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Abstract 

In this paper, we aim to determine whether the options market predicted the stock market crash of 
September 15 2008 or reacted to it. In order to do so, we study volatility smiles and RND functions for 
the EURO STOXX 50 equity index. For our estimated RND functions, retrieved by using the 
two-lognormal method, we calculate standard deviation, skewness and kurtosis. We find that the 
options market did not predict the stock market crash. Instead, it reacted to it. Specifically, the reaction 
consisted of an increase in standard deviation, a decrease in left-skewness and kurtosis and a tendency 
toward a bimodal shape. Apart from the result regarding the skewness, these findings are consistent 
with research on earlier stock market crashes. However, earlier studies find that left-skewness 
increases as a reaction to a stock market crash. Thus, the decreased left-skewness appears to be a 
finding specific for this particular crash. Lastly, we note that the fact that RNDs seem to lack 
predictive power does not render them useless, as they can be used to assess market sentiment and 
how it changes over time, which could be useful for decision-making organs, such as central banks. 
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1. Introduction 

Derivative contracts, such as call options and put options, are actively traded in financial markets 

around the world. Clearly, the price of such a contract reflects the market’s view of the likelihood that 

the contract will yield a positive payoff. Since derivatives are assets whose payoff depends on the state 

of some underlying asset at some future point in time, it follows that option prices indirectly convey 

information about the probabilities that the market attaches to the underlying asset being in particular 

states in the future. By using certain techniques, it is possible to obtain a risk neutral probability 

density function for the state of the underlying asset at a fixed future point in time from the prices of 

traded options.1 This risk neutral density (RND) function can be interpreted as the market’s 

probability distribution for the state of the underlying asset. By studying the RND function, the 

market’s beliefs can be directly examined. For example, it could convey information on whether the 

market places relatively greater probability on an increase in prices than on a decrease. Furthermore, 

the evolution of the obtained RND can be used to assess how the market’s beliefs change over time. 

Specifically, it can be used to assess market beliefs about a planned future event, such as an election. It 

can also be used to look at how market beliefs change around an unplanned event, such as a stock 

market crash. If market beliefs change prior to such an event, it indicates that the market predicted the 

event. If, on the other hand, the change in market beliefs comes after the event has occurred, the 

logical interpretation is that the market did not predict the event, but instead reacted to it. 

The late-2000s financial crisis is widely considered the worst financial crisis since the Great 

Depression. The crisis began in the credit market, particularly the market for mortgage-backed 

securities based on subprime mortgages.2 The first indicators of the crisis appeared as early as 

February and March of 2007, when several subprime lenders declared bankruptcy. However, this did 

not have an immediate effect on the stock market (see Figure 1 below). Instead, the EURO STOXX 50 

index reached a five-year high in June 2007. The decline started in early 2008, when the gravity of the 

matter became clearer. During 2008, the downturn in the subprime mortgage sector took its toll on 

major financial institutions heavily invested in subprime mortgage products. On March 16 2008, Bear 

Stearns was bailed out by the US government in a deal that let J.P. Morgan acquire the bank for less 

than seven percent of its market value two days prior to the sale. The negative trend continued 

throughout the spring and summer, but the index level was still comparable to that of 2006. The 

market did not crash until September 15 2008, when on the same day, Lehman Brothers filed for 

bankruptcy and Merrill Lynch was sold to Bank of America as a consequence of the bank’s subprime 

                                                      
1 The obtained probability density will be risk neutral, as derivatives are priced under a risk neutral probability measure and 
not under the real world probability measure. The potentially erroneous conclusions that may arise as a result of this will be 
elaborated on in later sections. For now, we simply note that since the obtained distributions and probabilities will be risk 
neutral, one should interpret them with caution. 
2 In this paper, we give a very brief overview of the crisis in order to motivate why we have chosen to look at it. However, 
the literature on the topic is very extensive and the interested reader should have no problem in finding a book explaining the 
causes and effects of the crisis in great detail. We would suggest e.g. Authers (2010). 

1 



mortgage exposure. After this, stock markets around the world plummeted (as can clearly be seen for 

the EURO STOXX 50 index in Figure 1 below), bottoming out in March 2009. The fall in levels was 

accompanied by extreme price volatility of a kind that had not been witnessed since the Great 

Depression. 

Figure 1 – EURO STOXX 50 for the period 2006-01-01 to 2009-12-31 
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Though the literature on RND functions is extensive, it is mostly focused on methodology rather than 

application. Furthermore, the articles that do apply the RND framework to data typically look at 

planned events, such as central bank meetings and elections. Still, there are studies that look at 

unplanned events, such as various crises and market crashes. However, the bulk of these studies look 

at earlier stock market crashes, which is not surprising, as we are dealing with a relatively recent 

event. To our knowledge, no study conducted on the September 2008 stock market crash has been 

performed on European data. This gives us the opportunity to apply the RND framework in a new 

setting. 

In this paper, we intend to use the RND framework to study the stock market crash of September 15 

2008. Specifically, we will look at the evolution of the RND function of the EURO STOXX 50 equity 

index before and after September 15 2008 to try to determine whether the options market predicted the 

stock market crash or reacted to it. We will also look at implied volatilities (i.e. the volatilities implied 
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for the Black and Scholes (1973) model by market prices of options), as these are closely linked to the 

shape of the RND function. 

We proceed by presenting the necessary theoretical framework in the next section, before providing a 

brief overview of the previous research on the matter in section 3. In section 4, we introduce our data 

and explain the procedure that is used to extract reliable observations from the initial data set. Section 

5 describes our methodology and explains how the theoretical framework is applied to the data. In 

section 6, we present and discuss our results, before summing them up and presenting more general 

conclusions in section 7. 

2. Theoretical framework 

In this section, we present the theoretical framework necessary to retrieve RND functions and implied 

volatilities from the data. Our aim is to present the framework in a way that is intuitively accessible 

rather than mathematically rigorous. However, given the nature of the subject, a rather extensive use 

of mathematics is necessary. 

2.1. Risk neutral valuation 

Risk neutral valuation was first derived by Cox and Ross (1976). The authors show that if it is possible 

to find an analytical expression in the form of a differential or difference-differential equation that 

every contingent claim must satisfy and in which one of the original model parameters does not 

appear, this parameter can be chosen so that the underlying asset earns the risk free rate. The value of 

the contingent claim can then be obtained by calculating the expected value, using the modified 

parameter, and then discounting at the risk free rate. Harrison and Kreps (1979) formalize this 

approach and make it more rigorous by introducing the theory of equivalent martingale measures. 

They show that the method proposed by Cox and Ross is equivalent to changing the probability 

measure from the real world probability measure Զ to the equivalent3 martingale4 measure Է. For 

obvious reasons, this measure is also commonly referred to as the risk neutral measure. The value at 

time ݐ of a contingent claim ܺ matu g m  ܶ can be y using risk neutral valuation as: rin  at ti e  obtained b

Π௧ ൌ ॱԷ ቂ݁ ׬ ௥ೠௗ௨
೅
೟ · ்ܺ| ௧࣠

ௌቃ (1)ି

In the equation above, Π௧ denotes the time ݐ price of the contingent claim ܺ, ॱԷሾ·ሿ denotes the 

expected value taken under the probability measure Է, ݎ denotes the risk free rate and ࣠ௌ denotes the ௧
                                                      
3 Two measures are said to be equivalent if f ted by Զ and Է) on the measureable space 
ሺΩ, ࣠ሻ,  it holds that: 

or the two measures (here deno

ԶሺAሻ ൌ 0 ՞ ԷሺAሻ ൌ  ࣠ A Ԗ ׊ 0
In words, this means that the two measures agree on all impossible events. This implies that the two measures also agree on 
all certain events, as a certain event is the complimen n Henc nt measures agr on all 
impo  and on all ce in events. Equivalence betw  is d y . 

t of a  impossible event. e, two equivale ee 
ssible rta een two measures Զ and Է enoted b  Զ~Է

4 A stochastic process ܯ௧ is said to be martingale if ॱሾ|M୲|ሿ ൏ |ሾ0,∞ሻ and ॱሾM୲ ߳ ݐ ׊ ∞ ୱ࣠ሿ ൌ Mୱ for every pair ݏ,  such ,ݐ
that ݏ ൏  The latter condition is commonly referred to as the martingale property. In words, it means that the best prediction .ݐ
of the value of the process at any future point in time, given all available information, is the current value of the process. The 
term “equivalent martingale measure” arises because the discounted price process is a martingale under Է. 
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filtration generated by the price process of the underlying asset ܵ over the period ሾ0,  ሿ. Thus, theݐ

expression entails computing a conditional expectation under Է at time ݐ. Using more compact 

notation, this can be rewritten as: 

 Π௧ ൌ ॱ௧
Է ቂ݁ି׬ ௥ೠௗ௨

೅
೟ ்ܺቃ ·

It can be shown that if an equivalent martingale measure Է exists, the market is free from arbitrage. If 

the measure is unique, the market is referred to as complete, meaning that all contingent claims can be 

replicated using other assets. This also implies that the arbitrage free price is unique.

(2)

5 

For a derivative, the payoff of the contingent claim ܺ at maturity (i.e. at time ܶ) can be expressed as a 

function ݄ሺ·ሻ of the value of the underlying asset ܵ at time ܶ, i.e. ்ܺ ൌ ݄ሺ்ܵሻ. Expression (2) then 

becomes: 

 Π௧ ൌ ॱ௧
Է ቂ݁ି׬ ௥ೠௗ௨

೅
೟ · ݄ሺ்ܵሻቃ (3)

One should note that since the expected value of a product does not generally equal the product of the 

expected values (i.e. ॱሾA · Bሿ ് ॱሾAሿ · ॱሾBሿ), the conditional expectation above can be rather difficult 

to compute. Therefore, the simplifying assumption of a constant risk free interest rate over the time 

period ሾݐ, ܶሿ is usually made, i.e. ݎ௨ ൌ ,ݐሾ ߳ ݑ ׊ ݎ ܶሿ. Given this assumption, it holds that 

׬ି݁ ௥ೠௗ௨
೅
೟ ൌ ݁ି௥ሺ்ି௧ሻ. Since ݁ି௥ሺ்ି௧ሻ is a constant, it can be taken out of the conditional expectation 

operator. The resulting expression is: 

Π ି௥ሺ்ି௧ሻ · ॱ௧
Էሾ݄ሺ்ܵሻሿ  ௧ ൌ ݁

Thus, it is clear that in order to obtain Π௧, all that is needed is the probability density function of ்ܵ at 

time ݐ under the equivalent martingale measure Է. This is the previously mentioned RND function, 

denoted by ݍ௧ሺ்ܵሻ. Assuming that the RND function ݍ௧ሺ்ܵሻ is known, the conditional expectation in 

expression (4) can be computed as

(4)

6:  

 ॱ௧
Էሾ݄ሺ்ܵሻሿ ൌ න ௧ሺ்ܵሻ݄ሺ்ܵሻ்݀ܵݍ

ஶ

଴

 (5)

Consequently, the price of the contingent claim at time ݐ can be obtained as: 

 Π௧ ൌ ݁ି௥ሺ்ି௧ሻ න ௧ሺ்ܵሻ݄ሺ்ܵሻ்݀ܵݍ

ஶ

଴

 (6)

Expression (6) is typically used in one of two ways. The focus is either on computing the price Π௧, in 

which case certain assumptions regarding the price process of the underlying asset in order to obtain 
                                                      
5 For more on the connection between equivalent martingale measures and arbitrage, see e.g. Bjö 4). rk (200
6 The observant reader may note that the integral in expression (5) is taken over the interval ሾ0,∞ሻ rather than ሺെ∞,∞ሻ, 
which is the correct integration interval when computing an expected value. This is a result of the fact that ST is only defined 
on the interval ሾ0,∞ሻ, as a price cannot take negative values. Hence, it is assumed that ݍ௧ሺ்ܵሻ ൌ ,∞ሺെ ߳ ்ܵ ׊ 0 0ሻ. 
Consequently, integrating over ሾ0,∞ሻ will yield the same result as integrating over ሺെ∞,∞ሻ in this case. 
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 ௧ሺ்ܵሻ are made, or on using the available prices of traded derivatives to estimate the RND functionݍ

 .௧ሺ்ܵሻ implied by those prices. The focus of this paper is on the latterݍ

It should be pointed out that the usage of risk neutral valuation in no way implies the (obviously 

incorrect) assumption that investors are risk neutral. Instead, usage of the equivalent martingale 

measure can be viewed as a different approach to modeling risk. Instead of compensating for higher 

risk by using a higher discount rate, the probabilities for “good” outcomes are adjusted down (and 

hence, the probabilities for “bad” outcomes are adjusted up, as the total probability has to sum to one). 

Hence, the expected value under Է will be lower than under Զ, thus eliminating the need for a higher 

discount rate to obtain the correct price. Consequently, the expected rate of return under the equivalent 

martingale measure Է is equal to the risk free rate ݎ for all assets. 

2.2. The Black­Scholes model 

In their seminal paper, Black and Scholes (1973) developed the model that has since become the 

benchmark in option pricing. The model, known simply as the Black-Scholes model, postulates that 

the price process for the underlying asse l c Brownian motion (GBM), i.e.: t fo lows a geometri

݀ܵ௧
ܵ௧

  ൌ ݐ݀ߤ ൅ ݀ߪ ௧
Զ ܹ

In the equation above, ߤ represents the drift term and ߪ represents the diffusion term for the return 

process of the underlying asset.

