time intervals does not significantly affect mean returns from a hedging 

position but it increases its variance. The issue of hedging derivative risks in a similar way has 

also been addressed by Leland (1985) and Bhattacharaya (1980). Boyle and Vorst (1992) 

developed a perfect hedging strategy with transaction costs using binomial tree that was based 

on Cox, Ross, and Rubinstein (1979). Whereas Zhao and Ziemba (2007) use simulations to prove 

that an exact hedge at the limit cannot be achieved even if rebalancing intervals approach zero.  

As to the BSM assumption regarding volatility, Melino and Turnbull (1995) find that the 

BSM hedging framework with constant volatility assumption produces relatively small errors for 

short- and medium-term options, but it performs worse for hedging long-term options. Bron 

(2005) tests hedging with constant and non-constant volatilities on the Dutch AEX and S&P 500 

index and finds that hedging performance using non-constant volatility is not superior to that of 

constant volatility. Meanwhile, Lam, Chang, and Lee (2002) report that hedging performance of 

a more advanced asymmetric variance gamma option pricing model is poor compared to the 

traditional BSM model. 

4.2 The Optimal Delta 

Realizing that volatility is not constant over the life span of an option, a trader using the BSM 

model has to continuously change the volatility assumption in order to match the market price. 

Crépey (2004) shows that this leads to hedge ratios that are effectively out of the trader’s 

control. Thus, it is often observed that trader’s positions are affected even if they are perfectly 

hedged according to the BSM N(d1) hedge ratio. Hull and Suo (2002) show that delta-neutral 

hedge does not immunize position because of misspecification in the BSM model. Derman 

(1999) proposes that the size of delta should depend on market conditions. He claims that 

under highly volatile market conditions when index and volatility are likely to move in opposite 

directions, the optimal hedge ratio should be smaller than the BSM delta. The opposite holds in 

trending markets when volatility and index are likely to move in the same direction – the 
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optimal hedge ratio should be larger than the BSM delta. Based on empirical evidence, Mixon 

(2002) suggests that the optimal delta should be lower than the BSM delta. Evidence that 

optimal deltas are different from the BSM delta is provided also by Bakshi, Cao, and Chen 

(2000a), Coleman et al. (2001), and Lam, Chang, Lee (2002). Vähämaa (2003) uses data on the 

FTSE 100 index to show that adjustments to the BSM delta to account for the inverse 

relationship between volatility and price of the underlying can significantly improve 

performance of delta hedging. Moreover, he finds that the optimal delta is smaller than the one 

based on the BSM model.  

Based on the BSM theory, volatility of an option should be independent of its strike and 

expiration. Thus, plotted as a surface, it should be flat. Rubinstein (1994) shows that this 

assumption performed reasonably well up to the stock market crash in 1987. However, since 

the crash, the volatility surface of index options has become skewed, reflecting higher 

probability of extreme events and pricing in these events. The volatility surface varies over time 

and across different strike levels. Derman (2003) claims that the volatility smile phenomenon 

has become even more important over time, as it has spread to stock options, interest-rate 

options, currency options, and almost every other volatility market. Since the BSM model can 

match neither the volatility structure, nor stock return distributions observed in the market, 

trading desks have come up with more complex models to hedge their positions. 

4.3 Skewness and Krutosis Adjustments to the BSM Delta and Local Volatility 

Models 

To match the non-normal distribution of returns on the underlying asset observed in the 

market, academia and practitioners have come up with alternative models that adjust the BSM 

delta to match non-normal skewness and kurtosis. One of the approaches in doing that is to 

expand the lognormal and normal density function in terms of its moments; hence, Jarrow and 

Rudd (1982) defined option price as a function of the third and fourth moments of the terminal 

price distribution. Based on the same idea, Corrado and Su (1996) and Brown and Robinson 

(2002) propose a model using the Gram-Charlier expansion of the normal density function. 

These adjustments have proven to be of significant value in pricing options that are deeply out 

of the money.  
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Breeden and Litzenberger (1978) figured that the risk-neutral partial differential 

function can be derived from European option market prices. Afterwards, Dupire (1994) and 

Derman and Kani (1994) found that conditional on risk neutrality there was a unique diffusion 

process consistent with these distributions. The coefficient that is consistent with current 

European option prices is known as the local volatility coefficient with the functional form of 

       . This implies that in local volatility models realized volatility of the stock varies 

deterministically as a function of future time t and the future stock price S.  

Vähämaa (2004) shows that the local delta must control not only for the direct impact of 

the underlying’s price change on the option price, but also for the indirect impact of the 

volatility change which is correlated with the underlying’s price change. A relatively simple 

adjustment of implied delta can correct for this:  

     
  

  
 

  

  

  

  
 

Most of the time one can observe negative correlation between stock returns and 

volatility changes. Thus, the local delta should be smaller than the BSM delta. Local delta 

utilizes the volatility skew of an equity index together with the vega of the option to account for 

the volatility changes with respect to changes in the underlying instrument. 

Crépey (2004) suggests that local delta provides a better hedge on average, as well as 

on average conditionally on the fact that the market is in a fast regime, or on average 

conditionally on the fact that the market is in a slow regime. Overall, he recommends using the 

local delta rather than the implied delta hedge. The same recommendation in a persistently 

positively skewed market is made. Derman (1999) also observes that in negatively skewed 

markets local delta should be better on average conditionally on the fact that the market is in a 

fast regime. Further research by Coleman et al (2001) and Vähämaa (2003) also conclude that, 

on average, local delta provides better hedge than the implied delta, especially in jumpy 

markets. In addition, Alexander and Kaeck (2010) find that the sticky-strike deltas outperform 

locally- calibrated deltas only for options with low strike prices. 
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4.4 Stochastic Volatility Models 

Volatility smile and the peaked, fat-tail distribution of returns gave rise to a group of models 

that, in contrast to the BSM model, treat volatility as a stochastic variable. This characteristic 

allows stochastic volatility models to provide a self-consistent way of explaining why options 

with different strikes and maturities have different implied volatilities compared to the BSM 

model. Cox and Ross (1976) developed the constant elasticity of variance (CEV) model in the 

form of  

                 . 

The model allows the stock price volatility to fluctuate if      If    , the model 

takes the form of the geometric Brownian motion model that was used in derivation of the BSM 

model. Using the stochastic volatility model by Cox, Ingersoll, Ross (1985), Bakshi, Cao, and 

Chen (2000b) show that allowing for stochastically varying volatility is important for pricing 

options but further accounting for stochastic interest rates does not improve pricing 

performance. 

Heston (1993) created a model  

              

incorporating arbitrary correlation between the underlying asset and its volatility. Kim and Kim 

(2004) show that Heston’s model outperforms other stochastic volatility models in terms of 

hedging effectiveness. Evidence of solid hedging performance of the Heston model in 

comparison to other hedging alternatives is also found by Alexander, Kaeck and Nogueira 

(2010). 

A considerable part of research related to hedging effectiveness has focused on 

determining regression-based hedge ratios. Thus, generalized autoregressive conditional 

heteroskedasticity (GARCH) - an econometric model for an asset and its volatility – was first 

used by Duan (1995) to model stochastic volatility, and he also shows that the BSM model can 

be treated as a specific form of the GARCH model. It is found that the pricing impact of 

stochastic volatility is rather small for options with maturity of less than a year. Hull (2002) 
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claims that the effect of stochastic volatility on delta hedging is quite significant. However, Yung 

and Zhang (2003) show that an Exponential GARCH model performs well in terms of pricing 

options but its hedging performance is not superior commpared to more traditional models 

(including the BSM). 

5 Methodology 
The methodology of the paper is based on hedging error calculations as a benchmark for 

hedging effectiveness. Five hedging approaches are tested in the report out of which four are 

based on the BSM delta and the fifth is based on regression adjusted BSM Greeks. All 

calculations are done using average implied volatility which is backed out from each option 

price in the sample and then equally weighted for call options on a given maturity-moneyness 

level. 

5.1 The Dividend Adjusted BSM Model 

A call price in the BSM model incorporating continuous dividend yield is given by  

                                

where S is the stock price, K is the strike price, q is the dividend yield, (T-t) is time to maturity, 

and r is the risk free interest rate and 

      (
 

 
)       

  

 
   √     ⁄             √      

Hedging according to the BSM model implies holding     of shares where 

    
  

  
      . 

The hedged portfolio includes a short position in a European call option and a long 

position in shares of the underlying stock 

  

  
  

  

  
  

  

  
  

  

  
 

  

  

  

  
    (1) 
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Equation 1 shows that the price of the portfolio is not sensitive to variations in price of 

the underlying, so the portfolio is riskless as long as the number of shares held is adjusted to  . 

If continuous hedging was realistic, it would be possible to eliminate all the risk from the 

portfolio making it riskless. 

Additionally, we also test gamma hedging. The BSM gamma is given by   

  
   

    
      

  √ 
. 

Delta-gamma hedge ratio equals 

           

5.2 Local Delta 

Crépey (2004) shows that gains and losses on a portfolio in the BSM world can be approximated 

using Taylor expansion to 

           
 

 
        (

  

 
  )       

where   represents the option’s price,      
   and       is the option’s gamma and delta, 

respectively. Thus,     ∑     represents the distribution of profit and loss on the 

portfolio, which is asymptotically symmetric and centred as   tends to 0. European vanilla call 

or put option P&L volatility of is dominated by √ .  

