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Abstract 
This thesis evaluates the possibility of making relatively reliable forecasts of future variances, 
covariances and returns of a portfolio of risky assets. The forecasts are used as input- 
variables in a trading strategy based on the Markowitz portfolio optimization algorithm 
forming an ex ante-optimal portfolio of stocks. The results show that the trading strategy, 
although on average achieving a 14 percent higher monthly Sharpe ratio than the benchmark 
index, cannot with a satisfactory statistical significance outperform the FTSE100. However, 
the results should be considered to be of economic significance to an investor since, on 
average, the strategy renders a three percent higher annual return while maintaining the same 
level of risk. Furthermore, even greater differences in risk-adjusted returns should be possible 
to achieve by relaxing the restrictions associated with regular mutual funds and thereby 
restructure the portfolio mandate like a hedge fund. 
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1. Introduction 
 

1.1. Background 
 Modern portfolio theory has its roots in Markowitz’ creative ideas regarding an investor’s 

choice of investment portfolio. He argued that rational investors should hold a portfolio that is 

efficient in the sense that it offers the highest expected return for a given level of risk. 

Historically however, mean-variance portfolio optimization was not used to the extent that 

could have been expected. Rather, professional investors have traditionally tried to identify 

the securities with the highest expected returns. However, a vast amount of research has 

painted a rather gloomy picture of the possibilities of consistently achieving a higher risk- 

adjusted return than that of a passive index portfolio strategy. This in turn has resulted in 

rather strong opinions regarding the true abilities of fund managers as well as an increasing 

interest for index funds. 

 In recent years there has been an upsurge in the interest of portfolio optimization, which 

can to a large extent be explained by the more or less explosive development in computer 

power, improved statistical models as well as the accessibility of reliable data. As a result, 

there are several highly successful hedge funds, which to a large extent rely on quantitative 

analysis and portfolio optimization in their efforts to generate substantial economic value for 

their investors. Furthermore, empirical evidence has also shown that there are great 

opportunities of risk reduction in portfolio optimization. The extent, to which these 

opportunities can be exploited, depends on the quality of the forecasts of the first and second 

moments of a return series. Traditionally, because more reliable models were not available at 

the time, these variables were forecasted by using rather crude methods such as historical 

averages (Bansal et al., 2004). 

 Another type of strategy, which focuses on the dynamics of volatility by using advanced 

statistical models, is now possible due to the increasing computer power. A relatively reliable 

forecast of the volatility and the covariance between stocks could be exploited for the purpose 

of forming an ex ante-optimal portfolio of risky assets. Considering the enormous upswing in 

the public and professional interest of investing in mutual funds this opportunity should be of 

great interest for professional investors in constant search of that elusive gold mine at the end 

of the rainbow.  
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1.2. Purpose 
 The purpose of the master thesis is to evaluate the skills of a trading strategy, based on 

forecasted volatilities, covariances and returns, in relation to a relevant benchmark index such 

as the FTSE100. The evaluation will be based on both the statistical and the economic 

significance of the results where economic significance is defined as a situation with 

statistically insignificant results where the results are still of interest for an investor. 

Furthermore, the thesis will also investigate how the expected minimum variance portfolio, 

which according to economic theory should perform worse than other portfolios on the 

efficient frontier, actually performs in relation to the portfolio with the highest expected 

Sharpe ratio.  

1.3. Delimitation 
 The study is based entirely on U.K. data and forms portfolios of the assets, which make up 

the index FTSE1001. A direct consequence is that no conclusions regarding the ability of the 

trading strategy beyond the U.K. market can be made. The portfolios will constitute of the 30 

largest stocks of the index, which should still make the comparison relevant since these stocks 

make up approximately 70 percent of the index. The fact that 30 percent are omitted should 

not invalidate the interpretations of the results since even a very large change in any of these 

stocks only have a small impact on the FTSE100. The reason for this is that the weights of 

these stocks, on average, are less than half a percent of the market value.    

 The constituents of the index changes rather frequently. However, due to an ambition of 

keeping the workload at a reasonable level, the stocks will be considered to be fixed for up to 

one year. 

 The study is based on daily data between 1995-01-01 and 2005-11-25. Furthermore, no 

consideration will be taken to transaction costs or bid-ask spreads since these can often be 

regarded as negligible for larger financial institutions.  

1.4. The strategy 
 The trading strategy is essentially a buy and hold strategy2 where two different holding 

periods will be considered, one month and a quarter of a year. The reason for using different 

holding periods is to evaluate which holding period offers the best risk-return relationship 

measured as the highest Sharpe ratio. The weights of each asset is decided through the use of 

                                                
1 FTSE100 is a broad free float stock market index acting as a benchmark index for several equity funds. The 
constituencies are chosen by market capitalisation and are reviewed quarterly. www.ftse.com.  
2 Buy and hold means that the investor buys the stocks and holds them for a longer time period disregarding 
short-term fluctuations in the market. (Bansan et al, 2004).   
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Markowitz’ portfolio optimization algorithm by using out-of-sample forecasts3 of the 

volatility, covariance and the expected return for the given time period. The procedure is then 

repeated according to the rebalancing pattern and thereafter evaluated on a monthly basis in 

relation to FTSE100. 

 The strategy evaluates two different kinds of optimization procedures, maximizing the 

expected Sharpe ratio and minimizing the expected volatilitity. The reason for this is the fact 

that the expected Sharpe ratio, to a larger extent, is affected by forecasts of the expected 

return, which are notoriously hard to do with any significant results. If the slope of the true 

efficient frontier is relatively flat, then the loss in return of minimizing the expected volatility 

could be outweighed by the gain in reduced volatility – thereby yielding a higher risk-adjusted 

return.  

 The different portfolios are also affected by the restrictions, which normally apply for 

fund management. For instance, this means that an individual asset is not allowed to 

constitute more than 10 percent of the total market value of the portfolio4. 

 The data used in this thesis has been collected from the databases SIX Trust5 and EcoWin 

and by contact with the FTSE organisation.    

