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Abstract

In this thesis the risk measure Conditional Value-at-Risk (CVaR) is
studied in terms of robustness and whether it is an unbiased measure.
The scope of the study is market risk. The results indicate that it is
possible to construct an unbiased and robust CVaR measure in most
cases, but that it is important to be careful when choosing the param-
eters of the CVaR estimator. However, in some cases CVaR does not
seem to be unbiased or robust, primarily when applied to individual
stocks.
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1 Introduction

This section provides an introduction to the subject and an overview of pre-
vious work. Furthermore, we present the contribution and purpose of the
thesis.

1.1 Background

1.1.1 Market Risk Management

Increasing trading activities and large portfolios held by participants on fi-
nancial markets have made the measurement of market risk a primary con-
cern for regulators and risk managers. Coordinated by the Basel Commit-
tee on Banking Supervision, banks are required to hold a certain amount of
capital against adverse market movements. Specifically, banks must demon-
strate that its capital is sufficient to cover losses 99.9% of the times over a one
year holding period [11]. Such a risk capital is usually called Value-at-Risk
(VaR).

An important milestone in the development of VaR models was JPMor-
gan’s decision in 1994 to make its VaR system, RiskMetrics [39], available
on the Internet. In the following years the RiskMetrics system essentially
attained the status of a de-facto standard within the financial industry and
a benchmark for measuring market risk. However, in the financial literature,
additional measures of market risk besides VaR have been studied. Artzner
et al. [8] highlighted some theoretical shortcomings of VaR as a measure of
market risk. For example, it does not take into account the magnitude of
losses when VaR is exceeded. VaR also fails to meet the characteristic of
subadditivity (see section 2.2.2), i.e. the risk of a portfolio in terms of VaR
may be larger than the sum of its components. Artzner et al. [8] proposed an
alternative risk measure defined as the expected value of losses exceeding the
VaR. This new risk measure has sounder theoretical properties (e.g. fulfills
the subadditivity condition) and is usually called Conditional Value-at-Risk
(CVaR).

1.1.2 Asset Allocation and Portfolio Theory

Asset allocation is always a topicality and Markowitz’s portfolio theory has
influenced academia and financial institutions since it was published in 1952
(see [33]). Markowitz proposed that a portfolio should be optimized in a
mean-variance framework, i.e. maximizing the returns and at the same time
keeping the risk under control. The definition of risk in this framework was
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defined as the overall portfolio variance. A more comprehensive description
of portfolio theory and portfolio optimization is given in [14].

A drawback related to variance as a risk measure is that it penalizes up-
side (gains) and downside (losses) equally. As a complement to the mean-
variance optimization model, not only relying on the variance as a risk mea-
sure, additional constraints can be added to control the risk. This is espe-
cially important as a tool for agency control. Alexander and Baptista [5]
analyze the results from imposing VaR and CVaR constraints in the mean-
variance framework. They show that in some cases such impositions may
induce perverse effects, e.g. that risk averse agents select portfolios with
larger standard deviations.

Instead of optimizing according to the mean-variance model, a portfolio can
be optimized in other frameworks. Since VaR is one of the most popular
risk measures in risk management, many studies have been performed on
optimization in the mean-VaR framework. However, a problem that arises
is that the optimization process is very complex, e.g. much more complex
than optimization in the mean-CVaR framework. Uryasev and Rockafel-
lar [42] proposed a mean-CVaR model using a linear optimization method
and showed that VaR was calculated as a by-product. Another advantage
with the mean-CVaR model is that CVaR optimization is more stable over
different confidence levels, at least in the case of fixed-income securities
(see [34]). Olszewski [37] studied hedge funds and suggested that a more
efficient portfolio can be constructed by optimization in the mean-CVaR
domain compared to the classic mean-variance domain.

1.1.3 Contribution

A conclusion so far is that there exist a large number of different risk mea-
sures, of which only a few have been mentioned here, all with its own charac-
teristics, advantages and flaws. VaR has been adopted as the main measure
of market risk, triggered by regulatory authorities such as the Basel Com-
mittee on Banking Supervision (Basel [44]) and also by authorities of the
EU member states, e.g. the Swedish Financial Supervisory Authority (Fi-
nansinspektionen [45]).

However, VaR has attracted a lot of criticism as a risk measure. One reason
is that the VaR concept can lead to perverse effects if used as a control
mechanism. An example is shown in [15], where it is described how to
earn $1 million in just one week with no initial capital. The catch is that
there is a risk, even though it is highly improbable, of losing a huge amount
of money. Other drawbacks with VaR are e.g. that using VaR as a risk
measure may fail to stimulate diversification, due to its non-subadditivity
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characteristic (see e.g. [40]), and that VaR only provides a point-estimate of
the loss distribution. The VaR estimate does not provide any information
on the losses in the tail exceeding VaR, i.e. information on so-called ”spike
the firm” events (low probability, high loss) is not captured with the model.
Yet recent history has shown that such events pose a real threat to e.g. the
banking system (see [18]).

In the financial literature it is often suggested that CVaR is a better risk
measure and has sounder properties than VaR. But is CVaR really better
than VaR? CVaR would at least solve some problems, e.g. the diversification
problem stated in [40] (due to its subadditivity property) and the situation
where you could earn $1M with no initial capital described in [15] (due to
its consideration of high, low-probability losses). Furthermore, in [19] it is
shown that different assets will be ranked in the same way in terms of risks
measured as VaR and CVaR, respectively. At least, this indicates that the
good properties of VaR in some sense is transferred to the properties of
CVaR and that CVaR in terms of risk ranking seems to do an equally good
job as VaR.

There has been extensive research on CVaR in terms of portfolio optimiza-
tion, but to our knowledge not much in terms of robustness. This topic will
be further investigated in the thesis. A similar study was also suggested as
future work in [29].

1.2 Purpose

The purpose of this thesis is to study the robustness of CVaR as a risk
measure and also to study whether it is an unbiased estimate, and if so,
under what circumstances it is robust and unbiased. In addition, we will
compare different asset classes in terms of CVaR robustness and bias.

1.3 Outline

The structure of the thesis is as follows. Section 1 provides an introduction
to the subject and an overview of previous work. Section 2 introduces the
theoretical framework. We define the two risk measures VaR and CVaR and
discuss the concept of robustness. In section 3 we present how we select
the data sample used in the thesis. In section 4 we develop two hypotheses
about the robustness of CVaR. Section 5 describes the methodology and the
empirical measures used in the analysis. In section 6 we present the results
of different tests to examine the robustness of CVaR. Eventually, section 7
concludes the main results and provides suggestions for further research.
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2 Theoretical Framework

This section introduces the theoretical framework for measuring market risk.
We define the two risk measures VaR and CVaR and discuss some of their
properties. We also give a brief overview of two major estimation tech-
niques, delta-normal approach and historical simulation. Moreover, we de-
scribe backtesting procedures and eventually discuss the concept of robust-
ness.

2.1 Market Risk

Participants of financial markets face a risk of disastrous losses due to unex-
pected adverse movements in market factors. The risk of losses arising from
movements in market prices is often referred to as market risk. The Basel
Committee on Banking Supervision [10] classifies the sources of market risk
into four main categories: equities, interest rate related instruments, foreign
exchange and commodities. Over the last years, we have seen an increas-
ing instability in the financial environment, an increasing globalization of
financial markets, a significant growth of trading activity, development of
numerous new financial products, new enabling technologies and regulatory
requirements. These are all factors contributing to an increasing interest in
market risk.

There are two main approaches of measuring market risk, statistical methods
and scenario based methods. Comprehensive risk managers combine the use
of statistical risk measures with techniques such as stress testing, scenario
analysis and visualization. Just as a single diagnostic such as body tempera-
ture is not a reliable measure of the health of a human being, risk managers
should not rely solely on a single method to determine the health (risk) of
a portfolio.

2.2 Risk Measures

In this thesis we focus on statistical risk measures. Since the pioneering
work of Markowitz [33], where he introduced the modern portfolio theory,
the variance and standard deviation have been the traditional risk measures
in economics and finance. However, there are several shortcomings related
to these risk measures. For example, the variance penalizes upside (gains)
and downside (losses) equally and mean-variance decisions are usually not
consistent with the expected utility approach, unless returns are normally
distributed or a quadratic utility function is used. Moreover, variance does
not account for fat tails of the underlying distribution and therefore is in-
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appropriate to describe the risk of low probability events, such as default
risks.