With fixed local volatility  

                    
 

 
                (

  

 
  )       

where   is the option’s price,      and      are the option’s local delta and gamma, 

respectively. Crépey (2004) shows that     >0 because both vanilla call and put options are 

convex in the spot price of the underlying asset. Hence, up to the order      the profit or loss 

on the portfolio depends on the following: 
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 If     ⁄    is larger or smaller than         ; 

 On the relative position of the realized volatility |  |  √  with respect to the local volatility 

      . 

Up to the order     , the expectation of the realized volatility squared is equal to the 

square of the local variance        . Hence, in a local volatility model the distribution of 

        is asymptotically centred as    .  

Crépey (2004) shows that        , in contrast to       , is not directional and driven 

by factors in    since  

                           . 

Crépey (2004) concludes that “the fluctuations (such as measured by the standard 

deviation) of        are one order of magnitude greater than those of        ”. 

As                 
            , then 

                

        ⁄   

If changes in stock price at some point are negatively correlated with changes in 

volatility, then the local delta is smaller than the BSM delta because the option’s vega is always 

positive. 

Due to the complexity of expressing     ⁄  numerically, we use the proof by Derman, 

Kani, and Zou (1995) who show that implied volatility can be expressed as an average of the 

local volatilities on the most probabilistic paths between (t, S) and (T, K). Moreover, if the value 

of local volatility is independent of time and changes linearly with the underlying asset, the 

implied skew gives a proxy for    , i.e.,  
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Effectively, this implies that 
  

  
 can be approximated by the slope of the volatility smile, 

  

  
. Hence, 

     
  

  
 

  

  

  

  
        

  

  
  

This approximation assumes that a unit change in S is associated with a parallel shift of 

  

  
 units in volatility smile. 

5.3 Kurtosis and Skewness-Adjusted Model 

Jarrow and Rudd (1982) developed an option pricing model which assumes that at expiration 

the underlying asset follows distribution F that is known only by its moments. The pricing 

formula was derived from an Edgeworth series expansion1 of the distribution F about an 

approximating distribution, A. A call price c(F) based on the unknown distribution F is given by 

                         

  

     

   
                

  

      

   
        (2) 

where c(A) is a call price based on a known distribution, A; it is followed by adjustment terms 

for distributions F and A that are based on the cumulants2 kj(F) and kj(A), respectively. 
     

   
 and 

      

   
  are derivatives of the density function of A that are calculated at the strike price K. The 

density function of A is given by a(St), where St is a random stock price at expiration.      

continues the series with terms based on higher order cumulants, which are negligible if the 

known distribution, A, is a good choice. 

In this setting, the cumulants resemble distribution moments, and they are independent 

of translation in description of the shape of the function. Hence, the first and second cumulants 

                                                             
1
 The Edgeworth series are series that approximate a probability distribution in terms of its cumulants. The 

Edgeworth series are used to write the characteristic function of the distribution (with probability density function 
F) in terms of the characteristic function of a known distribution with suitable properties (A). Afterwards, F is 
recovered through the inverse Fourier transform. Source: http://en.wikipedia.org/wiki/Edgeworth_series 
2
 Cumulants of a probability distribution are a set of quantities that provide an alternative to the moments of the 

distribution. The moments determine the cumulants in the sense that any two probability distributions whose 
moments are identical will have identical cumulants as well, and similarly the cumulants determine the moments. 
Source: http://en.wikipedia.org/wiki/Cumulant#Cumulants_and_moments 
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are equal to the mean and variance of a distribution, respectively, and            . The 

third moment measures the lopsidedness of the function (skewness), which, if defined, is set to 

be zero if the function is symmetric, and            . The fourth moment measures the 

kurtosis of the function; thus,                
        

        are the squared variance, 

third, and fourth moments, respectively. If the known distribution (A) is set to be lognormal, 

then the formula becomes the BSM pricing formula. In application of the risk neutral valuation, 

Jarrow and Rudd (1982) set the means (that are the same as first cumulants) of F and A equal, 

i.e., 

               
    

They express call price as in Equation (2) by setting the variances of the distributions F 

and A equal, which in effect implies that the second cumulants are equal, i.e.,            . 

With A set as lognormal distribution, the parameter for volatility is expressed as  

        
    (      ). 

Corrado and Su (1996) show that when the      term in Equation (2) is dropped, the 

option price can be expressed in a more compact form as 

                    

where the terms   and   are defined as 

                       
               

    

  

     

   
 

                      
             

    

  

      

   
  

  and   measure the deviations of skewness and kurtosis from the lognormal 

distribution. The terms       and       are coefficients of skewness for the F and A 

distributions, respectively, while the terms                 are coefficients of excess kurtosis. 

Skewness and excess kurtosis coefficients are defined in the following way: 
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Brown and Robinson (2002) published a correction of the Corrado and Su (1996) model, 

so that the correct skewness and kurtosis adjusted price of a call option is 
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The skewness and kurtosis adjusted delta is expressed as 
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Hence, the skewness and kurtosis adjusted delta above consists of the BSM delta and 

two additional terms which measure the effects of non-normal skewness and kurtosis.  
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5.4 Regression-Based Hedge Ratio 

Jarrow (2011) distinguishes between theoretical and statistical models. One can create a 

theoretical model by developing economic reasoning that is applied in estimation of the model 

by using historical data. Statistical models try to identify patterns in historical data hoping that 

they will persist in the future. In order to fit parameters of a theoretical model to market prices 

one has to use calibration, which means that the respective theoretical model is transformed 

into a statistical model. As calibration is applied to fit the theoretical model to market prices, it 

means that the theoretical model has been rejected in the first place. Jarrow (2011) argues that 

the new (statistical) model serves as a tool for pricing only, since it has been validated for this 

purpose using market prices. Hence, this calibrated model should not be used for anything else 

besides pricing.  

However, one can still use a statistical model for hedging purposes. For instance, in 

regard to a calibrated BSM model, Jarrow (2011) suggests running a regression in the form  

                       
                

where         , and    are constants,   is the market price of a call option, S is the stock price, 

  is the volatility, and   is the estimation error. The constants returned by regression analysis 

are then used as adjustment factors for the original BSM Greeks. This hedging method is solely 

a statistical one, which uses partial derivatives from the BSM model as inputs. As it is based on 

patterns observed in market data, there is no need for separate adjustments that would fit the 

data patterns (e.g. adjustments for excess kurtosis or non-normal skewness). 

We test the Jarrow’s (2011) suggested BSM Greeks’ adjustment running the regression 

specified above and use the first 120 observations in our sample as historic data. To our best 

knowledge, regression ratios of such a specification have not been tested before. 

5.5 Measurement of Hedging Performance 

To measure hedging performance, we assume that hedging is done without any long or short 

positions in other option contracts. Thus, a self-financed delta-hedged portfolio in the form of 
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is created, where Δ represents the number of units of the underlying asset, B represents the 

number of units of a risk-free bond, and – c stands for one short unit in an option. 

Initially,  

     as           . 

Whenever the position is rebalanced, the self-financing portfolio is recalculated, and the 

hedging error from time t-1 to t is reckoned as  

                      

Hence, the cumulative hedging error is given by   , the value of the portfolio at the end 

of the hedging horizon 

   ∑      
 
   . 

To assess the hedging performance of different models, we use the mean absolute 

hedging error (MAHE) and the root mean squared hedging error (RMSHE).  

     
 

 
∑|   |

 

   

                    √
 

 
∑   

 

 

   

 

MAHE measures the average magnitude of the errors without considering their 

direction. MAHE returns the average over the sample of the absolute values of the differences 

between observations and all the individual differences are weighted equally in the average. 

RMSHE measures the average magnitude of the error. The hedging error first is squared, then 

averaged over the sample and afterwards the square root of the average is taken. RMSHE gives 

a relatively high weight to large errors. This means RMSHE is most suitable if large errors are 

particularly undesirable. The greater difference between MAHE and RMSHE, the greater the 

variance in the individual errors in the sample. As risk minimization is the primary goal of 

hedging process, we consider RMSHE to be the primary evaluation criterion. 
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6 Data Description 
In the paper, we analyze call options on the OMXS30 index, which is the leading and most 

comprehensive OMX Nordic Exchange Stockholm's share index. The index includes 30 

companies with the highest trading volume on the NASDAQ OMX Stockholm. This ensures that 

all the stocks OMXS30 consists of are highly liquid.   

The composition of the OMXS30 index is revised twice a year. The OMXS30 index is a 

market weighted price index. The index was introduced in September 30, 1986, with a base 

value of 125 (NASDAQ OMXa). The primary objective of OMXS30 is to create an index based on 

a limited number of stocks which develops in close correlation with the stocks listed on the 

Exchange thus reflecting the development of the portfolio of stocks included (NASDAQ OMXb). 

The index is calculated as follows: 

   
∑                 

 
   

∑      (            )               
 
   

       

where 

It is the index level at time t, qi,t is the number of shares of company i applied in the index at 

time t, pi,t is the price in quote currency of a share in company i at time t, di,t is the dividend for 

company i at time t (only used for total return indexes and special dividend in price indexes), ri,t 

is the foreign exchange rate of index quote currency to quote currency of company i at time t, 

ji,t is the adjustment factor for adjusting the share price of a constituent security due to 

corporate actions by the issuing company at time t.  