1.5. Previous research 
 Bansal et al (2004) use a dynamic trading strategy in which they develop a method for 

constructing optimally managed portfolios, which exploits the possibility that asset returns are 

predictable. The authors characterize the degree of predictability by comparing the 

performance of portfolios that include conditioning information to those who do not. They 

find that investing in actively managed funds produces considerable economic gains in 

relation to fixed weight strategies and thereby conclude that active funds should be of great 

benefit to investors. Furthermore, the authors find evidence of buy and hold portfolios 

performing even worse than fixed weight strategies. The intuition is that the buy and hold 

strategy leads to a less than optimally diversified portfolio in the long term.  

 Conrad et al (2003) assess the profitability of momentum strategies using a stochastic 

discount factor approach. They find that a stochastic discount factor can be constructed from a 

set of industry-sorted portfolios, which explains about half of the profitability of the trading 

strategy when agents cannot use conditioning information. When allowing for conditioning 
                                                
3 Out of sample forecasts are based on historical data until the day/time to be forecasted. 
4 The UCITS-directives regulate that a mutual equity fund is allowed to invest up to 5 percent of its total wealth 
in any given security with the exception that up to 10 percent is allowed in a security if these securities together 
do not make up more than 40% of the total portfolio wealth. 
5 SIX Trust is foremost an information- and analysis tool for professional investors working on the Nordic 
capital markets. (www.six.se). 
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information they find that the abnormal profits decline and they interpret these results as a 

sign that at least a part of the returns of momentum portfolios stem from the risk of the 

strategy rather than just irrational pricing behavior. However, since a significant portion of the 

momentum profits cannot be explained, they are not able to rule out the existence of residual 

mispricing.  

 Guo (1999) compares the performance of a GARCH-based dynamic volatility trading 

strategy for currency options with an implied stochastic volatility regression (ISVR) based 

strategy. He uses data from 1983 to 1993 obtained from the Philadelphia stock exchange and 

finds evidence favouring the ISVR-model.  However, both models are able to provide an 

investor with abnormal returns as well as lower correlation with several asset classes, 

indicating possible improvements through diversification. 

  There are a wide variety of volatility models and the research on the performance of 

different forecasting techniques is rather extensive. Lopez and Walter (2001) evaluate the 

performance of several covariance matrix forecasts using standard statistical loss functions 

and a value at risk framework (VaR). Their findings show that, within a VaR framework, 

simple specifications such as the Exponentially Weighted Moving Average (EWMA) perform 

better than forecasts from more sophisticated models such as implied volatility models.  

 Day and Lewis (1992) combines the current market expectations, as reflected in option 

prices, with past returns information captured by a GARCH model. They do so by embedding 

an implied volatility variable as an exogenous variable in the GARCH equation. They use 

data on the S&P100 index together with the corresponding index options and find results 

indicating that their model is able to generate more reliable volatility forecasts than by just 

using an implied volatility model. 

 Lamoureux and Lastrapes (1993) examine the behavior of measured variances from the 

options market and the underlying stock market. They found evidence that implied volatility 

performed very well but were unable to reject the hypothesis that predictions from GARCH 

models contain additional information regarding future volatility.  

 Ghysels et al (2004) develop a mixed data-sampling model (MIDAS) which is a 

regression model based on time series data sampled at different time frequencies. They use 

high frequency U.S. market data of the Dow Jones Composite Portfolio as well as individual 

stocks during the time period of 1993 to 2003. The authors find that their MIDAS estimator is 

a better forecaster of the stock market variance than rolling window or GARCH estimators. 
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 Kim et al. (1998) compare several different GARCH models with a stochastic volatility 

model (SV), where the variance is specified to follow some latent stochastic process. Their 

findings show that the SV model offers better forecasts of the variance than most GARCH 

models.  

 

Author Method Results 

   
Bansal et al. Dynamic trading strategy Higher risk-adjusted return than a 

buy and hold strategy. 

   

Conrad et al. Stochastic discount factor Momentum effects may still be 

present. 

   

Guo Dynamic volatility based strategies 

for currency options. 

Higher risk-adjusted return in 

relation to a more naive model. 

   

Lopez and Walter Forecasting covariance-matrices by 

using EWMA 

Better forecasts than implicit 

volatility. 

   

Day and Lewis Volatility forecasts by using a 

GARCH model 

Better forecasts than implicit 

volatility. 

   

Lamoureux and Lastrapes Forecasting volatility using implied 

volatility.  

Implied volatility gives relatively 

reliable forecasts. 

   

Ghysels et al. Volatility forecasts by using  

MIDAS 

Higher predictive power than 

GARCH. 

   

Kim et al. Volatility forecasts by using  

Stochastic volatility 

Higher predictive power than 

GARCH. 

Table 1: Summary of previous research 
 

1.6. Outline and reader’s guide 
The remainder of this thesis is structured as follows: Chapter 2 reviews the concept of 

portfolio optimization as well as an introduction to common properties of financial time 

series. Chapter 3 introduces the different models used in the trading strategy. Chapter 4 

presents the empirical results together with an analysis of the data. Finally, chapter 5 presents 

the conclusions of the thesis. 



 9 

2. Portfolio optimization 
 The introduction of modern portfolio theory by Harry Markowitz has lead to a 

mathematical explanation of the expression “don’t put all your eggs in one basket”. One of 

the most fundamental conclusions in Markowitz’ portfolio choice theory is that rational 

investors should not choose assets only because of their unique properties such as the 

expected return and variance, but should also consider the covariation between the different 

assets. As the number of assets in a portfolio increases, the covariance makes up an 

increasingly greater part of an individual asset’s contribution to the total risk of a portfolio. 

This can be seen in the figure below where the variance terms make up the diagonal elements 

of the variance-covariance matrix. (Markowitz, 1952). 
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Figure1: Variance-covariance matrix 
 
 For each incremental asset, 1 variance term and n-1 covariance terms are added to the 

matrix. As long as an asset does not correlate perfectly with the other assets in the portfolio, 

the total variance will be reduced. In an investment perspective, this can be seen in terms of 

diversification. The idea is that a portfolio should consist of a large amount of assets, which 

belong to different lines of business with the purpose of spreading the risk exposure and 

achieving lower correlation. The effect of diversification is common knowledge within the 

field of financial theory and a great number of researchers have found supporting evidence. 

For instance, Solnik (1974) shows that the risk of a well-diversified portfolio initially 

decreases dramatically and then converges to an undiversifiable level of risk. 