2.2.1 Value-at-Risk

In recent years, academics and practitioners have extensively studied a risk
measure called Value-at-Risk (VaR). It was developed to respond to the need
to aggregate the various sources of market risk into a single quantitative
measure. VaR focuses on the downside risk of a portfolio and is defined as
the maximum expected loss at a specific confidence level (e.g. 95%) over
a certain time horizon1 (e.g. ten days). For example, if VaR is -$100 for
a portfolio at a confidence level of 95% and a time horizon of one week we
can state that ”with 95% certainty we will not lose more than $100 over the
next week”. In another example, consider a bank that calculates its VaR
assuming a one-day holding period and a 99% confidence level. Then the
bank can expect that, on average, trading losses will exceed the VaR on one
occasion in one hundred trading days.

The choice of confidence level varies among different risk managers. For
example, the Basel Committee recommends the 99.9% confidence level for
capital adequacy purposes [11]. For internal use, lower confidence levels is
often used. For example, JPMorgan [27] uses the 99% level, Citibank [16]
uses a confidence level of 95.4% and Goldman Sachs [24] uses the 95% level.

Another parameter that varies among risk managers is the time horizon
(holding period) over which VaR is estimated. It is likely that the portfolio
return changes more over a month than over a single day. The length of the
holding period depends on the nature of the portfolio and typically ranges
from one day to one month. The Basel Committee recommends a time
horizon of ten days for most capital market transactions [11].

The mathematical definition of VaR is:
∫ VaRα

−∞
fX(x)dx = 1− α (1)

or equivalently
P [x ≤ VaRα] = 1− α (2)

where f(x) is the marginal probability function of portfolio returns x over
the given time period and the confidence level is α ∈ [0, 1].

A graphical interpretation of VaR using a confidence level of 95% is illus-
trated in Figure 1. VaR is the cut-off point separating the return distribution
from its 5% tail.

1Since VaR assumes no changes in the portfolio weights during the time horizon, the term
holding period is often used instead of time horizon



2 THEORETICAL FRAMEWORK 9

Figure 1: Graphical interpretation of VaR

2.2.2 Criticism on VaR

Not until 1997, with the appearance of Thinking Coherently [7] by Artzner
et al., it was defined in a clear way what properties a statistic should have
in order to be considered a coherent risk measure. Artzner et al. (see [8]
for a more technical presentation) formulated four axioms that have to be
fulfilled by a coherent risk measure. X and Y denote portfolio returns, ρ(X)
and ρ(Y ) are their risk measures, respectively, and c is an arbitrary constant:

Translation invariance

ρ(X + c) = ρ(X)− c (3)

Subadditivity
ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (4)

Positive homogeneity
ρ(cX) = cρ(X) (5)

Monotonicity
ρ(X) ≤ ρ(Y ), if X ≥ Y (6)

The translation invariance axiom (3) means that adding cash to the portfolio
decreases the risk by the same amount. The axiom of subadditivity (4)



2 THEORETICAL FRAMEWORK 10

ensures that the risk of the total portfolio is not larger than the sum of the
risks of its components to reflect the effect of diversification and hedges.
Positive homogeneity (5) means that the risk is scaled with the portfolio
size. Finally, monotonicity (6) is required to ensure that if the payoff of
portfolio X dominates the payoff of portfolio Y , then the risk of portfolio
Y cannot be lower than the risk of portfolio X [41]. In simple words, the
axioms defining a coherent risk measure means that whenever a portfolio
is undoubtedly riskier than another one, it will always have a higher risk
value as long as the risk measure is coherent. On the other hand, a measure
not fulfilling all axioms might give wrong assessment of relative risks [1].
The most surprising part of the new concept was that VaR, despite its wide
acceptance, did not fulfill all axioms of coherence [2]. In fact, VaR fails
to meet the characteristic of subadditivity2, i.e. the risk of a portfolio in
terms of VaR may be larger than the sum of risks of its components. The
subadditivity condition plays a fundamental role in risk measurement. With
non-subadditivity it could be the case that a well diversified portfolio require
more regulatory capital than a less diversified portfolio. Thus, managing risk
in terms of VaR prevents to add up the VaR of different risk sources and
may fail to stimulate diversification (see e.g. [1], [7], [8] or [40]).

The non-subadditivity characteristic of VaR can be demonstrated by a sim-
ple example. Suppose that we have two short positions in out-of-the-money
binary options. The specific details are shown in Table 1. Each of the op-
tions has a 4% probability of a payout of −$100 and a 96% probability of a
payout of zero. If we take the VaR at the 95% confidence level, then each of
the positions has a VaR of zero. However, if we combine the two positions,
the probability of a zero payout falls to less than 95%, and so the VaR of the
combined portfolio is less than zero (in this case equal to −$100, see Table
2). The VaR of the combined position is therefore greater than the sum of
the VaRs of the individual components, so the VaR is not subadditive.

Table 1: Non-subadditivity: Options positions considered separately
OPTION A OPTION B

Payout Probability Payout Probability
-$100 4% -$100 4%

0 96% 0 96%
VaR 95% = 0 VaR 95% = 0

Another criticism on VaR is based on its non-convexity characteristic. The
lack of convexity limits its use as a risk measure in optimal portfolio selection
for investment purposes. It has been shown [5] that having embedded VaR
into an optimization framework, VaR risk managers incur larger losses than

2However, VaR is a coherent risk measure when it is based on the standard deviation of
normal distributions
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Table 2: Non-subadditivity: Options positions combined
COMBINED

Payout Probability
-$200 0.16%
-$100 7.68%

0 92.16%
VaR 95% = -$100

non-risk managers in the most adverse states of the world. Moreover, Basak
and Shapiro [9] show that an agent facing a VaR constraint may choose a
larger exposure to risky assets than in the absence of the constraint. It is
also shown in [35] and [36] that the problem of minimizing VaR of a portfolio
of derivative contracts can have multiple local minimizers, which will lead
to unstable risk ranking. Furthermore, it seems inappropriate to use VaR
in practice because of its non-convexity characteristic.

In 1997, when the concept of coherent risk measures first appeared, it be-
came clear that VaR cannot be considered as an adequate risk measure. In
spite of this, VaR has been adopted as the main measure of market risk
by many financial institutions and has been embraced by risk managers as
an important tool in the overall risk management process. The favours of
VaR has also been recognised by regulatory authorities. For example, coor-
dinated by the Basel Committee [44], VaR serves for the determination of
capital requirements for banks and many national regulatory agencies have
adopted the Basel Committee recommendations (e.g. the Swedish Financial
Supervisory Authority (Finansinspektionen [45]).

2.2.3 Conditional Value-at-Risk

VaR is often criticized for not taking into account the magnitude of losses
when VaR is exceeded. For example, VaR provides no insight into what
would happen to a bank if a 1 in 1000 chance event occured. CVaR is
often proposed as an alternative to VaR. CVaR is also known as expected
shortfall [1], tail VaR [7] or mean shortfall [35]. In the context of continuous
distributions (which we assume for simplicity in this paper), for a given
confidence level α and holding period t, CVaR is defined as the conditional
expectation of the losses exceeding VaR. Hence, in contrast to VaR, CVaR
provides additional information of the losses in the tail exceeding VaR.

Mathematically, CVaR is defined by:

CVaRα =
1

1− α

∫ VaRα

−∞
xfX(x)dx (7)
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or equivalently
CVaRα = E[x|x ≤ VaRα] (8)

where f(x) is the marginal probability function of portfolio returns x over
the given time horizon and VaR is calculated over the same time horizon
with confidence level α.

A graphical interpretation of CVaR is illustrated in Figure 2. CVaR is the

Figure 2: Graphical interpretation of CVaR

expected loss if a tail event does occur, and is therefore graphically located
to the left of VaR.

