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Abstract

As an e�ect of the unusually volatile �nancial markets the past few years, new asset allo-

cation strategies such as the equal risk contribution (ERC) approach has been developed.

This report examines the e�ect on portfolio performance of adding VIX Futures contracts

to an ERC portfolio consisting of positions in long-term government bonds and S&P 500

equities. The investigation is conducted through simulations using a model based on

data from 2004-2008, and is supplemented by a study of the tail event in 2008-2009.

The results suggest that the inclusion of VIX Futures positions substantially improves

portfolio performance in terms of Sharpe ratio, and is also shown to remain signi�cant

when adjusting for transaction costs and diversi�cation e�ects. Thus, investors and asset

managers using the ERC approach could bene�t from adding VIX Futures positions to

their portfolios.
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Chapter 1

Introduction

During the past decade, the �nancial markets have been unusually volatile. As

a result, investors have started to rethink their asset allocation strategies. Alter-

native approaches based on volatility exposure, such as risk parity or equal risk

contribution (ERC), have exhibited good past performance and become increas-

ingly popular [19]. An ERC portfolio typically consists of di�erent asset classes,

such as Developed Equity, Emerging Equity, Commodities, REITs (Real Estate

Investment Trust) and Treasuries. These portfolios usually have large bond posi-

tions (or similar), and leverage is often used to increase return. Higher leverage

might increase the exposure to tail risk, and during times of economic downturns

or prolonged economic crises investors may �nd it hard to get a su�cient yield on

bonds.

A natural hedge for equity portfolios is positions in volatility because of

their negative correlation. One such alternative is long positions in VIX Futures,

which are Futures contracts written on the VIX Index; the implied volatility of

S&P 500. The index generally responds with a fast and strong upward reaction to

bad market news, and Futures are used to access the movements since the index

itself is not traded and there is no underlying asset or replicating portfolio. A key to

capitalize on these reactions is to actively manage the position, since VIX Futures

are prone to fall very sharply when market conditions improve. Furthermore, these

characteristics make the VIX Index hard to predict.

An interesting question is if introducing VIX Futures as an asset class
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CHAPTER 1. INTRODUCTION

in an equal risk contribution portfolio increases the overall portfolio performance.

Contributing factors could be that a well-managed VIX position has positive hedg-

ing e�ects and the fact that the VIX Index has a �oor. In practice the �oor is

greater than zero, which suggests that holding a VIX position in good times does

not have to give large negative returns if the position is entered at a su�ciently low

level. Moreover, the underlying intuition behind the ERC approach is to maintain

equal risk (volatility) shares between all assets. That is, lower the exposure to an

asset class as the volatility in the asset increases and vice versa. E.g. the rapid

response in VIX Futures to bad market news is characterised by increasing Futures

prices and spiking volatility, and thus an ERC investor should decrease the VIX

position. This might be a method to capitalize on the VIX's movements, since

the relative position in VIX Futures is lowered over the whole volatility spike and

invested in e.g. S&P that most likely turned down at the same time. The purpose

of this paper is to investigate if ERC investors could bene�t from entering a VIX

Futures position using simulations.

The simulations are based on stochastic representations of the S&P 500

Index, VIX Futures contracts, long term government bonds and a roll over equal

risk contribution reallocation decision rule. Using di�erent rebalancing frequencies

ranging from daily to yearly, a large sample of portfolio values over one year is

generated. From this, the returns and other performance metrics such as the

Sharpe ratio are calculated. To investigate VIX's impact, accessed through rolled

over Futures positions, two portfolios are compared. The �rst consisting only

of a S&P 500 position and government bonds, while the second includes VIX

Futures as well. In collaboration with a calibrated model by Zhu and Lian (2012),

the portfolio simulations starts at a hypothetical July 11, 2008 and terminates

one year later, using simulated data. For reference, the corresponding portfolio

performance using real data will be examined.

Literature on the bene�ts of adding VIX Futures positions to an equal

risk contribution portfolio is limited, and to our knowledge this paper is the �rst

to examine this approach. The fact that VIX Index products were introduced in

2004 and that the equal risk contribution asset allocation was �rst considered in the

aftermath of the 2008 �nancial crisis might contribute to the absence of previous

studies. Nevertheless, Black (2006) has shown that adding small positions in VIX
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CHAPTER 1. INTRODUCTION

Index products would eliminate hedge funds' higher-moment risks while keeping

equity returns and bond-like risks. Moreover, Maillard et al (2009) conclude that

an equal risk portfolio strategy would be a good trade-o� between a minimum

variance portfolio and an equal weights portfolio in terms of absolute level of risk,

risk budgeting and diversi�cation.

This paper shows that adding VIX Futures to an ERC portfolio consisting

of S&P 500 and government bonds substantially increases portfolio performance.

Sharpe ratios based on yearly average returns increases within a range of 30 % to

128 % (corresponding to a range between 0.09 and 0.40) for rebalancing frequencies

spanning from annually to daily, respectively. The results also suggest that higher

Sharpe ratios can be achieved by rebalancing the porfolio including VIX Futures

more frequently using the ERC allocation rule, and that VIX Futures have hedging

bene�ts during tail events. A statistical test of the di�erence between Sharpe

ratios for the portfolio including VIX and the portfolio without VIX shows that

the results hold signi�cantly. A further examination concludes that this still is

true when e�ects due to transaction costs and diversi�cation are accounted for.

As an implication, the results suggest that investors could bene�t from

adding VIX Futures to an ERC portfolio.
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Chapter 2

Theory and Previous Studies

In this chapter, the theoretical framework and previous studies will be presented.

This includes a historical review of di�erent asset allocation decision rules, with

the equal risk contribution as one of the most recent suggestions. Performance

measures to be used in the portfolio evaluation in this report and some charac-

teristics of VIX Index products as investment assets are stated. Finally, a brief

mathematical background on stochastic modelling of assets is conferred.

2.1 Asset Allocation

There is a wide consensus in the �nancial markets that strategic asset allocation

is important for overall portfolio performance. Asset allocation is based on the

fundamental idea that di�erent types of asset classes perform di�erently across

di�erent types of economic and market conditions. Given that asset classes are

not perfectly correlated, the investor can diversify a portfolio to remove asset-

speci�c/idiosyncratic risk. The asset allocation should also take into account an

investor's speci�c risk preferences, time horizon or other goals.

2.1.1 Equal Weights

This asset allocation strategy is perhaps the most basic one and is often termed

"the 1/N heuristic". The investor simply puts equal capital weights on the di�erent

assets and rebalances when appropriate (given transaction costs etc.). On the
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2.1. ASSET ALLOCATION CHAPTER 2. THEORY

positive side, it is so simple that almost anyone can do it. The di�cult part for an

ordinary investor might be �nding a suitable rebalancing rule/frequency. On the

negative side, this method has not taken into account any information regarding

the individual assets' characteristics; return, volatility and correlation with other

assets. This means that the portfolio probably is not well-diversi�ed and therefore

the investor takes on risk that he or she is not paid for.

2.1.2 Minimum Variance Portfolio

The Minimum Variance Portfolio approach was introduced by Harry Markovitz

in a famous article published 1952 in the Journal of Finance. Using historical

data, the average returns and the covariances between the assets are calculated,

and the E�cient Frontier is constructed by �xing an expected return under the

condition that variance should be minimized. Given a risk-free return the investor

can choose portfolios along the Capital Allocation Line at any desired level of risk.

An advantage of this method is that it accounts for the individual assets'

mutual correlations and assigns weights to minimize portfolio variance, and hence

risk. On the negative side, investment decisions are taken based on historical data,

and past performance is not a guarantee for similar future results.

2.1.3 Most Diversi�ed Portfolio

The Most Diversi�ed Portfolio (MDP) was introduced by Choueifety and Coignard

(2008) and builds upon a measure called the Diversi�cation Ratio (DR). The

DR is de�ned as the ratio of the portfolio's weighted average volatility to the

portfolio's overall volatility. Since assets are not perfectly correlated, this ratio

will typically be greater than one. Thus, the DR measures the diversi�cation

gained by holding non-perfectly correlated assets. By maximizing this measure,

the Most Diversi�ed Portfolio is obtained. Maximizing the measure implies that

the individual assets have as high volatility but as low correlation as possible,

conditional on the maximization of the quotient.

The measure experiences critique since the authors want to maximize the

distance between two di�erent volatility measures of the same portfolio. As Lee

(2010) points out, the weighted average volatility of the portfolio is not a measure
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2.1. ASSET ALLOCATION CHAPTER 2. THEORY

that really exists in the real world, whilst the portfolio's overall volatility clearly

is a real world property. More speci�c, the weighted average implies that there

is no diversi�cation at all, which of course is not true in reality. The lack of an

underlying economic theory, or an underlying utility function of the DR, makes it

a bit unclear to why investors should maximize this measure. Also, for the MDP

to end up on the e�cient frontier, all assets must have identical Sharpe ratios.

The assets are typically not required to be identically correlated, but the lack of

this assumption at the e�cient frontier implies arbitrage opportunities. However,

when assets are identically correlated, it can be shown that the MDP and ERC

portfolios are the same [14].

2.1.4 Equal Risk Contribution

In a Risk Contribution (RC) portfolio an investor determines asset class weights

based on their contribution to portfolio risk (volatility). In the special case where

the investor wants the assets to contribute equally much to the portfolio risk, an

asset allocation approach known as risk parity or equal risk contribution (ERC) is

obtained. Equal risk contribution has over the past decade gained attention since

it has shown to outperform several classical types of asset allocation strategies [19].

One of the reasons that the ERC approach emerged was that in the stan-

dard institutional portfolio consisting of 60 % equity and 40 % bonds/�xed income,

the equity part stands for over 90 % of the risk [19]. This, combined with the fact

that e.g. a minimum variance approach is based on forecasts of future returns

from historical data give rise to a lack of robustness that the ERC approach seems

to mitigate [16]. However, the underlying economic theory supporting an ERC

approach is somewhat vague. E.g. that all assets must be identically correlated

and have identical Sharpe ratios for the portfolio to end up on the e�cient frontier

[14].