Portfolio risk      
 
        
       
       
   Unsystematic risk    
      
       
       
       
    Systematic risk   
     Number of 
         5               10             15  stocks 
      

Figure 2: The effect of diversification 
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 By using the optimization procedure for a given universe of securities, an efficient frontier 

of risky assets may be formed where the portfolios on the frontier are efficient in the sense 

that they offer the highest return for any given level of risk.  

 

 
Figure 3: The efficient frontier 

 
 This is the foundation of the strategy, which relies on predicted changes of the efficient 

frontier and forms ex ante-optimal portfolios based on historical time series data of the stocks 

in the FTSE100 index. 

2.1. Financial time series 
 Time series of financial data such as stock returns are characterised by the fact that the 

probability distribution have fatter tails in comparison to the normal distribution. 

 

 
Figure 4: Normal distribution in comparison to a heavier-tailed distribution. 

 
Furthermore, high frequency return series, such as daily or weekly data, are often uncorrelated 

but not independent whereas the volatility6 of stock returns, however, are correlated over 

time.  

 

                                                
6 Measured as the squared daily return. 
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This phenomenon is called volatility clustering, which means that small changes in the stock 

price have a tendency to be followed by another small change and vice versa. An example of 

this can be seen in the figure below. (Aas et al., 2004). 

 

 
Figure 5: Daily returns of the Standard & Poor’s 500 stock index 

 
Volatility clustering explains a great part, but not the entire effect, of heavier tails in the 

distribution (Knight et al., 2001). This in turn, can be a signal that stock return series can be 

better explained with a heavier-tailed distribution.  

 Beside these visual properties of stock return distributions it is common that the volatility 

of stock returns is asymmetric, which means that negative shocks have a tendency to result in 

higher increases in volatility than positive ones. This is often referred to as a leverage effect 

(Ibid.). 

2.2. Forecasting 
 Given that a time series can be seen as a stochastic process, i.e. as a sequence of random 

observations, it may contain a certain level of correlation from one observation to another. 

The correlation structure can be used for the purpose of making forecasts of future values 

based on historical observations. By exploiting the structure a time series can be broken down 

to a deterministic part and a pure random part. Mathematically this can be expressed as: 

 
( ) tt Xtfr ε+−= ,1  (1) 

 
where ( )Xtf ,1−  represents the deterministic part of the present return as a function of all the 

information available at time t-1. This includes the historical random error terms, 

),,( 21 �−− tt εε , the historical observations, ),,( 21 �−− tt rr , and all other relevant explanatory 

data, X. The random part, tε , represents the error in tr , but can also be seen as the forecasting 

error. 
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 A common assumption regarding tε  when modelling financial time series is that the error 

term follows an uncorrelated normal distribution with a mean of zero. Despite the fact that the 

error terms are uncorrelated they are dependent7, which means that there are possibilities for 

statistical methods to capture this behaviour. (Aas et al., 2004). One of the more suitable 

models for this purpose is the Autoregressive Conditional Heteroscedasticity model (ARCH). 

                                                
7 Dependence means that the estimate depends on previous values. ( Brooks, 2002). 
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3. Model specification  
 

3.1. Forecasting volatility 
 During the last two decades a large number of ARCH models have evolved with the 

purpose of modelling time varying variance. The ARCH model was developed by Engle 

(1982) and then generalised by two independent researchers, Bollerslev (1986) and Taylor 

(1986) (Brooks, 2002). The model captures the clustering effect in time series by assigning 

greater weights to more recently observed data. Furthermore, the model expresses the 

conditional variance as a linear function of historically squared error terms, which 

mathematically can be expressed as: 

 
0....... 22

110 ≥+++= −− iqtqtt AwhereAAA εεσ   (2) 

 
As seen in the formula, the conditional variance increases with the magnitude of the squared 

error terms regardless of their signs. The lag length, q, decides the length of time that shocks 

persist in the conditional variance8. 

 Bollerslev and Taylor later generalised the ARCH model (GARCH) and included past 

variance terms in the conditional variance, which equipped the model with a longer memory. 

The general GARCH(p,q) model can mathematically be expressed as: 

 

� �
= =

−− ++=
q

i

p

j
jtjitt GAK

1 1

22
10

2 σεσ   (3) 

 
where the present and conditional variance depend on q lags of the squared residuals as well 

as on p lags of the conditional variance. Empirical evidence suggests that a GARCH(1,1) 

process is often sufficient to capture the volatility process in most financial time series. 

(Bollerslev et al., 1992). 

 Since its discovery, the model has later been revised into many different versions with the 

purpose of providing efficient solutions to problems, which the original model could not 

handle in a satisfactory way.  

  

 

                                                
8 Lags are past observed values of a variable, e.g. two lags indicate the values of the variable of the two previous 
time periods. 
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 The forecasts of the variance of the constituting stocks are made with an EGARCH model, 

which was in its original form developed by Nelson (1991). The model can be expressed as:  
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The EGARCH parameters K, G, A and L represent a constant, previous variance terms 

(GARCH effect), previous residual terms (ARCH effect) and finally the leverage effect. 

 The reason for using this model in favour of other similar ones is that it considers the 

leverage effect, mentioned above, in a satisfactory way. Whenever there is a negative 

relationship between the volatility and the return the coefficient, jL , will be negative. 

Furthermore, because the model uses the logarithm of the conditional variance it is not 

necessary to inflict any restrictions on the parameters in order to make sure that non-negative 

results are achieved. 

3.2. Modelling covariances 
 Traditionally, the covariance between two risky assets, x and y, has been modelled by 

using a relatively naive model, which generates forecasts by using equally weighted historical 

data. The model estimates the covariance as: 

 

�
=

=
n

i
iyixtxy rr

n
COV

1
,,,

1
 (5) 

 
However, this model is relatively blunt since past observations are not necessarily 

representative for the given time period. Furthermore, all observations are assigned equal 

weights regardless of where in time they are situated. Because of these inefficiencies the 

covariance is forecasted using an EWMA model which expresses the covariance as:   
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In contrast to the naive model, the EWMA model assigns different weights to each 

observation by introducing an exponential smoother, λ , which dictates the speed with which 

the relative weight decreases with time. The exponential smoother takes a value between zero 

and one and is usually set to 0,94, which in studies performed by RiskMetrics9 has shown to 

give the best forecast of future realised daily volatilities. (Mina et al., 2001). 

