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Abstract 

Given a gamble opportunity with a positive expected return, the question to be asked is: How 

much money should I gamble?  

In this thesis, we study how a gambler who holds a general expo-power utility function 

allocates wealth in discrete gambles. The analyzed gambles are the following: a single binary 

gamble, equivalent to betting on a tennis match, a double binary gamble, equivalent to betting 

on two simultaneous tennis matches, and a discrete financial market gamble, equivalent to 

betting on a financial asset with a discrete outcome distribution. We derive analytical 

expressions that can be used to approximate utility-optimal bet allocations for any specified 

expo-power utility function. We propose a general approximation formula to obtain bet 

allocations at large wealth levels. The Newton-Raphson method is applied to locate optimal 

bet allocations at lower wealth levels.  

The main motivation for the thesis is to provide analytical results that enable von Neumann-

Morgenstern rational gamblers to establish optimal bet allocation strategies.  
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1. Introduction 

Perhaps the most famous bet allocations problem, so far in history, is the St. Petersburg 

paradox
1
 presented by Nicolas Bernoulli in the early 18th century. The St. Petersburg game is 

setup so that the expected arithmetic value of playing the game is infinite. However, the 

probability of winning an infinite sum is infinitely small. How much shall one pay to play the 

St. Petersburg game? Bernoulli (1738) was first to publish the idea that wealth exhibits 

diminishing marginal utility. In Bernoulli’s paper Exposition of a New Theory on the 

Measurement of Risk the log utility function is introduced as a solution to the St. Petersburg 

game. By taking log over the game’s expected value the utility of the game is finite. 

Consequently, the log-utility gambler will only pay a finite sum to play the game. Later 

studies have shown that every unbounded utility function has its own St. Petersburg paradox 

emerging by adjusting the payoff structure of the game (Menger 1934). For that reason, utility 

functions are normally assumed to have an upper bound for wealth. The utility theory was 

further developed by von-Neumann Morgenstern in the frequently quoted book Theory of 

Games and Economic Behavior. The researchers postulated axioms of preference relations 

over discrete lotteries.  They showed that if their axioms hold, there exists a unique real 

preference function U deciding the gambler’s preferences in the selection of lotteries. Kelly 

(1956), a decade later, introduced the growth optimal portfolio (GOP) criteria as an alternative 

method to solve bet allocation problems. The GOP bet allocation maximizes the expected 

geometric portfolio growth, equivalent to maximizing long-run portfolio growth. The GOP 

research is a niche area in economics and commonly associated with bet allocation strategies. 

The idea of this paper is to merge parts of the GOP research with the expected utility 

framework. We will apply von-Neumann Morgenstern (VNM) utility optimization techniques 

on a set of discrete gambles which have previously been studied in the GOP research. The 

motivation is to analyze optimal bet allocations for gamblers whose preferences are        

VNM-rational. GOP preferences imply that gamblers are always willing to accept higher 

(geometric) mean return for greater variance. With the widespread usage of applying modern 

portfolio theory to investment decisions, we think it is clear that individuals are willing to 

reduce investment returns in order to reduce the variance risk.  

                                                             
1 The game is a series of coin tosses, and the gambler doubles his winning for every next toss until a pre-selected 

side of the coin is realized. Thus, the expected value of the game is  
 

  
 
       . 

http://www.math.fau.edu/richman/Ideas/daniel.htm
http://www.math.fau.edu/richman/Ideas/daniel.htm
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We choose the general expo-power (EP) utility function to describe gambling preferences. 

The EP utility function is able to describe increasing and decreasing risk aversion preferences. 

The risk aversion preferences are set by the parameters of the utility function. The main 

advantage of the EP utility function is that only two parameters are needed to specify the 

function. We will apply the EP utility function on a set of discrete gambles and then derive 

general analytical expressions enabling us to approximate utility optimal bet allocations. 

Furthermore, we propose a general approximation formula valid for large wealth values and 

show how the Newton Raphson method is used to locate utility-optimal bet allocations.  

 

1.1. Problem statement 

Before the gamble, the gambler needs to decide how much wealth to allocate to the gamble. 

The bet allocation problem is subjective to the gambler in question if the choice of bet 

allocation depends on private risk preferences. An argument against VNM-rationality is that 

gambling preferences could be described by a universally accepted criterion. Such as the 

growth optimal portfolio criterion, that the bet allocation is set in order to maximize geometric 

mean return. We find the universal description of gambling preferences to be faulty. The main 

critique against the growth optimal criterion is that the gambler has a constant relative risk 

aversion with such a strategy. The GOP gambler will always allocate the same relative 

fraction of wealth to equivalent gambles, unaffected by the current wealth level. Given a 

binary gamble with a 55% winning percentage the growth optimal gambler allocates x% of 

current wealth to the bet irrespectively if the current wealth level is $1 or $1 billion.  