Acerbi and Tasche [3] show that CVaR satisfies the four axioms in section
2.2.2 and, consequently, qualifies as a coherent risk measure. In fact, [4]
shows that any coherent risk measure can be represented as a convex com-
bination of CVaRs with different confidence levels. In addition, CVaR is a
convex function with respect to portfolio positions, allowing the construc-
tion of efficient optimizing algorithms. In particular, it has been shown [42]
that CVaR can be minimized using linear programming techniques, which
makes many large-scale calculations practical, efficient and stable.3

3In fact, the superintendent office of financial institutions in Canada has put in regulation
for the use of CVaR to determine the capital requirement.
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2.3 Estimating VaR and CVaR

There are many ways of estimating VaR (see Duffie and Pan [22] for an
overview). Given the return distribution, the calculation of VaR is straight-
forward and given VaR, the calculation of CVaR is straightforward. There-
fore, the challenges of estimating VaR and CVaR are mainly related to the
estimation of the return distribution. The approaches can be categorised
to parametric and non-parametric methods. Parametric approaches make
some assumptions about the return distribution, e.g. the assumption of nor-
mality (see section 2.3.1). The distribution assumptions imply model risk,
i.e. the risk that there is a discrepancy between the assumed return distribu-
tion and the true underlying probability distribution [20]. Non-parametric
methods base the VaR estimation solely on empirical distributions of re-
turns. A disadvantage is that the estimates are completely dependent on a
particular data set. The simplest non-parametric method is called historical
simulation method (see section 2.3.2).

2.3.1 Delta-Normal Approach

The simplest parametric method is the delta-normal (analytic) approach.
Following this approach it is assumed that all asset returns are normally dis-
tributed. As the portfolio return is a linear combination of normal variables,
it is also normally distributed. The VaR of a portfolio is then calculated
using historical (ex ante) means, variances and covariances of the portfolio
components. More formally, this can be written as:

VaRα = µ− zα

√√√√
n∑

i=1

n∑

j=1

wiwjσij = µ− zασp (9)

where wi and wj denote the weights of asset i and j in the portfolio of n
assets, respectively. σij denotes the covariance between returns of asset i
and asset j, µ is the mean value of the returns of the portfolio and σp is the
standard deviation of the total portfolio returns. The parameter zα is the
value of the cumulative normal distribution corresponding to the specific
confidence level α, e.g. for the 95% confidence level z95% = 1.64 and for the
99% confidence level z99% = 2.33. Since the holding period is usually short
(e.g. ten days) the assumption of a zero mean (µ = 0) is often made. Thus,
VaR of a portfolio is simply a multiple of the portfolio standard deviation.
After calculating VaR, the calculation of CVaR is straightforward as the
expected value of the portfolio losses exceeding VaR.

A major drawback with the delta-normal approach is the exposure to model
risk. Even though normal distributions seem to describe the centre of true
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distributions rather well, problems arise when it comes to estimating the
tails of distributions. Many empirical studies (see e.g. [17], [25], [26] and
[32]) show that the assumption of normally distributed financial returns
underestimates VaR. The underestimation becomes more significant when
studying securities with heavy-tailed distributions and a high potential for
large losses, i.e. that exhibit excess kurtosis [43]. In a similar fashion,
Andersen et al. [6] show that accounting for heavy tails makes it possible
to increase returns while lowering large risks. These empirical findings are
intuitive since heavy tails mean that extreme outcomes are more frequent
than what the use of a normal distribution would predict and therefore heavy
tails lead to underestimated VaR measures.

In spite of its drawbacks, the delta-normal approach is widely used among
risk managers. For example, the RiskMetrics system is based on the para-
metric delta-normal model.

2.3.2 Historical Simulation

The most common and probably simplest non-parametric method to esti-
mate VaR (and CVaR) is based on historical simulation. The main assump-
tion is that trends of past price changes will continue in the future. The
VaR (and CVaR) of a portfolio is then calculated using the percentile of the
empirical distribution corresponding to the chosen confidence level. There
is no need to estimate distribution parameters such as volatilities and corre-
lation coefficients. The historical simulation method is relatively simple to
implement, just keep a historical record of past returns. The method is also
free from model risk and makes it possible to accommodate the non-normal
distributions with heavy tails that are often found in financial data [25].

The number of past observations to be included in the empirical distribution
is often referred to as window size. The choice of window size has a signif-
icant impact on VaR measures, especially when using historical simulation
[25]. A long window size may include observations that are not relevant to
the current situation and may imply a fairly constant VaR measure. A short
window size makes the calculations sensitive with respect to abnormal out-
comes in the recent past and may imply high variance in VaR measures. The
Swedish Financial Supervisory Authority (Finansinspektionen) recommends
a window size of at least one year [23].

Many large financial institutions and risk managers compute the VaR of their
trading portfolios using the historical simulation approach, e.g. Goldman
Sachs [24].
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2.3.3 Alternative Approaches

Another widely used approach is the Monte Carlo simulation, where a fu-
ture probability distribution is assumed and the behavior of asset prices is
simulated by generating random price paths. The VaR measures can then be
determined from the distribution of simulated portfolio values. Monte Carlo
frameworks have been shown to provide the best estimates for VaR (see e.g.
[31] and [38]). However, at the same time, these models are extremely com-
puter intensive and the additional information that these techniques provide
is of most use for the analysis of complex options portfolios.

The stress testing method examines the effects of large movements in key
financial variables on the portfolio value. The price movements are simulated
in line with certain scenarios4. Portfolio assets are re-evaluated under each
scenario and estimating a probability for each scenario allows to construct
a distribution of portfolio returns, from which VaR can be derived.

2.4 Backtesting

Assessing the correctness of VaR models is not an easy task. Since the true
VaR measures cannot be observed, the evaluation of VaR models must be
verified by backtesting. It means that, for a given backtesting period, the
estimated VaR measures are compared to the observed returns [12].

2.4.1 Backtesting VaR

There are several possible ways to backtest VaR models (see e.g. [28] and
[30]). Typically, the number of times the portfolio loss exceeds VaR is cal-
culated. For each backtesting period the number of violations is calculated.
This number of violations divided by the number of observations in the back-
testing period gives the violation rate, to be compared to the expected rate
of violations. For example, VaR at the 95% confidence level has an expected
rate of violations of 5%, and for VaR 99% the expected rate of violations is
1%.

The most widely used test is developed by Kupiec [28]. He examines whether
the observed violation rate is statistically equal to the expected one. Under
the null hypothesis that the model is adequate, the appropriate likelihood
ratio statistic is:

L = 2 ln
((

1− n

T

)T−n ( n

T

)n
)
− 2 ln

(
(1− q)T−nqn

) ∼ χ2
1 (10)

4such as movements of the yield curve, changes in exchange rates, etc.



2 THEORETICAL FRAMEWORK 16

where n is the number of days over a period T that a violation occurred and
q is the expected violation rate. Therefore, the risk model is rejected if it
generates too many or too few violations.

2.4.2 Backtesting CVaR

To implement a backtesting procedure for CVaR, we need to specify a loss
function ρ. A number of different loss functions have been suggested, one of
them is proposed by Blanco and Nihle [13]:

ρ =
(return−VaR)+

VaR
(11)

where f+ = f if f > 0 and 0 otherwise.

The suggested function gives each tail-loss observation a weight equal to the
tail loss divided by the VaR. This ensures that higher tail losses get awarded
higher ρ-values. The benchmark for this forecast evaluation procedure is
easy to derive. It is equal to the difference between CVaR and VaR, divided
by VaR. However, the loss function (11) also has a problem. Because VaR is
in the denominator, it is not defined if VaR is zero, and can give mischievous
answers if VaR gets close to zero or changes sign.

2.5 Robustness

Most risk measures, such as VaR and CVaR, are defined as functions of
the distribution of the considered return. However, since the probability
measure describing market events is unknown the distinction between the
theoretical risk measure and its estimator allows us to study the relation
between the choice of the estimator and the specification of risk measures.
In particular, it allows us to consider some natural requirements of the risk
measurement procedure. For example, how robust is the result with respect
to the data set or with respect to other parameters? Constructing and com-
puting measures of sensitivity allows a quantification of the robustness of
VaR and CVaR with respect to the data set and parameters used to compute
them. However, VaR and CVaR have completely different properties. Com-
paring them directly is like comparing apples and oranges. The differences
in properties stems from the fact that VaR is an estimate of a percentile in
the distribution of returns, i.e. a single point in the distribution. CVaR,
on the other hand, is the expected value of returns beyond the VaR per-
centile, i.e. an estimate that takes all points beyond the VaR percentile into
account, though it is condensed into a single scalar estimate. In turn, this
means e.g. that CVaR is always less than (or equal to) VaR since CVaR is
the expected loss given that the actual return is less than VaR.



