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average model and several Phillips curve based models. We test also if we

can improve on the Euro Area in�ation forecast by �rst forecasting the sub-
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on the forecast by using a Phillips curve based model. We also �nd further

improvement by forecasting the sub-components �rst and aggregating them

to Euro Area in�ation.
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1 Introduction

The European Central Bank (ECB) primary objective is to maintain price stability

for the Euro Area, which they de�ne as �a year-on-year increase in the Harmonized

Index of Consumer Prices (HICP) for the Euro Area of below 2%�. They also have

clari�ed the de�nition to �in the pursuit of price stability, it aims to maintain

in�ation rates below, but close to, 2% over the medium term.� Therefore we

focus on forecasting Euro Area HICP year-over-year (Y-o-Y) rate one-year ahead.

The Phillips curve is the mainstream in�ation forecasting model and o�ers

the best framework for understanding monetary policy. However, it's well known

that forecasting in�ation is notoriously hard; Atkeson and Ohanian (2001) showed

that the naive forecast, that in�ation over the next year will be the same as it has

been during the past year, performed better or just as well as the three standard

Phillips curve-based models they examined.

This paper focuses on the di�erent methodological decisions and issues one

faces when wanting to perform an in�ation forecast using a univariate or Phillips

curve based model. For example, should one use lags of Y-o-Y changes instead

of M-o-M (month-over-month) changes? Should one strictly follow the Phillips

curve and model in�ation rate as a unit-root process? Does an iterated or direct

forecast perform better? To answer these questions we perform out-of-sample

forecasts trying to simulate the real-time forecasting experience, using the data

available at the time for both model selection and estimation.

We then use our set of models to see whether forecasting the sub-components of

HICP and then aggregating up to Euro Area HICP produces better forecasts than

to directly forecast Euro Area HICP. Several researchers have done this exercise

before, for example Hubrich (2005). However, we contribute to the literature

by using more recent data which includes both the �nancial crisis as well as the

European sovereign debt crisis, and by �ner disaggregation of Euro Area HICP

into 13 sub-components for all 17 Euro Area countries.

This paper is organized as follows: Section 2 goes through the theory under-

lying in�ation dynamics through an historic perspective on the Phillips curve.

Section 3 covers previous research regarding forecasting Euro Area HICP using

sub-components. Section 4 describes the modeling strategy and covers the dif-
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ferent models. Section 5 describes the data set. Section 6 demonstrates the use

and the di�erent issues that arise when using univariate and Phillips curve based

models when forecasting in�ation. In section 7, we run the exercise of seeing if

forecasting the sub-components of HICP outperforms the direct forecast. Section

8 concludes.

3



2 The Phillips Curve

In this section, we will brie�y go through the theory underpinning in�ation dynam-

ics. The main framework to understand in�ation dynamics today is the Phillips

curve. The Phillips curve has gone through several iterations and we �nd it in-

structive to understand in�ation dynamics by brie�y going through the history of

the Phillips curve. With the resurgence of Keynesian thought, you have a case in

point that you shall not underestimate old knowledge and the light it might bring

on newer ideas and the understanding of how those newer ideas where formed.

For a more comprehensive history of the development of the Phillips curve, we

refer to Gordon (2011) and Fuhrer et al. (2009).

It started with Phillips (1958) noticing that a higher (lower) unemployment

rate was related to a lower (higher) rate of change in nominal wages in United

Kingdom during 1861-1957. Phillips made several scatter diagrams to show this

relationship, see �gure 2.1 for an example. Phillips got the solid line in the �gure

by �tting the equation:

4wt + a = buct ⇔ log10(4wt + a) = log10(b) + c log10(ut)

where 4 is the di�erence operator (i.e.4xt = xt − xt−1), wt is money wage

rates at time t, ut is the unemployment rate, a,b and c are constants.

Phillips estimated this equation in the following way:

First he calculated averages of 4wt where ut was in the interval 0-2, 2-3, 3-4,

4-5, 5-7 and 7-11, this is represented by the crosses in �gure 2.1.

Then he estimated b and c by the least squares method using the values of the

�rst four crosses and decided a by trial and error to make the curve �t as good as

possible to the remaining two crosses.

He arrived at the following values:

4wt + 0.9 = 9.638u=1.394t ⇔ log10(4wt + 0.9) = 0.984=1.394 log10(ut)

The interpretation of this model is as follows: If the unemployment rate was

approximately 5.479 we would have zero wage growth. A higher unemployment
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rate would lead to decreasing wages and lower unemployment rate would lead to

increasing wages.

Figure 2.1: The original Phillips curve

Source: Phillips (1958)

What is less known is that Phillips also discussed a number of wage determi-

nants, such as increased import prices which would have an e�ect on the cost of

living and be a factor in wage negotiations, which later have received a lot of at-

tention in the literature of wage and price determination. Furthermore of interest

is also that Phillips suggested the possibility of a �speed limit� e�ect, that not only

the level but also the rate of change has important consequences for the change

in nominal wages. Phillips noted also the reluctance of workers to accept nominal

wage cuts which would suggest that the Phillips curve could be non-linear.

Samuelson and Solow (1960) popularized the name Phillips curve and explored

its policy implications. They note that in the �rst Phillips curve there is a trade-o�

between in�ation and unemployment so theoretically policy makers could choose a

pair which they found most optimal. However they argue that if any such trade-

5



o� existed it must only be in the short-run and could shift the Phillips curve.

Due to their failure to discuss the long-run in more detail than they did they

consequentially became criticized for posing a long-run in�ation-unemployment

tradeo� available for exploitation by policymakers. Personally from reading their

article it seems a bit harsh, rather their short-run was medium-run and presented

a trade-o� only for a few years.

Friedman (1968) and Phelps (1967, 1968) are both credited to discover the

natural rate hypothesis. Friedman argued that monetary policy could only lower

the unemployment rate temporarily, the mechanics being that a lower interest

rate stimulates spending, raise prices, raise the marginal products of labor, and in-

creases employment and output. Friedman believed prices would rise before wages,

lowering the real wage received; thereby prompting increased nominal wages de-

mand by labor and ultimately wage increases would match accumulated price

increases and bring unemployment back to its natural rate. Phelps argued that

the Phillips curve shifts uniformly upward one point for every one point increase

in in�ation expectations. Using an adaptive expectations framework, workers ex-

pected in�ation to be the same as it has been in the past and Phelps developed

the accelerationist Phillips curve:

πt = πe
t − λut = πt−1 − λut ⇐⇒4πt = −λut,

where πt is the in�ation rate at time t, πe
t is the expected in�ation rate at

time t, the coe�cient−λ measures the slope of the Phillips curve. With a small

adjustment to the accelerationist Phillips curve we can get the Non-Accelerating

In�ation Rate of Unemployment (NAIRU):

4πt = −λ(ut − uN),

where uN is the natural rate of unemployment.

We now have arrived at the textbook NAIRU model which says that when the

unemployment rate is below the natural rate the economy experiences in�ationary

pressures and when the unemployment rate is above the natural rate the economy

experiences de�ationary pressures and we reach a stable in�ation rate at the

natural unemployment rate. The NAIRU o�ers two important insights, �rst that

6



there is no long-term a tradeo� between in�ation and unemployment. The second

is the role expectations have in the price-setting process, which became a huge

component in further developing in�ation models and is still today.

Muth (1961), the father of rational expectations theory, noted that economists

used ad-hoc exogenous equations for describing the mechanics of expectations,

Muth wanted more consistency as in that the expectations should be formed

from the prediction of the economic theory, i.e. to make expectations endogenous

within the model. Lucas (1972, 1973) and Sargent and Wallace (1975) developed

models building upon rational expectations. What they found in their models

were that the price level based on rational expectations was extremely �exible,

that the only e�ect monetary policy could have was when it shifted the money

supply unanticipated, making monetary policy practically ine�cient and business

cycles obsolete. So it's not surprising their models fail the empirical tests, however

their work is important and lays an foundation for further work by Fischer (1977),

Gray (1977), Taylor (1980), Calvo (1983) and others that emphasized staggered

nominal wage and price setting by forward looking individuals and �rms. Wage

and price rigidities made monetary policy valid again inside the rational expecta-

tions framework. This work leads to the New Keynesian Phillips Curve (NKPC)

which is basically a forward looking Phillips curve:

πt = Et(πt+1)− λ(ut − uN),

where Et() is the conditional expectation given data up to time t.