(7)

7 ௧ܹ
Զ denotes a Wiener process under the real world probability 

measure Զ. Recall that for a Wiener process, the increments are normally distributed with mean 0 and 

variance ݀ݐ, i.e. ݀ ௧ܹ
Զ ߳ ܰሺ0,  ሻ.8 Therefore, it is clear that the return process for the underlying assetݐ݀

under the real world probability measure Զ has normally distributed increments. Hence, the price 

process has lognormally distributed increments. Thus, the Black-Scholes dynamics for the price of the 

underlying asset imply that it is lognormally distributed. As the present price of the underlying asset is 

known, the assumption of a stochastic process for the price of the underlying asset makes it possible to 

derive the distribution of the price of the underlying at some future po t in in time. 

Black and Scholes show that the price of a derivative is given by Π௧ ൌ ݂ሺݐ, ܵ௧ሻ, where the pricing 

function ݂ሺ·ሻ satisfies the partial differential equation (PDE) below, commonly referred to as the 

Black-Scholes PDE: 

݂݀
ݐ݀

 ሺݐ, ܵ௧ሻ ൅ ௧ܵݎ
߲݂
߲ܵ௧

ሺݐ, ܵ௧ሻ ൅
1
2
ଶܵ௧ଶߪ

߲ଶ݂
߲ܵ௧ଶ

ሺݐ, ܵ௧ሻ െ ,ݐሺ݂ݎ ܵ௧ሻ ൌ 0 (8)

                                                      
7 It is important to note that ߤ and ߪ denote the drift and diffusion terms for the return process and not for the price process. 
The drift and diffusion terms for the price process at time ݐ are ߤ ௧ܵ and ߪ ௧ܵ respectively, and thus vary with ݐ as ௧ܵ varies 
with ݐ, whereas ߤ and ߪ are constants and thus time-invariant. 
8 For more on Wiener processes and their applications in finance, see e.g. Kijima (2002) or Björk (2004). 
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The reader familiar with PDEs will notice that the expression above is insufficient in order to obtain a 

specific solution. In order to do so, a boundary condition is also necessary. The boundary condition is 

given by: 

 ݂ሺܶ, ்ܵሻ ൌ ݄ሺ்ܵሻ (9)

Recall that ݄ሺ்ܵሻ is the payoff function of the derivative at maturity. Now, there is a unique solution 

for this PDE, so in a Black-Scholes economy9, there is a unique price for every derivative. Notice that 

all derivatives in the economy have to satisfy the PDE in expression (8). The only difference between 

derivatives lies in the boundary condition, i.e. expression (9). 

Black and Scholes also derive explicit formulas for the pricing of European call and put options. 

Recall that for a European call, the payoff function is ݄ሺ்ܵሻ ൌ maxሺ்ܵ െ ,ܭ 0ሻ, where ்ܵ is the price 

of the underlying asset at maturity and ܭ is the exercise price. Similarly, for a European put, the 

payoff function is ݄ሺ்ܵሻ ൌ maxሺܭ െ ்ܵ, 0ሻ. Thus, the boundary condition in expression (9) is set to 

the respective payoff function. 

The Black-Scholes formula for European , is:  calls and puts respectively

ܿ ሺ

 ௧ ൌ ઴ሺdଵሻݐܵ െ eି୰ Tି୲ሻK઴ሺdଶሻ 

௧݌ ൌ ݁ି௥ሺ்ି௧ሻࢶܭሺെ݀ଶሻ െ ܵ௧ࢶሺെ݀ଵሻ 
(10)

The parameters ݀ଵ and ݀ଶ are given by: 

݀1 ൌ
log ቀܵ௧ܭ

 

ቁ ൅ ൬ݎ ൅ ଶߪ
2 ൰ ሺܶ െ ሻݐ

ܶ√ߪ െ ݐ
 

݀2 ൌ
log ቀܵ௧ܭቁ ൅ ൬ݎ െ ଶߪ

2 ൰ ሺܶ െ ሻݐ

ܶ√ߪ െ ݐ
 

(11)

In expressions (10) and (11) above, ઴ denotes the cumulative distribution function of the standard 

normal distribution10 and logሺ·ሻ denotes the natural logarithm. The parameters involved have already 

been defined, though we will return to the parameter ߪ shortly. Also, one should note that the expected 

return of the underlying asset, ߤ, is not included in the valuation formulas. This is to be expected, as ߤ 

is the expected return of the underlying asset under the real world probability measure Զ. However, as 

has already been explained, risk neutral valuation is carried out under the equivalent martingale 

measure Է, where the expected return on all assets is the risk free rate ݎ. 

                                                      
9 See Black and Scholes (1973) for all of the assumptions that make up a B ck-Scho s ec yla le onom . 
10 Recall that a cumulative distribution function for a random variable ܺ is given by ܨሺݔሻ ൌ ܲሺܺ ൑  ሻ, where ܲ is anݔ
arbitrary probability measure (not necessarily the real world probability measure Զ). This can be defined in terms of the 
probability density function ݂ሺݔሻ as ܨሺݔሻ ൌ ׬ ݂ሺݑሻ݀ݑ௫

ିஶ . For the standard normal distribution, the probability density 

function is given by ߶ሺݔሻ ൌ ௘ష 
ೣమ
మ

√ଶగ
. Hence, the cumulative distribution function is given by ઴ሺݔሻ ൌ ଵ

√ଶగ
׬ ݁ି 

ೠమ

మ ௫ݑ݀
ିஶ . 

Unfortunately, there is no way to express this integral analytically, so it has to be evaluated numerically. 
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Garman  and  Kolhagen  ሺ1983ሻ  extend  the  Black‐Scholes  model,  enabling  it  to  cope  with  the 

presence of  two interest rates. This  is done  for  foreign exchange ሺFXሻ options, where both the 

domestic  risk  free  rate   ௗݎ and  the  foreign  risk  free  rate   ௙ݎ must  be  taken  into  account.  The 

resulting difference  is  that while only ܭ  is discounted  in  the original Black-Scholes model,  the 

Garman‐Kolhagen model also discounts the price of the underlying asset ܵ௧, at the foreign risk 

free rate ݎ௙, while ܭ is obviously still discounted at the domestic risk free rate ݎௗ. The reason for 

discounting the underlying asset is that the investor forgoes the foreign interest rate by owning 

the  option  rather  than  the  underlying  asset  directly.  Though  Garman  and  Kolhagen  do  their 

derivation  for  FX  options,  it  is  clear  that  the  same  framework  can  be  applied  to  any  type  of 

underlying asset where there is a continuous return that the investor relinquishes by owning the 

option rather than the underlying asset. With the commonly made simplifying assumption that 

equity indices pay a continuous dividend yield rather than discrete dividends, this is clearly the 

case for index options. Denoting the dividend yield by ݍ, the extended Black‐Scholes formula for 

European index options be oc mes: 

ܿ  
 ௧ ൌ ݁ି௤ሺ்ି௧ሻܵࢶݐሺ݀ଵሻ െ ݁ି௥ሺ்ି௧ሻࢶܭሺ݀ଶሻ

௧݌ ൌ ݁ି௥ሺ்ି௧ሻࢶܭሺെ݀ଶሻ െ ݁ି௤ሺ்ି௧ሻܵ௧ࢶሺെ݀ଵሻ 
(12)

The parameters ݀ଵ and ݀ଶ are now given by: 

݀1 ൌ
log ቀܵ௧ܭ

 

ቁ ൅ ൬ݎ െ ݍ ൅ ଶߪ
2 ൰ ሺܶ െ ሻݐ

ܶ√ߪ െ ݐ
 

݀2 ൌ
log ቀܵ௧ܭቁ ൅ ൬ݎ െ ݍ െ ଶߪ

2 ൰ ሺܶ െ ሻݐ

ܶ√ߪ െ ݐ
 

(13)

One should note that while options on single stocks are typically American, index options are typically 

European. Hence, the Black-Scholes formula is particularly suitable for working with index options. 

As we are dealing with index options in this paper, the model presented in expressions (12) and (13) 

will be used. 

2.2.1. Implied volatility and the volatility smile 

Given the framework presented above, the price of a European index option is a function of six 

parameters11, namely the current level of the index (ܵ௧), the exercise price (ܭ), the time to maturity 

(ܶ െ  .(ߪ) and the volatility of the index return (ݍ) the dividend yield ,(ݎ) the risk free interest rate ,(ݐ

The values of the first five parameters at time ݐ are readily observable, so there is generally little 

                                                      
11 A word on notation might be appropriate at this point. Since the price of an equity index option under the Black-Scholes 
model is a function of six parameters, the most general way to denote the time ݐ option price function is 
ܿ௧ሺ ௧ܵ, ,ܭ ܶ െ ,ݐ ,ݎ ,ݍ ௧ሺ݌ ሻ andߪ ௧ܵ, ,ܭ ܶ െ ,ݐ ,ݎ ,ݍ  ሻ for European calls and puts respectively. If a more complex model than theߪ
Black-Scholes model is used, even more parameters become involved. Clearly, writing them all out every time is highly 
impractical. Therefore, we will typically use more compact notation and only explicitly write the most relevant variables for 
the particular application. Thus, when we write e.g. ܿ௧ሺܭሻ, it does not mean that the exercise price is the only variable that the 
call price depends on, but rather that it is the one most relevant for the task at hand. 
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disagreement about them. The value of the parameter ߪ, however, is unobservable. One should note 

that since the values of the other five parameters are known, the option price at time ݐ can be 

considered a function of ߪ only. Hence, it is possible to obtain an estimate of ߪ from the prices of 

traded options by choosing ߪ so that the Black-Scholes price corresponds to the market price. This 

type of estimate of ߪ is known as implied volatility. One should note that the Black-Scholes price of 

an option (call or put) is a monotonically increasing function of ߪ. Therefore, a higher implied 

volatility, ceteris paribus, means that an option is trading at a higher price. 

Under the Black-Scholes assumptions, the price of the underlying asset evolves according to a GBM. 

In this context, ߪ should be constant, as can clearly be seen in expression (7). Thus, the implied 

volatility should not vary with either exercise price or time to maturity. Rubinstein (1994) points out 

that the Black-Scholes framework can be easily adjusted to allow for time-dependent implied 

volatility. Still though, the implied volatility should be constant for different exercise prices, given a 

fixed maturity. However, implied volatility is usually observed in the market as a convex function of 

exercise price. Because of this, implied volatility as a function of exercise price, ߪሺܭሻ, is typically 

referred to as the “volatility smile”.12 

Rubinstein (1994) studies options on the S&P 500 index and finds that the assumption of a constant 

implied volatility for different exercise prices, given a fixed maturity, held fairly well until the stock 

market crash of 1987. Since then, the implied volatility as a function of the exercise price has 

exhibited the reverse skew (or “smirk”) shape that can be seen in Figure 2 below and that is 

characteristic for equity index options today. Rubinstein suggests that one possible explanation for this 

is “crash-o-phobia”, i.e. that the market prices out-of-the-money (OTM) puts (and hence in-the-money 

(ITM) calls as a result of the put-call parity) relatively higher than options with higher exercise prices 

in order to provide insurance against stock market crashes. Another possible explanation is the 

“leverage effect”, proposed by Black (1976), though Figlewski and Wang (2000) convincingly argue 

against this explanation. 

  

                                                      
12 Though typically convex, the shape of the function ߪሺܭሻ is not always a regular smile. Depending on the underlying asset, 
the shape can range from a reverse skew to a forward skew, with the regular smile somewhere in between. 
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Figure 2 – Volatility smile on December 22 2008, three months 

 

Regardless what explanation for it one chooses to believe, it is clear that the existence of the implied 

volatility smile indicates that market participants make more complex assumptions than a GBM about 

the path of the underlying asset price. As a result, they attach different probabilities to the possible 

values of the underlying asset at maturity than those that are consistent with a lognormal distribution. 

Bahra (1997) points out that the extent of the convexity of the smile curve indicates the degree to 

which the market RND function differs from a lognormal (Black-Scholes) RND. Specifically, a more 

convex volatility smile function indicates that greater probability is attached to extreme outcomes of 

்ܵ. As a result, the market RND will have fatter tails than those associated with a lognormal 

distribution. Bahra further notes that the slope of the volatility smile function is related to the 

skewness of the market RND function. A positive slope implies an RND function that is more 

right-skewed than a lognormal RND function, whereas a negative slope implies that the market RND 

function is more left-skewed than a lognormal RND function. Thus, we would expect an equity index 

to exhibit RND functions that are more left-skewed than a lognormal RND function, as the volatility 

smirk has a negative slope. Overall, it is clear that there is a close connection between the volatility 

smile and the market RND function. This will become apparent when we look at different methods for 

estimating the RND function in the next section. 

2.3. The RND function 

Before going into the various ways of recovering RND functions, it is useful to review the concept of 

elementary claims. An elementary claim is the most fundamental state-contingent claim13 and was 

introduced by Arrow (1964), based on the time-state preference model of Arrow and Debreu (1954). 

