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Abstract

Why are high-yield bonds more severely hit by large liquidity dry outs than investment grade

bonds? This study investigates the effects of liquidity shocks on returns in the U.S. corporate

bond market during times of heightened liquidity stress, using a comprehensive data set of 13,500

bonds between October 2004 and September 2013. Applying a Markov regime-switching model,

we identify liquidity stress periods in which illiquid bonds underperform by as much as 21.7%

relative to their liquid counterparts in the high-yield segment, while the same return differential

amounts to only 5.4% for investment grade bonds. We show that classical explanatory approaches

fail to describe these differing effects on returns: neither the pre-crisis liquidity levels nor the

liquidity shocks during the stress periods show an asymmetric distribution across ratings. Thus,

a puzzling aspect of investors’ behavior can be inferred: during times of distress, investors punish

the same unit of illiquidity differently across credit quality. In order to explain this phenomenon,

we develop a model in non-formal reasoning. It is grounded on the idea that investors perceive

liquidity dry outs as transitory and therefore only penalize assets that are likely to be sold in

the short-term. Since investors are more risk-averse in times of distress, high-yield bonds are the

first of the investors’ assets in line to be liquidated, and thus investment grade bonds only show

marginal return effects with respect to liquidity shocks, perceived to be of temporary nature.

∗This paper was submitted as Master thesis at the Department of Finance of the Stockholm School of Economics.
We would like to express our gratitude to our supervisor Jungsuk Han for his guidance and support throughout each
stage of our thesis. We also want to thank Markus Ibert, Paul Schultz, Michel Bauer, and one anonymous referee for
helpful comments. All errors remain our own.
E-mail addresses: 40396@student.hhs.se (Arwed Ebner), 40379@student.hhs.se (Paul Schempp)



Contents

1 Introduction 1

2 Literature Review 4

3 Data 6

3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Methodology 14

4.1 Liquidity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Amihud Price Impact Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.2 Pastor-Stambaugh Price Reversal Measure . . . . . . . . . . . . . . . . . . . . . 16

4.1.3 Roll Bid-Ask Spread Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.4 Extended Corwin-Schultz Bid-Ask Spread Estimator . . . . . . . . . . . . . . . 17

4.2 Fama-MacBeth Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Risk Source Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Risk Factor Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.3 Risk Premia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.4 Expected Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Identification of Liquidity Stress Periods . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Markov Regime-Switching Regression . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Determination of Regime Path . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 28

5.1 Comparison of Extended and Original Corwin-Schultz Illiquidity Measure . . . . . . . 28

5.2 Unconditional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Liquidity Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 Pricing of Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Effects of Liquidity Stress Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 NBER Recession as Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Liquidity Stress Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3 Return Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.4 Liquidity Shocks across Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Discussion 52

6.1 Interrelations of Liquidity and Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Increasing Risk-Aversion according to Vayanos (2004) . . . . . . . . . . . . . . 53

6.1.2 Price-Liquidity Spiral according to Brunnermeier and Pedersen (2009) . . . . . 54

6.2 Isolated Effect of Liquidity Stress Periods on High-Yield Bonds . . . . . . . . . . . . . 54

6.2.1 Rational Explanations for the Flight-from-Junk . . . . . . . . . . . . . . . . . . 54

2



6.2.2 Non-Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Conclusion 57

References 59

Appendices 68



List of Figures

1 State Diagram for a Two-State Markov Model . . . . . . . . . . . . . . . . . . . . . . . 24

2 Basic Structure of a Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Comparison Extended and Original Corwin Schultz Illiquidity Measure . . . . . . . . 31

4 Portfolio-Sorted Illiquidity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Portfolio-Sorted Returns and Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Illiquidity Measures over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Portfolio-Sorted Excess Returns during NBER Recession . . . . . . . . . . . . . . . . . 43

8 Probability of High Illiquidity Regime from Markov Regime-Switching Model . . . . . 45

9 Regime Sequence Predicted by Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . 46

10 Robustness Check Viterbi Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11 Portfolio-Sorted Excess Returns during Liquidity Stress Regime . . . . . . . . . . . . . 50

12 Illiquidity Level Shocks for Liquidity Stress Periods . . . . . . . . . . . . . . . . . . . . 51

13 Loss-Margin Spiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



List of Tables

1 Data Prepration and Filtering Process I . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Data Prepration and Filtering Process II . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Summary Statistics over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 MAE Extended and Original Corwin Schultz Illiquidity Measure against Benchmark . 29

5 Illiquidity Summary Statistics by Rating Category . . . . . . . . . . . . . . . . . . . . 33

6 Correlations among Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Six-Factor Regression for Monthly Excess Returns . . . . . . . . . . . . . . . . . . . . 39

8 Average Coefficients from Cross-Section Regression (Risk Premia) . . . . . . . . . . . . 42

9 Cumulative Average Default Rates in the U.S. from 1981 – 2005 . . . . . . . . . . . . . 75

10 Portfolio-Sorted Illiquidity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11 Portfolio-Sorted Return and Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

12 Portfolio-Sorted Excess Returns during NBER Recession . . . . . . . . . . . . . . . . . 78

13 Portfolio-Sorted Excess Returns during Liquidity Stress Regime . . . . . . . . . . . . . 78

14 Illiquidity Level Shocks for Distressed Times . . . . . . . . . . . . . . . . . . . . . . . . 79



1 Introduction

During both the fall of Long-Term Capital Management and the peak of the subprime crisis, corporate

bond spreads soared to far greater levels than the traditional fundamentals could explain. Practitioners

quickly saw the reason for this unexpected blow to prices in a simple concept: the absence of buyers

and hence of market liquidity. Thereupon, academics have tracked down the striking characteristic of

liquidity: its feature of being more time-varying than most other risk sources. While playing a non-

trivial but only moderate role during normal periods, liquidity has the power to exert a major influence

in times of heightened market uncertainty. One specific effect during liquidity stress periods raises

our attention, which is the empirical observation that liquidity disruptions affect low-rated bonds to

a much higher extent than high-rated bonds.

Our sample of U.S. corporate bonds also exhibits this effect: During the liquidity stress periods as

identified in our study (comprising 10 to 14 months, mainly during the subprime crisis) the prices of

illiquid bonds underperform their liquid counterparts by as much as 21.7% in the high-yield segment,

while the same return differential amounts to only 5.4% for investment grade bonds. Hence, the

purpose of this study is to explore the reason behind the difference in return differentials between

high-yield and investment grade bonds since no research has disentangled the underlying effects so far.

The concept of “differences in return differentials” may appear elusive at first, can however figuratively

be clarified by thinking in terms of four bond portfolios: One illiquid and one liquid portfolio for each

high-yield and investment grade rating class. It is obvious that the prices of the illiquid portfolios

must lie below the prices of their liquid counterparts within each rating category since low liquidity is

undesirable. The goal of our work is to understand why this price difference widens by far more for

high-yield bonds than for investment grade bonds (21.7% compared to 5.4% in our sample) during

liquidity stress periods. Interestingly, we draw a puzzling conclusion by falsifying the two possible

rational explanatory approaches: neither the pre-crisis liquidity levels nor the liquidity shocks during

the stress periods show an asymmetric distribution across ratings.

First, the two high-yield portfolios might generally exhibit a lower portfolio-specific liquidity level

than the investment grade portfolios. Consequently, a rising liquidity premium across all four portfolios

would punish the lower liquidity levels of high-yield bonds by a higher absolute extent and thus result

in a more pronounced price differential between the bonds in the high-yield than between the bonds

in the investment grade class. Interestingly, we challenge the prevailing opinion about the lock step

of liquidity and quality by finding that bonds show the same level of liquidity across credit ratings.

Hence, a rise in the overall liquidity premium would affect the bonds across ratings to the same extent.

The second explanation would be that a withdrawal of market-wide liquidity hits the four portfolios

in an asymmetric manner, e.g. that predominantly the illiquid portfolio of the high-yield segment drops

in its liquidity. As a result, the difference in the underlying characteristic of liquidity among the high-

yield segment would have risen in comparison to the investment grade portfolios. If the extent of the

liquidity increases between two portfolios, their price difference must increase as well. Surprisingly,

we show that liquidity dry outs are equally spread across credit ratings and that the dispersion of the

liquidity shock within each rating category is the same, i.e. illiquid bonds of all ratings experience the
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same strong liquidity shock so that the liquidity dispersion1 across ratings stays the same.

As a result, we infer the puzzling conclusion that investors punish the same unit of illiquidity

differently across credit ratings in times of distress. During those times, a severe decrease in the bond-

specific liquidity levels across all ratings hits high-yield bonds by a large extent, while bonds with

ratings of BBB and above are only marginally affected by the same magnitude of shock. Investors

appear to disregard liquidity shocks to investment grade bonds during times of distress. Besides not

only arguing that investors punish the same magnitude of liquidity shock differently across ratings,

we show that the liquidity premium must exclusively increase for high-yield bonds during stress times

in order to explain the observed price differentials.

To sum up, analyzing the reason for the differences in returns allows us to eventually draw inferences

about the absolute effects of liquidity. We conclude that liquidity dry outs affect all rating classes to

the same nominal amount, but that investors punish the withdrawal of liquidity differently according

to the quality of the bond.

In order to explain the discriminating treatment of the same unit of liquidity, we develop a model

in non-formal reasoning. Our explanation for the asymmetric liquidity effects also sheds light on

another phenomenon visible in our sample: We observe a flight-from-junk effect in the form that

high-yield bonds drop by about 20%, while investment grade bonds suffer only 2% over the course of

the identified liquidity stress period. The rationale for the model developed is grounded on the work

of Vayanos (2004) and Brunnermeier and Pedersen (2009) that both predict rising market volatility

to increase the threat of unwinding positions in order to meet withdrawals or funding margins. We

argue that this rising probability to liquidate positions increases selling pressure and thus decreases

prices for the assets likely to be sold. Assuming that high-risk assets are sold off first in stress

periods (due to an increase in risk-aversion), the selling pressure predominantly hits the high-yield

segment, leading to the flight-from-junk effect. Furthermore, the increasing probability for earlier than

initially expected liquidation of high-yield bonds decreases their expected holding period which in turn

increases the effective transaction costs (i.e. the transaction costs per holding period). Consequently,

the same nominal transaction costs (i.e. liquidity) affect the investor to a higher extent, leading to

an increasing liquidity premium. We then show that if investors perceive the accompanied liquidity

dry out as transitory and thus non-persistent, they only penalize liquidity shocks for assets that are

likely to be sold during the stress times. Since high-yield bonds are first in line to be liquidated, and

thus better-rated bonds more likely to be unwound later when markets have returned to normality,

investment grade bonds only show marginal return effects to these temporary illiquidity shocks.

Turning towards the technical side of the paper, an analysis of liquidity effects during liquidity

stress periods naturally demands for measuring liquidity and identifying the corresponding stress

periods. Both tasks might appear simple, but are actually far from obvious since on the one hand

liquidity is not directly measurable and on the other hand liquidity stress periods arise very suddenly

and are short in nature.

First, liquidity, in the form of ease of finding a counterparty to trade with, is a nebulous and

multi-faceted phenomenon: One knows it when one sees it, but it is hard to define. Therefore, a
1The difference in liquidity between illiquid and liquid bonds.
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plethora of liquidity measures has been developed over the years to proxy for different dimensions of

liquidity. We employ four well-known liquidity measures (initially developed for the stock market,

but successfully applied to corporate bonds by many studies) on a daily basis, namely the Amihud

(2002) price impact measure, the Pastor-Stambaugh (2003) price reversal measure, the Roll (1984)

bid-ask spread estimator, and the Corwin-Schultz (2012) bid-ask spread estimator. While the former

three have been widely used for many years, the relatively new Corwin-Schultz estimator is currently

attracting a lot of attention due to its simple implementation and high accuracy. In order to apply

the idea of the Corwin-Schultz measure on infrequently traded bonds, we algebraically derive a more

flexible, enhanced version and further show that this extension provides an equal or more accurate

estimation of the bid-ask spread in c.85% of the transactions in our sample compared to the original

measure. In order to examine whether our liquidity measures accurately measure liquidity, we estimate

unconditional risk premia of up to 1% for the liquidity level and up to 0.5% for the liquidity risk (the

bond’s return co-movement with market-wide liquidity) whose magnitudes are in line with those found

in the academic literature. Therefore, we perform the Fama-MacBeth procedure on five standard risk

factors together with the bond-specific liquidity level and liquidity risk on a monthly return level. The

results hold regardless of liquidity measure employed.

Second, since the severe effects of liquidity arise suddenly and only within a short time frame,

an accurate identification of the liquidity stress periods is of utmost importance in order to precisely

capture the effects of the typically sleeping, but at times rampaging giant called liquidity. Therefore, we

use Markov regime-switching models since Watanabe and Watanabe (2008) and Acharya et al. (2013)

show the models’ power in identifying periods with severe liquidity effects. These models are based on

the idea that the stochastic process of a variable (e.g. the return) can abruptly change between two

underlying processes with different statistical properties. We not only refine their approach with the

Baum-Welch algorithm, but further apply the Viterbi algorithm in order to determine an actual series

of liquidity stress periods rather than mere probabilities for being in liquidity distress for each point

in time. The identified liquidity stress regime comprises 10 to 14 months, mainly during the subprime

crisis (depending on the model specification) and shows, despite being endogenously generated by a

purely statistical procedure, a high economic relevance.

Every analysis is only as good as its data and in order for liquidity effects to become more visible,

it is important for the sample to consist of a high dispersion in liquidity across bonds. Therefore,

we base our analysis on the unique data of the Trade Reporting and Compliance Engine (TRACE)

which contains approximately 90% of all corporate bond transactions in the U.S. from October 2004

on. This allows us to not only capture the bulk of illiquid bonds, but also to directly work with

the most detailed primary data for corporate bonds since bond dealers have to directly report every

single transaction to TRACE. We merge the transaction data from TRACE from October 2004 to

September 2013 (from the moment of the full implementation of TRACE to the most recent date for

which data is available to us) with bond characteristics (especially ratings) from the Fixed Income

Securities Database (FISD). Extensively preparing and filtering the data set, we obtain a unique

sample covering almost 330,000 bond months, more than 13,500 bonds and nearly $15tn in trading

volume, representing one of the most comprehensive data sets for analyzing liquidity in the corporate
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bond market. While other studies tend to apply rough filters which primarily exclude illiquid bonds,

we only omit observations that are specifically unfeasible for the constructed liquidity measures in

order to minimize the omission of the illiquid parts of the market.

The remainder of the paper is organized as follows: we demarcate us from the relevant literature

in Section 2. In Section 3, we explain the composition of our data set as well as the filters and

matching procedures and show summary statistics. Section 4 describes our methodology employed to

measure liquidity, to perform asset pricing tests of liquidity, and to determine liquidity stress periods.

Section 5 presents our results. Section 6 discusses theoretical explanations for our findings. Section 7

summarizes our main findings and concludes the paper.

2 Literature Review

There are two main strands of literature that are in close relation to our paper.

The first explores the relevance of liquidity on asset prices and more specifically on corporate bond

returns. Due to the difficulties in identifying and measuring liquidity, the academic literature focusing

on the effect of liquidity on asset prices developed late, but is by now vast and growing further at

high speed2. Liquidity in the context of asset pricing can be roughly divided into two subsections:

liquidity level and liquidity risk. Before demarcating our work from the existing literature, we want

briefly survey the most important studies of liquidity in asset pricing, first for stocks then for bonds.

The studies of Amihud and Mendelson (1986), Brennan and Subrahmanyam (1996), and Brennan

et al. (1998), are commonly considered the seminal works on the effect of liquidity level on asset

returns and find that illiquidity increases the required return on a stock.

Due to the finding of commonality of liquidity – the phenomenon that an asset’s individual liquidity

co-moves with market-wide liquidity – in the studies of Chordia et al. (2000), Hasbrouck and Seppi

(2001), and Huberman and Halka (2001), the attention of researchers moved to the question of whether

there is a systematic and undiversifiable liquidity risk factor (i.e. co-movement of a bond’s return with

the market-wide liquidity) relevant in asset pricing. Several studies find that liquidity risk is priced

in stocks, such as Pastor and Stambaugh (2003), Acharya and Pedersen (2005), Liu (2006), Bekaertet

al. (2007), Korajczyk and Sadka (2008), and Lee (2011)3.

Although the relevance of liquidity for corporate bonds has never been doubted, the first studies

that investigate this issue are related to the so-called “credit spread puzzle”, which is connected to the

fact that bond yield spreads are larger than what can be explained by the mere default risk component

of the bond (see Huang and Huang (2012) and Eom et al. (2004)). These studies (e.g. Elton et al.

(2001) and Collin-Dufresne et al.(2001)) focus on the default risk component of corporate bond returns

and partly attribute the unexplained portion of the spread to illiquidity. The first studies that directly

analyze the price impact of liquidity on corporate bond returns all found evidence for the importance

of both liquidity level and liquidity risk in bond returns and spreads (such as Houweling et al. (2005),
2See, for example, Amihud et al. (2005, 2013) and Vayanos and Wang (2013) for encompassing surveys about this

literature.
3There is also evidence that liquidity risk can explain asset pricing anomalies (Sadka(2006) and Asness (2013)) and

can explain parts of investment fund performance (Dong et al. (2014), Sadka(2010, 2012), and Franzoni et al.(2012)).
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Downing et al. (2005), Chacko (2006), Covitz and Downing (2007), Chen et al. (2007), Bao et al.

(2011), Lin et al. (2011), Bongaerts et al. (2012), and De Jong and Driessen (2012)).

The second strand of literature explores the relevance and magnitude of corporate bond liquidity

on prices during distressed times. In contrast to the first strand, the number of these studies is

moderate. There are three main papers that are of utmost relevance for our study, namely Dick-

Nielsen et al. (2012), Friewald et al. (2012), and Acharya et al. (2013). They all show the exceptional

feature of liquidity which is its large difference in importance across time. Dick-Nielsen et al. (2012)

and Friewald et al. (2012) uncover the strong, but transitory importance of liquidity during crises

also for the corporate bond market. For example, Dick-Nielsen et al. (2012) find that the spread

between very liquid and average liquid bonds increases rapidly during the Lehman Brothers default

in the fall of 2008 and returns to pre-crisis levels already in the summer of 2009. The crucial question

for understanding the time-varying nature of liquidity is whether this spread is caused by decreasing

liquidity, increasing liquidity premia or non-textbook aspects. Since Dick-Nielsen et al. (2012) show

that illiquidity rises significantly during distressed times, it is unclear whether investors merely punish

this increasing illiquidity or are additionally becoming more averse to carry each unit of illiquidity.

Friewald et al. (2012) show that investors actually increase their unwillingness to hold illiquidity since

the same unit of bond-specific illiquidity shocks doublse in its effect on the bond’s returns during the

subprime crisis.