We assume that the gambler is willing to reduce investment return in order to reduce 

variance.  

VNM-utility functions are categorized in utility families according to functional form. We 

restrict our study to the expo-power (EP) utility function mainly due to its simple functional 

form yet flexible preference set. The EP utility function has only two parameters simplifying 

estimation procedures in future empirical works, and its exponential form is simplifying 

optimization results.  

Given the set of discrete gambles, the specific purpose of this thesis is to answer the question:  
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How to find expected utility optimal bet allocations to a set of discrete gambles for a gambler 

with an expo-power utility function? 

The general EP utility function will be applied to derive analytical expressions that can be 

utilized to approximate utility optimal bet allocations for the given set of discrete gambles. 

The discrete gambles are chosen to reflect popular money gambles. Since the EP utility 

function is general in form, the analytical results are likewise general. We will demonstrate 

how the Newton-Raphson method can be used to approximate optimal bet allocations for a 

specified EP utility function. We also put forward an approximation formula which lessens 

the computer burden of locating optimal bet allocations at large wealth levels. The 

approximation techniques are necessary because there are no general explicit solutions to 

solve for optimal bet allocations in the given gambles.  

 

1.2. Motivation 

This thesis should be viewed as an extension of previous research about bet allocation 

strategies in discrete gambles. We focus our thesis on a set of bet allocation problem 

commonly associated with the GOP research but put the allocation problem in a VNM-utility 

framework, and more specifically the gambles are played in the general EP utility function. 

This is a neglected research area probably due to the small size of traded markets with 

discrete outcome distributions, mainly the gambling markets. We think the thesis-subject is 

growing in importance especially given the growing presence of derivative products with 

discrete outcome distribution such as binary options.       

A further motivation for conducting this study is the strong growth of automated betting 

algorithms applied in online gambling markets. Automated betting algorithms place high 

frequency bets on deterministic and statistical arbitrages. As their counterparts in financial 

markets, the presence of betting algorithms increase the liquidity in gambling markets and put 

pressure on betting exchanges to lower transaction costs. To utilize the results in this paper, 

the gambler first need to specify an EP utility function. The effort of specifying and 

optimizing such a utility function may only be economically meaningful if the gambler 

engages in large scale gambling operations.  Going forward in the paper, we will provide 

short notes on how utility functions could be estimated in order to serve those readers who are 
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interested to apply the general results on a practical level. We always think it is useful to 

discuss how theoretical results can add practical value.      

 

2. Background 

This section is mainly a summary of general economic theory related to assumptions made in 

the results. Here, we further motivate and clarify our assumptions behind the results, such as 

the VNM-utility assumption. If alternative assumptions were possible, or if chosen 

assumptions are arguable, we will motivate those choices. Subsequent paragraphs include 

parts of von-Neumann Morgenstern expected utility theorem, Arrow-Pratt measures of risk 

aversion, and expected utility theory. Experienced readers are advised to shortcut the section.   

We start with an exposition of our utility assumption. Von Neumann-Morgenstern (VNM) 

proved that if their preference axioms hold, there exist a real preference function   on 

outcome   so that,  

                        

                                         , 

with outcomes            and their respective probabilities             Most people 

recognize VNM’s first axiom of completeness that says that agents have a preference ranking 

on a set of outcomes. The second axiom is of transitivity, if X is preferred to Y and Y to Z, 

then X is preferred to Z. The most debated VNM-axiom is the one referred to as the 

independence axiom. If X is preferred to Y, then for Z in the probability interval [0 1], we 

have           preferred to            This preference axiom contradicts the 

empirical result in the famous behavioral experiment Allais choice problem
2
 (1953) designed 

by Maurice Allais. The experiment showed that most individuals hold preferences that are 

inconsistent with the independence axiom given the experiment setup. Another VNM-critical 

research paper that has received attention is Rabin (2000) who demonstrated that a utility 

function with modest risk aversion for lower stakes could lead to absurdly high risk aversion 

                                                             
2 The Allais paradox consists of two sessions. In the first session, the subjects are choosing between option A: 

winning $1 million with certainty, or option B: $5 million with probability 10% (P10%) , $1 million with P89% 

and nothing with P1%.. In session two the rules are changed, option A is: Nothing with P89%, $1 million with 

P11%, and option B is: Nothing with P90%, $5 million with 10%. VNM-consistent behavior is to choose either 