2 THEORETICAL FRAMEWORK 17

For a risk model to be considered robust, it should provide accurate risk
forecasts across different assets, time horizons, and confidence levels within
the same asset class. Fluctuations in risk forecasts have serious implications
for the usefulness of a risk model. However, risk forecast fluctuations have
not been well documented. The reason for this is unclear, but the importance
of this issue is real. If a VaR value always fluctuates by 30% from one day to
the next, it may be hard to sell risk modelling within the firm. Traders are
not likely to be happy with routinely changing risk limits, and management
does not like to change market risk capital levels too often. Moreover, since
VaR is used to regulate market risk capital, a volatile VaR leads to costly
fluctuations in capital if the firm keeps its capital at the predicted minimum
level. This may severely hinder the adoption of risk models within a firm.
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3 Data

In this section we present how we select and collect the data sample used in
the thesis. In addition, we give a descriptive overview of the collected data.

For the purpose of this study we use Datastream to gather time series
data for equity indices, bond indices, exchange rates and individual stocks.
Datastrem is a comprehensive online historical database service provided by
Thompson Financial, which is a globally leading supplier of financial infor-
mation. Data contained in Datastream has been compiled by good faith
from sources believed to be reliable. However, Thomson Financial gives no
warranty as to its accuracy, completeness or correctness. Balanced against
these warnings, however, we believe that Datastream is a practical and re-
liable source for the type of information used in this study.

Daily prices are collected for the ten year period from May 10, 1996 to May
9, 2006. Ten years of historical data is the longest period available that holds
for all variables in the data set. Equity prices are adjusted for dividends,
share repurchases and share issues. Non-trading days are excluded from the
data set.

The data used in this thesis consists of a variety of major international equity
and bond indices as well as major exchange rates and individual stocks.
More specifically, we use 42 international equity indices from Europe (ex
Sweden), America (ex US), Asia-Pacific and Africa. Most indices were listed
on Yahoo Finance [46] as ”major world indices”. In addition, we use 13 US
market equity indices and 39 Swedish market equity indices. Moreover, we
use a data sample of 20 major bond indices, 17 major exchange rates and
15 individual international stocks (five stocks from the Stockholm Stock
Exchange, five stocks from the MICEX index, which comprises the most
liquid Russian stocks and finally five stocks from the Dow Jones Industrial
Average index in New York). The analysis is restricted to simplest possible
portfolios consisting of a single asset (equity or bond index, exchange rate
or individual stock).

An example of a portfolio return distribution over time as well as VaR and
CVaR estimates is given for Affärsvärldens Generalindex in Figure (3). As
expected CVaR is always less than or equal to VaR.
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Figure 3: Affärsvärldens Generalindex
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4 Hypotheses

In this section, we develop our hypotheses about the robustness of CVaR. We
develop two hypotheses, the first about the robustness over all asset classes
examined and the second about the difference in robustness between different
asset classes.

4.1 Robustness of CVaR

In this thesis we implicitly assume that we compare CVaR to VaR, though a
direct comparison is never performed. The reason is that the two measures
have completely different properties and as mentioned before we cannot
compare apples with oranges.

We hypothesize that CVaR is a more robust risk measure than VaR. The
reason is that all values in the tail of the distribution of returns are con-
sidered when estimating CVaR, compared to just the number of values for
the case of VaR. For example, if the tail consists of the returns -8%, -9.5%
and -11%, all these values are taken into account when estimating CVaR.
When VaR is estimated, the most important feature about the tail is that it
consists of three different (in this example) values. It should be noted, that
it is the tail of the distribution that is important for most risk measures,
since the tail in some sense defines the risk. The variance of the estimate
of a mean (e.g. CVaR) should, intuitively, be less than the variance of the
estimation of a single point (e.g. VaR), and therefore the variance should be
lower for CVaR compared to VaR. Hence CVaR ought to be a more robust
measure of risk.

Furthermore, a formal test is performed where we test whether CVaR is an
unbiased measure of the conditional return, giving that the return is less
than VaR. We perform the test by testing the null hypothesis H0 that the
empirical measures, respectively, are zero on average against the alternative
hypothesis H1 that they differ from zero. The empirical measures are by
design equal to zero if CVaR is an unbiased estimate of the conditional
return.

4.2 Asset Class Difference

The estimation of CVaR, as well as of VaR, is always based on some kind
of model which makes use of ex ante data (cf. section 2.3). Inherent in the
model is some kind of assumptions about the characteristics of the underly-
ing data and relevant model parameters are estimated based on the ex ante
data.
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As a result, the VaR and CVaR estimates get better the better the model
assumptions agree with the data at hand. It is perhaps more intuitive to
think about it the other way around. When you construct a model, you
try and design the appropriate model assumptions based on your believes
of the real data. Hence the data samples that are most similar to the model
assumptions will render the most stable CVaR estimates. In our case, we
estimate CVaR based on two different methods, the first assuming normally
distributed returns (the delta-normal approach, see 2.3.1) and the second
assuming that the distribution of returns in the ex ante period is representa-
tive for the distribution of future returns (the historical simulation method,
see 2.3.2). This leads to that the asset class that, on average, has returns
that are most similar to a normal distribution will seem to be the most
robust asset class, in terms of CVaR robustness, when CVaR is estimated
using the delta-normal method. On the other hand the asset class that, on
average, is most constant over time, will seem to be the most robust asset
class when CVaR is estimated using the historical simulation method. It is
without further studies impossible to say what asset class that has returns
that are most similar to a normal distribution or what asset class that has
a pattern of returns that is the most constant over time.

We will test the null hypothesis H0 that the different asset classes, pair-wise,
on average have the same value of the empirical measure CRV (cf. section
5.3) against the alternative hypothesis H1 that they differ. If CVaR is a
robust measure of risk, there should be no difference over the different asset
classes in terms of robustness (though the actual risk will of course differ) if
CVaR is an unbiased risk measure for those particular asset classes.
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5 Methodology

In this section we describe the methodology. First, the procedure how the
study is performed is described. Thereafter, the empirical measures used in
the study are described. Finally, the empirical tests performed are described.

5.1 Returns

Throughout the thesis we calculate the daily returns as:

rt = ln
Pt

Pt−1

where rt is the daily return, Pt is the closing price on day t and Pt−1 is the
closing price on day t−1. In other words, we follow the standard in financial
analysis and use log-returns.

5.2 Procedure

By using data in the ex ante time period, we calculate VaR and CVaR. VaR
is calculated using one of several possible methods, which are described in
section 2.3. CVaR is calculated accordingly.

Thereafter, the accumulated return τH days after the end of the ex ante
period is observed, where τH is the so called VaR horizon which is the
hypothesized holding period. If the return is less than VaR, the event is
counted. This is later on used to evaluate VaR. On average, we should
observe 100(1 − α) returns less than VaR if VaR is a good measure and
α is the confidence level of VaR. Furthermore, the empirical measures to
evaluate CVaR are calculated. The calculation of these empirical measures
are described in section 5.3.

The next step is to move the ex ante window one day forward and repeat
the steps described above, starting with calculating updated values of VaR
and CVaR for the new ex ante time period. This procedure is than repeated
until the end of the data file.

This algorithm is then repeated for all assets, methods of calculating VaR
and different parameters under study. The parameters that can be varied
are the VaR horizon τH , the ex ante window length and the confidence
level. The resulting empirical measures can also be averages over different
parameters.

In the next subsection, the different empirical measures for evaluating the
robustness of CVaR are described.
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5.3 Empirical Measures

In order to derive the answers to our questions, we develop three different
empirical measures that we believe will capture the behavior of CVaR as well
as possible. The empirical measures are CVaR relative to VaR (CRV), ad-
justed CVaR relative to VaR (adjCRV) and CVaR relative to return (CRR).
The measures are described in the subsequent subsections.

The reason that we develop our own empirical measures is that there is no
appropriate standard measure in the literature, at least to our knowledge.
The reason that we develop more than one measure is that there is no
single good measure that captures all behaviors of the phenomena under
study. Hence, we develop CRV and CRR as complements to each other.
The adjCRV consists of a slight modification of CRV which makes it directly
comparable to CRR. One necessary condition that all empirical measures
should fulfill in order to be good measures is that they should point in the
same direction every time.