As the OMXS30 is a price-weighted index, no cash dividends are reinvested. Thus, the 

OMXS30 index only reflects the performance of stock prices. To account for the dividend yield, 

we extracted the difference in growth between the total return and the price-weighted version 

of the index. NASDAQ OMX (2010) reports that the difference between the two types of 

indexes is attributable to the dividend yield of the OMXS30 index. Brenner, Courtadon, and 

Subrahmanyam (1987) report that dividend adjustment can have a significant impact on option 

value calculations. We obtained time series of the total return index SIX30RX with reinvested 
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dividends from SIX Telekurs3. Hence, the difference in implied growth between the two indexes 

was used to account for the dividend yield.  

Investors can trade European call and put option contracts with cash settlement on the 

OMXS30 index. Our analysis specifically focuses only on plain vanilla call options. We do not 

find this a fundamental limitation of our study, as Jiang and Oomen (2002) report that using 

only European call options can provide insights into general risks of derivatives because of the 

following reasons. First, risks of put options are similar to those of call options based on put–

call parity and put-call symmetry (see Carr, Ellis and Gupta (1998)). Second, adjusting for early 

exercise premium, American option prices can be reckoned from European option prices. Third, 

numerous exotic derivatives can be created from portfolios of plain vanilla call and put options.  

Options contracts on the OMXS30 index with terms of three, twelve and thirty six 

months are listed with the third Friday of the expiration month as the day of option maturity. 

The trading ends on the expiration day at the close of the electronic trading system. The sample 

was organized in three maturity categories: short-term options with maturity less than 60 days; 

medium-term options with maturity between 60 and 180 days; long-term options with maturity 

more than 180 days.  

The sample period extends from June 2007 through March 2011. Index data was 

obtained from the NASDAQ OMX Stockholm, and data on option contracts was obtained from 

the Thomson Reuters Datastream database. Trading on the NASDAQ OMX Stockholm ceases at 

5:25 pm CET for derivative instruments and at 5:30 pm CET for equities. Closing prices of both 

the index and option contracts were used in the analysis to minimize nonsynchronous price 

issue in the data.  

The three-month Stockholm Interbank Offered Rate (STIBOR) is used as a proxy for the 

risk-free interest rate. The STIBOR data is obtained from the Central Bank of Sweden – the 

Riksbank.  

                                                             
3 SIX Telekurs is the third largest provider of financial information in Europe. 
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To avoid liquidity-related and close-to-expiration issues, contracts with less than 10 

observations as well as the last 5 observations for each option were deleted from the sample.  

Further, each observation was classified according to its moneyness (defined as spot 

price at time t divided by option’s strike - St/K) in five categories: deep out-of-the-money 

options with moneyness less than 0.9; out-of-the-money options with moneyness between 0.9 

and 0.97; at-the-money options with moneyness from 0.97 to 1.03; in-the-money options 

moneyness range from 1.03 up to 1.1; and deep in-the-money options are defined with 

moneyness greater than 1.1.  

Similarly to Bakshi and Kapadia (2003), to avoid errors in calculation, we deleted days 

with missing observations and with implied volatility less than 1% or greater than 100%. After 

adjustments the total number of observations in our data set is 75,401, which is 56% of the 

initial number (135,122 initial observations).  

Table 4 describes sample properties of the OMXS30 call prices used in the study. 

Summary statistics are reported for the closing price and the total number of observations for 

each moneyness and maturity category. Out of 75,401 call option observations, OTM options 

constitute 58%. The average call price ranges from 2.58 SEK for short-term deep OTM options 

to 169.66 SEK for long-term deep ITM calls.  

Table 4: Average Price and Number of Observations for Sample Options  

 

Moneyness

S/K < 60 60 - 180 > 180 Subtotal

xOTM < 0.9 2.58 7.41 20.73

5285 9102 10347 24734

OTM 0.9 - 0.97 9.86 18.6 39.42

3625 10496 4465 18586

ATM 0.97 - 1.03 32.04 41.78 66.98

2183 9308 3350 14841

ITM 1.03 - 1.1 69.11 80 101.69

1928 6858 2500 11286

xITM > 1.1 156.85 130.68 169.66

1789 2322 1843 5954

Subtotal 14810 38086 22505 75401

Days-to-Expiration
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We define market regimes in terms of volatility of the OMXS30 (see Table 5). Period 

from June 2007 to June 2009 is defined as high volatility market and period from July 2009 to 

March 2011 as low volatility market because the daily volatility is above and below historic 

realized volatility, respectively. 

Table 5: OMXS30 Average Daily Volatility   

 

7 Empirical Findings 
Based on theory and empirical research related to vanilla call option hedging, we form 

expectations on possible patterns in hedging performance in the Swedish market. 

Expectations: 

1) Hedging errors are inversely correlated with rebalancing frequency across all 

maturities and moneyness levels; 

2) Hedging errors vary across different market regimes and are higher in periods of 

high volatility; 

3) Gamma hedge improves delta hedge performance:  

a. in periods of high volatility; 

b. as rebalancing frequency decreases; 

4) Long-term options have higher hedging errors; 

5) The optimal hedge ratio is smaller than the one implied by the BSM model. 

Table 6 reports the average BSM, skewness and kurtosis adjusted, and local delta values 

across different moneyness levels. As expected, delta value is increasing with moneyness of the 

options. The S-shape of delta is most evident for short-term contracts. The results show that, 

compared to the BSM delta, the adjusted delta returns smaller hedge ratio for deep OTM, OTM, 

and ATM options across all maturity levels. On the other hand, ITM and deep ITM options 

return a marginally higher hedge ratio. While the BSM delta and adjusted delta values closely 

Oct 1986 - June 2007 1.4%

June 2007 - June 2009 2.2%

July 2009 - March 2011 1.2%
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follow each other, local delta provides significantly different and smaller hedge ratio. The last 

column of Table 6 shows the difference between the BSM delta and local delta. Long-term 

options are adjusted downwards the most, with the average differences in delta values of 0.18 

for long-, 0.17 for medium-, and 0.07 for short-term options. Based on the magnitude of the 

change, deep OTM option delta is the most affected across all maturities. Option vega peaks for 

ATM options, because value of ATM options can be most adversely affected by fluctuations in 

price of the underlying (i.e. higher risk of ending OTM). The difference between the two deltas 

is the highest for ATM and ITM options in most cases. 

Table 6: Average BSM Delta, Kurtosis and Skewness Adjusted Delta, Local Delta 

 

Table 7 reports BSM delta, gamma, and vega adjustment factors based on regression 

analysis. A similar pattern to local delta is observed with largest adjustment needed for long-

term deep OTM options. Irrespective of moneyness or maturity level, the BSM delta is adjusted 

downwards indicating that it exceeds the optimal hedge ratio. Except in 3 cases, both gamma 

and vega hedge ratios are also reduced according to regression results. Overall, regression 

analyses indicate that the BSM hedge values are overstated and should be adjusted 

downwards. Similarly to results with local delta, regression results indicate that deep OTM and 

OTM options’ delta needs the highest level of adjustment compared to the BSM delta. 

Maturity Moneyness DELTA ADJ LOC DELTA-LOC

LT xOTM 0.16 0.15 0.04 0.12

OTM 0.34 0.32 0.13 0.21

ATM 0.55 0.54 0.35 0.20

ITM 0.74 0.75 0.54 0.19

xITM 0.87 0.88 0.71 0.16

MT xOTM 0.12 0.10 0.05 0.06

OTM 0.27 0.24 0.15 0.11

ATM 0.53 0.52 0.33 0.20

ITM 0.75 0.77 0.53 0.22

xITM 0.90 0.91 0.73 0.16

ST xOTM 0.05 0.05 0.03 0.02

OTM 0.17 0.16 0.17 0.01

ATM 0.52 0.51 0.40 0.12

ITM 0.79 0.81 0.66 0.14

xITM 0.93 0.94 0.86 0.07
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Table 7: Average BSM Delta, Gamma, Vega, and Respective Regression-Based Adjustment 
Factors 

 

Figures 10, 11, and 12 in the Appendix graphically depict Table 6 delta values for ATM 

options. All three modeled delta values move in parallel, with the BSM delta having the highest 

values. Local delta is trailing below and, because of an additional volatility term, it 

demonstrates higher fluctuation amplitude. Local delta is dependent on correlation between 

volatility and index level and, in line with Derman‘s (1999) observation, in most cases it is 

smaller than the BSM delta. 

Hedging performance using 1 day rebalancing period is reported in Table 8. First, 

gamma hedge does not improve hedging efficiency and is redundant in combination with the 

BSM delta, as the latter provides lower hedging errors on its own. Adjusting the BSM delta for 

skewness and kurtosis reduces hedging errors for deep OTM, OTM, and ATM options; however, 

adjusted delta hedge ratio delivers worse results than the BSM delta hedging ITM and deep ITM 

options. Thus, we find Hypothesis 1 only partly satisfied in the sample analysis. In line with 

Hypothesis 2, local delta provides the lowest hedging errors across all maturities and 

moneyness levels compared to the previous three hedge ratios. Still, the local delta hedge is 

outperformed by the regression-based hedge strategy. The results confirm Hypothesis 3. 

