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Abstract 

In this paper, we investigate the dynamics of the variance risk premium and whether it can 
be used to achieve incremental predictability of future volatility on the S&P 500 index. 
Previous studies have focused on the usefulness of implied volatility in volatility forecasting. 
However, these studies do not take into account the distortion in implied volatility caused 
by the risk premium investors demand, despite that such a distortion has been suspected for 
decades. We use a parsimonious model that accounts for the time varying risk premium 
embedded in implied volatility. We come up with the instantaneous variance premium (IVP) 
variable designed to capture the time variability of the variance risk premium. Our proposed 
forecasting model is able to outperform prevailing models both in-sample and out-of-
sample. A trading strategy with exposure to variance risk is created based on the results, and 
it shows that the novel variables are able to capture the dynamic properties of the variance 
risk premium. The trading strategy shows an improved performance compared to a 
benchmark, which provides evidence that the IVP variable can be used to accurately predict 
the variance risk premium. Our analysis uncovers useful information about the behavior of 
the VRP both in the context of volatility forecasting and portfolio optimization. 
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1. Introduction 

“A ship is safe in harbor, but that’s not what ships are for.” – William G.T. Shedd. 

Risk is a necessary evil we must face to move forward, whether to move forward as a society or to 

cross the ocean. We take particular risk on the expectation that it will bring sufficient contribution, 

while optimal behavior implies taking risks that prove worthwhile. This is the central paradigm of 

finance; reward must be proportionate to risk. The expectations of future risk and reward thus 

dictates behavior and hence, everything in the financial markets. Accordingly, the purpose to which 

everyone abides is to maximize rewards and minimize risks. In the financial markets, risk is 

associated with the degree to which the rewards fluctuate, known as volatility. 

 Hence, the modeling and forecasting of volatility is a key aspect of finance. For instance, 

asset-pricing models employ measures of volatility as a proxy for risk that in turn are key to most 

asset pricing procedures, while in portfolio management it is crucial to have reliable volatility 

estimates in order to properly hedge risk. Unsurprisingly, this very active research area in finance has 

resulted in the development of many models seeking to address this objective. The most popular 

representatives in literature are the Autoregressive Moving Average (ARMA), the (Generalized) 

Autoregressive Conditional Heteroscedasticity (ARCH/GARCH), the Stochastic Volatility (SV) and 

the Regime Switching models. 

 In this thesis, we devise a more accurate model for forecasting volatility relative to 

conventional models. The intuitive nature of our model implicates, if its assumptions hold, not only 

an increased accuracy for forecasting volatility, but also a valuable economic interpretation. A 

trading strategy with exposure to volatility is designed on the basis of our results to validate our 

model and its interpretations, and to further demonstrate its applications.  

 An extensive effort has been put into uncovering the dynamic properties of volatility and the 

findings show some characteristic properties, such as persistence and long memory (Andersen & 

Bollerslev, 1997). As a result, past values of volatility can be useful when forecasting future volatility. 

Some forecasting models include both past values of volatility and implied volatility (henceforth IV, 

a list of acronyms can be found at the beginning of the Appendix) derived from option prices 

(Busch, Christensen, & Nielsen, 2011). In a semi strong efficient market, current market prices 

should contain all available information from historical data (Fama, 1970). Hence, the known 

dynamic properties of volatility – which past values of volatility tries to capture – should already be 

subsumed in IV, assuming the semi-strong efficient market hypothesis hold. In this thesis, a 



 2 

volatility model without past values of volatility is proposed. Instead, the model is based on forward-

looking information such as IV and other risk neutral moments derived from option prices.  

 An inaccuracy of using IV in forecasting stems from the fact that IV is estimated in a risk-

neutral world (Chernov, 2007). It is not real probabilities, but risk neutral probabilities that are the 

ingredients of risk neutral valuations. Hence, option prices, which are the source of IV, are 

potentially affected by the risk aversion of the market participants and not only the future 

expectations of volatility. Therefore, in order to get a more accurate forecast of volatility, an 

adjustment for this risk premium to the IV should be made. The risk premium connecting the 

option implied variance with the true variance is entitled variance risk premium (VRP) (Carr & Wu, 

2009). To elaborate, the IV reflects the price for portfolio protection against volatility. This price 

depends on the expectations about the future volatility, in addition to a risk premium that investors 

pay to benefit from the unlimited upside and limited downside the option offers. Thus, the VRP is 

the difference between implied variance and variance, and similarly the square root of VRP is the 

difference between IV and volatility. The VRP can be thought of as the insurance premium of the 

financial markets. Since volatility, and hence option prices, is related to the probability distribution 

of the returns of the underlying, it is possible to back out these probabilities if option prices can be 

observed. Like the IV, these probabilities are distorted by the VRP. For options, attention has been 

devoted to extracting real probabilities from option-implied probabilities by studying the relation 

between the risk neutral density and physical density. The topic still remains a challenge for 

researchers and practitioners (Poon & Granger, 2003). 

 The model proposed in this study is based on a fundamentally different intuition than 

conventional volatility models: one that adjusts for the VRP (strictly speaking, the square root of the 

VRP). The intuition behind the model is that option implied information is, assuming semi-strong 

form efficiency, the best estimate for the future volatility – once the distortion related to the VRP is 

accounted for. Accordingly, we employ a modified version of the recent HAR-RV model of Corsi 

(2009). In its conventional format, the model uses past values of realized volatility aggregated over 

different time scales to forecast volatility - essentially moving averages over different lengths. In this 

way the model can capture dynamic properties of volatility such as persistence and mean reversion.  

Instead of using past values of realized volatility, we introduce the instantaneous variance 

(risk) premium (IVP) variable. The IVP variable is a proxy for the VRP, and in spirit of Corsi (2009) 

we use aggregations of this proxy over three different time scales. The three aggregations are 

essentially moving averages of the IVP variable of different lengths. We exclude past values of 

realized volatility from the model on the basis that they are not helpful in the analysis of the model 

and the variables. The intuition of the model, when excluding past values of volatility, is consistent 
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with a semi-strong form efficient market, although this is not the motivation for the exclusion. 

Strictly speaking, a model containing both IV and past values of volatility may not violate the 

efficient market view, since if the past values of volatility actually predict a time varying discount 

factor (increased risk), it may very well be consistent with an efficient market too. The reason why 

the variables are excluded is to make it easier to interpret and analyze our newly introduced IVP 

variable. To explain in further detail, remember that historical values are redundant in a risk neutral 

and semi-strong form efficient market. In such a case, including past values of realized volatility, 

which is highly correlated with IV, will only serve to bias the coefficients of the model. Distinctive 

from most volatility models, the shorter and neater model obtained by excluding past values of 

volatility has the feature of enabling valuable interpretations. Key to understanding this is seeing that 

any additional predictability beyond IV is a prediction of the VRP (since the square root of VRP is 

the difference between IV and volatility). In other words, the other explanatory variables in a 

regression model including IV should predict the VRP, assuming the coefficients are true and not 

biased. The assumption does not hold for common volatility forecasting models, as estimation of 

coefficients of the realized volatility variables interacts with the coefficient for IV, because of high 

correlation among the variables. In our proposed model, the coefficient of IV happens to be rather 

insensitive to the exclusion of the other variables in the model, and this makes interpretation easier.  

Furthermore, we test the impact of adding additional risk neutral moments to our model. 

Including the risk neutral skewness and kurtosis to the model is not really consistent with the 

efficient market view, and may actually cause some of the aforementioned problems to reoccur, 

although likely not to a severe extent. Moreover, potential discoveries on the information content of 

skewness and kurtosis may contribute to the literature, and hence there is a good reason for 

including them. 

 The IVP variable is designed to adjust for the VRP to improve the accuracy of forecasts 

based on IV. Rather than capturing the dynamic properties of past-realized volatility – which should 

already be incorporated in the IV – the purpose is to capture any systematic time variation in the 

VRP. In contrast to the use of past values of (monthly) VRP, the key innovation of the IVP variable 

is its rapid reaction to market information. In essence, the idea of the IVP variable is to be an 

instantaneous measure of the (square root of) VRP. Whereas estimating the monthly VRP requires 

one month of volatility data, the IVP variable requires only one day of volatility data. In other 

words, the IVP variable is a proxy for the VRP that is first observable in the data one month later. 

The proximity in time, between the lagged proxy of the VRP and today's IV, is favorable in the 

context of capturing the dynamic properties of the VRP, since we want to capture the premium 

component of today's IV. The effectiveness of the model boils down to whether the proposed 
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variables are able to capture the dynamics of the VRP, and thereby improve the volatility forecast by 

having predictive power over the VRP component of IV. As of today, attempts to discover the 

systematic behavior of the VRP have produced little evidence on how to predict it (Carr & Wu, 

2009; Todorov, 2010; Vilkov, 2008). Time varying risk premium has nevertheless become a well-

known concept in the equity markets. Over time, research has increasingly focused on the time 

variation of risk premium, a development prompted by persistent empirical regularities: the well-

known “puzzles” and “anomalies” can practically all be traced back to discount factor variation 

rather than problems of information incorporation (see work by Bansal & Yaron (2004) and 

Hansen, Heaton, & Li (2008), among others). By the same token, the VRP is suggested to be time 

varying, although any major systematic behavior remains largely undetected. 

 Our model, denoted the HAR-IVP-RNM model (where RNM refers to risk neutral 

moments), successfully accomplishes its purpose by showing improvement in forecast accuracy for 

both the daily, weekly and monthly horizons. Most notably, for the daily horizon, the adjusted R-

squared is over 8 % higher than the second best model. While our model is superior even on a 

standalone basis, it can also be merged with existing models and potentially improve the accuracy 

further. 

 As a final step, the interpretation of the IVP variable is being used in a trading strategy based 

on predicting the VRP. The intention is that a successful strategy will support the 

interpretation/acceptance of the model. The results show a magnificent risk adjusted 

outperformance - with more than a doubling of the Sortino ratio compared to the benchmark, 

which suggests that the IVP variable indeed can be used to predict the VRP.  

For the remainder of this study we will refer to the difference between IV and volatility also 

as the (square root of) VRP. Moreover, we name our variable Instantaneous Variance Premium 

rather than instantaneous volatility premium, even though it is the difference between volatilities. 

We do this in order emphasize that these expressions all refer to the same type of risk premium, and 

to avoid creating confusing by introducing several words for a risk premium of very similar nature, 

particularly because many readers may associate volatility risk premium with low volatility stocks. 

1.1 Outline 

We will commence this study by covering relevant areas in the literature. Most prominently, this 

involves literature on volatility, forecasting models, risk neutral moments and the VRP. Next, we go 

into further detail of the methodology applied in our analysis. A short statement of the purpose of 

the analysis institutes the section, before the procedures applied for this motive are outlined. The 

section entails one part of definitions and derivations, and one part that describes the empirical 

analysis conducted. Finally, we present the results and conclude our analysis. 
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2. Literature Review 
The volatility of asset prices is one of the most essential topics in the financial literature. 

Accordingly, there exists a vast literature on the subject. Notwithstanding the recognition and 

importance of volatility, even finance professionals have difficulties dealing with it, e.g. Goldstein & 

Taleb (2007). One common problem of volatility is the combination that volatility itself cannot be 

observed (only the realizations) and that it varies over time - the latter already indicated by 

Mandelbrot (1963) and Fama (1965). 

The following will provide a brief overview of the most important papers that are related to 

our topic. This part of the thesis is organized as follows. The first section mainly covers research on 

volatility. It summarizes the different measures of volatility, various forecasting models and also the 

predictive power of IV/risk-neutral moments on volatility. Section 2 sketches the research results on 

the VRP, whereas section 3 is mainly concerned about the existing literature on risk neutral 

moments. One external input to calculate the risk neutral moments is the risk-free rate. Since our 

approach differs from the one of traditional papers, we conclude this section with an overview of 

OIS discounting and its most important papers. 

2.1 Volatility and Forecasting 

Research on volatility has developed rapidly and experienced a new dawn with the advent of high 

frequency data. Because the true latent volatility is not known, there is an ever-growing need for an 

accurate measure, given the progression and development of complex financial instruments. 

Andersen & Bollerslev (1998) were the first to propose the so-called realized volatility as an 

alternative method of volatility estimation. A simple form of the realized volatility is calculated by 

the square root of realized variance, which is measured as the sum of intra-day squared returns. The 

choice of interval frequency of the returns is a trade-off between microstructure noise, that can arise 

e.g. through the bid-ask bounce or liquidity issues, and accuracy, which is theoretically optimized 

using the highest possible frequency. A volatility estimator considered to be robust to noise is the 

so-called realized kernel (that we apply here). The estimator is typically computed with high 

frequency return data, such as second-by-second returns (Barndorff-Nielsen, Hansen, Lunde, & 

Shephard, 2011). Hansen & Lunde (2005) show that the use of a noisy proxy, in place of the true 

volatility, can severely distort a comparison of volatility models. A thorough review about realized 

volatility can be found in the article by McAleer & Medeiros (2008).  

A particular area that has attracted recent interest is the one concerned with continuous 

volatility and jumps. It has been shown that, in theory, volatility can be decomposed into two 

components: a diffusion component and a jump component. Bipower variation was introduced by 

Barndorff-Nielsen & Shephard (2004) as a measure of the continuous or diffusion component, as it 
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is robust to the presence of jumps. More recently, an even more robust estimator has been 

developed called threshold bipower variation by Corsi, Pirino, & Renò (2010). 

2.1.1 Volatility Forecasts Models 

Various models have been adopted with the purpose of forecasting volatility. Some of the most 

prominent are the Generalized Autoregressive Conditional Heteroscedasticity models (GARCH-

models), which are extensions of the ARCH model described by Engle (1982). Bollerslev (1986) 

later extended Engle's model to GARCH. Common for volatility forecasting models is the aim to 

capture the dynamic properties of volatility. The ARCH model is based on the concept of volatility 

clustering – that volatility one period is auto-correlated with volatility in proceeding periods. 

ARCH/GARCH models incorporate this feature while also solving the problem of 

heteroscedasticity present in other traditional econometric models when modeling volatility.  

 Since the original models of Engle (1982) and Bollerslev (1986), a number of variants of the 

models have been developed. One example is the NGARCH introduced by Engle & Ng (1993), 

which incorporates the leverage effect (asymmetric volatility phenomenon). Several other types of 

models have also been proposed to model volatility, such as stochastic volatility models (Hull & 

White, 1987; Satchell & Knight, 2007; Taylor, 1986) and long memory models (Baillie, Chung, & 

Tieslau, 1996; Granger & Joyeux, 1980). The model of Heston (1993) is among the most popular 

stochastic volatility models. 

 Later, a new set of models have emerged belonging to the Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) type, which was first introduced in 1999 and published by 

Andersen, Bollerslev, Diebold, & Labys (2003). The model estimates a tri-variate long-memory 

Gaussian VAR for the logarithmic realized volatilities, and has proven useful in modeling time series 

with long memory (slower than exponential decay of deviations from mean). Oomen (2001) 

confirms this view by finding that the ARFIMA model outperforms that of conventional GARCH.  

 A more recent model for volatility forecasting, and an alternative to ARFIMA, is the 

Heterogeneous Autoregressive model of Realized Volatility (HAR-RV) of Corsi (2009). The beauty 

of the model is its simplicity, yet remarkably strong performance. In this model the long memory is 

approximated by aggregation of different time scales (daily, weekly, monthly) of past volatility. Based 

on the HAR-RV model, refined models add IV as an explanatory variable (HAR-RV-IV). To show 

the rationale behind it, a compact literature overview about the information content of IV and risk 

neutral moments follows this section.  
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2.1.2 The Information Content of Implied Volatility and Risk Neutral Moments 

Since the Black-Scholes option pricing formula was derived, IV moved to the center of attention. To 

calculate the option price via Black & Scholes (1973), the current stock price, the strike price of the 

option, the risk-free rate, the option time to maturity and the standard deviation of the return of the 

underlying asset were required. Once an option is traded, all parameters are easily observable except 

the standard deviation. Thus, one can obtain the IV by solving for the standard deviation. Merton 

(1973) generalized the mentioned model and allowed for time-varying, non-stochastic volatility. 