Recent Views on ERC

As the equal risk contribution approach has become increasingly popular and

caught the attention of both academics and the �nancial industry, some studies

have explored it in further detail. Romahi and Santiago (2012) have investigated
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2.1. ASSET ALLOCATION CHAPTER 2. THEORY

data in various time periods from 1927 to the present day, and suggest that a

factor premium risk parity approach outperforms the traditional ERC approach.

The idea behind the risk factor approach is to use risk factors (and their premia)

instead of asset classes de�ned in a more traditional way (commodities, equities

etc.). The factors are e.g. small cap premium, momentum, REITs and merger

arbitrage. One concern with traditional equal risk contribution is the increasing

correlation between asset classes. Remember that for the ERC portfolio to be on

the e�cient frontier, one would like the asset correlation to be zero (or identical).

Romahi and Santiago (2012) show that the rolling correlation between risk factors

are much lower (less than 25%) when compared to traditional asset classes (about

80%), mitigating this concern. A concern regarding the risk factor approach is that

some of the risk factors might be di�cult to capture and/or illiquid for investors

to access. Another problem is that much of the bene�ts are lost if the investor

does not have mandate to use leverage or short sell. Nevertheless, according to

Romahi and Santiago, the market is moving in a direction that makes the risk

factors more liquid, and that a long-only risk factor approach still would be more

bene�cial than a traditional equal risk contribution approach [19].

As mentioned above, equal risk contribution is a special case of a risk con-

tribution portfolio. Lee (2010) sees it as a starting point for an investor without

a clear view of the markets. This approach is also taken further in the article by

Rappoport and Nottebohm (2012). Their conclusion is that an equal risk contri-

bution approach has performed well during the recent periods of great uncertainty,

but that equal risk shares is meaningless as an objective in itself. They argue that

if an investor knows that a certain asset will have a return of 8 %, it would be wise

not to ignore it. But if the investor is a bit uncertain, then he or she might tone

down his or her reliance on this forecast. Given that an investor is very uncertain

about the forcast, it might be wise to ignore it. Rappoport and Nottebohm (2012)

argue that this is exactly what the risk parity/equal risk contribution approach

does, and hence consider it to be a starting point, just as Lee (2010).

The question is of course whether an ERC portfolio will be pro�table in the

future. To take into account the investor's level of uncertainty in the asset weight

assessment, Rappoport and Nottebohm (2012) suggest a "Forecast Uncertainty

Hedge" rule. The method "is a hybrid of a number of asset allocation proposals
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2.2. PERFORMANCE STATISTICS CHAPTER 2. THEORY

that have appeared in the �nance literature over the last twenty years" [18] and is

out of scope for this report. However, according to their simulations, this extension

of equal risk contribution has outperformed traditional ERC in 70 % of the cases.

2.2 Performance Statistics

By rational economic reasoning, it is obvious that investors seek high returns on

investments and simultaneously prefer to take on an as low risk as possible. In basic

portfolio theory, the risk is often measured as the volatility (standard deviation)

of the portfolio returns, and a fundamental relationship is the trade o� between

return and volatility. Already in 1966, William Sharpe presented a theoretical

measure that relates the excess return with its volatility. This was later called the

Sharpe ratio (SR) and is de�ned by:

SR =
E[R]− rf√
V ar(R− rf )

(2.1)

where R is the return of the portfolio and rf the risk-free rate. In this report,

rf is assumed to be constant and hence vanishes from the denominator. One of

the objectives of this report is to measure the performance of di�erent investment

portfolios in terms of the Sharpe ratio. To be able to make appropriate statis-

tical inferences, further assumptions has to be made on the distribution of the

returns. Following the approach by Lo (2002), assuming independent and iden-

tically distributed (i.i.d) returns (which would be the case for the returns of the

simulated portfolios in this report), one can show that the standard errors (SE) of

the estimates of the SR is given by:

SE(ŜR) =

√(
1 +

1

2
ŜR

2
)

(2.2)

The i.i.d. assumptions gives an asymptotic normal distribution, which

could be used to test for signi�cant di�erences in Sharpe ratios. Moreover, for

completeness and as investigation of the tails of the distribution of returns, worst

drawdown and the highest return is also considered as performance statistics.
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2.3. VIX AND VIX FUTURES CHAPTER 2. THEORY

2.3 VIX and VIX Futures

On the Chicago Board Option Exchange, contracts on the Volatility Index (ticker:

VIX) have been traded since March 26, 2004. The VIX is based on averaging

weighted prices on put and call options traded on the S&P 500 Index for a large

range of strike prices, see Appendix C.2 for the exact calculation. Therefore, the

VIX Index is the level of volatility implied by option prices and is regarded as a

measure of expected future market volatility. Thus, taking VIX positions is often

regarded as a pure volatility exposure on the S&P 500 Index.

Historically, VIX is negatively correlated with the S&P 500 Index (correla-

tion coe�cient about −0.8). This suggests a diversi�cation bene�t when including

VIX products in an investment portfolio [5]. A study performed by Black (2006)

suggests that an inclusion of a small position in VIX Index products as a part of

a hedge fund investment portfolio would be preferable. It would eliminate some

parts of the higher-moment risks (e.g. skewness and kurtosis) while keeping a

desirable portfolio with equity returns and bond-like risks. One objective of this

report is to investigate if this, in some manner (e.g. in terms of Sharpe ratio), could

be transferred to hold for equity and bond positions in an equal risk contribution

portfolio.

One concern often stated when investing in VIX Index products is that

there are no underlying assets traded. Consequently, one could not replicate the

performance of the index. Therefore, contracts written on the VIX Index are

only settled with cash �ows at time of maturity. Futures contracts are traded in

terms of the volatility (not in $) and a change of a 0.01 tick changes the balance

on the margin account with $10 [4]. The initial margin for a contract is $5,500.

VIX Futures contracts are often characterized by the property that contracts with

longer maturity time are more expensive.
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2.4. MATHEMATICAL THEORY CHAPTER 2. THEORY

2.4 Mathematical Theory

In this section, the crucial mathematical properties of stochastic processes used

in the simulations in this report are presented. The theory regarding Wiener

Processes and the Geometric Brownian Motion is the most fundamental building

blocks to get the stochastic representations needed for simulations (and pricing).

For more technical details on arbitrage-free pricing see Appendix C.

2.4.1 Stochastic Processes

Stochastic processes are fundamental in mathematical �nance since they can be

used to model e.g. bonds and stocks. Representations of stochastic processes is

also required to be able to analytically calculate arbitrage-free prices of �nancial

derivatives (contingent claims). The classical example is the mathematical deriva-

tion of the well-known Black-Scholes-Merton formula. In this theory, asset prices

are described as continuous time stochastic processes, using di�usion processes

and stochastic di�erential equations (SDEs).

A stochastic process X is a di�usion if its local dynamics can be approx-

imated by a stochastic representation of the following type:

{
X(t+ ∆t)−X(t) = µ(t,X(t))∆t+ σ(t,X(t))(W (t+ ∆t)−W (t))

X(0) = x0

where x0 is a constant, µ and σ are deterministic functions and W is a Wiener

process. Making the increments in�nitesimal, i.e.letting ∆t→ dt, yields the SDE:{
dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t)

X(0) = x0

where µ is called the drift term and σ is called the di�usion term.

13



2.4. MATHEMATICAL THEORY CHAPTER 2. THEORY

Wiener Processes

The choice of Wiener processes as the driving random component in many SDEs

is based on the good properties for analytical calculations, inherited from the

Normal distribution. Informally, a Wiener process's non-overlaping increments

are independent. This is of course a convenient when it is desirable to add pure

randomness to some other process. As seen in condition 3 below, every time

increment of a Wiener process has a normal distribution, with expected value

zero and variance linearly increasing with the length of the time interval. It is

reasonable that a large sample of processes that essentially are "random walks"

will have an increased variance when the time considered increases. Formally, a

stochastic process W is called a Wiener process if the following conditions hold:

1. W (0) = 0

2. The process W has independent increments, i.e if r < s ≤ t < u, then

W (u)−W (t) and W (s)−W (r) are independent stochastic variables.

3. For s < t the stochastic variable W (t) − W (s) has a Normal distribution

N(0, t− s).

4. W has continuous trajectories. (P-a.s.)

Note: The notation N(µ, σ2) refers to mean µ and variance σ2. P-a.s. means

almost surely convergent.
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2.4. MATHEMATICAL THEORY CHAPTER 2. THEORY

One trajectory of a Wiener process is visualized below:

Figure 2.1: Graph of a Wiener process with dynamics σdW (t) with σ = 0.1 over 1

year.

Geometric Brownian Motion

Another fundamental part of asset pricing and modelling is stochastic processes

that follow a geometric Brownian motion (GBM). The GBM is a type of SDE and

has the dynamics: {
dXt = αtXtdt+ σtXtdWt

X(0) = x0

The solution to this stochastic di�erential equation is given by (see [1]):

Xt = x0 · exp

{(
αt −

1

2
σ2
t

)
(t− 0) + σt(Wt −W0)

}
(2.3)
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Using the properties of Wiener processes, we know that

Zt = (Wt −W0) ∈ N(0, t− 0)

hence the GBM follows a log-normal distribution which is one of the key assump-

tions in the famous Black-Scholes-Merton pricing formula. One simulation of a

stock price given by a GBM is presented in Figure 2.2.

In the simulations in this report, a GBM-approach with both stochastic

drift and stochastic di�usion term will be used. For more information, see Ch. 3.