However, our work aims at clarifying a higher dimension, i.e. the cross-sectional effects of liquidity

in crises periods. Both Dick-Nielsen et al. (2012) and Friewald et al. (2012) illustrate that liquidity

does not only matter strongly in crises, but also affects speculative grade bonds to a much larger

extent. For example, Dick-Nielsen et al. (2012) uncover that the liquidity spread component of AAA

rated bonds merely increase from 1bp to 5bp, while those of BBB bonds rise from 4bp to 93bp and

those of the high-yield universe from 58bp to staggering 197bp during the subprime crisis. Acharya

et al. (2013) underline this pattern by displaying an even more pronounced picture. During stress

periods in their sample, high-yield bonds show highly negative return reactions to drops in market-wide

liquidity, while the returns of investment grade bonds actually slightly increase with respect to the

market’s liquidity deterioration. This high dispersion of severity in which liquidity crises hit differently

rated bonds appears puzzling. The simplest answer would be that liquidity only deteriorates for the

lower end of credit ratings during stress periods. Acharya et al. (2013) sketch another explanation

and assume an increasing demand for liquidity (i.e. a higher premium for illiquidity) during these

periods. They consider speculative bonds less liquid than investment grade bonds so that investors

would exhibit a flight-to-liquidity in the sense of re-allocating capital from illiquid high-yield towards

liquid investment grade bonds. However, the sample of Friewald et al. (2012) which is based on a

more recent and larger data set does not exhibit a co-movement of lower credit quality and illiquidity,

so that the effect in Acharya et al. (2013) might also stem from a flight-to-quality instead of a

flight-from-liquidity.

To sum up, we are interested in why speculative bonds are hit harder by liquidity during liquidity

stress times. Specifically, no study so far has examined potential reasons such as whether low-rated

bonds show a generally lower liquidity level that gets amplified in stress periods, drop more strongly
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in liquidity during stress periods, or suffer from increasing demand for liquidity in case of adverse

economic situations. We aim at filling the gap of research by forming portfolios in both dimensions of

liquidity and quality in order to isolate the effects. This is especially important liquidity stress periods

are closely related to general quality stress periods as shown by the theoretical models of Vayanos

(2004) and Brunnermeier and Pedersen (2009)4.

3 Data

3.1 Data Description

In general, corporate bonds represent an ideal laboratory to scrutinize liquidity effects for four reasons.

First, the infrequent nature of bond trading accentuates the role of liquidity. Second, the major risk

component of bonds, the default risk, is directly observable via credit ratings so as to allow for isolating

liquidity concerns to a high extent. Third, the yield-to-maturity of bonds uniquely reveals the expected

returns of investors giving researchers the opportunity to increase accuracy in uncovering risk premia.

Fourth, through the Trade Reporting and Compliance Engine (TRACE), detailed primary data on

transaction level is available for almost the entire U.S. corporate bond market.

Our dataset consists of information from two sources; we obtain transaction data from the TRACE

and bond characteristics from the FISD (Fixed Income Securities Database) databases5. Under pres-

sure from the U.S. Congress, buy-side traders and the SEC, the Financial Industry Regulatory Agency

(FINRA) implemented the TRACE database in July 2002 in order to increase transparency, to provide

greater regulatory insight, and to decrease transaction costs for retail and small institutional investors

in the over-the-counter U.S. corporate bond market (Bushman et al., 2010). In the beginning, the

reporting was only limited to investment grade issues as there existed conflicting views about the effect

of improving transparency. However since October 1, 2004, essentially all secondary over-the-counter

U.S. corporate bond transactions are reported within 15 minutes to TRACE. As a result, the TRACE

database comprises a very unique dataset for an over-the-counter market due to its level of detail and

scope. As less than 10% of all U.S. corporate bond trades are executed via public exchanges and

c.99% of all trades of the over-the-counter market is captured by the TRACE reporting (Edwards et

al., 2007), our dataset embraces almost the entire universe of corporate bond transactions during our

sample period. Besides its unique scope, TRACE also allows us to observe prices with the utmost

degree of detail since it comprises information on intra-day transaction level such as actual transaction

prices, trading volumes and the yield-to-maturity.

We span our sample period from the moment of the full implementation of TRACE to the most

recent date for which data is available to us. This leaves us with a sample period from October 1, 2004,

to September 30, 2013. We merge these transactions with bond issue-specific information from the

Mergent FISD database to obtain additional bond characteristics such as maturity, coupon and credit
4Beber et al. (2009) show that liquidity stress periods partly differ from distressed quality times for the European

sovereign bond market. They can fall apart since an increasing sovereign bond issue enhances market liquidity, but
decreases the issuer’s quality due to excessive leverage. For corporate bonds, liquidity appears to be much more related
to funding capital for speculators which is why Beber et al. (2009) is rather not relevant for our scope.

5We access both databases via the Wharton Research Data Services (WRDS) webpage.
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rating. Several papers have used the TRACE database to analyze liquidity effects in the U.S. corporate

bond market6. Given TRACE’s comprehensive scope and extraordinary detail for corporate bonds,

the number of authors using TRACE is still relatively moderate which can probably be explained by

the high challenges arising in the course of compiling this large set of primary data (which is by now

more than 10 gigabytes large), but also by the relatively short period of time from when the data is

available.

We undertake an extensive data preparation and filtering process to arrive at our final data sample.

Table 1 and 2 display the effect of our filtering steps onto the data set. Appendix A describes our

entire data preparation process in detail and might serve as a comprehensive guideline for future

academic research since a thorough description of editing the TRACE’s data set does not yet exist

to the best of our knowledge. Our initial sample of TRACE’s corporate bond trades consists of

77,255,887 transactions from 161,896 bonds issued by 16,665 firms over a number of 11,862,357 total

bond trading days with a total dollar volume of $26.3tn. We then apply the Dick-Nielsen (2009) error

filters in order to correct for three types of cancelled and corrected trade reports resulting in dropping

4.8% of the transactions. We further apply additional price filters that shall detect wrong transaction

reports which have not been corrected or cancelled. Those comprise mistakes such as typos or, by

mistake, reporting yields as prices and vice versa. Consequently, the filters aim at identifying unusual

price jumps among transactions. We construct the filters according to Edwards et al. (2007), Han and

Zhou (2011) and Friewald et al. (2012) and detect 0.6pp of erroneous price entries. As we perform

our liquidity measures on daily prices, we aggregate these intra-day transactions for each bond into a

single summary observation that consists of the dollar volume-weighted price, the high and low prices

and total trading volume of each day. In order to precisely capture the total returns sensitivity to

liquidity changes, we transform the clean prices of TRACE into dirty prices according to the following

formula:

Pricedirty = Priceclean +Accrued Interestt +

T∑
t=0

Coupont, (1)

Manually examining the dataset, we identify that erroneous price records are likely to appear in

clusters (e.g. the broker submits the yield instead of the price for many consecutive transactions

before correcting his reporting behavior). Consequently, we extent the price filters of the transactions

above also to daily levels in order to capture these clusters of false records and identify 3.5pp of

bond-specific trading days as invalid. We then merge the TRACE data set with credit rating and

bond characteristics from FISD. We translate the official rating categories into a numeric scale from

10 to 0 with 10 being the highest rating (10=AAA, 9.5=Aa1/AA+, 9=Aa2/AA . . . 1.5=Caa2/CCC,

1=Caa3/CCC-, 0.5=Ca/CC, 0=C/D) and assign the most recently published credit rating to each

trading day of a specific bond. We then exclude convertible, exchangeable, puttable and perpetual

bonds, as well as bonds denoted in foreign currencies. However, we retain callable bonds as this feature

is very standard for bonds and applies to 56.9% of the bonds in our sample. In order to investigate the
6See, for example, Edwards et al. (2007), Goldstein et al. (2007), Ronen and Zhou (2009), Nashikkar et al. (2011),

Lin et al. (2011), Jankowitsch et al. (2011), Feldhütter (2012), Friewald et al. (2012), Bao et al. (2011), Dick-Nielsen
et al. (2012), and Das et al. (2014).
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effects of liquidity changes on bond returns, we chose a monthly time horizon. Therefore, we exclude

all months of a bond with less than 10 traded days since its liquidity measures which are constructed

on a daily level might exhibit large biases. We define a month’s return by the relative change from

the preceding month’s latest dirty price to the current month’s latest dirty price. Furthermore, we

require that these two prices stem from transactions in the last weeks of the respective months since

we assume that such a return calculation is more accurate than one, which uses interpolation. Every

month of a bond which does not meet this criterion is disregarded. The entire filtering and aggregation

process results in a final sample of 329,252 monthly time-series observations from 13,842 bonds issued

by 2,089 firms with a trading volume of $14.9tn.

8



T
ab

le
1:

D
at
a
P
re
p
ra
ti
on

an
d
F
il
te
ri
n
g
P
ro
ce
ss

I

T
hi
s
ta
bl
e
sh
ow

s
al
l
th
e
st
ep
s
of

th
e
pr
ep
ar
at
io
n
an

d
fil
te
ri
ng

pr
oc
es
s
fo
r
ou

r
da

ta
,
w
hi
ch

ar
e
de
sc
ib
ed

in
m
or
e
de
ta
il
in

A
pp

en
di
x
A
.
T
ra
ns
ac
ti
on

s,
T
ra
di
ng

D
ay
s,

an
d

T
ra
di
ng

M
on

th
s
ar
e
re
po

rt
ed

in
to
ta
ln

um
be

rs
.
T
he

pe
rc
en
ta
ge

nu
m
be

rs
ne
xt

to
ea
ch

va
ri
ab

le
sh
ow

ho
w

m
uc
h
of

th
e
in
it
al

(n
on

-fi
lt
er
ed
)
da

ta
se
t
ou

r
ow

n
da

ta
se
t
af
te
r

th
e
pa

rt
ic
ul
ar

da
ta

pr
ep
ar
at
io
n
st
ep

re
pr
es
en
ts
.

D
at
a
P
re
p
ar
at
io
n
S
te
p
s

T
ra
n
sa
ct
io
n
s

T
ra
d
in
g
D
ay
s

T
ra
d
in
g
M
on

th
s

T
ra

n
sa

ct
io

n
le

ve
l

In
it
ia
ld

at
a
se
t

77
,2
55

,8
87

(1
00

.0
%
)

11
,8
62
,3
57

(1
00
.0
%
)

1,
57
9,
32
1

(1
00
.0
%
)

D
ic
k-
N
ie
ls
en

fil
te
r
1

77
,2
53

,1
40

(1
00

.0
%
)

11
,8
35

,9
78

(9
9.
8%

)
1,
57
4,
45
7

(9
9.
7%

)
D
ic
k-
N
ie
ls
en

fil
te
r
2

76
,5
80

,8
43

(9
9.
1%

)
11

,8
22

,5
64

(9
9.
7%

)
1,
57
1,
10
3

(9
9.
5%

)
D
ic
k-
N
ie
ls
en

fil
te
r
3

73
,5
39

,6
06

(9
5.
2%

)
11

,8
09

,7
41

(9
9.
6%

)
1,
57
0,
22
2

(9
9.
4%

)
A
bs
ol
ut
e
pr
ic
e
fil
te
r

73
,4
77

,6
94

(9
5.
1%

)
11

,7
98

,4
51

(9
9.
5%

)
1,
56
8,
10
4

(9
9.
3%

)
In
tr
a-
da

y
m
ed

ia
n
fil
te
r

73
,4
55

,4
81

(9
5.
1%

)
11
,7
54

,9
51

(9
9.
1%

)
1,
56
5,
79
1

(9
9.
1%

)
P
re
ce
di
ng

-t
ra
ns
ac
ti
on

s
m
ed

ia
n
fil
te
r

73
,0
80

,6
60

(9
4.
6%

)
11

,7
28

,3
50

(9
8.
9%

)
1,
56
3,
11
4

(9
9.
0%

)

D
ai

ly
le

ve
l

A
gg

re
ga

te
d
da

ta
se
t

11
,7
28
,3
50

(9
8.
9%

)
1,
56
3,
11
4

(9
9.
0%

)
T
ra
di
ng

da
y
m
ed

ia
n
fil
te
r

11
,3
20

,4
26

(9
5.
4%

)
1,
55
3,
98
4

(9
8.
4%

)
M
er
gi
ng

w
it
h
F
IS
D

10
,2
22
,3
33

(8
6.
2%

)
1,
35
4,
65
2

(8
5.
8%

)
F
ilt
er
in
g
ac
co
rd
in
g
to

bo
nd

ch
ar
ac
te
ri
st
ic
s

9,
78
5,
02

6
(8
2.
5%

)
1,
19
6,
73
7

(7
5.
8%

)
F
ilt
er
in
g
bo

nd
m
on

th
s
w
it
h
m
or
e
th
an

10
tr
ad

in
g
da

ys
6,
81
1,
66

4
(5
7.
4%

)
42
7,
13
6

(2
7.
0%

)

M
on

th
ly

le
ve

l
A
gg

re
ga

te
d
da

ta
se
t

42
7,
13
6

(2
7.
0%

)
F
in
al

da
ta

se
t
(fi
lt
er
ed

by
pr
ic
es

in
m
on

th
’s

la
st

w
ee
k)

32
9,
25
2

(2
0.
8%

)

9



T
ab

le
2:

D
at
a
P
re
p
ra
ti
on

an
d
F
il
te
ri
n
g
P
ro
ce
ss

II

T
hi
s
ta
bl
e
sh
ow

s
al
lt
he

st
ep
s
of

th
e
pr
ep

ar
at
io
n
an

d
fil
te
ri
ng

pr
oc
es
s
fo
r
ou

r
da

ta
,w

hi
ch

ar
e
de
sc
ib
ed

in
m
or
e
de
ta
il
in

A
pp

en
di
x
A
.V

ol
um

e
is
re
po

rt
ed

in
$b

n,
#
B
on

ds
an

d
#
C
om

pa
ni
es

ar
e
re
po

rt
ed

in
to
ta
ln

um
be

rs
.
T
he

pe
rc
en
ta
ge

nu
m
be

rs
ne
xt

to
ea
ch

va
ri
ab

le
sh
ow

ho
w

m
uc
h
of

th
e
in
it
al

(n
on

-fi
lt
er
ed
)
da

ta
se
t
ou

r
ow

n
da

ta
se
t
af
te
r

th
e
pa

rt
ic
ul
ar

da
ta

pr
ep
ar
at
io
n
st
ep

re
pr
es
en
ts
.

D
at
a
P
re
p
ar
at
io
n
S
te
p
s

V
ol
u
m
e
($
b
n
)

#
B
on

d
s

#
C
om

p
an

ie
s

T
ra

n
sa

ct
io

n
le

ve
l

In
it
ia
ld

at
a
se
t

26
,3
06

(1
00

.0
%
)

16
1,
89

6
(1
00
.0
%
)

16
,6
65

(1
00
.0
%
)

D
ic
k-
N
ie
ls
en

fil
te
r
1

26
,3
05

(1
00

.0
%
)

16
1,
89
3

(1
00
.0
%
)

16
,6
65

(1
00
.0
%
)

D
ic
k-
N
ie
ls
en

fil
te
r
2

26
,0
17

(9
8.
9%

)
15

8,
75
9

(9
8.
1%

)
16
,0
09

(9
6.
1%

)
D
ic
k-
N
ie
ls
en

fil
te
r
3

23
,8
17

(9
0.
5%

)
14

7,
17
3

(9
0.
9%

)
15
,5
98

(9
3.
6%

)
A
bs
ol
ut
e
pr
ic
e
fil
te
r

23
,8
04

(9
0.
5%

)
14

7,
70
0

(9
1.
2%

)
15
,4
65

(9
2.
8%

)
In
tr
a-
da

y
m
ed

ia
n
fil
te
r

23
,8
02

(9
0.
5%

)
14

6,
32
7

(9
0.
4%

)
15
,2
98

(9
1.
8%

)
P
re
ce
di
ng

-t
ra
ns
ac
ti
on

s
m
ed

ia
n
fil
te
r

23
,6
55

(8
9.
9%

)
14

5,
25

9
(8
9.
7%

)
15
,2
65

(9
1.
6%

)

D
ai

ly
le

ve
l

A
gg

re
ga

te
d
da

ta
se
t

23
,6
55

(8
9.
9%

)
14

5,
25
9

(8
9.
7%

)
15
,2
65

(9
1.
6%

)
T
ra
di
ng

da
y
m
ed

ia
n
fil
te
r

22
,7
51

(8
6.
5%

)
13

9,
39
2

(8
6.
1%

)
14
,6
82

(8
8.
1%

)
M
er
gi
ng

w
it
h
F
IS
D

21
,2
71

(8
0.
9%

)
86

,2
42

(5
3.
3%

)
5,
57
6

(3
3.
5%

)
F
ilt
er
in
g
ac
co
rd
in
g
to

bo
nd

ch
ar
ac
te
ri
st
ic
s

19
,5
25

(7
4.
2%

)
47

,0
88

(2
9.
1%

)
3,
28
3

(1
9.
7%

)
F
ilt
er
in
g
bo

nd
m
on

th
s
w
it
h
m
or
e
th
an

10
tr
ad

in
g
da

ys
17

,0
40

(6
4.
8%

)
18

,9
35

(1
1.
7%

)
2,
45
2

(1
4.
7%

)

M
on

th
ly

le
ve

l
A
gg

re
ga

te
d
da

ta
se
t

17
,0
40

(6
4.
8%

)
18

,9
35

(1
1.
7%

)
2,
45
2

(1
4.
7%

)
F
in
al

da
ta

se
t
(fi
lt
er
ed

by
pr
ic
es

in
m
on

th
’s

la
st

w
ee
k)

14
,9
10

(5
6.
7%

)
13

,8
42

(8
.5
%
)

2,
08
9

(1
2.
5%

)

10



In our work, we aim at capturing the default risk component of a bond’s return by its credit rating,

although Credit Default Swaps (CDS) may appear more precise in quantifying default risks. Becker

and Milbourn (2011) and Bolton et al. (2012) provide theoretical and empirical evidence of competition

and conflicts of interest within the credit rating industry that may result in inefficient ratings with

decreasing ability to predict default, while Bar-Isaac and Shapiro (2013) detect countercyclical credit

rating to the extent that credit rating agencies are more likely to issue less accurate ratings in boom

times than during recessionary periods which is supported by Baghai et al. (2014) and Xia (2014),

who find that rating agencies become more conservative and adopt stricter rating standards over time.

On the other hand, CDSs have seen an enormous rise in popularity during the last decade and

Ericsson et al. (2009) even show that the CDS spread measure of a firm’s default risk more precisely

than credit ratings. Furthermore, Flannery et al. (2010) evaluate the viability of CDS spreads as

substitutes for credit ratings and support using CDS for regulatory purposes. Although, a CDS

spread does not only reflect the default risk, but also contains a liquidity premium itself (Bongaerts et

al. (2011), Junge and Trolle (2013), and Tang and Yan (2013)) as well as counterparty risk (Arora et

al., 2012), we consider CDSs as a more accurate measure of default risk than credit ratings. However,

we rely on credit ratings due to a very practical reason; CDSs are only traded for a very small set

of bonds so that we would not be able to match every bond of our final data set with a respective

CDS spread. Furthermore, as our work aims at examining the differing behavior of bonds with very

different credit quality, we believe that credit ratings are sufficiently accurate in order to correctly

categorize the bonds according to their credit risk.