One of the first studies that focused on the predictive power of IV, is Latané & Rendleman 

(1976). In a simple model, where they take the weighted average of Black-Scholes call option implied 

volatilities, they discovered that this is a better predictor of future volatility than using a specific 

historical model. Canina & Figlewski (1993) challenge this view in their paper. The authors examine 

the information content of option implied volatility and discover that the option implied forecasts 

are inferior to historical forecast techniques of volatility. Fleming (1998) reaches a different 

conclusion in a subsequent study. While applying a refined methodology, Christensen & Prabhala 

(1998) confirmed the findings of Fleming (1998). Both studies find that forecasts based on IV 

outperform those based on historical volatility.  

Guo (1998) and Jorion (1995) are the first who investigate the foreign exchange market and 

find similar results. The latter reports that historical time-series models cannot cope with option 

implied volatility forecasts even if you allow calibration over the whole sample. In a related study, 

Martens & Zein (2004) analyze time-series models that use high-frequency data. They discover that 

these models sometimes outperform option-implied forecasts. Charoenwong, Jenwittayaroje, & Low 

(2009) are able to show that the predictive power of IV is irrespective of the trading venue. 

Szakmary, Ors, Kyoung Kim, & Davidson (2003) are the first – to our knowledge – who 

compare at-the-money IV to GARCH and simple moving average models in the commodity market. 

They document the superiority of at-the-money implied forecasts. In a related study, Agnolucci 

(2009) investigates a more advance set of GARCH models and compare it to the predictive power 

of at-the-money IV. Contrary, he finds that the examined time-series models provide a better 

forecast in the crude oil market. 

A milestone in the literature sketches the work of Jiang & Tian (2005). In their work, they 

propose a model that uses the model-free IV. Consequently, their model does not depend on any 

specific option-pricing model. In subsequent papers based on these findings, Frijns, Tallau, & 

Tourani-Rad (2010) and Cheng & Fung (2012) were able to show, that the model-free IV is superior 

to time series models in the stock market of Australia and Hong Kong respectively. In a 

comprehensive investigation, Taylor, Yadav, & Zhang (2010) provide an analysis of the performance 
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of ARCH, GJR, GARCH, at-the-money IV and model-free IV and report that the time-series 

models are inferior to option implied forecasts. 

Another series of papers investigate the information content of risk neutral moments. The 

work of Dennis & Mayhew (2002) can be seen as the first in this area. They mention a negative 

relation between systematic risk and risk-neutral skewness in their work. They conclude that market 

risk is reflected in the risk-neutral skewness extracted from the option prices. The notion has since 

been substantiated by Doran, Peterson, & Tarrant (2007) and Han (2007), who discover that risk-

neutral skewness has strong predictive power on the stock market. These results are confirmed by 

Rehman & Vilkov (2012) who report that risk-neutral skewness is positively related to future stock 

returns. However, Chang, Christoffersen, Jacobs, & Vainberg (2011) are the first who show that the 

risk-neutral skewness can be used to improve the predictive power of future volatility. Very recently, 

Byun & Kim (2013) proposed a novel model (HAR-RV-IV-SK) to forecast volatility. Their attempt 

takes the risk-neutral skewness into account. They discover that the risk-neutral skewness contains 

additional information, and with it, they are able to slightly improve the accuracy of forecasting 

future volatility of the S&P 500. 

 The aforementioned papers can be criticized on the grounds that they ignore the impact of 

the VRP in their empirical studies. The work of Chernov (2007) shows that the risk premium leads 

to a disparity between realized volatility and IV. He concludes that the existence of VRP drives the 

biasedness of volatility forecasts using IV. Thus, it would be reasonable to take the VRP into 

account while predicting volatility. 

2.2 Variance Risk Premium 

The difference between the implied and expected variances is called the VRP, as found in Bollerslev 

(2009).  Carr & Wu (2009) propose to use the difference between realized variance and a synthetic 

variance swap rate derived from options to quantify the premium. The VRP is related to the 

compensation for taking on variance risk. Traditional risk factors fail to explain the VRP, and the 

majority of the market VRP seems to be generated by an independent variance risk factor (Carr & 

Wu, 2009).  

 One view is that of Rosenberg & Engle (2002), Bakshi & Madan (2006), and Bollerslev, 

Gibson, & Zhou (2011), who have interpreted it as a measure of aggregate risk aversion. Another 

view is that of Bollerslev, Tauchen, & Zhou (2009) and Drechsler & Yaron (2010), who see it as a 

factor of aggregate economic uncertainty. While the interpretations of the VRP are inconclusive, 

many studies have focused on the properties and characteristics of it.  

 In the papers of Carr & Wu (2009) and Leippold, Wu, & Egloff (2007), they investigate the 

historical behavior and the pricing of the VRP and find a strong presence of the VRP for 100 
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different indexes including the S&P500 (meaning you obtain a positive return from being exposed to 

variance risk). Carr & Wu (2009) suggest that the VRP is time varying and a somewhat inconclusive 

notion that it is correlated with the variance swap rate (the level of IV). 

  Bollerslev et al. (2009) as well as Zhou (2010) find that the VRP is able to explain a 

significant fraction of the time series variation in returns of the aggregate S&P500 composite index, 

whereas a high VRP predicts high future returns and vice versa. The predictive power is strong in 

the short run, where it dominates other popular predictors like the P/E ratio, the consumption-

wealth ratio (CAY), and the default spread. Bollerslev et al. (2011) confirm these results and 

conclude that the VRP helps to predict future stock market returns.  

 Based on previous results, Vilkov (2008) studies the dynamics and cross-sectional properties 

of the VRP, whereas Drechsler & Yaron (2010) show the conditions under which the VRP displays 

significant time variation and return predictability. 

 Bollerslev, Marrone, Xu, & Zhou (2012) demonstrate that these empirical findings about the 

predictive power of the VRP cannot be explained by statistical finite sample biases. On the contrary, 

they were able to show that the VRP in stock markets in France, Germany, Japan, Switzerland and 

the U.K. have similar predictive power. 

2.2.1 Volatility Forecast using Variance Risk Premium 

Lamoureux & Lastrapes (1993) tested the semi-strong efficient-market hypothesis on IV, i.e. 

forecasts from time-series models of stock-return processes should not have any predictive power 

given the market forecast as embodied in option prices. They are able to reject the null and mention 

as one possible reason that volatility risk is priced into the IV. Despite the findings that the risk 

premium is time-varying in the stock market and that it could be a source of distortion in the 

implied forecast embedded in the option prices, the topic has not been in the center of attention for 

further academic research and this conjecture remains largely unexplored. 

 Hence, there are only a very few influential studies that examine this conjecture further. 

Poteshman (2000) uses a parametric approach to calculate the IV from the Heston (1993) model, 

which allows taking a predetermined premium into account. With his approach, he reduces the 

biasedness of IV and concludes that allowing for a risk premium is the reason for it. 

 The first to truly include the VRP in volatility forecasting were Prokopczuk & Simen (2014). 

With their non-parametric approach, they are able to improve the forecasting performance of IV in 

the commodity market. However, the model lacks in flexibility to react on different market 

environments by using a one-year average of the VRP. 
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2.3 Risk Neutral Moments 

Generally, the literature suggests different techniques to derive information about the risk-neutral 

distribution and moments. Breeden & Litzenberger (1978) and Banz & Miller (1978) show that the 

risk-neutral density is the second derivative of the option pricing function with respect to the strike 

price. An extremely valuable feature of this procedure is that it is model-free, and thus, the risk 

neutral distribution does not depend on any particular pricing model. 

The prevailing practice among researchers, cf. Hansis, Schlag, & Vilkov (2010), Neumann & 

Skiadopoulos (2013), Conrad, Dittmar, & Ghysels (2013), Byun & Kim (2013) and more, is to use 

the method of Bakshi, Kapadia, & Madan (2003) to extract the risk-neutral variance, skewness, and 

kurtosis from option prices. Their method is also based on the result of Breeden & Litzenberger 

(1978) and similarly it relies on a continuum of strikes and does not incorporate specific 

assumptions on an underlying model. The neat approach of Bakshi et al. (2003) will be the adopted 

in this study. 

Another approach to derive risk-neutral moments is to first derive the risk-neutral 

distribution and, based on these results, determine the risk-neutral moments. A lot of literature is 

available in this area. Jackwerth (2004) and Cont (1998) provide a good review on how to estimate 

the risk-neutral distribution. In general, there are two different ways to derive the risk neutral 

distribution, a parametric and a non-parametric approach.  

 Parametric methods postulate a particular form for the risk neutral density and fit the 

parameters to the observed option prices. A drawback of using this method is that the parametric 

probability distribution might not be flexible enough for matching the observed option prices. A 

pioneer in this area is Rubinstein (1994) who proposes an algorithm that constructs an implied 

binomial tree reflecting the risk-neutral density. 

Non-parametric methods do not make any assumption on the form of the risk-neutral 

density. Hence, they allow for more general functions. These approaches achieve greater flexibility at 

the cost of requiring a lot of data. Furthermore, the methods bear several problems since scaling is 

required in order for the probability distribution to sum up to 1, to be positive, and to exhibit some 

smoothness. A very thorough study is found in Figlewski (2010), who evaluates previous models, 

combines and modifies them. Thus, he offers a neat and subtle approach to extract the risk-neutral 

density from option prices. 

2.3.1 OIS – Risk-Free Rate 

The risk-free term structure of interest rates is a key input to the risk-neutral valuation of derivatives. 

It is the most important ingredient for defining the expected growth rates of asset prices in a risk-

neutral world and for determining the discount rate for expected payoffs in this world.  
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 The literature before the financial crisis in 2007 such as Ron (2000) or Boenkost & Schmidt 

(2005) was mainly focused on bootstrapping the yield curve and determining a single curve. Whereas 

in more recent papers, e.g. Mercurio (2009), Bianchetti (2010) and Fujii, Shimada, & Takahashi 

(2011) focus on the construction and application of multiple curves, as a consequence of LIBOR no 

longer being considered risk-free.  

 Hull (2014) adopts the OIS rate as a proxy for the risk-free rate in the 9th edition of his book, 

“Options, Futures and Derivatives“. In addition, he argues in Hull & White (2013) that there is no 

“perfect” risk-free rate, but that the OIS rate is the best proxy currently available. He advocates that 

OIS rates should always be used as the risk-free rate in risk neutral valuations. 

3. Data 
The core data in this study consists of daily option prices on the S&P 500 in the period 2001-2013. 

Daily closing records of the S&P 500 index is also incorporated in the dataset. S&P 500 is the most 

commonly used benchmark for the U.S. equity market, and the most popular underlying for U.S. 

equity derivatives. Public holidays that fall on weekdays were omitted from the data set, resulting in 

a full sample of 3,267 observations. For our estimations, we used the first 22 observations to 

calculate necessary variables, creating an effective forecast sample of 3245 observations. To study 

the anomalies and the impact around the financial crisis (2007-2009) on our analysis, we divide our 

data set into three different subsamples wherever it makes sense: the pre-crisis (January 1, 2001 to 

August 8, 2007), the banking crisis (August 9, 2007 to August 8, 2009), and the post-crisis (August 9, 

2009 to December 31, 2013) resulting in 1,658, 503, and 1,106 observations, respectively. 

Researchers are dating the start of the banking crisis from August 2007 (Gorton, 2009) with the 

jump of repo haircuts and the dramatic increase in the OIS-LIBOR spread. We take the latter event 

to define the start of the banking crisis and let it last for a duration of two years in order to capture 

the core of the crisis. For the out-of-sample forecast, we create a 2-year rolling estimation window 

starting from January 1, 2001 to December 31, 2002. 



 12 

 
Figure 1 The graphs above show the performance (left scale) and the daily returns (right scale) of the S&P 500. 

The blue shaded area marks the financial crisis. 

3.1 Option Data 

In our study we focus on the option prices on the S&P 500 of the Chicago Board Options 

Exchange (CBOE). Hereby, the option prices are matched to the closing time of the S&P 500. With 

synchronous closing times, we prevent potential bias in our IV, which Jorion (1995) has estimated to 

be 1.2% in a back-of-the-envelope calculation. The raw data included all types of option contracts 

on the S&P 500, for every day of the period 2001-2013. This comprises a dataset with about 5 

million rows for 17 different data points. The data set was filtered to include only the 3 first monthly 

maturities for standard index options for any given day, with information like closing price (bid and 

ask), strike price, trading day, expiration, option type (put-call) and closing price of the underlying. 

The relevant data was acquired from Market Data Express.  
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Figure 2. The graph shows the raw option prices of European options for an example day in 2011.  

3.2 Volatility Data 

We obtain the volatility data set, like realized volatility, bipower variation, and semivariance, from 

the “Realized Library” of the Oxford-Man Institute of Quantitative Finance.1 This library is based 

on high-frequency data, which the institute obtains through Reuters Data Scope Tick History. The data 

set also includes closing prices for the S&P 500. 

 
Table 1. Descriptive Statistics of the Realized Volatility (Square Root of the Realized Kernel) 

 

3.3 Risk-Free Rate Data 

LIBOR was widely regarded as a good proxy for the risk-free rate. During the banking crisis from 

2007 the LIBOR-OIS-spread2 reached its maximum with 364 BPS. The gap between the two rates 

                                                        
1 Obtained from library version 0.2, Heber, Gerd, Asger Lunde, Neil Shephard and Kevin Sheppard (2009) 
“Oxford-Man Institute's realized library”, Oxford-Man Institute, University of Oxford. 
2 The LIBOR-OIS-spread determines the difference between the 3M LIBOR rate and the Overnight Interest 
Swap rate.  
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was seen negligible before the credit crunch, but became highly relevant due to their enormous 

influence on the pricing of derivatives after the financial crisis. Even so, in option pricing, the 

interest rate is still devoted little attention. While the interest rate has only a small impact on option 

prices, even tiny discrepancies in the price may transform into larger changes in IV. The choice of 

risk-free rate may possibly influence the analysis of the VRP.  

 Hence, as a proxy for the risk-free rate, we use a combination between the London 

Interbank Offered Rate (LIBOR) and the Overnight Indexed Swap (OIS). Before the banking crisis 

(2007-2009), it was best practice to discount cash flows with the 3M-LIBOR-rate, since the liquidity 

of it was high, and the risk was perceived as low that an AA-rated financial institution would default 

on a 3M-LIBOR loan.  

 
Figure 3 The graph shows a generic discount curve for the 3 months tenor. The area on the left indicates the 

use of LIBOR, the area on the right the use of OIS. 

 In this study the LIBOR is used until August 9, 2007, which is the day when the spread 

between the LIBOR and OIS no longer can be seen as negligible (see Figure 20 in the Appendix). 

Thus, from this point in time until December 31, 2013, we use the OIS as new proxy for the risk-

free rate. OIS are traded with maturities starting at 1 week to up to 30 years. We use the federal 

funds rate as our starting point to conclude the OIS discount curve. To create a continuous yield 

curve, the cubic-spline method for LIBOR and OIS is applied. Hence, we are able to interpolate 

between the different tenors. The source for our obtained data is the financial data provider 

Bloomberg. 
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4. Methodology 
In the following, the methodology applied to analyze the HAR-IVP-RNM volatility forecasting 

model will be explained. The HAR-IVP-RNM model, alternatively spelled HAR-IVP-IV-SK-KU, 

consists of forward-looking risk neutral moments (IV, skewness (SK), kurtosis (KU)) and the IVP 

variable aggregated over three time scales. The latter variables that are intended to increase the 

accuracy by adjusting for the bias in IV caused by the imbedded risk premium. The emphasis of the 

study lies within two main areas of interest: 

(1) The accuracy of the forecasting model 

(2) The components of the forecasting model and their interpretations 

Where the components of the model can be differentiated between risk neutral moments (RNM) 

and variables intended to adjust for bias in the IV (IVP component). With regards to the risk neutral 

moments, it is mainly the improvement in forecast accuracy by using the information content of 

kurtosis and skewness that will be assessed. For the IVP component, the study will underscore their 

use as proxy and their abilities to predict the VRP. The main emphasize of the study will lie on IVP, 

and the insight it reveals about the VRP. 