3.3. Forecasting expected return 
 In order to make forecasts of the expected return, the last input variable in the Markowitz 

algorithm, an ARMA(p,q) is used. The model consists of an autoregressive part, φ , where the 

present value of the return depends on previous values as well as on an error term, tu . 

Mathematically it can be expressed as: 

 

�
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− ++=
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i
titit urr

1

φµ  (7) 

 
Furthermore, the model consists of a MA-component, θ , where the return is expressed as: 

 

�
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i
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1
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This means that the return can be described as a linear combination of white noise terms10. 

The AR, as well as the MA-component requires that the return series is stationary and 

invertible which, in a simplified sense, means that the probability of r taking a value within a 

given interval should be the same for the whole time period. Finally, the ARMA(p,q) model 

combines these properties and model the return as:  
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9 RiskMetrics is a company, previously belonging to J.P. Morgan, with a focus on risk management. 
10 A white noise process has a mean and variance of (0, 2σ ) and a lack of autocorrelation.  
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4. Empirical results 
 The study is based on four different portfolios, which are optimized with respect to 

expected Sharpe ratio or expected minimum variance with a forecasting period of one month 

and a quarter of a year. A more detailed disclosure of the different portfolio data can be found 

in Appendix A.  

 

Portfolio optimization

         Maximized         Minimized
        Sharpe ratio           volatility

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4
Monthly Quarterly Monthly Quarterly

rebalancing rebalancing rebalancing rebalancing

 
Figure 6: Portfolio optimization strategies 

 

4.1. Strategies with optimized Sharpe ratio 
 In absolute terms, these strategies have performed very well in relation to FTSE100. 

Portfolio 1 (monthly rebalancing) grows 187 percent, which can be compared to 103 percent 

for the index over the total measurement period. On an annual basis portfolio 1 generates an 

average return of 12 percent while the FTSE100 has offered an average return of 9 percent11. 

At the same time, portfolio 2 (quarterly rebalancing) has grown 162 percent with an average 

annual return of 11 percent. 
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Figure 7: Price development of portfolios 1, 2 and FTSE100 

 

 

 

                                                
11 Geometric mean. 



 17 

���������������� �������������������������������������������� �������������������������������������������� �����  �����  �����  �����  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  

�""# �$% �#% �&% !�% !�%

�""& '�% ( % �"% ��% �%

�"") ��% �&% �)% '%  %

�""" ��% �'% ��% !"% !#%

�   (% !'% !)% ��% '%

�  � !�%  % !�'% ��% �'%

�  � !#% !)% !��% �$% �(%

�  ( ��% �'% �&% !$% !�%

�  ' #% "% ��% !$% !�%

�  $ �#% �&% �)% !�% !�%

������� ��% ��% "% (% �%
 

Table 2: Yearly returns of portfolios 1, 2 and FTSE100 
 
 In an evaluation of the higher returns it is, however, more interesting to examine the 

quality of the return forecasts. A linear regression has been performed where the expected 

return acts as the explanatory variable and the realised return is the dependent one. The return 

forecasts have very low predictive power, only 0,3 percent at the best, and are not statistically 

significant. In light of this it must be considered remarkable that the portfolios have an almost 

consistently better price development than the index. One possible explanation to this fact 

could be that there has systematically existed a “large-cap” effect in the selection of stocks 

made each year12. However, in an examination of the FT30 index, where an average yearly 

dividend of 3,8 percent has been added back to the index, it is evident that this is not the 

case13. The FT30 performs a lot worse than the FTSE100 with a growth of only 32 percent for 

the entire time period, which makes it reasonable to conclude that such an effect has not been 

present during the time period. 

 A comparison of the absolute return is, however, not very interesting in itself since the 

return of a portfolio usually is in line with the total risk that an investor is forced to accept. In 

a comparison of the total standard deviation it turns out that the portfolios on average, have 

the same risk as the index. 

  
���������������� �������������������������������������������� �������������������������������������������� �����  �����  �����  �����  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  ������������!������  

�""# � % "% "%  %  %

�""& �&% �&% �$% �% �%

�"") � % ��% ��% !�%  %

�""" �"% �"% �)% �% �%

�   �(% �'% �"% '% '%

�  � �&% �&% ��% !$% !$%

�  � ��% �(% �)% !$% !$%

�  ( �)% �)% �"% !�% !�%

�  ' � % ��% � %  %  %

�  $ ��% � % "% �% �%

������� �&% �&% �&%  %  %
 

Table 3: Yearly standard deviations of portfolios 1, 2 and FTSE100 
 

                                                
12 The fact that only the 30 largest companies are being used could imply that there is a bias if larger companies 
have systematically performed better during the time period. 
13 No total return-version of the FT30 index exists, which means that no dividends are reinvested. The average 
cash dividend in relation to the stock price of the FTSE100 index has been 3,8 percent. (www.di.se). 



 18 

On average, the volatility is 17 percent for both portfolios as well as for the index. The quality 

of the forecasts of the total standard deviation is relatively good. Portfolios 1 and 2 have 2R -

measures of 36,7 and 37,1 percent. These results are highly significant with p-values14 of 
-1310 2,8 ⋅  for portfolio 1 and -5103,05 ⋅  for portfolio 2. 
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Figure 8: Linear regression of the predictive power of the volatility forecasts of portfolios 1 and 2 

 
 The fact that both portfolios have higher average returns and lower standard deviations 

than the index indicates that the portfolios, on average, offer a higher risk-adjusted return than 

the FTSE100 during the entire measurement period. In comparison to the FTSE100, this 

translates into a 14 percent higher monthly Sharpe ratio for portfolio 1 and 4 percent higher 

for portfolio 2.  
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Table 4: Monthly average Sharpe ratios of portfolios 1, 2 and FTSE100 

 
 In evaluating the portfolios there are however great difficulties since one can only observe 

the performance of the portfolios ex post and then hope that random effects are not mistaken 

for or conceals the strategy’s true abilities. A t-test of the differences in risk-adjusted returns 

is therefore performed, which shows that the results are not statistically significant15.  