An interesting feature with the NKPC is that as it's only forward looking, it

would be possible to achieve low in�ation immediately without the increase in un-

employment by simply changing expectations. This is very interesting as it relates

to the value of monetary policy credibility, anchoring of in�ation expectations and

forward guidance which are quite hot topics today. Gordon (2011) argues that

the NKPC has its application to economies with unstable macroeconomic environ-

ment, like the four hyperin�ations Sargent (1982) studied using the NKPC. The

problem with the NKPC despite it having some nice theoretical underpinnings to

it is that it fails the empirical test. Data shows that in�ation is very persistent

(see Fuhrer and Moore (1995)) and the NKPC has troubles generating that degree

of persistence.
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This article is about forecasting and the Phillips curve we consider is not the

NKPC, the main workhorse model for forecasting in�ation, particular at central

banks is Gordon's (1977) �triangle model� which is also the model that forms

our basis. The story behind the �triangle model� is that it tried to explain the

1970s stag�ation, which saw that a sharp increase in oil-prices which lead to both

in�ation and higher unemployment. So basically you just introduce a �supply-

shock� term into the NAIRU and you get the �triangle model�:

πt = πt−1 − λ(ut − uN) + zt,

where zt is the supply shock. It's called the �triangle model� as it has three

drivers, built-in in�ation (from in�ation expectations and the fact in�ation is

persistent), demand-pull in�ation (the output gap) and cost-push in�ation (the

supply shocks).

By going through some of the history of the Phillips curve, we see that in�a-

tion has many dynamic determinants such as in�ation expectations through past

in�ation experience, wage negotiation power through unemployment level, import

prices through exchange rates and etc. These relationships do not necessarily have

to remain stable as they are a�ected by individuals' behavior, institutions such as

labor unions, monetary policy, �scal policy, and more which in turn could react

to changes in outcome, case in point example being Deutsche Bundesbank strong

inheritance from the hyperin�ation period after the Second World War.

With this we wish to warn that one cannot conclude that the �triangle model�

is more �true� than the NKPC just because the �triangle model� explains the his-

torical data better. It depends on how you wish to use the model, for example

is it for forecasting or policy evaluation. The �triangle model� has outdone the

NKPC in forecasting so far in the literature, while the NKPC can explain why

�forward guidance� and �credibility� has been such important issues for central

banks lately. Lucas summarizes this nicely in his famous Lucas Critique (1976):

�... features which lead to success in short-term forecasting are unrelated to quan-

titative policy evaluation, that the major econometric models are (well) designed

to perform the former task only, and that simulations using these models can, in

principle, provide no useful information as to the actual consequences of alterna-

tive economic policies. These contentions will be based not on deviations between
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estimated and �true� structure prior to policy change but on the deviations be-

tween the prior �true� structure and the �true� structure prevailing afterwards�. It

makes you think how one in today's environment (of high unemployment rate and

super active central banks in the advanced economics) best would forecast in�a-

tion in the medium term (perhaps even in the short term). Perhaps it's not then

surprising that there are some divergence, those who forecast de�ation and those

who forecast hyperin�ation, depending on the models they choose to emphasize.
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3 Previous Research

In this section, we will go through some of the papers that focus on forecasting

Euro Area in�ation with the use of sub-components. If you do not have much

experience with econometrics we would recommend that you read section 4 before

this section since it cannot really be helped that a lot of terminology and concepts

will be used in this section without going into the details.

There are several papers which try to improve on in�ation forecasts by using

sub-components. See for example Aron and Muellbauer (2008) for the USA case

and Demers and De Champlain (2005) for the Canadian case. However, as we

focus on Euro Area in�ation we will mainly discuss the papers that also have the

Euro Area as there focus and especially those papers with comparable methodol-

ogy which we can compare our results to. Unfortunately, we have not been able to

�nd any study which gives an overview nor any cross-country study (if you don't

count the Euro Area) that tries to test if the results from using sub-components

in in�ation forecasting can be generalized to most countries.

The results from the literature is mixed, some �nd that using sub-components

information can help forecast performance while some �nd it doesn't except for the

very short time-horizon, 1 to 3 month ahead. It seems to matter if you modeled

in�ation using M-o-M or Y-o-Y and also if you used quarterly or monthly series.

Di�erent papers have di�erent time period for the data which makes comparison

harder.

Marcellino, Stock, and Watson (2003) study the forecasting performance for

several variables including in�ation rate using country-speci�c data for the Euro

Area. They use several models: univariate autoregresssions (AR), vector autore-

gressions (VAR), single equation models as well as a dynamic factor model (DFM)

which work by measuring the co-movements of multiple series and taking them

out as factors which can be regressed on the variable of interest. Their data is

monthly and covers 1982 to 1997. They �nd that no multivariate models beats

their pooled univariate autoregressions, also their DFM outperformed the VAR's.

So they saw gains by forecasting at the country-level and then aggregating than

to directly forecast at the Euro Area level, their relative RMSE compared to the

direct forecast is 0.90.
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Hubrich (2005) �nds that forecasting sub-components which she disaggregates

to �ve sub-components, services, goods, processed food, unprocessed food and

energy, doesn't help in forecasting the HICP but may slightly help in forecasting

HICPX. Hubrich tries several forecast models (random-walk, AR, VAR), di�erent

model selection procedures, to forecast both HICP and HICPX (core in�ation)

using the sample 1992m1-2001m1. She �nds that aggregating helps for the one-

month ahead forecast of the Y-o-Y HICP but performs worse 6-months and 12-

months ahead, for HICPX aggregating helps if only slightly for all three horizons.

Benalal et al. (2004) basically arrive at the same results as Hubrich (2005)

using pretty much the same models and data (1990m1-2002m6). However, Den

Reijer and Vlaar (2003) and Espasa and Albacete (2004) get opposing results.

Both �nd that forecasting the disaggregates and combining them outperform the

direct forecast on the aggregate on all time-horizons from 1-18 months forward

for the Y-o-Y in�ation rate. However, one reason why their results may di�er is

that both make use of a vector error correction model (VECM) which Hubrich

and the others didn't.

The theoretical motivation for working with sub-aggregates is discussed in

Hendry and Hubrich (2010). They study whether it's better to combine disag-

gregates forecasts or to include disaggregate information to forecast an aggregate

or just simply use the aggregate only. They derive analytical results for the

case when the data-generation process (DGP) is a�ected by a changing coe�-

cient, miss-speci�cation, estimation uncertainty and miss-measurement error. A

structural break at the forecast origin a�ect absolute, but not relative, forecast

accuracies; miss-speci�cation and estimation uncertainty induce forecast-error dif-

ferences, which variable-selection procedures or dimension reductions can miti-

gate. They also perform Monte Carlo simulations to test their analytic results for

changing coe�cient, miss-speci�cation and miss-measurement error, in which they

conclude that adding disaggregate information when forecasting the aggregate is

the best approach, i.e. there exists valuable information in the disaggregates but

it's better to incorporate in a model with the aggregate than to forecast the sub-

aggregates and combine them to the aggregate. They also did an empirical study,

but for US in�ation. However, none of their models could outperform the direct

AR forecast. Interestingly they found that modeling in�ation in M-o-M changes
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and then evaluated at Y-o-Y gives more accurate forecasts than working with the

Y-o-Y series directly as we do in this paper as does most other papers as well.

Also, no qualitative di�erence was observed between working with the level of

in�ation or the change in in�ation.
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4 Forecasting Methodologies

This section has three subsections. In subsection 4.1 we go through some fore-

casting terminology and typical data transformation used in the literature. In

subsection 4.2 we will go through the forecasting models used in this paper. In

subsection 4.3 we will describe the forecast methods and model selection procedure

of the di�erent models.