 The first part of the methodology covers the calculation of the variables used in the 

forecasting models. Thus, we will show the methodology used to derive the risk neutral moments in 

addition to various volatility measures. Then, the methodology of the HAR-RV model will be 

described, before we later present the necessary methodology to fully grasp the HAR-IVP-RNM 

model. After this is done, the applied methodology to test the two aforementioned areas of interest 

is covered. The various forecasts performed in the study are presented. The forecasts aid both in 

assessing the accuracy and in analyzing the components in the model – albeit the latter in an 

insufficient way. Therefore, as a final step, a trading strategy (decision-rule) is constructed to further 

investigate the IVP component, to test its predictive abilities of the VRP and to uncover potential 

dynamics of the VRP. 

4.1 Risk Neutral Moments 

The procedure outlined in Bakshi et al. (2003) is used to derive the risk neutral moments. As 

previously stated, a valuable feature is that the procedure is model-free. This means that the method 

does not depend on any particular valuation model. The procedure requires a continuum of option 

prices. 

 Since the procedure to extract the risk neutral moments are not straightforward, we have to 

deal with several issues along the way. One, among many, is that there is no continuum of option 

prices across strikes. To obtain such a continuum interpolation is required. Moreover, in this thesis, 

a similar concept like the one to calculate VIX is adopted in order to have prices that always 
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correspond to a maturity of 30 days. In other words, the process consists of (1) interpolating and 

extrapolating the option prices in the moneyness dimension, and (2) interpolating prices in the 

maturity dimension. The method applied in this study is more sophisticated than in standard papers 

deriving risk neutral moments, concerning the calculating of the 30 days average measure. Most 

papers estimate a 30 days average of the risk neutral moments as a final step. This is done by 

calculating the moments for different maturities and then interpolating them. Constructing prices 

that correspond to 30 days maturity, which is done here, is unprecedented and hence a departure 

from previous literature. This continuum of prices corresponding to 30 days maturity has useful 

properties for many purposes – extracting the corresponding 30 days risk neutral density is one of 

them. In short, the method can be considered more general in terms of applicability, and arguably 

also more accurate. 

4.1.1 Moneyness Dimension: Constructing a Continuum of Strikes 

The procedure outlined in the following is conducted for options of the three nearest monthly 

maturities on the S&P 500. In essence, the procedure deals with how to create a (close to) 

continuous range of prices. This is accomplished through interpolating in the range where market 

data exists, and extrapolating outside the range of available data. Noisy market data in the available 

set of traded contracts are a pervasive problem that must be dealt with before interpolating. The 

option prices are calculated as the mid-price between bid and ask prices for each strike. To avoid 

irregularities and inaccuracies, contracts with bid prices below $ 0.5 are excluded, as the spread in 

these cases become extreme relative to the price. Furthermore, since put-call parity does not seem to 

hold for strikes in the money or out of the money, only out of the money options are used, as these 

are the most liquid (and also the input required in the calculation of the moments). If the number of 

available strikes is less than 10, the maturity is dropped out of the calculation. However, by virtue of 

the maturity exclusion criteria (see maturity dimension below) and using data from S&P 500 (the 

most liquid equity option market) the number of available strikes is in general satisfying. 

 Interpolating in the moneyness dimension by interpolating option prices directly has proven 

unfruitful, as it tends to give extreme, even negative, implied volatilities. Slight irregularities in prices 

may transform into abnormal volatilities, in which case signifies that the price reflects an unrealistic 

view. Therefore, using the Black-Scholes formula to smooth and interpolate option values has 

become a common practice. The IV can be backed out of Black-Scholes since all other inputs are 

known. By using the Black & Scholes (1973) equation: 
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𝜕𝑉
𝜕𝑡 +

1
2𝜎

ଶ𝑆ଶ
𝜕ଶ

𝜕𝑆ଶ + 𝑟𝑆
𝜕𝑉
𝜕𝑆 − 𝑟𝑉 = 0                                                                    (1) 

we obtain the Black & Scholes (1973) formula for European Call options 

                                                                    𝐶(𝑆, 𝑡) = 𝑁(𝑑ଵ)𝑆 − 𝑁(𝑑ଶ)𝐾𝑒ି௥(்ି௧)                                                                  (2) 

where 𝑑ଵand 𝑑ଶ is specified as: 

                                                      𝑑ଵ =
1

𝜎√𝑇 − 𝑡
ቈ𝑙𝑛 ൬

𝑆
𝐾൰ + ቆ𝑟 +

𝜎ଶ

2 ቇ (𝑇 − 𝑡)቉                                                        (3) 

                  𝑑ଶ =
1

𝜎√𝑇 − 𝑡
ቈ𝑙𝑛 ൬

𝑆
𝐾൰ + ቆ𝑟 −

𝜎ଶ

2 ቇ (𝑇 − 𝑡)቉ = 𝑑ଵ − 𝜎√𝑇 − 𝑡                              (4) 

and by obeying the rules of the Put-Call parity we receive 

𝑃(𝑆, 𝑡) =   𝐾𝑒ି௥(்ି௧) − 𝑆 + 𝐶(𝑆, 𝑡) = 𝑁(−𝑑ଶ)𝐾𝑒ି௥(்ି௧) − 𝑁(−𝑑ଵ)𝑆                    (5) 

For both, as above: 

o N(•) is the cumulative distribution function of the standard normal distribution 

o T-t is the time to maturity 

o S is the spot price of the underlying asset 

o K is the strike price 

o r is the risk-free rate 

o 𝜎 is the volatility of returns of the underlying asset. 

Further details on the Black-Scholes can be found in the original paper. Paradoxically, the idea 

contradicts one of the assumptions of the model of Black & Scholes (1973) (constant volatility) and 

is known as "practitioners Black-Scholes". The idea is to calculate an IV for each strike, 

corresponding to each option price. This method yields a volatility smile, which for equity options 

commonly is referred to as a "smirk" because of the skewed smile. Shimko (1993) was the first to 

propose the idea of converting prices into volatility space before interpolating, and then converting 

the interpolated implied volatilities back into option prices. Interestingly, Black-Scholes is merely 

used to convert between price space and volatility space for interpolating purposes; the overall 

procedure is not dependent on the correctness of Black-Scholes. 
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Figure 4 The plot illustrates the implied volatilities of maturity 2 after using Black-Scholes to convert the 

option prices. Prices corresponding to negative implied volatilities – typically far ITM options – are 

automatically excluded. 

 Various interpolation techniques have been used in the literature. Cubic spline, which 

connects a line through all points in a price-volatility space by estimating a cubic polynomial 

between every point, has been widely used. Bliss & Panigirtzoglou (2004) shows that a smoothing 

spline is successful for the purpose of interpolating the smile, since it is more robust to noise in the 

data. In this thesis a smoothing spline is used. In essence, a smoothing spline is a cubic spline with 

the addition of a smoothing parameter, which controls a tradeoff between deviating from 

observations and the smoothness of the curve. This parameter may be adjusted to achieve the 

appropriate level of smoothing. At this stage of the procedure, it is desirable to keep the noise 

instead of smoothing it out. Hence, the penalizing parameter is set with very limited smoothing, only 

to the extent that extreme outliers - which are obvious errors in the data - will not adversely effect 

the interpolation. 

 Before the interpolation is performed a small adjustment is made. To get a more smooth 

transition between put and calls in the volatility smile, a weighting of put and call prices is done for a 

small range around ATM. Before interpolating, the strikes are converted to a standardized measure 

(moneyness, ௄
ௌ
) in order enable comparison of data across maturities and time. 

 Once the interpolation is completed, the next step is to deal with the ends of the smile where 

no market data exists. This corresponds to the tails of the RND. Again, various approaches have 

been applied in the literature. Carr and Wu (2009) use constant volatility as extrapolation. This gives 

a smile, which yields lognormal tails of the RND. Considering the empirical evidence of fat tails, this 

is unlikely to be a satisfactory approximation also for the RND if the tails are of importance 
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(Figlewski, 2010). Bliss & Panigirtzoglou (2004) employ a linear extrapolation outside the range of 

the available strikes, thus achieving a fatter tail of the corresponding RND. Since the main purpose 

of this exercise is to get inputs for forecasting, it is desirable to get theoretically precise risk neutral 

moments. 

 The idea behind the extrapolation technique applied in this thesis is making a small 

adjustment to the linear extrapolation used by Bliss & Panigirtzoglou (2004) in order to get an 

extrapolated part that is slightly more conservative, but still capturing the shape of the market data. 

In addition to the linear extrapolated component, the idea is to add a component that essentially 

extends the smile by letting the first and second derivative of the smile continue the trend set forth 

by the tradable strikes in the ends of the smile. This was attempted by estimating a second-degree 

polynomial from traded strikes near the end point, which was connected at the end point of the 

smile. The final extrapolated curve was a weighted average of the linear line, the fitted second-degree 

polynomial and a non-linear curve designed to capture the convexity of the whole smile. In practice, 

various constraints and measures needed to be applied to avoid issues with the extrapolation 

technique. The weights in the non-linear curves were set somewhat conservative for the same 

purpose. Extreme outliers were excluded from the estimation of the extrapolation curves. 

Constraints were set so that the extrapolation would not significantly overestimate of underestimate 

the IV. For example, constraints prevented the endpoints of the smile to take too extreme values 

relative to the end point of the smile calculated from market data. The refinement of the 

extrapolation in order to obtain satisfying smiles is just as much a work of art as science. The 

method proved robust enough to yield nicely shaped tails of the RND for all days in our sample. 

Similar to other papers, discrete strikes with increments of 0.001 moneyness were used to calculate 

1401 strikes as an approximation for a continuum of strikes. 
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Figure 5. The plot shows the smile of maturity 2 after the interpolation (light blue area) and extrapolation 

(blue area) procedure are completed 

4.1.2 Maturity Dimension: Constructing the 30-Days Smile 

The smiles from the three nearest monthly maturities are used in order to obtain a 30 days measure. 

If the nearest maturity is below 10 days it is excluded to avoid unwanted effects from market 

microstructure of soon to expire options, a common practice among researchers. Similarly, 

maturities of longer than 120 days are excluded on the basis that interpolating with maturities far 

beyond 30 days has low validity. 

 Resembling the methodology of VIX, a linear interpolation of variances is conducted across 

maturities. Time scaling of volatility linearly in variance only holds when prices follow a Geometric 

Brownian motion, which implies that prices are log normally distributed and returns are normally 

distributed (Shreve 2004). However, the inaccuracy of interpolating between two values where the 

true value presumably lies in between is limited. Instead of only interpolating the final risk neutral 

moments, we interpolate the variance for each moneyness. By estimating values for each moneyness, 

rather than performing the interpolation at an aggregated level, ensures that the non-normality is 

better accommodated for, as the precision across the whole range of strikes is preserved. If anything, 

this should lead to increased accuracy of the estimated 30 days risk neutral moments, as the order of 

interpolation presumably matters (just like: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(4ଶ + 8ଶ) ≠   𝑎𝑣𝑒𝑟𝑎𝑔𝑒  (4 + 6)ଶ  ) . 

Additionally, the linear interpolation of skewness and kurtosis that would otherwise have to be 

conducted might not be accurate. Furthermore, obtaining 30 days prices makes it possible to check 

whether the interpolated values corresponds to densities with abrupt changes and large negative 

sections etc. The weights in the variances are found in the following way:  
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𝜔ଵ,ଶ =
ଷ଴ି మ்

భ்ି మ்
      𝜔ଶ,ଷ =

ଷ଴ି య்

మ்ି య்
 

Where 𝑇ଵ  is time to expiration of the first maturity, 𝜔ଵ,ଶ  is the weight in maturity 1 (the first 

maturity) and (1 − 𝜔ଵ,ଶ)  is the weight in maturity 2, when only these two maturities are used in the 

calculation of the 30 days average. If the nearest maturity is over 30 days, the later maturity will have 

negative weights. With three smiles available we use all the smiles in the calculation, instead of only 

two (like VIX). A particular weighting method is used with the purpose of smoothing out the 

transition between the maturities used in the calculation. In the VIX calculation, where this is not 

the case, abrupt changes in the values may occur when the nearest maturity is dropped from the 

calculation in favor of the longer maturity. The idea applied here is simply adding an additional 

weighting, transition weight (𝜓), of the original weights that smoothes the transition between 𝜔ଵ,ଶ 

and 𝜔ଶ,ଷ: 

                              𝜓 = ൬
(𝑇ଵ − 10)1.25

30 ൰
଴.ଶହ

                                                                              (6) 

                              𝜔ଵ = 𝜔ଵ,ଶ𝜓                                                                                                                                  (7) 

                              𝜔ଶ = (1 − 𝜔ଵ,ଶ)𝜓 + 𝜔ଶ,ଷ(1 − 𝜓)                                                  (8) 

                              𝜔ଷ = (1 − 𝜔ଶ,ଷ)(1 − 𝜓)                                                                                  (9) 

                              𝜔ଵ + 𝜔ଶ + 𝜔ଷ = 1                                                                                                  (10) 

Where 𝜔ଵ is the weight in maturity 1 relative to total weight, and 𝜓 is the weight in 𝜔ଵ,ଶ and (1 −

𝜓) is the weight in 𝜔ଶ,ଷ. 

 
(Figure 6. See description on next page.) 
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Figure 6. Top left: smoothed weighting vs non-smoothed weighting by showing 𝝍 - the proportion of weight 

in 𝝎𝟏,𝟐. Top right: shows the weights in the calculation of 30 days average using maturity 1 and 2, and using 

maturity 2 and 3. Bottom left: shows the weight in using the two first maturities in the calculation, vs using the 

two last maturities. Bottom right: shows the final weights in the three maturities 

Once the 30 days volatility is obtained, a smoothing spline is applied in order to smooth out the 

smile slightly. The intention is to deal with noisy or improper values – not all mid-prices are 

necessary reflecting a tradable price or credible value. A side effect is a neater theoretical smile that 

converts to a more nicely shaped RND. In general, we do not want one or two outliers to have too 

much effect on the estimation of the smile and thus risk neutral moments. Since we do not know 

the magnitude of the impact on the risk neutral skewness and kurtosis when having a smile that 

corresponds to an erratic and abnormal RND, it can be seen as a sanity check to ensure that the 

RND looks somewhat realistic. The smoothing is done as a final step in order to keep as much 

information as possible from all the three smiles. Some smoothing will naturally happen, without 

information loss, in the weighting process. Performing the smoothing in the final step will, however, 

limit the impact of smoothing when it comes to loss of information content. 

 
Figure 7. The volatility smile above corresponds to 30 days maturity, found by interpolating all the smiles 

across maturity. 

In the end the implied volatilities are converted back into prices by using Black-Scholes. The implied 

volatilities are converted to both put and call prices, where in the end only the OTM prices are being 

used. 
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Figure 8. The plot shows the obtained call prices from converting the 30 days implied volatilities. Put prices 

were obtained in similar fashion.  

The chain of 1401 option prices is used to derive the risk neutral moments and the RND. Further 

explanation of the calculation of the risk neutral moments and a derivation of the RND can be 

found in Appendix A and B.  

4.2 Volatility Measures 

As a measure of realized variance we use the realized kernel, which is more accurate than the simple 

realized variance using the squared intraday returns. For doing so, we follow the approach of 

Shephard & Sheppard (2010). The analysis is based on daily financial returns 

𝑟ଵ, 𝑟ଶ, 𝑟ଷ, … , 𝑟  

and its corresponding sequence of daily realized measures denoted as 𝑅𝑀௧ 

𝑅𝑀ଵ, 𝑅𝑀ଶ, 𝑅𝑀ଷ,… , 𝑅𝑀் 

where realized measures are theoretically sound high frequency, nonparametric based estimators of 

the variation of an asset during the times at which this asset is traded frequently on an exchange. 

Realized measures have the favorable property that it ignores the variation of prices overnight. 

Furthermore it may neglect the high variation in the beginning of the trading day when recorded 

prices comprise errors.3 

Realized kernel (Barndorff-Nielsen, Hansen, Lunde, & Shephard, 2008) is used as an 

estimator for the realized variance in combination with a Parzen weight function where the 

                                                        
3 For more detailed information about the background of realized measures see Andersen, Bollerslev, & 
Diebold (2010) and Barndorff-Nielsen & Shephard, (2005) 
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bandwidth choice of H follows the recommendation of Barndorff-Nielsen, Hansen, Lunde, & 

Shephard (2009). 