 

                                                
14 P-value is equivalent to the lowest significance level to which a null hypothesis can be rejected. (Gujarati, 
2003). 
15 See Appendix A. 
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These results are also supported by running the regression: 

 

( ) tttFTSEiitFTSEit rfRRR εβα +−+=− 100100  (10) 

 

following the methodology of Engström (2005) where itR  is equal to the return of portfolio i 

and iα  is the Jensen’s alpha measure. Portfolios 1 and 2 obtain alpha values of 0,34 and 0,27 

percent respectively on a monthly basis with p-values of 0,125 and 0,252, i.e. the results are 

not statistically significant at the conventional level of 5 percent.  
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Figure 9: Linear regression of the performance of portfolio 1 and 2 in excess of the FTSE100 

 

The implication of these results is that it is not possible to make any statistical inferences 

regarding the abilities of the trading strategies. This situation is very common since it is 

necessary to have very large amounts of data in order to even ensure that large observed 

differences are significantly different from zero16. (Bodie et al., 2005). The statistical 

insignificance of the results does, however, not necessarily make them economically 

insignificant. The difference in performance is likely to be considered relevant by an investor 

who is trying to outperform his/her benchmark index since the monetary value of achieving, 

on average, 3 percent higher annual returns while maintaining the level of risk should be 

substantial. 

                                                
16  Bodie et al (2005) exemplify with a fund manager who obtains a constant alpha-value of 0,2 percent per 
month while at the same time the statistical properties are assumed to be constant. In this extremely favourable 
situation it is still necessary to obtain 32 years of data in order to ensure that there actually exists an alpha 
different from zero. 
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4.2. Strategies with minimized volatility 
 Following the reasoning in section 1.4, The Strategy, two portfolios with minimized 

expected volatility are formed. Portfolio 3 is rebalanced on a monthly basis and portfolio 4 is 

rebalanced quarterly.  
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Figure 10:Price development of portfolios 3, 4 and FTSE100 

 

On an absolute level, these portfolios perform worse than, or almost as good as the FTSE100. 

Portfolio 3 grows 71 percent over the whole measurement period while portfolio 4 and the 

index grow 93 and 103 percent respectively. This can be translated into an average yearly 

return of 7 and 8 percent for portfolios 3 and 4, which is to be compared to 9 percent for the 

index17.  
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Table 5: Yearly returns of portfolios 3, 4 and FTSE100 

 

 The volatilities of the portfolios are lower than their maximized-Sharpe-ratio counterparts, 

which is in line with what can be expected. Portfolios 3 and 4 both have an average standard 

deviation of 14 percent, which is to be compared to 17 percent for the index. 

 

                                                
17 Return averages measured as geometric averages. 
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Table 6: Yearly standard deviations of portfolios 3, 4 and FTSE100 

 

 The forecasts of the total volatilities of the portfolios are again relatively good. Portfolio 3 

has a 2R -measure of 38 percent and portfolio 4 achieves 33 percent. These results are 

statistically significant with p-values of -1410 8,84 ⋅  and 41006,1 −⋅  for portfolio 3 and 4 

respectively. 
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Figure 11: Linear regression of the predictive power of the volatility forecasts of portfolios 3 and 4 
 
On a risk-adjusted basis, both portfolios perform worse than their Sharpe-ratio-maximized 

counterparts. Portfolios 3 and 4 offer a monthly Sharpe ratio of 0,14 and 0,17 respectively, 

which is to be compared to 0,18 for the index. In relation to FTSE100 this implies an almost 

25 percent lower Sharpe ratio for portfolio 3 and barely 8 percent lower for portfolio 4.  

 
���������������� ����������(����������(����������(����������( ����������'����������'����������'����������' �����  �����  �����  �����  ����������(�!������  ����������(�!������  ����������(�!������  ����������(�!������  ����������'�!������  ����������'�!������  ����������'�!������  ����������'�!������  

�""#  *��  *�'  *($ ! *�' ! *��

�""&  *$  *(#  *''  * $ ! * )

�"")  * "  *�'  *�� ! *�(  * �

�""" ! *�� ! * '  *( ! *' ! *('

�    *(  *�$ ! * "  *("  *('

�  � ! *�# ! *�$ ! *�&  * �  *�(

�  � ! * ) ! * ) ! *�$  *�&  *�&

�  (  *�#  *�'  *(� ! *�$ ! * &

�  '  *�  *('  *�( ! * �  *��

�  $  *''  *(&  *$& ! *�' ! *��

�������  *�'  *�&  *�) ! * ' ! * �  
Table 7: Monthly average Sharpe ratios of portfolios 3, 4 and FTSE100 
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Running regression 10 for the two portfolios gives monthly alpha values of –0,09 and 0,03 

percent for portfolios 3 and 4 with the corresponding p-values of 0,6 and 0,9, which make 

them statistically insignificant. The conclusion of these results is that even though the 

volatility is reduced it is not enough to offset the high price of lower returns, which is 

consistent with economic theory. 
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Figure 12: Linear regression of the performance of portfolio 3 and 4 in excess of the FTSE100 

 

4.3. The usefulness of the strategies 
 The reason why the portfolios within each optimization procedure perform quite similar is 

of course that the forecasts generate very similar weights allocated to each stock. A possible 

explanation for this could be the restrictions on the amount of capital allocated to each asset. 

All the portfolios can at any given time take positive positions in all of the 30 different stocks. 

However, on average the portfolios concentrate their possession to only 19 stocks. Since the 

concentration to each stock is limited, it is quite possible that the different strategies would 

generate less similar portfolio weights if these limits were not present.  

It is also interesting to note that the results seem to indicate that, in relation to FTSE100, all 

portfolios perform their best during the years when the index is experiencing negative returns.  

 The fact that both Sharpe-ratio-optimized portfolios, on average, were able to perform a 

higher risk-adjusted return than their benchmark index could be due to purely random effects. 

However, it could also be explained in terms of systematic and unsystematic risk. In this case 

the higher risk-adjusted return could be explained as a consequence of a successful portfolio 

optimization. This would imply that the FTSE100 is assumed not to be optimally diversified, 

thereby containing a degree of unsystematic risk. The assumption may be considered bold but 

not unreasonable. The reason for this is that the 10 largest stocks in the FTSE100 consistently 

make up more than 50 percent of the total index-value. Furthermore, the industry 
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representation is relatively skewed in the sense that a few industries18, which are strongly 

correlated with each other, are heavily represented among the companies with the greatest 

weights.  