4.1 Terminology

h-period in�ation: We denote h-period in�ation by πh
t = h−1

∑h−1
i=0 πt−i, where

πt is the monthly rate of in�ation at an annual rate, i.e. πt = 1200 ln(Pt/Pt−1),

where Pt is the price index at time t and ln stands for the natural logarithm.

The log transformation is simply used because it allows us to arithmetically add

instead of multiplying the in�ation rates, so the one-year ahead year-on-year (Y-

o-Y) in�ation rate is given by π12
t+12 = 12−1

∑12−1
i=0 πt+12−i = 100 ln(Pt+12/Pt).

Direct and iterated forecast: There are two ways to make an h-period ahead

forecast model. First the direct way is to regress πh
t on t-dated variables (variables

observed at time t). The second way is the iterated forecast which builds on the

one-step ahead model. For example πt+1 is simply regressed on just πt, which

is then iterated forward to compute future conditional means, i.e. if we assume

our model is given by πt = βπt−1 + εt then the two-step ahead forecast will be

Et(πt+2) = βEt(πt+1) = β2πt, where Et() is the conditional expectation given data

up to time t and Et(εs) = 0 for all s ≥ t. If predictors other than past πt are used,

then this requires subsidiary models for the predictor, or alternatively, modeling

πt and the predictor jointly, for example as a vector autoregression (VAR) and

iterating the joint model forward.

Pseudo out-of-sample forecasts - rolling and recursive estimation: Pseudo

out-of-sample forecasting simulates the experience of a real-time forecaster by per-

forming all model speci�cation and estimation using data through date t, making

a h-step ahead forecast for date t + h, then moving forward to date t + 1 and
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repeating this through the sample.1 Pseudo out-of-sample forecast evaluation

captures model speci�cation uncertainty, model instability, and estimation uncer-

tainty, in addition to the usual uncertainty of future events. Model estimation can

either be rolling (using a moving window of �xed size) or recursive (using an in-

creasing window, always starting with the same observation). Rolling estimation

is preferred if one believes that the data-generating process (DGP) has changed

over time, i.e. the data exhibits structural change. This is because using early

estimates from an earlier DGP would bias the parameter estimates of the current

DGP and lead to a biased forecast. However, there is a trade-o�, by reducing

the sample one increases the variance in the parameter estimates and therefore

also the forecast errors. It is worth noting that Stock and Watson (1996) shows

that most macroeconomic series does exhibit structural change, so if one models

a longer time period it is important to either directly model the structural change

or allow the parameters to change over time which can be done by rolling estima-

tion. We will be using both rolling and recursive estimation as we won't directly

model structural change and have limited sample size to both estimate a lot of

parameters and produce long enough out-of-sample forecasts.

General-to-Speci�c modeling: Is when you usually start with an over-parameterized

model and then follow a parameter reduction strategy. This can be done man-

ually by for example examining correlograms (also known as an autocorrelation

plot), estimate di�erent models and test the coe�cients with t-test and F-tests.

There also exist several algorithms some very advanced which automate the pro-

cedure. These algorithms usually follow four steps: First check that the model

is well-behaving. Second, remove a variable or variables that satisfy the selection

criteria. Third, check if the model is still well-behaving. Fourth, continue do-

ing the second and third step until no further variables can be removed by the

selection criteria. For a more comprehensive overview on the general-to-speci�c

modeling approach, we refer to Campos, Ericsson and Hendry (2005). In this

paper we will develop our own algorithms which are very simple and mostly only

relies on t-test and F-test as well as the Akaike information criterion (AIC). We

1A strict interpretation of pseudo out-of-sample forecasting would entail the use of real-time
data (data of di�erent vintages), but we interpret the term more generously to include the use
of �nal data.
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will describe these algorithms in more detail in subsection 4.3.

Root mean squared error (RMSE) and rolling RMSE: RMSE is a measure

of the forecast performance, the RMSE of the h-period ahead forecasts made over

the period t1 to t2 is

RMSEt1,t2 =

√√√√ 1

t1 − t2 + 1

t2∑
t=t1

(πh
t+h − Et(πh

t+h))
2,

where Et(π
h
t+h) is the pseudo out-of-sample forecast of πh

t+h made using data

through date t.

In this paper, we often use the relative RMSE, which is the model's RMSE

divided by the RMSE from the naive forecast. We also use a rolling RMSE, which

is computed using a weighted centered 25-month window:

rollingRMSE(t) =

√√√√ t+12∑
s=t−12

K(|s− t|/13)(πh
s+h − Es(πh

t+h))
2/

t+12∑
s=t−12

K(|s− t|/13),

where K is the bi-weight kernel, K(x) = (15/16)(1=x2)21(|x| ≤ 1), see Stock

and Watson (2008). Moreover, this kernel puts more weight for the center, so the

rolling RMSE is basically a central moving average with less weight on the tails,

which produces smooth graphs which makes comparing two di�erent models for

di�erent time periods a lot more easier.
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4.2 Forecasting Models

Autoregressive�moving-average (ARMA): We will only use one speci�ca-

tion for the ARMA where we use the Y-o-Y in�ation rate:

π12
t = α +

p∑
i=1

βiπ
12
t−i +

q∑
i=1

γiεt−i + εt (ARMA(p, q))

Phillips curve based models: Are generally models that include the unem-

ployment rate (or another explanatory variable to proxy economic activity) as

well as past in�ation rate as explanatory variables for future in�ation rate.

We will consider eight general model speci�cations. The reason why so many

is that we want to be able to answer three methodological questions, given the

application on using Phillips curve based models to forecast the one-year ahead

Y-o-Y Euro Area HICP:

1. Is it better to use a direct forecast or iterated forecast?

2. Should one use past year-over-year (Y-o-Y) or month-over-month (M-o-M)

in�ation rate as explanatory variables?

3. Should one model the Y-o-Y in�ation rate as a unit-process or not?

π12
t+12 = α +

L1∑
i=0

βiπ
12
t−i +

L2∑
i=0

γiut−i +
n∑

i=1

L3,i∑
j=0

δizi,t−j +
11∑
i=1

ηiDi + εt+12 (DF1)

π12
t+12 = α +

L1∑
i=0

βiπt−i +

L2∑
i=0

γiut−i +
n∑

i=1

L3,i∑
j=0

δizi,t−j +
11∑
i=1

ηiDi + εt+12 (DF2)

π12
t+12−πt = α+

L1∑
i=0

βi4π12
t−i+

L2∑
i=0

γiut−i+
n∑

i=1

L3,i∑
j=0

δizi,t−j+
11∑
i=1

ηiDi+εt+12 (DF3)

π12
t+12−πt = α+

L1∑
i=0

βi4πt−i+

L2∑
i=0

γiut−i+
n∑

i=1

L3,i∑
j=0

δizi,t−j+
11∑
i=1

ηiDi+εt+12 (DF4)
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π12
t+1 = α +

L1∑
i=0

βiπ
12
t−i +

L2∑
i=0

γiut+1−i +
11∑
i=1

ηiDi + εt+1 (IF1)

π12
t+1 = α +

L1∑
i=0

βiπt−i +

L2∑
i=0

γiut+1−i +
11∑
i=1

ηiDi + εt+1 (IF2)

π12
t+1 − πt = α +

L1∑
i=0

βi4π12
t−i +

L2∑
i=0

γiut+1−i +
11∑
i=1

ηiDi + εt+1 (IF3)

π12
t+1 − πt = α +

L1∑
i=0

βi4πt−i +

L2∑
i=0

γiut+1−i +
11∑
i=1

ηiDi + εt+1 (IF4)

Where DF stands for direct forecast and IF stands for iterated forecast, π12
t+12 is

the Y-o-Y in�ation rate one-year ahead, π12
t is the Y-o-Y in�ation rate at time

t, ut is the unemployment rate at time t, zi's are the �supply shock� variables in

Gordon's �triangle model�, however we de�ne z more generally as a variable which

may help predict the in�ation rate. Di are dummy variables for each month to

account for seasonality. L1is the number of lags for past in�ation rates, L2 is the

number of lags in unemployment rates and L3,i is the number of lags for the i'th

�supply shock� variable.