                                  𝑅𝑀௧ =    ෍ 𝑘 ൬
ℎ

𝐻 + 1൰ 𝛾௛
ு

௛ୀିு

                                  (11) 

                                          𝛾௛ = ෍ 𝑥௝,௧𝑥௝ି|௛|,௧
௡

௝ୀ|௛|ାଵ

                                          (12) 

where k(x) is the Parzen kernel function 

𝑘(𝑥) =

⎩
⎪
⎨

⎪
⎧1 − 6𝑥ଶ + 6𝑥ଷ, 0 ≤ 𝑥 ≤

1
2

2(1 − 𝑥)ଷ,
1
2 ≤ 𝑥 ≤ 1

0,                                    𝑥 > 0

                  (13) 

An important property of this realized kernel is that it cannot be negative. For clarity and simplicity, 

we refer to the realized kernel when we talk about realized variance and realized volatility. 

Other measures we make use of in our analysis are realized semivariance and bipower 

variation. Contrary to the realized variance, semivariance is entirely based on downward moves using 

high frequency data. Bipower variation is a model free estimator of integrated variance in stochastic 

volatility models and is robust to the presence of jumps (Barndorff-Nielsen & Shephard, 2004). To 

illustrate the concept of integrated variance, suppose a price process 𝑃௧ = 𝑒𝑥𝑝(𝑝௧) is given by: 

                                                𝑝௧ = 𝑝଴ + න𝜎௦𝑑𝐵௦

௧

଴

                                                (14) 

where 𝐵௦ is a standard (s) Brownian motion. When 𝜎௦ follows a continuous process, the integrated 

variance is given by: 

                𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = න𝜎௦ଶ𝑑𝑠
௧

଴

                        (15) 

and hence the name integrated variance.  

 Bipower variation is calculated as the products of powers of absolute returns. Henceforth, 

we will refer to bipower variation and semivariance as the square root of the respective measures 

(i.e. volatilities). The formulas used to estimate the realized bipower variation and realized 

semivariance are provided in the Appendix. 
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4.3 The HAR-RV Model  

The forecasting models applied belong to the type Heterogeneous Autoregressive (HAR) model of 

Corsi (2009). Henceforth, we will invent names to the models for ease of reference, rather than 

using the normal acronyms (stated in the parenthesis). 

The standard version, HAR-RV takes the shape of a simple multiple regression model: 

Conventional Model (HAR-RV) 

𝑅𝑉௧,௧ା௛ = 𝛽଴ + 𝛽ோ௏஽ 𝑅𝑉௧஽ + 𝛽ோ௏ௐ 𝑅𝑉௧ௐ + 𝛽ோ௏ெ 𝑅𝑉௧ெ + 𝜀௧,௧ା௛ 

Where  𝑅𝑉௧஽ is the RV measured from day t-1 to t (𝑅𝑉௧ିଵ,௧). The variables 𝑅𝑉௧ௐ and 𝑅𝑉௧ெ are the 

average daily RV for the past 5 days and 22 days respectively. A list of definitions can be found in 

the Appendix. 𝑅𝑉௧,௧ା௛ is the average daily RV over time t to t+h, where h is the forecast horizon. 

The current time, t=0, may be thought of as the time after closing on the given day. Hence, 𝑅𝑉௧ିଵ,௧ 

is the RV measured earlier the same day. IV at t=0 is based on closing prices on the given day. 

Hence, it essentially succeeds the RV. Three horizons are being forecasted: daily, weekly and 

monthly. In spite of absence of true long-memory properties, the HAR-RV model successfully 

achieves the purpose of reproducing the main empirical features of financial returns, like long 

memory, fat tails, and self-similarity, as shown by Corsi (2009). This is done through the additive 

cascades of past values of realized volatility. The idea is that market participants are concerned with 

different time horizons. 

 Disregarding our own model, we will work with two different versions of the HAR-RV 

model in the forecasting. The first is the one mentioned above, and the second is an extension.  

Extended Model (HAR-RV-IV) 

𝑅𝑉௧,௧ା௛ = 𝛽଴ + 𝛽ோ௏஽ 𝑅𝑉௧஽ + 𝛽ோ௏ௐ 𝑅𝑉௧ௐ + 𝛽ோ௏ெ 𝑅𝑉௧ெ + 𝛽ூ௏𝐼𝑉௧ + 𝜀௧,௧ା௛ 

The model is the one proposed by Busch et al. (2011) and has included IV as a variable with the 

purpose of improving forecast accuracy.  

4.4 The Variance Risk Premium 

A definition of the VRP is necessary before delving into the proposed model. Conceptually, the 

VRP may be thought of in spirit of Carr & Wu (2009) as: 

                            𝑉𝑅𝑃 = 𝜎ூ௠௣௟௜௘ௗ
ଶ − 𝜎௥௘௔௟௜௭௘ௗଶ                                     (16) 

where the horizon of implied component of the variances should correspond to the horizon of the 

realized component. The VRP is often defined as the difference of the monthly IV and the monthly 
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RV4. Horizons significantly shorter or longer will typically suffer from less available market data 

when calculating IV. Nevertheless, from a theoretical perspective it would make sense to refer to 

VRP as the difference between the implied variance and realized variance for any horizon, as long as 

both components are properly matched in time dimension. For calculating the VRP, we will use a 

specification where the implied component is the monthly model free implied variance, and the 

realized component is the average daily squared RV. 

 Since we are using 30 days IV, the VRP can be quantified as follows:5 

                                𝑉𝑅𝑃௧ = 𝐼𝑉௧ିଶଷଶ − 𝑅𝑉௧ିଶଶ,௧ଶ                                   (17) 

where 𝑅𝑉௧ିଶଶ,௧ଶ  is the average squared daily realized volatility of the past month and 𝐼𝑉௧ିଶଷଶ  is the 

square of the implied volatility 23 trading days ago (remember that the IVs are measured at closing 

time, so that the IV 23 days ago is the most recent IV preceding the last month's realized volatility. 

One take on the VRP is that the aforementioned definition is only a measure of it, while in fact the 

latent VRP is the difference between the implied variance and the expected variance, where the latter 

is in line with Bollerslev (2009). On average, the expected variance and realized variance can be 

assumed to be equal. However, taking the view that the VRP is the premium the market is willing to 

pay in excess of the expectations, leads to the result that our measure of VRP is subject to noise (as 

the realizations and expectations are only equal on average). Hence, to get an estimate of the VRP 

robust to noise, a long horizon should be used. This poses a problem in our context, because in 

order to get a long horizon, market data from far back in time must be used. 

 It has previously been indicated that there is a delay in how quickly the VRP reacts to new 

market data. In words, the above definition is saying that the latest VRP that can be calculated today 

at time t, is the difference between the squared IV volatility one month ago and the squared average 

RV from 22 trading days ago until today. This may not seem slow in the sense that new values of 

RV are incorporated immediately. The problem is that the value of the IV is always about a month 

old, which in turn means the prevailing risk premium estimated at that time reflects the price 

investors were willing to pay one month ago. What we are interested in is the current VRP, and 

hence the more recent VRP, the better. The purpose of the IVP variable is to find a way around this 

issue and hence improve predictability. 

                                                        
4 There exist definitions of the VRP with small differences in the literature, mostly due to how the realized 
component is calculated 
5 Carr & Wu (2009), among others, define the VRP the other way around, by deducting the implied variance 
from the realized variance. However, this yields the somewhat counterintuitive result that a negative premium 
gives a positive return for taking on variance risk.  



 27 

4.5 The Instantaneous Variance Premium (IVP) Variable 

We define the IVP variable as the following: 

                                          𝐼𝑉𝑃௥ = 𝐼𝑉௧ିଵ − 𝑅𝑉௧ିଵ,௧                                          (18) 

The IVP variable is thus the difference between the IV one day and the RV the subsequent trading 

day, and not the next 22 trading days. Using the RV of only one day may be seen as a proxy for the 

expected variance of the remaining 21 days, in order to approximate the VRP. One way to view that 

the current RV is a proxy for the expected variance is that shocks to volatility are known to be 

persistent, and beyond that the future RV is rather unpredictable. If the approximation is successful, 

we believe that the IVP variable will be more effective in predicting the VRP than the monthly VRP 

itself. This is because the IVP variable is essentially a proxy for the previous day VRP, and not the 

one last month, i.e. it captures the risk component of yesterday's IV. After all, we are interested in 

how the current risk is priced. Instead of IV୲ିଵ one could potentially use IV୲, which is a more recent 

value, and arguably reflecting more contemporaneous variables. However, considering that IV 

reflects the future, it makes sense to use a subsequent RV rather than a RV that has already passed at 

the time of estimate of the IV.  Furthermore, our specification ensures that the information from 

the IVP variable can be easily used in time to trade on today's option prices. Technically speaking, 

when using the closing value of today's IV, it is no longer possible to trade the prices that this IV 

reflects. However, with intra day data of IV one could obtain contemporaneous variables and a 

more instantaneous measure than we use here. One could possibly argue, that if the current RV is a 

good proxy for the expected variance, that the variant of using contemporaneous returns better 

reflects the VRP than the aforementioned quantification of VRP in section 4.4 (because of the noise 

in the estimation). That is, if one takes the view that the latent VRP is the difference between the 

implied variance and the expected variance. 

 In other words, one way to view IVP variable is that the daily RV is a proxy for the monthly 

RV. Another way to view the IVP variable is that it is closely linked to the daily VRP. This is the 

case if the monthly IV and the daily IV is closely connected. The link to the daily VRP can be 

detected by substituting the monthly IV with the daily IV in the IVP variable, where you would then 

obtain a formula for quantifying the daily VRP. Hence, one alternative to using the IVP variable 

could possibly be to use IV with one-day horizon. These two views on the IVP variable are 

intertwined; if the first view has merits, then the short-term IV and monthly IV should logically be 

highly correlated. 

 Similar to the three different variables of RV, we construct three variables with the same 

aggregation technique of past values, but of IVP rather than RV. More specifically, 𝐼𝑉𝑃௧஽  is the 

difference between 𝐼𝑉௧ିଵ and 𝑅𝑉௧ିଵ,௧, while the weekly (𝐼𝑉𝑃௧ௐ) and monthly (𝐼𝑉𝑃௧ெ) variables are 
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aggregations or moving averages like earlier. More details can be found in the Appendix. For 

simplicity and ease of reference, the three moving averages of the IVP variables are denoted the 

Bermuda6 variables, when they are jointly referred to.  

4.6 The HAR-IVP-RNM Model 

The HAR-IVP-RNM model is based on the concept of the HAR-RV model in terms of using 

additive cascades, or moving averages, of past values. However, the additive cascades of RV are 

substituted with cascades of IVP. Hence, the autoregressive terms are not of the independent 

variable.  

Bermuda Model (HAR-IVP-IV) 

𝑅𝑉௧,௧ା௛ = 𝛽଴ + 𝛽ூ௏௉஽ 𝐼𝑉𝑃௧஽ + 𝛽ூ௏௉ௐ 𝐼𝑉𝑃௧ௐ + 𝛽ூ௏௉ெ 𝐼𝑉𝑃௧ெ + 𝛽ூ௏𝐼𝑉௧ + 𝜀௧,௧ା௛ 

Where 𝐼𝑉𝑃௧ௐ  and 𝐼𝑉𝑃௧ெ  is weekly and monthly moving averages like earlier. The Bermuda variables 

are thus trying to capture the dynamics of the VRP by being daily, weekly and monthly moving 

averages of the IVP variable. In order to adjust for the VRP in IV, the three variables must be able 

to estimate the VRP component of today's (the current) IV. 

4.7 Forecasting 

Every forecast is always conducted for all three forecast horizons. All regressions are estimated with 

ordinary least squares (OLS) and Newey & West (1987) standard errors with 5, 10 and 44 lags for 

the daily, weekly and monthly forecast respectively. The lag lengths are chosen on the basis of the 

recommendations of Andersen, Bollerslev, & Diebold (2007). 

 First, we run the following model with only IV as explanatory variable: 

𝑅𝑉௧,௧ା௛ = 𝛽଴ + 𝛽ூ௏𝐼𝑉௧ + 𝜀௧,௧ା௛ 

Next, the impact of adding risk neutral skewness and kurtosis is assessed. In total, we run three 

different regressions for the Extended model and Bermuda model. Then, we refine the models and 

construct: 

Extended* Model (HAR-RV-RNM) 

𝑅𝑉௧,௧ା௛ = 𝛽଴ + 𝛽ோ௏஽ 𝑅𝑉௧஽ + 𝛽ோ௏ௐ 𝑅𝑉௧ௐ + 𝛽ோ௏ெ 𝑅𝑉௧ெ + 𝛽ூ௏𝐼𝑉௧ + 𝛽ௌ௄𝑆𝐾 + 𝛽௄௎𝐾𝑈௧ + 𝜀௧,௧ା௛ 

Bermuda* Model (HAR-IVP-RNM) 

𝑅𝑉௧,௧ା௛ = 𝛽଴ + 𝛽ூ௏௉஽ 𝐼𝑉𝑃௧஽ + 𝛽ூ௏௉ௐ 𝐼𝑉𝑃௧ௐ + 𝛽ூ௏௉ெ 𝐼𝑉𝑃௧ெ + 𝛽ூ௏𝐼𝑉௧ + 𝛽ௌ௄𝑆𝐾 + 𝛽௄௎𝐾𝑈௧ + 𝜀௧,௧ା௛ 

                                                        
6 Bermuda is commonly associated with the Bermuda Triangle – an area where the magnetic field distorts the 
compass. Hence, adjustments must be made when using a compass. Similarly, our model acknowledges the 
necessity of adjusting for the distortion in IV (caused by the VRP). Distortion and triangle should be easily 
associated with three variables which purpose is to correct a distortion. 
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Since the forecasting mainly focus on a comparison between the performance of the Extended model 

and the Bermuda model, only these two models are refined. However, the Conventional HAR-RV is 

sometimes included by way of illustration, but never with risk neutral moments as explanatory 

variables. 

 Next, the models are evaluated in-sample. The three models that are run for all remaining in-

sample regressions are the Coventional, Extended* and Bermuda* model. We run regressions for full-

sample and the three subsamples. 

 Third, the out-of-sample performance of the Extended* and Bermuda are evaluated. For the 

out-of-sample forecasting the models are reinitiated using the first 500 observations representing 

two years of data. A rolling window of length 500 observations is used to estimate the coefficients. 

The forecasting performance are evaluated using two different loss functions as criteria measures: 

                                        𝑀𝑆𝐸 =
1
𝑁෍൫𝑅𝑉෢௧,௧ା௛

ଶ − 𝑅𝑉௧,௧ା௛ଶ ൯ଶ
௡

௧ୀଵ

                                                  (20) 

                                  𝑄𝐿𝐼𝐾𝐸 =
1
𝑁෍ቆ𝑙𝑜𝑔(𝑅𝑉௧,௧ା௛ଶ ) +

𝑅𝑉෢௧,௧ା௛
ଶ

𝑅𝑉௧,௧ା௛ଶ ቇ
௡

௧ୀଵ

                          (21) 

According to Patton (2011), the applied loss functions are robust to noise in the volatility proxy. 

Variance, instead of volatility, is commonly being used in the loss functions with the rationale that 

the conditional variance is the one of interest. The difference arising from using variance is that the 

loss function will penalize overestimations slightly more than underestimations, as compared to 

using volatility.  

 Next, in order to further assess the risk neutral moments and the Bermuda variables, we 

repeat the in-sample procedure with semivariance, bipower and their difference to realized volatility. 

 In the end, regressions are run to uncover the predictability of the Bermuda variables on the 

VRP. Four in-sample regressions are run, one with all three IVP variables as independent variables, 

and three single regressions with each variable. The dependent variable is the square of the VRP. 

𝐼𝑉௧ − 𝑅𝑉௧,௧ାଶଶ = 𝛽଴ + 𝛽ூ௏௉஽ 𝐼𝑉𝑃௧஽ + 𝛽ூ௏௉ௐ 𝐼𝑉𝑃௧ௐ + 𝛽ூ௏௉ெ 𝐼𝑉𝑃௧ெ + 𝜀௧,௧ା௛ 

There are however shortcomings of testing the predictability this way; the economic significance of 

the results are difficult to determine.  