Figure 2.2: Graph of a geometric Brownian motion with dynamics dSt = αStdt +
σStdWt, where α = 0.2 and σ = 0.1 over 1 year. The green line is the

solution to the corresponding ODE with dynamics dSt = αStdt.
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Chapter 3

Methodology

The approach used to investigate equal risk contribution portfolios' performance

is based on simulations and statistical examination of the generated outcomes. To

simulate the di�erent assets that are included in the portfolios, a joint model of

the assets' dynamics is needed. The building blocks used are stochastic repre-

sentations of S&P 500 equities, VIX Futures contracts and long term government

bonds. Simulations are made using the stochastic representations together with a

rebalancing rule that allocates capital in accordance with the ERC theory.

For di�erent rebalancing frequencies, yearly returns of the portfolios are

generated and the performance statistics presented in Sec. 2.2 are calculated. The

models used to simulate these investment assets will be presented in this chapter.

Moreover, necessary limitations and simpli�cations are stated as well as the tech-

nicalities of asset allocation and rebalancing. Lastly, a method to investigate the

performance of these portfolios on actual data will be considered.

3.1 Stochastic Modelling

To allow for an integrated simulation of the assets in the equal risk contribution

approach a comprehensive model for the asset prices is needed. The model for

stocks and VIX Futures used is a simpli�ed version of the more general presentation

in Zhu and Lian (2012). As in their approach, let the stocks St describe the S&P

500 Index and Vt be the stochastic di�usion component. Under the objective

17



3.1. STOCHASTIC MODELLING CHAPTER 3. METHODOLOGY

probability measure P these are assumed to have the following dynamics:{
dSt = St(rt + γ)dt+ St

√
VtdW

S
t , S0 = s0

dVt = κ(θ − Vt)dt+ σV
√
VtdW

V
t , V0 = v0

(3.1)

where rt is the spot interest rate, γ the equity premium and κ, θ and σV are,

respectively, the mean-reverting speed parameter, the long-term mean and the

variance coe�cient of the di�usion Vt, and dW
S
t and dW V

t are two standard Wiener

processes under P with correlation ρ. This implies that the S&P 500 Index is

described as a geometric Brownian motion with a stochastic di�usion term, and

that the di�usion term is a mean-reverting stochastic process. Mean-reverting

meaning that the di�usion term �uctuates around, in this case, θ. Following the

standard approach in arbitrage theory, the dynamics could be expressed under the

risk-neutral martingale measure Q as:{
dSt = Strtdt+ St

√
VtdW

S
t,Q, S0 = s0

dVt = κQ(θQ − Vt)dt+ σV
√
VtdW

V
t,Q, V0 = v0

(3.2)

where ηV = κQ − κ is the volatility risk premium and σV , ρ and κθ are preserved

under the (Girsanov) measure transformation from P to Q. From this, Duan and

Yeh (2007) have shown that an explicit formula for the VIX Index is given by:

V IX2
t = (aVt + b) (3.3)

where  a =
1− e−κQτ̄

κQτ̄
, τ̄ = 30/365

b = θQ(1− a)

(3.4)

Using this and the standard approach for pricing Futures contracts, Zhu

and Lian (2012) have shown that the VIX Futures price at time t is given by:

F (t, T, V IXt) = EQ[V IXT |Ft] =
1

2
√
π

∫ ∞
0

1− e−sbf
(
−sa; t, τ,

V IX2
t − b
a

)
s1.5

ds

(3.5)
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where T is the maturity time of the VIX Futures contract, τ = T − t time to

maturity and:

f(φ; t, τ, Vt) = eC(φ,τ)+D(φ,τ)Vt (3.6)

with 
C(φ, τ) =

−2κθ

σ2
V

ln

(
1 +

σ2
V φ

2κQ
(e−κQτ − 1)

)

D(φ, τ) =
2κQφ

σ2
V φ+ (2κQ − σ2

V φ)eκQτ

(3.7)

Hence, solving the system of stochastic di�erential equations (3.1) and calculating

the integral (3.5) gives the values for the S&P 500 and Futures prices on VIX.

Furthermore, to be able to use this approach a speci�cation of the short

rate rt is needed. In the literature, there exists a large number of di�erent short

rate models. A fairly general alternative is the Hull-White model (3.8), which �ts

theoretical bond prices to the observed yield curve. The dynamics under the risk

neutral probability measure Q is given by:

drt = (Θ(t)− ãrt) + σdW r
t,Q, r0 = r̃0 (3.8)

where Θ(t) is a deterministic function of time to be speci�ed by the observed

forward yield curve, ã and σ are constants and W r
t is a Q-Wiener process (at this

point with no restrictions).

Hull and White (1990) have shown that this model yields the zero coupon

bond prices p(t, T ) at time t maturing at time T as:

p(t, T ) =
p∗(0, T )

p∗(0, t)
exp

[
B(t, T )f ∗(0, t)− σ2

4ã
B2(t, T )(1− e−2ãt)−B(t, T )r(t)

]
(3.9)

where f ∗(0, t) is the observed t-forward rate at time zero, p∗(0, t) and p∗(0, T )

the observed zero coupon bond prices at time zero with maturity time t and T

respectively, and with:

B(t, T ) =
1

ã

[
1− e−ã(T−t)] (3.10)
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Using the notation in Björk (2009), it can be shown that:

Θ(t) = f ∗T (0, t) + g′(t) + ã (f ∗(0, t) + g(t)) (3.11)

where the subscript T indicates partial derivative with respect to the time to

maturity and:

g(t) =
σ2

2
B2(0, t) (3.12)

Moreover, a useful relationship for calculating bond prices from the forward rate

curve is given by:

f ∗(0, T ) = −∂ ln(p∗(0, T ))

∂T
(3.13)

The consequences of adjoining this model to the speci�cation in (3.1) will be

examined in Sec. 3.2.

Consequently, the approach chosen to model stocks, bonds and VIX Fu-

tures prices consists of the solution to the stochastic di�erential equation (3.1)

for S&P 500, the values of the integrals in (3.5) and the bond prices given by

(3.9). The model uses the parameters: γ, s0, κ, θ, σV , v0, ηV ,τ̄ , ã, σ, r̃0 and the

yield curve f ∗(0, T ) to determine the variables: St, F (t, T, V IXt) and p(t, T ) as

functions of t and T .

3.2 Limitations and Assumptions

The model for the S&P 500 Index and the Futures prices on VIX found in Zhu

and Lian (2012) used and presented in this report is already a simpli�cation of the

most general model presented in their paper using e.g. stochastic jump processes in

both the underlying and the di�usion term. A more general model is out of scope

for this paper, and the simpli�cation is justi�ed by Zhu and Lian's conclusion that

this model yields a su�cient and reasonable �t with the historical data on VIX

Futures prices. The model in this report limits the VIX Index modelling, which

in practice is characterized by volatility spikes which often are modelled by jump

processes. However, since the equal risk contribution portfolio consists of Futures

on the VIX Index rather than VIX Index positions directly, the model serves the

desired purpose of usage.
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Further simpli�cations used in this report regard model parameter esti-

mations. As suggested and performed by Zhu and Lian (2012), the solution to the

system of stochastic di�erential equations (3.1), (3.3) and Futures prices (3.5) is

�tted to historical data on the S&P 500 and the VIX Index using Markov chain

Monte-Carlo simulation and parameter estimation. Since the scope of this report

is focused on asset allocation in portfolio management rather than mathematical

model estimation, the estimates found in Zhu and Lian (2012) is used and shown

in Table 3.1. These parameters are estimated from daily close levels on S&P 500

and VIX as well as daily VIX Futures settlement prices over the period March 26,

2004 to July 11, 2008. The date March 26, 2004 is when the trading with VIX

Futures started and July 11, 2008 is presumably chosen as to match with the time

frame of their research.

Moreover exclusion �lters are used, e.g. removal of Futures with less

than �ve days to maturity and Futures with less than 200 contracts traded to

avoid liquidity-related biases. One implication for this report of choosing the

parameters in Table 3.1 rather than up-to-date estimations is that the results of

the simulations regarding rebalancing frequency can be compared to the actual

market performance for the time period July 12, 2008 and onwards. Moreover,

choosing this period of time for parameter estimation seems rather bene�cial in

the sense that the markets were fairly stable during this period, as could be seen

in Figure 3.1. I.e. the conclusions made from these simulations could be said to

hold in a more general setting than if post 2008 �nancial crisis parameters are

used, since these would be biased on a market su�ering from distress. In addition,

using parameters from a stable market period to examine the performance using

actual data from a crisis would give an indication on the portfolio performance in

tail events. This is further examined in Section 3.4.

Table 3.1: Estimates of model parameters from Zhu and Lian (2012). The table re-

ports annualized means and standard deviations within parentheses for each

estimator.

θ κ σV ηV ρ

0.0444 2.2680 0.3856 -2.0160 -0.7533

(0.0071) (0.2520) (0.0504) (0.5040) (0.0231)
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Figure 3.1: Historical data on S&P 500, VIX Index and 10 year government zero coupon

bonds from March 26, 2004 to July 11, 2008.
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Extending the model used by Zhu and Lian (2012) with the Hull-White

short rate model in a general setting generates a model examined by Grzelak,

Ooseterlee and van Weeren (1990), with correlations among all the driving Wiener

processes. In that approach, it can be shown that there does not exist a�ne

solutions, which means that e.g. the bond prices could not be calculated using

equation (3.9), and more sophisticated pricing formulas are necessary. In the

scope of the simulations in this report, and as a �rst approximation, an a�ne

term structure is considered. The consequence of this simpli�cation is that the

short rate will be modelled independently of the processes described in (3.2). One

should also note that the bond positions are assumed to be in terms of zero coupon

bonds with face value $1. The zero coupon bond is a theoretical construction that

is not traded in the bond market. However, the zero coupon bond yields could

easily be derived from actual government (coupon) bonds and vice versa. Zero

coupon bonds are thus used in this report for transparency.