AA or BB. But a significant fraction of the subjects preferred the combination AB. As a footnote to the footnote, 

the author of this paper holds preferences for combination BB.     
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for larger stakes. But as pointed out by Cox and Sadiraj (2001), the utility function in Rabin’s 

paper defines the lottery outcome as the final wealth variable, ignoring previously 

accumulated wealth. We agree with Rubensten in his comments
3
 to Rabin’s paper: “The idea 

that a person who does not have an apple today is ready to surrender two apples tomorrow in 

order to get one today is not implausible. (p3)” However, axioms cannot be proven true and 

neither can they be proven false. At the risk of sounding naive, we think that the main 

criterion for using the expected utility axioms in decision analysis should be plausibility. The 

expected utility theorem is a plausible methodology if preferences can be assumed to be 

VMN-rational. Is it plausible to assume that gambling preferences are VMM-rational in 

discrete gambles?  

The general answer must be no. Behavioral experiments have clearly shown that the 

independence axiom does not hold empirically in lab settings. However, in a traded gambling 

market an opportunity equivalent to the Allais choice problem is non-existent. In similar 

fashion as Samuelsson (1960) argues that the St Petersburg paradox can be solved by 

concluding that the game will never be offered. Since the expected profit of offering the St 

Petersburg lottery is an infinite loss for the bookmaker. We think it is reasonable to assume 

that gamble opportunities similar to the ones offered in the Allais choice problem never occur 

in gambling markets. We acknowledge the existence of arbitrage opportunities in gambling 

markets. However, the probability of successfully implement arbitrage strategies is less than 

100% certain. The pure arbitrage displayed in Allais choice problem does not reflect true 

market conditions. Conclusively, we feel certain to assume that gambling preferences in 

gambling markets are VNM-rational.  

The next paragraph takes on Arrow-Pratt measures of risk aversion and their applications to 

this paper. The aim is to prepare the reader for a discussion of logical properties of utility 

functions directly related to the Arrow-Pratt measures which will be further elaborated in the 

results section. Moreover, we aim to clarify our arguments for the choice of the expo-power 

utility function. The text also serves as a practical note on how risk preferences can be 

measured.  

Utility is not a measurable physical unit and thus it arises some difficulties moving the utility 

concept to a practical level. One may solve the difficulties by arguing that economic agents 

know their own utility functions. Or one may argue that utility functions can be estimated.  

                                                             
3 Comments on the Risk and Time Preferences in Economics. (2001) 
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Or accept that both arguments are true. One method to estimate a utility function was 

introduced by Arrow-Pratt (1964 and 1965) with their measures of risk aversion. Their risk 

aversion measure is simply the second derivative of the utility function divided by its first 

derivative. Due to its mathematical construction, the Arrow Pratt risk aversion measures are 

invariant of positive affine transformation of the utility function. The measures also serve as a 

link between the certain equivalent and the utility function. The VNM-utility function is 

invariant to positive affine transformations so it was important that any consistent risk 

aversion measure would have that same property. The property of being invariant to positive 

affine transformations implies that we can add and/or multiply a positive constant to the 

utility function without changing the curvature of the function. The certain equivalent is the 

risk free payout that yields the same utility to the individual as his/her utility of participating 

in a gamble. So to illustrate the certainty equivalent algebraically:  

                        

The individual is indifferent between receiving the certainty equivalent          , and 

accepting the risky gamble     , where the random variable   has variance    and 

expected value  . Thus, the risk premium is       , i.e. the wealth the individual sacrifice 

in order to obtain a risk free endowment. Arrow-Pratt approximated both sides of the 

expression with a Taylor series expansion around       ,  

                                
 

  
                 

, where    is a remainder term including second order terms and    is a third-order remainder 

term. Arrow and Pratt assumed that the remainders could be ignored, and after some algebraic 

manipulation they received the following approximation:  

         
      

     
 

      
      

     
 

Where      is the Arrow-Pratt absolute risk aversion measure (ARA), and        is 

defined as the relative risk aversion measure (RRA). Notice that in both measures wealth is 

the expected value of wealth.  Decreasing absolute risk aversion (DARA) if wealth increases 

results in a decreasing risk premium and hence the gambler is more willing to allocate a larger 
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absolute sum to the lottery. Decreasing relative risk aversion (DRRA) is almost equivalent to 

DARA with the only difference that the decision maker is allocating a larger relative fraction 

of current wealth to the lottery. Empirical support for DRRA preferences are found in Ogaki, 

Shang (2004), Graves (1979). However, in theoretical models there is a frequent usage of 

constant relative risk aversion (CRRA) preferences. This is mainly a model simplification. 