 A perhaps intuitive approach to test the underlying intuition of the Bermuda model would 

be to include the past values of RV, and then see whether the Bermuda variables drive them out. 

Considering the fact that models in previous literature commonly includes both RV and IV, it could 

make sense to find support for excluding them. Unfortunately, there are challenges with this 
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seemingly simple analysis. Firstly, a forecast improvement by adding RV variables to the Bermuda 

model is not necessarily evidence that the market is inefficient or that the Bermuda variables fail to 

adjust for the VRP. This is because the forecast improvement, at least for the daily and weekly 

horizon, could be unrelated to the VRP. Since we are using IV of monthly horizon it is possible that 

the forecast improvement is an adjustment of the unsynchronized horizons between the IV and the 

forecast, and hence is unrelated to the VRP. Secondly, even if there is only a very limited forecast 

improvement, the RV variables will tend to stay significant because of the high correlation between 

IV and the RV. Hence, adding the RV variables will cause the significance of IV to drop, while the 

RV variables may still be significant, even without any forecast improvement of note. Lastly, we are 

mainly concerned with investigating a way to adjust for the VRP component (by using the Bermuda 

variables). As previously mentioned, adding many additional variables to the model would not help 

in this regard, because of the increased difficulties in interpreting the results. Hence, since the main 

purpose is not to construct a model to maximize the forecast accuracy of volatility, nor to test 

market efficiency, but rather to assess the VRP, we refrain from adopting this approach.  

4.8 Trading Strategy 

The trading strategy is paramount in testing the predictability of the IVP variables on VRP, as it is 

out-of-sample and gives an indication of the economic significance. Hence, the trading strategy 

serves to test the economic foundation and the predictive power of the Bermuda variables in the 

Bermuda* model. The nature of the Bermuda* model gives an economic interpretation that is directly 

applicable if the Bermuda variables work as intended, namely to predict the VRP. However, the 

interpretation only holds if the coefficients are true and not biased, i.e. due to multicollinearity or 

omitted variable bias. The trading strategy is thus likely to fail with a high degree of 

multicollinearity.7 Let us assume for a moment that there is no such bias in the forecast model. Since 

IV is included as an explanatory variable in the forecast model, the VRP must be affected if, say, 

𝐼𝑅ௐ predicts lower future RV for the next month, as this represents a prediction that is not 

incorporated in IV. Any incremental prediction beyond IV itself should predict the VRP. 

 Variance swaps are appropriate for the purpose of constructing the trading strategy because 

they give a pure play on the VRP. A variance swap is an over-the-counter product and an agreement 

to exchange the realized variance for a fixed amount corresponding to the implied variance. No 

investment is needed to enter the contract (however, typically the parties will agree to maintain a 

margin). Conveniently, the model free implied variance as already calculated has been shown, by no 

arbitrage argument, to be similar to the fixed leg of a variance swap (Carr & Wu, 2009). A synthetic 

variance swap can be constructed with a static portfolio of vanilla options and a dynamic position in 
                                                        
7 It is mainly high correlation between IV and other variables that poses a problem.  
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the underlying. A more extensive elaboration can be found in the appendix. We will use this 

synthetic variance swap in our trading strategy. The payoff of the variance swap used in the trading 

strategy is specified as: 

                        𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝑠𝑤𝑎𝑝 = 𝑁൫𝑅𝑉௧,௧ାଶଶଶ − 𝐼𝑉௧ଶ൯                                          (23) 

where N is the notional amount. In the industry, the realized leg is often calculated as the squared 

daily log returns. The specification applied in this study, using realized kernel returns, is more 

theoretically consistent with the fixed leg we are using in the swap. Since we want to test a 

theoretical relationship, not practical applicability, this seems appropriate. Nevertheless, the details in 

the choice of specification should not alter the main results. The strategy serves as good test for the 

predictability of the VRP as the return is entirely determined by the VRP. The practical relevance 

will be discussed later.  

 The concept of the strategy is to vary the exposure to the VRP according to the information 

of one of the Bermuda variables (only one is chosen for simplicity and clarity); in this case we have 

chosen the 𝐼𝑉𝑃ௐ. We want to test whether the value of 𝐼𝑉𝑃ௐ can be used as a decision rule for 

when to take variance risk. The following formulas are used to create four different strategies, by 

determining the time varying exposure to the variance swap: 

Benchmark:   𝑁𝐸௧ାଵ = ±0.02𝑉௧ 

Active Harvester:  𝑁𝐸௧ାଵ = ±0.02𝑉௧൫1 ± 2(𝐼𝑉𝑃௧ௐ − 𝐼𝑉𝑃ௐതതതതതതത)൯ 

Tactician:    𝑁𝐸௧ାଵ = ±0.02𝑉௧൫2(𝐼𝑉𝑃௧ௐ − 𝐼𝑉𝑃ௐതതതതതതത)൯ 

Steamroller:    𝑁𝐸௧ାଵ = ±0.02𝑉௧൫1 ± 23.5(𝐼𝑉𝑃௧ௐ − 𝐼𝑉𝑃ௐതതതതതതത)൯ 

Where 𝑁𝐸௧ାଵ is the notional exposure that is entered into on day t+1 (or at the end of day t). V is 

denoted as the realized value of the portfolio, implying that V will remain constant until the first 

swap has expired. The minus sign indicates the necessity of being on the short side (selling the fixed 

amount) of the swap contract in order to get (positive) exposure to the VRP. Intuitively, the 

strategies can be thought of as entering into a new variance swap every day with a notional amount 

corresponding to NE. The Benchmark enters a new variance swap every day with (negative) notional 

exposure equal to 2 % of the realized portfolio value, reaching a ceiling of 44 % after 22 days. The 

exposure is calculated as a portion of the realized portfolio value, and the portion (0.02) is rather 

arbitrarily chosen. It essentially determines the size of the buffer to cover losses from engaging in 

the strategies. The adequacy of the buffer will be discussed ex post. The 22 first trading days are 

used to build up the portfolio, while the 22 last are used to wind it down.  
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 Whether the 𝐼𝑉𝑃௧ௐ  term should be added or subtracted depends on the results of the 

forecast (the sign of the coefficient, 𝛽ூ௏௉ௐ ). A negative 𝛽ூ௏௉ௐ  indicates that the exposure to the VRP 

should be increased (by increasing negative notional exposure) if 𝐼𝑉𝑃௧ௐ is positive. It is multiplied 

with two in order to get a more noticeable impact on the exposure. 

 The  𝐼𝑉𝑃ௐതതതതതതത term, which is the average 𝐼𝑉𝑃ௐ over the full sample, is subtracted in order to 

make the strategies easier to compare. 𝐼𝑉𝑃ௐ is necessarily above zero on average because of the 

presence of VRP. Hence, the adjustment makes sure the active bets made by 𝐼𝑉𝑃ௐ  are not 

increasing the average exposure. In turn, this ensures that any excess return over the Benchmark is 

not due to taking increased variance risk (or at least increased exposure to VRP). The fact that the 

value of 𝐼𝑉𝑃ௐcannot be determined ex ante is irrelevant; it does not alter nature of the active bets 

made by 𝐼𝑉𝑃ௐ.  

 There is a deviation from testing the predictability of the VRP as compared to the 

regressions, in that it is not the VRP that is a component in the regressions, but the square root of it. 

However, we refrain from squaring the 𝐼𝑉𝑃ௐ  variable. Even though it could be easily done, it 

would mostly be a complicating aspect (the result would be similar), since it would mean that the 

𝐼𝑉𝑃ௐ  would have to be squared, with its sign kept, and then deduct the squared mean. More 

importantly, the exponential decision rule would make it hard to see the effect of the decision rule 

except when 𝐼𝑉𝑃ௐ takes extreme values. 

 The Benchmark represents a passive investor who wants to harvest the VRP but does not 

make bets to improve returns. The second strategy has varying exposure with average exposure 

similar to the Benchmark and is referred to as Active Harvester. The strategy essentially holds the 

Benchmark on average, but deviate according to 𝐼𝑉𝑃ௐ. Theoretically, it can be seen as consisting of a 

strategic allocation (−0.02𝑉௧), which is the Benchmark, and a tactical allocation (±0.02𝑉௧൫2(𝐼𝑉𝑃௧ௐ −

𝐼𝑉𝑃ௐതതതതതതത)൯), which is the decision-rule based on 𝐼𝑉𝑃ௐ.  Active Harvester harvests the VRP through its 

strategic allocation, and makes additional active bets. Any excess return over the Benchmark is a sign 

that 𝐼𝑉𝑃ௐ has predictive power of the VRP. The third strategy, Tactician, has average exposure equal 

to zero. Here, the strategy has a strategic allocation of zero, implying that the investor do not believe 

in the presence of VRP. Hence, on average the Tactician does not want exposure to the VRP. 

Instead, tactical bets are made whenever the decision rule allows for it. The outcome of this strategy 

will show the pure effect of using 𝐼𝑉𝑃ௐ as a decision-rule to make active bets. 

 To get a better picture of the performance of the 𝐼𝑉𝑃ௐ   variable, a fourth strategy, 

Steamroller, is constructed ex post with the same semivariance as the Benchmark (which happens to be 

when the factor of 𝐼𝑉𝑃ௐ  is increased from 2 to 23.5). Thus, according to the semivariance, the two 
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strategies have the same downside risk, which should make for an interesting comparison of the 

performances. It is assumed that every trading strategy starts out with an initial capital, V, of $100.  

 In the evaluation of the strategies we employ the Sharpe ratio and Sortino ratio: 

𝑆ℎ𝑎𝑟𝑝𝑒  𝑟𝑎𝑡𝑖𝑜 = ௥೛തതതି௥೑
ఙ೛

     𝑆𝑜𝑟𝑡𝑖𝑛𝑜  𝑟𝑎𝑡𝑖𝑜 = ௥೛തതതି௥೑
ఙ೛ೞ

 

where p is referring to the portfolio in question. In the Sortino ratio the standard deviation is only 

estimated from negative returns and is denoted 𝜎௣௦ (square root of semivariance). It is the relative 

performance of the strategies that is of most importance in our study, rather than the absolute 

performance. Since we do not add interest to the portfolio holdings when calculating returns, it may 

already be regarded as subtracted.  

Log returns of the strategies are calculated in the following way: 

                                                                  𝑟௧ = 𝐿𝑁 ൬
𝑉௧
𝑉௧ିଵ

൰                                                (24) 

5. Results 
There are two main objectives in the assessment of the results. One is to evaluate the relative 

forecast performance of Bermuda*. The other is to evaluate the economic interpretation of the 

Bermuda*, with particular focus on the link to the VRP. In order to get there, we will start by taking a 

look at the risk neutral moments we have derived. Then, we cover the relative forecast performance 

of the Bermuda* model. Once the accuracy is assessed, we move on to the findings concerning the 

risk neutral moments and the Bermuda variables. Here, we start by taking a look at the information 

content of the risk neutral moments in a forecasting context. In the end, we go through a more 

extensive analysis and interpretation of the Bermuda variables, including the results from the trading 

strategy.  

5.1 The Risk Neutral Moments 

The smiles for every day are plotted for the whole sample period (Figure 15 in the Appendix), for a 

range of strikes spanning from 0.3 to 1.7. The level of the smile reflects the periods of turmoil in the 

market. Figure 9 shows a shorter time period for a shorter range of moneyness where the dynamics 

of the smiles are more visible.  
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Figure 9. Dynamics of the volatility smiles 

 These smiles transform into the RNDs (risk neutral densities) shown in Figure 16 in the Appendix. 

The height of the peak of the RND corresponds with the level of IV, where a higher peak reflects 

lower IV. A close-up view at the RNDs is given in Figure 10.  

 
Figure 10. Risk neutral densities for the whole sample period. The densities reflect a 30 days horizon. 
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Some of the RNDs have more irregular shapes than others. Typically, the more irregular shapes are 

found in high volatility environment, often caused by the shape of the smile in the transition 

between using puts and calls. Abrupt changes in the RND for small changes in the moneyness, and 

sudden large negative areas in the RND could indicate that some strikes are priced unreasonably 

high compared to others. This could possibly adversely impact the estimations of the risk neutral 

moments. However, for the most part, the RNDs resemble those of the physical densities close 

enough to indicate that our derived prices are in general consistent with one another and represent a 

reasonable market view.  

 We find that the IV is higher than the RV, which goes along with the previous literature of 

the existence of a VRP. Furthermore, the average risk neutral skewness is negative and the risk 

neutral (excess) kurtosis is positive. 

 While studying the values around the financial crisis it appears to be a tendency that kurtosis 

is lower in high volatility environments. Since higher volatility typically means a shift in the density 

from the middle and towards the shoulders, it makes sense that IV and kurtosis are negatively 

correlated. Similarly, the skewness is slightly less pronounced in very high volatility environments. 

Further descriptive statistics of the derived risk neutral IV are found in Table 2, and the statistics for 

skewness and excess kurtosis are found in the Appendix.  

Table 2. Descriptive statistics of the implied volatility 
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Figure 11. Implied volatility vs. realized kernel 

5.2 In-Sample Performance 

The Bermuda* model is superior to the other evaluated models for every forecast horizon for the 

full sample and every sub sample. The Extended* model outperforms the Conventional consistently. 

This holds for the full sample and all subsamples. For the daily forecast, the adjusted R-squared for 

Bermuda* improves relative to Extended* from approximately 76% to 84%, a non-trivial increase of 

roughly 8%. For the weekly horizon Extended* obtains a R-squared of 80 %, whereas Bermuda* has 

a R-squared of 84%. For the monthly horizon, the R-squares are 69% and 71% respectively. For the 

daily forecast, in the after crisis subsample, the improvement is astonishing 12%, from 

approximately 60% to 72%. Looking at the subsamples for the monthly horizons, the performance 

of the models are quite similar, except for the crisis subsample where the R-squares amount to 61% 

and 67%, in favor of the Bermuda* model. The size of the VRP has likely been changing more 

dramatically in the two last subsamples, which is impacted by the financial crisis (see Figure 12). In 

this context, it is interesting that the Bermuda* performs relatively better in the two last subsamples – 

as it may indicate that the effectiveness is greater when there are large changes in the VRP. For 

uncertain reasons, the accuracy of all models is substantially lower in the most recent subsample. It 

is reasonable that the absolute and relative accuracy decline for longer horizons since the models try 

to capture the short-term dynamics of volatility and they are not designed for long-run predictions. 

The results are seen in Table 3, 4 and 5.  
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5.3 Out-of-Sample Performance 

The result for the out-of-sample forecasts confirms the impression we already got from the in-

sample performance. Looking at MSE, Bermuda* is performing better for all forecast horizons. The 

out of sample performance can be seen in Table 6. Concerning criteria measures, a lower value 

implies a more accurate forecast. For the QLIKE measure Bermuda* scores best for the daily horizon 

only. The QLIKE measure penalizes outliers less. Hence, it may look like the Bermuda* model is 

relatively better at predicting where the models in general perform badly (in more extreme market 

conditions when there are large changes in volatility), while the Extended* models are relatively good 

in conditions where forecasts in general are accurate (in normal conditions when the volatility is 

varying less).. Assuming the Bermuda* model adjusts for the VRP, it could be an indication that the 

VRP is taking more extreme values during extreme market moves, as this seems to be when the 

larger adjustments are made by the Bermuda variables. From Figure 14, which shows the VRP and 

IV plotted together, it is clearly visible that larger changes in VRP is indeed related to larger changes 

in IV, and hence larger moves on the S&P 500. The general tendency for both in-sample and out-of-

sample forecasting is that Bermuda* is significantly better for the shorter horizons, while the accuracy 

for the monthly horizon is more similar. 
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Table 3. In-sample forecast (HAR-RV: Conventional model)  

 

 

 

 

 

 

 

 

Table 3 shows the in-sample performance of the HAR-RV model, also referred to as the Conventional model.  
*Significant on a 10 % level  
**Significant on a 5 % level 
***Significant on a 1 % level 
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Table 4. In-sample forecast (HAR-RV-RNM: Extended* model) 

 Table 4 shows the in-sample performance of the HAR-RV-RNM model, also referred to as the Extended* model.  
*Significant on a 10 % level  
**Significant on a 5 % level 
***Significant on a 1 % level 
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Table 5. In-sample forecast (HAR-IVP-RNM: Bermuda* model) 

 
 Table 5 shows the in-sample performance of the HAR-IVP-RNM model, also referred to as the Bermuda* model.  