Moreover, a corresponding simpli�cation regarding parameters estimation

for the short rate model is used. If an explicit calibration is to be made, either

caplet or swaption prices could be used. The estimates to be used in this report are

values that are frequently used in simulations in the literature, e.g. by Schulmerich

(2010), and are shown in Table 3.2.

Table 3.2: Estimates of short rate model parameters by Schulmerich (2010). The table

reports annualized means.

σ ã

0.01 0.02

The initial parameters and the equity premium have to be stated or es-

timated. The initial values s0, v0 and r̃0 are taken from S&P 500 Index value at

July 11, 2008, Zhu and Lian's report and U.S. Department of the Treasury yield

curve from July 11, 2008 (by linear extrapolation) respectively. The equity pre-

mium γ is taken from the research of Graham and Harvey (2008). Moreover, VIX0

is adjusted to the data above. All values are shown in Table 3.3, and the U.S.

Department of the Treasury forward rates on July 11, 2008 are shown in Table

3.4.
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Table 3.3: Initial parameters and the equity risk premium γ. The table reports annu-
alized values.

s0 v0 r̃0 γ VIX0

1239.49 0.0225 0.0126 0.037 0.22

Table 3.4: Forward rates quoted by the U.S. Department of the Treasury on July 11,

2008.

Maturity 1 m 3 m 6 m 1 y 2 y 3 y 5 y 7 y 10 y

1.38% 1.62% 2.02% 2.30% 2.59% 2.88% 3.27% 3.55% 3.96%

Furthermore, the parameters are assumed to be �xed during the simula-

tions. In practice, an ERC investor would update the parameters gradually as

time passes by. This would require parameter estimation and is thus out of the

scope of this report. Moreover, the simulations are on a one year horizon (252

trading days) due to the non-updated parameters, since longer time periods would

require higher model and estimation accuracy.

The time to maturity of the Futures contracts and the bonds simulated

in this report uses a roll over simpli�cation, i.e. the Futures contracts to be

traded are assumed to always have a maturity time of three months and the long-

term government bonds are equally assumed to have a maturity of 10 years. A

maturity time of three months for the Futures is used since a short maturity is

preferred due to higher VIX Index dependence in pricing, and a shorter maturity

time would not be transferable to real life investment decisions since Futures with

shorter maturities are also experiencing liquidity related e�ects. In practice, the

settlement of the VIX Futures is thirty days prior to the maturity of S&P 500

options. Thus, the assumption of Futures with maturity time of three months

gives a di�erence in time to maturity compared to real Futures of at most two

weeks, and on average no di�erence.

Long term government bonds are used to match the return pro�le of an

equal risk contribution investor, i.e. increase both expected returns and risk ex-

posure. Furthermore, some simpli�cations regarding the margin account for the
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Futures contracts are used. There is no interest gained or paid and the investor

does not get any margin calls. The implication is that there is a little less return

in the simulated portfolio including VIX Futures than what it should be. This is

because either a small return is given due to interest on the margin account, or

that the investor believes that a higher return could be achieved by using lever-

age and investing the "margin account money" elsewhere. In practice, the terms

of these accounts vary among investors, and it is easily adapted to the model if

desired.

3.2.1 Turnover and Transaction Costs

Another simpli�cation used is regarding transaction costs, which at a �rst approx-

imation are ignored. The reason is mainly for simplicity of the results presented in

this report. Moreover, the transaction costs vary over time and is di�erent among

investors. An investor interested in this approach could add his or her transaction

costs into the simulation.

For robustness, a review of the di�erence in transaction costs between

portfolios with and without VIX Futures positions, the total net reallocation of

each simulation is calculated and shown (in average for each rebalancing frequency)

in Ch. 4. The de�nition of net total reallocation (turnover) used is the sum of the

absolute change in each portfolio weight for each reallocation over the whole year of

investment. From this, an estimate of the e�ect on portfolio performance from the

total aggregated transaction costs can be calculated. In Ch. 4, a transaction cost

of 0.05 percent is assumed, and the impact on the di�erent portfolios is calculated.

This does not take care of the e�ect of continuously settling the transaction costs

and thus the e�ect of compounding, which for these purposes can be considered

to be negligible.

3.3 Simulation in Matlab

TheMatlab-simulation implements the models stated in Sec. 3.1 with parameters

from Sec. 3.2 using time-discretization with equal time-steps corresponding to

daily values. The Wiener increments are normally distributed, with W S and W V
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correlated by ρ and independent of W r. Modelling is preferably performed under

the objective measure P , but for uniqueness the short rate model must be simulated

under the risk-neutral measure Q. Note that the trajectories of r used in e.g. (3.1)

is the risk-neutral values, hence the modelling will be consistent. The log-return

of the S&P 500 is modelled in analogue with Zhu and Lian (2012), and denoted

Yt = ln(St/St−1). The term arising from the di�usion could be neglected when

applying Itô's formula.

The discretization used with time-increments ∆t is given by:
Yt+1 = (rt + γ)∆t+

√
Vt
√

∆tZS
t , S0 = s0

Vt+1 = Vt + κ(θ − Vt)∆t+ σV
√
Vt
√

∆tZV
t , V0 = v0

rt+1 = rt + (Θ(t)− ãrt) ∆t+ σ
√

∆tZr
t , r0 = r̃0

(3.14)

where ZS
t , Z

V
t and Zr

t are standard normal distributed and ZS
t and ZV

t have cor-

relation ρ. Subsequently, the Futures prices are calculated using the numerical

integration function quadgk and the bond prices are calculated using (3.9). More-

over, a total of 1000 simulations of each trajectory is used. The number 1000

is chosen as a trade-o� between precision (size of standard errors of estimates),

needed computational power and for easy reference. As could be seen in Ch. 4, the

precision is satisfactory for the purposes of this report. I.e. the precision is enough

to conclude that the estimates of the portfolios' Sharpe ratios are signi�cantly

di�erent when including VIX Futures positions.

3.3.1 Allocation of Capital

With the di�erent trajectories simulated for the S&P 500, the VIX Futures and

the bonds, the asset allocation will be according to an equal risk contribution

approach. Using the methodology presented by Maillard et. al. (2009), the

capital will be allocated based on volatilities and correlations as risk measures.

This gives an allocation rule for the weights wS&P , wV IX and wbond in form of a

minimization problem. The desired allocation is such that wi(Σ ·w)i = wj(Σ ·w)j

for all i, j = S&P,VIX, bond and where Σ is the covariance matrix between the

assets' returns. This implies that all assets contribute equally to the total portfolio

risk.
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The optimization problem to be solved in order to get portfolio weights

could be written as:

min
∑

i

∑
j(wi(Σ · w)i − wj(Σ · w)j)

2, i, j = S&P,VIX, bond

subject to
∑

iwi = 1, wi ≥ 0
(3.15)

where w = (wS&P , wV IX , wbond)
T represents the vector of portfolio weights. The

optimization constraints is interpreted as that no short-selling is allowed, that all

the weights should sum up to one means that the portfolio is unlevered. By inspec-

tion, the objective function equals zero only if the desired allocation is ful�lled.

The covariance matrix Σ has to be estimated using historical data, which in the

context of this report is done by using previous values in the simulated trajectories.

The chosen backward time is set to seven days, as a trade-o� between sample-size

and importance of historic events. A larger sample will give a higher accuracy on

the estimates, while the importance of past events will be present for a longer time

when more data points are used.

According to Maillard et. al. (2009), the intuitive allocation problem

presented in equation (3.15) could be rewritten as a convex optimization problem

with a unique solution, which is why the rewritten version is used in the simulations

made in this report. The optimization problem could then be formulated as:

min
√
yTΣy

subject to
∑

i ln(yi) ≥ 0, yi ≥ 0
(3.16)

where y is the un-normalized analogue of w. Consequently, the portfolio weights

are given by:

wi =
yi∑
i yi

where i = S&P,VIX, bond (3.17)

Furthermore, the initial capital is assumed to be $1, 000, 000 and given the

weights of the allocation, the number of positions in each asset can be determined.

The size of initial investment is irrelevant for this study, but is important if real

costs (such as a lower bound in dollars of a transaction cost) are implemented.

The initial value is easily changed to a chosen number in the Matlab-code. For

S&P 500 and the government bonds, the number of positions is simply determined

as the value of total allocation divided by the price of one position in S&P 500 and
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in bonds respectively. For the Futures contracts, the allocation is determined in

terms of the initial margin for one contract. In particular, the number of Futures

contracts held is the amount allocated to VIX Futures divided by the initial margin.

This rule is plausible since it would not require any further assumptions on the

terms of the margin account, as described in Sec. 3.2.

3.3.2 Rebalancing Decision Rule

The rule for rebalancing is simply a �xed rebalancing frequency, based on a roll over

strategy. With Σ̂ estimated from returns over the past seven time points, equation

(3.16) is used to assign weights between the asset classes in the portfolio. In this

report daily, weekly, monthly, quarterly, semi-annually and annually rebalancing

frequencies are investigated. A roll over strategy means that for each time of

rebalancing, an updated covariance matrix is used to calculate the new weights.

This yields that a calibration of the model is needed for the �rst seven days,

which is realized by starting the simulations seven days before the capital is �rstly

allocated.