For this reason, it is commonly referred to as an Arrow-Debreu security. An Arrow-Debreu security is 

an asset that pays one unit of currency at a future time ܶ if the underlying asset ܵ is in a particular state 

at that time, and zero otherwise. The price of an Arrow-Debreu security for a certain state is simply the 

risk neutral probability of that state occurring, multiplied by the discounted value of one unit of 

                                                      
13 A state-contingent claim is a claim whose value depends on the future state of some variable. Hence, it should be clear that 
any derivative constitutes a state-contingent claim. 
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currency. Hence, if Arrow-Debreu securities were traded, recovering the risk neutral probability 

Է௧ሺ்ܵ ൌ  ሻ would simply entail observing the price for the Arrow-Debreu security corresponding toܭ

the future state ்ܵ ൌ  and compounding it by the risk free rate. Doing this across all states would ܭ

yield all risk neutral probabilities, thus making it trivial to obtain the RND function ݍ௧ሺ்ܵሻ. However, 

the securities are not traded and have to be replicated. This can be achieved by taking a long position 

in a so-called “butterfly spread”. 

A butterfly spread is a portfolio, denoted by ௧ܲ, of European call options14, formed by taking a short 

position in two European call options with exercise price ܭ, a long position in one European call 

option with exercise price ܭ ൅ ઢܭ and a long position in one European call option with exercise price 

ܭ െ ઢܭ, where ઢܭ represents the constant step size between adjacent exercise prices. Notice that if 

்ܵ ൌ ்ܵ and that if ,ܭthe payoff of a butterfly spread is equal to ઢ ,ܭ ൌ ݊ · ઢܭ, ݊ ߳ Ժ, the payoff is 

zero. Thus, by investing ଵ
ઢ௄

 in a butterfly spread, the payoff is one when ்ܵ ൌ  .and zero elsewhere ܭ

Hence, a discrete appro imation of e state ்ܵ ൌ is given by: x ܭ  an elementary claim for a given futur

௧ܲ

ઢܭ ฬ ൌ
ܿ௧ሺܭ ൅ ઢܭሻ െ 2ܿ௧ሺܭሻ ൅ ܿ௧ሺܭ െ ઢܭሻ

ઢܭ௄ୀௌ೅
ቤ
௄ୀௌ೅

 (14)

In the expression above, ܿ௧ሺܭሻ denotes the current (time ݐ) price of a European call option with 

exercise price ܭ and expiry date ܶ. As this expression replicates an elementary claim, it is clear that 

the risk neutral p b il futurero ab ity for the  state ்ܵ ൌ  :is given by ܭ

Է௧ሺ்ܵ ൌ ሻܭ ൌ ݁௥ሺ்ି௧ሻ
ܿ௧ሺܭ ൅ ઢܭሻ െ 2ܿ௧ሺܭሻ ൅ ܿ௧ሺܭ െ ઢܭሻ

ઢܭ ቤ
௄ୀௌ೅

 (15)

Hence, the risk n l b  densi teutra proba ility ty for the sta e will be given by: 

௧ሺ்ܵݍ ൌ ሻܭ ൌ ݁௥ሺ்ି௧ሻ
ܿ௧ሺܭ ൅ ઢܭሻ െ 2ܿ௧ሺܭሻ ൅ ܿ௧ሺܭ െ ઢܭሻ

ሺઢܭሻଶ ቤ
௄ୀௌ೅

 (16)

Clearly, this framework is not ideal, as it only allows us to replicate discrete states of ்ܵ, spaced by the 

discrete distance ઢܭ. However, one should note that the fraction in expression (16) is the second order 

central finite difference approximation, i.e. an approximation of the second order derivative of ܿ௧ሺܭሻ 

with respect to ܭ. Thus, it is r th t: clea a

lim
ઢܭ՜0

ሺܵܶݐݍ ൌ ሻܭ ൌ ሻݐሺܶെݎ݁
߲ଶܿݐሺܭሻ
ଶ ቤܭ߲

ൌܵܶܭ

 (17)

  

                                                      
14 As a consequence of the put-call parity, a butterfly spread can also be formed by using European puts. However, following 
the approach of Breeden and Litzenberger (1978), we use calls throughout. To see how to construct a butterfly spread with 
puts, see e.g. Hull (2006). 
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In words, this means that if European call options for all possible exercise prices were traded (i.e. as 

ઢܭ ՜ 0), the probability density for all possible future states of ்ܵ could be obtained. Applying 

expression (17) across the continuum of all possible states, the RND function ݍ௧ሺ்ܵሻ is obtained as: 

௧ሺ்ܵሻݍ  ൌ ݁௥ሺ்ି௧ሻ
߲2ܿ௧ሺܭሻ
2ܭ߲

 (18)

This is the famous result arrived at in the seminal paper by Breeden and Litzenberger (1978).15 It is 

important to note that since the derivation of expression (18) does not make any assumptions about the 

dynamics of the underlying price process, it can be used to obtain the implied RND function 

irrespective of what the underlying price process looks like. 

2.3.1. Techniques for estimating the RND function 

The simplest way to estimate the RND function is to derive a risk neutral histogram for it (an example 

can be seen in Figure 3 below). This is done by using expression (15) for every exercise price ܭ. By 

applying this technique to all available exercise prices ܭ for a certain maturity ܶ െ  discrete ,ݐ

approximations of the implied risk neutral probabilities for that maturity is obtained. 

Figure 3 – Risk neutral histogram for December 22 2008, three months 
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Though simple, the risk neutral histogram method has a number of notable weaknesses. One such 

weakness is that it requires large amounts of data. In order to obtain estimates for ݊ state probabilities, 

݊ ൅ 2 option prices are needed. Furthermore, all of the ݊ ൅ 2 option prices need to correspond to 

evenly spaced exercise prices, with the distance between adjacent exercise prices given by ઢܭ. In 

practice, this is a big limitation, because reliable price estimates for options are not necessarily evenly 

spaced (in the data section, we elaborate on the criteria used to determine what a “reliable” price 
                                                      
15 It should be pointed out that replication is not necessary to obtain expression (18). Differentiating the call option price 
given in expression (21) twice with respect to the exercise price will obviously yield the same result, but it is harder to do and 
does not provide the same intuitive explanation as to why this result is to be expected. 
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estimate is in this context). Also, it is clear that this approximation will always result in a truncated 

distribution (i.e. ׬ ௧ሺ்ܵሻ்݀ܵݍ
ஶ
ିஶ ൏ 1), as options for very high and very low exercise prices are not 

traded. Additionally, Bahra (1997) points out that this procedure is highly sensitive to badly behaved 

call prices. Observed prices sometimes exhibit small but sudden changes in convexity across exercise 

prices, as well as small degrees of concavity in exercise price. These irregularities result in large 

variations in probabilities over adjacent exercise prices and negative probabilities respectively. Where 

bid-ask spreads are observed rather than actual traded prices, these irregularities can arise due to 

measurement errors arising from using mid prices. Problems of this kind are present in our data and 

sometimes lead to histograms looking precisely like explained above (see Figure 4 below). Hence, it is 

clear that more sophisticated methods for retrieving the RND function are needed. The proposed 

methods for estimating the implied RND function can be broken down into three main categories.16 

Figure 4 – Risk neutral histogram for December 21 2007, three months 
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The first category is made up of strictly non-parametric methods. A notable example is Aït-Sahalia 

and Lo (1998), who apply the Nadaraya-Watson kernel estimator17 to estimate the entire call pricing 

function. Strictly non-parametric methods have the advantage of not making any assumptions at all 

about the underlying RND function, thus allowing for more general RND functions. However, they 

are particularly data-intensive and thus require a large amount of available option prices to work well. 

The second category encompasses curve-fitting methods. These are methods where the RND function 

is derived directly from some parametric specification of either the call pricing function or of the 

implied volatility smile curve. A notable example is Shimko (1993), who fits a quadratic polynomial 

                                                      
16 A wide variety of different methods for estimating the implied RND function have been proposed. Here, we only intend to 
give a very brief overview. For a thorough review of the literature on the matter, we refer the interested reader to Jackwerth 
(1999) or Figlewski (2009). 
17 Going into the specifics of kernel regression is beyond the scope of this paper. The interested reader is referred to e.g. 
Härdle (1992). 
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to the implied volatility smile and then uses the Black-Scholes formula to obtain the call price as a 

continuous function of the exercise price.18 The rationale behind interpolating in the implied volatility 

domain rather than in the call price domain directly is that implied volatilities are typically smoother 

than option prices themselves. The resulting call price function is then twice differentiated with respect 

to the exercise price in order to obtain the RND function between the lowest and the highest exercise 

prices. Clearly, the resulting distribution will be truncated. To cope with this, Shimko grafts lognormal 

tails onto each of the endpoints of the obtained density in order to get the resulting RND to integrate to 

one. Methods of this kind are non-parametric in the sense that the RND function is never explicitly 

parameterized, but they cannot be called strictly non-parametric, as they demand the estimation of 

certain parameters in the process of deriving the RND. 

The third category comprises fully parametric methods, where assumptions are made about either the 

price process of the underlying asset or about the functional form of the RND directly. Examples 

include Bates (1991), Aparicio and Hodges (1998), Ritchey (1990) and Bahra (1997). Bates assumes 

that the price process of the underlying asset evolves according to an asymmetric jump-diffusion 

process and derives the RND based on this assumption. Aparicio and Hodges use the generalized beta 

distribution of the second kind, a four-parameter distributions first described by Bookstaber and 

McDonald (1987). The generalized beta distribution of the second kind encompasses many commonly 

used distributions, such as the lognormal distribution, the gamma distribution, the exponential 

distribution and several Burr type distributions (to mention a few) as special cases. The rationale for 

using such an advanced distribution is that one does not want to impose an overly restrictive functional 

form on the RND. Another way to achieve this is to use mixtures of simpler distributions. Richey 

proposes a method where the RND is expressed as a weighted sum of ݇ lognormal distributions. 

Specified in this way, the RND is able to capture the main contributions to the implied volatility smile 

curve, namely the skewness and the kurtosis of the distribution of the underlying asset. The drawback 

of this method is that it requires the estimation of a large number of parameters as ݇ increases. Two 

parameters are used for each lognormal distribution and ݇ െ 1 mixing parameters are also needed. 

Hence, the total number of parameters to be estimated when ݇ lognormal distributions are mixed is 

3݇ െ 1. However, Bahra finds that even when using ݇ ൌ 2, the model is able to capture the skewness 

and the kurtosis of the underlying distribution, whilst only requiring five input parameters. Because of 

its flexibility and the relatively small number of required parameters to be estimated, Bahra finds the 

two-lognormal approach to be the preferred method to estimate the RND function. He also derives 

explicit formulas for European calls and puts for the two-lognormal method. 

Interestingly, Jackwerth (1999) finds that unless there are very few available option prices, the various 

methods presented above tend to give rather similar estimates of the implied RND function. Hence, 

                                                      
18 Note that the use of the Black-Scholes formula in this context does not require it to be true. It is merely used as a 
translation device between implied volatilities and option prices. 
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Jackwerth concludes that just about any reasonable method can be used without affecting the results 

too much. Consequently, we choose to use the two-lognormal method, as it is relatively simple, while 

allowing for a wide variety of possible RND shapes. 

2.3.2. The two­lognormal method 

When using a method where a functional form for the RND is assumed, the parameters are recovered 

by minimizing the distance between the observed option prices and those that are generated by the 

assumed parametric form. Melick and Thomas (1997) point out that this is a more general approach 

than assuming a stochastic process for the underlying price process, as a stochastic process implies a 

unique RND function, whereas any given RND function is consistent with many different stochastic 

processes. 

A random variable is lognormal if its natural logarithm is normally distributed. Thus, if the random 

variable ܼ is normal with parameters ߤ and ߪ, ݁௓ is lognormal with parameters ߤ and ߪ, i.e. 

ܼ ߳ ܰሺߤ, ሻߪ ՞ ݁௓ ߳ ܮሺߤ,  ሻ.19 The probability density function for a lognormal random variable isߪ

given by: 

ℓሺݔ; ,ߤ ሻߪ ൌ
݁ି

ሺ୪୭୥ሺ௫ሻିఓሻమ
ଶఙమ

, ݔ ൐ 0 
ߨ2√ߪݔ

 (19)

Hence, if the RND is assumed to be a weighted sum of two lognormal random variables, it will have 

the following functional form: 

;௧ሺ்ܵݍ ,ଵߤ ,ଵߪ ,ଶߤ ,ଶߪ ሻߠ ൌ ߠ
݁
ି ሺ୪୭୥ሺௌ೅ሻିఓభሻమ

ଶఙభమ

൅ ሺ1 െ ሻߠ
݁
ି ሺ୪୭୥ሺௌ೅ሻିఓమሻమ

ଶఙమమ

 ,   ்ܵ ൐ 0  
ߨଵ√2ߪ்ܵ ߨଶ√2ߪ்ܵ

(20)

Since expression (20) above is a weighted sum, the weights for the respective lognormal densities 

must sum to one, i.e. ߠ ߳ ሾ0, 1ሿ. 