*Significant on a 10 % level  
**Significant on a 5 % level 
***Significant on a 1 % level 
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Table 6. Out-of-sample forecast 

 

5.4 Information Content of Risk Neutral Moments 

For the Extended model the results reveal that skewness has some significance, but it drops once the 

kurtosis is added, suggesting that the information is already subsumed in the skewness. The results 

of the regressions are found in Table 12 and 13 in the Appendix. Byun & Kim (2013) have found 

evidence of the same for S&P 500. The opposite effect occurs for Bermuda. When kurtosis is added, 

the significance of skewness increases, suggesting negative confounding. This would be expected if 

skewness and kurtosis have an offsetting effect such that the skewness is partially masked by the 

kurtosis. In general, there is a positive impact on the R-squared when adding the risk neutral 

moments, even though the effect is not very big. The risk neutral moments are generally more 

significant in the Bermuda* model, than in the Extended* model. In general, the skewness and kurtosis 

have varying statistical significance, while the economic significance is overall low compared to the 

other explanatory variables. The IV is overall the most significant among all variables, but the t-stat 

of the IV is substantially lower in Extended* than in Bermuda*. As expected, the lagged RV variables 

drive down the significance of IV. 

 Studying the forecasts of semivariance and bipower variation there is particularly one finding 

of interest (see Table 14-19 in the Appendix). The risk neutral moments (IV, SK and KU) become 

more significant while predicting the counterpart of semivariance, i.e. the volatility of positive 

returns. As previously mentioned, research has found skewness to predict future returns. A 

presumptive thought in line with research is that the skewness and kurtosis may explain the 

variability in positive returns; while the negative returns as represented by semivariance is more 

unpredictable from the perspective of using risk neutral moments in forecasts. Concerning the result 

of the bipower variation, there is a distinctive difference in the significance of the risk neutral 

moments between the bipower variation (continuous component) and the counterpart (jump 

Table 6 shows the out-of-sample forecast of the HAR-RV-RNM model and HAR-IVP-RNM 
model. The lower the values, the more accurate the forecasts. 
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component). The former shows substantially higher significance, also higher than in the normal in-

sample regressions.  

5.5 Interpretation of the IVP Component 

It can be inferred from Table 4 and 5 that 𝛽ூ௏ is different in Extended* and Bermuda*. This leads to 

the conjecture that multicollinearity is present in one of the models. A quick test of running the 

dependent variable with only IV as explanatory variable (Table 7) shows that the coefficients are 

very close to the values of 𝛽ூ௏ in the Bermuda* regressions (Table 5). The variables change more 

drastically in Extended*. One possibility could be that Extended* better adjusts for the VRP than 

Bermuda*, but this is unlikely as Bermuda* performs better. 

Table 7. Forecast result of implied volatility 

 

 
As could be presumed, because of the high correlation with past volatility and IV, multicollinearity 

appears to influence the 𝛽ூ௏ in Extended*, while it seems to have very limited impact on Bermuda*. 

This has no implications for the forecasting of volatility per se. Concerning interpretations of the 

coefficients, and thus the ability to predict the VRP, on the other hand, it is highly relevant. The 

limitation of the Bermuda* model is the high correlation among the Bermuda variables. Although this 

is of lesser concern, it makes it more challenging to interpret the effect from the different Bermuda 

variables in isolation.  

 The significance of the Bermuda variables is overall high, as can be seen from Table 5. The 

𝛽ூ௏௉ெ  is the least significant, and for the weekly horizon for the full sample, it is not found significant 

on a 10 % level. While this indicates that the variable has little incremental information to the other 

variables, it is worth bearing in mind that the correlations between the Bermuda variables are high. 

Table 7 shows the result when forecasting volatility with only IV. The result is useful 
in order to see how the coefficient of IV changes for the other models. 
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The signs of the coefficients of the Bermuda variables are consistent over all sample periods. 𝛽ூ௏௉஽  is 

always positive, 𝛽ூ௏௉ௐ  is always negative and the sign of 𝛽ூ௏௉ெ  changes depending on the forecast 

horizon. In the following we will mainly interpret the 𝛽ூ௏௉ௐ , but the insight is transferable to the 

other Bermuda variables. Assuming the coefficients are true and not biased, the negative 𝛽ூ௏௉ௐ  

coefficient tells us that when 𝐼𝑉𝑃ௐ  is positive (negative), IV continues to overestimate 

(underestimate) the next period RV. The 𝛽ூ௏௉ௐ  coefficient therefore suggests a momentum or 

clustering effect in the VRP. This complements the findings of other papers, such as Bollerslev et al. 

(2009) who find that the VRP is able to explain a nontrivial fraction of the variation in stock market 

returns, with a high (low) VRP predicting positive (negative) future returns. Our result is consistent 

with their findings; positive (negative) future returns and low (high) future volatility are in line.  

 One way to view the results is that low 𝐼𝑉𝑃ௐ  could be a sign of relatively low hedging 

demand, thus making portfolios more vulnerable. Investors will then have to take more drastic 

measures (bigger trades) to hedge their portfolio once volatility increases. Thus, in such a case, an 

initial shock to volatility can be seen as having a greater impact on the markets than expected, 

resulting in a continued period of low VRP. In other words, with less protected portfolios the 

market participants are more likely to be surprised, leading to a clustering effect. Similarly, when 

investors have protected their portfolios (high  𝐼𝑉𝑃ௐ) they are less likely to be caught on the wrong 

foot.  

 Another view, perhaps more consistent with an efficient market, would be that the size of 

the VRP, and hence 𝐼𝑉𝑃ௐ, is determined by discount factor variation (and hence the compensation 

for taking a given amount of variance risk and the amount of variance risk). Intuitively, the amount 

of variance risk is expected to be related to the uncertainty of the level of the VRP. In turn, this 

uncertainty can be seen as related to the uncertainty of the future volatility, i.e. the volatility of 

volatility (see Carr & Wu (2009)). It is imaginable that such an increase in uncertainty is also 

associated with the compensation for taking a given amount of variance risk, as increased 

uncertainty may very well be related to the outlook of the economy and marginal utility of wealth. 

The results presented so far give little foundation for a further discussion at this point. However, we 

will revisit the topic during our interpretation of the results from the trading strategy. 

 One could question whether the Bermuda variables are capturing the dynamics of the VRP. 

In fact, it could be merely an adjustment of IV due to the fact that monthly maturity of IV is used to 

predict the volatility of the next day. For example, it is possible that the IV underestimates or 

overestimates tomorrow’s volatility since a mean reversion is incorporated in the monthly IV. 

Hence, the Bermuda variables might adjust for this shortcoming. It could explain the relatively 
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stronger improvement in accuracy for the daily forecasts, but fails to illuminate the accuracy 

improvement for the monthly horizon. In the case of a maturity adjustment, the Bermuda variables 

would not be very useful in creating a trading strategy, as it would suggest that they are not related to 

the VRP. 

 Since 𝛽ூ௏ is below one and decreases with the forecast horizon, and so does its significance 

(see Table 7), it suggests that an increase in monthly IV is, to greater extent, a prediction of higher 

RV the next day rather than the next month. Thus, the decreasing 𝛽ூ௏ is a sign that the monthly IV 

(including the variance risk component) is more connected with the short-term RV than the 

monthly RV. This fuels the theory that the IVP variable is a good proxy for how the market is 

pricing variance risk, notwithstanding that they are only taking the next day RV into consideration. It 

fuels the notion that the price investors are willing to pay today is hugely affected by the prevailing 

volatility conditions. Predominantly, it can be considered a vindication of the aforementioned belief 

that the forecast improvement is due to a maturity adjustment. 

 Table 8 displays the results from regressing the Bermuda variables on the (volatility) risk 

premium component.  

Table 8. Forecasting the variance risk premium  

 

 
All the coefficients are significant on a 10 % level in the multiple regression, but the only the daily 

and weekly IVP variable is significant on the 5 % and 1 % level. Further examination shows that the 

Bermuda variables are highly correlated, which explains the lower significance of the monthly 

variable. In fact, in the single regression the 𝛽ூ௏௉ெ  is highly significant (on 1 % level). In general, the 

outcome of the single regressions shows highly significant coefficients. The results indicate that the 

Bermuda variables have predictive power over VRP. Turning to the economic significance, it is not 

Table 8 shows the result from forecasting the (square root of) the VRP, with the Bermuda 
variables as explanatory variables.  
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trivial to interpret the R-squares, which amount to around 12 % for the multiple regression. While 

this may seem low, the implications of being able to predict any variation of future risk premium can 

be substantial in economic terms. Recall that the forecasting results show a substantial improvement 

prompted by the Bermuda variables. Fortunately, Figure 12 can offer some enlightenment. 

 
Figure 12. The plot shows the variance risk premium vs. instantaneous variance premium. Two outliers of the 

variance risk premium (10/10/08; -1.184 and 5/6/10; -0.759) are excluded. 

The plot shows the IVP variable plotted against the VRP. Indeed, visually there seems to be a clear 

relationship. The curves follow each other closely for the highs and lows, indicating that the IVP 

variable captures the big movements in the VRP. Presumably, the unexplained variance is then 

mainly related to the smaller variations in the VRP. Recalling the discussion of VRP in the 

methodology, it is possible that the unexplained variance can be attributed to noise in the estimation. 

If so, this unexplained variance would not be related to a change in the discount factor, or in the 

pricing of variance risk. The trading strategy will provide more explicit information on the subject of 

economic magnitude regarding the predictability of the VRP.   

 Let us briefly interpret the coefficients of the Bermuda variables conditional on the others. 

𝛽ூோௐ suggests a momentum effect in the VRP, with a strong statistical and economical significance 

(Table 7). The high correlation between the weekly and monthly variable of 0.7, indicates that they 

capture much of the same effect when predicting the VRP. Therefore, we can conclude that there is 

a momentum effect in the VRP as predicted by both 𝛽ூ௏௉ெ  and 𝛽ூ௏௉ௐ . In an environment of high 

𝐼𝑉𝑃ெ (high VRP), a day with low 𝐼𝑉𝑃஽ signals, according to the positive 𝛽ூோ஽ , that the VRP will 

increase back towards its current moving average (as measured by 𝐼𝑉𝑃ெ and 𝐼𝑉𝑃ௐ ). The 
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interpretation is that if traders took a low price for variance risk yesterday, compared to average 

conditions, they will take a higher price going forward - one closer to the average.  

 The performance of Bermuda* relative to Extended* drops slightly when forecasting bipower 

variation (Table 15 and 16). While the effect is small, it may indicate that the Bermuda* model are 

better at taking into account jump activity. A possibility is that the VRP is somewhat related to jump 

activity, and the Bermuda variables are thus able to adjust for the change in IV coming from the 

VRP due to jump activity. Whereas the lagged RV variables are insignificant for the jump 

component, the Bermuda variables are more significant, pointing in the direction that the above 

relationship is true. This would be in line with the findings of Todorov (2010): that VRP is related to 

jump activity. 

 Another observation is that the Bermuda variables are more significant when forecasting the 

semivariance than when forecasting the counterpart. This fits well with our previous observations, 

which suggested that Bermuda* is particularly good at predicting volatility in times where the volatility 

is difficult to predict (when accuracy is low), i.e. when the market is falling. 

5.6 Concluding Remarks on Volatility Forecasting 

According to our results, Bermuda* is a better specified model and superior at forecasting volatility 

relative to the other models. The outperformance of the forward-looking Bermuda* model is 

interesting in the context of market efficiency, but also in the sense that it gives an indication of the 

effectiveness of the method for adjusting for the VRP. Apart from that, the relative performance of 

the models is of lesser interest, since the purpose of the analysis is not the select the better model. If 

optimizing for forecast accuracy, the natural step would be to test a model including both the RV 

variables, IV and the Bermuda variables. However, we deem the improved analysis of the VRP a 

more valuable feature than forecast accuracy. The ability to interpret the coefficients of the Bermuda* 

model brings us to one of the key differences between the Bermuda* model and other volatility 

models. Many volatility models are designed to achieve the highest possible accuracy, with little 

regard to the economic interpretations of results. The value in Bermuda* lies not in the excellent 

accuracy alone; the economic intuition and interpretation should be equally appraised.  

 Regarding the risk neutral moments, we find that skewness and kurtosis in some cases are 

significant even on a 1 % level, but the economic impact is tiny as measured by the relative low 

impact on IV the R-squared. 

 Altogether we find that the Bermuda variables are linked to the VRP because (1) the 

Bermuda variables are significant even for monthly horizon, (2) Bermuda* generally performs better 

than other models for the monthly horizon, (3) the Bermuda variables have significant explanatory 
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power over the risk premium, (4) our empirical evidence indicates that the monthly IV is more 

connected to the short-term volatility than the monthly volatility and (5), as will be explained later, 

the results from the trading strategy provide further support. We find that the Bermuda variables are 

able to predict VRP, while further investigation is necessary to determine the economic magnitude 

more accurately. Naturally, it is possible that the three time scales used (1, 5 and 22) not necessarily 

reflect optimal time scales for predicting the VRP.  

 The predictability of VRP is useful both in the context of volatility forecasting and in the 

context of predicting returns of variance risk strategies. The former has been demonstrated in the 

forecasting session, while the latter will be gauged in the following. 

5.7 Trading Strategy 

Active Harvester outperforms the Benchmark, confirming that the decision rule generates positive 

return and that the Bermuda variables predict the VRP (see Table 9). Similarly, Tactician generates a 

positive return. At first glance, the improvement of Active Harvester compared to Benchmark appears 

modest, bearing in mind it is over 13 years. The excess return over Benchmark is only around 10%, 

which is less than 1% annualized. Still, the erroneous inference from judging too quickly is severe; 

the predictive ability of 𝐼𝑉𝑃ௐ  is in fact impeccable. As we will see, the small improvement is merely 

because 𝐼𝑉𝑃ௐ  has little impact on the exposure in its current format. The portfolio value of Tactician 

seen in Figure 24 in the Appendix, which has zero exposure on average, illustrates the point well: 

almost every major decision made by 𝐼𝑉𝑃ௐ  is correct. The strategy barely makes any losses of 

magnitude8. The strong performance can also be observed from the Sortino ratio in Table 9, which 

is higher than the benchmark. 

 

 

 

 

 

 

 

 

 

                                                        
8 While 𝐼𝑉𝑃ௐ is used to demonstrate a strategy in this case, running the same strategies with IVP୑ gives a 
confirming picture. 
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Table 9. Performance of trading strategies 

 

 

5.8.1 Performance 

The get a deeper grasp of the abilities of 𝐼𝑉𝑃ௐ, an evaluation of the performance of the strategies is 

conducted. The dollar value of the Benchmark is increased to $220, corresponding to an annualized 

return slightly above 6% over the period. Active Harvester achieves a portfolio value of $240 and an 

annualized return of close to 7%. Tactician ends up with a more modest value around $108, an 

annualized return of 0.6%. Steamroller lives up to its name with a final portfolio value of $535, over a 

fivefold increase in portfolio value. The annualized return amounts to almost 14%. The biggest loss 

arises from not being able to predict the reversal in the momentum effect of VRP during the 

financial crisis.  

Table 9 shows various statistics for the trading strategies. The calculations 
are based on daily log returns, while annualized returns are annualized 
geometric returns. The return for S&P 500 is the price return adjusted for 
dividends and splits, and is used to calculate the correlations. With dividends 
reinvested, the return increases to 4.6 %. Mean allocation of capital to VRP is 
calculated as the total notional exposure to variance swaps in relation to 
portfolio value (V). 
*The values are scaled up. 



 49 

 
Figure 13. Performance overview of the trading strategies 

Turning to risk-adjusted performance, the Steamroller does not seem to do very well according to the 

Sharpe ratio, which shows no improvement over the Benchmark. However, the Sharpe ratio is 

deluding; bearing in mind that the strategy has the same semivariance as the Benchmark, yet the 

return is improved drastically. This illustrates the fallacy if using Sharpe ratios in this analysis, as 

most of the volatility comes from positive returns. A problem of using Sharpe ratios typically 

emerges whenever there is a degree of skewness in the returns. Indeed, the skewness of the 

Benchmark is highly negative of -5, while the active bets made by 𝐼𝑉𝑃ௐ  gives rise to positive 

skewness. Active Harvester has reduced the negative skewness to -3, while Tactician has a positive 

skewness of close to 10. The skewness of Steamroller is 9, reflecting highly positively skewed returns. 