3.4 Performance on Historical Data

Using the same approach as in Sec. 3.3.2 and Sec. 3.3.1, the performance of the

equal risk contribution portfolio could be examined on historical data from July

11, 2008 to July 10, 2009. The data used is the actual values of the S&P 500

Index, the zero coupon bond prices calculated from the forward rate curve and

VIX Futures with 2.5 to 3.5 months to maturity (uniformly distributed). Note

that since it is assumed that there always exists Futures maturing in three months

in the simulations, the maturity for the actual data is chosen as close to three

months as possible. The realizations could be seen in Figure 3.2. Another note on

the performance on historical data is that there is only one realization, hence the

only measure that is meaningful is the returns of the di�erent portfolios. E.g. the

Sharpe ratio would be unde�ned since the variance of one observation is zero.
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Figure 3.2: Graphs showing the actual outcome of S&P 500, VIX Index, 3-month VIX

Futures and 10-year U.S. government zero coupon bond price during the

time period 11 July, 2008 - 10 July, 2009.
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3.5 Portfolio Performance

Given the simulations of the portfolios with and without VIX Futures positions

for di�erent rebalancing frequencies, the performance statistics presented in Sec.

2.2 are calculated. The simulation generates the yearly return of each of the 1000

portfolios with and without VIX Futures, respectively. The arithmetical mean

is used to estimate the average yearly return and the square root of the sample

variance estimates the annualized volatility of returns. Moreover, the risk-free rate

used to calculate the Sharpe ratio is 2.25%, which was the 1-year U.S. government

bond rate at 10-11 July, 2008. The 1-year risk-free rate is chosen because of the

1-year horizon on the investments. The Sharpe ratios' sensitivity to the risk-free

rate is examined in Sec. 4.2. The other portfolio statistics follow immediately

from the realization of the simulations.

Examining performance using real data from July 11, 2008 to July 10, 2009

could be regarded as a study of ERC performance when including VIX Futures

during a tail event, and is more of supplemental character. However, the reason

for not looking at real data from the years following 2009 is that the estimation of

the model parameters should be considerably skewed (outdated) when taking the

�nancial crisis into account. The comparability would therefore be lost.
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Chapter 4

Results

In this chapter, the results from the Matlab simulations are presented, with

some details deferred to Appendix A and Appendix B. The chapter is divided

into a �rst part showing a (partial) realization of the simulations, followed by

performance statistics for portfolios with and without VIX Futures positions for

di�erent rebalancing frequencies. Finally, the roll over equal risk contribution

portfolios' performance on historical data is presented.

4.1 Simulated Processes

Performing simulations using the code presented in Appendix D gives trajectories

for the evolution of the S&P 500 Index, the VIX Index, VIX Futures maturing in

three months and 10-year zero coupon bond prices over one year starting from a

hypothetical July 11, 2008. As stated in Ch. 3, 1000 simulations are used for each

rebalancing frequency. In Figure 4.1, �ve realizations of the simulations are shown

to get the reader an overview of the realized processes used to allocate capital with

the equal risk contribution approach.
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Figure 4.1: Graphs showing an example of 5 simulated S&P 500 processes, VIX pro-

cesses, VIX Futures processes and bond price processes. Parameters are as

stated in Ch. 3.
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4.2 Predetermined Rebalancing Frequency

In this section, the performance statistics of the simulated portfolios with and

without VIX Futures positions are presented for di�erent roll over rebalancing

frequencies. Simulations are performed in accordance with the approach presented

in Ch. 3. Table 4.1 shows the performance statistics for portfolios including

allocation to VIX Futures, while Table 4.2 is without VIX Futures positions. The

asset allocation weights are presented in Table B.1 and Table B.2 in Appendix B.

Table 4.1: One year performance parameters for equal risk weights unlevered portfo-

lio including VIX Futures, predetermined rebalancing frequency. Based on

yearly return of 1000 simulations.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Avg yearly return 7.82% 7.08% 6.70% 6.63% 6.13% 5.50%

Annualized vol of ret 7.67% 7.62% 7.82% 8.02% 8.26% 8.42%

Sharpe ratio 0.73 0.63 0.57 0.55 0.47 0.39

SE(Sharpe ratio) 0.036 0.035 0.034 0.034 0.033 0.033

Worst drawdown -15.47% -14.59% -14.45% -18.06% -20.66% -33.20%

Highest return 31.32% 30.18% 30.73% 31.92% 30.81% 33.69%

Skewness 0.06 0.10 0.09 -0.11 -0.14 -0.16

Kurtosis 3.16 3.06 2.95 2.94 2.96 3.64

Table 4.2: One year performance parameters for equal risk weights unlevered portfolio

without VIX Futures, predetermined rebalancing frequency. Based on yearly

return of 1000 simulations.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Avg yearly return 4.85% 4.91% 4.92% 5.06% 5.10% 4.99%

Annualized vol of ret 8.03% 8.00% 8.13% 8.49% 8.72% 9.15%

Sharpe ratio 0.32 0.33 0.33 0.33 0.33 0.30

SE(Sharpe ratio) 0.032 0.033 0.033 0.033 0.033 0.032

Worst drawdown -21.08% -20.38% -17.59% -21.33% -19.46% -40.16%

Highest return 31.95% 31.07% 28.48% 28.46% 30.17% 32.00%

Skewness -0.02 0.01 0.02 -0.13 -0.17 -0.28

Kurtosis 3.02 2.98 2.77 2.80 2.89 3.73
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A comparison between the performance of the portfolios with and without

VIX Futures positions shows that an inclusion of VIX Futures seems credible. For

all rebalancing frequencies considered, the ERC portfolio including VIX Futures

has more preferable performance statistics. In particular, the average yearly return

is higher and the annualized volatility of return is lower consistently when including

VIX Futures contracts. In turn, this results in a higher Sharpe ratio. Moreover, the

worst drawdown is less negative when using VIX Futures apart from rebalancing

at a semi-annual basis and the highest yearly returns are fairly equal between the

two portfolios. In addition, for a normal distribution, the skewness is zero and the

kurtosis equals three. By construction of the simulated asset classes using Wiener

processes this is expected to hold for the returns, and is veri�ed in Table 4.1 and

Table 4.2.

Using the normal properties of the asymptotic distribution of the Sharpe

ratio gives a possibility to perform a hypothesis testing of the null hypothesis

H0: "the Sharpe ratio with VIX Futures is less than or equal to the Sharpe ratio

without VIX Futures" against the alternative hypothesis H1: "the Sharpe ratio

with VIX Futures position is higher than without VIX Futures positions". Forming

the di�erence between the Sharpe ratios with VIX Futures SRV IX and without

VIX Futures SRWO gives again a normal distributed variable. The variance of

this variable has an upper bound given by SE(SRV IX)2 + SE(SRWO)2, since

the covariance between the Sharpe ratios is positive. Under H0, this yields the

test variable zobs for the null hypothesis H0: SRV IX − SRW0 ≤ 0 against H1:

SRV IX − SRW0 > 0 given by:

zobs =
ŜRV IX − ŜRW0 − 0√

SE(ŜRV IX)2 + SE(ŜRWO)2

(4.1)

The values of the test statistics and the corresponding p-values calculated

from the fact that the asymptotic distribution of the test variable is standard

normal is given by Table 4.3
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Table 4.3: Values of test variables zobs and corresponding p-values for test of the null

hypothesis H0: "the Share ratio with VIX Futures is less than or equal to

the Sharpe ratio without VIX Futures" against H1: "the Sharpe ratio with

VIX Futures positions is higher than without VIX Futures positions".

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

zobs 8.51 6.23 5.07 4.64 3.00 1.96

p-value <10−10 2·10−10 2·10−7 2·10−6 1·10−3 0.025

As seen in Table 4.3, the null hypothesis is rejected in favour of the al-

ternative hypothesis. I.e. the Sharpe ratio of the portfolio including VIX Futures

position is signi�cantly higher than the Sharpe ratio of the portfolio without VIX

Futures contracts.

4.2.1 Transaction Costs Estimation

In this section, an estimate of the e�ect of including transaction costs when re-

balancing the portfolios is examined. In Table 4.4 and Table 4.5, the total yearly

rebalancing turnover is presented for the portfolios containing VIX Futures con-

tracts and the portfolios without VIX Futures contracts respectively.

Table 4.4: One year average reallocation as a multiple of initial capital for equal risk

weights unlevered portfolio including VIX Futures, predetermined rebalanc-

ing frequency. Standard deviation within parenthesis. Based on yearly re-

turn of 1000 simulations.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

S&P 500 10.19 4.67 1.44 0.44 0.17 -

(1.07) (0.71) (0.40) (0.21) (0.11) -

Government bonds 10.28 4.81 1.49 0.46 0.17 -

(1.00) (0.71) (0.41) (0.21) (0.11) -

VIX Futures 1.14 0.47 0.13 0.04 0.02 -

(0.16) (0.08) (0.02) (0.02) (0.01) -
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Table 4.5: One year average reallocation as a multiple of initial capital for equal risk

weights unlevered portfolio without VIX Futures, predetermined rebalancing

frequency. Standard deviation within parenthesis. Based on yearly return

of 1000 simulations.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

S&P 500 8.65 4.08 1.30 0.42 0.17 -

(0.87) (0.62) (0.36) (0.20) (0.11) -

Government bonds 8.65 4.08 1.30 0.42 0.17 -

(0.87) (0.62) (0.36) (0.20) (0.11) -

Using the approach in Sec. 3.2.1, in particular the assumption that the

transaction cost is a fraction of the total transaction amount (0.05 percent) and

that it is the same for all assets, the aggregated transaction cost is the sum of the

turnovers of all assets multiplied by the transaction cost brokerage. This yields

the following e�ect on returns and Sharpe ratios:

Table 4.6: Estimated e�ect on average yearly return and Sharpe ratio of portfolios with

and without VIX Futures position when including transaction costs.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Avg yearly ret w VIX -1.08% -0.49% -0.15% -0.05% -0.02% -

Sharpe ratio w VIX -0.14 -0.06 -0.02 -0.01 -0.00 -

Avg yearly ret no VIX -0.87% -0.41% -0.13% -0.04% -0.02% -

Sharpe ratio no VIX -0.11 -0.05 -0.02 -0.01 -0.00 -

As seen in Table 4.6, the inclusion of transaction cost has a slightly larger

impact on the portfolios with VIX Futures positions than the portfolios without

VIX Futures.