 

                                                
18 The three largest industries constitute about 50 percent of the total weight during the time period. 
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5. Conclusions 
 In contrast to several other academic reports regarding trading strategies, which show that 

there are possibilities in improving the risk- and return relationship, the results of this study 

does not find such an improvement to be statistically significant. This implies that no reliable 

conclusions regarding the potential abilities of the trading strategies can be made. However, 

this does not mean that the study is merely a fruitless attempt to achieve higher risk-adjusted 

returns. An investor with the ambition of, on average, performing well in relation to the 

FTSE100 index would have been able to do so, during this time-period of ten years, by doing 

monthly rebalances and maximizing the expected Sharpe ratio. This means that the results 

should be considered to be of economic significance. Furthermore, even greater differences in 

performance should be attainable by relaxing the portfolio restrictions commonly associated 

with mutual funds and thereby structure the portfolio mandate like a hedge fund.  

 The results also indicate that the cost, in terms of lower realized returns, of minimizing 

volatility is relatively high – rendering a lower risk-adjusted return than maximizing the 

expected Sharpe ratio, which is in line with the reasoning of modern portfolio theory.

 Finally, some concerns about the results are also justified. In the process of excluding 

trading costs, such as bid-ask spreads and commissions, the results will of course be biased 

upwards.  
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Appendix A1 – Results of portfolio 1 
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Appendix A2 – Results of portfolio 2 
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Appendix A3 – Results of portfolio 3 
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Appendix A4 – Results of portfolio 4 
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Appendix B – Generation of GARCH-forecasts 

1. Model selection and structure 

 Under the assumption that a return series is heteroscedastic, i.e. that the volatility varies 

with time, it is appropriate to use a GARCH-model for forecasting the volatility.  Whether a 

time series is to be considered heteroscedastic or not can be determined by using the Engle’s 

ARCH-test. More information regarding this test can be found in Appendix C together with a 

selection of the results of the test.  

 In order to increase the reliability of the forecasts the model needs to be adjusted to the 

data at hand. As a result of the discussion in paragraph 2.1 - Financial time series, an 

EGARCH-model is used for modelling the variance of the return series. Along this reasoning 

the series is therefore assumed to follow a t-distribution.    

1.1. Initial parameter estimates 
 In order to optimize the parameters which make out the ARMA- and EGARCH processes 

a vector of initial parameter estimates is needed. (Brockwell et al., 1996). The parameters 

which are needed [C, jφ , iθ , K, iG , jA , jL ], stem from the equations (4) and (9). The first 

three parameters are ARMA-parameters and the remaining four are EGARCH. 

 

1.1.1. ARMA (p,q)  

 The autoregressive component, jφ , is estimated by creating an auto-covariance matrix and 

solving the Yule-Walker equations. By using the estimated coefficients the series is filtered in 

order to obtain a pure moving average process. The auto-covariance sequence of the moving 

average is estimated and used in order to iterate the moving average component, iθ . Finally, 

the variance of the residual is estimated. (Box et al., 1994) 

 

1.1.2. EGARCH (p,q)   

 In contrast to the statistical analysis made in order to estimate the ARMA-parameters, the 

EGARCH-parameters are solely based on empirical analysis of financial time series and are 

thereby Ad Hoc in their nature. 
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The following assumptions have been made 

  9,021 =+++ PGGG �  
  2,021 =++ QAAA �  

  QiLi ≤≤= 10  
 

The initial estimates for the EGARCH(1,1) are thereby made according to: 

)]([2.0ln9.0ln 11
2

1
2

−−− −++= tttt zEzK σσ  (11) 

 

The estimate of the constant K is made by using the relationship between the independent 

variance of the residual process, 2σ , and the iG -parameter in the EGARCH(1,1)-model 

according to: 

  ( ) 2
1 ln1 σGK −=  

  ( ) 2ln9,01 σ−=K  
  2ln1,0 σ=K  

1.2. Maximum likelihood estimation  
 When the starting parameters are estimated a conditional19 log-likelihood estimation20 

(MLE) can be made. The estimation optimizes the output by iteratively adjusting the data 

being used as input in the log-likelihood function until a satisfactory degree of exactitude has 

been reached or, alternatively, the model does not manage to converge a solution. The 

probability of convergence is limited due to four factors, which are presented in the table 

below together with their respective limitations. 

 

Modelled restrictions  Limitation 

Maximum number of iterations (MaxIT) =      400 

Maximum number of MLE-evaluations (MaxMLE) =       800 

Tolerance level of  restriction breach (MaxREST) =      6101 −×  

Tolerance level of the function value (MaxFUNK)  =      6101 −×  

 

All factors terminate the convergence optimization by finishing the process prematurely given 

that a convergence has not already occurred when the limitation is breached. 

  

 

                                                
19 Conditioned, in this case, means that the model demands a selection of historical data in order to start.  
20 This type of optimization is often referred to as non-linear programming. 
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 MaxIT, as well as MaxMLE, are purely mechanical in their nature. The value of their 

respective restrictions is chosen in light of the fact that, due to their size, they rarely prevent 

the process to converge prematurely. A discontinued conversion, as a result of the restrictions 

being breached, is therefore a signal that the chosen model does not describe the data in a 

satisfactory way. 

 The tolerance parameters (MaxREST and MaxFUNK) affect how and when conversion is 

reached and are therefore capable to affect the solution. MaxREST describes the model 

tolerance against a violation of the given restrictions21. Concretely, MaxREST represents the 

maximum value with which a parameter estimation can breach a restriction and still enable a 

successful conversion. MaxFUNK describes the model tolerance placed upon the log-

likelihood function. A successful conversion is achieved when the change in the value of the 

log-likelihood function is less than the MaxFUNK.     

2. Forecasting 

 The generated forecasts are estimated by using the minimum mean-square error of the 

conditional return series ( tr ) and the standard deviation of the residuals ( tε ). Practically this 

is done by examining the ARMA- and EGARCH-models through a linear filter from which 

the model, by iterations, generate conditioned expectations of the equations one forecast 

period at a time. 

 As the models are retrospective in their nature they need presampled data in order to start 

the iteration process. The presampled data plays the same input roll as in the estimation of the 

ARMA- and EGARCH-parameters. 