Hence we have four direct forecasts and four iterated forecasts. For each type,

we also have two that doesn't model the Y-o-Y in�ation rate as a unit-process

and two that does and the di�erence between these two is that one uses Y-o-

Y and the other uses M-o-M in�ation rates as past in�ation. By comparing

the performance of these model speci�cations our goal is to be able to answer

the methodological questions we stated earlier. Variants of these models can

be found in the literature, all models used by Marcellino, Stock, and Watson

(2003) are in the form of DF1 without the seasonal dummies. Stock and Watson

(1999) uses IF4 but without the seasonal dummies. Benalal et al. (2004) also

uses seasonal dummies in their speci�cations, but they use M-o-M in�ation rates

instead of Y-o-Y. The DF models are empirical versions of Gordon's �triangle

model� which we covered in Section 2, the di�erence being that we allow for
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several lags, included seasonal dummies and some versions which don't require

the in�ation rate to be a unit-root process and allow for more freedom in what

counts as �supply variables�. The IF models are more similar to the NAIRU as

they do not have any �supply shock� variables and with the same generalizations

to become empirical models. The reason why none of the IF models include

any �supply shock� variables is because then one would need to forecast those

which often one can't do very satisfying, and Stock and Watson (1999) notes that

�supply shock� variables are statistically signi�cant in full-sample speci�cations

but produce worse out-of-sample forecasts when included. In the DF's we are

satis�ed with using ut, instead of the contemporaneous unemployment rate, ut+1.

However, for the IF's we use ut+1 as we anyways need a subsidiary forecast of ut.

An interesting implication from our speci�cations which models Y-o-Y in�a-

tion rate as a unit root, i.e. DF3, DF4, IF3 and IF4 is that they imply a constant

NAIRU, you can see this from that the NAIRU is 4πt = −λ(ut − uN) , so

α + γ0ut = −λ(ut − uN) =⇒ α = −γ0uN =⇒ uN = −α/γ0.
It's important to note that we have not explicitly modeled any structural

breaks, or for example allowed for time-varying parameters (see Staiger, Stock

and Watson (1997) for the �rst time-varying NAIRU model). However, as our

approach is to always re-estimate the parameters for each window and judge the

performance by pseudo out-of-sample forecasts we believe it's not necessarily to

explicitly model structural breaks.
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4.3 Forecast Procedures

Our main goal is to �nd the model which performs best in forecasting, which we

measure by the RMSE for the out-of-sample forecast. So, we wish to simulate

the real-time forecaster experience as close as possible. The general way we do

this is to start with a �rst estimation window of 5 years, a shorter window gave

too few observations for an accurate �rst estimation and using a longer window

reduces our out-of-sample period which we use to judge our model with. We

then try several models from a family of models and use the best in-sample �t

for the current window and forecast ahead one-year. We then recursively grow

the window with one period and then again select a model from the family of

models with the best in-sample �t, and forecast ahead one-year. We then �nally

calculate the RMSE from the produced forecast and actual values, and this is

the sole criteria we evaluate our forecasts on. Below we will go through a little

bit more speci�c of the choices we make in the forecast procedures for both the

univariate and Phillips curve based models.

ARMA: The common method of working with an ARMA model is to use the

Box-Jenkins methodology, see Box and Jenkins (1976).

The Box and Jenkins methodology consist of three stages:

1. Identi�cation stage: Visualize the data to check for outliers, missing

values, structural breaks, seasonality, non-stationarity and etc. Also graph

the correlograms to give an idea which AR or MA terms should be included.

We use an ADF-test to check for non-stationarity.

2. Estimation stage: Estimate and examine the model coe�cients, the goal

is to select a stationary and parsimonious model.

3. Diagnostic check: Check that the residuals behave as a white-noise pro-

cess. We employ the Ljung-Box test and throw away those models that fail

the test.

However, since we wish to automate the model selection as we will be running

multiple forecasts we develop two algorithms which are based on the principles

from Box-Jenkins and hopefully select a similar model as if we used Box-Jenkins.
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In the �rst algorithm we start with the 5 year window and estimate all ARMA

models and remove those that fail the diagnostic test and select the model that

gives the lowest AIC. We then expand the window one step and re-estimate all

ARMA models, we call this AIC. For the second algorithm we use the same

ARMA model for each step, we do this for all ARMA models and choose the

ARMA model which gives the lowest RMSE, we call this ARMA. In the second

algorithm we use the full sample for model selection and therefore cheat a little

on the true real-time forecaster experience, however if a parsimonious model is

used and as the parameter estimation uses only the data up to t, we believe to

still concur with the real-time forecaster experience.

Phillips curve based models: The procedure is similar for the Phillips curve

based models, the same growing recursive window estimation and forecasting.

What di�ers is that we do not do any diagnostic check on the residuals; one

reason for this is that in the direct forecast you cannot expect that the residuals

behave as white-noise as the Y-o-Y in�ation rate is highly persistent and so will

the forecast error also be. What also di�ers is the model selection procedure, here

we don't only rely on AIC; we now reduce the model with F- and t-tests.

A few more things on the model selection, take DF1 as an example:

π12
t+12 = α +

L1∑
i=0

βiπ
12
t−i +

L2∑
i=0

γiut−i +
n∑

i=1

L3,i∑
j=0

δizi,t−j +
11∑
i=1

ηiDi + εt+12 (DF1)

We start with L1 = L2 = 4, L3 = 1 and n = 11 �supply shock� variables, see the

data section for which 11 variables and no dummy variables. Then we stepwise

reduce the model further by removing the coe�cient with smallest absolute t-

statistic, this continues until all coe�cients have an absolute t-statistic of 2 or

greater, the choice of 2 is quite arbitrary but was chosen by considering that we

didn't want to remove a variable which could have importance but not strongly

statistically signi�cant but still able to reduce the number of coe�cients to about

5-12. Then, we use an F-test to see whether the seasonal dummy variables are

jointly statistically signi�cant when added to the model, if they are we add them

to the model.
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For the iterated forecasts we use a subsidiary AR model for unemployment as

Gordon (1998) did. The lag-length for L1 and L2 is decided by AIC, and if the

seasonal dummy variables should be included by an F-test.
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5 Data

For HICP data, the sample covers monthly data from 1996m1 to 2012m11 for

Euro Area as a whole, all Euro Area countries and the sub-components for both

Euro Area and the di�erent Euro Area countries. The weight series are annual and

covers the same sample period. Figure 5.1 show the di�erent sub-components and

how they add up to HICP, the weights are for the Euro Area as whole, di�erent

countries have of course di�erent weights depending on the size of the economy.

Figure 5.1: Euro Area HICP sub-components
The table below shows the di�erent sub-components we have chosen. The num-
ber is the sub-component's weight for 2012, the weights add up to 100.01 due to
rounding errors. We will refer to the sub-component by the name in the paren-
thesis. You may visit Eurostat's Ramon database to see which product groups
are included in the sub-component.

Data: Eurostat
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The Euro Area today consist of 17 European Union (EU) member states which all

have adopted the euro. From 1996-2000, 11 countries aggregates up to the Euro

Area HICP, Greece joined 2001, Slovenia in 2007, Cyprus and Malta in 2008,

Slovakia in 2009 and lastly Estonia in 2011. Figure 5.2 show the di�erent country

weights for 2012.

Figure 5.2: Euro Area HICP country weights
The graph below shows the Euro Area countries and their weight for Euro Area
HICP in 2012, the weights add up to 100.03 due to rounding errors.

Data: Eurostat
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All in�ation data is non-seasonally adjusted and the source is Eurostat. An impor-

tant date to remember is 1st of January 1999, the o�cial launch of the euro and

when the ECB started setting the interest rate. See �gure 5.3 for the historical

graph which also suggests a break in 1999m1.