4.2.2 Robustness of Results

The robustness of the portfolio performance is based on the stability of the simu-

lation outcomes. In this report this regards returns, standard deviations of returns

and the risk-free rate. Thus, ideally all parameters in the simulations should be

tweaked to obtain robust results. However, the assumption of not updating the
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parameters gradually might be of higher importance. If this method is used in

reality, the parameters may be updated perhaps every night or every week. This

would mitigate the need for tweaking, and therefore a study of changes of the input

parameters is disregarded. Nevertheless, one idea of how this could be done is by

adding white noise terms to the parameters with variance based on the standard

errors of the parameter estimation.

The parameter that could be changed without tweaking the simulations is

the risk-free rate used in the calculation of the Sharpe ratio. As could be seen in

Figure 4.2, the portfolio including VIX Futures has a higher Sharpe ratio than the

portfolio without VIX Futures positions for a wide range of risk-free rates. Since

the lines are almost parallel, they are practically equally sensitive to changes in

the risk-free rate. The graph only shows the sensitivity based on the 1-year daily

rebalance performance, but the same analogy holds for all rebalance frequencies.

Figure 4.2: Graph showing how the Sharpe ratio of the di�erent portfolios with daily

rebalancing depend on the risk-free rate.
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4.3 Test of Performance on Historical Data

Lastly, an equal risk contribution capital allocation approach applied to the actual

performance of the di�erent asset classes starting from July 11, 2008 and one year

forward is considered. The results are shown in Table 4.7. The reason why only

yearly returns are stated is because one time series can be considered as a single

data point. As seen in the table, the yearly return is higher when including VIX

Futures for all rebalancing frequencies considered. The changes between positive

and negative returns are due to the timing of the allocation of capital.

Table 4.7: One year performance parameters for equal risk weights unlevered portfolio,

predetermined rebalance frequency. Based on actual daily data during the

period 11 July, 2008 - 10 July, 2009.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Ret with VIX Fut 8.75% -0.88% 8.46% 4.09% -0.10% -1.88%

Ret without VIX Fut 0.58% -2.33% 0.26% -0.62% -4.73% -5.05%
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Chapter 5

Discussion

The �ndings and results presented in Ch. 4 is analyzed in this chapter. Firstly, a

thorough examination and interpretation of the results is performed. Thereafter,

implications and conclusions of this study are reported. Finally, some suggestions

for further studies are presented.

5.1 Interpretation of Results

The results in Ch. 4 demonstrate the bene�ts of including VIX Futures positions in

the portfolios considered. The main result is the relatively higher annual returns

and lower annualized volatilities for the VIX portfolio, yielding higher Sharpe

ratios. The di�erence in Sharpe ratios holds for a wide range of risk-free rates

as shown in Figure 4.2. Moreover, by forming the di�erences between the Sharpe

ratios and testing the null hypothesis H0: "the Sharpe ratio with VIX Futures is less

than or equal to the Sharpe ratio without VIX Futures" against H1: "the Sharpe

ratio with VIX Futures position is higher than without VIX Futures positions",

the VIX portfolio is shown to have a higher Sharpe ratio with p-values ranging

from 10−10 to 10−7 for daily to monthly rebalances and 0.025 at yearly rebalancing

frequencies. Therefore, the conclusion that including VIX Futures yields a higher

Sharpe ratio could be said to be statistically signi�cant.

In Sec. 4.2.1, transaction costs were examined to investigate if the pre-

vious conclusions would turn ambiguous under less restricted assumptions. Natu-
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rally, the calculations show that the returns and Sharpe ratios are lowered when a

transaction cost is introduced. The important part, though, is that they also show

that the relative di�erence in transaction cost is so small that it does not a�ect

the interpretation that including VIX Futures increases the portfolio performance.

Hence the conclusion drawn in the previous paragraph remains reliable.

A further note is the impact of the simpli�cations made in regards to mar-

gin accounts. As mentioned, the negligence of interest rate results in a somewhat

lower return for the portfolio including VIX Futures. If an investor could receive

an interest rate of, say, 2 % and the average allocation to VIX Futures (see Ap-

pendix B) is roughly 2 %, then the impact is a lowered return of 0.04 % annually.

Including this e�ect would slightly increase the Sharpe ratio of the VIX portfolio.

The results on historical data again show that the portfolio including VIX

Futures clearly outperforms the portfolio without VIX Futures for all rebalancing

frequencies. As year 2008-2009 can be regarded as a tail event, the results show

the hedging bene�ts from including VIX in a portfolio. This can be seen by

comparing the average return of the VIX portfolio with the average return of the

portfolio without VIX, for both simulations and historical data. Across rebalancing

frequencies, the average return of the VIX portfolio on historical data was 5.06

% higher than the portfolio without, compared to the corresponding �gure of

1.67 % for the simulations. Hence, this suggests that the e�ect of including VIX

Futures is more bene�cial when extreme events such as the crisis in 2008-2009

occur. Note however that the returns for weekly rebalance is considerably lower

than for monthly and daily, which breaks a pattern of returns decreasing with

rebalancing frequency. This is due to unlucky market timing, since the weekly

rebalances contains all the rebalancing points used in monthly rebalancing, and a

subset of the 20 % of the points used in daily rebalancing.

A noteworthy result is how the Sharpe ratio depends on reallocation fre-

quency when VIX Futures is added. As can be seen in Ch. 4, the Sharpe ratio

increases with rebalancing frequency for the VIX portfolio but is relatively con-

stant for the portfolio consisting of only S&P 500 and government bonds. There

is still an increase in Sharpe ratio with rebalancing frequency for the VIX port-

folio when transaction costs are added. This shows the importance of an actively

managed portfolio when VIX is included in the ERC approach.
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If an investor holds a well-diversi�ed portfolio (which could be assumed

to hold approximately in real life examples), the diversi�cation bene�t of adding

another asset class should be zero. Since the considered portfolios contains two

and three asset classes respectively, an important discussion is to try to estimate

to what extent the bene�ts are purely attributable to diversi�cation. Logically, the

VIX Index and thereby VIX Futures should not have a positive expected return, in

fact it should be costly to hold. Therefore, it should be safe to say that the expected

return of VIX Futures is at least not larger than the expected return of a bond

investment, or the expected return of S&P 500. Since the same amount is invested

in both portfolios, no extra expected return should be gained from including the

VIX Futures. Hence, the bene�ts from diversi�cation should be in the form of (at

best) the same return, but with lower volatility. For diversi�cation purposes, the

asset added should ideally be negatively correlated with the portfolio, which it is.

An upper limit of the diversi�cation bene�t is thus the total decrease in volatility,

roughly 0.40 %. This will have an impact on the Sharpe ratios of at most 0.03,

which is not enough to alter the interpretation that including VIX Futures have a

signi�cant positive e�ect on portfolio performance.

5.2 Implications and Conclusions

The economic interpretation and conclusion of the results is that: Including VIX

Futures as an asset class in an equal risk contribution portfolio consisting of

S&P 500 and government bonds substantially enhances the portfolio performance.

Based on yearly returns, this study shows that the Sharpe ratio when including

VIX Futures increases within a range of 30 % to 128% (corresponding to a range

between 0.09 and 0.40) for rebalancing frequencies spanning from annually to daily,

respectively. The conclusion holds signi�cantly when e�ects from transaction costs

and diversi�cation bene�ts are accounted for.

The conclusion that VIX Futures increases the portfolio performance is

also shown to be true when historical data of the corresponding period is examined.

The study on historical data suggests that inclusion of VIX Futures has hedging

bene�ts when tail events occur.

The practical implication is therefore that investors and asset managers
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using the equal risk contribution approach could bene�t from including VIX Fu-

tures as an asset class in their portfolio.

5.3 Suggestions for Further Studies

An extension of this analysis is to build models and include other types of asset

classes that could be relevant for investors using an equal risk contribution ap-

proach. Another highly relevant extension is to examine how often the parameters

are needed to be re-estimated to better capture the movements of the market, and

then run new simulations with these updated parameters.

A further extension is to investigate some of the new views on ERC, e.g.

the "Forecast Uncertainty Hedge" rule, and examine what impact VIX Futures

could have on these approaches. One �rst step would be to simply add VIX

Futures and see how the portfolio performance changes. The forecast uncertainty

approach also requires development of a new rebalancing rule depending on the

assessed uncertainty in the investments considered. Thus, a second step could be to

investigate what role the VIX Index and VIX Futures could have in a reallocation

or forecast rule, as it is an instrument indicating the implied market volatility in

the near future.
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Appendix A

Results - Graphs

For reference, histograms over average annual returns for di�erent rebalancing

frequencies are presented below. Each histogram is based on 1000 data points,

and performance statistics on every simulation can be found in Chapter 4.2.

For each speci�c rebalancing frequency both a portfolio including VIX

Futures and without VIX Futures was simulated simultaneously. This means that

they have the same underlying 1000 processes of S&P 500, government bonds and

VIX Futures.
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APPENDIX A. RESULTS - GRAPHS

(a) Daily rebalance incl. VIX (b) Weekly rebalance incl. VIX

(c) Monthly rebalance incl. VIX (d) Quarterly rebalance incl. VIX

(e) Semi-annual rebalance incl. VIX (f) Annual rebalance incl. VIX

Figure A.1: Histogram over returns for S&P 500, government bond and VIX Futures

portfolio using 1000 simulations, initial value $ 1 million.
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APPENDIX A. RESULTS - GRAPHS

(a) Daily rebalance without VIX (b) Weekly rebalance without VIX

(c) Monthly rebalance without VIX (d) Quarterly rebalance without VIX

(e) Semi-annual rebalance without VIX (f) Annual rebalance without VIX

Figure A.2: Histogram over returns for S&P and government bond portfolio using 1000

simulations, initial value $ 1 million.
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Appendix B

Results - Tables

In this part, weight statistics of the di�erent assets for both portfolios with and

without allocation to VIX Futures are shown. In Table B.1, the minimum, average

and maximum allocation of the average position taken during each investment year

is presented for S&P 500, VIX Futures and 10 year government bonds. Likewise,

Table B.2 regards the portfolios when investing in S&P 500 and government bonds

only. Moreover, Table B.3 and Table B.4 show the corresponding weights when

historical data is used instead of simulated data.