Recall from expression (6) that the time ݐ price of any contingent claim maturing at time ܶ can be 

calculated as Π௧ ൌ ݁ି௥ሺ்ି௧ሻ ׬ ௧ሺ்ܵሻ݄ሺ்ܵሻ்݀ܵݍ
ஶ
଴ . Also recall that the payoff functions for European 

calls and puts respectively are ݄ሺ்ܵሻ ൌ maxሺ்ܵ െ ,ܭ 0ሻ and ݄ሺ்ܵሻ ൌ maxሺܭ െ ்ܵ, 0ሻ. Thus, the price 

of a European call and a European put respectively can be computed as: 

ܿ௧ ൌ eି୰ሺTି୲ሻ න ௧ሺ்ܵሻሺ்ܵݍ െ ሻ்݀ܵܭ

ஶ

 
௄

p୲ ൌ eି୰ሺTି୲ሻ න ܭ௧ሺ்ܵሻሺݍ െ ்ܵሻ்݀ܵ

௄

଴

 

 (21)

                                                      
19 Note that the parameters ߤ and ߪ here have nothing to do with the Black-Scholes parameters that were denoted in the same 
way earlier. 
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Given the functional form for the RND function ݍ௧ሺ்ܵሻ presented in expression (20) above, Bahra 

(1997) derives closed-form solutions for pricing European calls and puts: 

ܿ௧ ൌ eି୰ሺTି୲ሻ ൭ߠ ቆ݁ఓభା
ଵ
ଶ

 

ఙభమ઴ሺ݀ଵሻ െ ઴ሺdଶሻቇܭ ൅ ሺ1 െ ሻߠ ቆ݁ఓమା
ଵ
ଶఙమ

మ
઴ሺ݀ଷሻ െ  ઴ሺdସሻቇ൱ܭ

p୲ ൌ eି୰ሺTି୲ሻ ߠ ሺെdଶሻ ݁ఓభା
ଵ
ଶ൭ ቆܭ઴ െ ఙభమ઴ሺെ݀ଵሻቇ ൅ ሺ1 െ ሻߠ ቆܭ઴ሺെdସሻ െ ݁ఓమା

ଵ
ଶఙమ

మ
઴ሺെ݀ଷሻቇ൱ 

(22)

The parameters ݀ଵ, ݀ଶ, ݀ଷ and ݀ସ are iv n g e  by: 

1
െ logሺܭሻ ൅ ଵߤ ൅ ଵଶ݀ߪ ൌ

ଵߪ
 

݀ ൌ ݀ଵ െ    ଵߪ                  

3
െ logሺܭሻ ൅ ଶߤ ൅ ଶߪ

2      
ଶ

݀ ൌ

 (23)

ଶߪ
 

݀4 ൌ ݀ଷ െ ଶߪ  
It is interesting to note that unlike the Black-Scholes formula for index options, the dividend yield ݍ is 

not explicitly considered in the closed-form solution presented above. The reason for this is that the 

derivation of the Black-Scholes formula starts by assuming a price process for the underlying asset 

under the real world probability measure Զ and then transforms it to the equivalent martingale 

measure Է, whereas the approach taken here is to find the model parameters directly under Է. Hence, 

the dividend yield does not need to be considered explicitly, as its presence will affect the values of 

the other parameters, thus giving it an implicit effect. Also note that the time to maturity, ܶ െ  is not ,ݐ

present, other than in the discount factor. This is because the parameters are estimated for a specific 

maturity, so it too will be implicitly included in them. 

The expected value of a lognormally distributed random variable ݁௓ with parameters ߤ and ߪ is given 

by ॱሾ݁௓ሿ ൌ eµା
భ
మ஢

మ
. Thus, by the linearity of the expected value, it is clear that the time ݐ expected 

value of the RND function under Է will be given by: 

ॱ௧
Էሾ்ܵሿ ൌ ఓభା݁ߠ

ଵ
ଶ ఙభమ ൅ ሺ1 െ ሻ݁ఓమାߠ

ଵ
ଶఙమ

మ
 (24)

This expected value should equal the time ݐ price of a futures contract maturing at time ܶ, denoted by 

 :௧,். Hence, it should hold thatܨ

்,௧ܨ ൌ ఓభା݁ߠ
ଵ
ଶ ఙభమ ൅ ሺ1 െ ሻ݁ఓమାߠ

ଵ
ଶఙమ

మ
 (25)
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Thus, in order to fit a two-lognormal RND function to the data, the task is to solve the following 

minimization problem, where observed call and put prices for an exercise price ܭ are denoted by 

ܿ̂௧ሺܭሻ and ݌ ሺܭሻ respectively: ̂௧

min
ఓభ,ఙభ,ఓమ,ఙమ,ఏ

෍൫ܿ௧ሺܭ௜ሻ െ ܿ̂௧ሺܭ௜ሻ൯
ଶ ൅

௡

௜ୀଵ

෍൫݌௧ሺܭ ሻ െ ̂݌ ሺܭ ሻ൯ଶ
௡

௜ୀଵ

൅ ൬݁ߠఓభା
ଵ
ଶ

 

௜ ௧ ௜
ఙభమ ൅ ሺ1 െ ሻ݁ఓమାߠ

ଵ
ଶఙమ

మ
െ ௧,்൰ܨ

ଶ
 

subject to

 ߳

 

,ଵߤ ଶߤ  Թ 

ߪ  

(26)

ଵ, ଶߪ ൒ 0

ߠ ߳ ሾ0,1ሿ 

The time to maturity for all options is obviously fixed to ܶ െ  ௧ሺ்ܵሻ, i.e. theݍ as the aim is to derive ,ݐ

RND function for time ܶ at time ݐ. At this point, all the tools necessary to carry out our analysis have 

been presented. Before doing so, however, we will give an overview of the previous research 

conducted on the forecasting ability of RND functions, focusing on studies on market crashes, as well 

as present the data that has been used. 

3. Previous research 

The literature on implied RND functions is extensive. However, much of it focuses on exploring 

methods to extract RND functions from option prices and identifying the best ones. A brief overview 

of literature of this kind was presented in the previous section. The literature that focuses on using the 

RND to look at the market’s probability beliefs about specific events is more sparse. Studies of this 

kind can be divided into two categories, namely those that look at planned events, such as elections or 

central bank meetings, and those that look at unplanned events, i.e. various crises. Here, we intend to 

give a summary of the research conducted in this area, focusing on research on unplanned events. 

Äijö (2006) finds that “good” news cause implied volatility to decrease and make the RND function 

less left-skewed, while increasing its kurtosis. Conversely, “bad” news increase implied volatility, 

make the RND more left-skewed and decrease its kurtosis. These are general findings and should 

apply irrespective of whether planned or unplanned events are studied. Another general finding, 

presented by Ederington and Lee (1996), is that there is an inverse relationship between the time to 

maturity of the options studied and the effect of new information on the implied volatility. Thus, we 

would expect RND functions for shorter maturities to more accurately reflect the market’s probability 

beliefs about an event. 

Mandler (2002) studies RND functions around European Central Bank (ECB) meetings. He uses a 

curve-fitting method in the implied volatility domain to estimate the RND and finds that ECB 

meetings do not have a clear effect on the estimated implied RND functions. He concludes that ECB 

meetings have too small an impact on the market in order for their effect to rise above the “noise” 
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present in the RND function. Thus, it is clear that in order for an event to have an effect on the RND, 

the event has to be of great importance to the market. In their broad study of the usefulness of implied 

RNDs, Gemmill and Saflekos (2000) look at (among other things) British elections. They extract the 

RNDs from FTSE options using the two-lognormal method and find that it does help to reveal market 

sentiment during elections, but that it lacks forecasting ability. 

Obviously, stock market crashes are vastly significant, and hence, they are expected to be important 

enough to the market to affect the RND. Unlike the planned events, the time of occurrence of events of 

this kind is unknown ex ante. Therefore, events like these can potentially test the predictive power of 

RNDs to a greater degree than planned events, since it is possible to study whether RNDs before the 

event predicted its occurrence at all, rather than just its outcome. In the study already mentioned 

above, Gemmill and Saflekos also look at the effects of the crash of October 1987, the mini crash of 

October 1989 and the market turmoil of October 1997 on the British stock market. They find that the 

implied RND did not predict any of these events and conclude that the index options market reacts to 

rather than predicts crashes. Specifically, they find that the RND becomes more left-skewed after the 

event and not before it. Still, the authors point out that the RND is useful for revealing market 

sentiment after an event has occurred. Bates (1991) conducted one of the first studies on market 

crashes. He looks at RND functions implied by S&P 500 futures options for the period leading up to 

October 1987 and finds that the subsequent crash was anticipated as much as two months in advance. 

Fung (2007) looks at implied volatility on the Hong Kong stock exchange and finds that it gave early 

warning signs of the 1997 Hong Kong stock market crash. However, Bhabra et al. (2001) arrive at the 

opposite conclusion when studying the 1997 Korean financial crisis. They study the implied volatility 

of KOSPI200 index options and, much like Gemmill and Saflekos, conclude that option prices react to 

rather than predict crashes. Hence, it is obvious that the literature is not clear and points in different 

directions when it comes to the predictive power of implied volatilities and RNDs. However, Lynch 

and Panigirtzoglou (2008), who summarize the literature on the matter, find that the conclusion that 

option prices (and hence RND functions) react to rather than predict crashes is supported by most 

studies. Birru and Figlewski (2010) study the market crash of September 2008, i.e. the same crash that 

is studied in this paper. However, their methodology differs greatly from most other studies, as they 

look at intra-day changes of the RND implied by S&P 500 index options and the effects that news 

have on it rather than on inter-day RNDs. Hence, the question of prediction is barely touched upon, 

though the authors do find that the RND is highly responsive to changes in the level of the stock index, 

indicating that RNDs react to rather than predict movements in the underlying asset price. 
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4. Data 

The bulk of the data used for the analysis consists of European options on the EURO STOXX 50 

index for all of the trading days during the period December 1 2006 to December 31 2008. The time 

period is chosen so as to cover the entire period of the financial crisis that led up to the stock market 

crash, from the first indicators of it in early 2007 to the actual crash in September 2008. In addition, 

we include the end of 2006 so as not to miss the normal market conditions prior to the crash, as well as 

the end of 2008, when the crisis was in full force. Thus, the data at hand covers a time period of 

varying market conditions, making the chosen time period interesting to study. The data is also 

interesting because it consists of information on the Euro zone, whereas the other studies in this field 

have been focused on American (typically S&P 500), Asian or British data. The reason why the 

EURO STOXX 50 index specifically is chosen is that it is a very large index with a liquid derivatives 

market, which is essential to obtain reliable data. 

20The initial data set, obtained from iVolatility.com , consists of all quoted calls and puts during the 

mentioned period for a total of 490508 options, divided equally between puts and calls. For each 

option, the data gives information about maturity (ܶ െ  ,current index level (ܵ௧) ,(ܭ) exercise price ,(ݐ

traded volume, open interest, and bid and ask quotes. We use the mid price, i.e. the simple average of 

the bid and ask for an option, as our option price estimate (ܿ̂௧ and ̂݌௧ for calls and puts respectively). 

To this data set, we apply a cleaning procedure along the lines of Bakshi, Cao and Chen (1997). 

In order to exclude observations that may distort the analysis, we apply a cleaning procedure 

consisting of nine filters. Specifically, we remove: options with no traded volume and/or open interest 

(1), options with less than six days to maturity (2), options with negative bid and/or ask (3), options 

where the bid price is greater than the ask price (4), options where bid and/or ask is greater than the 

current level of the index (5), options for which bid and/or ask ൏ maxሺܵ௧ െ ,ܭ 0ሻ (6), options where 

the ratio of ask price to bid price is greater than 1.2 (7), options with bid and/or ask smaller than 0.1 

(8) and finally, options that are puts (9). 

The reason for removing options with no traded volume and/or open interest (filter 1) is that these are 

options that are illiquid and hence, the information contained in their prices is unreliable. Options with 

less than six days to maturity (filter 2) are removed, since they may suffer from liquidity biases, 

caused by traders having to buy or sell large quantities to close out existing positions, as pointed out 

by Bakshi, Cao and Chen. The filters applied in steps 3 to 6 remove options that violate obvious 

no-arbitrage conditions, such as negative price, negative bid-ask spread and negative time value. The 

rationale behind filter 7 is that we want to use options with as narrow bid-ask spreads as possible so as 

to obtain reliable estimates of option prices. However, if the requirement on the ask to bid ratio being 

close to one is too strict, we are left with very few option prices, making further analysis difficult or 
                                                      
20 www.ivolatility.com 
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even impossible. After having tried different values, we find that 1.2 is a satisfactory cutoff point. The 

reason for removing options with prices of less than ten cents (filter 8) is that these are options were 

price changes will always have a large percentage effect, as the minimal increment that a price can 

change by is one cent. In order to mitigate this effect of discrete prices, these options are removed. At 

this point, we are left with 71660 options, divided between 45114 calls (63%) and 26546 puts 

(37%). Thus, calls make up roughly two thirds of the option prices that we deem reliable. One 

possible approach at this point would have been to convert all puts to calls using the put-call parity and 

to use the average between the call mid price and the mid price implied by the put (i.e. the call price 

obtained after converting the mid put price into a call price by using the put-call parity) as our call 

price estimate. However, given that the remaining options have made it through a rigorous cleaning 

procedure, they should already give reliable price estimates. Hence, we feel that this procedure adds 

unnecessary complexity without significantly improving reliability. Moreover, we would not be able 

to do this for all options, as we have more calls than puts, thus leading to option prices being estimated 

in an inconsistent way. What could still be done, though, is to remove the puts that have corresponding 

calls (i.e. calls for the same exercise price and maturity), but to keep the unique puts so as to obtain 

option price estimates for a larger number of exercise prices. However, Birru and Figlewski (2010) 

point out that equity index puts typically trade at different implied volatilities than corresponding 

calls.21 Thus, this approach will create artificial jumps in the implied volatility curve wherever a put 

price rather than a call price is used, which is precisely the result that we obtained when we tried this 

method (see Figure 5 below). Birru and Figlewski also point out that this is likely to result in badly 

behaved RND functions. Hence, we choose to exclude puts altogether in our final filter (9). Thus, our 

final data set consists of 45114 call options. A summary of the cleaning procedure with the number of 

options removed in each filter is presented in Appendix C. 