Figure 5.3: Euro area HICP

24



Figure 5.4 shows how one can aggregate the sub-components into for example a

country aggregate and then in turn aggregate the country aggregates into a the

Euro Area aggregate. However, notice that the result will only be approximate.

Figure 5.5 shows how small the di�erence is.

Figure 5.4: Aggregate approaches
The below �gure demonstrates how one can aggregate from the sub-components
to Euro Area HICP/HICPX. For example one can aggregate all 17 Euro Area
countries SERV1 to get the Euro Area SERV1. We can do this for the rest of the
sub-components so we have aggregated all 13 sub-components of Euro Area by
using the individual countries sub-components. We can then use these aggregated
sub-components to aggregate to HICP/HICPX. Another route would be to get
each country's HICP by aggregating it's 13 sub-components and then get Euro
Area HICP by aggregating those aggregates.

Source: Benalal et al. (2004) with adjustments
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Figure 5.5: Aggregating the sub-components
Euro Area HICP is the year over year change of the o�cial Euro Area HICP
Index.
Euro Area SC is when we aggregate from the 13 Euro Area sub-components.
Country SC is when we �rst aggregate each country's 13 sub-components to that
country's HICP and then aggregate all those aggregates to get Euro Area HICP.
Country is when we aggregate all 17 Euro Area countries HICP to get Euro Area
HICP, i.e. the second step in Country SC, but here we go directly from the
country's HICP and not through the sub-components of the country.
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Other than in�ation data and weights we also have other variables which may

contain information for future in�ation, the z variables in our models.

External cost factors

� OIL: Crude oil price in EUR, Hamburgisches WeltWirtschaftsInstitut (HWWI

Index), converted from daily data by taking the average index level, then

taking Y-o-Y changes

� FOODP: Food prices in EUR, HWWI Index, converted from daily data by

taking the average index level, then taking Y-o-Y changes

� MAT: Industrial raw materials in EUR, HWWI Index, converted from daily

data by taking the average index level, then taking Y-o-Y changes

� NEER: Nominal e�ective exchange rate for each country, converted from

daily data by taking the average index level, then taking Y-o-Y changes

� ULC: Nominal Unit Labor Cost, Eurostat, converted from quarterly to

monthly through linear interpolation and then taking Y-o-Y changes

Activity variables

� GDP: Real GDP, Eurostat, non-seasonally adjusted, converted from quar-

terly to monthly through linear interpolation and then taking Y-o-Y changes

� UNEMP: Unemployment rate, Ages 15-74, Eurostat, seasonally adjusted

� EMPL: Employment rate, Ages 15-64, Eurostat, non-seasonally adjusted,

converted from quarterly to monthly and then seasonally adjusted using

X-12 ARIMA

� GYIELD2Y: 2Y Government Benchmark Yield, Macrobond, converted from

daily data by taking the average

� GYIELD5Y: 5Y Government Benchmark Yield, Macrobond, converted from

daily data by taking the average

� GYIELD10Y: 10Y Government Benchmark Yield, Macrobond, converted

from daily data by taking the average
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Missing and shorter data series: Note that for some of the small Euro Area

countries, the above series are missing or only contain a few observations, if we

have fewer than 150 observations for the explanatory variable we throw it away.

However, for the unemployment rate, we simply write back the series with the

latest value to �ll up the history, this shouldn't a�ect our study much as it was

only needed for 3 of the smallest countries and for only about 2 years' worth of data

in the estimation window, so it only leads to worse estimation and not cheating

out-of-sample forecasts. Also a few of these countries have shorter in�ation series

for their sub-components, this is especially only for Slovenia and Estonia, for these

two countries we moved the estimation window and forecast evaluation period 3

years later.
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6 Direct Euro Area HICP Forecast

In this section, we will demonstrate our di�erent forecast models and procedures

applied on the Euro Area HICP, both headline (HICP) and core (HICPX). The

aim of this section is to show some of the practical di�culties when working

with ARMA models and Phillips curve based models, and how we develop our

algorithms of model selection to account for some of those.

6.1 ARMA

Let us �rst view the data, �gure 6.1 plots both HICP and HICPX. HICP has

averaged 1.95 during this period, a great achievement for the ECB target to

maintain in�ation rates below, but close to, 2% over the medium term. However,

we can see that in 2008 there was �rst a pickup in in�ation which then was followed

by a period of low in�ation rate, even some de�ation in 2009, this is of course

related to the �nancial crisis. HICPX is fairly stable, however interestingly it has

been below 2% for the whole period except for two years starting in the end of

2001. HICPX with an average of 1.53 has either failed to work as a measure for

the long-run trend in in�ation or re�ects just the fact that during this period

energy prices has grown at a higher rate than 2% per annum.

Figure 6.1: Euro Area HICP
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Figure 6.2 shows the autocorrelation and partial autocorrelation for the Y-o-

Y series. Both are very similar and show a high and persistent autocorrelation

suggesting an AR process and perhaps even a unit-root. This is not surprising

as we have Y-o-Y series and monthly observations, so only 2 underlying values

out of 12 di�ers from subsequent observations. The PAC suggests that perhaps

an AR(2) or even an AR(1) would most likely be a good �t for both HICP and

HICPX.

Figure 6.2: Correlograms
HICP HICPX

Before we start estimating ARMA models, we want to test if the series contains

a unit-root or not. We apply the following ADF test:

4π12
t = α + γπ12

t−1 +
k∑

i=1

di4π12
t−i + εt,

where 4 is the di�erence operator, π12
t is the Y-o-Y in�ation rate, α is a

constant, k is the number of lagged di�erences and εt is the error-term. A time

trend is not included as the data shows a stable (non-accelerating) in�ation rate

and no long-run time trend. We allow for a maximum of both 6 and 16 lagged

di�erences and the model is selected using AIC. Under the null-hypothesis, H0 :

γ = 0, we have a unit-root and therefore non-stationary series which the usual

inference will not be valid for. The alternative hypothesis is H1 : γ < 0.

For HICP we cannot reject the null hypothesis of a unit-root when using a

constant and 12 lagged di�erence chosen by AIC (from a maximum of 16 lagged

di�erences). The reported p-value is 0.063, however when only allowing a max-

imum of 6 lagged di�erences AIC selects 4 lagged di�erences and manages to
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reject the null of a unit-root with p-value of 0.013. The coe�cientγ is -0.08 in

both cases, suggesting that the extra lagged di�erences included in the �rst model

reduced the power of the ADF test making us unable to reject the null-hypothesis.

For HICPX the story is similar but the other way around, with 13 lagged di�er-

ences we reject the null-hypothesis with p-value 0.03 but when only including 6

lagged di�erences we get a γ much closer to zero and therefore cannot reject the

null-hypothesis with a p-value of 0.06.

The ADF tests are pretty inconclusive, looking at �gure 6.1 again it looks like

HICPX show signs of periodic time trends which complicates this even further.

One could imagine that we see a falling trend in HICPX through 97-00 and then

a rising trend from 01-02, �at although an downtick in 04 and uptick in 06, falling

from 08-09 and then rising again from 10 onwards. If this was the case we would

need to model in several structural breaks. However, we will continue with two

cases, in the �rst case we assume that we have no unit-root so that the series are

stationary and regular statistical inference applies. In the second case we assume

that we have a unit-root so we must �rst di�erence the series before we start

�tting an ARMA model.

We wish to simulate the real-time forecaster experience as close as possible as

well as �nding the model which performs best in forecasting. The way we choose

to do this is to estimate the same ARMA model recursively using a growing

window, and then selecting the model with lowest RMSE. More speci�cally our

�rst estimation period is 1997m1-2002m1 (5 ∗ 12 + 1 = 61) observation of Y-o-Y

data, we estimate our ARMA model and produce a 12-step ahead forecast (i.e.

we use our forecast values, and not the actual values), so we get a forecast on the

2003m1 observation. We then grow the window with one observation, estimation

period 1997m1-2002m2, get new parameter estimates for the same ARMA model

and forecast the 2003m2 observation and so on. We then have an out-of-sample

forecast series which we can calculate the RMSE for, the RMSE is calculated using

the period 2003m1-2012m11 (i.e. all data where we have both the forecast series

and actual data). We do this for 91 models (ARMA(p,q), where p = 0-12 and q =

0-6) and select the ARMA model with the lowest RMSE. One reason to estimate

the same ARMA model for each window is so that we can plot the parameters

of that model to see if its parameters are stable. An alternative is also to use
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the model with best in-sample �t for each window, previous research has shown

that the best in-sample �t is not necessarily the best for out-of-sample forecasts.