46



APPENDIX B. RESULTS - TABLES

Table B.1: Yearly weight data for equal risk weights unlevered portfolio including VIX

Futures, predetermined rebalancing frequency. Based on yearly return of

1000 simulations.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Min w S&P 18.12% 19.32% 19.49% 16.53% 13.77% 8.06%

Avg w S&P 34.55% 34.60% 34.92% 35.60% 36.59% 37.46%

Max w S&P 54.19% 55.33% 55.82% 64.11% 67.14% 72.71%

Min w VIX Fut 1.83% 1.79% 1.52% -0.81% 0.54% 0.28%

Avg w VIX Fut 2.54% 2.50% 2.32% 1.96% 1.55% 1.05%

Max w VIX Fut 3.57% 3.64% 3.65% 4.41% 3.69% 3.30%

Min w Bonds 42.02% 41.82% 40.90% 33.75% 31.48% 26.20%

Avg w Bonds 62.91% 62.90% 62.77% 62.44% 61.86% 61.49%

Max w Bonds 79.31% 78.35% 78.70% 81.46% 84.66% 90.64%

Table B.2: Yearly weight data for equal risk weights unlevered portfolio without VIX

Futures, predetermined rebalancing frequency. Based on yearly return of

1000 simulations.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Min w S&P 19.39% 20.09% 20.40% 18.93% 16.51% 12.72%

Avg w S&P 36.42% 36.48% 36.85% 37.44% 38.42% 39.87%

Max w S&P 58.96% 58.47% 58.24% 63.51% 70.22% 71.72%

Min w Bonds 41.04% 41.53% 41.76% 36.49% 29.78% 28.28%

Avg w Bonds 63.58% 63.52% 63.15% 62.56% 61.58% 60.13%

Max w Bonds 80.61% 79.91% 79.60% 81.07% 83.49% 87.28%
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Table B.3: Daily weight data for equal risk weights unlevered portfolio including VIX

Futures, predetermined rebalancing frequency. Based on actual daily data

during the period 11 July, 2008 - 10 July, 2009.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Min w S&P 7.01% 10.17% 11.35% 11.35% 23.96% -

Avg w S&P 27.57% 27.54% 27.67% 26.65% 31.58% 35.39%

Max w S&P 53.85% 49.67% 38.12% 36.31% 36.31% -

Min w VIX Fut 1.04% 1.15% 1.43% 1.43% 1.43% -

Avg w VIX Fut 3.57% 3.58% 3.59% 2.29% 2.19% 2.58%

Max w VIX Fut 8.40% 7.53% 5.70% 2.61% 2.61% -

Min w Bonds 41.31% 45.60% 57.29% 61.08% 61.08% -

Avg w Bonds 68.87% 68.88% 68.73% 71.05% 66.23% 62.03%

Max w Bonds 91.62% 88.03% 86.06% 86.05% 74.61% -

Table B.4: Daily weight data for equal risk weights unlevered portfolio without VIX

Futures, predetermined rebalancing frequency. Based on actual daily data

during the period 11 July, 2008 - 10 July, 2009.

Rebalancing Frequency Daily Weekly Monthly Quarterly Semi-annually Annually

Min w S&P 9.85% 9.85% 11.32% 11.32% 23.75% -

Avg w S&P 28.18% 28.38% 29.12% 25.42% 30.04% 33.18%

Max w S&P 58.97% 57.86% 40.08% 33.78% 33.78% -

Min w Bonds 41.03% 42.14% 59.92% 66.22% 66.22% -

Avg w Bonds 71.82% 71.62% 70.88% 74.58% 69.96% 66.82%

Max w Bonds 90.15% 90.50% 88.68% 88.68% 76.25% -
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Appendix C

Mathematics

In this part, more details of the fundamental mathematics are presented. Moreover,

a technical note about the calculation of the VIX Index is given.

C.1 Short on Arbitrage Theory

In �nancial mathematics; probability theory in general and martingale theory

in particular is crucial for the understanding of how to determine arbitrage-free

prices of �nancial derivatives (contingent claims). Using martingale theory, e.g.

as in Björk (2009), one can show that:

In order to avoid arbitrage, the contingent claim X maturing at time T must be

priced at time t according to the formula:

Π(t;X) = S0(t)EQ

[
X

S0(T )

∣∣∣∣Ft] (C.1)

where Q is a martingale measure for [S0, S1, .., SN ], with S0 as the numeraire.

Especially, one can choose the money market account (the bank account)

B(t) or some stock traded in the market, say S1(t), as numeraire. Informally, the

numeraire is a way to quote the prices. Ft is called a �ltration, and can basically

be thought of as the information at hand at time t. I.e. the time t price of the
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derivative with payo� X at time T is dependent on the market information known

at time t.

Another crucial part of the pricing of contingent claims is probability

measures. In practice one observes the real world, which in probability theory

is called the subjective probability measure P . However, in pricing formula (C.1)

with S0(t) = B(t) one calculates under the probability measureQ, which is referred

to as the risk-neutral martingale measure. This is because Q is formed by removing

the market price of risk from the subjective probability measure P . Informally,

Q assigns zero probability to the same events as P (is equivalent) and has the

characteristic that "one prefer more to less" (there is no free lunch with vanishing

risk).

C.2 VIX Index Calculation

As Stated by the CBOE [5], the calculation of the VIX Index is based on prices of

options written on S&P 500 stocks. The formula used is given by:

VIX = 100

√√√√ 2

T

∑
i

∆Ki

K2
i

eRTQ(Ki)−
1

T

[
F

K0

− 1

]2

(C.2)

where T is the time to maturity, F the forward index level derived from index

option prices, K0 the �rst strike price below F , Ki the strike price of the i:th

out-of-the-money option, ∆Ki the interval between strike prices, R the risk-free

interest rate and Q(Ki) the midpoint of the bid-ask spread for each option with

strike Ki. For a further description of how to calculate the variables consult the

white paper by CBOE [5].
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Appendix D

Matlab Code

In this chapter, theMatlab code used in the simulations in the report is presented.

D.1 Main Program - parameters.m

This program runs the simulations and calculates the rebalances.

clear,clc

warning off;

% Parameters from Zhu & Lian SV−model
global theta kappa sigmav etav rho

theta=0.0444;

kappa=2.2680;

sigmav=0.3856;

etav=−2.016;
rho=−0.7533;

%Parameters for short rate model

global ahat sigmar

ahat=0.02;

sigmar=0.01;
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% Time parameters

T=1;

n=252; % Trading days on a year

% Initial conditions

SP0=1239.49;%July 11,2008

VIX0=0.22;% A reasonable starting point for the ...

considered time period

vol0=0.0225; % −"−

% Stock parameters

gamma=0.037; %Gramham and Harvey

r0=0.0126;

% Yield curve July 11, 2008

maturity=[0 1/12 1/4 .5 1 2 3 5 7 10 20 30];

yield = [r0 0.0138 0.0162 0.0202 0.023 0.0259 0.0288 ...

0.0327 0.0355 0.0396 ...

0.0457 0.0453];

finalValuesVIX = [];

finalValuesWO = [];

reallocVIX = zeros(3,nrsims);

reallocWO = zeros(2,nrsims);

wavgVIX = [];

wavgWO = [];

for simulationnr=1:nrsims

simulationnr

% Simulate S&P 500, VIX−Futures prices and bond prices

[t,SP,SPr,VIX,Futures,Bonds]= ...

simulateSPaVIX(SP0,VIX0,gamma,r0,vol0,maturity,yield,T,n);
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% Allocations

wVIX = [];

wWO = [];

% Risk Parity allocation

Futret = zeros(1,n);

Bondret = zeros(1,n);

for i=2:length(t)

Futret(i−1) = ...

(Futures(i)−Futures(i−1))*100*1000/5500;
%100 for right price, 1000 multiplier, 5500 ...

initial margin

Bondret(i−1) = (Bonds(i)−Bonds(i−1))/Bonds(i−1);
end

% Length of time interval for estimation of ...

covariance matrix

estParam = 7;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% With VIX %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% First week is for calibration

estimates = [SPr(1:estParam); Futret(1:estParam); ...

Bondret(1:estParam)]';

global estSigma

estSigma = cov(estimates);

% Finding the weight for the risk parity portfolio

w0=[0.4 0.2 0.7];

w = fmincon(@optFUN,w0,[],[],[],[],[],[],@constraints);
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w = w/sum(w);

wVIX = [wVIX w'];

% Initial Capital

V = 1000000;

% Stock allocation

nrStocks=V*w(1)/SP(estParam);

% Futures specificatoions

initialMargin = 5500;

nrFutures = V*w(2)/initialMargin;

oldFuturesPrice = Futures(estParam);

% Bond allocation = V(3)

nrBonds = V*w(3)/Bonds(estParam);

% Rolling−over rebalancing

rebalancefq = 1;

reallocloopVIX = zeros(3,1);

for j=estParam+1:rebalancefq:length(t)−1
estimates = [SPr(j−estParam:j); ...

Futret(j−estParam:j); ...

Bondret(j−estParam:j)]';
global estSigma

estSigma = cov(estimates);

% Time j value

V = nrStocks*SP(j)+((Futures(j) ...