Additionally, the regression-based hedging errors are comparatively smaller for ITM and deep 

Maturity Moneyness DELTA BETA1 GAMMA BETA2 VEGA BETA3

LT xOTM 0.16 -0.01 0.0013 0.25 160 0.09

OTM 0.34 -0.03 0.0028 0.15 230 0.91

ATM 0.55 0.20 0.0035 -0.28 240 1.07

ITM 0.74 0.06 0.0027 1.22 177 0.69

xITM 0.87 0.12 0.0013 1.32 123 0.41

MT xOTM 0.12 -0.15 0.0016 0.05 80 0.41

OTM 0.27 -0.07 0.0034 -0.06 123 0.79

ATM 0.53 0.13 0.0050 0.03 146 0.95

ITM 0.75 0.16 0.0033 -0.27 115 0.99

xITM 0.90 -0.07 0.0013 -0.76 54 0.90

ST xOTM 0.05 -0.39 0.0011 -0.01 27 -0.14

OTM 0.18 -0.06 0.0033 0.39 64 0.60

ATM 0.52 0.15 0.0063 0.27 100 0.98

ITM 0.79 0.13 0.0036 0.82 72 0.93

xITM 0.93 0.18 0.0010 0.30 34 0.48
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ITM options, outperforming the local delta by a higher margin. Considering regression-based 

hedge ratio, hedging errors are larger for long-term options across all moneyness levels, except 

deep ITM options - as predicted by Expectation #4. 

Table 8: Hedging Errors for the 1-Day Hedging Horizon 

 
Darker shading indicates lower hedging error. 

 Results in Table 8 indicate that the variance in individual errors (in money terms) 

increases with moneyness of the options for all hedging approaches, as observed by the 

increasing difference between MAHE and RMSHE. The distribution of error variance also grows 

with option maturity in most cases, with long-term options having the highest variance in 

individual errors. 

Based on the results, we confirm Expectation #5 that the BSM delta is overstated and 

lower hedge ratios deliver considerably lower hedging errors. F-test analyses (see Appendix 

Table 9) show that the regression-based hedge ratio is significantly different from the BSM 

delta at 1% level across all maturity and moneyness levels. Local delta is also different at 1% 

level across all maturity and moneyness levels, exception for being significant at 10% level for 

short-term OTM options and not significantly different for long-term deep OTM and short-term 

ATM options. The adjusted delta is significantly different from the BSM delta at 10% level for 

medium-term OTM and long-term ITM options; at 5% level for long-term and medium-term 

deep ITM options; not different for long-term OTM and ITM options, medium- and short-term 

ITM options and different at 1% level for all the rest observations. The results show that ITM 

1 DAY

Moneyness Maturity DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 1.10 1.11 1.09 0.84 0.59 2.22 2.22 2.12 1.86 1.24

MT 2.02 2.02 1.92 1.55 1.15 3.36 3.36 3.19 2.80 2.09

LT 2.92 2.93 2.75 1.76 1.62 5.00 5.00 4.80 3.76 3.54

OTM ST 3.34 3.35 3.13 3.02 1.57 6.18 6.20 5.82 5.78 2.97

MT 4.59 4.60 4.32 3.42 2.07 7.28 7.30 6.93 5.96 3.16

LT 6.77 6.78 6.56 4.43 3.93 12.48 12.49 12.25 7.56 6.25

ATM ST 8.50 8.53 8.45 6.90 4.13 13.89 13.96 13.82 12.17 7.40

MT 7.82 7.84 7.75 5.39 3.58 11.18 11.22 11.10 8.08 5.28

LT 8.23 8.24 8.19 5.98 5.05 15.08 15.09 15.04 10.08 8.27

ITM ST 10.97 10.98 11.17 8.63 5.13 16.74 16.76 16.98 13.50 8.64

MT 10.47 10.48 10.63 8.11 5.98 16.70 16.72 16.88 14.06 11.37

LT 9.98 9.99 10.11 7.98 5.65 16.32 16.33 16.50 12.17 8.81

xITM ST 11.96 11.95 12.07 11.22 5.11 18.24 18.25 18.40 17.74 11.34

MT 14.07 14.07 14.20 12.53 7.33 23.16 23.16 23.30 20.41 14.17

LT 10.03 10.03 10.16 8.43 4.39 16.01 16.02 16.18 12.52 7.11

MAHE RMSHE
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options hedge ratios are not statistically different using these two hedge ratios. Further analysis 

showed that adding vega to the BSM delta-gamma hedge does not alter hedging performance 

and the difference is insignificant; thus, we do not report the BSM delta-gamma-vega hedge. 

The distribution of hedging errors is leptokurtic and asymmetric (see Table 10). Errors 

on long-term options have high excess kurtosis with the BSM delta, delta-gamma, and adjusted 

delta hedging strategies. Medium- and short-term option hedging errors have the highest 

excess kurtosis using the regression-based hedge ratio indicating that errors are concentrated 

around the mean and variation in hedging errors is relatively low. Negative skewness in errors is 

primarily observed under the delta, delta-gamma, adjusted delta, and regression-based hedging 

strategies across different maturities indicating higher possibility of extreme hedging errors 

using these methods. 

Table 10: Distribution of Hedging Errors  

 
Darker shading indicates highest excess kurtosis and lowest skewness. 

Tables 11, 12, and 13 report hedging errors as rebalancing frequency is decreased to a 5, 

10, and 20 trading day interval, respectively. We observe that the general pattern does not 

change compared to the previous results. The adjusted delta hedge performs marginally better 

than the delta and delta-gamma hedge for deep OTM, OTM, and ATM options. As the 

rebalancing frequency is further reduced, we see that the skewness and kurtosis adjustment 

gains its significance also for ITM and deep ITM options. Interestingly, the gamma hedge does 

not prove to deliver better results, which contradicts Expectation #3. Local delta proves to be a 

better hedge compared to the previous three ratios but still considerably lags behind 

performance of the regression-based hedge ratio. With decreasing rebalancing frequency, the 

DELTA GAMMA ADJ LOC REG DELTA GAMMA ADJ LOC REG

LT xOTM 5.21 5.17 6.31 19.40 21.25 LT xOTM 0.04 0.01 0.04 0.17 0.02

OTM 26.04 25.98 27.45 9.69 6.20 OTM -0.34 -0.36 -0.32 -1.06 -0.46

ATM 17.56 17.53 17.74 12.32 19.86 ATM -0.07 -0.07 -0.06 0.96 1.60

ITM 12.98 13.00 13.10 2.93 4.36 ITM -1.02 -1.03 -1.05 0.50 0.74

xITM 23.06 23.12 22.71 4.67 0.94 xITM -1.74 -1.75 -1.73 1.14 0.35

MT xOTM 4.03 4.01 4.13 6.93 15.81 MT xOTM 0.45 0.45 0.43 0.38 -0.68

OTM 4.14 4.13 4.58 7.21 3.06 OTM 0.43 0.42 0.45 0.58 -0.14

ATM 1.15 1.13 1.20 4.21 5.39 ATM -0.27 -0.27 -0.28 -0.33 -0.73

ITM 6.86 6.84 6.56 11.77 22.53 ITM -0.07 -0.06 -0.08 0.03 0.24

xITM 8.40 8.40 8.18 4.59 10.23 xITM -0.59 -0.59 -0.59 0.41 0.82

ST xOTM 16.21 16.05 15.45 21.11 26.90 ST xOTM 0.55 0.48 0.39 0.42 -1.46

OTM 8.06 8.07 7.94 9.85 16.94 OTM -1.12 -1.13 -1.08 -0.99 -1.23

ATM 10.13 10.26 10.36 17.31 18.26 ATM -0.48 -0.49 -0.48 -0.93 -2.23

ITM 3.18 3.19 3.03 6.85 7.46 ITM -0.64 -0.65 -0.63 -0.67 -0.07

xITM 6.95 6.96 6.84 9.21 25.55 xITM -1.18 -1.18 -1.19 -1.14 -0.29

SKEWNESSEXCESS KURTOSIS
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regression-based hedge delivers better results, and the difference increases significantly also 

for ATM, OTM, and deep OTM options. 

We also find proof that supports Expectation #1, namely, hedging errors are inversely 

related to the frequency of portfolio rebalancing. 

 Comparing hedging errors and rebalancing frequency of short- and long-term options 

we find that error growth is slower for long-term options. Thus, the rebalancing is less 

frequently required for long-term options because the delta of the options is more static due to 

lower gamma risk. 

Table 11: Hedging Errors for the 5-Day Hedging Horizon 

 
Darker shading indicates lower hedging error. 