3.2 Summary Statistics

As displayed in Table 2, the number of bonds in our final data set amounts to only 8.5% of the

initial scope retrieved from TRACE; however these bonds comprise 56.7% of the dollar volume of

the initial sample. Hence, the scope of the liquidity analyses in our work is limited to a relatively

small set of bonds that accounts for approximately half of the markets turnover. The major part of

bonds is filtered out due to lacking information in the FISD database (32.8% of bonds), non-standard

embedded options (24.2% of bonds) and too infrequent trading activity for applying our set of liquidity

measures (17.4% of bonds)7. Especially given the latter selection criteria of frequent trading days,

the bonds in our sample are likely to be more liquid than a typical bond. Table 3 displays the

average bond’s characteristics for our sample in comparison to the initial cleaned sample (after the

Dick-Nielsen (2009) and various price filters) over time. The average monthly dollar volume in our

sample is $36.7m compared to $14.3m in the initial cleaned sample and the average number of trading

days per year amount to 143 days in our sample compared to 55 days in the initial cleaned sample.

Thus, the bonds in our sample are also relatively more liquid. Given that our focus is to study the

significance of illiquidity for corporate bonds, such a bias in our sample toward more liquid bonds,

although not ideal, will only help to strengthen our results if they already show up for the more liquid

bonds.
7The share of bonds filtered out by these criteria changes according to the sequence in which the filters are applied,

e.g., bonds not listed by the FISD exhibit a higher proportion of bonds with infrequent trading days.
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However, we find that our data set’s market coverage is at a considerably higher level compared

to similar work since we do only exclude observations that are specifically unfeasible for our liquidity

measures and subsequent analyses. Other research in the field tends to apply rough filters that facilitate

the data preparation process, but drop actually useful observations. Representing the papers most

comparable to our investigation with respect to data, Bao et al. (2011), Lin et al. (2011), and Dick-

Nielsen et al. (2012) base their analyses on a sample of bonds that amounts to only 7.5%, 84.7%8,

and 38.8% of the number of bonds in our sample, respectively. To the best of our knowledge, there is

only one study, which comprises a larger dataset than ours, namely that of Friewald et al. (2012) with

more than 20,000 bonds. However, they use a different approach to get the inputs for the regression

analysis. More specifically, they simply average each variable for every week and run regression on

those averages regardless how many observation this week has. In contrast, we compute everything on

a monthly basis (aggregating the daily observation), but require at least 10 trading days in a month;

otherwise the bond month is filtered out. The problem associated with the approach of Friewald

et al. (2012) in using weekly averages is that it might lead to very noisy estimates, since a weekly

average might be inferred from only one trade. Another fact puts the large number of the bonds of

Friewald et al. (2012) into perspective: the major difference of us is applying the filter of eliminating

bond months with less than 10 trading days. This reduces the number of bonds by 60%, but the

overall trading volume only shrinks by 13%. On the contrary, our approach reduces the risk of a few

observations, but considerably distorting observations. Thus, when comparing our sample size with

that of Friewald et al. (2012), not our final number of bonds after all data preparation steps would

be of relevance, but the number of bonds before eliminating months with less than 10 trading days.

Before this step, we have a total of 47,000 bonds and hence more than twice as many as Friewald et

al. (2012). Concluding, we can say that we have one of the most comprehensive data sets for the U.S.

corporate bond market in the academic literature and are consequently able to capture a very high

fraction of the illiquid bonds.

8In light of the longer sample period of Lin et al. (2011) amounting to c.15 years compared to our sample of c.10
years, their number of bonds totaling 85% of the number of our sample appears to represent an even smaller share of
the entire bond universe. Lin et al. (2011) are able to create such a long-span sample as they consolidate TRACE prior
to its full implementation with the NAIC data set that is unfortunately not available to us. Besides, Mahanti et al.
(2008) and Bao et al. (2011) argue that some issues with the construction of reliable illiquidity measures exist in the
NAIC data.
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4 Methodology

4.1 Liquidity Measures

The dimension of liquidity that we focus on in our work represents the ease of finding counterparties

to trade with. For a given bond, this ease of trading differs with respect to type of order, e.g., for a

given bond, a block trade may be easier to carry out, while executing orders in a short period of time

may be more difficult. As a consequence, liquidity comprises three dimensions: tightness represents

the magnitude of the bid-ask spread and measures the implicit “transaction costs” charged by market

makers, depth is the degree to which one can execute orders immediately with little market impact,

and resilience describes how fast prices recover to “equilibrium” levels after trading shocks. Since

the latter two are very closely related, they are often subsumed under the term of market impact.

In over-the-counter markets, data about the bid-ask spreads is often not available for researcher and

market impact is per se not directly observable; therefore numerous studies have proposed diverse

measures to capture and proxy the different dimensions of liquidity. Due to the sheer number of

different liquidity measures, there are only a few studies aiming at answering the question which

liquidity measure performs best. Examples for such studies are Goyenko et al. (2009) for exchange

traded stocks, Marshall et al. (2012) for commodity futures, and – more importantly for us – Schestag

et al. (2013) for corporate bonds. Importantly, Schestag et al. (2013), besides other authors, find that

all liquidity measures show a high level of co-movement, irrespective of the dimension they measure,

and that low-frequency proxies (which are based on daily price levels) show similar results to more

sophisticated high-frequency measures (which are based on intra-day data).

One caveat about applying liquidity measures on corporate bonds needs to be mentioned since

almost all liquidity measures have initially been developed for the stock market. The vital difference

of bonds to stocks is its lower trading frequency, which makes it rather impossible to determine high-

frequency measures. Therefore, we focus on liquidity proxies on daily price levels, which are generally

not inferior to their more sophisticated high-frequency counterparts as described above. We select

our specific measures among the wide pool of proxies according to either high estimation power in

comparative studies or the ability to detect statistically and economically significant liquidity premia

in papers directly investigating corporate bonds. In order to obtain a comprehensive set of measures,

we chose two proxies for both the market impact and the bid-ask spread each. The market impact shall

be captured by the Amihud (2002) as well as the Pastor-Stambaugh (2003), and the bid-ask spread

by the Roll (1984) and a proprietarily extended version of the Corwin-Schultz (2012) measure9.

The Amihud measure is ranked among the best proxies in studies of Goyenko et al. (2009) and

Fong et al. (2013) concerning stocks as well as in the study of Schestag et al. (2013) for corporate

bonds and is successfully used, among others, in the work of Dick-Nielsen et al. (2012) and Friewald

et al. (2012). The Pastor-Stambaugh measure convinces by capturing significant liquidity effects in

the article of Lin et al. (2011), which is highly comparable to our work with respect to data and the

level of time horizon. Schestag et al. (2013) also states the Roll and Corwin-Schultz measures as very

accurate liquidity estimators. While the Roll measure is also effective in the analysis of Friewald et al.
9For ease of reading, we forego in the following to name the year in which the measure was developed.
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(2012), the Corwin-Schultz measure additionally convinces by its simplicity of reasoning in deriving

an easily programmable, closed-form solution for the bid-ask spread10.

For creating liquidity measures and analyzing their effects on asset prices, it is important to pay

close attention to the sign and time horizon in which the measure is defined. We specify the measures

as il liquidity measures rather than liquidity measures: They are monotone positive and increase in

illiquidity, not in liquidity, i.e. the higher a measure the more illiquid the bond is. Consequently, we

describe our measures as “illiquidity measures” in the following. The second result-determining factor

is the time dimension. We focus on monthly price changes in bonds and, importantly, ascribe for every

bond the illiquidity measure of a month to the return of the exact same month. In comparison, other

studies assign, for example, illiquidity measures of the three previous months to a month’s return.

The difference appears at first to be small, but has major effects. Our definition leads to an analysis

of actual returns, i.e. how returns change according to the illiquidity characteristics. For example

should we expect that returns decrease when the illiquidity of a bond increases. The second definition

aims at expected returns, i.e. how returns compensate for an expected illiquidity characteristic that

co-moces strongly with its historical magnitude. For example should we then assume that returns are

higher when the illiquidity of a bond has been high during the preceding months.

The lack of frequent trading of corporate bonds raises another issue. The Amihud, Pastor-

Stambaugh, and Roll measures are based on the daily return of a security which is typically defined

as the return between two consecutive trading days. For ease of reading, we define the most recent

preceding day with any trading activity of a specific bond as its previous day of trading, so, for ex-

ample, the previous day of trading for a day can be actually five days ago if there does not occur any

trading during the four days in between. Due to the infrequent nature of corporate bond trading, we

define the return on a day as the relative price change of the previous day of trading to the current

day. Consequently, the return is not necessarily defined over consecutive trading days. Recalling that

a bond’s clean return for a trading day also includes the bond’s drift towards its principal over time

(in case that the bond is not at par), a return defined over t trading days also includes t times the

daily drift. So if our daily return is, for instance, actually defined over several trading days, this return

includes price drifts of more than one day. As a result, the illiquidity measure of a discount bond

(which exhibits a positive drift) would be calculated on the basis of a higher return in case of trading

days without any trading than in case of trading activity every day, all else being equal. In order to

limit this bias in our liquidity measures and to have enough illiquidity estimates per month to derive

a monthly illiquidity measure, we impose the requirement of more than ten trading days per month

for including a bond’s month in our sample. As, on the other hand, the Corwin-Schultz measure is

specifically based upon the idea of the variance of a return being proportional to its return period,

the approximation of treating the previous day of trading as the preceding trading day would distort

the measure in its fundamental idea. Consequently, we derive an extended closed-end formula of the

Corwin-Schultz estimator in order to specifically account for the number of days that lie between two

days of actual trading activity.
10Except for the liquidity measure comparison study of Schestag et al. (2013), the Corwin-Schultz measure has not

yet been applied to the corporate bond market, but found application in liquidity studies for options (Deuskar et al.,
2011) and for stocks (Karstanje et al. (2013) and Kim and Lee (2014)).

15



4.1.1 Amihud Price Impact Measure

The illiquidity measure developed by Amihud (2002) is one of the most widely used illiquidity measures

and was originally developed for the equity market and is conceptually based on Kyle’s (1985) λ 11.

Illiquidity for a security is high if a large volume can only be traded with a large price impact, and

vice versa. The intuition behind the measure is that a security is more illiquid if there are less market

participants willing to absorb any order flow so they demand a higher price change in their favor in

order to trade. Consequently, this security shows a higher absolute price change for every U.S. dollar

of volume traded so that the daily Amihud measure is the ratio of the absolute return of a security

to its volume traded on a given day. We then average the daily measures up to the monthly Amihud

estimator of

AMi,m =
1

Dm

D∑
d=1

|ri,d,m|
Vi,d,m

, (2)

where Dm is the number of days for which security i is traded in month m , ri,d,m is the return on

security i on day d of month m , and Vi,d,m is the non-zero dollar trading volume of security i on day

d of month m.

4.1.2 Pastor-Stambaugh Price Reversal Measure

Pastor and Stambaugh (2003) develop an illiquidity measure which captures temporary price changes

associated with order flow. It aims at capturing the extent to which a price recovers to its “equilibrium”

level after a trading induced shock. The rationale is that the more an initial price change reverses, the

more it is just a temporary price distortion caused by order flow with too few absorbing counterparties,

rather than a fair adjustment to the fundamental value of the security. Hence, the reversion is stronger

the more illiquid the stock is. That is, the bigger the liquidity motivated price impact on the day

before.12 Alike the idea underlying the Amihud measure in which the return is proportional to trading

volume for a given level of illiquidity, the price reversal is assumed to be proportional to the volume of

the day before for securities with the same illiquidity. Only if the price reversal is stronger in proportion

to its causing trading volume, the security is considered more illiquid. The monthly Pastor-Stambaugh

measure is defined by the coefficient γ in the following regression

rei,d+1,m = θi,m + φi,mri,d,m + γi,msign
(
rei,d,m

)
Vi,d,m + εi,d+1,m d = 1, 2, ..., D, (3)

where rei,d+1,m is the bond’s return in excess of the risk free rate of day d + 1 in month m , ri,d,m is

the return of bond i on the previous day of trading of d + 1 , sign
(
rei,d,m

)
is an indicator whether

rei,d,mis positive or negative, and Vi,d,m is the bond’s dollar volume on the previous day of trading of

11Hasbrouck (2009) shows that the Amihud measure and Kyle’s λ have a correlation of 0.82.
12The insidious thing about logic itself is that the mere absence of illogicality does not necessarily lead to the truth.

In this example, one could argue that the more a price reverses the next day, the more liquid the security is because then
an initial price shock would be absorbed to a higher extent identifying a higher number of trading parties. However,
this argumentation bears the hidden assumption of the initial price change being independent of the liquidity of the
security. The Pastor-Stambaugh measure assumes that the initial price distortion is related to liquidity, but its reversal
during the next day is not.
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d+ 1. The sign indicator of the previous day’s return is necessary to define the sign of price reversal.

If γ is negative it captures a price reversal, otherwise it captures a momentum effect. In the latter

case we set γ to zero for our illiquidity measure, otherwise we defined the monthly Pastor-Stambaugh

illiquidity measure as the negative of γ:

PSi,m = max (−γi,m, 0) . (4)

4.1.3 Roll Bid-Ask Spread Estimator

While the two measures just described above focus on the price impact, the Roll measure serves as a

proxy for the bid-ask spread, i.e. the direct costs associated with a transaction. A long time before

liquidity actually became again a hot topic in finance during the 2000s, Roll (1984) bases his spread

measure on the well-known statement that, if markets are efficient and trading costs are zero, prices

fluctuate randomly and consequently show no serial dependence in successive price changes (aside from

that resulting from the serial dependence of expected returns). If, however, a bid-ask spread exists

prices will jump back and forth between the ask and bid quota according to whether the trade is buyer

or seller initiated. This bid-ask bounce results in negative serial correlation among transactions and

also across trading days. The larger the negative serial correlation is, the larger the bid-ask spread of

the security is. Consequently, the monthly Roll measure is

RLm = 2
√
−Cov (ri,d,m, ri,d−1,m) , (5)

where ri,d,m is the return of security i on day d in month m. The monthly covariance is determined

on basis of all traded days within the respective month. If the covariance is positive, we set the Roll

measure to zero.

4.1.4 Extended Corwin-Schultz Bid-Ask Spread Estimator

Corwin and Schultz (2012) just recently developed a new bid-ask proxy based on the simple idea that

the variance increases proportional in time. Considering the high-low spread, i.e. the difference in the

highest to the lowest price within a given trading day, they assume that high prices are a result of a

buy order while low prices correspond to sell orders. Consequently, the spread between the high and

low prices during a day represents the daily variance plus the bid-ask spread. Since the variance is

proportional to the return interval, the high-low spread over two consecutive days (i.e. the difference

in the highest to the lowest price over both days), represents twice the daily variance, but just once the

bid-ask spread. This simple, yet brilliant idea allows solving for both the spread and the variance by

deriving two equations, the first as a function of the high-low ratios on 2 consecutive single days and

the second as a function of the high-low ratio from a single 2-day period. This results in a closed-end

formula for the bid-ask spread.

It has to be noted that the Corwin-Schultz measure was actually created for stocks and assumes a

geometric Brownian motion. The bond’s characteristic of pull-to-par (i.e. the bond’s price approaching

its par value over time) contradicts the random walk, however we believe that for short time periods
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of several days, the pull-to-par effect can be neglected, so that we can also assume the geometric

Brownian motion for daily bond returns. Since the pivotal idea of the Corwin-Schultz measure is that

the variance of a return doubles over two consecutive days, the measure is only applicable to two

consecutive days with trading. Due to infrequent trading nature of corporate bonds, this restriction

would limit our claim on scope. Applying the original formula simply on the closest days with any

trading activity (i.e. disregarding the trading days without any trading activity in between) would

distort its central idea. Paul Schultz, contacted by us in March 2014, confirms our remark: “It is

hard to estimate liquidity with corporate bonds because they trade infrequently. Hence I think our

estimator would yield very noisy estimates”. Consequently, it is crucial to account for the fact of

trading days without any trading activity. Therefore, we derive an extended closed-end formula that

is flexible to the number of trading days that lie between two days with trading activity. If, for

example, trading only occurs on a Monday and Friday in a given week, the high-low spread over the

days of Monday and Friday represents once the bid-ask spread and five times the daily variance instead

of only twice the daily variance as in the original Corwin-Schultz measure. Appendix B shows the

detailed derivation of our extension, which leads to the Extended Corwin-Schultz measure

CSi =
2 (eα − 1)

1 + eα
, (6)

where

α =

√
β −√γ
√
T − 1

(7)

β =
T−1∑
j=0

[
ln

(
H0
t+j

L0
t+j

)]2

(8)

γ =

[
ln

(
H0
t,t+T−1

L0
t,t+T−1

)]2

, (9)

Where Ht;t+T−1 is the highest price over the T days of t; t+ 1; . . . ; t+T −1 and Lt;t+T−1 is the lowest

price over the T days of t; t+1; . . . ; t+T−113. In case of just a single trade per day (leading to a high-

low ratio of 1), we set the bid-ask proxy to missing. We define the monthly Extended Corwin-Schultz

measures as the average of the daily estimates.

We take the trading volume-weighted average of every bond-specific illiquidity measure in order to

derive market-wide illiquidity measures. Since the scales of the illiquidity measures are arbitrary, we

standardize every (bond-specific and market-wide) measure by its mean to allow for comparability.
13We use observed high-low ratios to calculate the spread proxy, while the estimator is actually derived using expecta-

tions. As the variance and bid-ask spread are non-linear functions of the high-low spread, the average spread estimates
are biased. Corwin and Schultz (2012) show that this does not affect the outcome of their estimator to a large extent.
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4.2 Fama-MacBeth Procedure

4.2.1 Risk Source Identification

Liquidity affects asset prices in various ways. As already outlined in the literature review, many studies

have examined the effect of a bond’s specific liquidity (liquidity level), while recent studies have shifted

their attention to whether there is a premium associated with the co-movement of a bond’s return

with market wide liquidity shocks (liquidity risk).

As Bongaerts et al. (2012) show, both liquidity level and liquidity risk are typically highly related

so that omitting one of the two could lead to distorted results. Consequently, we include both types

of liquidity of relevance for asset pricing, but want to point out that liquidity level is a characteristic,

while liquidity risk describes a factor. This difference has the implication that a priced characteristic

is compensated directly, by the mere fact of featuring it, while a priced factor leads only to a premium

if the asset co-moves with the factor. Hence, not the level of the factor is compensated, but the specific

exposure of an asset’s return to it. Applied to our case, we try to analyze whether, on the one hand,

the specific illiquidity (liquidity level) and, on the other hand, the bond’s sensitivity to market-wide

liquidity shocks (liquidity risk) lead to a higher compensation.