5.3.1 CVaR Relative to VaR (CRV)

For each sample of returns5, the ex ante VaR and CVaR are calculated
based on data in the ex ante period. By definition, CVaR is always less
than VaR. The value ρ1 = CVaR – VaR

VaR , which measures how much smaller
CVaR is compared to VaR, is recorded. As a second step, the actual return
is examined. If the return is larger than VaR, nothing is recorded and we
continue with the next step in the algorithm and form a new ex ante period.
However, if the return is abnormal and negative, i.e. less than VaR6, the
value ρ2 = return – VaR

VaR , which measures how much smaller the return is
compared to VaR, is recorded. As a last step the difference ρ3 = ρ2 − ρ1

is calculated. This is a measure of the difference between CVaR and the
abnormal negative return. The unit is the somewhat non-intuitive ”percent
of VaR”. Thereafter, we form a new ex ante period one step forward in time
and the algorithm is repeated from start until all samples of returns have
been examined. An example can be used to illustrate CRV. If the ex ante
VaR and CVaR are -10% and -15%, respectively, and the return is -14%:

ρ1 = CVaR−VaR
VaR = (−15)−(−10)

(−10) = 50%

ρ2 = return−VaR
VaR = (−14)−(−10)

(−10) = 40%

ρ3 = ρ2 − ρ1 = 40%− 50% = −10%
5e.g. each trading day if the VaR horizon is one trading day
6inherent in the VaR and CVaR concepts are that returns are considered abnormal (and
negative) when they are less than VaR for the relevant confidence level
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The interpretation is that on this occasion, we see an abnormal negative
return (since the return is less than VaR) and the return is 10% of VaR
smaller than CVaR (taking the sign into account). This means that the
return is larger than CVaR, since VaR has a negative sign.

This leaves us with a number of different ρ3 for each asset. There should
be approximately 1− α times the number of samples number of ρ3. All ρ3

related to a specific asset are aggregated into a scalar measure, the mean.

An advantage with CRV compared to CRR (described below) is that CRV
by design is adjusted for different volatilities of the different assets. A similar
measure was also suggested by Dowd in [21]. He notes that this is measure
is problematic since it is not defined in the case when VaR is zero and can
be mischievous if VaR is close to zero.

5.3.2 Adjusted CVaR Relative to VaR (adjCRV)

adjCRV is similar to CRV. The only difference is that ρ3 is multiplied by
the average VaR which results in a unit of adjCRV which is more easily
interpreted. The unit simply becomes ”percent” (of the original asset value).
Another way to look at it is to view adjCRV as a linearly scaled version of
CRV which makes it directly comparable with CRR. Notice that due to our
definition of VaR, CRV and adjCRV will on most occasions have different
signs. This is due to the fact that VaR is negative on average.

To illustrate, we continue with our example above. We got so far that we
identified an abnormal return of 10% of VaR smaller than CVaR. But this
is just simply 10% of -10% which equals -1% (assuming an average VaR of
-10%). Hence the return is -1% smaller than CVaR, i.e. 1% larger than
CVaR (-14% compared to -15%).

Again, we are left with a number of different adjusted ρ3 for each asset, and
again the ρ3 are aggregated into the scalar measure the mean.

An advantage with adjCRV is that it makes the empirical measures CRV
and CRR directly compareable.

5.3.3 CVaR Relative to Return (CRR)

The last measure, CRR, compares CVaR to the return in the cases where
the return is less than VaR. For each sample of returns, the ex ante VaR and
CVaR are calculated just as before. The return is then compared to VaR. If
the return is larger than VaR, nothing is recorded and we continue with the
next step in the algorithm and form a new ex ante period. However, if the
return is abnormal and negative, i.e. less than VaR, the difference return
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minus CVaR is recorded. This is a measure of the difference between the
abnormal negative return and CVaR. The unit is ”percent” (of the original
asset value). Hence, the numbers of CRR are directly comparable to the
numbers of adjCRV. This was the rationale behind the adjustment of CRV
in the first place. Thereafter, we form a new ex ante period one step forward
in time and the algorithm is repeated from start until all samples of returns
have been examined.

Using the same figures as in the previous example, CRR becomes −14% −
−15% = 1%. Hence, the return is 1% larger than CVaR, which agrees with
the result for adj CRV. Though adjCRV and CRR reached exactly the same
value this time, it should be noted that this is not the case in general.

Also in the case of CRR, the different values for each sample of returns for
each asset are aggregated into a scalar measures, the mean.

An advantage with CRR compared to CRV is that its unit is easily inter-
preted.

5.4 Empirical Tests

Two different tests are performed to evaluate CVaR. We will call them the
CVaR Robustness test and the Asset Class Difference test. They are de-
scribed in the subsequent subsections.

5.4.1 CVaR Robustness

The values of the different empirical measures described in section 5.3 will be
analyzed based upon their respective magnitudes. A simple formal statistical
test will be performed where we check whether the means of the empirical
measures are zero or not. If the measures are zero, this indicates that CVaR
is a good risk measure on average.

On the other, also the variation of the empirical measures must be taken
into account when the robustness of CVaR is evaluated. A good measure
of the robustness is the Inter-Quantile Range (IQR), which measures the
difference between two quantiles in the distribution of an empirical measure.
IQR0.95−0.05 measures e.g. the difference between the five and ninety five
percentile. This measure gives an indication of the spread of the empirical
measure, and hence also an indication of the robustness of CVaR. If CVaR is
a robust risk measure, IQR should be small. However, no formal statistical
tests based upon the variation or IQR will be performed. The reason is that
a straight-forward test that would give insight to the problem is not easily
constructed. As a complement in helping us characterizing the loss, we will
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also study the conditional return distribution given that the return is less
than VaR and relate this to the estimated VaR and CVaR.

5.4.2 Asset Class Difference

In this test, the different asset classes are ranked according to the empirical
measure CRV. The reason that only CRV is considered in this test is that
it is the only empirical measure that is adjusted for the volatility of the
underlying asset (cf. section 5.3). By ranking the different assets, we hope
to be able to draw the conclusion whether CVaR is a robust risk measure by
examining the difference in CRV between the different asset classes. If CVaR
is a robust measure of risk, it should be transparent to the underlying type
of asset, in the sense that a measure of robustness should not be different
for different asset classes. Of course, the value of CVaR itself will vary
significantly of different assest since e.g. T-bills are less risky than a stock
in a mineral company listed on the Moscow Stock Exchange. A simple 2-
sample t-test where the variances of the two populations are not assumed
equal is performed to investigate the pair-wise difference in CRV between
the different asset classes.
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6 Empirical Findings

In this section the results of the study are presented. In the first part of the
study, all asset classes are treated jointly, whereas in the second part, they
are treated individually. The different asset classes considered in this thesis
are stock indices, bond indices, exchange rates and individual stocks.

It should be noted that our primary goal is to determine whether CVaR is a
robust risk measure or not and to some extent characterize the conditional
return, given that the return is less than VaR. It is not our intention to give
exact numerical answers to these questions.

6.1 Parameters

As described in section 2.3, VaR and CVaR can be estimated using differ-
ent methods. In all methods, some parameters always have to be decided
beforehand. In our case, the parameters are the ex ante estimation window
length, the confidence level of VaR and CVaR and the horizon.

The ex ante estimation window length is chosen to 250 or 500 trading days,
corresponding to approximately one year and two years, respectively. The
ex ante estimation window is used to estimate the model parameters, e.g.
the standard deviation of the returns if that is an input to the model. Lam-
badiaris et al. [29] uses an ex ante length of 100 or 252 trading days. They
conclude that a longer estimation window is usually better. The reason that
they do not use a longer ex ante window is a restriction in the number of
samples. The Swedish Financial Supervisory Authority (Finansinspektio-
nen) [23] suggests an ex ante window length of more than one year.

The confidence level of VaR and CVaR is chosen to 95% or 99%. These are
the most common values in the literature. Furtehrmore, the Swedish Finan-
cial Supervisory Authority (Finansinspektionen) [23] suggests a confidence
interval of at least 99%.

The VaR and CVaR horizon is chosen to be one day. This is a common
value in the literature. The horizon is the same as the hypothetical holding
period and hence the relevant return is the return during the VaR hori-
zon period. In our case, where we study market risk, the VaR horizon is
typically one trading day. However, the Swedish Financial Supervisory Au-
thority (Finansinspektionen) [23] suggests a VaR horizon of ten days. On
the other hand, they also say that it is equally good to perform all calcu-
lations assuming a one-day horizon and then as a final step calculate the
final ten-day horizon VaR (or CVaR) value from the one-day horizon value
through a simple transformation.