Intuitively most people agree on that the individual who owns no apple to eat today puts a 

greater weight on the downside risk than the individual who owns the apple shop. 

Nevertheless, the CRRA functions serve as fairly good approximations in many wealth ranges. 

Empirical works of estimating ARA risk aversion parameters are quite contradicting. Meyer 

(2006) offers an explanation by pointing out that researchers have applied different data set, 

different utility assumptions, and different estimation procedures. Meyer concludes that the 

main reason for the discrepant results is due to the differences in the definition of the 

argument variable. We think that Meyer’s argument is intuitively clear. If the frequently used 

input variable wealth lacks a shared definition, the researchers will have to subjectively define 

the variable increasing the chances that risk aversion estimates will differ from each other.    

Given an absolute risk aversion function one can obtain the functional form of the utility 

function trough differential equation techniques, the ansatz would be:  

       
  

      

      

The parameters in the risk aversion function follow trough to the utility function. If one 

wishes to estimate a utility function, the parameters can be estimated by the risk aversion 

function. Notice that the Arrow Pratt risk aversion measure is an approximation thus only 

valid for small gambles in a region around    The approximation is only exact if the gamble 

has a symmetric probability distribution, equivalent to a fair gamble. A fair gamble is one in 

which the bet size equals the expected return of the gamble. In the result section, we 

approximate optimal bet allocations to a given parameter set. While no assumption is made, 

the parameter choices indicate that the gamble is non-symmetric. In the case of a non-

symmetric gamble it will bias the estimations of parameters in the ARA-measures. Parameters 

then need to be estimated directly from utility elicitation methods. However, the gambler may 

be advised to apply a prudent view estimating risk aversion parameters and assume that a 

gamble is fair in order to avoid overconfidence bias. That finishes the Arrow-Pratt section; we 

think it is now clear how our general results soon presented can be utilized in practical work.    
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Below we elaborate our arguments for the choice of the expo-power (EP) utility function. The 

EP utility function will later be applied to derive analytical expressions that enable us to 

obtain optimal bet allocations for a given set of gambles. The EP utility family was introduced 

by Saha (1993), and proposed as an improvement of the hyperbolic absolute risk aversion 

(HARA) utility family (Merton 1971). The EP utility function is defined as   

                  

, in the parameter range      and    .  The   parameter is an optional constant, and is 

not part of the function’s absolute risk aversion measure. The EP utility function’s absolute 

risk aversion measure is defined in a two-parameter form, where  

     
            

 
. 

Likewise as the HARA utility function, the EP utility function is able to fit increasing and 

decreasing absolute and relative risk aversion preferences. So to complete the comparison, the 

HARA utility function is defined as,      
   

 
 

  

   
     and its absolute risk aversion 

function is      
 

 

   
 

 

 

. From a practical perspective the EP utility function is simpler to 

apply than the HARA utility function. We prefer working with a utility function that includes 

less parameters but still is able to fit a full range of risk preferences. For this reason, we 

choose the EP utility function over the HARA utility function. 

 

2.1. Relevant work  

Here we focus on explaining the research that has influenced us and which set the direction 

for the thesis. We will go trough important works in the growth optimal portfolio (GOP) 

research area and further motivate our decision to adopt a VNM-utility framework to discrete 

gambling decisions.    

The discrete gambles presented in the result section are inspired by traded gambling markets. 

For example, the first gamble is a single binary gamble equivalent to betting on the winner in 

a tennis match. In the VNM-utility framework, the player faces the problem to decide the bet 

allocation that maximizes his/her expected utility with respect to future outcomes. The similar 

tennis gamble has been analyzed in GOP research. The binary gamble problem is then 
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formulized to find the bet allocation that maximizes the portfolio’s geometric mean return 

which is equivalent to maximizing long-run portfolio growth. Kelly (1956) is usually 

associated as the founder of the GOP research area. Although Kelly was solving an 

information theoretical problem of channel capacity, he did it by finding the bet allocation 

that maximizes the exponential growth rate of the gambler’s wealth. In Kelly’s problem, the 

gambler is facing a bet with even odds, hence a 100% return on every successful bet outcome. 