However, for completeness we will also report the forecast series produced by

trying all 91 models for each window and selecting the best in-sample �t model

using an AIC. Note that this series may be a bit irregular as each subsequent

observation may have used a di�erent ARMA model. Also note that the AIC

is more true to the real-time forecaster experience as both model selection and

model estimation is done using only the data available at the time of the forecast,

while in the other case the model selection has used the full sample.

The last step in the Box-Jenkins methodology is model diagnostic, in particular

to test if the residuals behave as white-noise. This is done with the Ljung-Box

test with 12 autocorrelations included and a p-value equal or greater than 0.05

is required to pass the diagnostic check. For convenience, we reduce the set of

ARMA models we try out to those which cannot reject the null hypothesis of zero

autocorrelation up to 12 lags in the whole sample. Because the data is obviously

autocorrelated, there must at least be an AR(1) parameter, �gure 6.3 shows the

�tted model and it's residuals as well as the correlogram of the residuals. The

good �t is due to our use of Y-o-Y data and should be taken with caution. From

the correlogram we see a strong autocorrelation to the 12th lag, adding a MA(12)

parameter �xes this so in all our ARMA models we will also have included a

MA(12) parameter. However, we do a t-test to see that the MA(12) parameter is

statistically signi�cant, if the absolute value of the t-statistic is less than 1.5, we

remove it. So our �rst set of ARMA models will be ARMA(p,q+12), where p=1-

12 and q=0-6, with MA(12) included if signi�cant. And several of these models

won't be reported as they won't ful�ll the diagnostic check. It's important to note

that there is a possibility that during some windows the residuals of the model

could be autocorrelated as we only require that the residuals of the whole sample

�t is not autocorrelated. However, in our AIC approach, we require that each

model in each window must produce white-noise for residuals, a problem with

this is perhaps in one window, none of our models satis�es this requirement but

we deem that highly unlikely.
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Figure 6.3: Euro Area - AR(1)
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Case1:

Figure 6.4 shows the results from the above exercise, the model selected was

ARMA(2,1+12), which is nice as it's also parsimonious. The relative RMSE is

0.66, which is a huge improvement from the naive forecast. The AIC had a relative

RMSE of 0.70 which is slightly worse but still very good. We hypothesized that

due to the sharp increase in in�ation during 2008 and the following drop in 2009

would severely hurt the naive forecast, and all other forecasts based on lagged

dependent variables because exactly when the model starts picking up the increase

in in�ation, actual in�ation falls sharply. However, looking at the rolling RMSE

in �gure 6.4 we see that it's not only during 2008-2010 that the naive forecast

underperforms ARMA(2,1+12), ARMA(2,1+12) outperforms if only just slightly

the naive forecast almost throughout the whole sample. What's also interesting,

suggesting that the in�ation rate one-year ahead will always land on ECB's goal

of 2% outperforms even our ARMA(2,1+12) model, with a relative RMSE of

0.63, however it may have been hard to a priori guess that the ECB would be

so successful at targeting the in�ation rate. The conclusion we draw from this

exercise is that during the rather calm period of 2001-2007, the in�ation rate was

very close to the target of 2% and most univariate models would do quite good at

predicting the in�ation rate, just as the naive forecast, however due to the strong

swings in in�ation rate brought upon the �nancial crisis these univariate models

could neither predict nor adjust fast enough.

Figure 6.4: Euro Area HICP - Forecasts & Rolling RMSE
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Perhaps we could get better forecasts by using a moving window instead of a

growing window as we clearly see two di�erent periods, the �rst period character-

ized by a stable in�ation rate around 2% and the second period of a much more

dramatic swing in the in�ation rate. Figure 6.5 shows the same exercise as above

but with a moving window of 5 years, now a ARMA(2,4+12) model was selected,

however the relative RMSE is worse at 0.73. The performance of AIC is even

worse at a relative RMSE of 0.92, trying to forecast in�ation in the middle of the

�nancial crisis, putting more weight on recent data (shorter estimation sample),

results in erratic behavior of the AIC due to model shift. What is however inter-

esting with the AIC, is that it was somewhat able to predict the fall in in�ation

rate in 08-09 but then overshoots signi�cantly afterwards when the in�ation rate

rises. Other window sizes give similar results.

Figure 6.5: Euro Area HICP - 5 year sample window
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In �gure 6.6 we show the rolling estimates of the parameters in the ARMA(2,1+12)

both using the growing window and the moving window. We have two windows

when using a moving window that made the estimated model unstable, got non-

invertible MA-roots. A 5-year window is perhaps a bit too short. From the left

graph in �gure 6.6 we can clearly see that the parameters are stable from 2003 to

2010 and then the parameters start drifting a little. However, we conclude that

the parameter estimates are stable. What most likely drives the results is the

constant's estimate of near 2 most of the time.
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Figure 6.6: Euro Area HICP - Rolling Coe�cients Estimates
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Figure 6.7 shows the �rst exercise but now with HICPX instead of HICP. The

AIC methodology performs awful before it gets a large enough sample. Now an

ARMA(1,6+12) got chosen with a relative RMSE of 0.83, which is a signi�cantly

gain from the naive forecast. However, it seems the issue is the same as when

we worked with HICP, a constant of the periods average HICPX (about 1.5%)

outperforms all the other univariate models, relative RMSE of 0.80. But we want

to yet again stress the point that it's not easy to know this constant beforehand.

Figure 6.7: Euro Area HICPX
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Case 2:

Now we assume that the Y-o-Y data has a unit-root so we estimate ARIMA

models instead of ARMA, the approach is exactly the same as earlier except that

we di�erence the dependent variable.

Figure 6.8 shows the results, an ARIMA(2,1,2+12) model was chosen with

relative RMSE of 0.90, so still better than the naive approach but not nearly as

good as our ARMA(2,1+12) model. We get similar results for HICPX as well.

So we conclude that it's much better to model using the direct Y-o-Y series than

the di�erence Y-o-Y series when using an ARMA model. The initial problem why

we may wanted to di�erence the series due to a possible unit-root may not be so

serious; as we managed to get good out-of-sample forecasts and also our unit-root

tests may have lacked the power to reject the null hypothesis of a unit-root. For

example Culver and Papell (1997) show that while it's hard to reject the null

hypothesis of a unit-root for individual countries in�ation rate, taking the cross-

section into account makes the test signi�cantly stronger. In the literature you

will �nd cases where they have modeled in�ation as a unit-root process and in

others where they have not. Therefore, in our Phillips curve based models, we

have both variants so we can compare to both literature and to see which gives

the best forecast performance.

Figure 6.8: Euro Area HICP - Forecasts & Rolling RMSE
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6.2 Phillips curve based models

In this subsection we will demonstrate our use of both a direct and iterated Phillips

curve based model. Hopefully some of the issues involving estimation and the out-

of-sample properties become clear.

The two speci�cations we will use our DF1 and IF1, the discussion generalizes

to the other models quite straightforward as only some variable transformations

are needed.