6 EMPIRICAL FINDINGS 28

6.2 CVaR Robustness

6.2.1 Possible Bias

Part of the empirical results are presented in Tables 3 - 6. We choose to
present the measure CRR only, since all empirical measures point in the
same direction. The complete set of empirical results is found in Appendix
A. Since CVaR is closely related to VaR, we also do a back-testing of VaR
(see Table 8).

The entries in Tables 3-4 should be interpreted as follows: Consider e.g. the
second line. The first column tells us that the parameters in this case are
an ex ante window length of 500 trading days and a confidence level of 95%.
The second column in Table 3 tells us that the average CRR over all assets is
-0.009%. This means that if CVaR is e.g. -8%, the conditional return, given
that the return is less than VaR, is -8.009% on average. Columns 3-6 in
Table 3 and columns 2-3 in Table 4 are different measures of the deviation
of CRR about its mean, where Q stands for quantile and IQR for Inter-
Quantile Range. The last two columns in Table 4 show the result of the
test whether the mean CRR is equal to zero, and the associated t-statistic
is given in column 4 in Table 4.

Table 3: Empirical results of CRR using the delta-normal method
ex ante length / mean Q0.025 Q0.05 Q0.95 Q0.975

confidence level CRR
500 / 95% -0.009 -0.25 -0.20 0.14 0.17
500 / 99% -0.029 -0.90 -0.44 0.31 0.37
250 / 95% -0.07 -0.30 -0.26 0.067 0.093
250 / 99% -0.13 -1.15 -0.71 0.16 0.17

Table 4: (cont.) Empirical results of CRR using the delta-normal method
ex ante length / IQR IQR t-stat H95%

0 H90%
0

confidence level 0.95-0.05 0.975-0.025

500 / 95% 0.34 0.42 -0.083 acc acc
500 / 99% 0.74 1.27 -0.068 acc acc
250 / 95% 0.32 0.39 -0.43 acc acc
250 / 99% 0.87 1.32 -0.297 acc acc

We note that the hypothesis H0 that the empirical measures are equal to
zero, and hence that CVaR is an unbiased estimate of the conditional return,
given that the return is less than VaR, is accepted in most cases. It is rejected
only in two cases (see Appendix A) at a rather low 90% confidence level.
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Table 5: Empirical results of CRR using the historical simulation method
ex ante length / mean Q0.025 Q0.05 Q0.95 Q0.975

confidence level CRR
500 / 95% -0.035 -0.30 -0.23 0.11 0.14
500 / 99% -0.29 -1.81 -1.52 0.17 0.24
250 / 95% -0.11 -0.42 -0.30 0.002 0.009
250 / 99% -0.43 -1.78 -1.30 -0.031 -0.004

Table 6: (cont.) Empirical results of CRR using the historical simulation
method

ex ante length IQR IQR t-stat H95%
0 H90%

0

confidence level 0.95-0.05 0.975-0.025

500 / 95% 0.34 0.45 -0.295 acc acc
500 / 99% 1.69 2.05 -0.419 acc acc
250 / 95% 0.30 0.43 -0.918 acc acc
250 / 99% 1.27 1.77 -0.725 acc acc

In both cases, the ex ante window length is the shorter of the possibilities,
which agrees with the results of Lambadiaris et al. [29], who concluded that
a longer ex ante length gives a better estimate. It can also be noted that
both cases happen for the historical simulation method.

The findings support that CVaR is an unbiased estimate. On the other
hand, the mean of CRV is always positive and the means of adjCRV and
CRR are always negative, which could be interpreted as if CVaR is a biased
estimate. However, this is most probably due to the fact that the same
methods and the same data are used over and over again when CVaR is
estimated, only the parameters of the estimator change.

To further investigate whether CVaR is an unbiased measure, we study CRR
of the individual assets and perform a similar test as above to test whether
CRR is equal zero or not. The null hypothesis is H0 : CRR = 0. The
test is two-sided and performed on a 95% confidence level. The summary
of the results are shown in Table 7. As can be seen, CVaR seems to be an
unbiased estimate. The parameters of the CVaR estimator are in this case
an ex ante window length of 500 trading days and a confidence level of 95%.
The rationale behind this choice is that these parameters seem to render the
most stable CVaR estimates, as shall be shown subsequently.

Next, in Table 8 we perform a backtesting of VaR. In the table the pro-
portions of returns less than VaR are stated as well as the corresponding
p-values calculated from the binomial-test described in section 2.4.1. As we
can see, the null hypothesis of binomially distributed VaR values can be



6 EMPIRICAL FINDINGS 30

Table 7: Summary of the tests where we study whether CRR for individual
assets are equal to zero. The table shows the number of assets in each asset
class for which H0 is rejected (percent of times within parenthesis)

Asset class # assets delta-normal historical simulation
Stock indices 100 1 (1%) 4 (4%)
Stocks 14 0 0
Bonds 19 0 1 (5.3%)
Exchange rates 0 0 0

rejected at a 5% significance level in three of the cases. All rejections refer
to the delta-normal approach. It seems like the historical simulation does
a better job in estimating VaR values, in fact, the backtesting shows really
encouraging results when using the historical simulation method. A possi-
ble explanation could be that the assets in the data sample show fat-tail
properties and, hence, do not exhibit the normality characteristic assumed
in the delta-normal approach.

Table 8: Back-testing of VaR. Violation ratios and p-values
ex ante length / 500 / 95 500 / 99 250 / 95 250 / 99

confidence level
Delta-normal method 4.1 (0.0283) 1.5 (0.0233) 4.5 (0.1899) 1.6 (0.0043)

Historical simulation 4.7 (0.4595) 0.9 (0.6760) 5.2 (0.6204) 1.3 (0.2141)

6.2.2 Robustness

Furthermore, the IQR indicates that CVaR is a robust measure of risk. It
can also be noted that the IQR increases as the confidence level increases.
This is most probably due to the fact that there are fewer samples in this
case to base the estimate on, compared to the lower confidence level. On
average, there are five times as many samples of the return being less than
VaR at the 95% confidence level compared to the 99% confidence level.

Considering only IQR0.95−0.05 for now, the largest value is found for the
historical simulation method with an ex ante length of 500 days and a confi-
dence level of 99% (see Appendix A). Here, we only take adjCRV and CRR
into account since theses are the only empirical measures where the unit is
percent of the original asset value. The interpretation of this value would
be as follows: The 5-percentile is −1.66% and the 95-percentile is 0.15%. If
CVaR is, say, −8%, the true conditional return, given that the return is less
than VaR would be between −9.66% and −7.85%, if “true” is interpreted
as lying between the 5 and 95 percentiles. This might not seem as a tight
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interval, but it must be considered that this is the worst outcome out of
all the cases. Using a confidence level of 95% instead, the IQR0.975−0.025 is
always less than 0.47%, no matter what estimation method that has been
used and the ex ante window length. Moreover, in this case we consider a
tougher IQR.

A numerical example might be illustrative. Consider the case of an ex ante
length of 500 days, a confidence level of 95% and the adjCRV measure.
The CVaR estimation method is the delta-normal-method. In this case
IQR0.975−0.025 = 0.45% and the 5-percentile is −0.25% and the 95-percentile
is 0.10%. This means that if CVaR is, say, −8%, the true conditional re-
turn, given that the return is less than VaR would be between −8.25% and
−7.90%, if true is interpreted as lying between the 2.5 and 97.5 percentiles.

The best way to get an opinion whether CVaR is a robust measure is perhaps
to study the entire distribution of the empirical measures in the form of the
cumulative distribution function (CDF). They are presented in Appendix
B.

6.2.3 Conditional Return Distributions

As a complement in helping us characterizing the conditional return, i.e.
given that the return is less than VaR, the conditional return normalized
with respect to VaR is plotted in Figure 4. In the figure, VaR is estimated
with the delta-normal method, but the results for the historical simulation
method are similar. The value “1” on the abscissa represents normalized
Var, and hence a value of “2” means that the return on this occasion was
200% of VaR.

In appendix C (Figures 13 - 22) some additional conditional distribution,
normalized with respect to κ(t, α) = VaR(t, α)− CVaR(t, α) are presented.
This normalization makes returns over all assets and over time directly com-
parable. This makes returns over time and over all assets directly compara-
ble.