Figure 5 – Volatility smile with five unique puts on December 18 2006, three months 

 
                                                      
21 In theory, where trading is assumed to be costless, the put-call parity implies that the implied volatilities for a put and a call 
for the same exercise price and time to maturity should be equal in order for there not to be any arbitrage. In practice, 
however, there is cost associated with putting on a trade, which is why these implied volatilities can differ. How much they 
can differ is still limited by arbitrage, and hence depends on the trading cost. Birru and Figlewski (2010) find that for S&P 
500 index options, puts can trade at implied volatilities of one to two percentage points higher than calls at the money. 
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In addition to option price data, data on prices for futures on the EURO STOXX 50 index, the risk free 

interest rate and the dividend yield for the index is also needed. The EURIBOR rate is used as proxy 

for the risk free rate. For all of the trading days during the period December 1 2006 to December 31 

2008, data for EURIBOR rates for three, six and nine months, as well as data for the dividend yield on 

the EURO STOXX 50 index, was obtained from Thomson Reuters Datastream. Futures prices for 

maturities of three, six and nine months for the last month of every quarter were obtained from 

Bloomberg Terminal. The reason why these particular dates and maturities were chosen will be 

elaborated on in the methodology section below. 

5. Methodology 

As was stated in the introduction, the aim of this paper is to study whether the options market 

predicted the stock market crash of September 2008 or reacted to it. The simplest way to do this is to 

look at the implied volatility before and after the crash. In our analysis, we look at the level of the 

at-the-money (ATM) implied volatility as well as the overall shape of the implied volatility curve. The 

next step is to retrieve the implied RND function and examine it. Birru and Figlewski (2010) point out 

that the RND has a significant advantage over the implied volatility in that it is model-independent22, 

whereas the implied volatility is extracted by using the Black-Scholes model. Looking at the RND 

function allows us to study how the skewness and the kurtosis of the risk neutral distribution of the 

underlying asset changes over time, thus contributing information that is not explicitly present when 

looking only at the implied volatility. 

For the last month of every quarter (i.e. March, June, September and December) of our sample period, 

we generate implied volatility curves for maturities roughly equal to three, six and nine months.23 We 

choose to look at different maturities in order to see how far in advance, if at all, the options market 

was able to predict the stock market crash. The reason for going as far back in time as to the end of 

2006 is twofold. First, we want a clear picture of what the implied volatility curves and RND functions 

looked like before the crash and second, early indicators of the stock market crash appeared as early as 

the first quarter of 2007, so the starting point had to be set prior to this. The reason for choosing the 

last month of every quarter is practical. The expiry dates of options on the EURO STOXX 50 index do 

not span all months. However, options expiring in March, June, September and December are always 

available. Thus, carrying out the analysis during these months ensures us of the availability of options 

with maturities of three, six and nine months. This is particularly useful, since the crash that we are 

studying occurred during the month of September. 

                                                      
22 While the RND is model-dependent in the sense that it relies on the model chosen to retrieve it, recall that Jackwerth 
(1999) finds that different methods tend to give similar RND functions if there is enough data available. 
23 For each of these months, a date that gives roughly the desired maturities is chosen and all of the analysis is carried out on 
this date. In order to stress test this approach, we have varied this date back and forth by about a week. We find that this does 
not significantly alter the results. 
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The methodology described above differs from the one most commonly observed in studies of this 

kind. Typically, the evolution of the implied volatility and/or the RND function is studied every day 

around the specific event. Therefore, we also generate implied volatility curves and RNDs for every 

trading day of September 2008, looking at contracts with expiry in December 2008 (i.e. a time to 

maturity of roughly three months). This allows us to see if the options market was able to predict the 

crash on a horizon much shorter than three months. 

5.1. Implied volatility 

In order to calculate the implied volatilities, we use the Newton-Rhapson method, an iterative method 

for finding the roots of real-valued functions. For a real-valued function ݂ሺݔሻ that is reasonably 

well-behaved, a successively better approximation to the root, given an initial guess of ݔ଴, is given 

by

௡ାଵݔ ൌ ௡ݔ െ
݂ሺݔ௡ሻ
݂ᇱሺݔ௡ሻ

24: 

 (27) 

Notice that the change in the variable ݔ between steps is given by െ ௙ሺ௫೙ሻ
௙ᇲሺ௫೙ሻ

. Thus, as ݔ௡ approaches the 

exact root, the correction term െ ௙ሺ௫೙ሻ
௙ᇲሺ௫೙ሻ

 tends to zero. Hence, an arbitrarily good solution can be 

obtained and the procedure is terminated when the correction term is smaller than a pre-specified 

value, commonly referred to as the tolerance. 

In our case, the function whose root we want to find is the difference between the Black-Scholes call 

price and the observed call price, here denoted by ܦ ൌ ܿ௧ െ ܿ̂௧. Given that all parameters needed to 

calculate the Black-Scholes price apart from ߪ are known, this can be expressed as (recall expressions 

(12) and (13) from the theoretical framework section): 

ሻߪሺܦ ൌ ܿ௧ሺߪሻ െ ܿ̂௧ ௧ ሺ݀ଶሻ െ ܿ̂௧ ൌ ݁ି௤ሺ்ି ሻܵ௧ࢶሺ݀ଵሻ െ ݁ି௥ሺ்ି௧ሻࢶܭ

݀ଵ ൌ
log ቀܵ௧ܭ

 
ቁ ൅ ൬ݎ െ ݍ ൅ ଶߪ

2 ൰ ሺܶ െ ሻݐ

ܶ√ߪ െ ݐ
 

݀ଶ ൌ
log ቀܵ௧ܭቁ ൅ ൬ݎ െ ݍ െ ଶߪ

2

(28)

൰ ሺܶ െ ሻݐ

ܶ√ߪ െ ݐ
 

Thus, all we need in order to use the Newton-Rhapson method is ܦᇱሺߪሻ ൌ డ஽ሺఙሻ
డఙ

. Note that since ܿ̂௧ is a 

constant, డ஽ሺఙሻ
డఙ

ൌ డ௖೟ሺఙሻ
డఙ

. This is the derivative of the Black-Scholes call option price with respect to 

the volatility, typically referred to as vega and denoted by ߥ: 

ߥ ൌ ܵ௧݁ି௤ሺ்ି௧ሻ߶ሺ݀ଵሻ√ܶ െ  (29) ݐ

  
                                                      
24 Note that ݂ሺݔሻ in this setting is an arbitrary real-valued function and not in any way connected to the pricing function 
݂ሺݐ, ௧ܵሻ that was introduced earlier. 
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In expression (29) above, ݀ଵ is calculated in the same way as in expression (28) and ߶ሺ·ሻ denotes the 

probability density function of the standard normal distribution, elaborated on earlier. Thus, we obtain 

the implied volatility for an option by the iterative process: 

௡ାଵߪ ൌ ௡ߪ െ
௡ሻߪሺܦ
௡ሻߪሺߥ

 (30) 

We use the initial guess of ߪ଴ ൌ 20% and a tolerance of 10ି଺, i.e. the process is terminated when 

ቚെ ஽ሺఙ೙ሻ
ఔሺఙ೙ሻ

ቚ ൑ 10ି଺. The obtained implied volatilities are then plotted against the corresponding 

standardized exercise prices.25 All of this is easily done in MATLAB, where vector notation allows us 

to obtain all implied volatilities for a specified maturity ܶ െ  at the same time. The ݐ at a specific date ݐ

ATM implied volatility is obtained by linearly interpolating the implied volatilities for the exercise 

prices closest to the value of ܵ௧. As the interpolation distance is usually short, a linear approximation 

should provide reasonable estimates, even though the implied volatility curve is typically convex, so 

linear interpolation could give rise to over-estimation. 

5.2. RND 

Even though risk neutral histograms are not used in the actual analysis, we present a few of them in 

the paper, as they provide an intuitive explanation of RNDs to the reader unfamiliar with the concept. 

When constructing the risk neutral histograms, we do not extrapolate outside of the available exercise 

price range and thus end up with truncated distributions. However, we do interpolate in order to obtain 

estimates for all the necessary option prices in the range between the lowest and the highest available 

exercise prices. We use linear interpolation in the implied volatility domain.26 For every desired 

exercise price that we lack data for, we interpolate between the two implied volatilities corresponding 

to the two exercise prices closest to the desired exercise price and then convert the obtained implied 

volatilities to prices using the Black-Scholes formula. The histograms are then obtained by using 

expression (15). 

For the two-lognormal m thod, we solve the minimization problem: e

min
ఓభ,ఙభ,ఓమ,ఙమ,ఏ

෍൫ܿ௧ሺܭ௜ሻ െ ܿ̂௧ሺܭ௜ሻ൯
ଶ

௡

௜ୀଵ

ఓభା
ଵ
ଶ

 

൅൬݁ߠ ఙభమ ൅ ሺ1 െ ሻ݁ఓమାߠ
ଵ
ଶఙమ

మ

                                                     

െ ௧,்൰ܨ
ଶ
 

subject to

 ߳

 

,ଵߤ ଶߤ  Թ 

ߪ  

(31)

ଵ, ଶߪ ൒ 0

ߠ ߳ ሾ0,1ሿ 

 
25 The standardization is carried out by dividing all exercise prices ܭ at time ݐ by the level of the index at the time, ௧ܵ, and 
multiplying by 100. Hence, a standardized ATM exercise price is always equal to 100. The standardization is performed in 
order for the volatility smiles to be easily comparable over time as the level of the index changes. 
26 As has already been mentioned, the volatility smile is typically convex, thus making linear interpolation unsuitable. 
However, we usually interpolate over relatively short distances, where a linear approximation should not be too bad. 
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Obviously, this is a special case of expression (26) presented in the theoretical framework section. The 

only difference is that the sum of squared put option pricing errors is not present, as we do not have 

any put options in our final data set. The minimization is done in MATLAB by using the command 

fmincon, choosing the interior point optimization algorithm. The starting guesses that we use are 

ଵߤ ൌ ଶߤ ൌ log൫ܨ௧,்൯ , ଵߪ ൌ ଶߪ ൌ ܶ√஺்ெߪ െ ,ݐ ߠ ൌ ଵ
ଶ
, where ߪ஺்ெ is the estimated ATM implied 

volatility. 

Having estimated the RND, we proceed by calculating a number of descriptive statistics for it. 

Specifically, we look at expected value, standard deviation, annualized percentage standard deviation, 

skewness and kurtosis. All of these are calculated at time ݐ under the equivalent martingale measure 

Է. The expected value, also known as the mean and the first moment, is given by27: 

ॱ௧
Էሾ்ܵሿ ൌ න ௧ሺ்ܵሻ݀ܵݍ்ܵ

ஶ

଴

 ்

As has already been explained, it should hold that ॱ௧
Էሾ்ܵሿ ൌ  ௧,். Thus, comparing the obtainedܨ

expected value of the RND to the corresponding futures price provides a rough indication of the 

goodness of fit.

 (32)

28 

The second moment of a distribution is known as the variance. The square root of the variance is the 

standard deviation, which is a measure of dispersion around the mean. The standard deviation is 

calculated as: 

॰௧
Էሾ்ܵሿ ൌ ඩන൫்ܵ െ ॱ௧

Էሾ்ܵሿ൯
ଶ
௧ሺ்ܵሻ்݀ܵݍ

ஶ

଴

 (33) 

It should be pointed out that using the unadjusted standard deviation as an estimate of the volatility is 

problematic, as it depends on both the level of the index and on the time to maturity. Thus, comparing 

standard deviations without first adjusting them can lead to incorrect conclusions. For this reason, we 

adjust the standard deviation and obtain a measure that we call annualized percentage standard 

deviation, calculated as: 

%॰௧
Էሾ்ܵሿ ൌ

॰௧
Էሾ்ܵሿ
ܵ௧

√ܶ െ  (34) ݐ

 

  

                                                      
27 For all of the descriptive statistics presented here, the interval that the integral should be taken over is ሺെ∞,∞ሻ. As has 
already been mentioned, however, since ݍ௧ሺ்ܵሻ ൌ ,∞ሺെ ߳ ்ܵ ׊ 0 0ሻ, integrating over ሾ0,∞ሻ will yield the same result. 
28 Obviously, there are more accurate goodness of fit measures, e.g. the root mean square error (RMSE). However, explicitly 
evaluating and analyzing the goodness of fit is not the focus of this is paper. Here, we find it sufficient to point out that the 
goodness of fit appears to be satisfactory for all of the obtained RNDs. 
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The next measure that we look at is skewness. Skewness is calculated as the standardized third 

moment and measures the asymmetry of a distribution: 

ॺ௧
Էሾ்ܵሿ ൌ ቆ

1
॰௧
Էሾ்ܵሿ

 ቇ
ଷ

න൫்ܵ െ ॱ௧
Էሾ்ܵሿ൯

ଷ
௧ሺ்ܵሻ்݀ܵݍ

ஶ

଴

 (35)

29A skewness of zero corresponds to a symmetric distribution, e.g. the normal distribution.  Negative 

skewness means that there is more probability mass in the left tail than in the right tail. For this reason, 

a distribution with negative skewness is referred to as left-skewed. Similarly, a distribution with 

positive skewness has more probability mass in the right tail and is referred to as right-skewed. Notice 

that since skewness is a standardized moment, it is dimensionless and hence does not need to be 

adjusted for comparability. 