Thus, the gambler’s wealth level after N bets is:  

                  

, where   is the gambler’s wealth after N bets, and    is his/her initial wealth. The bet 

allocation, the fraction of wealth placed on the bet, is denoted  . The number of wins and 

losses after N bets are denoted   respectively  . The exponential growth rate of gambler’s 

wealth is expressed as: 

     
   

 

 
 
 

 
         

 

 
                              

The probability of winning, respectively losing, the bet is denoted    and  . The logarithm is 

of base two. Kelly found that the maximum exponential growth rate of the gambler’s wealth 

is obtained by allocating a fraction of wealth to the bet as       . The maximum growth 

rate is then:   

                                                          

In the results section, we solve a similar type of gamble. However, we apply the general expo-

power utility function to the gamble problem to obtain a general solution. Unfortunately, the 

mathematic properties of the "EP-utility gamble" do not allow us to solve explicitly for 

optimal bet allocation as is done in the GOP example.  

Going back to the GOP research, Thorpe (1969) with contribution of J. Holladay, generalized 

the binary gamble to a series of independent gambles. Given the same payoff structure as in 

previous example, the gambler’s wealth level after N is then, 
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, where    is a random variable which determines the outcome of gamble  . Notice that the 

binary gambles still display even odds. However, the win-loss probabilities are captured by 

the random variable. The exponential growth rate of the gambler’s capital is expressed as,  

          

 

   

      

The optimal bet allocation    is a function of previous     gambles. Thus the variables    and 

   are independent. Thorpe proved that there exist a      in the  -gamble. For each   gamble 

there is an optimal bet allocation   
  so that                

 
    reaches a unique maximum. 

We generalize a quite similar N-gamble in the result section, with the difference that we look 

at a financial market bet, and again, we apply the gamble to the EP-utility function. Notice 

that the presentation of the results of Kelly (1956) and Thorpe (1969) has a slightly different 

appearance in this paper in contrast to their original works. The purpose was to a setup 

coherent structure in the thesis, and not mix notation. Before moving on to new subjects, it is 

worthy to mention other pioneering papers in the GOP research area, for example: Breiman 

(1961), Hakansson (1971), and Markowitz (1976). 

The observed reader may have noticed that the GOP strategy is equivalent to utility 

maximizing the VNM-log utility function. Therefore, the GOP research could be labeled as a 

subclass of the expected utility theorem. Below is short outline of further arguments for 

adopting a general utility approach for bet allocation problems in discrete gambles.  

The GOP research is large and its advocators like to point out the rationale of growth 

optimizing the portfolio. However, the GOP strategy is not a universal criterion, as 

emphasized by Samuelsson (1963). Samuelsson showed that if the concave VNM-utility 

function rejects the single bet it also rejects the long sequence of the same bet
4
.Utility theory 

has progressed since then to now include utility concepts so that rejecting the single bet does 

not necessarily mean rejecting the long sequence of bets. However, the method we studied of 

cutting up the variance of the gamble in n-independent risk portions to be able to accept the 

long sequence of bets, as in Rossi (1999), is hard to conceptualize in traded gambling markets. 

The additional risk of accepting a long sequence of gambles in incomplete markets is usually 

held by the gambler. In traded gambling markers, there exist yet no insurance opportunities to 

                                                             
4
 The story goes that Samuelsson offered a colleague the 50% chance of winning $200 or losing $100. The 

colleague replied that he would accept a sequence of 100 such gambles. This challenged Samuelsson to write the 

paper about the fallacy of large number. 
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offload additional variance risk. We are certain that analyzing discrete gambles with 

traditional VNM-utility maximization techniques is a valid method.  

 

3.   Results  

This section provides analytical results of our study of optimal bet allocations. We also 

demonstrate how to obtain approximation results of optimal bet allocation by using the 

Newton Raphson method. We use the expo power (EP) utility function for maximizing 

expected utility over future outcomes. To further emphasize the link between the Arrow-Pratt 

risk aversion measures and the VNM-utility function, we like to point out that the EP utility 

function is the solution to the differential equation:             
          

 
    While 

the expo-utility function is                 , in the parameter range      and 

       

The first discrete gamble to be analyzed is the previously described single binary gamble. The 

player receives net odds   for one of the outcomes. Thus the player’s net win is   multiplied 

by bet allocation   if the winning outcome is realized. The winning outcome is realized with 

probability  , and the probability for the losing outcome is  . Player initially holds wealth   . 

Thus, the binary gamble is setup as,  

                                
                     

            

, where wealth in next period, period 1 denoted   , is a function of the relative bet allocation  . 