6.3 Asset Class Difference

Another way to test the robustness of CVaR is to compare the empirical
measure CRV over different asset classes. If CVaR is robust, CRV should
not differ over different asset classes, if CVaR is an unbiased risk measure
for those particular asset classes. The test is performed as a difference-in-
mean test where the null hypothesis H0 that there is no difference between
different asset classes is tested against H1 that there is a difference in the
mean of CRV between different asset classes. The number of degrees of
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Figure 4: Conditional returns relative to VaR. Ex ante length = 500 days,
confidence level = 95%.

freedom (DF) is approximated by the number of assets in the asset class
with the lowest number of assets, minus one.

The result of the test is presented in Tables 9 - 10. In the tables, the t-
statistic and DF are presented. The critical values are 2.1009 and 2.1604
at the 95% confidence level for 18 and 13 df, respectively, and 1.7341 and
1.7709 at the 90% confidence level for 18 and 13 df, respectively. In the
tables, a t-statistic above the critical value at the 95% confidence level is
indicated with boldface typesetting.

Table 9: Difference-in-mean test. Delta-normal method. The ex ante length
in days and the confidence level in percent are given in the table. ex-rates
= exchange rates

Assets t-stat t-stat t-stat t-stat DF
500 / 95 500 / 99 250 / 95 250 / 99

stock indices - bonds -1.483 -1.205 -0.016 -0.534 18
stock indices - ex-rates -0.191 -0.787 5.455 2.317 13
bonds - ex-rates 1.426 0.614 1.233 1.546 13
stocks - ex-rates 1.764 1.763 3.125 2.488 13
stocks - stock indices 1.883 2.126 0.517 1.559 13
stocks - bonds -0.414 1.283 0.202 0.777 13
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Table 10: Difference-in-mean test. Historical simulation method. The ex
ante length in days and the confidence level in percent are given in the
table. ex-rates = exchange rates

Assets t-stat t-stat t-stat t-stat DF
500 / 95 500 / 99 250 / 95 250 / 99

stock indices - bonds -1.939 -0.706 3.790 -1.187 18
stock indices - ex-rates -0.671 -0.041 4.214 1.375 13
bonds - ex-rates 0.687 0.632 -0.696 2.006 13
stocks - ex-rates 0.894 1.843 3.092 2.450 13
stocks - stock indices 1.569 2.011 0.375 1.885 13
stocks - bonds -0.250 1.187 3.110 1.039 13

The conclusion that can be drawn from the results so far is that there seems
to be a significant difference in terms of the CRV between different asset
classes in the case of an ex ante window length of 250 days. On the other
hand, when the ex ante window length increases to 500 days, most of the
differences seem to disappear. This can be interpreted as the robustness of
CVaR increases when the ex ante window length increases, a conclusion that
we have touched upon before. Hence, the CVaR robustness seems sensitive
to a short ex ante window.

Furthermore, the significant difference between the asset classes might be
interpreted as there is a bias in the CVaR estimate. Whether this is true
or not is hard to tell. If we analyse what lies beneath the numbers, we
find that one part of the explanation to the difference are few individual
stocks with extreme movements, mainly from the Moscow stock exchange.
These stocks have a significant impact on the average CRV for the stock
category, since the number of individual stocks in this study is rather limited.
Hence, another interpretation of the results is that CVaR is not a good risk
measure for certain asset classes, in this case individual stocks, due to the
return distribution of that asset class. This is also in line with the findings
in section 6.2.1 where we saw that CVaR sometimes seem to be a biased
estimate for individual stocks. However, if there is a bias with a 250 day
ex ante window length, it seems to go away as the ex ante window length
increases to 500 days.
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7 Concluding Remarks

In this section, we summarize our findings and provide some suggestions for
further research.

To start with, it seems plausible that CVaR is an unbiased estimate of the
conditional return, given that the return is less than VaR, with the possible
exclusion of individual stocks.

Secondly, our results indicate that it is possible to construct a stable CVaR.
The results suggest that the key is to choose the CVaR estimating parame-
ters carefully. This means choosing a confidence level that is not too high,
which we believe is due to the fact that a certain number of samples is needed
in the ex ante window to estimate the model parameters accurately. It also
means that the ex ante window has to be chosen long enough, probably due
to the same reason.

Hence, as the confidence level of VaR increases, the robustness seems to
decrease. This is a problem, since a high confidence level of VaR is usually
wanted. A 95% confidence level would mean that we consider approximately
one trading day per month as being abnormal. A 99% confidence level would
mean that we consider approximately two to three trading days per year as
being abnormal. When the confidence level increases, the number of relevant
samples in the ex ante window decreases so that the CVaR estimate gets
worse. This can probably to some extent be compensated by extending
the ex ante window length, but this might not be possible due to practical
reasons, since there often is a lack of relevant historical data. Even if there
were enough historical data available, it might not be representative due to
its age.

To end this section, it should be stated that a risk measure is a statistical
measure, and hence we expect it to be correct only on average.

In the next section, some further research subjects are suggested.

7.1 Suggestions for Further Research

The results indicate that the robustness of CVaR increases as the ex ante
window length increases and the confidence level decreases. This might be
due to the fact that the number of historical samples in the ex ante window
increases, which renders a better CVaR estimate. It would be interesting
to find out approximately how many samples are needed for a good CVaR
estimate and if a longer ex ante window length can be directly traded for
a higher confidence level in terms of robustness. Or is old historical data
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less useful than more recent data? What is the trade-off between recent and
older data?

Inherent in the CVaR estimation process is the estimation of VaR. This
might transfer some of the robustness issues of VaR onto CVaR. It would be
interesting to try and isolate the evaluation of the robustness of CVaR from
VaR in some way. In our study, we evaluate CVaR every time the return is
less than VaR, but since there are issues with VaR, this might not be the
best thing to do. One possible alternative might be to evaluate CVaR for
e.g. the worst five percent of the returns, if the confidence level is 95 %.
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[23] Intern VaR-modell för beräkning av kapitalkrav för marknadsrisk, Fi-
nansinspektionen, 2004-04-26.

[24] Goldman Sachs, Annual Report, 2005, p.51.

[25] Goorbergh, R; Vlaar, P. Value-at-Risk Analysis of Stock Returns His-
torical Simulation, Variance Techniques or Tail Index Estimation?, De
Nederlandsche Bank Staff Reports, March 1999, Nr. 40.

[26] Hendricks, D. Evaluation of value-at-risk models using historical data,
Economic Policy Review, Federal Reserve Bank of New York, 2 April
1996.

[27] JPMorgan, Annual Report, 2005, p.76.

[28] Kupiec, P.H. Techniques for Verifying the Accuracy of Risk Measure-
ment Models, Journal of Derivatives, Vol 3, pp. 73-84, 1995.

[29] Lambadiaris, G; Papadopoulou, L; Skiadopoulos, G; Zoulis, Y. VaR:
History or simulation. Risk Magazine September 2003, pp. 123-126.

[30] Lopez, J.A. Methods for Evaluating Value-at-Risk Estimates. Federal
Reserve Bank of New York, Economic Policy Review, Vol 2, pp. 3-17,
1999.

[31] Lucas, A; Klaassen, P. Extreme returns, downside risk, and optimal
asset allocation. Journal of Portfolio Management, Vol 25, pp. 71-79,
1998.



REFERENCES 38

[32] Mahoney, J. Empirical-based versus Model-based Approaches to Value-
at-Risk: An Examination of Foreign Exchange and Global Equity Port-
folios, Proceedings of a Joint Central Bank Research Conference, Board
of Governors of the Federal Reserve System, pp. 199-217, 1996.

[33] Markowitz, H.M. Portfolio Selection, Journal of Finance, Vol 7, No 1,
pp. 77-91, 1952.

[34] Mart́ın Mato, M.A. Classic and modern measures of risk in fixed-income
portfolio optimization. The Journal of Risk Finance, Vol 6, No 5, pp.
416-423, 2005.

[35] Mausser, H; Rosen, D. Beyond VaR: From measuring risk to managing
risk, ALGO Research Quarterly, 1:5-20, 1999.

[36] McKay, R; Keefer, T.E. VaR is a dangerous technique. Corporate Fi-
nance Searching for Systems Integration Supplement, September:30,
1996.

[37] Olszewski, Y. Building a Better Fund of Hedge Funds: A Fractal and
α - Stable Distribution Approach, Working Paper, draft #4, August
2005.

[38] Pritsker, M. Evaluating value at risk methodoligies: Accuracy versus
computational time, Journal of Financial Services Research, Vol 12,
pp. 201-242, 1997.