5 DAY

Moneyness Maturity DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 2.33 2.33 2.30 1.71 1.22 4.19 4.23 4.05 3.42 2.32

MT 3.45 3.48 3.26 2.71 2.17 5.20 5.26 4.95 4.43 3.65

LT 5.64 5.68 5.29 3.20 2.92 8.31 8.40 7.86 5.62 5.28

OTM ST 6.84 6.83 6.40 6.17 3.23 11.71 12.00 11.01 11.07 5.70

MT 8.39 8.53 7.86 6.15 3.46 12.32 12.55 11.63 9.92 5.02

LT 13.39 13.36 12.98 7.54 5.97 22.95 23.10 22.45 11.26 8.81

ATM ST 16.76 17.08 16.62 13.85 8.12 26.54 27.31 26.43 21.90 12.84

MT 14.32 14.47 14.20 9.75 5.91 18.93 19.32 18.80 13.44 7.81

LT 13.35 13.38 13.28 9.35 7.29 20.51 20.70 20.48 14.10 11.65

ITM ST 23.10 23.29 23.55 18.38 9.24 31.39 31.73 31.94 25.93 15.10

MT 18.99 19.07 19.30 14.10 9.21 27.37 27.58 27.79 20.98 13.99

LT 18.25 18.30 18.49 13.16 9.58 28.80 28.97 29.17 19.53 13.94

xITM ST 26.63 26.64 26.86 25.88 13.90 39.22 39.30 39.54 39.33 22.56

MT 26.07 26.05 26.33 22.97 14.30 38.50 38.56 38.78 34.13 22.06

LT 20.98 21.00 21.21 16.16 8.98 31.87 31.94 32.17 21.24 11.60

RMSHEMAHE
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Table 12: Hedging Errors for the 10-Day Hedging Horizon 

 
Darker shading indicates lower hedging error. 

Table 13: Hedging Errors for the 20-Day Hedging Horizon 

 
Darker shading indicates lower hedging error. 

Further data examination of four sub-periods (see Table 14 in Appendix) reveals that 

hedging errors are significantly larger in the first and second sub periods which are explained by 

market turbulence in the respective periods. During the first two periods of the sample (June 

2007 - June 2009) the market experienced large fluctuations and an increase in volatility. We 

observe that gamma hedge gains strength as the rebalancing frequency is decreased and it 

outperforms pure delta hedge on some occasions. Gamma hedge improves hedging 

performance for ITM options in highly volatile market conditions, as it delivers lower hedging 

errors than the BSM hedge ratio. Still, its performance is considerably poorer in comparison to 

10 DAY

Moneyness Maturity DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 3.36 3.43 3.32 2.32 1.62 5.78 5.89 5.52 4.58 3.08

MT 4.43 4.60 4.19 3.23 2.68 6.06 6.27 5.71 4.77 4.00

LT 7.39 7.58 6.88 4.63 4.53 10.88 11.14 10.30 7.87 7.71

OTM ST 10.67 10.97 9.97 9.63 4.06 17.13 18.05 16.12 17.14 7.28

MT 10.69 11.30 10.00 7.46 5.17 15.62 16.30 14.72 12.26 7.54

LT 18.35 18.60 17.86 9.02 7.53 30.91 31.35 30.29 13.91 10.67

ATM ST 25.44 26.76 25.25 22.08 12.39 37.12 39.16 36.99 30.93 18.63

MT 19.84 20.67 19.68 13.29 7.70 26.58 27.66 26.40 19.35 10.69

LT 18.00 18.24 17.93 11.21 8.98 25.33 25.87 25.31 14.52 13.31

ITM ST 34.65 35.17 35.40 25.62 10.32 43.37 44.31 44.31 32.27 14.30

MT 28.93 29.48 29.47 21.51 12.04 37.45 38.02 38.06 29.81 18.72

LT 21.94 31.92 22.29 15.93 10.62 31.20 89.98 31.65 21.28 14.36

xITM ST 39.38 39.44 39.72 37.23 19.72 53.08 53.26 53.44 52.86 28.35

MT 37.94 37.99 38.31 33.27 21.05 53.53 53.67 53.92 47.11 31.06

LT 28.85 30.16 29.20 19.40 43.79 42.77 46.20 43.19 25.60 66.14

MAHE RMSHE

20 DAY

Moneyness Maturity DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 4.04 4.52 4.03 2.96 2.13 6.94 7.76 6.61 5.81 3.68

MT 5.21 5.62 4.99 3.65 2.80 7.17 7.96 6.72 5.03 4.34

LT 9.95 10.20 9.41 6.43 5.91 14.51 15.26 13.78 10.76 10.09

OTM ST 12.90 14.30 11.95 12.01 5.47 18.30 21.06 16.96 18.18 9.24

MT 13.56 14.36 12.36 9.34 6.04 18.99 21.08 17.57 14.55 7.99

LT 22.12 22.38 21.50 11.63 10.36 33.28 34.59 32.54 18.16 14.57

ATM ST 35.17 37.88 34.80 29.79 15.84 47.71 51.83 47.28 39.66 21.67

MT 26.78 27.47 26.70 18.64 9.59 36.07 39.01 35.71 26.07 13.26

LT 24.94 25.81 24.81 15.56 10.87 32.42 34.00 32.43 21.50 16.13

ITM ST 45.52 45.87 46.53 37.29 16.72 59.98 62.57 61.42 45.76 20.87

MT 38.11 38.63 38.83 29.94 18.22 56.49 57.92 57.31 48.79 27.64

LT 28.20 28.30 28.71 19.63 11.72 36.50 37.62 37.24 24.10 15.53

xITM ST 63.32 63.77 63.32 67.10 32.86 91.55 91.83 91.55 97.58 46.63

MT 38.69 38.57 39.19 28.26 23.99 63.01 63.52 63.45 41.44 31.88

LT 42.71 39.21 43.62 30.40 17.03 127.93 60.09 132.10 114.50 23.19

RMSHEMAHE
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local delta or the regression-based hedge ratio. On separate occasions, the BSM delta proves to 

be a better hedge for long-term options; however, in most cases it is outperformed by the 

skewness and kurtosis adjusted delta, local delta, and the regression-based hedge ratio. The 

regression-based RMSHE errors are considerably lower than those of other hedge ratios, 

particularly in high volatility conditions.  

In most cases Expectation #2 is fulfilled, as hedging errors change along with market 

conditions and are higher in periods of high volatility. 

7.1 Summary of Results 

To finalize, the analysis proves that hedging errors are inversely related to rebalancing 

frequency across all maturities and moneyness levels but is less pronounced for long-term 

options. We find evidence that hedging errors are positively correlated with volatility and are 

higher in turbulent markets. Delta-gamma hedge did not prove to reduce hedging errors and 

only on separate occasions improved the delta hedge performance in turbulent markets with 

lower rebalancing frequency. The results of the study demonstrate that hedging errors increase 

with maturity and moneyness of the options. The skewness and kurtosis adjusted delta hedge 

marginally outperforms the BSM delta hedge only for deep OTM, OTM, and ATM options, while 

the local delta hedge proved to deliver significantly lower hedging errors compared to the BSM 

delta hedge across all options. Hedge constructed using the regression-adjusted BSM Greeks 

returned the lowest hedging errors across all maturity and moneyness levels.  

8 Conclusions 
Our study is based on empirical evidence that fundamental differences in markets dictate that 

there is no uniform hedging technique that would be equally efficient across all regions and 

option markets. The choice of hedging technique is especially important in markets that possess 

characteristics that are not in line with assumptions of the classical option pricing models. Five 

different models were tested to find the most appropriate hedge ratio for the Swedish stock 

market using OMXS30 index, options based on the index, and money market account. The 

hedge ratios tested were the BSM delta, the BSM delta-gamma, skewness and kurtosis adjusted 

BSM delta, local volatility adjusted BSM delta, and regression-based adjusted BSM Greeks. 
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Empirical analysis shows that accounting for negative relationship between implied volatility 

and index returns can improve hedging performance significantly. While adjustment for non-

normal skewness and kurtosis does not provide considerable enhancement of hedging 

performance compared to the BSM model. 

Benchmarking root mean squared hedging error values, the regression-based hedge 

ratio delivered significantly lower hedging errors across all maturities and moneyness levels. 

This approach also suggests that the optimal delta and gamma levels are considerably lower 

than those suggested by the BSM model. While the regression-based model delivered lowest 

errors overall, hedging error decrease was higher for ITM options compared to other hedging 

strategies. Consistent with previous research, hedging frequency is inversely related to hedging 

errors for all models tested. 

9 Limitations and Further Research 
The limitations of the study are mainly related to data availability. Using index bid-ask price 

midpoints could yield more precise results and eliminate the non-synchronous price risk. Our 

results are subject to bias arising from empirical evidence that trading volume increases at 

market close, creating significant fluctuations in volatility and price of the underlying.  

We encourage further research on the topic by using the regression-based hedge ratios 

on stock indexes other than the OMXS30 in order to test if the results are persistent across 

different markets. Additionally, one could test several regression methods including the use of 

Weighted Least Squares regressions in periods of high volatility. Further tests could also be 

done using a hedge portfolio that includes not only the underlying asset and money market 

account, but also other option contracts. This would allow for enhanced gamma and possibly 

also vega hedge. Additionally, if the midpoint of bid-ask prices is obtained, one could create and 

test a stochastic volatility model and compare its hedging performance to the constant volatility 

models. Previous research indicates that stochastic volatility models provide considerable 

improvements in option pricing, while evidence on hedging performance is contradictory. 