π12
t+12 = α +

L1∑
i=0

βiπ
12
t−i +

L2∑
i=0

γiut−i +
n∑

i=1

L3,i∑
j=0

δizi,t−j +
11∑
i=1

ηiDi + εt+12 (DF1)

π12
t+1 = α +

L1∑
i=0

βiπ
12
t−i +

L2∑
i=0

γiut+1−i +
11∑
i=1

ηiDi + εt+1 (IF1)

Let us start with the DF1. As in the previous subsection we start our �rst

estimation period 1997m1-2002m1, however some of the �supply shock� variables

don't start before 1998 (for example unit labor cost index starts at 1997 so our

Y-o-Y series starts at 1998) so we adjust the sample period to 1998m5-2002m1,

meaning we have only 45 observations, if we were to start with L1 = L2 = 4,

L3 = 1, n = 11 and 11 seasonal dummy variables. We would have 1 + 5 + 5 +

11 ∗ 2 + 11 = 44 parameters to estimate, i.e. almost as many parameters as

observation making the model over-�t and sure to result in bad out-of-sample

forecasts. Therefore we never start with the 11 seasonal dummy variables, so we

start with estimating 33 parameters and reduce by removing the parameter with

smallest absolute t-statistic and re-estimating the reduced model, we continue

this until all parameters has a absolute t-statistic of 2 or greater. Then hopefully

we have a parsimonious model and can check if all 11 seasonal dummy variables

are jointly signi�cant if added to the reduced model, if they are we add them of

course. When we have arrived at our reduced model we easily get π12
t+12 (2003m1

Y-o-Y in�ation rate) by �tting the model, we then grow the window with one

observation and redo the model reduction and continue till we have produced the

full out-of-sample forecast series.

Figure 6.9 show the results, the performance of the DF1 is miserable. It

38



performs in line with the naive forecast from 2004-2008 but it's unable to capture

the dynamics during the �nancial crisis, in fact this period makes the model

unstable. The reason for this is the instability of the parameters, which is among

other things a symptom of the model selection procedure which can be seen as data

mining. To clarify this further, see �gure 6.10 that estimate the same equation,

the one chosen by our procedure for 2011m6, but one uses the sample 1998m5-

2011m6 and the other 1998m5-2012m11, only 17 more observation is added to get

the full sample. It's is clear from the red-line that we managed to �nd a good �t

for the period 1998m5-2011m6 but that using those estimates for out-of-sample

forecast performs very badly. Also by using the same parameters but estimated

with the full sample results in a worse in-sample �t, 0.28 vs. 0.74 for the shorter

sample, as the parameters were not selected by our model reduction procedure.

However, we also �nd that some parameters that were very signi�cant no longer

are when re-estimating the same equation, but now with 17 more observations,

see table 6.1. Figure 6.11 show the parameter estimation both for a growing

window and a rolling �x window of 5 years. Interestingly the parameters look

rather stable before the �nancial crisis and then they change dramatically and

afterwards seem to revert back slightly. The issue doesn't seem that we have too

many parameters in our reduced model as we only have 8 in this case but because

we reduce our model from a large set of parameters we will almost always be able

to �nd those that give a good in-sample-�t but as we saw in this exercise, a great

in-sample �t doesn't necessarily lead to a good out-of-sample forecast, especially

considering the dramatic shifts in 2007-2010. This is in agreement with Stock

and Watson (1999), which found that �supply shock� variables are statistically

signi�cant in full-sample speci�cations but produce worse out-of-sample forecasts

when included.
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Figure 6.9: Euro Area HICP - Forecasts & Rolling RMSE
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Figure 6.10: Euro Area HICP - Forecasts
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Table 6.1: Coe�cient instability, full sample estimate in parenthesis
Variable Coe�cient t-statistic

α 17.8 (9.08) 22 (9.5)
π12
t -0.74 (-0.38) -11 (-3.7)
ut -1.48 (-0.52) -19 (-6.4)

ULCt -0.53 (-0.26) -17 (-6.2)
FOODPt−1 -0.02 (0.00) -6.6 (0.1)
NEERt -0.02 (-0.02) -3.6 (0.6)

GY IELD2Yt−1 -1.04 (0.08) -7.3 (0.59)
GY IELD5Yt−1 0.75 (-0.42) 4.7 (-2.4)

Figure 6.11: Euro Area HICP - Rolling Coe�cients Estimates
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We noted an issue with including GDP, even though GDP can help predict in�a-

tion in our exercise, including it makes us to break the true real-time forecasting

experience as the release of GDP numbers is lagged up to several months, usually

3 or more months. We could of course use a lag of GDP to make it more of a

real-time forecasting experience but some �rst evidence suggested it wouldn't be

signi�cant, so we decided not to include GDP as a potential variable.

For HICPX the results are similar, good performance before the �nancial crisis

but terrible under, however we return to quite good performance directly after the

�nancial crisis, see �gure 6.12.
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Figure 6.12: Euro Area HICPX - Forecasts & Rolling RMSE
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Now let us turn to IF1:

π12
t+1 = α +

L1∑
i=0

βiπ
12
t−i +

L2∑
i=0

γiut+1−i +
11∑
i=1

ηiDi + εt+1 (IF1)

There is only two di�erence regarding implementation from DF1. First that

we now must make an subsidiary AR forecast of the unemployment rate, this is

simply done by testing 12 AR models, with lags 1-12 and select the model with

best AIC for the active window. The second di�erence is that instead of using

the t-statistic to reduce the model we select the model with the lowest AIC from

the 25 models (L1 = L2 = 4, so 5 ∗ 5 = 25) that we run. And then like we did for

the DF1, add the seasonal dummies if they are jointly signi�cant (with a p-value

of 0.05 or lower) by the F-test.

See �gure 6.13 and 6.14 for HICP and HICPX respectively. We see that

this model works very well, the relative RMSE for HICP is 0.70 and for HICPX is

0.69. Remember the mean for the respective period gave an relative RMSE of 0.66

for HICP and 0.83 for HICPX, meaning we beat it for HICPX and successfully

manage to model some of the dynamics. IF1 worked so well so we became slightly

worried that we were using data which wouldn't have been available at time t when

producing our subsidiary forecast of unemployment. In some countries Eurostat's

release date for the unemployment rate for the same month as the in�ation rate

lags, however in others like Finland, unemployment data is actually released a

couple days before. However, we tested using only data for the unemployment
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rate up to time t − 1 and it only a�ected the performance slightly, it reduces

the relative RMSE for both HICP and HICPX by only 0.01 units. So we feel

comfortable that we aren't tricking ourselves.

Figure 6.13: Euro Area HICP - Forecasts & Rolling RMSE
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Figure 6.14: Euro Area HICPX - Forecasts & Rolling RMSE
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7 Indirect Euro Area HICP Forecast

In this section, we apply our models to forecast the sub-components of Euro

Area HICP and to see if aggregating these sub-components outperforms the di-

rect forecasts. In subsection 7.1 we work with the 13 sub-components, which we

can aggregate up to both HICP/HICPX. In subsection 7.2 we look at making

HICP/HICPX forecasts at the country level and then aggregating up to Euro

Area. In subsection 7.3 we compare the di�erent aggregating routes and perform

an optimal aggregate.

7.1 Forecasts through HICP Sub-components

Table 7.1 show the performance of our di�erent models on forecasting the di�erent

sub-components of Euro Area HICP. IF1 and IF2 outperform all models by far.

The DF models are at a huge disadvantage as most of them end being unstable

after the �nancial crisis as the big change in the environment strongly a�ected the

parameter estimates. The ARMA-models do generally quite well in comparison

to the naive forecast (AO) that the Y-o-Y in�ation rate one-year ahead will be

the same as it's today. AIC does very well for HICP but terrible for HICPX and

in general doesn't seem to improve on AO. You can see from the AO column that

energy prices is by far the most volatile sub-component and we gain huge forecast

improvements by using an IF1 or IF2 model on these sub-components.