Finally, we look at the kurtosis of the di ribu o , calculated as the standardized fourth moment. st ti n

ॶ௧
Էሾ்ܵሿ ൌ ቆ

1
॰௧
Էሾ்ܵሿ

 ቇ
ସ

න൫்ܵ െ ॱ௧
Էሾ்ܵሿ൯

ସ
௧ሺ்ܵሻ்݀ܵݍ

ஶ

଴

 (36)

Kurtosis measures the “peakedness” of a distribution. A higher kurtosis means that the distribution has 

a higher peak around the mean and fatter tails. Distributions with a kurtosis equal to three are referred 

to as mesokurtic. The most common example of a mesokurtic distribution is the normal distribution. If 

the kurtosis is higher than three, the distribution is referred to as leptokurtic. Conversely, if it is lower 

than three, the distribution is referred to as platykurtic. Like skewness, kurtosis is a standardized 

moment and hence does not need to be adjusted for comparability. 

All of the integrals presented above are calculated numerically in MATLAB using the trapz command, 

which approximates the integral by using the trapezoidal method. The reason for using numerical 

integration is that the analytical expressions for all moment but the first are rather cumbersome, since 

we are dealing with a weighted sum of two distributions. However, recall that the mean can be 

calculated analytically by the rather simple formula in expression (24). Comparing the analytically 

obtained mean to the one obtained through numerical integration, we find that the difference appears 

no earlier than in the sixth decimal place. Thus, for all practical purposes, numerical integration yields 

sufficiently accurate results. 

6. Results 

In this section, we present our results. We start by examining the implied volatilities, looking at the 

evolution of the ATM implied volatility over time as well as the evolution of the volatility smile as a 

whole. We then proceed by looking at the implied RND functions, analyzing their shape as well as 

                                                      
29 It should be pointed out that a skewness of zero does not necessarily imply a symmetric distribution (though this is 
typically the case). However, the converse is always true – a symmetric distribution always has a skewness that is equal to 
zero. 
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various summary statistics. Throughout this section, we will only present figures as illustrative 

examples of our analysis. All of the figures for the volatility smiles and the RND functions are 

available in Appendix A and Appendix B respectively. 

6.1. Implied volatility 

We begin by analyzing the implied volatilities for the last month of every quarter in the period 

December 2006 to December 2008. We then move on to look at the implied volatilities for September 

2008. One general observation that is largely independent of the time period studied or the maturity at 

hand is that the overall shape of the implied volatility function is convex and that we observe a 

volatility smirk rather than a volatility smile. This is consistent with the findings of Rubinstein (1994) 

discussed earlier, i.e. that equity indices exhibit reverse skew in their implied volatility functions. 

Thus, we conclude that the dynamics proposed by the Black-Scholes framework do not accurately 

describe the price process of the index at hand. 

6.1.1. December 2006 to December 2008 

6.1.1.1. ATM implied volatility 

In order to get a rough impression as to whether implied volatilities predicted the crash of September 

15 2008 or reacted to it, we look at the evolution of the ATM implied volatility for the maturities of 

three, six and nine months (see Figure 6 below). We can see that for all of the maturities, there is a 

slow rise in the ATM implied volatility leading up to September 2008. Naïvely, this could be 

interpreted as the options market having predicted the crash. However, this is a dangerous conclusion. 

For one thing, other events, e.g. the bankruptcy of several subprime lenders in March 2007 and the 

bailout of Bear Stearns in March 2008, which unsettled the market and potentially could have 

increased the volatility, occurred before the crash, so the observed increase could just be a reaction to 

them. Furthermore, the increase in ATM implied volatility after the crash (i.e. from September 2008 to 

December 2008) is of a far greater magnitude than the relatively modest increase of the period leading 

up to the crash, thus suggesting that the options market reacted to the crash rather than predicted it. 

Still, coming to any far-reaching conclusion based solely on quarterly ATM implied volatility is 

dangerous, as ATM implied volatility could potentially give an incomplete picture. For this reason, we 

proceed by looking at the evolution of the entire implied volatility curve for the period at hand. 
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Figure 6 – ATM implied volatility for the period December 2006 to December 2008 
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6.1.1.2. Volatility smile 

When looking at the shape of the volatility smile and its evolution over time for the three month 

maturity, we find that it is rather steep for December 2006. However, the steepness declines and does 

not come back to a similar level until December 2008, i.e. after the crisis. Recall that the steepness for 

an implied volatility curve with a reverse skew shape is related to the left-skewness of the RND, where 

a steeper curve indicates more left-skewness. Thus, the decreased steepness indicates that the RND 

became less left-skewed during the financial crisis. A word of caution when looking at the steepness 

of a volatility smile is in order. One may think that the volatility smile for e.g. June 2007 is just as 

steep as the one for December 2006, as the two look similar at first glance. However, this is a result of 

there being more observations for options with low moneyness (here, moneyness is defined as the 

strike price divided by the time ݐ value of the underlying asset, i.e. ௄
ௌ೟

 ) for June 2007 than for 

December 2006. As the volatility smile is the steepest for options with low moneyness, months where 

reliable data on options of this kind is available will look to have steeper volatility smiles at first 

glance. Thus, one needs to pay close attention to the moneyness when assessing the steepness of the 

implied volatility curve and how it changes over time. Still, interesting findings can be made when 

looking at the shape of the volatility smile. We note that the volatility smile has a very strange 

appearance in the month of March for both 2007 and 2008. The curve is almost flat and even slightly 

concave for low exercise prices. To see whether this was an anomaly for the specific dates, other dates 

in March 2007 and 2008 were tried without significantly affecting the results. Events that could be 

expected to affect the volatility smile occurred in both of these months, i.e. the bankruptcies of several 

subprime lenders in March 2007 and the bailout of Bear Stearns in March 2008, so the strange shape 

could have arisen due to these events. However, we do not see the same strangely flat shape for 
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September 2008, when the crash occurs, indicating that something other than negatively perceived 

events may have played a part in the strange shape of the March 2007 and March 2008 volatility 

smiles. 

For maturities of six and nine months, the findings are rather similar to those for the three month 

maturity. However, there are some differences. In particular, there are more months where the implied 

volatility curve is rather flat and generally, the curve is less steep than for the three month maturity. 

To summarize, we find that the implied volatility curve for the three month maturity is generally 

steeper than for six months and nine months. Also, there are fewer months where the curve is almost 

flat for no apparent reason. Thus, we feel that the three month maturity contains more relevant 

information than the longer maturities in this case. Additionally, as has already been mentioned, 

Ederington and Lee (1996) find that the effect of new information on the implied volatility curve is 

greater for shorter maturities, thus making them more appropriate to look at for our purposes. For this 

reason, we choose to use the three month maturity when looking at the volatility smile for every 

trading day of September 2008 and when retrieving the implied RND functions later on. Another 

reason for choosing three months is that there is generally more reliable data available for three 

months than for six and nine months in our data set. 

6.1.2. September 2008 

6.1.2.1. ATM implied volatility 

Looking at the evolution of the three month ATM implied volatility throughout September 2008 (see 

Figure 7 below), we can see that it was relatively stable up until the crash of September 15. After the 

crash, the ATM implied volatility began to rise. However, the big increase in ATM implied volatility 

did not occur until the end of the month. This suggests that not only did the options market react to the 

crash rather than predict it, but the reaction was not immediate, at least not to its full extent. It is also 

noteworthy that there is actually a dip in ATM implied volatility during the week after the crisis, right 

before the sharp increase occurs, suggesting that investors were initially unsure of how to react to the 

crash. The probable reason for this is that the Emergency Economic Stabilization Act was presented 

on September 19, likely having a calming effect. However, the act was voted down on September 29, 

bringing the ATM implied volatility up to a higher level.30 

  

                                                      
30 The Emergency Economic Stabilization Act was amended and passed into law under the name Troubled Asset Relief 
Program (TARP) on October 3 2008. However, this did little to soothe the market. For an in-depth discussion of the 
government policies implemented to handle the stock market crash, please refer to Taylor (2009). 
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Figure 7 – ATM implied volatility for every trading day of September 2008, three months 
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6.1.2.2. Volatility smile 

When looking at how the shape of the volatility smile changes during September 2008, we find that 

while the slope does change somewhat throughout the month, it is very hard to find a general 

tendency. If anything, the volatility smile appears to be the steepest at the beginning of the month, 

though that is a finding that is far from certain, as the changes are just too small to be judged 

qualitatively, especially when having to consider that the moneyness of the available options changes 

from day to day. 

While looking at the implied volatility is a good starting point, it should be clear that the analysis 

conducted above is nowhere near sufficient, as it is highly qualitative in nature and relies heavily on 

subjective interpretation of shapes. Though the approach of analyzing the implied volatility curve can 

be formalized, we choose to leave it here and instead look at the implied RND function, as it carries 

more information. Specifically, it is much easier to look at higher moments and thus quantify what we 

try to infer from the shape of the volatility smile. 

6.2. RND 

As was previously mentioned, a more convex volatility smile indicates fatter tails of the implied RND 

and a steeper volatility smile indicates a more left-skewed RND (for a volatility smile with a reverse 

skew). In the previous section, we tried to qualitatively look at steepness to say something about the 

skewness, but qualitatively looking at convexity to say something about the kurtosis is hard and was 

not even attempted. Here, we take a much more formal approach by actually calculating skewness and 

kurtosis, as well as the other previously explained descriptive statistics, for all of the retrieved RND 

functions. Just like for the implied volatilities, we first look at the last month of every quarter during 

the period December 2006 to December 2008 and then at every trading day of September 2008. 
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However, a general finding that does not depend on the time period examined is that all of the RNDs 

are left-skewed (to varying degree). This clearly contradicts the Black-Scholes assumption of GBM 

dynamics for the underlying price process, as GBM dynamics are consistent with a (single) lognormal 

RND, which is always right-skewed.31 Another general finding is that the estimated distributions 

always seem to provide a good fit to the data, as หॱ௧
Էሾ்ܵሿ െ  ௧,்ห is always very low (see Table 1 andܨ

Table 2 in the following subsections). It never exceeds 1.3 and is typically smaller than 0.1. As has 

been said, this is a rather rough estimate of the goodness of fit, but we deem it sufficient in this case, 

as it at least provides an indication. 

6.2.1. December 2006 to December 2008 

Table 1 – Descriptive statistics for the period December 2006 to December 2008 

Descriptive s tistics (an futures  s) ta d  price
 ܨ ॱ ॰ %॰ ॺ ॶ Date 

2006‐12‐18  4156  4156.71  299.67  3.58%  ‐1.05  4.61 
2007‐03‐16  3914  3914.00  362.65  4.57%  ‐0.65  3.03 
2007‐06‐22  4510  4510.61  391.34  4.39%  ‐0.82  3.94 
2007‐09‐21  4408  4408.00  417.53  4.80%  ‐0.85  3.58 
2007‐12‐21  4424  4424.26  404.89  4.64%  ‐0.79  3.55 
2008‐03‐20  3428  3427.99  485.22  6.99%  ‐0.41  2.56 
2008‐06‐20  3453  3453.06  394.08  5.77%  ‐0.65  3.09 
2008‐09‐19  3273  3272.90  429.08  6.62%  ‐0.47  3.00 
2008‐12‐22  2359  2358.99  547.47  11.27%  ‐0.77  2.94 

 

We begin by looking at the annualized percentage standard deviation for the time period at hand (refer 

to Table 1 above for the values of all of the descriptive statistics for the period), letting it serve as a 

proxy for volatility in this context. We note an upward jump in the level of this statistic when going 

from December 2006 to March 2007. After this, it stays relatively stable until March 2008, when we 

observe an increase again. This is followed by a slight decrease in June 2008, though the level is still 

higher than for the period before March 2008. In September 2008, we again see an increase, followed 

by a very large increase in December 2008. We note that the resulting volatility is more than three 

times higher at the end of the time period than at the beginning of it. When trying to make sense of 

these findings, it is useful to recall the events that occurred during these months. March of 2007 is the 

first month we look at after the first indicators of the forthcoming crash, i.e. the bankruptcy of several 

subprime lenders. This appears to have had an increase on the volatility. It is then stable until March 

2008, when another early indicator of the crash – the bailout and the resulting acquisition of Bear 

Stearns by J.P. Morgan – occurred, again increasing the volatility. The volatility then decreases, before 

increasing again in September 2009, i.e. after the stock market crash. An unprecedented increase in 

                                                      
31 The reason why implied distributions tend to be left-skewed is an interesting topic in its own right. One plausible 
explanation is portfolio-insuring behavior. For more on this topic, see Grossman and Zhou (1996). 
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volatility then occurs in December 2008. Thus, it appears that the volatility of the RND function reacts 

to events that the market perceives negatively by increasing. It does not seem to predict these events, 

which is particularly clear when noting the decrease in volatility in June 2008, the last point in time 

prior to the stock market crash considered in this section. This decrease is best explained as the market 

perceiving June 2008 to be a relatively better month than March 2008. However, if the options market 

had predicted the stock market crash, we would not expect the volatility to decrease in June 2008, as it 

should have reflected the expected increase in volatility of September 2008. Furthermore, the large 

increase in volatility in December 2008, i.e. after the stock market crash occurred, indicates that the 

full extent of the implications of the crash was not realized immediately, which is also more consistent 

with reaction than with prediction. Thus, when looking at the volatility of the RND function, we find 

that it indicates that the market reacted to rather than predicted the crash. One should note that there is 

a slight upward trend in volatility leading up to the crash, but as we have argued, this appears to be a 

result of the options market reacting to unsettling events prior to the crash rather than predicting the 

crash itself. 