Hence, the Sortino ratios give a much better indication of the performance among the strategies. 

The ratios are 4.1, 6.3, 5.8 and 8.9 for Benchmark, Active Harvester, Tactician and Steamroller respectively. 

The risk-adjusted performance of the Steamroller is nothing short of phenomenal relative to the 

other strategies, for the sample period used in this study.  

 The Steamroller has valuable characteristics beyond its superior risk-adjusted returns, such as 

positive skewness and negative correlation to the S&P 500. Simply put, in the current sample period 

it appears that the decision rule provides us with the means to construct a strategy almost without 

parallel. A higher allocation to the strategic part would serve to demonstrate the point. If the 

strategic allocation in Steamroller is doubled (from 2% to 4%), the annualized returns jumps to over 

27%, yielding a final portfolio value of $2350. The Sortino ratio is still at 8.3, suggesting only a very 
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small decline in the risk-adjusted performance. The practical relevance of the absolute returns will be 

addressed later. 

5.8.2 Interpretations 

The 𝐼𝑉𝑃ௐ  decision rule is a remedy to the highly negatively skewed returns of the Benchmark 

strategy – a natural consequence of taking on variance risk. The decision rule accurately predicts the 

VRP so that major blows are avoided; the correlation between Benchmark and Tactician is -0.7. This 

fact explains why the tactical allocation compliments the strategic allocation so well. Moreover, it is a 

sign that the major changes in the VRP are predicted accurately – when the premium is negative, the 

strategy takes exposure accordingly. The 𝐼𝑉𝑃ௐ makes big bets when it takes extreme values, which 

happens to be in volatile markets. The decision-rule gives rise to an intuitively smart strategy, one 

that search for returns during extreme conditions in the market. 

 Our results shed some light on the idea that the VRP is related to the level of IV. Indeed, 

since the 𝐼𝑉𝑃ௐ  makes big bets during periods of high IV it may insinuate a connection. The 

financial crisis leads to huge losses for Benchmark, but the subsequent return is also high. The period 

of high IV can be divided in two. The first period appears to be associated with big losses for those 

taking variance risk, while the second is associated with big returns, as can be seen in Figure 14.  

 
Figure 14. Variance risk premium vs. implied volatility 

The transition between these two periods coincides with the turning point of the IV (or RV). Hence, 

the two periods can roughly be separated by the derivative of IV, giving rise to one period of rising 

IV and one of falling IV. Being exposed to VRP implies being short option vega. The vega is the 
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option value's sensitivity to volatility. A fall in IV, all else equal, will have a positive impact on a 

portfolio that is short vega. In practice, this fall in IV has to coincide with a sufficient fall in the 

volatility to be profitable on average. Evidently, this appears to be the case.  

 Our findings suggest that the VRP is not necessarily related to the level of IV per se, but to 

the sign of its derivative - whether it is a period of increasing or decreasing levels of IV. Falling 

periods of IV is associated with a high VRP, and vice versa. The correlation between the VRP and 

the first differences of IV is around -0.3, confirming that a decrease in IV is associated with an 

increase in VRP, and vice versa. This is in line with our previous interpretations of a clustering effect 

in VRP; a rise in volatility surprises investors and induce higher volatility than expected from the 

initial shock. This leads to a period of increasing volatility and IV, but the volatility changes more 

rapidly than the IV. Once the increase in IV comes to an end, it is a sign that investors have 

repositioned their portfolios. This marks the beginning of a period of positive returns.  

 Looking at Figure 25 in the Appendix it is evident that the Benchmark and the S&P 500 has 

higher correlation during extreme market moves, i.e. the financial crisis. This raises the question of 

whether the equity risk premium and VRP could be correlated during extreme market moves. This 

could make sense for example if the price investors are willing to pay for taking variance risk are 

somewhat proportionate to the alternative investments, and hence the returns in the stock market. 

The point where IV or RV turns from increasing to decreasing reflects the point where the volatility 

of S&P 500 and presumably discount rates of the economy switches from increasing to decreasing. 

Hence, with this line of reasoning it makes sense that the transition between negative and positive 

returns occurs at this point. This could still be in line with the findings of Carr & Wu (2009), who 

find that the VRP is somewhat related to the volatility of volatility, as long as the volatility of 

volatility is related to declining markets. Visually, it appears to be the case: the volatility is changing 

most during larger market falls. However, we have little basis for concluding whether the change in 

VRP is related to an increased pricing of risk (compensation for taking a given amount of risk) or 

increased variance risk. The VRP is essentially the returns of a variance swap, which does not 

necessarily have a constant risk. Hence, changes in the VRP do not have to be connected with 

changes in market risk aversion or compensation for taking risk. Still, the fact that the Tactician has a 

higher Sortino ratio than the Benchmark points in the direction that the uncovered dynamics of the 

VRP is at least partly related to risk aversion or increased compensation for taking risk, rather than 

increased risk. On the other hand, given the big impact of events such as the financial crisis, the high 

Sortino ratio could be a result of "luck" by coincidentally predicting the financial crisis, as the Sharpe 

ratio is lower for the Tactician. This is naturally an uncertainty with our results in general. On the 

other hand, one can argue it is likely not a coincidence on the basis that the return generated in this 
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period is a result of a number of trades done over many days. Furthermore, the perceived 

dependency of the few extreme events might be somewhat artificial as it could be due to the fact the 

decision rule mainly makes big trades on certain occasions, so the other trades are not necessarily 

wrong, just too small to make an impact. The fact that our forecasts remain superior in all 

subsamples tested is supportive of this. 

5.8.3 Limitations and Relevance 

A perhaps striking element of the trading strategies is that the result of the forecast, which may be 

regarded as "future information" at start of the trading exercise, is used to determine the sign of the 

impact of 𝐼𝑉𝑃ௐ on the exposure. However, to our defense the same conclusion would be reached 

in whatever time period the forecasts had been run (and then creating a strategy without "future 

information"). For the authors, it is even more comforting that such criticism implies that our 

Bermuda variables in fact are predicting the VRP, which the trading strategy essentially is a test of.  

 Even though it is not the intention, nor our wish, to create a strategy that is optimized for 

real life application, it is worthwhile to briefly comment on the practical relevance given the 

performance. When entering into a variance swap, the two parties will commonly agree to sustain a 

margin to cover potential losses. In this regard, let us first take a look at the size of the buffers, 

which ideally should reflect a sufficient amount of capital to cover the margins and losses. Starting 

with Benchmark, a quite large drawdown is visible in Figure 22 in the Appendix. More detailed 

calculations show a maximum drawdown9 of around 23% of the portfolio value. The maximum 

drawdown for Steamroller is 14%, giving potential for even more steam. It could be interesting to 

evaluate the impact if one of the major tactical bets went wrong. Let us assume that the huge 

increase in portfolio value around the financial crisis were a decline of a similar percentage change. 

This would give a drawdown of around 60% for the Steamroller. A substantial loss, but the buffer 

would still be sufficient to cover the losses. 

 Another important aspect concerns the calculation of variance. The returns of the strategies 

are only calculated from realized returns, which in effect is the return generated over the subsequent 

month after entering a swap contract. In other words, it does not take into account daily fluctuations 

such as cash payments that may occur to maintain the agreed upon margin. Hence, it can be 

questioned whether it is fair to compare the variances of the strategies with daily returns calculated 

on the S&P 500. For this reason, we have not included variance, Sharpe ratio and Sortino ratio of 

S&P 500 in the comparison.  

                                                        
9 A drawdown is the peak-to-trough decline during a specific period of an asset or investment. 
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 In general, we disregard all practical implications related to that variance swaps are traded 

OTC (for example, many dealers have put a cap on the maximum payout after the financial crisis). 

The contracts in question are synthetic, and there is no guarantee that our synthetic variance swap 

accurately reflects quoted swap strikes, even though our variance swap is replicated from a portfolio 

constructed from market prices of traded products. Firstly, there would be transactions costs 

associated with the replication. Secondly, there would be a bid-ask spread. Thirdly, jumps and 

discontinuity of trading play a role. Lastly, our variance swap may be considered a theoretical version 

and differs slightly from the industry standard in the calculation of the realized leg, as we do not use 

daily log returns, but instead use a more robust estimate for the realized variance. These factors 

could undoubtedly affect the returns, yet hardly enough to alter the main interpretations of our 

analysis. Moreover, the strong performance of strategies exposed to variance risk is in line with 

previous literature. In their study of using real variance swap data from dealers, Leippold et al. 

(2007) find that a variance swap strategy can provide smooth returns with higher Sharpe ratios than 

traditional asset classes. Nevertheless, the main concern of our analysis is not measuring absolute 

performance of the strategies (although we do devote attention to it as the results appear 

exceptional). 

 We advocate that the practical relevance is not dependent on the trading strategy being 

employable, or that our swap rates are extremely accurate. The purpose of the trading strategy is to 

test the economic foundation of the IVP variable and the predictability of the Bermuda variables. In 

this regard, it is only the relative performance of the strategies that matters. Most of the limitations 

we herein discuss, practically impact all strategies equally. 

 The verification of our results, which the trading strategy represents, is relevant for anyone 

who engages in hedging, is exposed to variance risk or cares about risk or risk premium.  

6. Conclusion 
The Bermuda* model (HAR-IVP-RNM) outshines conventional models (HAR-RV and HAR-RV-

RNM) by providing substantially more accurate volatility forecast both in-sample and out-of-sample. 

Furthermore, risk neutral skewness and kurtosis show some evidence of explanatory power in 

forecasting volatility, albeit the impact is limited. We conclude that the Bermuda variables, which the 

Bermuda* (HAR-IVP-RNM) model is based on, are able to amend the distortion in IV caused by the 

embedded VRP in option prices. The excellent forecast performance of Bermuda* is thus attributed 

to a refinement of the VRP in IV. The analysis suggests that option implied information is superior 

to using historical values of RV when forecasting volatility once the VRP is accounted for. However, 
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while these results possibly point in favor of an efficient market view, it is not in any way a rejection 

of volatility models based on historical data, nor suggesting it is optimal to exclude the RV variables 

in the model of Corsi (2009) (as is done here for the purpose of the analysis). Above all, this study 

highlights the importance of adjusting for the VRP when using the information content of IV. The 

proposed method proves effective in this regard. The IVP variable provides a potent way of 

approximating the market's recent pricing of variance risk, which in turn is cardinal in capturing the 

dynamic properties of the VRP. The results are consistent with the very recent paper of Prokopczuk 

and Simen (2014), who with a different approach are able to improve volatility forecasts in 

commodity markets by adjusting for the VRP.  However, their method is based on capturing the 

dynamic properties of the VRP. 

 The constructed trading strategies based on the weekly IVP variable demonstrate convincing 

precision when predicting the VRP. The risk-adjusted performance is significantly higher than the 

benchmark. Our results find evidence of a momentum effect in the VRP, despite this effect being 

rarely observable in the sense that it seems to be tied to large market moves. The inflection point of 

the momentum effect in VRP appears to be connected with the transition between falling and rising 

IV and RV – where rising volatility is associated with negative returns for variance risk strategies (a 

lower VRP). Considering this, in combination with the leverage effect in volatility – that negative 

returns increases volatility more than positive returns – it makes sense that strategies with exposure 

to the VRP is positively correlated with the stock market during extreme market moves. This fuels 

the conjecture that the equity premium and VRP both change in the same direction during extreme 

market moves, which in turn could indicate that they to some degree are governed by a (systematic) 

market risk aversion or the marginal utility of wealth in the economy. However, our analysis does 

not uncover whether the change in VRP is prompted by a change in the pricing of variance risk 

(related to market risk aversion or marginal utility of wealth) or increased variance risk. Furthermore, 

the low correlation between VRP and IV over time evinces that the high correlation during extreme 

market moves, are offset by low or negative correlation during normal conditions. Insofar as this 

holds true, it could make sense to take this time varying correlation into account when dealing with 

the VRP. This could explain why known market risk factors are unable to explain the VRP over 

time, such as in Carr and Wu (2009). That is interesting in the context of the strand of literature that 

interprets the VRP as some kind of measure of aggregate risk aversion or economic uncertainty. A 

theory worthwhile exploring in greater detail is thus if the VRP behaves differently than the equity 

premium (and known market risk factors) under normal conditions, but similar under more volatile 

markets, when the impact a system wide market risk aversion or marginal utility is more substantial. 
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Our results further indicate that our method of capturing the dynamic properties of the VRP is 

particularly effective during volatile markets. 

 A key feature of the IVP variable is its ability to approximate a monthly VRP that is not yet 

observable in market data, which could help explain its effectiveness in future predictions of both 

volatility and VRP. The lack of an up to date estimate of VRP may perhaps also help explain the 

absence of successful attempts on using VRP in volatility forecasting, despite decades of 

documentation of its presence and distortions. Analogous to the Bermuda Triangle, where the 

magnetic field distorts the compass, our approach may provide a convenient way of improving 

navigation in exposed waters. Hence, the Bermuda* model provides insight into the long-lived 

mystery of how to make a magnetic refinement to the volatility compass of financial markets: how 

to adjust for the risk premium component in IV. Furthermore, the findings concerning the behavior 

of the VRP are useful in the context of asset allocation and portfolio optimization. 

Further Research 
The topic of VRP is one that has recently attracted attention from researchers. The results herein 

motivate further research in using VRP in volatility forecasting as well as in return predictability. 

Research on how to adjust for the VRP in different ways and on alternative methods for capturing 

the dynamics of the VRP would be useful. There are many related topics suitable for further 

research; portfolio allocation and trading strategies using variance swaps or volatility strategies, the 

behavior of the VRP (also in relation to other risk premiums), determinants of VRP and research on 

the link between risk neutral moments and physical moments.  As already indicated, an avenue for 

further research could be to explore the determinants and dynamics of the VRP in more normal 

market conditions. 

At the time of writing, the first paper using the VRP for volatility forecasting was published 

by Prokopczuk & Simen (2014). Given the contemporary popularity of variance as an asset class, 

along with increased attention on VRP in research, the paper is likely the first of many to come. 
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Appendix 
 

 Acronyms Definition 

IV Implied Volatility 

VRP Variance Risk Premium 

IVP Instantaneous Variance Premium 

RND Risk Neutral Density 

RV Realized Variance (Volatility) 

RNM Risk Neutral Moments 

ATM At-The-Money 

OTM Out of-The-Money 

ITM In-The-Money 

 

A. Calculation of Risk Neutral Moments 

The risk neutral skewness and risk-neutral kurtosis are based on Bakshi, Kapadia and Madan (2003).  

For further details, please refer to the original paper. 

 Given an asset price process {St}, Bakshi, Kapadia, and Madan (2003) show that the risk 

neutral conditional moments of τ−period log return 𝑅(𝑡, 𝜏) ≡ ln[𝑆(𝑡 + 𝜏)] − 𝑙𝑛[𝑆(𝑡)] , given 

information at time t, can be written as an integral of OTM call and put option prices.  

First, define the volatility contract, cubic contract and quartic contract payoffs: 

𝑉(𝑡, 𝜏) = 𝐸௧
ொ(𝑒ି௥ఛ𝑅(𝑡, 𝜏)ଶ) 

𝑊(𝑡, 𝜏) = 𝐸௧
ொ(𝑒ି௥ఛ𝑅(𝑡, 𝜏)ଷ) 

𝑋(𝑡, 𝜏) = 𝐸௧
ொ(𝑒ି௥ఛ𝑅(𝑡, 𝜏)ସ) 

where Q refers to the risk neutral measure and r the risk-free rate. Under all martingale pricing 

measures, the contract prices can then be recovered from the market prices of OTM European calls 

and puts: 

𝑉(𝑡, 𝜏) = න
2൬1 − 𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨൰

𝐾ଶ

ஶ

ௌ(௧)

𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾 + න
2൬1 + 𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨൰

𝐾ଶ

ௌ(௧)

ஶ

𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾 
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𝑊(𝑡, 𝜏) = න
6𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨ − 3 ൬𝑙𝑜𝑔 ൤ 𝐾
𝑆(𝑡)൨൰

ଶ

𝐾ଶ

ஶ

ௌ(௧)

𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾

− න
6𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨ + 3 ൬𝑙𝑜𝑔 ൤ 𝐾
𝑆(𝑡)൨൰

ଶ

𝐾ଶ

ௌ(௧)

ஶ

𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾 

𝑋(𝑡, 𝜏) = න
12𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨
ଶ
− 4 ൬𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨൰
ଷ

𝐾ଶ

ஶ

ௌ(௧)

𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾

+ න
12𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨
ଶ
+ 4 ൬𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨൰
ଷ

𝐾ଶ

ௌ(௧)

ஶ

𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾 

where C(t,  𝜏;K) and P(t,  𝜏;K) are the prices of call and put options respectively, with strike K and 

expiration 𝜏 periods from t, and risk-free rate r. 