4.2.2 Risk Factor Sensitivities

In order to isolate the effect of liquidity, we follow Elton et al. (2001) and Lin et al. (2011) by

adjusting for five common risk factors, namely the term (TERM), default (DEF), market (MKT), size

(SMB) and book-to-market (HML) factor. In their seminal paper of 1993, Fama and French show

that those five risk factors seem to explain average returns on both stocks and bonds, while the first

two appear to be intuitively connected to bonds (Gebhardt et al., 2005). TERM describes the risk

from unexpected changes in the term structure of interest rates, while DEF arises from changes in the

overall default probability of the bond market in response to changing economic conditions. The latter

three represent the well-known Fama-French three factors of the standard stock pricing model which

is why they do not need further explanation here. However, they also affect bond returns since both

bond and stocks are the investor’s claims on the same underlying assets of the firm so that common

stock market factors such as market, size and book-to-market should have spill-over effects to bonds.

In order to investigate whether liquidity is important in bond asset pricing, we perform the Fama-

MacBeth (1973) procedure, which estimates the premium rewarded for every risk factor exposure. The

procedure itself consists of two steps, a bond-specific time series regression to determine every bond’s

sensitivities to the risk factors and a cross-section regression of the factor betas and characteristic

on expected returns to derive risk premia (we use the term “risk source” to describe both of the

aforementioned characteristics and factors). First, we estimate betas of the identified risk factors in a

time-series regression of a linear factor model for every individual bond

rit − rft = αi + βiTERMTERMt + βiDEFDEFt + βiMKTMKTt + βiSMBSMBt

+ βiHMLHMLt + βiLIQmkt
LIQmkt,t + εit,

(10)
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where TERM is the difference in the monthly 30-year T-bond return and one month T-bill returns,

DEF is the difference between the monthly return on a value-weighted portfolio of our entire bond

sample and the average return on government bonds, i.e. 30-year T-bond minus one month T-bill (all

government bond returns are obtained from Datastream). The Fama-French three factors MKT, SMB,

and HML are obtained from Kenneth French’s data library, and therefore are defined as described in

Fama and French (1993). The liquidity factor, LIQmkt, is the negative of the residual from an AR(1)

process on the market-wide illiquidity measures as described in section 4.1. We will run the regression

for each of our four illiquidity measures separately. Following many studies (such as Pastor and

Stambaugh (2003), Acharya and Pedersen (2005); and Bao et al.(2011)), we aim at eliminating the

auto-regressive moments of the market-wide illiquidity that could be introduced by serial correlation of

the returns on which they are defined. The Bayesian information criteria estimates an AR(1) process

as most adequate for all of the four illiquidity measures. We take the negative of the illiquidity measure

in order to define the factor in the dimension of liquidity (and not il liquidity), since co-movements

with the market-wide liquidity introduce cyclicality so as to create a positive (and not negative) risk

premium.

4.2.3 Risk Premia

The second step of the Fama-MacBeth procedure runs a cross-section regression of the bonds’ risk

sources (factor betas and characteristics) on its expected returns for every month separately

Et(r
e
i ) = αi + λt,TERMβi,TERM + +λt,DEFβi,DEF + λt,MKTβi,MKT + λt,SMBβi,SMB

+ λt,LIQmkt
βi,LIQmkt

+ λt,LIQlvl
βi,LIQlvl

+ εit,
(11)

where λ represents the coefficient of each risk source in the cross-section. The rationale is that,

assuming the risk source is priced, a higher factor exposure, i.e. beta/higher characteristic should also

be compensated by a higher expected return. However, if the risk source is not priced by the market

participants, a high beta of the factor/high characteristic should not lead to a higher expected return so

as to result in an insignificant or zero lambda. As investors should expect a certain return conditional

on the beta up to that date, one should actually run the cross-section regression of expected returns on

the beta of some period before that month. Fama and MacBeth (1973) use a five-year rolling window,

however, we simplify by using the beta of the entire sample period for the regression in every month

because the accurate procedure would trim the time period of the regression and as Cochrane (2005)

states that the simplified version does not distorts the results by a significant extent. As mentioned

above we also include liquidity level, LIQlvl, as a risk source in the regression here14. The regression

results in one coefficient (risk premium) for every risk source and for every month. We then average

the coefficients for every risk factor over time to derive an average risk premium per factor for our

sample.
14Since adjusting every company-specific liquidity level for serial auto-correlation would result in an extreme compu-

tational demand, we neglect this adjustment here.
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4.2.4 Expected Returns

Whenever a risk factor is priced, it should become visible in the expected returns. However, most tests

of asset pricing models and factors use actual returns as proxies for expected returns. It implicitly

assumes rational expectations (Campbell et al., 1998), i.e. that the average realization is a good proxy

for the expectation. This practice is justified on the grounds that in sufficiently long time periods,

average actual returns will “catch up and match” the expected returns. However, this assumption

has significant limitations. Lundblad (2005) and Pastor et al. (2008) show via simulations that

actual returns do not necessarily converge to expected returns, except for very long time periods.

Furthermore, Elton (1999) observes that there have been time periods of more than 10 years in which

realized stock returns are lower than the risk-free rate (1973-1984) and periods of 50 years in which

high-yield bonds underperform the risk-free rate (1927-1981).

Especially for our sample of corporate bonds, we expect that historical returns are extremely noisy

because of the skewed nature of bond returns due to the rare occurrence of the very severe event

of default. Furthermore, our sample period of 9 years can be considered relatively short. Another

source of noise is created by the subprime crisis in our sample. During an unexpected recession, bond

returns are typically negative, while increasing risk premia (or increasing co-movements to risk factors)

typically increase expected returns. Hence, actual and expected returns move in opposite directions

to an economically significant extent.

For all those reasons, we rely on the approach to determine expected returns from yield spreads

which was first formulated by Elton et al. (2001) and then applied by only a small group of researchers

such as Campello et al. (2008), Huang and Huang (2012), and De Jong and Driessen (2012), who show

that it yields much more accurate estimates than historical averages15. To the best of our knowledge,

Bongaerts et al. (2012) is the only paper using this approach to identify the effects of liquidity. The

approach derives the expected excess return E(reit) from taking the observed credit spread (yield-to-

maturity) directly submitted to TRACE and correct it not only for the corresponding government

yield, but also for the major driver of bond returns, the expected default loss. Hence this expected

excess returns is closely related to the “credit spread puzzle” since it describes the part of the expected

return that is not explained by the time value of money or credit risk caused by the bond issuer. This

expected excess return is then defined as

Et(r
e
i ) = (1 + yit)(1− Lπit)1/Tit − (1 + rft), (12)

where yit is the observed yield-to-maturity, L is the loss given default, πit is the cumulative default

probability over the entire maturity and Tit is the duration of the bond i, while rft represents the yield

of the government bond equal to the maturity of the bond. The bond’s duration is used as the bond is

approximated by a zero-coupon paying bond with the same duration in order to circumvent the tedious
15If expected returns reduce the noisiness of realized returns, it might appear reasonable to also use them in the

first step of the Fama-MacBeth (1973) procedure in order to increase the accuracy in estimating factor betas. This
is, however, a fallacious conclusion. Consider, for example, that a bond has a constant beta over time to only one
risk factor. Hence, its actual returns co-move with that factor to always the same extent. This should result in the
expected return of the bond staying constant over time as the inherent risk exposure (the factor beta) does not change.
Consequently, the realized return shows a beta loading, while the expected return does not.
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issue of accounting for coupon payments. Assuming that default losses are incurred only at maturity,

the expected return from holding the security until maturity is(1 + yit)
Tit(1−L/piit). Annualizing this

and subtracting the government bond equal to the maturity of the bond leads to formula (10). We

obtain the cumulative default probabilities from Standard and Poor’s, which are based on the time

period of 1981 to 2005 and can be found in Table 9 in the Appendix16. The cumulative default

probabilities incorporate both the probability of directly defaulting from the current credit rating, but

also the probability to first deteriorate in rating and subsequently default. They typically increase

with maturity since a longer time period makes it generally more probable for the bond to default.

As the information of default probabilities for investors should stem from a time period before the

actual determination of expected returns, we use those default probabilities prior to our sample period

(there is however an overlap for the years 2004 and 2005 as we could not access summary default

probabilities on the basis of information before 2004). Our use of default probabilities introduce a

certain imprecision since we do not update the historical rates on a rolling basis (e.g. an investor in

year 2008 also incorporates the default rates of 2006 and 2007) and as more detailed forward-looking

estimates of default probabilities exist (e.g. Moody’s-KMV database to which we unfortunately do

not have access). As in Bongaerts et al. (2012), we assume a constant loss given default of 60%17.

4.3 Identification of Liquidity Stress Periods

To further deepen our analysis of liquidity in distressed times, we want to investigate whether there

are flight-to-liquidity phenomena in the U.S. corporate bond market during our sample period. A

flight-to-liquidity describes the sharply decreased willingness of investors to hold illiquid assets, which

is why they “fly” from such illiquid assets towards very liquid assets that can easily be sold when

funding is needed.

One of the most delicate parts during a study of a flight-to-liquidity – besides its exact definition

– is the identification of periods where a flight-to-liquidity occurs. Most studies that study liquidity

in distressed times, put liquidity stress periods on a level with the time periods of financial crises

(see, e.g., Chordia et al., 2005; Dick-Nielsen et al., 2012; and Friewald et al., 2012).This approach,

however, may not be suitable for an investigation of flight-to-liquidity periods, since these usually are

of relatively short duration and create the problem of determining the exact end of the stress period.

Given these weaknesses, we make use of the burgeoning applications of Markov regime-switching

models in empirical finance18 and endogenously identify liquidity stress periods with the help of

Markov regime-switching models, first proposed by Hamilton (1989). The implicit assumption of

Markov regime-switching models is that the data is driven by a process that undergoes abrupt changes,
16Surprisingly, the Canadian Gas Transmission appears to be very interested in default characteristics and offers the

report for download online under http://www.gastransmissionnw.com/rate_case_filings/documents/SPGTN18.pdf.
17Elton et al. (2001) and De Jong and Driessen (2012) use rating-specific recovery rates from Altman et al. (2000).

However, we think that this exerts some flaws. Consider a recovery rate of e.g. 60% for AAA rated bonds. This recovery
rate is only suitable if the bond defaults while having the AAA rating. If the bond deteriorates to BBB and then defaults,
the recovery rate of BBB ratings is adequate. Since the cumulative default probability does not only incorporate the
probability of directly defaulting from the current credit rating, but also the probability to first deteriorate in rating
and subsequently default, it is not possible to specifically ascribe a bond to a rating-specific recovery rate. For that
reason, we assume a constant recovery rate of 40% (i.e. loss given default of 60%) for all ratings.

18See Guidolin (2011a, 2011b) for a survey of this literature and Hamilton (1994, 2008) for concise introductions to
Markov regime-switching models.
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induced for example by exceptional events. This means that we ask the data directly to tell us when

the system is likely to be in a liquidity stress regime and do not derive it from other indirect (e.g.

macroeconomic or financial) indicators. Consequently, we derive the regimes for the liquidity stress

periods in purely statistical terms without any apparent underlying economic intuition, what also

creates a problem related to endogeneity. Nonetheless, this approach is to our belief superior to

a more naïve one for identifying stress times19. In addition, we will check the plausibility of our

identified stress periods using economic reasoning.

We follow Acharya et al. (2013) in estimating a number of Markov regime-switching regressions.

The intuitive idea behind this approach is that in a regression model the slope and intercept coefficients

may follow a Markov regime-switching dynamics in times of normal and distressed times. The regime-

switching regression results in probabilities of being in a particular regime at every point in time of the

sample period. Unlike most other studies, which leave the modeling at that, we use the result of these

regressions to determine the concrete most probable regime path (opposed to abstract probabilities)

over our time horizon by using two powerful algorithms, namely the Baum-Welch algorithm and

the Viterbi algorithm. This path returns for every months in our sample the predicted regime by the

Markov regime-switch model on which we can further analyze possible flights-to-liquidity. We describe

the entire procedure in detail in the following subsections.

4.3.1 Markov Regime-Switching Regression

We estimate a Markov regime-switching model for corporate bond betas, allowing the liquidity risk

beta coefficient of our corporate bond pricing model to vary between two regimes, which should repre-

sent normal and stress liquidity periods. Moreover, we allow the variance of the normally distributed

error term to change between the two regimes, which represents a higher uncertainty regarding the

predictive power of the model in each state of the world. Concluding, this means that we solely allow

the liquidity coefficient of the time-series regression (8) to switch between two regimes, while the other

coefficients remain constant. This is reasonable as investors should be more sensitive towards market-

wide liquidity during flight-to-liquidity periods. Formally, the Markov regime-switching regression can

be represented in the following form:

rit − rft = αi + βiTERMTERMt + βiDEFDEFt + βiMKTMKTt + βiSMBSMBt

+ βiHMLHMLt + βstiLIQmkt
LIQmkt,t + εstit with εit ∼ N

(
0, σ2

st

)
,

(13)

where all coefficients and factors are defined as in (8) and the superscript index st indicates whether the

coefficient is allowed to switch between regime stε (1, 2). The transition between regimes is stochastic

in Markov regime-switching models, so that there is no clear answer to whether a flight from one to

the other regime actually occurs or not. It is, however, assumed that st follows a homogeneous first

order Markov chain20 with constant transition probabilities, which can be represented in the following
19See, for example, Barrell et al. (2010) for a discussion about the problems associated with exogenous crisis identifi-

cation.
20A first order Markov chain is a special kind of time-discrete stochastic process that undergoes transitions from one

state to another (in a finite state space). Furthermore, a first order Markov chain is characterized by the fact that the
probability of a certain observation xt at time t depends only on the most recent observation xt−1 at time t − 1 and
hence is independent from the sequence of observation that preceded it, which is the so-called Markov property.
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transition matrix

P =

 P(st = 1|st−1 = 1) P(st = 2|st−1 = 1)

P(st = 1|st−1 = 2) P(st = 2|st−1 = 2)

 =

 p11 p12

p21 p22

 , (14)

where pij (i, j = 1, 2) denote the transition probabilities of st = j given that st−1 = i. This means

that the probability of a switch from state 1 to state 2 between time t− 1 and t will be given byp12
21.

Likewise the probability of staying in state 1 is given by p11. The second row of P can be interpreted

analogously. Given this, the transition probabilities of each row of the transition matrix have to

sum up to 1, since each row represents the full probabilities of the process for all states. For an

intuitively accessible illustration of these relations the reader is referred to Figure 1, which displays a

state diagram for a two-state Markov model.

Figure 1: State Diagram for a Two-State Markov Model

This figure shows the state diagram for a two-state Markov model. The circles in the diagram represent the
two possible states of the process and the arrows represent the transitions between the states. The label on
each arrow represents the probability of that particular transition.

The parameters of Markov regime-switching models are generally estimated via MLE and since

analytical solutions due to the non-linearity of the problem do not exist, solutions are typically derived

via direct numerical maximization or via algorithms. The parameters of our model are estimated by

the MATLAB Markov regime-switching routine of Perlin (2012), which directly maximizes the log

likelihood function (see Perlin (2012) for further details on this procedure) and is based on the Hamilton

filter – the most popular method of regime-switching calibration in economics and finance. Since the

parameter estimation via algorithms seems to be superior to the direct numerical maximization by

employing the Hamilton filter (see Mitra and Date, 2010) and since we are more interested in a binary

series of regimes identified by the regime-switching model, we undertake a few more steps using the

abovementioned algorithms.
21In line with the academic literature, we will use the terms regime and state interchangeably.
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4.3.2 Determination of Regime Path

In order to obtain such a binary regime series, we have to apply the so-called Viterbi algorithm

(Viterbi, 1967), for which we have to introduce hidden Markov models (HMMs)22, which usually find

less application in economics or finance and more in speech recognition (e.g. Rabiner, 1989), gene

finding (e.g. Burge and Karlin, 1997), protein secondary structure prediction (e.g. Krogh et al., 2001),

and volcano-seismic signal detection (e.g. Ibáñez et al., 2009), among others.

Although HMMs and Markov regime-switching models describe the same kind of models in the

sense that one observes a set of variables (in our case regression coefficients) and aims for determining

the unobservable (hidden) states (in our case liquidity stress period or normal period), we have to make

some adaptions in order to use HMMs in our context. As already mentioned, our regime-switching

routine maximizes the log likelihood function directly – with all its weaknesses – which is why we refine

the estimation of our model parameters by using the Baum-Welch algorithm (Baum et al., 1970) –

a special form of the Expectation Maximization (EM) algorithm for HMMs. Before going into detail

about the algorithm itself, we first have to introduce HMM terminology (for the two-state case), which

we will use afterwards.

The variables relevant for our application of HMMs are the state sequence, which is the (hidden)

sequence of states (liquidity stress period or normal period) over the sample period:

s = {s1, s2, ..., sT−1, sT } st ε (1, 2), (15)

the observation sequence, which is defined as the sequence of observations (represented as integers

since not the manifestation of the observation itself is of interest but the fact whether the observations

are different in value), over the whole sample period:

x = {x1, x2, ..., xT−1, xT } xt ε (1, ..., N), (16)

the transition probabilities, defined as before as the probabilities of going from one state to the other

or staying in one state:

P =

 P(st = 1|st−1 = 1) P(st = 2|st−1 = 1)

P(st = 1|st−1 = 2) P(st = 2|st−1 = 2)

 =

 p11 p12

p21 p22

 , (17)

and the emission probabilities, defined as the likelihood of a certain observation xt, if the model is in

state st, which in matrix notation is equal to a s×N matrix23:

E =

 P(xt = 1|st = 1) ... P(xt = N |st = 1)

P(xt = 1|st = 2) ... P(xt = N |st = 2)

 =

 e11 ... e1N

e21 ... e2N

 . (18)

In order to illustrate all these terms and formulas more descriptively, Figure 2 shows the general
22Strictly speaking, hidden Markov models and Markov regime-switching models describe the same kind of models

with the same underlying idea, but with different fields of application and slightly different methodologies due to different
needs.

23In fact, in our case the observations would be continuously valued (i.e. xtε R), which is why we would get probability
density functions over the observation space for the system being in state st. Such emission probability density functions
would usually need to be parameterized, e.g, by Gaussians mixture models. However, for simplicity reasons and negligible
loss of generality, we assume the values of the observations to be discrete.
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structure of HMMs graphically.

Figure 2: Basic Structure of a Hidden Markov Model

This figure shows the basic structure of a hidden Markov model. A HMM is firstly defined by the transition
probabilities represented by a Markov chain, which determines the (hidden) state st at time t and is secondly
defined by the emission probabilities, which determine the observation xt at time t. The light circles in the graph
represent the hidden states and the darker circles represent the observation process, where each observation
depends only on the present (hidden) state of the Markov model.