 

                                                
21 The restrictions control, among other things, that the return series is stationary and that the variance is always 
positive by verifying that the eigen-values of the AR- and MA-polynomial is within the unit-circle. Furthermore, 
they also make sure that the eigen-values of the EGARCH polynomial are within the unit-circle. 
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Appendix C – Analysis of data 

1. Extreme values 

 All GARCH-models perform their best when the market is relatively stable. (Gourieroux, 

1997). This means that the models are not capable to model unexpected irregular 

phenomenons such as stock market crashes. Since the forecasts are based on historical data, 

this type of shocks can have a serious impact for a relatively long period of time, which of 

course can generate distorted results. (Aas et al., 2004). As a result, all return series have been 

removed of extreme values on the 5 percent level using Grubbs test22. 

 The removal of extreme values is, however, not entirely unproblematic since it has a 

negative influence on the volatility and affects the mean value. Furthermore, there is always a 

risk that new extreme values will replace the removed ones.  

2. Autocorrelation Function 

 In order to estimate the degree of dependence in the return series, and thereby choose the 

most appropriate model, an autocorrelation function (ACF) has been used. An ACF plot 

around zero for all lags except lag zero indicates that the time series can be properly modelled 

as an IID noise (Brockwell, 1996). If the ACF plot exhibit decaying amplitude as the size of 

the lag increases, this signals that the time series contains a trend component. (Straumann, 

2005). By a similar procedure, one can also examine whether the series has a reoccurring 

trend component (Ibid.). This means that the ACF can be used as an indicator for non-

stationarity. 

 Concretely this means that if a few ACF markers are outside the 95 percent interval during 

the first 40 lags or, alternatively, one of them exists far beyond the interval, then the 

assumption of IID-noise can be rejected, which means that a MA(q)-model can be used. 

 The appearance of the outliers and their location should be decisive for which type of 

MA-model is to be used. If, for instance, the ACF-plot looks like the figure below, then a 

MA(1) is appropriate since no outliers are located after the first lag23. 

 

                                                
22 For more information of how the test is formally executed, see for instance: 
www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm 
23 Formally, 95 percent of the autocorrelated data after lag 1 should be within the confidence interval when using 
a long time series. 
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Figure 13: ACF of the return 

 

3. Partial Autocorrelation function (PACF) 

 Just as the ACF can be used to determine the order of the MA-model, the PACF can be 

used to determine the order of AR-model to be used. The evaluation is done in a similar way 

as with the MA-model.  

 ACF, as well as PACF, should however be used with care since individual ACF values 

can exhibit large variances and also be autocorrelated. (Box et al., 1994). 

4. ACF of the quadratic return 

 In order to examine the correlation structure of the second moment of a return series, i.e. 

the variance, an ACF of the quadratic return can be used. As previously mentioned, the 

volatility is assumed to be autocorrelated. This can easily be seen in the figure below. in 

paragraph  

 

 
Figure 14: ACF of the variance 

 

If the ACF fades away as the lag-length increases, this is a sign that the variance process is 

close to be non-stationary. (Brockwell, 1996) 

 

 



 37 

5. Engle’s ARCH-test 

 An Engle’s ARCH-test has been done in order to quantify the degree of 

heteroscedasticity. (Barnett, 1996). If the null hypothesis of no ARCH-effect is accepted then 

the time series of sample residuals is assumed to be following a normal distribution.  

 The test is carried out at the 5 percent level and examines 10, 15 and 20 lags. The results, 

which show clear signs of heteroscedasticity in all time series, can be seen after the figures of 

the return, ACF and PACF. 

6. AIC 

 As with the ARCH-test for heterscedasticity, an AIC-test can be performed in order to 

determine the order of the lags p and q. The test tries different orders of p and q by 

simultaneously taking the number of estimated parameters into account (Brockwell, 1996). By 

doing so, the test can to some extent be compared to the ” 2R -Adjusted” obtained from a 

regular multiple regression because it takes the number of estimated parameters into account. 

 The test does, however, have a built in bias. This is because it tends to estimate too high a 

value of the parameter p. (Jones, 1975, Shibata, 1976). This overfitting of the data has lead to 

common use of complementary models, such as the AICC and the BIC. (Brockwell, 1996). 

The implication of this is that the results of the AIC-test are to be considered more of a 

guideline rather than an absolute answer to the appropriate values of p and q. As a result, a 

general rule of thumb has been created, which says that the simplest model which in a 

satisfactory way can explain the data should be used. 

 The results of the tests, where a lower AIC-value is better than a higher one, are presented 

at the end of this appendix. They show that the relevant time series behave quite similar, 

which has lead to p and q being chosen to be equal to one.  
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7. Returns, ACF and PACF  

BAA 

 
Barclays Bank 

 
 



 39 

Reed International 

 
Rentokil 
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8. Results of the Engle’s ARCH-test (5 percent level) 

 
 

Lags H P-value Arch-stat Critical value Lags H P-value Arch-stat Critical value
10 1 0 156,0 18,3 10 1 0 301,8 18,3
15 1 0 172,3 25,0 15 1 0 325,2 25,0
20 1 0 175,6 31,4 20 1 0 332,9 31,4

Lags H P-value Arch-stat Critical value Lags H P-value Arch-stat Critical value
10 1 0 170,9 18,3 10 1 0 189,8 18,3
15 1 0 187,8 25,0 15 1 0 199,4 25,0
20 1 0 195,3 31,4 20 1 0 208,5 31,4

Lags H P-value Arch-stat Critical value Lags H P-value Arch-stat Critical value
10 1 0 162,3 18,3 10 1 0 173,4 18,3
15 1 0 174,8 25,0 15 1 0 201,6 25,0
20 1 0 191,0 31,4 20 1 0 219,9 31,4

Lags H P-value Arch-stat Critical value Lags H P-value Arch-stat Critical value
10 1 0 192,1 18,3 10 1 0 144,8 18,3
15 1 0 215,0 25,0 15 1 0 172,1 25,0
20 1 0 219,3 31,4 20 1 0 192,2 31,4

Lags H P-value Arch-stat Critical value Lags H P-value Arch-stat Critical value
10 1 0 150,2 18,3 10 1 0 153,0 18,3
15 1 0 166,4 25,0 15 1 0 189,7 25,0
20 1 0 169,9 31,4 20 1 0 195,0 31,4