Note also that we gain in forecast accuracy by aggregating the sub-components

to HICP/HICPX, 0.49 and 0.58 than the direct forecast of 0.66 and 0.67.
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If using sub-components help forecast the HICP/HICPX in�ation, then one could

most likely get better country forecasts by using the country's sub-components to

forecast the country's HICP/HICPX �rst and then aggregate to Euro Area, this is

called Euro Area Agg in table 7.2. And indeed we get some forecast improvement

but it's so little it's negligible. However, again IF1 and IF2 perform very well, but

now IF2 seems to beat IF1 much more often. It's interesting that the other models

gain huge improvement when aggregating from country forecasts to Euro Area, see

for example DF1 which relative RMSE for HICP/HICPX goes from 1.24(1.70) to

0.79(0.90). Perhaps this is a result from that DF1 is at times unstable and when

we aggregate some of the forecast errors mitigate each other making the aggregate

a bit more stable.
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7.2 Forecast through Country Forecasts

Table 7.3 show how well our models perform in forecasting individual Euro Area

countries, again the IF1 and IF2 outperform the rest, however IF2 beats IF1 a

few more times. The performance for the di�erent countries are quite similar, the

largest forecast errors we get for Estonia, where with using the best model we get

an RMSE of 1.88 (4.83 ∗ 0.39). Again we see that we can improve on the Euro

Area HICP/HICPX forecast by �rst forecasting all countries HICP/HICPX and

aggregate them up to Euro Area.
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7.3 Optimized Euro Area Forecast

In the previous two subsections we aggregated the sub-components in three ways,

through Euro Area HICP sub-components, through all countries HICP sub-components

and lastly through country HICP/HICPX. Here we will consider two additionally

approaches. Starting from all countries HICP sub-components, we can aggregate

either to country level and then Euro Area HICP/HICPX, or aggregate to Euro

Area HICP sub-components and then to Euro Area HICP/HICPX. The result

would be the same, however now, if an intermediate aggregate has a better �di-

rect� forecast, that forecast will be replaced with the �direct� forecast and therefore

the two di�erent routes of aggregating will di�er. Table 7.4 summarizes the re-

sults from the di�erent aggregation approaches. Not very surprising, the optimal

forecast do better than the others, however one must take care that in this proce-

dure we break the real-time forecasting experience as the choice of model is based

solely on the relative RMSE which we can't know beforehand. What is interesting

is that we gain our biggest forecast accuracy improvement by �rst forecasting the

13-sub components of Euro Area and aggregating up to Euro Area HICP/HICPX.

Disaggregating further and forecasting all countries sub-components seem to help

for HICP but not at any signi�cant level for HICPX.

Table 7.4: Forecast performance of di�erent aggregate approaches
Here we show the forecast performance from the di�erent ways of aggregating.
Euro Area is when we forecast directly with IF2. Euro Area SC is when we
�rst forecast the 13 sub-components of Euro Area with IF2 and then aggregate.
Country SC is when we use IF2 to forecast all countries sub-components and then
aggregate these up to Euro Area HICP/HICPX. Country is when we use IF2 to
forecast each country's HICP/HICPX and aggregate to Euro Area. Optimal SC is
when we optimize using the sub-components route. Optimal Country is when we
optimize using the country aggregation route. The value under the column AO is
in RMSE (percentage points) and under all other columns it's relative RMSE, to
get their RMSE in percentage points you can simply just multiply with the value
under AO. The forecast evaluation period which the RMSE is calculated from is
2003m1-2012m11.

Sub-component AO Euro Area Euro Area SC Country SC Country Optimal SC Optimal Country

HICP 1.31 0.66 0.53 0.47 0.53 0.47 0.46

HICPX 0.41 0.67 0.58 0.57 0.58 0.51 0.53
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Figure 7.1 and 7.2 shows the optimal forecasts for HICP/HICPX respectively. We

see that we manage to capture a lot of the dynamics and beat the naive forecast

by far, and even the average of the period, which we wouldn't be able to know

a-priori.

Figure 7.1: Euro Area HICP - Optimal Forecasts

-1

0

1

2

3

4

5

-1

0

1

2

3

4

5

2003 2004 2005 2006 2007 2008 2009 2010 2011

Actual Optimal Country

Optimal SC Country SC

Euro Area HICP - Optimized Forecasts

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2004 2005 2006 2007 2008 2009 2010 2011

Naive Optimal Country

Optimal SC Country SC

2 %

Euro Area HICP - Optimized Forecasts (Rolling RMSE)

Figure 7.2: Euro Area HICPX - Optimal Forecasts
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8 Conclusions

We set out to forecast the Y-o-Y Euro Area HICP/HICPX one-year ahead. We

knew that forecasting in�ation is notoriously hard, and that even a naive forecast,

that in�ation over the next year will be the same as it has been during the past

year, is hard to beat, or in any case a good AR model. However, we showed that

with a simple Phillips curve based model and a basic model selection algorithm

that we managed to beat both the naive forecast and our ARMA model during

the forecast evaluation period of 2003m1-2012m1. We also showed that we could

improve even further on the Euro Area HICP/HICPX by �rst forecasting their

sub-components and then aggregating the forecasts. Most likely the main driver of

this result is the huge improvement made in modeling the energy sub-component,

which is by far the most volatile component. You can view energy prices as a

white noise process, and when trying to forecast Euro Area HICP directly, you

will still have unbiased estimates but due to the noise, these estimates will be

inexact and lead to worse forecast performance. When we disaggregate into sub-

components, we handle energy prices by themselves and in that way �lter away

the white noise. Also the naive forecast for energy prices is very �awed, say for

example that prices rose by 20% the previous year due to a supply shock, then

you would most likely not believe that they will rise 20% this year as well, a more

realistic assumption in that case would be unchanged prices from today.

We also set out to answer three methodological questions:

Q1. Is it better to use a direct forecast or iterated forecast?

Q2. Should one use past year-over-year (Y-o-Y) or month-over-month (M-o-

M) in�ation rate as explaining variables?

Q3. Should one model the Y-o-Y in�ation rate as a unit-process or not?

A1. In our case it seemed to be clearly better to use a iterated forecast

instead of an direct forecast. Perhaps due to our sample where the �nancial

crisis is included but not directly modeled made our parameters too unstable

and resulted in a disadvantage to the direct forecast which used more parameters

which may also perhaps be more sensitive to larger changes.

A2. It didn't seem to considerable matter if one used Y-o-Y or M-o-M for past

in�ation. It would have been interesting to see if it mattered if we modeled the
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dependent variable as M-o-M instead of Y-o-Y as it did for Hendry and Hubrich

(2010) for the US case, they found that using M-o-M instead of Y-o-Y gives better

forecast performance.

A3. It is also clear at least from the models that we used that it's better to treat

Euro Area in�ation as a stationary process and not having a unit-root. This goes

against Hendry and Hubrich (2010), but the di�erence may lie in the di�erence

between Euro Area and US in�ation. It seems more common to model in�ation

as having a unit-root in the US and not for the Euro Area, however it doesn't

seem to exist any real consensus in the literature that in�ation is non-stationary

in the US but stationary in the Euro Area.

Our results con�rms with Den Reijer and Vlaar (2003) and Espasa and Al-

bacete (2004) that aggregating the sub-components of Euro Area HICP/HICPX

produces better forecasts than to directly forecast Euro Area HICP/HICPX. How-

ever, it goes against Hubrich (2005) and Benalal et. al. (2004) which found that

using the sub-components only improve the aggregate forecast of HICP for only

very short horizon (1-month), however for HICPX they seem to �nd some im-

provement by using the sub-components. Our models and the model selection

procedure is more similar to theirs than to Den Reijer and Vlaar (2003) and

Espasa and Albacete (2004) which uses a VECM, however as we see among our

di�erent models, even if they seem similar the performance can vary quite greatly.

Also one must consider that we are using a completely di�erent forecast evalua-

tion period, their data set ends at 2002 while our forecast evaluation period starts

at 2003. This also means that we regrettably can't more quantitatively compare

the results.

Interesting future research would be to apply some of the methodologies cov-

ered by Stock and Watson (2006) which gives an extensive overview of forecasting

methods using many predictors. They cover forecast combination, dynamic factor

models (also called Factor-Augmented Vector Autoregressive Models (FAVAR)),

Bayesian model averaging and Empirical Bayes methods. We see a strong po-

tential for some of these models, especially dynamic factor models where one can

decompose all the sub-components information into a few factors is intuitively

appealing. Furthermore, interesting future research would be to take structural

breaks into consideration, we most likely had several structural breaks throughout
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our sample, and especially considering that in our sample's time period we have

the �nancial crisis and Euro Area sovereign debt crisis, which led some of our

models to be useless.
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