Baum-Welch Algorithm

The Baum-Welch algorithm is basically a method that estimates the parameters of a HMM when the

state sequence is unknown, what means that it tries to set the parameters (i.e. transition and emission

probabilities) of the HMM in such way that they model a phenomenon best possible. Consequently,

the Baum-Welch algorithm itself is capable of finding a solution to a HMM just like the Hamilton

filter. However, we use the Baum-Welch algorithm more as a training for our HMM, what means

that we let it improve our estimates from the Markov regime-switching regression (adapted to HMM

terminology) before we go on to the next step, which consists of the determination of the regime path

by applying the Viterbi algorithm.

The functioning of the algorithm is as follows. In a first step, the probabilities of realization of

an arbitrarily model with some initial transition and emission probabilities are calculated. During

the calculation, the algorithm records how often transitions and particular emissions were used. In a

second step, the parameters of the HMM are again calculated, but with the difference that transitions

and emissions used more often get assigned a higher probability while transitions and emissions used

less often get assigned a lower probability. These two steps are iterated until the parameters of the

model do not change substantially or if the maximum number of predefined iterations is reached.

Hence, the Baum-Welch algorithm requires initial guesses for the transition and emission proba-

bility matrices given an observation sequence. We use the outputs of our Markov regime-switching
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regression (13) as initial guesses and not some random guesses, e.g. drawn from a simulation. The

rationale behind this approach is twofold. First, the Baum-Welch is proved to converge to local max-

ima (e.g. Dempster et al., 1977), which is why good initialization is crucial. Therefore, using the

transition and emission probability matrices implied by the Markov regime-switching regression mini-

mizes the risk of ending up in a bad local maximum since these probabilities should also be sufficiently

good without the use of the Baum-Welch algorithm. Second, the transition and emission probability

matrices implied by the Markov regime-switching regression are already probabilities and hence this

poses not the problem of translating identified regime periods into probabilities. Ergo, our transition

matrix is given by the estimates of the Markov regime-switching regression. Our guesses for emission

probabilities are as follows. From our Markov regime-switching regression, we get filtered probabilities

as output, which describe the probabilities predicted by the regime-switching model to be in state 1

or state 2. To transform these probabilities into emission probabilities, we sum all probabilities for

each state up and divide the single probabilities by the whole sum of them:

estxt =
Pfiltered,tst
T∑
t=1

Pfiltered,tst

st ε (1, 2) (19)

Given these initial guesses for the transition and emission probabilities, the Baum-Welch algorithm

iteratively improves the transition and emission probabilities in order to maximize the probability

of the observation sequence. We use 10,000 iterations until we allow the Baum-Welch algorithm to

halt. Since the purpose of the Baum-Welch algorithm in our context is just for improving our HMM

parameter estimation, we just sketched the functioning of the algorithm in a non-formal manner,

wherefore the mathematical versed reader curious about the algorithm’s precise procedure is referred

to Baum et al. (1970), Juang and Rabiner (1991), and Bilmes (1998), where the Baum-Welch algorithm

is explained more detailed.

Viterbi Algorithm

These improved transition and emission probabilities are then used for the Viterbi algorithm,

an efficient dynamic programming algorithm, which was originally proposed by Viterbi (1967) as a

decoding method for convolutional codes in noisy digital communication applications. The purpose of

the Viterbi algorithm is that it translates the parameters of a HMM into a state sequence – called the

Viterbi path – that has the maximum likelihood with respect to the given HMM. Or in mathematical

terms, the Viterbi path describes the state sequence that maximizes the posterior probability, i.e. the

probability of observing the state sequence s given the observation sequence x:

s∗ = argmax
s

P (x, s) , (20)

where s∗ describes the most likely state path over the observation time and x and s are the observation

and state sequence, respectively. Hence, the Viterbi algorithm uses the observation sequence as well

as the transition and emission probabilities as input and gives one the hidden state path s∗ that

maximizes equation (20) as output. The key idea behind the Viterbi algorithm is to find the most

probable path for every intermediate and for the final state in our model, which means that it calculates
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at each time t the most likely path until t and uses only this path for timet+ 1 (i.e. the probabilities

for all previous steps/iterations can be discarded), and so forth until the final period T is reached.

By recursively maximizing the joint probability for each possible new state, the Viterbi algorithm

maximizes the posterior probability of the entire sequence of states (formula (20)), which is optimal

in the maximum likelihood sense.

The precise procedure of the Viterbi algorithm is nontrivial and the gentle reader curious about

this procedure is therefore referred to Viterbi (1967), Forney (1973), and Lou (1995), where the exact

functioning of the Viterbi algorithm is elaborated in more detail.

5 Results

5.1 Comparison of Extended and Original Corwin-Schultz Illiquidity Measure

In the following subsection, we test the performance of our extended version of the high-low spread

estimator by Corwin and Schultz (2012) against its original counterpart. By using the bid-ask spread

reported in TRACE as liquidity benchmark, we run a horse race of monthly estimates of our extended

illiquidity measure against the original one from 11/08 – 09/13.

Corwin and Schultz (2012) originally developed their illiquidity measure for the usually very liquid

stock market and therefore derive their measure only for trading days that are preceded by another

trading day. Although their measure can be applied par for par to the bond market, the fact that the

original Corwin-Schultz measure neglects the possibility of trading days without any trading activity,

was our rationale behind extending it.

While the fundamental rationale of the Corwin-Schultz measure – the high–low price ratio reflects

both the security’s variance and its bid-ask spread – is not altered by our extension, we relax its

assumption of two consecutive days of trading. Consequently, we apply the original concept on the

closest days with any trading activity by adjusting for the fact that there are trading days without

any trading activity in between.

This means that the main input which differentiates our measure from the original one is the

number of days between two consecutive trades, which is why we compare our measure with the

original one for different timespans of non-trading days between two consecutive trades.

In order to compare the two measures with each other, we use the bid-ask spread reported in

TRACE as liquidity benchmark. This bid-ask spread was introduced and reported in TRACE from

November 2008 onwards, wherefore our horse race is performed in monthly terms during the time-

period from 11/08 – 09/13. Next to a graphical comparison, we use the mean absolute error (MAE)

as statistical tool to measure how close our liquidity measures are to the benchmark. The MAE takes

the absolute value24 of the difference of our liquidity measures and the bid-ask spread reported in

TRACE and averages them over the entirety of the comparison period. In mathematical terms the

MAE is defined as follows:
24Taking an absolute value of a number disregards whether the number is negative or positive and, thus avoids the

positives and negatives canceling each other out.
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MAE =
1

n

n∑
i=1

|LIQi −BMi| , (21)

where LIQi is either our extended version of the Corwin-Schultz measure or the original one and BMi

is benchmark liquidity measure, which is the bid-ask spread reported in TRACE.

Figure 3 illustrates the run of the bid-ask spread reported in TRACE, the Extended Corwin-

Schultz, and the original Corwin Schultz measure for a zero, one, two, and three no-trading day gap

between two consecutive trades25. In Panel A, one clearly sees that the Extended Corwin-Schultz

measure is identical to the original one for two consecutive trading days without any non-trading day

gap, which is an additional proof that we derived our measure algebraically correctly. However, both

measures are quite far off from the liquidity benchmark. Moving to a non-trading day gap of one

day duration between two consecutive trades (Panel B) changes the picture significantly, since the

Extended Corwin-Schultz measure now displays the run of the bid-ask benchmark correctly, while

the original Corwin-Schultz measure is relatively far away from the benchmark, which is supported

in statistical terms by a MAE of 0.002 of our measure compared to a 0.008 for the original one.

This superiority of our measure continues for a two-day gap between two consecutive trades (Panel

C), but only slightly since now our measure underestimates the bid-ask spread while the original

one overestimates it, which results in a MAE of 0.006 and 0.007, respectively. The pattern that our

measure starts to underestimate the bid-ask spread with every additional day in the gap perpetuates

when we look at Panel D, where the gap is three days long. Here, the underestimation of our extended

model is more severe than the overestimation of the original model (MAE of 0.008 and 0.006 for the

extended and original version, respectively). Although we do not display it graphically, our version

of the Corwin-Schultz measure, compared to the original one, results in less accurate the longer the

no-trading time gaps between two consecutive trading days.

Table 4: MAE Extended and Original Corwin Schultz Illiquidity Measure against Bench-
mark

This table shows the comparison of the monthly Extended Corwin-Schultz bid-ask spread estimator and the
original one against the bid-ask spread of TRACE, describing the liquidity benchmark, from 11/08 – 09/13.
Panel A, Panel B, Panel C, and Panel D report the Mean Absolute Error (MAE), which describes the average
in absolute values of the difference of the correpsonding liquidity measures and the bid-ask spread reported in
TRACE.

Panel A: Zero-Day Gap Panel B: One-Day Gap
Mean Absolute Error
Extended Original
0.0141 0.0141

Mean Absolute Error
Extended Original
0.0021 0.0079

Panel C: Two-Day Gap Panel D: Three-Day Gap
Mean Absolute Error
Extended Original
0.0064 0.0069

Mean Absolute Error
Extended Original
0.0083 0.0065

In a nutshell, our Extended Corwin-Schultz illiquidity measure is more accurate than the original

one for no-trading day gaps of one and two days between two consecutive trades, while by definition
25For reasons of simplification, we limit our analysis to a few universal examples.
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being equally accurate for two consecutive trading days. Given the trading characteristics of our entire

sample, our illiquidity measure provides in 84.6% of all transactions an equal or more precise estimate

of the bid-ask spread than the original Corwin-Schultz measure.

The main challenge of both Corwin-Schultz illiquidity measure versions can be found in the mea-

sures’ underlying assumption of a geometric Brownian motion of bond prices. Although this assump-

tion is not optimal since geometric Brownian motions are more suitable for the courses of stock prices,

it is a reasonable one for bond prices over a relatively short time period. However, it becomes less

reasonable for longer time periods due to the pull-to-par effect of bond prices, which describes the

phenomenon that bond prices converges to par value for bonds close to maturity. Still, due to the nois-

iness that is existent in all bid-ask spread estimators, such illiquidity measures are not really applicable

for very infrequently traded securities. Therefore, we infer that our extension of the Corwin-Schultz

measure seems to be more suitable for the bond market than the original one since it provides a more

accurate estimation of the bid-ask spread for the relevant time periods, where the assumption of a

bond price following a geometric Brownian motion is still reasonable (up to two days of no trading

between two consecutive trades).

Nonetheless, there remains the question how adjusting for overnight price changes or for negative

daily values affects the accuracy of our measure, which we, however, leave for further research.
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5.2 Unconditional Analysis

In this subsection, we test to what extent liquidity level and liquidity risk are priced in the U.S.

corporate bond market during our sample period. Before performing the two-step Fama-MacBeth

(1973) procedure to determine factor loadings and corresponding risk premia, we show descriptive

statistics of our sample with respect to liquidity.

5.2.1 Liquidity Characteristics

Liquidity Across Rating

Since the crucial point of our analysis is the interplay of credit quality with liquidity, Table 5 displays

the average monthly illiquidity measures (standardized through dividing by its mean) across credit

ratings for our sample and the sample of Chen et al. (2007), who use information from Datastream

on c.4,000 bonds. Chen et al. (2007) find that bonds with lower ratings exhibit significantly lower

liquidity, while our sample shows almost no major differences in illiquidity measures across ratings.

Panel B and C of Table 5 display the three illiquidity measures employed by Chen et al. (2007): the

simple percentage of zero returns, a modified version of Lesmond et al. (1999) model’s effective spread

estimator that is based on the assumption of informed trading on non-zero-return days and the absence

of informed trading on zero-return days, and the relative bid-ask spread. All three illiquidity measures

increase significantly with deteriorating credit rating; for short maturities they are 5.93, 7.88, and

24.51 for AAA bonds and 46.31, 933.06, and 77.00 for CCC-D bonds, respectively. In our study, both

price impact measures are in fact higher for top rated than for junk bonds with an Amihud measure

of 1.66 for AAA bonds and 1.56 for CCC-D bonds and a Pastor-Stambaugh measure of 1.97 for AAA

bonds and 1.89 for CCC-D bonds. With respect to our bid-ask proxies, the Roll and Extended Corwin-

Schultz measures are about half as high for AAA bonds than for CCC-D bonds, however they do not

share the large difference found by Chen et al. (2007). Therefore, our results challenge their findings

to a very high extent. As we filter out many illiquid bonds in our data preparation (especially due

to the filter of omitting bonds with less than ten trading days per month), we could incur a sample

bias if those neglected bonds are primarily low-rated bonds. However, we find that the omitted bonds

even show a higher credit rating on average. Consequently, the differences in results may arise from

differences in the sample periods (2004 to 2013 in our sample compared to 1995 to 2003 in Chen

et al., 2007) or from differences in the specific samples (c.13,850 bonds from TRACE in our sample

compared to c.4,000 bonds from Datastream in Chen et al., 2007). Friewald et al. (2012) confirm

our methodological approach since they show a very similar illiquidity pattern to our results with

respect to investment grade and high yield bonds for both the Amihud and Roll measures. As they

also base their analysis on the TRACE database and the time period of 2004 to 2008, it stands to

reason whether Datastream omits a large part of lowly rated, but highly liquid bonds and whether

high yield bonds have notably increased in liquidity from the 1990s to the 2000s.

Assuming the correctness of our liquidity dispersion across ratings, the conclusion of Acharya et

al. (2013) about a flight-to-liquidity within the U.S. corporate bond market is called into question (at
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Table 5: Illiquidity Summary Statistics by Rating Category

This table reports illiquidity summary statistics for our sample of bonds and the sample of Chen et al. (2007).
Each rating category comprises all of its gradations and its equivalent Standard & Poor’s and Fitch rating, e.g.,
column AA comprises AA+, AA and AA-, as well as Moody’s Aa1, Aa2 and Aa3. #Bonds is the number of
bonds. Panel A comprises our sample which is based on the period from October 2004 until September 2013.
We display the average time-series mean and standard deviation of the bond’s monthly log returns, whose
cross-sectional mean is reported under Return and Volatility (both in %). #Trading days is the bond’s total
number of trading in the respective period. Volume is the bond’s average monthly dollar trading volume in
$m. AM is the Amihud, PS is the Pastor-Stambaugh, RL is the Roll and CS is the Extended Corwin-Schultz
illiquidity measure, all normalized to a mean of zero and a standard deviation of one. Panel B and Panel C
comprise the bond sample of Chen et al. (2007) for maturities of 1-7 and 7-15 years, respectively. Their sample
period ranges from January 1995 to December 2003. % Zeros is the percentage of zero returns for a given
year adjusted for missing prices. LOT refers to the modified Lesmond et al. (1999) model’s liquidity estimate.
The bid–ask is the proportional spread derived from quarterly quotes from Bloomberg. The bid-ask measure
is calculated on a smaller sub-sample of bonds.

Investment Grade High Yield
Rating AAA AA A BBB BB B CCC-D

Panel A: Our Sample, 2004 - 2013
#Bonds 495 2,368 5,578 5,391 2,914 2,262 1,996
Return (in %) 0.16 0.24 0.33 0.35 0.47 0.44 1.62
Volatility (in %) 2.44 1.96 2.32 2.61 3.11 3.32 6.51
#Trading days 146 153 147 147 149 146 148
Volume ($m) 46.9 48.0 42.7 45.4 26.1 26.5 27.3

AM 1.66 1.13 1.02 1.17 1.44 1.04 1.56
PS 1.97 1.23 1.02 0.94 1.53 1.00 1.89
RL 1.05 0.86 0.90 1.09 1.28 1.14 2.02
CS 1.01 0.93 0.92 1.03 1.16 1.06 1.91

Panel B: Chen et al. (2007) with Short Maturity (1-7 years), 1995 - 2003
#Bonds 87 336 1,162 1,234 333 167 119
Zeros (%) 5.93 4.10 3.88 8.43 40.63 44.71 46.31
LOT (bp) 7.88 9.63 10.51 34.99 201.45 458.86 933.06
Bid-ask (bp) 24.51 26.02 25.82 91.01 54.26 58.76 77.00

Panel C: Chen et al. (2007) with Medium Maturity (7-15 years), 1995 - 2003
#Bonds 49 120 539 730 152 78 44
Zeros (%) 9.79 12.59 10.61 11.94 36.99 38.71 34.96
LOT (bp) 24.28 47.26 57.74 70.29 259.34 342.5 941.84
Bid-ask (bp) 49.52 36.57 38.20 44.02 54.65 60.44 180.35

least for the recent years). They argue that higher liquidity betas of high yield compared to investment

grade bonds depict a flight-to-liquidity due to the fact that high yield bonds are less liquid than their

investment grade counterparts. Relaxing the assumption of liquidity dispersion across ratings, the

difference in liquidity betas would then rather indicate a flight-to-quality (conditional on liquidity

shocks in stress periods).

Liquidity across both Rating and Liquidity

It is worthwhile mentioning that our sample’s characteristic of similar liquidity levels across rating
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categories forms a major feature of our ability to identify the specific effect of credit rating on a bond’s

return. Otherwise, in case of positively correlated credit risk and illiquidity, it would be difficult to

empirically isolate the effect of credit rating. In order to also visualize the specific effect of liquidity,

we divide our total sample not only in credit categories, but also among the dimension of liquidity.

Therefore, we sort all bonds in five portfolios according to those two dimensions, named quality (credit

rating) and liquidity, so that we obtain a total of 25 portfolios which we will use throughout most of

our analyses. The bonds are ascribed towards quality portfolios according to their credit rating and

assigned to liquidity portfolios according to the average liquidity of the Amihud and Roll measures. We

sort so that every portfolio contains the same number of total months across its bonds. Consequently,

the number of bonds in the portfolios differs, but not the number of time-series observations. Every

portfolio is given a number from 5 to 1 for both dimensions with a high number representing high

credit rating / high liquidity (=low illiquidity), and vice versa. Consequently, the best rated and

most liquid bonds are in the portfolio with a quality and a liquidity number of both 5. A bond with

the highest rating, but lowest liquidity is ascribed to the portfolio with a quality number of 5 and a

liquidity number of 1. The sorting is based on the average manifestation of both characteristics for

each bond over the whole sample period.

Figure 4 and Table 10 (see Appendix) displays the average illiquidity according to the four mea-

sures26. As described above, both price impact measures Amihud and Pastor-Stambaugh do not show

any consistent in- or decrease across quality, while both bid-ask proxies Roll and Extended Corwin-

Schultz slightly increase with lower credit quality. Furthermore, the price impact measures show a

higher cross-sectional dispersion than the bid-ask spread estimators, i.e. illiquid bonds have very high

price impact while only having a moderately high bid-ask spread. Liquid bonds, on the other hand,

show almost no price impact, but still a considerable wide bid-ask spread. Hence, the liquidity’s as-

pect of price impact is the characteristic that varies the most between liquid and illiquid bonds; the

bid-ask spread also widens when one moves from liquid to illiquid bonds, but at a considerably lower

pace. Furthermore, we shift our attention towards the Extended Corwin-Schultz measure because of

its novelty of being used in a modified version for bonds. We conclude that its pattern is very similar

to that of the Roll measure, except for the fact that the dispersion of illiquidity is less pronounced

across ratings.