The time t conditional risk neutral moments are then defined as: 

 

The risk neutral mean as: 

𝑀𝑒𝑎𝑛(𝑡, 𝜏) = 𝜇(𝑡, 𝜏)   + 𝑙𝑛(𝑆௧) 

The risk neutral variance as: 

𝑉𝑎𝑟(𝑡, 𝜏) = 𝑒௥௧𝑉(𝑡, 𝜏) −  𝜇ଶ(𝑡, 𝜏)   

The risk-neutral skewness as 

𝑆𝑘𝑒𝑤(𝑡, 𝜏) =
𝑒௥௧𝑊(𝑡, 𝜏) −   3𝜇(𝑡, 𝜏)𝑒௥௧𝑉(𝑡, 𝜏) + 2(𝜇(𝑡, 𝜏))ଷ

(𝑒௥ఛ𝑉(𝑡, 𝜏) − (𝜇(𝑡, 𝜏))ଶ)
ଷ
ଶ

 

The risk-neutral excess kurtosis as 

𝐾𝑢𝑟𝑡  (𝑡, 𝜏) =
𝑒௥௧𝑋(𝑡, 𝜏) −   4𝜇(𝑡, 𝜏)𝑒௥௧𝑊(𝑡, 𝜏) + 6𝑒௥௧(𝜇(𝑡, 𝜏))ଶ𝑉(𝑡, 𝜏) − 3(𝜇(𝑡, 𝜏))ସ

(𝑒௥ఛ𝑉(𝑡, 𝜏) − (𝜇(𝑡, 𝜏))ଶ)ଶ − 3 

where 

𝜇(𝑡, 𝜏) = 𝑒௥௧ ൤1 − 𝑒ି௥௧ −
1
2𝑉

(𝑡 − 𝜏) −
1
6𝑊

(𝑡, 𝜏) −
1
24𝑋(𝑡, 𝜏)൨ 
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The calculation of the contracts (integrals) requires a continuum of prices. In our application, we 

approximate a continuum by interpolating prices and thus obtaining a spectrum of discrete prices 

with very small intervals. The integrals are then evaluated by using a trapezoidal approach. 

 

B. Deriving The Risk Neutral Density 

The procedure for deriving the risk neutral density builds on the result of Breeden and Litzenberger 

(1978). They show that the risk neutral density can be derived from taking the second derivative of 

the option price with respect to the strike price. In the following, we keep the same notation as 

previously (S=spot price, K=strike price, T=time to maturity etc). 

 The value of a call option is the expected value of its payoff on the expiration date T, 

discounted back to the present. Under risk neutrality, the expectation is taken with respect to the 

risk neutral probabilities and discounting is at the risk-free interest rate. 

C = න eି୰୘(S୘ − K)f(S୘)dS୘

ஶ

୏

 

Where S୘ is the stock price at expiration. Taking the partial derivative with respect to the strike 

price, one can obtain: 

∂C
∂K = eି୰୘ ൭(X − X)f(X) + න −f(S୲)dS୲

ஶ

୏

൱ 

From this expression we note two distinctive effects on the option price from a change in the strike 

price. The second term in the parentheses reflects the effect that for given increase in the strike price 

K, the payoff is reduced by a similar amount. The first term shows the other effect; when increasing 

the strike price, the range for which the option is ITM is reduced. When the change becomes 

infinitely small, this effect diminishes relative to the other, and it goes to zero in the limit as the 

strike price goes to zero (Figlewski, 2010). This leaves us with: 

∂C
∂K = eି୰୘ න −f(S୲)dS୲

ஶ

୏

= eି୰୘(1 − F(X)) 

Solving the above expression for the risk neutral distribution F(X) gives: 

F(X) = eି୰୘
∂C
∂K + 1 

Taking the partial derivative with respect to K once again yields: 
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f(X) = eି୰୘
∂ଶC
∂Kଶ 

which is an expression for the risk neutral density. Hence, taking the second derivative of the option 

price with respect to the strike price yields the risk neutral density. As an approximation, the second 

derivative can be calculated using discrete strike prices with small increments. 

We approximate first derivative evaluated at strike price n as: 

F(X୬) = eି୰୘
C୬ − C୬ିଵ
K୬ − K୬ିଵ

+ 1 

And the second derivative is approximated as: 

f(X୬) =
∂ଶC
∂Kଶ =

C୬ାଵ − C୬
K୬ାଵ − K୬

− C୬ − C୬ିଵ
K୬ − K୬ିଵ

K୬ − K୬ିଵ
 

C. Variance Swap 

A return variance swap has zero net market value at entry. At maturity, the payoff to the long side of 

the swap is equal to the difference between the realized variance over the life of the contract and a 

constant called the variance swap rate: 

𝑁(𝑅𝑉௧,் − 𝑆𝑊௧,்) 

where 𝑅𝑉௧,் denotes the realized annualized return variance between time t and T, 𝑆𝑊௧,் denotes 

the fixed variance swap rate that is determined at time t and paid at time T , and N denotes the 

notional dollar amount that converts the variance difference into a dollar payoff. According to Carr 

and Wu (2009), no arbitrage dictates that the variance swap rate equals the risk-neutral expected 

value of the realized variance:   

𝑆𝑊௧,் = 𝐸௧
ொ(𝑅𝑉௧,்) 

where 𝐸௧
ொ denotes the time-t conditional expectation under some risk-neutral measure Q. The risk 

neutral variance estimated from Bakshi, Kapadia and Madan (2003) represents a measure of a risk 

neutral expected value of the realized variance. Hence, it is possible to synthesize variance swap rates 

from a static portfolio of options. We define the monthly variance swap as: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  𝑠𝑤𝑎𝑝 = 𝑁൫𝑅𝑉௧,௧ାଶଶଶ   − 𝐼𝑉௧ଶ൯ 

where  

𝐼𝑉௧ଶ= 𝑉𝑎𝑟(𝑡, 𝜏) = 𝑒௥௧𝑉(𝑡, 𝜏) −  𝜇ଶ(𝑡, 𝜏) 
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and 

𝑉(𝑡, 𝜏) = න
2൬1 − 𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨൰

𝐾ଶ

ஶ

ௌ(௧)

𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾 + න
2൬1 + 𝑙𝑜𝑔 ൤ 𝐾

𝑆(𝑡)൨൰

𝐾ଶ

ௌ(௧)

ஶ

𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾 

𝜇(𝑡, 𝜏) = 𝑒௥௧ ൤1 − 𝑒ି௥௧
1
2𝑉

(𝑡 − 𝜏) −
1
6𝑊

(𝑡, 𝜏) −
1
24𝑋(𝑡, 𝜏)൨ 

𝑅𝑉௧,௧ାଶଶଶ  is the estimate of the realized variance, i.e. the realized kernel. The industry standard is 

using daily log returns. Since our strike is only a theoretically derived value, we stick to using the 

realized kernel for the realized leg, which is more theoretically precise estimate of the realized 

volatility.   

 The setup ensures that the portfolio is independent of movements in the underlying and 

thus only dependent on volatility. However, the method is not completely model independent as it is 

assumed that the spot follows a general continuous diffusion process with deterministic but 

undefined drift and diffusion term. This means, that if jumps occur in the underlying, the replication 

will not be perfect. Still, the measure used here (and tiny variations of it) is commonly used as a 

benchmark for variance swap rate.  

 

D. Realized Bipower Variation and Realized Semivariance 

Instead of basing our analysis on only one dependent variable, the realized variance, we also take the 

realized semivariance and the realized bipower variation into consideration. These two measures of 

risk have valuable features, which we will explain in the following. Furthermore, we provide in this 

section the formula, which we use to calculate these risk measures. 

 The realized semivariance is entirely based on downward movements. Similar to the realized 

variance it is measured by using high frequency data. This measure embeds some important 

predictive qualities for the future volatility of the underlying asset (Barndorff-Nielsen, Kinnebrock, 

& Shephard, 2010) When talking about risk in the financial market, it normally raises the question 

about what one can lose. This downside risk has been operationalized by the value at risk, expected 

shortfall and semivariance, the predecessor of the realized semivariance. 

 In our calculation we follow the approach of Barndorff-Nielsen et al. (2010). It is important 

to notice that a higher density in high frequency data shrinks the extra information in the sign of the 

data. Thus the most elegant way is to see Y as a Brownian semimartingale and allow jumps in the 

process 
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𝑌௧ = න𝑎௦𝑑𝑠
௧

଴

+ න𝜎௦𝑑𝑊௦ + 𝐽௧

௧

଴

 

where a is a locally bounded predictable drift process, 𝜎 is a càdlàg volatility process – both adapted 

to a common filtration process 𝐹௧, which implies that the model can allow for classic leverage effects 

– and J is a pure jump process. Now, writing jumps in 𝑌 as ∆𝑌௧ = 𝑌௧ − 𝑌௧ିଵ then we receive: 

[𝑌]௧ =   න𝜎௦𝑑𝑠
௧

଴

+෍(∆𝑌௦)ଶ
௦ஸଵ

 

Keeping this in mind, Barndorff-Nielsen et al. (2010) introduce the downside realized semivariance 

as 

𝑅𝑆ି =   ෍(𝑌௧ೕ − 𝑌௧ೕିଵ)
ଶ1௒೟ೕି௒೟ೕషభ ≤ 0

௧ೕஸଵ

௝ୀଵ

 

where 1௒ is the indicator function taking the value 1 of the argument Y is true and hence they are 

able to study the behavior of the realized semivariance. In particular, they show that 

𝑅𝑆ି
௣
→
1
2න𝜎௦ଶ𝑑𝑠 +෍(∆𝑌௦)ଶ1∆௒ೞஸ଴

௦ஸଵ

௧

଴

 

under in-fill asymptotics. 

 The realized bipower variation is another alternative measure to the realized variance. 

Contrary to the RV and semivariance it is robust to jumps. Thus the difference between the RV and 

the bipower variation can be expressed as the quadratic variation of the jump component. 

 Here we follow the approach of Barndorff-Nielsen & Shephard (2004) who define 

𝑦∗ = 𝑎∗ + 𝑚∗ 

where 𝑎∗ is a drift term and has locally finite variation paths 𝐹𝑉௟௢௖ and m is a local martingale 𝑀௟௢௖. 

The bipower variation is then 

{𝑦ெ∗ }௜
[௥,௦] = ቊ൬

ℎ
𝑀൰

ଵି(௥ା௦)/ଶ

ቋ ෍ห𝑦௝,௜ห
௥ห𝑦௝ାଵ,௜ห

௦
ெିଵ

௝ୀଵ

,            𝑟, 𝑠 ≥ 0. 

For a detailed derivation of the semivariance and the bipower variation see the article of Barndorff-

Nielsen et al. (2010) and Barndorff-Nielsen & Shephard (2004) respectively. 
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E. Details on various forecast variables 

 

Variable Definition 

𝑹𝑽𝒕𝑫 𝑅𝑉௧ିଵ,௧ 

𝑹𝑽𝒕𝑾 
1
5
(𝑅𝑉௧஽ + 𝑅𝑉௧ିଵ஽ + 𝑅𝑉௧ିଶ஽ + 𝑅𝑉௧ିଷ஽ + 𝑅𝑉௧ିସ஽ ) 

𝑹𝑽𝒕𝑴 
1
22

(𝑅𝑉௧஽ + 𝑅𝑉௧ିଵ஽ +  . . .   +𝑅𝑉௧ିଶଵ஽ ) 

𝑰𝑽𝑷𝒕
𝑫 𝐼𝑉௧ିଵ − 𝑅𝑉௧ିଵ,௧ 

𝑰𝑽𝑷𝒕
𝑾 

1
5
(𝐼𝑉𝑃௧஽ + 𝐼𝑉𝑃௧ିଵ஽ + 𝐼𝑉𝑃௧ିଶ஽ + 𝐼𝑉𝑃௧ିଷ஽ + 𝐼𝑉𝑃௧ିସ஽ ) 

𝑺𝑲𝒕 𝑆𝑘𝑒𝑤(𝑡, 𝜏) 

𝑲𝑼𝒕 𝐾𝑢𝑟𝑡(𝑡, 𝜏) 

 

The current time, t=0, may be thought of as the time after closing on the given day. Hence, 𝑅𝑉௧ିଵ,௧ 

is the RV measured earlier the same day. IV at t=0 is based on closing prices on the given day. 

Hence, it essentially succeeds the RV. Our volatility data (RV, bipower variation, semivariance) is 

originally estimated on a daily scale, while the risk neutral moments are calculated on a 30 days scale. 

Hence, a scaling from one day to 30 days is required. The scaling assumes that the price process 

follows a Geometric Brownian motion with lognormally distributed prices and normally distributed 

returns, which may not be entirely accurate, as detailed in Diebold & Hickman (1998). The variables 

are scaled with the square root of time. The IV is annualized (like the RV) while skewness and 

kurtosis are not scaled (monthly). However, once the volatility data is scaled to 30 days, further 

scaling only has a very limited impact on the regression results since all variables, except skewness 

and kurtosis, are scaled equally. IV is annualized in order make it easier to relate to the values. There 

is also a convention for scaling skewness and kurtosis that - like volatility - rests upon assumptions 

about the returns. Since we do not know anything about the relationship between volatility, and 

skewness and kurtosis (i.e. is it linear or something else?) there is little basis for having an opinion 

about whether a scaling will make the relationship between the variables more or less linear. The 

skewness and kurtosis are therefore left unchanged.  
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F. The Obtained 30 Days Volatility Smiles and Risk Neutral Densities 

 
Figure 15. Dynamics of the volatility smiles 

 
Figure 16.  Risk neutral densities 
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G. Risk Neutral Skewness and Excess Kurtosis 

For a better visibility and readability we disclose the plots and descriptive statistics of the risk neutral 

skewness and kurtosis in this section: 
Table 10. Descriptive statistics of the risk neutral skewnes 

 

 
Figure 17. Risk neutral skewness 
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Table 11. Descriptive statistics of the risk neutral (excess) kurtosis 

 

 
Figure 18. Risk neutral kurtosis 
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Table 12. Adding risk-neutral moments to the HAR-RV-IV (Extended model) 

 
 
Table 13. Adding risk-neutral moments to the HAR-IVP-IV (Bermuda model) 
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H. LIBOR-OIS spread 

 

 
Figure 19. 3M LIBOR-OIS Spread 
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I. Forecasting Result: Bipower variation and Semivariance 

 
Table 14. In-sample forecast bipower variation (HAR-RV: Conventional model) 

  
 

Table 15. In-sample forecast bipower variation (HAR-RV-RNM: Extended* model) 
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Table 16. In-sample forecast bipower variation (HAR-IVP-RNM: Bermuda* model) 

 
 

Table 17. In-sample forecast semivariance (HAR-RV: Conventional model) 
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Table 18. In-sample forecast semivariance (HAR-RV-RNM: Extended* model) 

 
Table 19. In-sample forecast semivariance (HAR-IVP-RNM: Bermuda* model) 
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J. Trading Strategy 

 

 
Figure 20. Performance Benchmark vs. Active Harvester 

 

 
Figure 21. Performance Benchmark vs. Steamroller 
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Figure 22. Performance Benchermark vs. Steamroller vs. Active Harvester 

 

 
Figure 23. Performance Tactician 
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Figure 24. Performance Benchmark vs. S&P 500 

 