Lags H P-value Arch-stat Critical value Lags H P-value Arch-stat Critical value
10 1 0 164,8 18,3 10 1 0 145,7 18,3
15 1 0 178,5 25,0 15 1 0 152,9 25,0
20 1 0 195,6 31,4 20 1 0 168,4 31,4

Lags H P-value Arch-stat Critical value Lags H P-value Arch-stat Critical value
10 1 0 146,3 18,3 10 1 0 234,6 18,3
15 1 0 164,1 25,0 15 1 0 253,4 25,0
20 1 0 169,7 31,4 20 1 0 268,5 31,4

Sainsbury J

Tesco Vodafone

Barclays Bank

Cable & Wireless

Marks & Spencer

National Grid Reed International

Rentokil

BAA

Centrica

HSBC

Diageo

BOC

 
 

All stocks, though not disclosed here, reject the null-hypothesis, which means that an ARCH-effect is present.  



 41 

9. Results of the AIC-test 

 

P,Q 1 2 3 P ,Q 1 2 3
1 -11476 -11478 -11479 1 -10090 -10087 -10077
2 -11474 -11477 -11479 2 -10103 -10101 -10100
3 -11472 -11474 -11477 3 -10101 -10099 -10098

P,Q 1 2 3 P ,Q 1 2 3
1 -11211 -11210 -11210 1 -10946 -10833 -10983
2 -11209 -11208 -11208 2 -10684 -11454 -11073
3 -11208 -11207 -11206 3 -10736 -10916 -10781

P,Q 1 2 3 P ,Q 1 2 3
1 -10465 -10466 -10466 1 -10888 -10888 -10888
2 -10464 -10465 -10464 2 -10888 -10888 -10886
3 -10466 -10467 -10467 3 -10887 -10886 -10885

P,Q 1 2 3 P ,Q 1 2 3
1 -11030 -11028 -11026 1 -10461 -10463 -10466
2 -10994 -11028 -11026 2 -10495 -10498 -10500
3 -11030 -11028 -11026 3 -10494 -10497 -10499

P,Q 1 2 3 P ,Q 1 2 3
1 -11329 -11324 -11333 1 -10340 -10338 -10341
2 -11327 -11326 -11331 2 -10326 -10337 -10329
3 -11324 -11322 -11327 3 -10337 -10335 -10327

P,Q 1 2 3 P ,Q 1 2 3
1 -10393 -10409 -10407 1 -10564 -10565 -10563
2 -10392 -10408 -10406 2 -10563 -10563 -10561
3 -10391 -10410 -10404 3 -10563 -10563 -10570

P,Q 1 2 3 P ,Q 1 2 3
1 -10891 -10890 -10892 1 -9533,4 -9531,7 -9533
2 -10890 -10888 -10890 2 -9546,4 -9544,7 -9542,2
3 -10892 -10890 -10892 3 -9544,4 -9542,7 -9540,2

N ational G rid

R entokil

Tesco

R eed In ternational

S ainsbury J

V odafone

C entrica D iageo

H S B C Marks &  Spencer

B A A B arclays B ank

B O C C ab le &  W ireless
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Glossary 
 
ARMA-model = Linear time series-model which is suitable if { tX } is stationary 
       and satisfies the condition that: 11 −− +=− tttt XX θµµφ , where  

  ),0(}{ 2σµ WNt ∈ and θθφ ≠+ . 
 
Autocovariance = Covariance of one element with itself over time. 
 
Economic significance =  A situation with statistically insignificant results where the
  results are still of interest for an investor.  
 
Eigen-value = The sum of the square of the columns from a factor matrix. In 

matrix algebra, the eigen-values of a correlation matrix are 
equal to the square root of the “characteristic” equation. 

 
Non stationary  = A non stationary time series is characterised by the following:  

  a changing mean and covariance structure, periodic behaviour 
of trends and finally, time varying parameters and structure. 

 
IID Noise = A time series without a trend- and season component where the 

observations are independent and identically distributed with 
the mean zero. The time series is also characterised by: 

( ) 0}{ 2 == hX
Xt ρ  for all 0≠h , something that doesn’t 

necessarily have to be the case with white noise. 
 
Linear process = The time series { tX } is a linear process if:  

  �
∞

−∞=
−=

j
jtjt ZX ψ , where { tZ } ( )2,0 σWN∈  

 
Stationary = A time series, tX , is said to be weakly stationary if the mean is 

independent over time and if the autocovariance function is 
independent of t for each movement in time (t+h).  

 
Unit circle = Popular educational tool. It consists of a circle with the radius 1, 

placed with its center in the origin of a two dimensional 
coordinate system. 

 
White noise = A time series of uncorrelated random variables which follows a 

distribution with mean 0 and variance 2σ . This implies that  
{ tX } is stationary with zero autocorrelation.  

 
Yule-Walker estimation = Equation for estimation of the preliminary AR-parameter, φ , 

the variance of white noise. Other models with the same 
purpose are: Burg’s algorithm, the innovations process and the 
Hannan-Rissaneb algorithm. 
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Notation 
 
{ tX } = Time series X at time t. 
 

( )bax ,γ  = The covariance function of ( tX ) between time a and b. 
 = ( )( ) ( )( )[ ]sXrXE xbxa µµ −−  
 

( )hxγ̂  = Estimation of the covariance function for ( tX ) 

 = ( )( ) nhnxxxxn t

hn

t
ht <<−−−�

−

=
+

− ,
1

1  

 
( )hxρ  = Autocorrelation function of  ( tX ) 

 ≡  
( )
( )0x

x h
γ
γ

 

 
( )hxρ̂  = Estimation of the autocorrelation function for ( tX ) 

 = 
( )
( ) nhn
h

x

x <<−,
0ˆ

ˆ

γ
γ

 

 
θ  =  Parameter in the MA-model of which size, measured in 

absolutes, is less than 1  (In order for ARMA(1,1) to be 
invertible). 

 
φ  = Parameter in the AR-model. 
  1<φ  
 

jψ  = Constant in a linear process, which in a sequence of constants 
fulfils the condition: 

  �
∞

−∞=

<
j

0ψ  

 
TΓ  = Gamma function 

    
 

  
 