Returns across both Liquidity and Rating

The analysis of returns across both dimensions gives a first impression on how credit rating and

liquidity are priced, however the Fama-MacBeth regression later will be more precise as it adjusts for

additional risk sources that could vary among the portfolios. Panel A of Figure 5 displays the average

realized return over the sample period which is between 2% and 6% p.a. In general, there exists a

pattern that returns increase in lower quality and lower liquidity, however returns fall dramatically for
26Throughout the following, we will strongly rely on three-dimensional graphs to display our findings. With jus-

tification, the academic literature of asset pricing shies away from graphical representation which allows for biasing
numerical results through specifically chosen scales, shadings or perspectives, while hard numbers do not leave any room
for distortion. However, we believe that a graphical display of our portfolio characteristics is adequate as it increases
readability by a large extent. All results can be found as tables in the appendix.
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Figure 4: Portfolio-Sorted Illiquidity Measures

This figure shows the average bond portfolio illiquidity for 25 portfolios sorted by liquidity and quality during
our sample period from 11/04 – 09/13. Illiquid and liquid are defined as the bond portfolios with the highest
and lowest illiquidity, respectively and junk and quality are defined as the bond portfolios with the lowest and
highest rating, respectively. Panel A, Panel B, Panel C, and Panel D display the level of illiquidity based on
the Amihud measure, the Pastor-Stambaugh measure, the Roll measure, and the Extended Corwin-Schultz
measure, respectively.

Panel A: Amihud Measure Panel B: Pastor-Stambaugh Measure

Panel C: Roll Measure Panel D: Extended Corwin-Schultz Measure

most of the lowest rated bonds. Besides, Panel B shows the expected excess returns over the risk-free

rate derived from the quoted yield (before adjusting for the default component). Expected returns are

far higher than their realized counterparts and lie between 3% and 10% p.a. and show a consistent

pattern across quality and liquidity. The average expected return amounts to 5.5% p.a. while the

actual returns only average 3.2%. We can conclude that actual returns stay behind expectations over

our sample period which underlines the importance of using expected returns for deriving risk premia.

One explanation for the difference may be that the negative effect of the financial crisis in 2008/2009

represents a fat tail event that exceeds what investors had expected over the 9 year period.

All five junk portfolios in Panel B show a significant jump in expected returns compared to the

second lowest rating portfolios. This return gap accounts for the fact that the junk portfolios also

have a significantly lower credit rating than the other portfolios as shown in Panel D (please note that

the axes are reversed in Panel D in order to facilitate readability) and that the lower ratings exhibit
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Figure 5: Portfolio-Sorted Returns and Rating

This figure shows the average monthly bond portfolio returns in excess of the one-month T-bill and the rating
of 25 portfolios sorted by liquidity and quality during our sample period from 11/04 – 09/13. Illiquid and liquid
are defined as the bond portfolios with the highest and lowest illiquidity, respectively and junk and quality are
defined as the bond portfolios with the lowest and highest rating, respectively. Panel A, Panel B, Panel C, and
Panel D display the average actual returns, the average yield-to-maturity, the average expected returns, and
the average rating of the portfolios, respectively.

Panel A: Actual Returns Panel B: Yield-to-Maturity

Panel C: Expected Returns Panel D: Rating

a disproportionally high default probabilities (as can be seen in Table 11 in the Appendix). Panel C

accounts for these differences and displays expected excess returns after adjusting for the expected

default loss. The remaining expected returns are between 1.5% and 5% p.a. and still average to 3.3%.

They consequently represent what is commonly known as the “credit spread puzzle”, i.e. the fact that

bond expected and realized returns are consistently higher than predicted according to the time value

of money (risk-free rate) and credit risk (expected default loss). In the following section, we set out to

analyze whether the five Fama-French (1993) factors and especially liquidity risk and liquidity level

can explain these expected excess returns.

Market-Wide Liquidity

We first check the time-series correlation of our factors which include the market-wide illiquidity mea-

sures derived as described in section 4.1. The factors comprise the term (TERM), default (DEF),

market (MKT), size (SMB) and book-to-market (HML), as well as our market-wide liquidity mea-
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sures (the market-wide versions of the liquidity measures are described with the subscript of “mkt“).

The market-wide liquidity measures in Table 6 are the negative of the volume-weighted average of all

company-specific illiquidity proxies for every month across our sample of bonds. The illiquidity mea-

sures are multiplied with -1 so that a positive (negative) shock to the measure represents an increase

(decrease) in market-wide liquidity.

Table 6: Correlations among Factors

The table displays the time-series correlation of five common risk factors and four market-wide liquidity mea-
sures. TERM is the difference between the monthly 30-year T-bond return and the one month T-bill returns,
DEF is the difference between the monthly return on a value-weighted portfolio of our entire bond sample and
the average return on government bonds (i.e. 30-year T-bond minus one month T-bill), the Fama-French three
factorsMKT , SMB , and HML are obtained from Kenneth French’s data library, and therefore are defined as de-
scribed in Fama and French (1993). AMmkt, PSmkt,RLmkt, andCSmktare the volume-weighted market-wide
liquidity levels according to the Amihud, Pastor-Stambaugh, Roll and the Extended Corwin-Schultz illiquidity
measures. The illiquidiy measures are multiplied with -1 so that a positive (negative) shock to the measure
represents an increase (decrease) in market-wide liquidity. The market-wide liquidity measures are divided by
their mean in order to create comparability.

TERM DEF MKT SMB HML AMmkt PSmkt RLmkt CSmkt
TERM 1.00
DEF 0.10 1.00
MKT 0.02 0.60 1.00
SMB 0.13 0.20 0.47 1.00
HML -0.02 0.07 0.36 0.21 1.00
AMmkt 0.31 0.37 0.35 0.07 0.07 1.00
PSmkt 0.00 0.34 0.41 0.06 0.11 0.82 1.00
RLmkt 0.03 0.24 0.42 0.10 0.17 0.85 0.86 1.00
CSmkt -0.08 0.14 0.24 0.01 0.14 0.55 0.50 0.61 1.00

Table 6 shows that the liquidity measures have a moderately correlation to the five common factors

(between -0.08 and 0.42) so that the inclusion of liquidity as a potential additional factor is justified.

However, the liquidity factors themselves show a high correlation between 0.55 and 0.86. Hence, price

impact and the bid-ask spread strongly co-move and the two illiquidity measures within both liquidity

dimensions appear to be accurate measures. Due to the high correlation of the illiquidity measures

and thus the possible problem of multicollinearity, we only include one dimension at a time for our

pricing analysis. Figure 6 plots the four market-wide illiquidity measures AMmkt, PSmkt, RLmkt, and

CSmkt over time. AMmkt, PSmkt, and RLmkt show a very high co-movement, while the CSmkt stands

out due to its very high peaks.

5.2.2 Pricing of Liquidity

Time-Series Regression of Factor Loadings

We now run the first step of the of the Fama-MacBeth (1973) procedure which estimates the time-

series sensitivities of every bond’s actual returns to the identified factors of TERM, DEF, MKT, SMB,

HML and one market-wide liquidity risk factor (generically named LIQmkt in the following). We do

not form portfolios, but run the regression on every bond individually. The number of bonds with
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Figure 6: Illiquidity Measures over Time

This figure shows the run of our four illiquidity measures over our sample period from from 11/04 – 09/13. Panel
A shows the marketwide illiquidity for the Amihud, Pastor-Stambaugh, Roll, and Extended Corwin-Schultz
illiquidity measure.

enough time-series observations in order to determine betas accounts for 7,716.

Panel A in Table 7 shows the average beta loading across all the bonds in our sample. It comprises

five regressions: BASIC does only incorporate the Fama-French five factors, while the other four

include their respective market-wide liquidity factor. TERM and DEF have beta loadings of 0.54 to

0.67 and 0.76 to 0.78, respectively, while MKT, SMB, and HML are at around 0.01 to 0.02. These

results hold regardless of employed illiquidity measure. DEF and MKT are statistically significant

while TERM, SMB, and HML are not. Due to our standardization of the liquidity measures to a

mean of one, their coefficients are small. However, they show the right sign and the liquidity factors

according to RL and ECS are significant at the 10% level while those of the PS measure are significant

at the 5% level. The AM measure is slightly below the 10% significance level. In general we can

conclude that bonds co-move statistically significantly with market-wide liquidity. Whether investors

also require a compensation for that co-movement needs to be examined in the second step of the

Fama-MacBeth procedure.

Our coefficients are in line with Lin et al. (2011), however they show a low level of statistical

significance which can probably be accredited to the noisy nature of our realized returns. Since the

insignificant TERM factor shows almost the same coefficient as its significant counterpart in the work

of Lin et al. (2011) and the SMB and HML factor have been proven to drive bond returns in several

other studies (such as Fama and French (1993) and Elton et al. (2001)) we include them also in the

cross-section regression to derive risk premia. Since the identified risk factors are scaled differently,
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Table 7: Six-Factor Regression for Monthly Excess Returns

This table displays the results of a linear time series regression of a six-factor model on monthly bond return
series from 11/04 – 09/13 (first step of Fama-MacBeth procedure). The dependent variable is the return of bond
i in excess of the one-month T-bill return and the explanatory variables are TERM, defined as the difference
between the monthly 30-year T-bond return and the one month T-bill returns, DEF defined as the difference
between the monthly return on a value-weighted portfolio of our entire bond sample and the average return
on government bonds (i.e. 30-year T-bond minus one month T-bill), MKT , defined as excess return on the
market minus the one-month T-bill rate, SMB , defined as the average return on small size portfolios minus
the average return on big size portfolios and HML, defined as the average return on value portfolios minus the
average return on growth portfolios, and LIQmkt describes the market-wide liquidity for either the Amihud
(AM ), Pastor-Stambaugh (PS ), Roll (RL), and Extended Corwin-Schultz (CS ) illiquidity measure. Panel A
shows the average regression coefficents, where the β regression coefficients measures the bond i’s risk loading
on the particular factors and the α measures the part of the return that cannot be explained by the loadings
on the different factors. The complete regression in compact matrix form is the following:

R = Fβn + εn,
where R is the vector of excess returns, F is the factor matrix with the factors defined as above, βn is the vector
of factor loadings and all first elements are the intercept α, and εn is the vector of error terms. One and two
asterisks indicate that the regression coefficient is statistically significant at the 10% and 5% significance level,
respectively. The t-statistic for each regression coefficient is displayed in parentheses below it and is calculated
from Newey-West (1987) standard errors, which are corrected for heteroskedasticity and serial correlation.
Panel B presents the ratio of the standard deviation of returns to standard deviation of factors.

Panel A: Average Coefficients from Time-Series Regression (Factor Loadings)

α TERM DEF MKT SMB HML LIQmkt Adj. R²
BASIC 0.0001 0.64 0.78** 0.02** 0.02 0.01 19.3%

(1.38) (1.32) (3.04) (1.97) (1.46) (1.57)
AM 0.0003 0.54 0.76** 0.02* 0.01 0.02 0.0010 33.7%

(1.42) (1.33) (2.96) (1.93) (1.48) (1.56) (1.60)
PS 0.0000 0.70 0.78** 0.02* 0.01 0.01 0.0005** 34.0%

(1.39) (1.34) (3.07) (1.94) (1.47) (1.56) (2.11)
RL 0.0002 0.59 0.75** 0.02** 0.01 0.01 0.0012* 26.8%

(1.40) (1.35) (2.97) (1.99) (1.44) (1.57) (1.69)
CS 0.0002 0.62 0.76** 0.02* 0.02 0.02 0.0006* 33.8%

(1.39) (1.34) (2.75) (1.92) (1.48) (1.56) (1.65)

Panel B: Ratio of Standard Deviation of Returns to Standard Deviation of Factors Above

α TERM DEF MKT SMB HML LIQmkt
BASIC 0.84% 6.22% 93.61% 7.57% 2.64% 2.65%
AM 2.68% 5.25% 91.40% 7.64% 2.16% 2.99% 2.05%
PS -0.31% 6.79% 93.49% 7.34% 1.66% 0.97% 1.00%
RL 1.57% 5.73% 90.65% 8.16% 1.41% 2.65% 2.46%
ECS 1.51% 6.03% 91.58% 7.17% 3.69% 3.45% 1.21%

Panel B of Table 7 displays the coefficients as the ratio of standard deviation of the returns to the

standard deviation of the factor. This represents how many standard deviations the return changes

in a change of one standard deviation of the factor. Thus, it gives the economic significance of the

underlying factors, i.e. it makes the sensitivities to the factors comparable. DEF leads to the highest

fluctuation in returns with a ratio of c.92% (so one standard deviation shock to DEF increases returns

by 0.92 of the return’s standard deviation), followed by MKT and TERM with c.5% - 8%. Market-
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wide liquidity has a minor effect with a ratio of 1.00% to 2.46%. Whether every co-movement does

actually result in a risk premium required by investors will be examined in the next section.

Cross-Sectional Regression to Determine Risk Premia

To analyze the compensation for factor loadings and the liquidity characteristic we perform the cross-

section regression of factor betas from Table 7 together with the liquidity level on expected returns,

which is generally known as the second step of the Fama-MacBeth procedure. Thereby, we first

normalize each right-hand side variable by its monthly standard deviation and annualize it so that

its coefficient is readily interpretable as the annualized premium per unit of standard deviation. The

second step of the Fama-MacBeth regression performs the cross-section regression first on every month

individually and then averages the resulting coefficients over time.

Table 8 displays the average of the monthly coefficients of the cross-section regressions. BASICr
represents the regression on realized, while BASICE(r) is based on the expected returns after adjusting

for the default probability. The negative risk premia for TERM (-0.87%) and MKT (-0.42%) of

BASICr once again underline the importance of using expected returns in the area of corporate bonds,

especially in cases of small sample periods and fat tail events. The benchmark regression, BASICE(r),

shows an only slightly negative TERM premium and relatively small SMB and HML effects, while

DEF and MKT with risk premia of 0.90% and 0.76%, respectively, are the most important risk

factors. This is also supported by the t-statistics, which show especially for DEF and MKT highly

significant results, while not showing a consistent statistical significance pattern for the other risk

factors. Before comparing the illiquidity measures with each other, we first show the importance

of including the liquidity level when analyzing (market-wide) liquidity risk. Table 8 shows that the

regressions omitting liquidity level (AMmkt, PSmkt, RLmkt, and CSmkt) results market-wide liquidity

risk premium, LIQmkt, of 0.41% to 0.62% for the four illiquidity measures. The liquidity level-only

regressions (AMlvl, PSlvl, RLlvl and CSlvl) display a liquidity level premium of 0.38% to 0.92%. In

the regressions including risk sources, liquidity level and liquidity risk, the liquidity risk premium

falls by up to 50% while the liquidity level premium falls by up to 25%. We can conclude that each

liquidity dimension captures part of the other dimension, while liquidity risk appears to be affected

more strongly.

In terms of statistical significance, all risk premia for all three specifications, namely only liquidity

level, only liquidity risk, and both liquidity level and liquidity risk, are highly significant and hence

we can infer that there is a risk premium investors require for liquidity/illiquidity. Consequently,

studies such as Downing et al. (2005), Chacko (2006), Lin et al. (2011), and De Jong and Driessen

(2012) which do not include liquidity level in their analysis of liquidity risk may overstate the effect of

market-wide bond liquidity variations on returns, but also the large literature focusing on liquidity level

run the risk of slightly overrating the liquidity level effects. The Extended Corwin-Schultz measure

appears to be able to grasp liquidity effects since it shows high risk premia for the liquidity effects

and the highest adjusted R2 of 30.91%. Our findings show about the same size of liquidity effects as

other studies. De Jong and Driessen (2012) and Lin et al. (2011) estimate a liquidity risk premium

(without accounting for liquidity level) of c.0.6% and 1% p.a., respectively, while our average over the
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four liquidity measures is 0.42% (based on the models without liquidity level). Bongaerts et al. (2012)

who include both liquidity dimensions estimate a liquidity risk premium of c.0.3% and a liquidity level

premium of c.1% per standard deviation comparable to 0.4% and 0.5%, respectively, regarding the

average of our measures. In general, we can conclude that liquidity has an economically significant

effect on corporate bond returns, with liquidity level mattering slightly more than liquidity risk and

both together even exceeding the risk premia associated with the default or market risk.

5.3 Effects of Liquidity Stress Periods

To further deepen our analysis of the importance of liquidity in distressed times, we want to investigate

whether flight-to-liquidity phenomena, i.e. time periods with a sudden severe rise in the importance

of liquidity leading investors to shy away from illiquid and re-allocate towards liquid bonds, exist

in the U.S. corporate bond market during our sample period. After identifying specific months in

which liquidity increases in importance through the usage of Markov regime-switching models, we

form 25 (5x5) bond portfolios sorted by liquidity and quality and examine the excess returns of each

portfolio during these stress months in order to scrutinize them for flights. The sorting has the

purpose of partially disentangling the potential phenomena of flight-to-liquidity from flight-to-quality

(the increasing demand for holding low-risk assets), which might coincide to a large extent. This allows

for studying both the effect of credit risk and of liquidity on realized returns in distressed periods.