By differentiating expected utility w.r.t to bet allocation   and after some algebraic 

manipulation, the following expression holds: 

                      
                  

            
                 

       

    

There exist only implicit solutions to expression (2) due to the mathematical properties of the 

first order expression. The EP utility function is a continuous function and the input argument 

is a linear function. Furthermore, Thorpe’s proof of the existence of a unique maximum in the 

N-dimensional discrete gambles for the he log-utility function indicates that EP-utility 

functions should attain unique maximums for these types of discrete gambles. However, there 

exist no general proof that the EP utility function attain a general unique maximum for N-
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dimensional discrete gambles since the second derivative of expression (1) is positive for 

certain ranges of parameter values. Intuitively, we are able guess a range of where maximum 

utility is attained for discrete gambles. We know the explicit formula to calculate the optimal 

bet allocation for the growth optimal gambler in the single binary gamble:       . Let us 

assume that the EP utility function is parameterized to display more risk averse preferences 

than the growth optimal function. We then realize that the EP utility gambler achieves a utility 

optimal gamble in the bet allocation range        . Given this range, we can apply 

graphical analysis and/or the Newton-Raphson method to attain a close approximation of any 

optimal bet allocation value. By calculating second derivatives values around approximated 

critical points, we can be highly certain whether an optimal bet allocation has been 

approximated. 

The Newton-Raphson method is an iterating formula to approximate the root to f(x) = 0 by 

choosing the next approximation as         
     

      
. In able to apply the method, we set 

expression (2) to "be" the Newton-Raphsons’      , and then set expression (3) to be       . 

The second derivative of the expected utility function w.r.t to l, is:  

          
              

     
             

                 
       

             
             

                and                   

We now demonstrate how an implicit solution to expression (2) is approximated with the 

Newton Raphson method. This example also shows the intuition behind our proposed 

approximation formula. We start by giving a parameter set to the utility function and the 

binary gamble:   

p=0.55; q=0.45;  b=1;         

The parameters are chosen so that the gambler exhibits decreasing absolute and relative risk 

aversion as more wealth is accumulated. The wealth varies from 0.0001 to 1 000 000 0000 

wealth units. Figure 1 displays a graph of the parameterized expression (2), showing how 

marginal utility is increasing and decreasing for various percentages of wealth allocated to the 

bet.  
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Figure 1 

 

 

The y-axis represents the marginal utility of the parameterized utility function. The x-axis 

represents the percentage of wealth that is placed on the bet. We are locating an optimal bet 

allocation on a point on the x-axis of where marginal utility is approximately zero. The table 

below is the approximation results from using the Newton-Raphson method. The results are 

approximated to six digits. Approximation errors are displayed in appendix. Further below in 

figure 3, the approximation results are extrapolated against wealth.  

 

Figure 2 

Percentage of current wealth allocated to the single binary bet 

Wealth level,    10^(-3) 1  10^3 10^6 10^9 

Bet allocation,   0.00000 0,03342 0.05010 0.05012 0.05012 
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Figure 3 

 

 

In figure 3, the y-axis represents the relative bet allocation, and the x-axis represents current 

wealth level in base-10 logarithmic scale. As seen in the last figure, the optimal bet allocation 

is converging to a constant, close to 5%, as wealth goes to infinity. That pattern is explained 

by the Arrow-Pratt relative risk aversion measure (RRA). The RRA measure of the 

parameterized EP utility function is converging to 1- , as wealth goes to infinity. The growth 

optimal log utility gambler would have bet a wealth fraction    , which is a 10% bet in this 

example. By using the growth optimal result as a proxy, we can be fairly certain about the 

interval of where to find a utility optimal bet allocation. As in this example, the bet allocation 

is found in the range 0 – 0.1 because the specified EP-utility gambler exhibits a higher degree 

of risk aversion than the growth optimal gambler. The growth optimal gambler has a constant 

RRA measure of one. We propose the following approximation formula to find the optimal 

bet allocation as wealth goes to infinity:   
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It works because the EP utility function exhibit a constant RRA measure as wealth goes to 

infinity. Thus, the EP utility optimal bet allocation is simply a constant fraction of the growth 

optimal bet allocation for large wealth levels.      

We now extend the single binary gamble to situations where the gambler is betting at two 

independent gambles coinciding in time, a double binary gamble. The gambler’s utility 

expression is:   

                                                                      

                       

(3) 

, where  ,   for      , are the probabilities for winning respectively losing the gamble,   

and   are the winning odds, and U is the EP-utility function. Partial differentiation result of 

the utility function w.r.t to bet allocation    is:  

   
                                 

   
                     

 
  –              

    
   

                   
 
 +                    

   
                    

 
  – 

                   
   

                    
 
         

    

The partial differentiation of expected utility w.r.t to    is solved in analogous fashion. The 

multivariate Newton-Raphson method is useful to find the critical points    and    . The 

multivariate method is analogous to Newton-Raphson single variable method. The analytical 

results of the Jacobian matrix are found in the appendix. The Newton-Raphson multivariate 

method is also further explained in appendix. Below, we approximate optimal bet allocations 

to the double binary gamble and display how bet allocations may vary for independent 

gambles. We use the same parameter values as in previous example:   