We next look at the skewness of the implied RND function. The distribution is rather left-skewed in 

December 2006, with a skewness of below െ1. However, it becomes less left-skewed in March 2007. 

The skewness then stabilizes on a level somewhere between the December 2006 and the March 2007 

levels from June 2007 to December 2007, only to become significantly less left-skewed in March 

2008. The left-skewness then increases again in June 2008, but decreases to the March 2008 level 

following the crash of September 2008. The left-skewness then increases in December 2008, though 

the distribution is still less left-skewed than at the beginning of the period. The evolution of the 

skewness of the distribution is consistent with the results of the implied volatility section, where we 

found that the volatility smile for a time to maturity of three months is initially rather steep and that 

the steepness then declines somewhat, increasing again for December 2008. Notice that left-skewness 

tends to decrease during months where events perceived negatively by the market occur (i.e. March 

2007, March 2008 and September 2008). For the relatively calm period from June 2007 to December 

2007, the skewness changes very little after becoming more left-skewed in June 2007 when compared 

to March 2007. This suggests that negatively perceived events are associated with a decrease in 

left-skewness. Furthermore, just like the annualized percentage standard deviation, the evolution of the 

skewness seems to indicate that the options market reacted to rather than predicted the crash. Note that 

the left-skewness in March 2008 was very similar to the left-skewness in September 2008. Thus, if the 

stock market crash was predicted by the options market, we would expect left-skewness not to change 

much in June 2008 and stay close to the September 2008 level. However, it increases, indicating that 

the market seemed to believe in a return to more normal market conditions. An interesting finding is 

that the distribution becomes more left-skewed in December 2008 when compared to September 2008. 

Thus, in terms of skewness, the market actually resembles the normal market conditions more after the 
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crash than during the preceding financial turmoil (however, the overall shape of the RND is very 

different for December 2008 when compared to the pre-crisis RND; this will be elaborated on below). 

The final descriptive statistic that we examine in this section is the kurtosis. A general observation is 

that the kurtosis decreases over time and is at a much lower level at the end of the period (December 

2008) than at the beginning of it (December 2006). Looking at the evolution of the kurtosis, we see 

large dips for March 2007 and March 2008. After both of these months (i.e. for June 2007 and June 

2008 respectively), we can see that the kurtosis increases again, though the increase is smaller in 

magnitude than the preceding decrease. Strangely, however, we do not see a dip for September 2008. 

Instead, the kurtosis is rather stable at values around three for the period June 2008 to December 2008. 

Still, the general finding is that negatively perceived events are associated with decreased kurtosis. 

However, one should note that kurtosis is sensitive to observations that are far away from the mean, 

i.e. the tails of the distribution. Most reliable data is for options with moneyness ranging from 90% to 

110%, meaning that we generally have few observations in the tails of the distribution, and hence, the 

uncertainty concerning the estimated tails is rather large. For this reason, the obtained kurtosis should 

be interpreted with care. 

Our findings are largely consistent with those of previous studies. Like e.g. Äijö (2008) and Gemmill 

and Saflekos (2000), we find that negatively perceived events (“bad” news, to use Äijö’s terminology) 

are associated with increased volatility and decreased kurtosis. We also find that changes in the RND 

function tend to occur after an event rather than before it. Hence, we find that the RND function did 

not appear to predict the stock market crash of September 2008, consistent with the finding of 

Gemmill and Saflekos that RND functions do not predict market crashes. Another finding consistent 

with Gemmill and Saflekos is that the RND takes on a more bimodal shape after the crash. This can 

clearly be seen when comparing the RND for any of the months before the crash to the RND of 

December 2008 (see Figure 8 below). While the changes in the shape of the RND functions that we 

observe prior to December 2008 are captured by the changes in standard deviation, skewness and 

kurtosis, December 2008 exhibits a more bimodal shape, indicating that the market experienced 

difficulty in reaching a new consensus. This cannot be seen by simply looking at the descriptive 

statistics. 
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Figure 8 – RND functions for September 12 2008 and December 22 2008, three months  

 

While those of our findings that have been discussed so far are consistent with previous research, our 

results for the evolution of the skewness are not. Both Äijö and Gemmill and Saflekos find that 

negatively perceived events (such as crashes) are associated with increased left-skewness. However, 

we observe a decrease in left-skewness as a reaction not only to the crash itself, but to the other "bad 

news” occurring before the crash as well. Interestingly, Birru and Figlewski (2010) come to the very 

same conclusion when looking at the implied RND function for the S&P 500 equity index during the 

crash of September 2008. Like us, they find that volatility increases, that the kurtosis decreases and 

that the distribution becomes less left-skewed. As was just stated, the first two findings are consistent 

with the studies on previous stock market crashes, whereas the last one appears to be a finding specific 

for this crisis. As the decrease in left-skewness appears to be a unique finding for this particular stock 
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market crash, it is interesting to note that we make it on European data, whereas Birru and Figlewski 

made it on US data. 

6.2.2. September 2008 

Table 2 – Descriptive statistics for every trading day of September 2008 

Descriptive st tistics (and utures  s) a  f price

 ܨ ॱ ॰ %॰ ॺ ॶ Date 
2008‐09‐01  3389  3389.18  404.80  6.61%  ‐0.59  3.26 
2008‐09‐02  3440  3440.04  400.68  6.41%  ‐0.56  3.17 
2008‐09‐03  3398  3398.00  403.45  6.51%  ‐0.48  3.04 
2008‐09‐04  3300  3300.02  420.69  6.96%  ‐0.47  2.95 
2008‐09‐05  3203  3203.05  427.20  7.23%  ‐0.44  2.86 
2008‐09‐08  3301  3300.99  415.72  6.72%  ‐0.50  2.98 
2008‐09‐09  3284  3283.99  416.32  6.75%  ‐0.47  2.96 
2008‐09‐10  3256  3256.85  413.12  6.70%  ‐0.52  3.14 
2008‐09‐11  3236  3236.47  417.83  6.79%  ‐0.52  3.12 
2008‐09‐12  3295  3296.29  405.63  6.44%  ‐0.51  3.16 
2008‐09‐15  3160  3159.99  424.31  6.91%  ‐0.44  2.88 
2008‐09‐16  3099  3099.00  431.78  7.13%  ‐0.34  2.63 
2008‐09‐17  3020  3019.63  450.18  7.57%  ‐0.31  2.86 
2008‐09‐18  3011  3011.00  446.99  7.52%  ‐0.43  2.79 
2008‐09‐19  3273  3272.90  429.08  6.62%  ‐0.47  3.00 
2008‐09‐22  3207  3206.99  418.53  6.50%  ‐0.43  2.89 
2008‐09‐23  3162  3162.00  426.52  6.67%  ‐0.46  2.88 
2008‐09‐24  3144  3143.98  420.30  6.58%  ‐0.43  2.88 
2008‐09‐25  3227  3227.00  424.94  6.43%  ‐0.49  3.02 
2008‐09‐26  3183  3183.00  451.38  6.90%  ‐0.32  2.60 
2008‐09‐29  3036  3036.25  470.21  7.41%  ‐0.41  2.87 
2008‐09‐30  3062  3062.01  477.85  7.41%  ‐0.40  2.84 

 

When looking at the obtained RND functions for every trading day of September 2008, we note that 

there is a trend for left-skewness as well as kurtosis to decrease throughout the month (refer to Table 2 

above for the values for all of the descriptive statistics for this period). However, the decrease is not 

smooth for either of these two statistics. For this reason, it is difficult to come to any conclusions 

based on the day-to-day changes in them. However, it should be noted that they both stay within a 

fairly limited interval throughout the month. More can be said about the annualized percentage 

standard deviation. We see that it increases following the crash of September 15 and stays at the 

higher level until September 19, when it decreases again. It then stays at this level until September 29, 

when it again comes back to the level of the first few days following the crisis. This evolution of the 

volatility is consistent with the market reacting to the developments concerning the Emergency 

Economic Stabilization Act. When it is announced on September 19, it appears to have a calming 

effect on the market, decreasing the volatility. However, when it is voted down on September 29, the 
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volatility jumped back up. This result is consistent with what we found when looking at the 

development of the ATM implied volatility earlier and is more consistent with the options market 

reacting to the crash rather than predicting it. The finding that the impact on volatility is the clearest 

immediate effect of a crash is consistent with Gemmill and Saflekos (2000). It should also be noted 

that while the volatility for the days following the crash in September 2008 is higher than for any of 

the earlier dates that we look at, it is still much lower than in December 2008, indicating that the initial 

reaction to the crash did not take the full extent of it into account. Thus, the reaction was, to some 

extent, delayed, again clearly indicating that the options market reacted to rather than predicted the 

crash.32 

7. Conclusions 

In this paper, we have tried to determine whether the options market predicted or reacted to the stock 

market crash of September 2008. To do this, we have used option data for the EURO STOXX 50 

equity index and looked at implied volatilities and RND functions. The obtained volatility smiles 

exhibit a reverse skew and hence clearly show that the functional form for the RND implied by the 

Black-Scholes dynamics does not adequately reflect the functional form of the actual RND implied by 

the market. We estimate the market RND by using a mixture of two lognormal distributions, as it is 

sufficiently flexible to capture features of the true RND function that are missed by the Black-Scholes 

single lognormal RND, such as fat tails and left-skewness. 

Our general finding is that the options market did not predict the crash. Instead, we find that it reacted 

to it. This result is consistent with most other RND studies conducted on stock market crashes. 

Specifically, we find that the reaction is characterized by increased volatility, decreased left-skewness, 

decreased kurtosis and a tendency toward a bimodal shape of the RND function. Apart from the result 

regarding the skewness, these findings are consistent with studies conducted on earlier market crashes, 

such as the stock market crash of 1987 and the 1997 Asian stock market crash. However, studies on 

previous crashes find that the market’s reaction in terms of skewness is that left-skewness increases. 

As was just stated, we make the opposite finding for the September 2008 stock market crash. Since 

Birru and Figlewski (2010) also observe that the September 2008 stock market crash lead to decreased 

left-skewness when looking at US data, we believe that this is a finding specific to this particular stock 

market crash, rather than an anomaly in our data set. We cannot think of any convincing explanation 

as to why the effect on skewness for this crash should be different from previous crashes, and Birru 

and Figlewski do not offer one either. For this reason, we believe that this is a potentially interesting 

area for further research. 

                                                      
32 It should be pointed out that while the reaction was delayed, we find it highly unlikely that it was delayed for as long as 
until December 2008. However, as we do not look at October or November, we do not see the full extent of the reaction until 
December in our data. 
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When interpreting our results, it is important to note that the RND framework has certain limitations. 

The most obvious limitation is related to the availability of the data. Since deep OTM and deep ITM 

options are generally less liquid, reliable price estimates for them are often unavailable. For this 

reason, the estimation of the tails of the RND is somewhat unreliable. This is problematic, since the 

tails are likely to be best suited to gauge market expectations of extreme swings. Thus, to see whether 

the options market predicted a crash, we would ideally like to have a more accurate picture of the left 

tail of the RND. Another limitation of our study is that we do not consider the potential effects of 

estimation errors in our analysis. Specifically, we only look at how certain descriptive statistics change 

over time and do not test to see if any of the changes are statistically significant. However, it should be 

pointed out that the other studies in the field are conducted in a similar way and no study (at least that 

we know of) provides tests of statistical significance, which is criticized by Jackwerth (1999). 

It is important to remember that the implied density functions that we look at are risk neutral. This 

means that they are likely to differ from the real world density functions, as investors are risk averse. 

Thus, option prices will incorporate not only probability beliefs about future outcomes, but also risk 

aversion and separating these two factors is far from trivial. This should not constitute a problem if 

risk aversion is relatively stable over time, as changes in the RND will mainly reflect changes in 

probability beliefs in this case. However, it is not unfeasible that the risk aversion could increase 

significantly during a crisis, which may or may not invalidate the RND framework for our type of 

analysis. Rubinstein (1994) finds that as long as the risk aversion stays within reasonable bounds, the 

shape of the real world density function is qualitatively quite similar to the RND. Still, we feel that 

more research of this kind is warranted. Hence, we would suggest the connection between the RND 

and the real world probability density during the late-2000s financial crisis as a topic for future 

research. 

It should be noted that the fact that implied RNDs appear to lack predictive power does not mean that 

they are of no practical use. Since the RND function reacts to events such as crashes, it is a useful tool 

for assessing the market sentiment and how it changes over time. This could be of use for a wide 

variety of market participants, particularly central banks and other decision-making organs, as they 

need to have a good understanding of the market sentiment in order to develop effective policies and 

implement them in an efficient way.  
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Appendix A – Volatility smiles 

Below, we present the implied volatility smiles for the last month of every quarter during the period 

December 2006 to December 2008. The volatilities for maturities of three, six and nine months are 

presented in Figure A1, Figure A2 and Figure A3 respectively. For December 2008, the implied 

volatility for nine months is calculated one day later than for three and six months. This is a 

consequence of insufficient data for the nine month maturity on the selected date. We also present the 

implied volatility for every trading day of September 2008 for contracts maturing on December 20 

2008, i.e. a maturity of roughly three months (though the exact maturity obviously gets shorter over 

time). These are presented in Figure A4. For all of the plots, the red crosses mark the obtained implied 

volatilities. These are connected linearly by solid blue line segments in order to get an approximate 

picture of the volatility smile. 