Additionally, regression-based hedge ratios using e.g. GARCH models could be calculated and 
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compared to the more traditional approaches. This would also allow testing hedging 

predictability power of these models that could be of significant usefulness for practitioners.  
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Appendix 
Table 3: Average Implied Volatilities for the Sample  

 

Moneyness

Sample Period S/K < 60 60 - 180 > 180

June 2007 - March 2011 < 0.9 33.02 31.45 30.24

0.9 - 0.97 25.6 24.11 21.96

0.97 - 1.03 27.99 25.02 22.5

1.03 - 1.1 30.99 27.68 23.73

> 1.1 39.72 29.29 22.3

June 2007 - June 2008 < 0.9 30.96 28.07 27.25

0.9 - 0.97 22.51 22.06 20.43

0.97 - 1.03 23.23 23.01 21.29

1.03 - 1.1 26.77 25.51 22.8

> 1.1 29.68 25.27 19.61

July 2008 - June 2009 < 0.9 39.8 40.58 36.68

0.9 - 0.97 36.15 32.29 27.66

0.97 - 1.03 39.75 34.99 26.76

1.03 - 1.1 41.79 35.77 26.04

> 1.1 37.93 29.24 20.19

July 2009 - June 2010 < 0.9 29.36 22.47 20.36

0.9 - 0.97 20.91 21.39 20.51

0.97 - 1.03 19.07 22.7 21.54

1.03 - 1.1 24.9 26.48 22.13

> 1.1 44.98 36.19 28.01

July 2010 - March 2011 < 0.9 21.95 21.36 20.19

0.9 - 0.97 16.63 17.92 19.48

0.97 - 1.03 - 19.84 21.6

1.03 - 1.1 44.66 24.11 25.51

> 1.1 41.6 25.4 26.6

Days-to-Expiration
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Figure 5: Implied Volatility Smirk July 2009 – June 2010 

 
 
Figure 7: Long-term Options Implied Volatility Surface 
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Figure 8: Medium-term Options Implied Volatility Surface 

 

Figure 9: Short-term Options Implied Volatility Surface 
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Figure 10: Long-term ATM BSM, Kurtosis and Skewness Adjusted, and Local Delta 

 

Figure 11: Medium-term ATM BSM, Kurtosis and Skewness Adjusted, and Local Delta 
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Figure 12: Short-term ATM BSM, Kurtosis and Skewness Adjusted, and Local Delta 

 

Table 9: Adjusted, Local, Regression-Based Delta F test (the two-tailed probability that the 
variances are not significantly different) 
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Table 14: Hedging Errors for Sample Sub Periods (1: June 2007 – June 2008; 2: July 2008 – June 
2009; 3: July 2009 – June 2010; 4: July 2010 – March 2011) 

 

1 DAY

Moneyness DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 1 1.14 1.16 1.14 0.69 0.45 1.91 1.92 1.88 1.03 0.69

2 2.21 2.21 2.10 1.81 1.11 3.65 3.66 3.45 3.10 1.99

3 0.59 0.59 0.62 0.43 0.45 0.99 0.98 0.98 0.81 0.77

4 0.18 0.19 0.24 0.12 0.16 0.33 0.33 0.38 0.27 0.31

MT 1 2.20 2.22 2.09 1.57 1.13 3.12 3.13 2.98 2.37 1.66

2 3.09 3.09 2.92 2.56 1.55 4.86 4.87 4.61 4.18 2.82

3 1.70 1.70 1.62 1.26 1.22 2.72 2.72 2.59 2.09 2.01

4 0.64 0.64 0.63 0.49 0.51 1.04 1.03 1.01 0.88 0.93

LT 1 4.94 4.96 4.71 4.74 3.99 7.93 7.94 7.72 8.61 7.88

2 2.80 2.81 2.60 1.82 1.72 4.27 4.28 4.00 3.07 3.03

3 2.43 2.43 2.26 1.25 1.24 3.48 3.48 3.27 2.00 2.02

4 1.08 1.08 1.02 0.63 0.61 1.94 1.93 1.82 1.16 1.11

OTM ST 1 4.11 4.13 3.86 3.78 1.74 6.60 6.64 6.19 5.04 2.38

2 5.78 5.78 5.40 5.69 2.73 9.00 9.02 8.51 8.98 4.57

3 1.30 1.29 1.20 1.13 0.86 2.20 2.20 2.04 1.98 1.42

4 0.35 0.35 0.37 0.28 0.30 0.55 0.54 0.54 0.45 0.57

MT 1 5.09 5.14 4.81 3.70 2.28 7.11 7.15 6.75 5.58 3.25

2 7.38 7.39 7.00 6.12 3.08 10.90 10.91 10.43 9.27 4.47

3 3.16 3.16 2.92 2.05 1.59 4.66 4.66 4.34 3.17 2.19

4 1.97 1.97 1.85 1.36 1.20 2.96 2.96 2.78 2.07 1.71

LT 1 10.47 10.52 10.30 6.35 6.19 18.91 18.93 18.70 9.72 8.69

2 7.81 7.81 7.57 6.47 4.95 12.69 12.71 12.40 10.81 8.12

3 5.36 5.36 5.11 3.53 3.33 7.71 7.71 7.40 5.03 4.62

4 2.91 2.90 2.77 2.37 2.32 5.21 5.20 5.01 3.97 3.65

ATM ST 1 8.76 8.84 8.76 6.03 3.73 12.59 12.73 12.56 8.11 5.91

2 9.31 9.31 9.21 8.03 4.45 15.21 15.27 15.11 13.59 8.13

3 6.59 6.59 6.51 5.49 3.86 13.77 13.77 13.69 11.79 6.95

4 NA NA NA NA NA NA NA NA NA NA

MT 1 8.98 9.02 8.97 4.67 3.42 12.62 12.69 12.60 7.26 5.21

2 10.21 10.23 10.09 7.95 4.73 14.32 14.34 14.18 11.50 6.91

3 5.52 5.51 5.44 3.69 2.48 7.42 7.42 7.32 5.00 3.40

4 6.12 6.14 6.07 4.79 3.67 8.06 8.08 8.00 6.24 4.90

LT 1 11.14 11.16 11.17 6.94 5.34 21.62 21.64 21.63 11.54 9.02

2 10.53 10.55 10.48 8.63 6.20 16.98 17.00 16.95 14.78 11.58

3 5.89 5.89 5.81 4.52 4.36 9.58 9.58 9.46 7.56 6.85

4 6.32 6.32 6.27 5.58 5.04 9.22 9.22 9.15 7.83 6.59

ITM ST 1 12.41 12.43 12.65 8.20 3.55 18.13 18.18 18.43 10.38 4.54

2 11.46 11.46 11.66 10.00 5.83 17.63 17.65 17.86 16.00 8.94

3 8.38 8.38 8.52 7.42 5.43 13.46 13.46 13.64 12.35 10.11

4 9.58 9.58 9.73 8.27 4.62 12.06 12.08 12.18 11.19 10.47

MT 1 10.80 10.82 11.02 4.91 3.82 15.72 15.77 16.00 8.03 5.88

2 11.95 11.95 12.10 9.92 6.41 17.57 17.59 17.75 14.87 10.47

3 9.95 9.95 10.09 8.46 6.51 17.49 17.49 17.62 15.54 13.50

4 8.87 8.87 9.00 7.13 5.96 15.56 15.56 15.69 13.55 11.68

LT 1 11.91 11.95 12.10 8.31 5.64 21.60 21.63 21.85 11.87 7.69

2 12.09 12.10 12.25 10.56 6.41 18.03 18.05 18.22 16.20 10.72

3 8.08 8.08 8.19 6.94 5.12 12.20 12.20 12.32 10.73 8.47

4 9.06 9.06 9.17 7.62 5.89 12.92 12.93 13.06 11.13 8.37

xITM ST 1 12.14 12.12 12.29 11.58 4.92 16.93 16.94 17.19 14.64 9.24

2 15.34 15.34 15.53 14.89 4.97 23.45 23.48 23.68 22.73 7.31

3 12.67 12.67 12.76 12.01 6.32 20.41 20.41 20.54 19.57 13.80

4 9.59 9.59 9.65 8.77 3.87 13.84 13.84 13.91 13.00 9.94

MT 1 14.94 14.94 15.16 NA NA 27.22 27.25 27.43 NA NA

2 14.96 14.96 15.09 13.82 7.50 21.79 21.79 21.94 19.51 12.20

3 15.85 15.85 15.94 14.53 9.78 26.37 26.37 26.47 25.00 19.00

4 10.51 10.50 10.59 8.85 4.48 16.39 16.38 16.49 14.56 8.73

LT 1 10.91 10.92 11.06 8.99 5.45 18.54 18.56 18.74 12.08 7.47

2 11.50 11.49 11.69 9.81 5.99 16.81 16.80 17.03 14.73 9.10

3 9.18 9.18 9.29 8.29 3.92 15.04 15.03 15.15 14.04 6.79

4 8.84 8.84 8.93 7.65 3.43 12.13 12.13 12.25 10.56 6.14
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5 DAY

Moneyness DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 1 2.62 2.59 2.63 1.40 0.69 3.77 3.76 3.77 1.82 0.96