−*100*nrFutures*1000+w(2)*V)+nrBonds*Bonds(j);
% *1000 for Futures contract since $10/tick
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oldFuturesPrice = Futures(j);

% Finding the weight for the risk parity portfolio

w0=w;

w = fmincon(@optFUN,w0,[],[],[],[],[],[],@constraints);

w = w/sum(w);

% Measuring average reallocation

reallocloopVIX = reallocloopVIX + abs(w0−w)';

wVIX = [wVIX w'];

% Rebalancing

nrStocks = w(1)*V/SP(j);

nrFutures = w(2)*V/initialMargin;

nrBonds = w(3)*V/Bonds(j);

end

V = nrStocks*SP(length(t))+((Futures(length(t))− ...

oldFuturesPrice)*100*nrFutures*1000+w(2)*V)+...

nrBonds*Bonds(length(t));

% Final Value without transaction costs

finalValuesVIX = [finalValuesVIX V];

wavgVIX = [wavgVIX [mean(wVIX(1,:)) ...

mean(wVIX(2,:)) mean(wVIX(3,:))]'];

reallocVIX(:,simulationnr) = reallocloopVIX;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Without VIX %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% First week is for calibration

estimates = [SPr(1:estParam); Bondret(1:estParam)]';

global estSigma

estSigma = cov(estimates);

% Finding the weight for the risk parity portfolio

w0=[0.4 0.7];

w = fmincon(@optFUN,w0,[],[],[],[],[],[],@constraintsWO);

w = w/sum(w);

reallocloopWO = zeros(2,1);

wWO = [wWO w'];

% Initial Capital

V = 1000000; % Initial capital

% Stock allocation

nrStocks=V*w(1)/SP(estParam);

% Bond allocation

nrBonds = V*w(2)/Bonds(estParam);

for j=estParam+1:rebalancefq:length(t)−1
estimates = [SPr(j−estParam:j); ...

Bondret(j−estParam:j)]';
global estSigma

estSigma = cov(estimates);
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% Time j value (no leverage)

V = nrStocks*SP(j)+nrBonds*Bonds(j);

% Finding the weight for the risk parity portfolio

w0=w;

w = fmincon(@optFUN,w0,[],[],[],[],[],[],@constraintsWO);

w = w/sum(w);

reallocloopWO = reallocloopWO + abs(w0−w)';
wWO = [wWO w'];

% Rebalancing

nrStocks = w(1)*V/SP(j);

nrBonds = w(2)*V/Bonds(j);

end

V = nrStocks*SP(length(t))+nrBonds*Bonds(length(t));

% Final Value without transaction costs

finalValuesWO = [finalValuesWO V];

wavgWO = [wavgWO [mean(wWO(1,:)) mean(wWO(2,:))]'];

reallocWO(:,simulationnr) = reallocloopWO;

end

% Plotting histrograms over the final values

figure(1);

edges=min(min(finalValuesVIX),min(finalValuesWO)):...

0.01*e+06:max(max(finalValuesVIX),max(finalValuesWO));

ans = histc(finalValuesVIX, edges);

bar(edges, ans)

xlabel('Final Value')
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ylabel('Frequency')

figure(2);

edges=min(min(finalValuesVIX),min(finalValuesWO)):...

0.01*e+06:max(max(finalValuesVIX),max(finalValuesWO));

ans = histc(finalValuesWO, edges);

bar(edges, ans)

xlabel('Final Value')

ylabel('Frequency')

% Calculating Sharpe Ratio

rf = 0.0225;

(mean(finalValuesVIX/1000000−1)−rf)/std(finalValuesVIX/1000000−1)
(mean(finalValuesWO/1000000−1)−rf)/std(finalValuesWO/1000000−1)

D.2 Simulations - simulateSPaVIX.m

This program is called to simulate the stochastic processes of VIX Futures, S&P

500 and 10 year Government bonds.

function[t,SP,SPr,VIX,Futures,bonds] = ...

simulateSPaVIX(SP0,VIX0,gamma,r0,Vol0,yieldmaturity,yield,T,n)

global theta kappa sigmav etav rho ahat sigmar

global a b kappaQ thetaQ tau

%Parameters

kappaQ=etav+kappa;

thetaQ=kappa*theta/kappaQ;

tau=30/365;

a=(1−exp(−kappaQ*tau))/(kappaQ*tau);
b=thetaQ*(1−a);
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% Time parameters

dt = T/n;

t = dt * [0:n];

% Setting up variables

lSPr = zeros(1,n+1); %S&P returns

SP = zeros(1,n+1); %S&P value

SP(1)=SP0;

lSPr(1) = 0;

VIX = zeros(1,n+1);

VIX(1) = VIX0;

Vol = zeros(1,n+1);

Vol(1) = Vol0;

r = zeros(1,n+1);

r(1) = r0;

% Generate Wiener increments, first row S&P and second ...

row volatility V

dW = zeros(2,n+1);

covar=[1 rho; rho 1];

for i = 1:n+1;

dW(1:2,i) = mvnrnd(zeros(2,1),covar)*sqrt(dt);

end

% Generate Wiener increments for short rate

dWr = zeros(2,n+1);

for i = 1:n+1;

dWr(i) = randn*sqrt(dt);

end
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% Calculate forward rates curve using linear ...

interpolation, using 10 years

% for long−term government bonds

simMat = 10; % 10 years maturity time

simMatN = simMat/dt;

obsbonds = zeros(1,simMatN);

time = [0:dt:simMat];

% Calculate forward rates curve using linear interpolation

fwdrate = zeros(1,simMatN+1);

for i = 1:simMatN+1;

fwdrate(i) = interp1(yieldmaturity,yield,time(i));

end

% Approximate the derivative of the forward rate ...

curve, (only 1 year needed)

fwdrateT = zeros(2,n+1);

for i = 2:n;

fwdrateT(i) = (fwdrate(i+1)−fwdrate(i−1))/(2*dt);
end

% Calculation of log(S&P−returns) and VIX

for i = 2:n+1;

Theta=fwdrateT(i−1)+sigmar^2*B(0,t(i−1))...
*exp(ahat*t(i−1))+ahat*(fwdrate(i−1)+sigmar^2...
*(B(0,t(i−1)))^2/2);

r(i)=r(i−1)+(Theta − ahat*r(i−1))*dt+sigmar*dWr(i−1);
Vol(i)=abs(Vol(i−1)+kappa*(theta−Vol(i−1))*dt+...

sigmav*sqrt(Vol(i−1))*dW(2,i−1));
lSPr(i)=(r(i−1)+gamma)*dt+sqrt(Vol(i−1))*dW(1,i−1);
VIX(i)=sqrt(a*Vol(i)+b);

end

60



D.2. SIMULATIONS APPENDIX D. MATLAB CODE

% Converting S&P returns to values

SPr=exp(lSPr);

SP(1)= SP0;

for i = 2:n+1

SP(i)=SP(i−1)*SPr(i);
end

SPr=SPr−1;

% Calculation of observed long−term government bond ...

prices, maturing in 10

% years

for i = 1:simMatN

obsbonds(i)=exp(−trapz(time(i:length(time)),...
fwdrate(i:length(fwdrate))));

end

obsbonds(length(obsbonds))=1;

% Calculation of simulated bond prices

bonds = zeros(1,n+1);

for i=1:length(t)

bonds(i) = ...

(obsbonds(1)/obsbonds(simMatN−i))*exp(B(t(i),simMat)...
*fwdrate(i)−(sigmar^2/(4*ahat))*(B(t(i),simMat))^2...
*(1−exp(−2*ahat*t(i)))−B(t(i),simMat)*r(i));

end

% Calculation of Futures prices F(t,T,VIXt)

Futures=[];

for i=1:length(t)

timeToM = 3/12;

Futures = [Futures FuturesPrice(timeToM,VIX(i))'];
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%times 100 to get VIX−futures prices as quoted at CBOE

end

D.3 Function Files

In this section, short �les are collected which are used to alleviate the coding of

the other programs.

D.3.1 Futuresprices.m

This program calculates the Futures price of a VIX contract.

function out=FuturesPrice(timeToMIn,VIX0in);

global timeToM VIXt

% Parameters

VIXt=VIX0in;

% Calculation of Futures Price

out=[];

for i=1:length(timeToMIn)

timeToM=timeToMIn(i);

out = [out 1/(2*sqrt(pi))*quadgk(@fun,0,inf)];

end
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D.3.2 Fun.m

This program calculates the integrand of the Futures price integral.

function output = fun(x)

global theta kappa sigmav

global a b kappaQ

global timeToM VIXt

% Calculation of Integrand of Futures Price

C=(−2*kappa*theta/(sigmav^2))*log(1+sigmav^2*(−x*a)...
*(exp(−kappaQ*timeToM)−1)/(2*kappaQ));
D=2*kappaQ*(−x*a)./(sigmav^2...
*(−x*a)+(2*kappaQ−sigmav^2*(−x*a))*exp(kappaQ*timeToM));
f=exp(C+D*(VIXt^2−b)/a);
output=(1−exp(−x*b).*f)./(x.^1.5);

D.3.3 optFUN.m

This is the function that is minimized when allocation capital according to an

equal risk contribution approach.

function out=optFUN(win)

global estSigma

out = sqrt(win*estSigma*win');
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D.3.4 constraints.m

This is the constraints used when optimizing the equal risk contribution portfolio

including VIX Futures.

function [out, eq]=constraints(win)

out=[−(log(win(1))+log(win(2))+log(win(3)));
−win(1); −win(2); −win(3)];

eq=[];

D.3.5 constraintsWO.m

This is the constraints used when optimizing the equal risk contribution portfolio

not including VIX Futures.

function [out, eq]=constraintsWO(win)

out=[−(log(win(1))+log(win(2)));
−win(1); −win(2)];

eq=[];

D.3.6 b.m

This function is called when calculating the 10 year government bond prices.

function output = B(t,T)

global ahat

output = (1/ahat)*(1−exp(−ahat*(T−t)));
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