There are numerous approaches to define the flight effects27. In its fundamental concept, a flight

represents a capital flow from one to another set of assets. While many studies utilize indirect measures

such as correlations and volatility to define flight periods, we opine that solely focusing on the returns

of both asset sets is the best proxy for order flow. Furthermore, returns additionally capture price

effects of a changing willingness to hold assets (that can be accompanied without unusual capital

flows) representing an “implicit” flight which is eventually also of interest for investors. It is important

to mention that we do not adjust the returns for other risk factors, hence an identified return pattern

across portfolios with different levels of liquidity might be caused by another hidden risk source. The

reason is that adjusting returns in distressed times would demand for a conditional asset pricing model

whose formulation exhibits considerable difficulties in our case. Probably most severe is the question

about the investors’ information set. If, for example, a financial crisis (triggering large changes in

risk factor characteristics) starts to unfold, it is unclear whether investors’ expectations are based on

long-term historical, current or anticipated factor exposures and risk premia. Therefore, we assume

in the following that return differences along the dimension of liquidity / quality are not caused by

any other risk characteristic. Admittedly, the assumption is quite strong; however a large return

differential would serve as a strong indication for the impact of the analyzed risk dimensions.
27There is no consensus in the literature on how to define flight-to-quality and flight-to-liquidity episodes. In Bekaert

et al. (2009) a flight-to-quality is defined as the joint occurrence of higher economic uncertainty with lower equity prices
and low real rates. Baur and Lucey (2009), on the other hand, define a flight-to-quality period with a significant decrease
in the correlation in a (stock market) crisis period compared to a benchmark period resulting in a negative correlation
level. Baele et al. (2013) define flight-to-safety periods as periods with market stress (high equity and perhaps bond
return volatility), a simultaneous high bond and low equity return, low (negative) correlation between bond and equity
returns, while Goyenko and Sarkissian (2014) define a flight-to-liquidity using illiquidity in short-term U.S. Treasuries.
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Table 8: Average Coefficients from Cross-Section Regression (Risk Premia)

This table reports results of cross-sectional regression tests of individual bonds using the Fama-MacBeth pro-
cedure over our sample period from 11/04 – 09/13 (second step Fama-MacBeth procedure). The dependent
variable is a bond’s monthly expected return in excess of the one-month T-bill return. The explanatory variables
are the regression coefficents for TERM, DEF, MKT, SMB, HML, LIQmkt, and LIQlvl from the time-series
regression (10), where each one is normalized by its cross-sectional standard deviation every month. The re-
gressions are run either without any liquidity component or only liquidity risk, or only liquidity level or with
both liquidity level and liquidity risk. The complete regression in compact matix form is the following:

Rt = β̂λt,
Where Rt is an vector of expected asset returns, β̂ is a vector of factor loadings where all elements in the first
column are 1, and λt is a vector of factor premia where all elements in the first row are the intercept. One
asterisks indicates that the regression coefficient is statistically significant at the 5% significance level. The
t-statistic for each regression coefficient is displayed in parentheses below it and is calculated from Newey-West
(1987) standard errors, which are corrected for heteroskedasticity and serial correlation.

α TERM DEF MKT SMB HML LIQmkt LIQlvl Adj. R²
BASICr 2.31%* -0.87%* 0.15%* -0.42%* 0.56%* -0.16%* 25.2%

(5.34) (2.95) (8.74) (8.12) (5.26) (3.70)
BASICE(r) 2.01%* -0.10% 0.90%* 0.76%* 0.20%* 0.22%* 19.3%

(19.81) (1.91) (10.85) (5.86) (2.18) (2.35)

AMmkt 2.01%* -0.13% 0.90%* 0.74%* 0.20%* 0.23%* 0.27%* 20.1%
(19.96) (1.73) (10.70) (5.61) (2.13) (2.42) (2.54)

AMlvl 1.92%* -0.13% 0.83%* 0.78%* 0.20%* 0.18%* 0.38%* 21.0%
(19.15) (1.71) (10.08) (6.03) (2.14) (2.06) (6.75)

AM 1.87%* -0.12% 0.86%* 0.74%* 0.19%* 0.21%* 0.23%* 0.35%* 22.05%
(19.05) (1.69) (10.40) (5.67) (2.10) (2.27) (2.22) (6.14)

PSmkt 2.03%* -0.12% 0.92%* 0.66%* 0.18% 0.18% 0.62%* 24.01%
(14.32) (1.57) (7.88) (3.97) (1.86) (1.77) (4.44)

PSlvl 2.02%* -0.18% 0.80%* 0.64%* 0.12% 0.16% 0.40%* 21.35%
(13.93) (1.54) (7.10) (3.73) (1.68) (1.62) (5.04)

PS 1.96%* -0.12% 0.89%* 0.66%* 0.16% 0.16% 0.56%* 0.30%* 25.42%
(14.13) (1.57) (7.74) (3.94) (1.83) (1.67) (3.95) (3.91)

RLmkt 1.99%* -0.09%* 0.88%* 0.65%* 0.25%* 0.22%* 0.28%* 20.62%
(18.90) (2.26) (10.10) (4.96) (2.14) (1.96) (3.11)

RLlvl 1.48%* -0.13%* 0.67%* 0.59%* 0.21% 0.16% 0.67%* 21.35%
(14.97) (2.00) (7.78) (4.71) (1.78) (1.50) (9.88)

RL 1.45%* -0.08% 0.69%* 0.59%* 0.23%* 0.17% 0.20%* 0.64%* 26.77%
(15.04) (1.93) (8.14) (4.73) (1.99) (1.62) (2.47) (9.18)

CSmkt 2.02%* -0.14%* 0.94%* 0.69%* 0.22%* 0.26%* 0.61%* 21.65%
(20.06) (2.11) (10.82) (5.52) (2.34) (2.63) (5.21)

CSlvl 1.25%* -0.18% 0.52%* 0.43%* 0.13%* 0.13% 0.92%* 28.34%
(10.43) (1.88) (6.79) (3.83) (2.07) (1.63) (9.09)

CS 1.17%* -0.13%* 0.67%* 0.51%* 0.17%* 0.17% 0.46%* 0.84%* 30.91%
(10.23) (1.98) (7.96) (4.41) (2.34) (1.83) (4.16) (8.30)
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5.3.1 NBER Recession as Benchmark

Before analyzing the effects of liquidity stress periods, we briefly examine the price reactions of our

25 portfolios during the period of the macroeconomic crisis in order to compare the extent in which

liquidity stress periods differ later on. We use the crisis period from January 2008 to June 2009 as

defined by the National Bureau of Economic Research (NBER) recession indicator, which is a time

series of dummy variables that represents periods of expansion and recession based on the data of the

National Bureau of Economic Research (NBER) in the U.S. Figure 7 and Table 12 (see Appendix)

show the monthly excess returns for the 25 portfolios.

Figure 7: Portfolio-Sorted Excess Returns during NBER Recession

This figure shows the average monthly bond portfolio returns in excess of the one-month T-bill return of 25
portfolios sorted by liquidity and quality during recession periods identified by the NBER recession indicator
for our sample period from 11/04 – 09/13. Illiquid and liquid are defined as the bond portfolios with the highest
and lowest illiquidity, respectively, and junk and quality are defined as the the bond portfolios with the lowest
and highest rating, respectively.

While the lowest quality quintile suffers slightly with an average of -0.02% p.m., all other portfolios

show solid positive returns with 0.47% p.m. We can assume that investors shy away from junk bonds,

but consider all bonds with non-junk ratings more valuable. Interestingly, there is no gradual price

pattern in the dimension of quality, i.e. the four highest quality quintiles show all about the same level

of returns. Consequently, the effect appears to be rather a “flight-from-junk” than a “flight-to-quality”

in the way that the lowest quintile decreases in value, while there is no apparent return difference

among the other four quintiles28. This is supported in statistical terms since only for two of the five

quality-minus-junk spreads29 the spread is statistically different from zero. One can hypothesize that
28We define a “flight-from” event as an asymmetric effect in the sense that one subset of assets underperforms to all

other subsets without the latter showing return differences among each other. We refer to a “flight-to” situation when
the returns of the subsets change gradually in the observed characteristic.

29Quality-minus-junk is defined as the difference in the return of the highest quality portfolio (regardless of liquidity)
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all non-junk bonds with an average monthly return of 0.47% during the recession compared to 0.25%

for the entire sample period benefit from capital inflows from the more risky equity markets. Junk

bonds however are negatively hit by the adverse economic situation. A strong liquidity effect is not

visible as there are no consistent changes in returns for portfolios with different liquidity levels and the

liquid-minus-illiquid spread is never statistically different from zero. We can conclude that liquidity

appears to not exert strong effects over the total course of the last macroeconomic crisis.

5.3.2 Liquidity Stress Periods

Although liquidity is not apparently visible during the macroeconomic recession in our bond sample,

this sub-section shall examine whether specific short time periods exist in which liquidity unfolds severe

effects. Therefore, we first have to define liquidity stress periods. Intuitively, high levels of market-

wide illiquidity should be able to identify such periods. However, Figure 6 shows that illiquidity is

non-stationary, i.e. illiquidity fluctuates around different levels for larger time spans. For example, the

average illiquidity before the subprime crisis is notably higher than the illiquidity during recent years.

Formulating dynamic criteria for triggering thresholds on illiquidity levels such as moving averages

encounter further problems of parameterization. Therefore, we employ a Markov regime-switching

model because of its power to identify periods with unusual statistical properties. We specify the

model so as to uncover time periods in which the average market-wide bond return exhibits extreme

liquidity betas on the basis of both the Amihud and the Extended Corwin-Schultz illiquidity measure30.

The liquidity beta is chosen as the determining factor since liquidity should matter the most during

periods of the highest sensitivity of bond returns to liquidity shocks. Extended with the Baum-Welch

algorithm to increase accuracy, the Markov regime-switch results in a probability series over time that

depicts the likelihood of a stress period for every point in time as shown in Figure 8. One clearly sees

that not only there are abrupt positive shocks for the stress probabilities but also there is a clustering

of stress probabilities during the months before, during, and after the Lehman Brothers bankruptcy.

More pronounced than in the case of the Amihud measure, the Extended Corwin-Schultz measure

leads to probability series with amplitudes of short duration before the subprime crisis in October

2006 (Ford Motor, one of the largest corporate borrowers in U.S. high-yield indexes, announces massive

restructuring plans with huge layoff) and in November 2007 to January 2008 (several big banks reports

remarkable losses due to poor investments in U.S. subprime mortgages and fears funding shortages).

Both liquidity measures lead to similar regime-switching results and show a correlation of 0.71 between

their probabilities series.

Since the Baum-Welch algorithm only returns a probabilities for stress periods over time, we

apply the Viterbi algorithm to determine the so-called Viterbi path– the most likely binary series of

states (either stress or normal period for every time-series observation) given a previously determined

probability series – which consists of 10 months on the basis of the Amihud and of 14 months on the

and the return of the lowest quality portfolio (regardless of liquidity). Liquid-minus-illiquid is defined as the difference
in the return of the highest liquidity portfolios (regardless of rating) and the return of the lowest liquidity portfolios
(regardless of rating).

30For reasons of simplification we refrain from undertaking the regime-switch for all four illiquidity measures and
instead limit our analysis to the Amihud and the Extended Corwin-Schultz measure to have one price impact measure
and one bid-ask spread estimator, which both are superior to their counterparts.
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Figure 8: Probability of High Illiquidity Regime from Markov Regime-Switching Model

This figure shows the probabilities of being in the stress regime (regime 2) estimated from the Markov regime-
switching model (13) and refined by the Baum-Welch algorithm over our sample period 11/04 – 09/13. The
liquidity factor in the Markov regime-switching regression is either based on the Amihud (Panel A) or the
Extended Corwin-Schultz (Panel B) illiquidity measure.

Panel A: Regime-Switch Amihud Illiquidity Measure

Panel B: Regime-Switch Extended Corwin-Schultz Illiquidity Measure

basis of the Extended Corwin-Schultz measure; they are shown in Figure 9. The run of both series

illustrates that it is highly coincident with the stress probabilities for both regime-switches. The two

regime series also show that the Viterbi algorithm ignores drops in the stress probability if those are

girded by months with high stress probabilities (e.g. during 08/08 and 11/08 in both regime-switches)

and that it ignores isolated stress probability shocks (e.g. during 05/09 for the regime-switch based
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on the Amihud measure). The latter two features of the Viterbi algorithm show the difference of

undertaking this extra step for the stress period determination compared to a naïve approach that

translates smoothed probabilities in regimes by the usage of some probability threshold analysis.

Figure 9: Regime Sequence Predicted by Viterbi Algorithm

This figure shows the most probable sequence of regimes (Viterbi path) given the probabilities of being in a
normal or stress regime from Figure 8 and predicted by the Viterbi algorithm over our sample period 11/04
– 09/13. Panel A displays the Viterbi path for the regime-switch based on the Amihud measure and Panel B
displays the Viterbi path for the regime-switch based on the Extended Corwin-Schultz measure. The liquidity
stress regime is defined as regime 2 and the normal regime is defined as regime 1.

Panel A: Regime-Switch Amihud Illiquidity Measure

Panel B: Regime-Switch Extended Corwin-Schultz Illiquidity Measure

Although endogeneity might be the biggest criticism of using a regime-switching model in cri-

sis identification, we do not undertake statistical robustness checks of our results using exogenously

specified financial crisis periods in combination with probit and logit models such as Acharya et al.

(2013) and Schuster and Uhrig-Homburg (2013), but intuitively compare our identified stress periods
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with the market-wide illiquidity levels and NBER recession as shown in Figure 10. One sees that the

regime-switch meets its purpose of detecting liquidity stress regimes since it coincides with periods of

high market-wide illiquidity relatively to its surrounding illiquidity levels. Moreover, the stress periods

identified by the regime-switch coincide with the NBER recession, but seem to be more specific and

focused to smaller time intervals.

Figure 10: Robustness Check Viterbi Path

This figure shows the Viterbi path against the NBER recession indicator and the market-wide illiquidity over
our sample period 11/04 – 09/13. Panel A displays the situation with the Viterbi path for the regime-switch
based on the Amihud measure and the market-wide illiquidity is based on the Amihud measure and Panel
B displays the situation with the Viterbi path for the regime-switch based on the Extended Corwin-Schultz
measure and the market-wide illiquidity is also based on the Extended Corwin-Schultz measure.

Panel A: Regime-Switch Amihud Illiquidity Measure

Panel B: Regime-Switch Extended Corwin-Schultz Illiquidity Measure
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5.3.3 Return Analysis

Figure 11 and Table 13 (see Appendix) show the average monthly excess returns for each of our 25

portfolios during the stress months predicted by our two regime-switches.

Flight-from-Junk

It is eye-catching that for both regime-switches the returns on all lowest-quality (junk) portfolios are

highly negative (ranging from -3.1% to -0.9% p.m.), while all other portfolios show just slightly negative

returns with an average of -0.1% p.m. Besides the junk portfolios, the other quintiles show a slight

increase in returns moving to higher rated bonds for the Extended Corwin-Schultz measure. However,

one cannot speak of a strong intra-asset class flight-to-quality since the four highest quality quintiles

show no strong gradual change in returns with respect to quality, although the quality-minus-junk

spreads all show statistically significant positive spreads, which however mainly stem from the heavy

flight-from-junk. Similar to the NBER recession, junk-bonds seem to be affected by a negative shock

independent of the other bond portfolios which is why we speak of a flight-from-junk instead of an

overarching flight-to-quality for the entire corporate bond market. Interestingly, the flight-to-quality

effect is considerably stronger in the liquidity stress periods with an average return of -1.94% p.m.

compared to an average return of -0.2% p.m. during the NBER recession, which is a first indication

that our regime-switch specification identifies really unfavorable periods for high-yield bonds. Over

the total liquidity stress time period, junk bonds fall by a significant extent of 21% on average.

Flight-to-Liquidity

Switching to the liquidity perspective, we can observe that there is a strong flight-to-liquidity within

the lowest-rated bond portfolios since the most liquid portfolio outperforms the most illiquid portfolio

by a large return of 2.2% p.m. for the Amihud and 1.2% p.m. for the Extended Corwin-Schultz

measure. Importantly, the portfolios in between show a gradual return decline from the most liquid

to the most illiquid portfolio. Although, all five lowest-rated bond portfolios exhibit negative returns,

we still denote the liquidity effect as a “flight-to” situation: There is a general negative return shock

to that credit rating, but relative to this shock, it appears as if investors show a gradually rising desire

to hold liquid bonds. Among the four highest quality quintiles, we only see a weak flight-to-liquidity

which is smooth for the Extended Corwin-Schultz, but quite noisy for the Amihud measure. Although

this effect is nontrivial in nature, it could be very likely be driven by other risk factors, so that we

do not see it as very strong evidence for a flight-to-liquidity. This is additionally supported by the

t-tests on the liquid-minus-illiquid spreads, which show statistically significant results only for a few

spreads. However, the flight-to-liquidity within junk bonds is extremely pronounced leading to an

approximate 20% return differential between the most liquid and illiquid junk bonds over the entire

stress period, which is highly statistically significant. We can conclude that our findings are in line

with those of Dick-Nielsen et al. (2012), Friewald et al. (2012), and Acharya et al. (2013) in the sense

that liquidity matters much more for speculative bonds during crisis periods. However, we differ with

respect to the effect of liquidity on middle-rated bonds. While Friewald et al. (2012) and Acharya

et al. (2013) only compare two groups, namely speculative and investment grade bonds, Dick-Nielsen
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et al. (2012) present the liquidity effects for five different rating categories. Interestingly, they find

that AA-, A-, and BBB-rated bonds do also exhibit a large increase in sensitivity to liquidity in stress

periods, while AAA-rated bonds are relatively unaffected. Contrary, our analysis shows that liquidity

only affects the lowest quality quintile which ranges up to BB-rated bonds; liquidity does not affect

ratings of BBB-rated or higher by a large extent. Hence, we find a much more isolated effect of the

increasing importance of liquidity.

Since the stress periods are solely defined via liquidity characteristics, but show a strong quality

effect, flight-to-liquidity and flight-to-quality appear to be closely related to each other. Comparing

these results with the ones found for the NBER recession, we can infer that our regime-switch approach

is able to identify the worst time period for corporate bonds in general since investors do not only flee

from low-quality bonds to the highest extent but also punish illiquidity enormously. Although quality

matters the most in absolute terms, it seems that the importance of liquidity rises by a larger extent

than the one of quality. We now turn to the central question why only the speculative bond segment

is affected by the heightened influence of liquidity.

5.3.4 Liquidity Shocks across Ratings

There are three hypothetical explanations about the isolated increase in the liquidity return differential

for speculative bonds :

• If speculative bonds have generally a higher illiquidity, a rising liquidity premium would affect

those bonds by a larger absolute magnitude.

• Liquidity shocks could be asymmetric during distressed times, i.e. primarily hitting illiquid

speculative bonds, which would result in deteriorating characteristics relative to their liquid

speculative counterparts.

• Assuming same liquidity (and liquidity shock) levels across credit ratings, investors may punish

the same unit of illiquidity by a larger extent for speculative than investment grade bonds.

As shown in section 5.2 and in contrast to Acharya et al. (2013), liquidity is uniformly spread across

credit ratings. Speculative and investment grade bonds show in general the same liquidity levels

resulting in the first hypothesis to be obsolete. Figure 12 and Table 14 (see Appendix) show the

difference in illiquidity levels of the stress periods to the non-stress levels and consequently displays

the average illiquidity shocks during that time. Panel A displays the results on the basis of the Amihud

and Panel B on the basis of the Extended Corwin-Schultz measure.