2 4.31 4.36 4.10 3.52 2.35 6.66 6.77 6.34 5.57 3.75

3 1.35 1.35 1.39 1.00 0.97 2.32 2.31 2.27 1.92 1.50

4 0.46 0.44 0.56 0.28 0.29 0.77 0.75 0.86 0.50 0.54

MT 1 3.34 3.44 3.15 2.82 2.20 4.37 4.57 4.15 3.85 3.05

2 5.48 5.53 5.19 4.48 3.08 7.71 7.76 7.38 6.61 5.02

3 3.06 3.05 2.88 2.15 2.11 4.33 4.31 4.09 3.12 3.29

4 1.19 1.12 1.14 0.81 0.90 1.71 1.64 1.66 1.40 1.61

LT 1 9.02 9.16 8.56 7.54 6.72 11.80 12.00 11.28 11.07 9.94

2 5.51 5.58 5.14 3.85 3.41 8.21 8.31 7.71 5.95 5.79

3 4.74 4.73 4.42 2.37 2.34 6.71 6.70 6.28 3.59 3.55

4 2.65 2.58 2.47 0.91 0.79 3.78 3.73 3.48 1.56 1.38

OTM ST 1 8.42 8.36 7.88 7.60 3.11 12.35 12.91 11.49 9.03 3.83

2 12.23 12.33 11.55 12.24 5.94 17.41 17.63 16.50 17.56 9.02

3 2.19 2.17 1.93 1.76 1.74 3.14 3.12 2.73 2.57 2.45

4 0.74 0.67 0.72 0.50 0.55 1.00 0.98 0.91 0.65 0.91

MT 1 8.84 9.22 8.28 5.74 3.63 10.68 11.28 9.99 7.02 4.48

2 14.00 14.15 13.26 11.62 5.41 19.23 19.46 18.31 16.22 7.49

3 5.66 5.65 5.16 3.44 2.27 7.78 7.76 7.14 4.74 3.10

4 3.82 3.83 3.60 2.69 2.33 5.52 5.46 5.11 3.52 2.90

LT 1 23.27 23.27 22.82 11.29 7.91 37.13 37.41 36.56 14.45 11.16

2 13.12 13.13 12.79 11.04 8.36 18.87 19.05 18.37 15.62 11.47

3 9.81 9.80 9.33 5.59 4.87 13.30 13.30 12.63 7.72 6.96

4 6.10 5.96 5.78 4.42 3.87 10.44 10.36 9.96 7.20 5.92

ATM ST 1 16.28 16.95 16.29 11.34 7.52 26.38 27.83 26.43 17.97 13.12

2 18.73 18.95 18.52 16.20 8.65 26.34 26.83 26.17 22.90 13.15

3 14.18 14.04 13.93 11.36 7.62 27.18 27.17 26.86 22.44 12.08

4 NA NA NA NA NA NA NA NA NA NA

MT 1 16.33 16.66 16.32 9.84 6.73 20.92 21.80 20.92 13.57 8.42

2 18.94 19.04 18.72 14.40 7.88 23.67 23.99 23.41 18.37 9.79

3 10.03 9.96 9.88 6.19 3.72 13.54 13.50 13.36 8.39 4.88

4 11.17 11.44 11.07 8.20 5.62 14.69 14.81 14.56 10.72 7.56

LT 1 16.67 16.91 16.78 8.10 5.49 26.63 27.04 26.79 11.02 7.80

2 20.81 21.05 20.71 17.10 11.13 28.74 28.93 28.66 25.30 21.00

3 9.04 9.03 8.86 6.70 6.44 12.22 12.21 12.01 8.58 7.86

4 10.11 9.79 10.00 8.16 6.67 12.90 12.96 12.77 9.92 7.71

ITM ST 1 25.53 26.01 26.12 16.23 6.38 33.50 34.07 34.22 21.05 7.75

2 22.80 22.86 23.25 19.52 8.28 31.72 32.02 32.28 27.93 12.16

3 20.00 19.94 20.28 18.33 11.68 27.91 27.88 28.20 26.32 20.12

4 21.77 21.74 21.89 21.03 15.99 28.07 28.24 28.16 27.66 22.33

MT 1 22.10 22.36 22.55 14.44 10.38 31.11 31.65 31.78 23.09 14.56

2 22.10 22.17 22.39 18.12 9.99 29.72 29.93 30.15 24.35 13.09

3 18.19 18.15 18.45 14.32 10.36 28.23 28.22 28.51 22.25 17.66

4 12.32 12.35 12.58 8.45 5.95 15.57 15.58 15.88 10.82 7.51

LT 1 22.99 23.18 23.30 10.60 7.44 39.62 39.96 40.21 14.71 8.97

2 25.39 25.57 25.61 22.85 16.25 34.53 34.70 34.80 31.47 22.10

3 11.10 11.04 11.30 8.61 8.19 16.77 16.74 17.05 13.19 11.75

4 18.28 18.25 18.50 14.34 8.27 23.34 23.41 23.60 18.85 11.75

xITM ST 1 23.09 23.16 23.32 18.55 13.87 30.77 31.01 31.27 20.47 17.09

2 38.19 38.27 38.62 37.28 10.21 61.11 61.34 61.53 60.03 13.19

3 27.75 27.74 27.98 26.13 14.87 39.94 39.95 40.21 38.00 23.93

4 23.84 23.78 24.00 21.88 14.39 33.19 33.16 33.39 31.01 24.71

MT 1 27.43 27.40 27.88 NA NA 43.32 43.56 43.66 NA NA

2 26.83 26.84 27.12 23.16 14.76 35.54 35.62 35.88 30.92 19.87

3 30.68 30.67 30.88 27.82 19.25 46.49 46.47 46.75 43.36 29.54

4 19.21 19.17 19.36 16.11 8.03 25.97 25.91 26.13 22.76 11.93

LT 1 24.98 25.09 25.27 15.13 8.50 41.12 41.28 41.51 19.21 10.20

2 22.92 22.78 23.34 18.79 7.33 26.38 26.34 26.80 22.13 8.90

3 16.82 16.77 16.98 15.78 9.13 26.75 26.67 26.91 25.31 12.68

4 17.71 17.72 17.83 16.09 9.79 20.80 20.79 20.95 18.99 12.50

Maturity
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10 DAY

Moneyness DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 1 4.17 4.33 4.15 1.84 1.41 5.63 5.54 5.54 2.51 1.69