Figure A1 – Volatility smiles for the period December 2006 to December 2008, three months 
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Figure A2 – Volatility smiles for the period December 2006 to December 2008, six months 
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Figure A3 – Volatility smiles for the period December 2006 to December 2008, nine months 
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Figure A4 – Volatility smiles for every trading day of September 2008, three months 
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Appendix B – RND functions 

Here, we present all of the retrieved implied RND functions, along with the estimated parameters and 

the previously described descriptive statistics for each RND function. In each graph, the dashed green 

line corresponds to the first set of parameters, the dashed red line corresponds to the second set of 

parameters and the solid blue line is the weighted sum, i.e. the RND function itself. All of the 

presented RNDs have a maturity of (roughly) three months. In Figure B1, RND functions for the last 

month of every quarter during the period December 2006 to December 2008 are presented. RND 

functions for every trading day of September 2008 are presented in figure B2. 

Figure B1 – RND functions for the period December 2006 to December 2008, three months  

December 18 2006 

 

 

 

  

Parameters 
 ૚ࣆ 8.2290
 ૚࣌ 0.0924
૛ 8.3544ࣆ
࣌  ૛ 0.0439
 ࣂ 0.1972

Descriptive statistics 
ॱ  4156.7090
॰  299.6706
%॰  3.5829%
ॺ  ‐1.0507
ॶ  4.6064

March 16 2007 
Parameters 

 ૚ࣆ 8.1800
 ૚࣌ 0.0946
૛ 8.3192ࣆ
 ૛࣌ 0.0489
 ࣂ 0.3692

Descriptive statistics 
ॱ  3914.0015
॰  362.6529
%॰  4.5695%
ॺ  ‐0.6525
ॶ  3.0254
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June 22 2007 

 

 

 

  

Parameters 
 ૚ࣆ 8.3049
 ૚࣌ 0.1056
૛ 8.4428ࣆ
࣌  ૛ 0.0540
 ࣂ 0.2365

Descriptive statistics 
ॱ  4510.6144
॰  391.3381
%॰  4.3861%
ॺ  ‐0.8226
ॶ  3.9374

September 21 2007 
Parameters 

 ૚ࣆ 8.4314
 ૚࣌ 0.0505
૛ 8.2847ࣆ
࣌  ૛ 0.1090
 ࣂ 0.6931

Descriptive statistics 
ॱ  4407.9957
॰  417.5276
%॰  4.7964%
ॺ  ‐0.8456
ॶ  3.5798
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December 21 2007 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.4336
 ૚࣌ 0.0498
૛ 8.3018ࣆ
࣌  ૛ 0.1069
 ࣂ 0.6724

Descriptive statistics 
ॱ  4424.2599
॰  404.8866
%॰  4.6361%
ॺ  ‐0.7892
ॶ  3.5523

March 20 2008 
Parameters 

 ૚ࣆ 8.0017
 ૚࣌ 0.1333
૛ 8.2206ࣆ
࣌  ૛ 0.0731
 ࣂ 0.4184

Descriptive statistics 
ॱ  3427.9948
॰  485.2163
%॰  6.9860%
ॺ  ‐0.4096
ॶ  2.5579

49 



 

June 20 2008 

 

 

 

  

Parameters 
 ૚ࣆ 8.1990
 ૚࣌ 8.0174
૛ 0.0632ࣆ
࣌  ૛ 0.1190
 ࣂ 0.6753

Descriptive statistics 
ॱ  3453.0633
॰  394.0824
%॰  5.7739%
ॺ  ‐0.6457
ॶ  3.0944

September 19 2008 
Parameters 

 ૚ࣆ 8.1574
 ૚࣌ 0.0697
૛ 7.9912ࣆ
࣌  ૛ 0.1478
 ࣂ 0.5599

Descriptive statistics 
ॱ  3272.9015
॰  429.0790
%॰  6.6212%
ॺ  ‐0.4670
ॶ  3.0008
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December 22 2008 

 

Figure B2 – RND functions for every trading day of September 2008, three months 

 

 

 

 

 

  

Parameters 
 ૚ࣆ 7.8655
 ૚࣌ 0.1080
૛ 7.3457ࣆ
࣌  ૛ 0.2438
 ࣂ 0.7443

Descriptive statistics 
ॱ  2358.9922
॰  547.4694
%॰  11.2749%
ॺ  ‐0.7725
ॶ  2.9372

September 1 2008 
Parameters 

 ૚ࣆ 8.1748
 ૚࣌ 0.0730
૛ 7.9913ࣆ
࣌  ૛ 0.1327
 ࣂ 0.7053

Descriptive statistics 
ॱ  3389.1821
॰  404.8018
%॰  6.6052%
ॺ  ‐0.5856
ॶ  3.2554
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September 2 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.1898
 ૚࣌ 0.0716
૛ 8.0100ࣆ
࣌  ૛ 0.1250
 ࣂ 0.7009

Descriptive statistics 
ॱ  3440.0362
॰  400.6783
%॰  6.4089%
ॺ  ‐0.5564
ॶ  3.1734

September 3 2008 
Parameters 

 ૚ࣆ 8.0243
 ૚࣌ 0.1301
૛ 8.1840ࣆ
࣌  ૛ 0.0703
 ࣂ 0.3791

Descriptive statistics 
ॱ  3397.9982
॰  403.4544
%॰  6.5142%
ॺ  ‐0.4750
ॶ  3.0397
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September 4 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.1562
 ૚࣌ 0.0777
૛ 7.9536ࣆ
࣌  ૛ 0.1271
 ࣂ 0.6881

Descriptive statistics 
ॱ  3300.0156
॰  420.6857
%॰  6.9553%
ॺ  ‐0.4690
ॶ  2.9497

September 5 2008 
Parameters 

 ૚ࣆ 8.1344
 ૚࣌ 0.0779
૛ 7.9347ࣆ
࣌  ૛ 0.1359
 ࣂ 0.6391

Descriptive statistics 
ॱ  3203.0495
॰  427.1959
%॰  7.2263%
ॺ  ‐0.4446
ॶ  2.8600
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September 8 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 7.9852
 ૚࣌ 0.1364
૛ 8.1610ࣆ
࣌  ૛ 0.0716
 ࣂ 0.3838

Descriptive statistics 
ॱ  3300.9885
॰  415.7171
%॰  6.7244%
ॺ  ‐0.4957
ॶ  2.9780

September 9 2008 
Parameters 

 ૚ࣆ 7.9778
 ૚࣌ 0.1359
૛ 8.1558ࣆ
࣌  ૛ 0.0734
 ࣂ 0.3794

Descriptive statistics 
ॱ  3283.9904
॰  416.3164
%॰  6.7486%
ॺ  ‐0.4732
ॶ  2.9558
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September 10 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.1400
 ૚࣌ 0.0769
૛ 7.9539ࣆ
࣌  ૛ 0.1408
 ࣂ 0.6767

Descriptive statistics 
ॱ  3256.8457
॰  413.1230
%॰  6.7032%
ॺ  ‐0.5248
ॶ  3.1446

September 11 2008 
Parameters 

 ૚ࣆ 8.1354
 ૚࣌ 0.0778
૛ 7.9431ࣆ
࣌  ૛ 0.1419
 ࣂ 0.6770

Descriptive statistics 
ॱ  3236.4702
॰  417.8265
%॰  6.7875%
ॺ  ‐0.5242
ॶ  3.1155

55 



 

September 12 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.1503
 ૚࣌ 0.0753
૛ 7.9775ࣆ
࣌  ૛ 0.1383
 ࣂ 0.6652

Descriptive statistics 
ॱ  3296.2857
॰  405.6329
%॰  6.4446%
ॺ  ‐0.5069
ॶ  3.1612

September 15 2008 
Parameters 

 ૚ࣆ 7.9311
 ૚࣌ 0.1415
૛ 8.1220ࣆ
࣌  ૛ 0.0777
 ࣂ 0.3841

Descriptive statistics 
ॱ  3159.9857
॰  424.3070
%॰  6.9055%
ॺ  ‐0.4377
ॶ  2.8825
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September 16 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 7.8721
 ૚࣌ 0.1052
૛ 7.5340ࣆ
࣌  ૛ 0.1966
 ࣂ 0.6912

Descriptive statistics 
ॱ  3098.9961
॰  431.7782
%॰  7.1325%
ॺ  ‐0.3397
ॶ  2.6308

September 17 2008 
Parameters 

 ૚ࣆ 8.0928
 ૚࣌ 0.0747
૛ 7.9178ࣆ
࣌  ૛ 0.1656
 ࣂ 0.4760

Descriptive statistics 
ॱ  3019.6309
॰  450.1752
%॰  7.5677%
ॺ  ‐0.3145
ॶ  2.8603
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September 18 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 7.8380
 ૚࣌ 0.1447
૛ 8.0786ࣆ
࣌  ૛ 0.0862
 ࣂ 0.3344

Descriptive statistics 
ॱ  3010.9987
॰  446.9928
%॰  7.5190%
ॺ  ‐0.4330
ॶ  2.7907

September 19 2008 
Parameters 

 ૚ࣆ 8.1574
 ૚࣌ 0.0697
૛ 7.9912ࣆ
࣌  ૛ 0.1478
 ࣂ 0.5599

Descriptive statistics 
ॱ  3272.9015
॰  429.0790
%॰  6.6212%
ॺ  ‐0.4670
ॶ  3.0008
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September 22 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.1346
 ૚࣌ 0.0765
૛ 7.9499ࣆ
࣌  ૛ 0.1368
 ࣂ 0.6178

Descriptive statistics 
ॱ  3206.9893
॰  418.5328
%॰  6.4954%
ॺ  ‐0.4306
ॶ  2.8884

September 23 2008 
Parameters 

 ૚ࣆ 8.1204
 ૚࣌ 0.0794
૛ 7.9110ࣆ
࣌  ૛ 0.1360
 ࣂ 0.6600

Descriptive statistics 
ॱ  3162.0049
॰  426.5174
%॰  6.6701%
ॺ  ‐0.4602
ॶ  2.8795
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September 24 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.1182
 ૚࣌ 0.0762
૛ 7.9356ࣆ
࣌  ૛ 0.1428
 ࣂ 0.5922

Descriptive statistics 
ॱ  3143.9795
॰  420.3043
%॰  6.5773%
ॺ  ‐0.4255
ॶ  2.8793

September 25 2008 
Parameters 

 ૚ࣆ 8.1350
 ૚࣌ 0.0797
૛ 7.9354ࣆ
࣌  ૛ 0.1396
 ࣂ 0.6744

Descriptive statistics 
ॱ  3226.9978
॰  424.9442
%॰  6.4316%
ॺ  ‐0.4855
ॶ  3.0185
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September 26 2008 

 

 

 

 

  

Parameters 
 ૚ࣆ 8.1429
 ૚࣌ 0.0801
૛ 7.9316ࣆ
࣌  ૛ 0.1335
 ࣂ 0.5837

Descriptive statistics 
ॱ  3182.9994
॰  451.3765
%॰  6.9007%
ॺ  ‐0.3175
ॶ  2.5986

September 29 2008 
Parameters 

 ૚ࣆ 7.8590
 ૚࣌ 0.1643
૛ 8.0883ࣆ
࣌  ૛ 0.0910
 ࣂ 0.3616

Descriptive statistics 
ॱ  3036.2530
॰  470.2059
%॰  7.4087%
ॺ  ‐0.4071
ॶ  2.8672
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September 30 2008 

 

 

  

Parameters 
 ૚ࣆ 7.8542
 ૚࣌ 0.1600
૛ 8.0962ࣆ
࣌  ૛ 0.0931
 ࣂ 0.3410

Descriptive statistics 
ॱ  3062.0143
॰  477.8492
%॰  7.4092%
ॺ  ‐0.3978
ॶ  2.8409
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Appendix C – Data cleaning 

In Table C1 below, the number of options removed in every filter of the cleaning procedure is shown. 

Note that we perform the data cleaning procedure step by step, meaning that once an option has been 

caught in a filter, it is eliminated and not examined in subsequent filters. Thus, the options removed in 

a filter are those that do not meet the conditions of that particular filter, but that did not breach the 

conditions of any of the previous filters. Obviously, this does not affect the final data set, but it does 

affect the interpretation of the numbers, as these would be different if the filters were applied in a 

different order. 

Table C1 ‐ Cleaning procedure 
Step  Filter  Options removed  Options left 
0  Initial number of options  ‐  490508 
1  Remove options with no traded volume and/or open interest  367159  123349 
2  Remove options with less than six days to maturity  3531  119818 
3  Remove options with negative bid and sk price /or a 0  119818 
4  Remove options where bid ൐ ask  0  119818 
5  Remove options where bid and/  or ask ൐ ܵ௧  9  119809 
6  Remove options where bid and/ axሺܵ௧ െ ,ܭ 0ሻ or ask ൏ m 39033  80776 
7  Remove options where ask/bid ൐ 1.2  5602  75174 
8  Remove options with bid and/or ask ൏ 0.1  3514  71660 
9  Remove put options  26546  45114 

Total     445394  45114 
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