          ;              ;         ;           

The two coinciding gambles are symmetric in odds and probabilities so optimal bet 

allocations, l1 and l2, are identical. 
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Figure 4  

Percentage of current wealth allocated to the double binary bet 

Wealth units,    10^(-3) 1  10^3 10^6 10^9 

Bet allocation,       0.0000 0,03336 0,0499 0.05 0.05 

 

If we are more interested in correlation structures, we could setup gambles that experience 

joint probabilities. For example in expression (4), by exchanging p1= j1, p2=j2 ,q3=j3, q4= j4, 

where ji for i=1,2,3,4,  describes a joint distribution probability matrix. In a similar fashion, it 

is possible to solve the analogous joint probability problem.    

In this last section, we let the binary gamble approximate a financial market gamble. We 

introduce the random variable X with expected mean   and variance   , so that            

P(X=   +  )=p1 and  P(X=   -  )=p2. The risk free rate earned on non-invested capital is 

denoted  , the EP utility function is  , and the discrete probability set is        . The 

optimization function is:  

                                                    

But this gamble is of little practical use. Instead it works to illustrate the transition to the 

generalized gamble for N outcomes.  

                                   

 

   

 

,where    belongs to an N-vector of outcome probabilities, and    to a N-vector of random 

variable X, which consists of N pairs of    and   . The optimization result is shown in 

appendix. The utility maximization of the N-outcome problem will have to be solved 

implicitly for bet allocation vector   . By setting up constrains for the bet allocation, such as 

         , it decreases the computational work. This gamble could be interpreted as 

allocating wealth to a stock portfolio. The practical difficulties are, of course, to assign values 

for every discrete outcome. Notice that as N goes to infinity the distribution converges to a 

continuous probability distribution. So we have,  
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, where X is a continuous random variable and dP(x) is the probability measure in the interval 

       . In expression (5), the gamble is described over a continuous outcome space. A 

conventional approach in portfolio theory is to approximate the discrete expression (5) with a 

continuous probability distribution in order to find a utility optimal portfolio from a large set 

of assets. Notice also that the binary gamble is the "exact" solution to the described portfolio 

problem since the large set of outcomes are finite due to trading constrains in currency 

denominations of gains/losses, usually hundredth of percentage, and constrains in downside 

and upside potential, as real asset value growth is physically constrained. This ends the result 

section since the discrete probability distribution has now converged to a continuous outcome 

space. Below follow general discussion and conclusion.  

 

3.1. General discussion  

We have argued that rationality implies that the gambler should specify gambling preferences 

and then decide bet allocations according to his/her utility function. This would certify that 

bet allocation decisions are consistent with the gambler’s belief system. There are several 

benefits of having a specified utility functions deciding the bet allocation. It decreases the risk 

of subjective biases, and enables the gambler to focus on finding winning bets. But it is now 

clear that EP utility optimal bet allocations need to be approximated. The computational work 

of approximating bet allocations is fairly simple as long as gambles are single or double 

binary gambles. Given three coinciding gambles or more the approximation method is 

complex. This rational approach to gambling may only fit professional gamblers.  

We analyzed a discrete approximation of a financial market gamble. It is a challenge to 

approximate continuous markets with a discrete probability distribution. The benefit of the 

discrete approximation in cases when continuous techniques are common is that the gambler 

is more flexible to assign probabilities to specific outcomes. With traditional portfolio theory 

the financial gambler faces difficulties to adjust continuous distribution for outlying event. 

Neglecting outliers usually coincide with asset bubbles, i.e. over-investing in a bet. In the 

recent financial crisis, year 2008- 2009, western financial institutions uniformly made huge 

losses on financial investments. This over-betting behavior may, of course, be a system failure 

and not necessarily inconsistent with the preferences of the financial gambler. 
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3. 2. Further research 

This study had a strict theoretical focus by studying the gambler’s decision in generalized 

gambles. We would be interested to see empirical studies on bet allocations decisions in 

relation to the gambler’s a priori belief about outcome probabilities. This enables the 

researcher to draw inferences about gambling preferences in real world markets. Researchers 

may also like to evaluate if gamblers have time-consistent bet allocation strategies. 

          

4.    Conclusions  

This thesis aimed to answer the specific question: How to find optimal bet allocations to a set 

of discrete gambles if the gambler holds an expo-power (EP) utility function.  

We derived general analytical expressions that enable us to locate optimal bet allocation for 

specified EP-utility functions. There exist only implicit solutions to our analytical expressions. 