2 6.15 6.23 5.82 5.19 3.24 9.27 9.56 8.68 7.75 5.13

3 1.60 1.61 1.70 1.07 0.98 2.24 2.21 2.29 1.60 1.39

4 0.89 0.91 1.03 0.37 0.42 1.42 1.45 1.54 0.55 0.83

MT 1 4.44 5.08 4.16 2.96 2.76 5.11 5.85 4.77 3.21 3.72

2 5.92 6.08 5.57 4.67 3.29 8.24 8.39 7.80 6.79 4.71

3 4.86 4.79 4.62 3.25 2.87 6.21 6.15 5.83 4.35 4.40

4 1.78 1.64 1.71 1.40 1.53 2.41 2.21 2.33 2.14 2.17

LT 1 12.18 12.80 11.25 12.17 9.89 14.80 15.36 14.04 14.83 13.17

2 6.86 7.08 6.50 5.22 6.10 11.16 11.44 10.68 9.15 9.76

3 7.15 7.10 6.58 3.44 3.18 9.71 9.69 9.01 4.53 4.32

4 2.31 2.26 2.21 1.35 1.18 3.79 3.64 3.53 1.99 1.78

OTM ST 1 12.35 13.57 11.49 9.02 4.93 15.65 17.40 14.46 10.69 6.24

2 20.44 20.37 19.20 20.62 7.33 27.74 28.69 26.32 28.43 11.50

3 3.62 3.43 3.32 3.23 2.08 4.38 4.22 3.92 3.83 2.77

4 1.29 1.16 1.28 1.07 0.50 1.59 1.32 1.55 1.31 0.77

MT 1 12.59 14.81 11.74 7.74 5.84 15.30 16.88 14.26 9.72 6.81

2 14.74 14.82 13.90 12.13 7.73 22.68 23.42 21.66 19.42 11.23

3 9.38 9.31 8.58 5.56 3.49 11.81 11.73 10.77 7.07 4.73

4 4.58 4.69 4.43 3.64 3.51 6.24 6.05 5.94 4.71 4.30

LT 1 37.85 38.94 37.11 15.44 10.93 52.41 53.22 51.62 18.84 12.42

2 15.34 15.67 15.03 12.97 11.38 24.85 25.40 24.16 20.73 16.04

3 10.61 10.57 10.14 6.40 6.10 13.01 12.98 12.34 7.71 7.59

4 7.61 7.14 7.23 4.92 3.68 11.81 11.52 11.14 7.22 5.16

ATM ST 1 21.83 24.63 21.82 16.58 10.53 34.93 38.93 35.00 24.59 15.50

2 29.26 30.20 29.01 25.07 13.84 37.73 39.09 37.45 31.24 19.15

3 25.04 24.38 24.67 19.99 11.09 39.75 39.70 39.55 33.65 19.67

4 NA NA NA NA NA NA NA NA NA NA

MT 1 23.48 26.24 23.48 12.03 8.23 28.49 30.93 28.50 17.21 9.65

2 27.43 27.61 27.14 21.45 11.05 36.64 37.60 36.32 29.24 15.51

3 13.14 13.00 12.94 8.60 5.28 17.28 17.16 17.06 10.89 6.59

4 13.90 14.31 13.72 9.57 6.07 16.33 16.72 16.15 11.52 7.55

LT 1 24.68 25.50 24.89 8.04 7.14 36.83 37.84 37.01 10.31 9.20

2 21.91 22.11 21.86 18.81 15.76 26.16 27.06 26.13 23.07 23.39

3 13.31 13.16 13.07 8.92 7.40 16.49 16.44 16.23 10.82 9.24

4 15.53 14.84 15.35 11.31 7.57 19.12 18.40 18.90 13.80 9.49

ITM ST 1 41.17 42.14 42.26 25.43 8.32 49.14 50.64 50.41 28.89 10.36

2 35.98 36.62 36.69 30.68 12.11 44.36 45.24 45.14 37.44 17.34

3 24.19 23.97 24.58 20.11 8.47 33.09 33.00 33.63 28.22 11.07

4 34.43 34.99 34.48 34.20 30.98 34.43 34.99 34.48 34.20 30.98

MT 1 31.23 32.95 32.05 19.47 13.95 37.65 39.20 38.62 27.15 16.41

2 35.75 35.99 36.27 28.79 10.25 42.96 43.53 43.58 35.21 14.41

3 30.01 29.87 30.50 23.74 16.12 41.02 41.00 41.47 33.70 26.65

4 15.91 16.40 16.21 10.26 7.51 20.72 20.79 21.09 13.42 9.13

LT 1 27.12 27.87 27.76 18.17 11.22 38.77 39.68 39.49 19.55 13.49

2 22.73 22.83 22.96 19.97 15.49 31.67 32.31 32.08 26.96 19.76

3 17.04 16.93 17.34 13.08 9.40 24.97 24.89 25.31 19.10 13.48

4 22.48 60.16 22.69 16.37 9.12 29.48 167.77 29.75 20.76 11.82

xITM ST 1 37.79 38.04 38.24 31.73 20.38 43.94 44.52 44.54 33.21 24.63

2 56.19 56.37 56.65 55.26 11.79 84.90 85.19 85.15 84.00 14.69

3 42.52 42.54 42.82 39.77 23.37 53.93 53.95 54.32 50.64 32.04

4 30.00 29.91 30.25 27.14 20.11 37.41 37.35 37.71 34.50 30.31

MT 1 45.06 45.96 45.85 NA NA 65.59 66.21 66.13 NA NA

2 37.75 37.58 38.15 34.13 22.20 53.56 53.69 54.04 49.50 31.42

3 40.02 40.02 40.20 37.86 27.35 56.81 56.78 57.10 53.79 39.56

4 30.55 30.26 30.80 25.12 12.76 37.41 37.25 37.67 32.81 16.20

LT 1 43.29 45.44 43.70 27.27 103.09 59.12 65.25 59.56 29.14 114.10

2 11.58 18.47 11.99 7.84 82.15 14.16 20.40 14.60 10.41 87.75

3 26.39 25.57 26.93 24.06 13.78 38.47 37.07 39.25 34.96 17.70

4 17.83 17.47 17.97 15.85 11.31 21.78 22.03 21.94 19.17 15.33

Maturity
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Darker shading indicates lower hedging error. 

20 DAY

Moneyness DELTA D+G ADJ LOC REG DELTA D+G ADJ LOC REG

xOTM ST 1 5.15 6.68 4.94 2.97 2.33 6.69 8.48 6.33 3.69 2.87

2 7.53 7.84 7.32 6.65 4.75 11.37 12.20 10.72 9.95 6.23

3 1.67 1.64 1.88 1.06 0.72 2.03 1.99 2.30 1.32 1.00

4 1.23 1.32 1.47 0.62 0.41 1.75 1.69 2.10 0.78 0.50

MT 1 5.14 6.61 4.60 2.58 2.41 6.61 9.06 5.86 3.24 2.84

2 6.32 6.85 5.85 4.58 2.57 8.43 9.26 7.84 6.21 3.57

3 5.90 5.73 5.83 4.28 4.22 7.97 7.85 7.53 5.52 6.51

4 2.21 2.41 3.14 2.16 1.55 3.41 2.90 4.52 3.04 2.17

LT 1 18.48 19.40 17.65 21.15 18.09 23.92 25.42 22.84 26.79 23.80

2 10.44 10.71 9.87 7.34 7.06 13.40 14.22 12.69 9.70 10.09

3 6.63 6.66 6.10 3.89 3.86 8.71 8.64 8.10 4.54 4.44

4 4.19 3.98 4.00 1.97 1.58 5.79 5.34 5.37 2.58 2.19

OTM ST 1 13.19 17.59 11.88 9.08 5.11 16.49 22.15 14.67 10.42 6.14

2 24.81 25.65 23.26 24.94 10.44 29.33 32.03 27.60 29.87 15.15

3 6.42 6.00 5.88 5.75 2.72 7.69 7.15 6.93 6.74 3.23

4 2.56 2.26 2.66 2.36 1.81 3.32 2.71 3.40 3.14 2.94

MT 1 14.86 17.71 13.85 11.04 8.94 18.99 23.77 17.55 13.99 9.44

2 20.76 21.96 19.47 16.71 9.11 27.89 30.54 26.35 22.81 11.08

3 10.48 10.21 9.48 5.85 4.29 11.78 11.47 10.72 7.10 5.72

4 5.27 5.43 4.78 2.93 2.09 7.08 6.37 6.42 3.74 2.66

LT 1 37.79 38.85 37.05 9.27 8.61 49.40 51.69 48.63 10.93 9.53

2 31.40 32.18 30.37 22.59 19.87 41.91 43.92 40.78 32.38 24.38

3 13.35 13.22 12.97 10.02 9.36 17.03 16.84 16.32 11.10 11.39

4 7.91 7.35 7.51 5.04 3.98 10.99 10.06 10.46 7.51 6.04

ATM ST 1 31.23 35.70 30.99 24.91 14.28 42.32 49.88 41.83 32.38 16.70

2 33.78 36.76 33.49 28.44 16.00 48.66 52.27 48.22 38.31 21.72

3 44.74 43.80 44.01 35.15 16.81 54.64 54.41 54.31 45.58 24.84

4 NA NA NA NA NA NA NA NA NA NA

MT 1 28.23 29.54 28.26 17.63 10.98 39.46 45.77 39.57 28.16 14.33

2 39.38 41.49 38.90 30.21 13.05 48.11 51.51 47.61 37.10 17.49

3 22.34 21.73 21.99 13.81 7.81 26.72 26.44 26.33 17.53 10.97

4 14.75 13.67 14.60 10.01 6.27 18.51 18.75 18.32 12.32 7.28

LT 1 32.05 34.35 32.30 13.20 5.11 39.37 42.67 39.77 15.80 5.84

2 32.85 33.94 32.82 25.47 18.27 42.75 45.42 42.78 32.91 25.39

3 15.98 15.89 15.68 10.65 8.36 18.34 18.10 18.07 13.08 11.67

4 23.83 24.33 23.43 16.02 11.30 30.42 30.15 30.09 22.22 15.50

ITM ST 1 43.35 42.84 44.56 24.08 14.73 62.87 67.05 64.57 31.23 18.40

2 50.30 51.87 51.50 40.69 15.58 62.37 65.30 64.01 48.76 22.81

3 48.39 48.41 49.10 44.37 17.56 57.08 56.83 58.00 51.80 18.51

4 9.02 10.31 8.39 13.46 29.84 9.02 10.31 8.39 13.46 29.84

MT 1 42.17 44.03 43.41 38.24 21.52 56.37 60.66 58.09 48.95 24.17

2 35.61 35.80 35.96 31.15 15.49 67.91 69.07 68.21 62.26 22.06

3 43.74 43.60 44.38 35.83 26.01 59.58 59.50 60.31 50.07 39.35

4 28.10 28.33 28.74 15.34 8.10 30.87 30.97 31.51 19.01 9.46

LT 1 36.80 38.38 37.71 22.46 18.27 46.74 49.26 47.86 23.30 19.08

2 31.12 30.48 31.51 26.47 13.68 42.65 44.56 43.54 32.95 22.01

3 27.65 27.35 28.14 18.89 11.31 33.83 33.62 34.38 23.87 14.45

4 19.37 19.07 19.62 15.56 9.07 22.34 22.50 22.69 17.40 9.84

xITM ST 1 40.95 43.14 40.95 63.60 31.84 51.24 53.33 51.24 63.60 42.28

2 129.82 129.19 129.82 128.90 14.51 184.59 184.65 184.59 184.11 18.89

3 58.01 57.88 58.01 54.83 31.55 68.81 68.67 68.81 65.87 39.03

4 63.26 63.24 63.26 57.79 40.36 86.80 86.77 86.80 81.32 58.69

MT 1 32.50 33.42 33.53 NA NA 45.71 48.31 47.13 NA NA

2 74.59 74.38 75.29 49.45 38.07 107.28 107.85 107.72 63.87 44.30

3 25.82 25.71 26.03 23.99 22.62 31.52 31.38 31.71 29.45 28.83

4 19.53 18.85 19.79 15.12 11.28 24.17 23.45 24.42 20.36 16.01

LT 1 63.79 64.46 64.41 24.53 27.52 86.80 88.06 87.69 40.46 32.88

2 6.51 7.10 6.74 5.97 8.63 9.76 8.63 9.86 9.07 12.02

3 40.82 39.95 41.32 37.18 20.56 48.35 47.52 48.83 45.06 28.57

4 38.15 18.63 39.35 33.15 10.86 158.14 21.79 163.83 138.51 12.33

Maturity

MAHE RMSHE