[39] J.P.Morgan/Reuters, RiskMetrics - Technical Document, New York,
1994.
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A Empirical Findings - CVaR Robustness

In this appendix, we present the numerical results discussed in section 6.

Table 11: Empirical results using the delta-normal method. Ex ante length
= 500 days, confidence level = 95%

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 1.32 -5.52 -4.58 7.98 10.95
adjCRV -0.032 -0.30 -0.25 0.10 0.15
CRR -0.009 -0.25 -0.20 0.14 0.17

Table 12: (cont.) Empirical results using the delta-normal method. Ex ante
length = 500 days, confidence level = 95%

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 12.6 16.5 0.255 acc acc
adjCRV 0.35 0.45 -0.242 acc acc
CRR 0.34 0.42 -0.083 acc acc

Table 13: Empirical results using the historical simulation method. Ex ante
length = 500 days, confidence level = 95%

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 1.98 -6.78 -5.28 8.93 11.32
adjCRV -0.041 -0.30 -0.26 0.11 0.16
CRR -0.035 -0.30 -0.23 0.11 0.14

Table 14: (cont.) Empirical results using the historical simulation method.
Ex ante length = 500 days, confidence level = 95%

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 14.2 18.1 0.329 acc acc
adjCRV 0.37 0.46 -0.322 acc acc
CRR 0.34 0.45 -0.295 acc acc
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Table 15: Empirical results using the delta-normal method. Ex ante length
= 500 days, confidence level = 99%

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 0.59 -9.85 -8.67 10.74 15.20
adjCRV -0.050 -0.71 -0.54 0.30 0.32
CRR -0.029 -0.90 -0.44 0.31 0.37

Table 16: (cont.) Empirical results using the delta-normal method. Ex ante
length = 500 days, confidence level = 99%

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 19.4 25.1 0.091 acc acc
adjCRV 0.84 1.03 -0.125 acc acc
CRR 0.74 1.27 -0.068 acc acc

Table 17: Empirical results using the historical simulation method. Ex ante
length = 500 days, confidence level = 99%

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 6.80 -7.76 -6.55 24.28 26.45
adjCRV -0.32 -2.06 -1.66 0.15 0.21
CRR -0.29 -1.81 -1.52 0.17 0.24

Table 18: (cont.) Empirical results using the historical simulation method.
Ex ante length = 500 days, confidence level = 99%

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 30.8 34.2 0.733 acc acc
adjCRV 1.81 2.27 -0.475 acc acc
CRR 1.69 2.05 -0.419 acc acc

Table 19: Empirical results using the delta-normal method. Ex ante length
= 250 days, confidence level = 95%.

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 3.98 -3.82 -1.64 10.25 13.60
adjCRV -0.10 -0.43 -0.33 0.026 0.041
CRR -0.07 -0.30 -0.26 0.067 0.093
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Table 20: (cont.) Empirical results using the delta-normal method. Ex ante
length = 250 days, confidence level = 95%.

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 11.9 17.4 0.757 acc acc
adjCRV 0.36 0.47 -0.678 acc acc
CRR 0.32 0.39 -0.43 acc acc

Table 21: Empirical results using the historical simulation method. Ex ante
length = 250 days, confidence level = 95%.

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 5.41 -0.17 0.39 10.78 12.43
adjCRV -0.13 -0.44 -0.38 -0.005 0.001
CRR -0.11 -0.42 -0.30 0.002 0.009

Table 22: (cont.) Empirical results using the historical simulation method.
Ex ante length = 250 days, confidence level = 95%.

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 10.4 12.6 1.652 acc rej
adjCRV 0.38 0.44 -1.177 acc acc
CRR 0.30 0.43 -0.918 acc acc

Table 23: Empirical results using the delta-normal method. Ex ante length
= 250 days, confidence level = 99%

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 4.59 -4.51 -3.75 20.15 21.29
adjCRV -0.18 -1.18 -0.85 0.086 0.11
CRR -0.13 -1.15 -0.71 0.16 0.17

Table 24: (cont.) Empirical results using the delta-normal method. Ex ante
length = 250 days, confidence level = 99%

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 23.9 25.8 0.652 acc acc
adjCRV 0.94 1.29 -0.444 acc acc
CRR 0.87 1.32 -0.297 acc acc
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Table 25: Empirical results using the historical simulation method. Ex ante
length = 250, confidence level = 99%

mean Q0.025 Q0.05 Q0.95 Q0.975

CRV 13.15 3.81 4.25 28.16 31.31
hline adjCRV -0.52 -2.11 -1.73 -0.052 -0.026
CRR -0.43 -1.78 -1.30 -0.031 -0.004

Table 26: (cont.) Empirical results using the historical simulation method.
Ex ante length = 250, confidence level = 99%

IQR IQR t-stat H95%
0 H90%

0

0.95-0.05 0.975-0.025

CRV 23.9 27.5 1.800 acc rej
hline adjCRV 1.67 2.09 -0.842 acc acc
CRR 1.27 1.77 -0.725 acc acc
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B Empirical Findings - Distribution of Empirical
Measures

In this appendix, we present the numerical cumulative distribution functions
(CDFs) of the different empirical values used for the evaluation of CVaR.
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Figure 5: CDF of CRV, adjCRV and CRR using the delta-normal method.
Ex ante length = 500 days, confidence level = 95%.
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Figure 6: CDF of CRV, adjCRV and CRR using the historical simulation
method. Ex ante length = 500 days, confidence level = 95%.
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Figure 7: CDF of CRV, adjCRV and CRR using the delta-normal method.
Ex ante length = 500 days, confidence level = 99%.
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Figure 8: CDF of CRV, adjCRV and CRR using the historical simulation
method. Ex ante length = 500 days, confidence level = 99%.
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Figure 9: CDF of CRV, adjCRV and CRR using the delta-normal method.
Ex ante length = 250 days, confidence level = 95%.
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Figure 10: CDF of CRV, adjCRV and CRR using the historical simulation
method. Ex ante length = 250 days, confidence level = 95%.

−20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
CDF of CRV (Delta−Normal)

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
CDF of adjCRV and CRR (Delta−Normal)

Figure 11: CDF of CRV, adjCRV and CRR using the delta-normal method.
Ex ante length = 250 days, confidence level = 99%.
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Figure 12: CDF of CRV, adjCRV and CRR using the historical simulation
method. Ex ante length = 250 days, confidence level = 99%.
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C Conditional Distributions

In Figures 13 - 22 the conditional return given that the return is less than
VaR is plotted. The solid vertical line represents the VaR and the dashed
vertical line represents the CVaR. The abscissa is scaled so that VaR is
always located at 1 and CVaR at 1.5. Each plot shows the distribution of
the returns over all assets and all asset classes considered in the study in
the cases where the return is less than VaR. In order to be able to plot
the returns for all assets and all points in time, each conditional return (or,
to be exact, r(t, α) − CVaR(t, α), where r(t, α) is the conditional return
at time t for asset α) is normalized with respect to the variable κ(t, α) =
VaR(t, α) − CVaR(t, α). This makes returns over all assets and over time
directly comparable.
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Figure 13: Conditional returns distribution using the delta-normal method.
Ex ante length = 500 days, confidence level = 95%.



C CONDITIONAL DISTRIBUTIONS 50

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditional return distribution (Historical sim)

Figure 14: Conditional returns distribution using the historical simulation
method. Ex ante length = 500 days, confidence level = 95%.
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Figure 15: Conditional returns distribution using the delta-normal method.
Ex ante length = 500 days, confidence level = 99%.
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Figure 16: Conditional returns distribution using the historical simulation
method. Ex ante length = 500 days, confidence level = 99%.
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Figure 17: Conditional returns distribution using the delta-normal method.
Ex ante length = 250 days, confidence level = 95%.
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Figure 18: Conditional returns distribution using the historical simulation
method. Ex ante length = 250 days, confidence level = 95%.
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Figure 19: Conditional returns distribution using the delta-normal method.
Ex ante length = 250 days, confidence level = 99%.
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Figure 20: Conditional returns distribution using the historical simulation
method. Ex ante length = 250 days, confidence level = 99%.
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Figure 21: Conditional returns distribution using the delta-normal method.
Ex ante length = 250 days, confidence level = 99%. Zoomed. Eight extreme
returns are left out due to the zoom.
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Figure 22: Conditional returns distribution using the historical simulation
method. Ex ante length = 250 days, confidence level = 99%. Zoomed.
Twelve extreme returns are left out due to the zoom.