We showed how to approximate implicit solutions to specified EP-utility functions by 

applying the Newton-Raphson method or by using the proposed approximation formula.   We 

analyzed the following set of discrete gambles: a single binary gamble, equivalent to betting 

on a tennis match, a multiple binary gamble, equivalent to betting on two tennis matches 

coinciding in time, and a discrete financial market gamble, equivalent to betting on an asset 

with finite outcome space and non-zero variance.   

The main assumption in the thesis was that the gambler is von Neumann-Morgenstern rational. 

We used a no arbitrage argument to motivate the assumption. We further elaborated on how a 

VNM-utility function is characterized by the Arrow-Pratt risk aversion measure. This 

relationship enables us to locate interval of where to find utility optimal bet allocations and 

derive a general approximation formula valid if wealth approaches large numbers.   

The Newton-Raphson method used to find optimal bet allocations is fairly simple for single 

binary gambles. As the discrete gambles grow in complexity, like betting on multiple gambles 

coinciding in time, the implicit solutions are increasingly harder to locate. There is an 

alternative approach to VNM-optimizing and that is to optimize the bet allocation so that the 

gambler’s wealth is maximized in the long-run. This is the growth optimal portfolio (GOP) 

approach which was thoroughly discussed in the thesis. The growth optimal bet allocation is 

closely related to the VNM-optimal allocation. The growth optimal bet allocation acts as 
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reference point to locate the VNM-optimal allocation. We argued that general VNM-

preferences better capture gambling preferences than growth optimal preferences. As most 

people, gamblers are willing to lower the expected (geometric) mean return for lower 

expected variance. This leads us to the general motivation for the thesis which was to develop 

analytical results that enable VNM-rational gamblers to locate optimal bet allocations in 

discrete gambles.  

As a last note, the growth optimal bet allocation for coinciding gambles need to be located 

with an approximation technique. So in terms of computability, the difference between the 

two optimization approaches, VNM and GOP, are neglectable. Professional gamblers are 

likely to play gambles coinciding in time and they are likely to have preferences to optimize 

bet allocations for discrete gambles. We advise these gamblers to not be content with the 

growth optimal strategy before specifying their gambling utility function.      
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6.  Appendix: Newton-Raphson method and analytical results  

The single variable Newton-Raphson is often generalized to systems of non linear equations. 

Given a non-linear equation,       , the derivative of the guessed solution is 

approximately,      
      

   
 

           

     
                        . Setting  

       , the result is the iteration formula         
     

      
  For a non-linear system of 

eqautions,         the iteration formula  is:         
     

      
, where   is a  -

dimensional vector with   roots solving the system, and    is the Jacobian matrix. Given the 

existence of              , there exists a solution to the non-linear system.  

__________________________________________________________________________________ 

 

Partial differentiation results to the two binary gambles coinciding in time are presented 

below. The results are valid for the expo power utility function,                 , 

     and      

The double binary gamble was setup as:  
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The partial derivatives are,  
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The derivative expressions in the Jacobian matrix are presented below.  

                ;                ;                 ;                 . 
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Analytical results for the N-outcome financial gamble are here presented. We apply the EP 

utility function to the gamble, and receive the expression:  

                                   
  

 

   

 

The partial derivative w.r.t to bet allocation    gives us, 
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Notice that marginal utility is positive only if,      ,  i.e. if        , the expected return 

of the risky asset is then greater than the risk free interest rate. A utility maximum is reached 

at the no arbitrage condition:        .  

               
        

 
                                      

 

                    

 

 

The table presents approximation results for the single binary and the double binary gamble 

given the specified EP-utility function, in the results section. The error term is estimated as 

the last iteration term minus the second last iteration term.  

 

Single binary gamble 

Wealth  % Bet allocation Error Marginal utility 

1 0.03342 8.1185*10^(-16) -1.1102*10^(-15) 

10^3 0.05010 1.1569*10^(-6) -1.1636*10^(-12) 

10^6 0.05012 8.8114*10^(-6) 8.3676*10^(-18) 

10^9 0.05012 8.7642*10^(-6) 8.7643*10^(-24) 

   

  

 

 

 

Double binary gamble 

Wealth  % Bet allocation Error Marginal utility 

1 0,03336 1.0839*10^(-9) -2.220*10^(-16) 

10^3 0,0499 3.4051*10^(-9) -1.0842*10^(-19) 

10^6 0.05 2.4999*10^(-8) -1.5881*10^(-21) 

10^9 0.05 9.9993*10^(-5) -2.4552*10^(-17) 