The crucial point is that illiquidity level shocks are commonly distributed across ratings for both

measures. The dry out of market liquidity affects the price impact (proxied by the Amihud measure

in Panel A) of illiquid bonds to a much higher absolute extent, while the most liquid bonds only

increase slightly in their price impact dimension. Interestingly, the relative increase of the Amihud

illiquidity is quite similar across the five liquidity quintiles: The illiquidity of the first (=most illiquid),

second, third, fourth, and fifth liquidity quintiles of bonds increases by 37%, 62%, 54%, 39% and

48%, respectively. One the other hand, the bid-ask spread according to the Extended Corwin-Schultz
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Figure 11: Portfolio-Sorted Excess Returns during Liquidity Stress Regime

This figure shows the average monthly bond portfolio returns in excess of the one-month T-bill return of 25
portfolios sorted by liquidity and quality during the liquidity stress regimes identified by the Viterbi paths.
Illiquid and liquid are defined as the bond portfolios with the highest and lowest illiquidity, respectively, and
junk and quality are defined as the the bond portfolios with the lowest and highest rating, respectively. Panel A
displays the excess returns for the stress periods predicted by the regime-switch based on the Amihud measure
and Panel B displays the excess returns for the stress periods predicted by the regime-switch based on the
Extended Corwin-Schultz measure.

Panel A: Regime-Switch Amihud Illiquidity Measure

Panel B: Regime-Switch Extended Corwin-Schultz Illiquidity Measure
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Figure 12: Illiquidity Level Shocks for Liquidity Stress Periods

This figure shows the difference in average liquidity level of 25 portfolios sorted by liquidity and quality during
the liquidity stress regimes identified by the Markov regime-switch based on the Amihud illiquidity measure
and the normal stress periods. Illiquid and liquid are defined as the bond portfolios with the highest and
lowest illiquidity, respectively, and junk and quality are defined as the the bond portfolios with the lowest and
highest rating, respectively. Panel A displays the average illiquidity shock for the Amihud measure and Panel
B displays the the average illiquidity shock for the Extended Corwin-Schultz measure.

Panel A: Amihud Illiquidity Measure

Panel B: Extended Corwin-Schultz Illiquidity Measure

measure in Panel B shows a tendency to increase slightly more for liquid bonds. Both the price impact

and bid-ask spread increases contradict the second hypothesis of an asymmetric illiquidity shock to

ratings and leads to the pivotal finding of our work :
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Liquidity stress periods appear to not affect bonds with ratings of BBB or above. During those times,

not only the liquidity level premium stays the same, but also severe deterioration in liquidity levels

fizzles out for investment grade bonds. Contrary, the most illiquid bonds underperform their liquid

counterparts in the high-yield segment by c.20% over the course of the liquidity crisis. It appears that

not only the increasing price-impact dispersion, but also a rising liquidity premium drives the liquidity

return differential.

To illustrate that not only the larger increase in price-impact of illiquid compared to liquid high-

yield bonds, but also a higher liquidity level premium drives the returns, we perform a parsimonious

estimate of the relative effects. Under the assumption of a constant liquidity level premium over time,

a shock to the illiquidity of a specific bond i should result in the following total price change (return)

4Pi = −4ILLIQi,lvl · λILLIQlvl
·Di (22)

where 4ILLIQi,lvl is the change in the illiquidity level, λILLIQlvl
is the illiquidity level risk premium

and Di is the duration of the bond. 4ILLIQi,lvl · λILLIQlvl
represents the change in expected return

(=discount rate for the bond’s cash flows) caused by the illiquidity shock. Since the duration represents

not only a weighted maturity measure of the bond, but also the relative price change of the bond

according to one percentage point change in the yield-to-maturity, the product of above depicts the

total price change to the illiquidity shock. We use this formula to determine which constant risk

premium would explain the return differential (of 20% between the most illiquid and the most liquid

high-yield bonds (4Pilliquid,HY -4Pliquid,HY ). Therefore, we assume an average duration of 8 years

for all high-yield bonds (which roughly matches the maturities in Table 3) and base the analysis on

the Amihud measure (since its illiquidity shocks are much more widespread). The Amihud measure

of the most illiquid high-yield portfolio increases by approximately two standard deviations compared

to its increase of the most liquid high-yield portfolio during the stress period. Plain algebra shows

that, on the basis of these parameters, the constant liquidity level premium must amount to 1.25%

per annum in order to explain the liquidity return differential. Our unconditional Fama-MacBeth

procedure in section 5.2 estimates a risk premium of 0.23% for the Amihud measure, while De Jong

and Driessen (2012) and Lin et al. (2011) estimate unconditional premia of up to 1%. Since the

actual premium appears to be below 1.25%, the illiquidity shocks to the high-yield segment must lead

to a lower spread in returns given the assumption of a constant premium. Therefore, we conclude

that the liquidity return differential for speculative bonds cannot be fully explained by the increasing

dispersion in illiquidity. It rather appears that the liquidity risk premium increases on top during

liquidity crisis, but puzzlingly only for the high-yield segment.

6 Discussion

In the previous section we confirm the findings of Dick-Nielsen et al. (2012) and Friewald et al.

(2012) that liquidity stress affects speculative bonds to a higher extent than their investment grade

counterparts. The uniqueness of our work is the disentanglement of the underlying drivers. While

the liquidity return differential of high-yield bonds appears to be caused by both a further increasing
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gap in liquidity and a rising liquidity premium, it remains puzzling why the severe shocks to the

bond-specific illiquidities of bonds with rating BBB and above (that lie between 0% and 62%) are

only marginal in effect. At this point, astrophysicist Sir Arthur Eddington would probably sound a

note of caution similar to his reminder from 1934: “It is a good rule not to put overmuch confidence in

the observational results that are put forward until they have been confirmed by theory.” Therefore,

this section will give possible economic explanations for liquidity effects during distressed periods. We

first present the two theoretical models of Vayanos (2004) and Brunnermeier and Pedersen (2009)

that explain the close connection between liquidity and quality effects visible in our sample. This

interrelation does not represent a novelty to the academic literature. However, we build upon their

understanding in order to explain the flight-from-junk and the unique finding of our work that investors

punish the same unit of illiquidity level differently across credit ratings during times of distress.

6.1 Interrelations of Liquidity and Quality

Liquidity and quality stress periods are widely known to significantly co-move and reinforce each other.

While quality matters also during normal time periods, liquidity is rather a typically sleeping, but at

times rampaging giant. Just as in our analysis, liquidity does usually cause only moderate premia, but

can rise rapidly in importance during high levels of uncertainty. This convex nature of liquidity to

volatility makes liquidity concerns increase by a larger extent than quality matters during certain time

periods. More precisely, the strong impact of liquidity appears to unfold in times of highest market

turmoil; our liquidity stress period is accompanied by a loss of 20% of illiquid in relation to liquid

bonds in the high-yield sector. Vayanos (2004) argues that the risk-aversion of fund managers increases

due to the increasing threat of investors to withdraw capital in light of market stress. Brunnermeier

and Pedersen (2009) describe a spiral in which increasing volatility and decreasing market liquidity

reinforce each other through the effect of funding margins.

6.1.1 Increasing Risk-Aversion according to Vayanos (2004)

We apply the reasoning of Vayanos (2004) in order to explain an increase in risk-aversion during

high-volatility times which amplifies liquidity concerns to a large extent. His model consists of fund

managers that are subject to withdrawals for both random reasons and when the fund performance

falls below a certain threshold. While Vayanos (2004) assumes that investors withdraw the fund capital

all at once, we modify his model by introducing multiple thresholds that each only account for with-

drawing a slice of the fund’s total capital. As in real life, withdrawals are personally costly for the fund

manager as they reduce the management fee and result in frictions such as the need for down-scaling

of operations or a decreasing fund reputation. During volatile times or after negative market shocks,

the probability that the fund performance falls below the threshold increases, and withdrawals become

more likely. As a result, the fund manager becomes more risk-averse (in order to avoid the personal

costs caused by withdrawals). Furthermore, the fund manager is faced with an increasing probability

of being forced to liquidate positions to meet withdrawals. In case of withdrawals, transaction costs

decrease the fund performance further (assuming that the fund value is based on gross or mid-point
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prices) so that the liquidity premium increases in line with the probability of withdrawals and hence

also with the increase in overall risk aversion – thus, default risk as the primary component of a

bond’s risk and liquidity form part of the same equation. Importantly, the probability of withdrawals

increases disproportionally in volatility resulting in the convex nature of risk-aversion and liquidity.

The intuition is that when volatility is low, managers are not concerned with withdrawals because the

event that performance falls below the threshold requires a movement of several standard deviations

(i.e. not very likely). Thus, liquidity premia are very small, and almost insensitive to volatility. When

volatility increases, however, the probability of withdrawals starts to increase rapidly, and so do the

liquidity premia.

6.1.2 Price-Liquidity Spiral according to Brunnermeier and Pedersen (2009)

Brunnermeier and Pedersen (2009) show in their theoretical model that funding margins together with

negative market shocks can cause liquidity dry ups so that market volatility and the level of market

liquidity are closely related and reinforce each other. The mechanisms are illustrated in Figure 13.

Their model consists of speculators who provide market liquidity (i.e. serve as market makers for

customers) and finance their trades through collateralized borrowing from financiers who set margins

to control their value-at-risk. Specifically, financiers set the margins large enough to ensure that

a certain loss can only be exceeded by a certain probability (hence the underlying principle of a

threshold of the capital-giving party is the same as in the model of Vayanos(2004)). Consequently,

financiers increase the margins in case of intensified volatility and the speculators’ equity falls below

the required margins when they suffer losses. In both cases (higher volatility and losses) speculators

have to reduce some positions in order to meet the margins. This forced sell-off pushes prices away

from fundamentals which in turns leads to higher volatility (and hence higher margins) and further

losses on existing positions. As a result, speculators have to continue unwinding assets resulting in a

loss-margin spiral. Since speculators provide market liquidity by filling the temporary order imbalance

of customers arriving sequentially to the market, a reduction in their positions results in less capital

provision for keeping the market liquid. As a consequence, increasing volatility, market losses and

market liquidity deterioration go hand in hand and amplify each other.

6.2 Isolated Effect of Liquidity Stress Periods on High-Yield Bonds

Next, we give an explanation for the pronounced flight-from-junk (large losses for high-yield bonds,

while investment grade bonds remain relatively stable) and the limitation of liquidity effects on the

high-yield segment during the liquidity stress periods.

6.2.1 Rational Explanations for the Flight-from-Junk

We find that high-yield bonds are much more strongly affected by the negative effects during the

subprime crisis. In general, it is a stylized fact that high market uncertainty and volatility increase

a firm’s probability to default so that stress periods trigger overall rising default rates. Elton et al.

(2001) show that, for high yield bonds, the marginal probability to default actually decreases over time,
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Figure 13: Loss-Margin Spiral

This figure (taken from Brunnermeier and Pedersen (2009), page 2204) shows the origin and reinforcement of
a liquidity spiral through a loss spiral and a margin/haircut spiral. A margin spiral emerges if margins are
increasing in market illiquidity. In this case, a funding shock to the speculators lowers market liquidity, leading
to higher margins, which tightens speculators’ funding constraint further, and so on. A loss spiral arises if
speculators hold a large initial position that is negatively correlated with customers’ demand shock. In this
case, a funding shock increases market illiquidity, leading to speculator losses on their initial position, forcing
speculators to sell more, causing a further price drop, and so on. These liquidity spirals reinforce each other,
implying a larger total effect than the sum of their separate effects.

i.e. the bulk of the cumulative default probability concerns the next one to three years. Hence, a larger

part of the default risk of high-yield bonds is caused by the ability for near-future financing so that

high-yield bonds are more vulnerable to negative market shocks. Historical default rates underline this

rationale: According to the Standard & Poor’s Default Report 2013, the default rates of investment

grade bonds over the course of the subprime crisis only slightly increased in absolute terms (0.00% in

2007, 0.42% in 2008, 0.32% in 2009 and 0.00% in 2010) while those of the high-yield bonds rose by a

considerable large amount (0.90% in 2007, 3.65% in 2008, 9.75% in 2009 and 2.94% in 2010). Bernanke

et al. (1994) argue that adverse shocks to the economy typically get amplified by worsening credit-

market conditions. Thereby, lenders are reluctant to provide capital and are confronted with especially

high agency costs concerning low-rated issuers resulting in disproportionally low credit extension for

these borrowers. Consequently, the default risk of low-rated bonds is much more sensitive to market

slowdowns than those of highly-rated bonds. However, we still find it puzzling that in our case only

the lowest rating quintile of bonds suffers large losses during the stress period, while all four other

quintiles are relatively unaffected and do not show a gradual price pattern moving from low to high-

rated bonds, e.g. that the second lowest rating quintile also underperforms. Therefore, it would be

interesting to examine the credit default spreads for different rating classes to examine whether a jump

in the sensitivity of default probability to crisis periods exists between the lowest layer of bond ratings
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and the higher ones.

6.2.2 Non-Formal Model

The models of Vayanos (2004) and Brunnermeier and Pedersen (2009) both predict that rising market

volatility increases the threat to unwind positions (in order to meet withdrawals or funding margins).

We argue that this rising probability to liquidate positions, increases risk and the liquidity premium

only for the assets likely to be sold. Since high-risk assets are typically sold off first in stress periods,

the rising liquidity premium hits the high-yield bond segment the most, leading to a flight-from-junk.

We then show that if investors perceive the accompanied liquidity dry out as transitory, they only

penalize large negative liquidity shocks for assets that are likely to be sold during the stress times.

This explains why the illiquidity shocks on investment grade bonds do only show a marginal return

effect. Before explaining our rationale, we explicitly state the strongest assumptions of the model

• Confronted with liquidity needs during crises, investors tend to liquidate high-risk assets first.

• Investors care about the effective transactions costs, i.e. the transaction costs incurred through a

transaction divided by the period for which the investor holds the asset, rather than the nominal

transaction costs.

• Investors perceive liquidity dry outs during liquidity stress periods as transitory.

Increasing selling pressure on high-yield bonds to meet increasing withdrawals and funding margins

Just like Vayanos (2004) and Brunnermeier and Pedersen (2009), we assume that heightened market

volatility increases the threat to unwind positions (in order to meet withdrawals or funding margins).

While investors also hold a minimum tranche of assets as cushion for cash needs during normal times,

they have to “put aside” more assets for potential liquidation in stress periods. Thus, we assume that

rising volatility leads to an increasing probability for earlier than initially expected liquidation. The

crucial point is the type of assets first in line for liquidation in case of cash needs: We argue that the

increasing risk-aversion in stress times, makes investors unload high-risk and hence low-rated bonds

first which is why the selling pressure increases risk premia, pushes prices down and thus explains the

flight-from-junk. This effect gets amplified by a rising liquidity premium for this first sold-off tranche

as explained in the following paragraph.

Increasing liquidity premia due to shortening holding period

Inspired by the clientele effect of Amihud and Mendelson (1986), we argue that a decrease in the

expected holding period increases the assets’ effective transaction costs (i.e. its yearly return deduction

caused by transaction costs) so that the same nominal transaction costs (i.e. liquidity) hurt more

leading to an increasing liquidity premium. We assume that an investor assesses an investment’s

return on the basis of the average net return over the holding period. Hence, the gross return is

adjusted by the expected transaction costs incurred at the moment of sale and divided among the

expected years of holding the asset. If, for example, the investor aims at holding a security for many
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years, the eventual transaction costs in the far future, only marginally affect the average net return

over the holding period. Consequently, the investor cares about the transaction costs per holding

period (hereinafter called the effective transaction costs). If now an unexpected rise in the probability

to sell-off positions (caused by rising withdrawals or funding margins) occurs, the expected holding

period shortens so as to increase the effective transaction costs. Hence, the same level of transaction

costs and thus illiquidity hurts the investor more, resulting in higher liquidity premia.As shown above,

a rising volatility leads to an increasing probability for earlier than initially expected liquidation. As

high-yield bonds are assumed to be the tranche first in line to be sold (shown above), the effective

transaction costs decreasemore for these bonds.

The asymmetric effect of general liquidity dry outs

Besides being amplified by increasing liquidity premia, the net effect of liquidity also increases

due to general liquidity dry outs during stress periods. As Brunnermeier and Pedersen (2009) show,

high volatility is accompanied by decreasing market liquidity since both trigger and reinforce each

other. We now assume that investors perceive those large negative liquidity shocks as only transitory

phenomena, i.e. investors believe that liquidity will return to normal levels after a certain period of

time. Consequently, the effective transaction due to increasing temporary illiquidity only for assets

that are likely to be sold during the stress times. Since high-yield bonds are first in line to be sold, and

thus better-rated bonds more likely to be unwound later when markets have returned to normality,

investment grade bonds only show marginal return effects to these temporary illiquidity shocks.

7 Conclusion

The purpose of this study is to answer the question why high-yield bonds are more severely hit by

large liquidity dry outs than investment grade bonds. Before examining the underlying drivers, we

first apply four liquidity measures, namely the Amihud, Pastor-Stambaugh, Roll, and Corwin-Schultz

estimators, on our data set in order to proxy for the not directly observable phenomenon of liquidity. In

order to apply the idea of the Corwin-Schultz measure on infrequently traded bonds, we algebraically

derive a more flexible, enhanced version and further show that this extension provides an equal or

more accurate estimation of the bid-ask spread in c.85% of the transactions in our sample compared

to the original measure.

In order to examine whether our liquidity measures accurately measure liquidity, we estimate

unconditional risk premia of up to 1% for the liquidity level and up to 0.5% for the liquidity risk

whose magnitudes are in line with those found in the academic literature. The determination of

liquidity premia in our sample serves as a good case study in order to illustrate the potential flaws

that realized returns as proxies for expected returns can exhibit. Furthermore, we show that liquidity

level and liquidity risk must both be included in liquidity premia analyses since omitting one of them

may overstate the other’s effect.

We show that during liquidity stress periods as identified by our Markov regime-switching model

(comprising 10 to 14 months, mainly during the subprime crisis) illiquid bonds underperform their
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liquid counterparts by as much as 21.7% in the high-yield segment, while the same return differential

amounts to only 5.4% for investment grade bonds. In order to return to the main question of our work,

we then examine the potential underlying drivers of this asymmetric effect on return differentials. We

show that classical explanatory approaches fail to describe this difference in the effect of liquidity on

returns. Neither the pre-crisis liquidity levels nor the liquidity shocks during the stress periods show

an asymmetric distribution across credit ratings.

As a result, we infer the puzzling conclusion that investors punish the same unit of illiquidity

differently across credit ratings in times of distress. During those times, a severe decrease in the

bond-specific liquidity levels across all ratings hits high-yield bonds by a large extent, while ratings

of BBB and above are only marginally affected by the same magnitude of shock. Investors appear to

disregard liquidity shocks to investment grade bonds during times of distress. Besides not only arguing

that investors punish the same magnitude of liquidity shock differently across ratings, we show that

the liquidity premium must exclusively increase for high-yield bonds during stress times in order to

explain the observed price differentials.

In order to explain the discriminating treatment of the same unit of liquidity, we develop a model

in non-formal reasoning. Our explanation for the asymmetric liquidity effects also sheds light on

another phenomenon visible in our sample: We observe a flight-from-junk effect in the form that

high-yield bonds drop by about 20%, while investment grade bonds suffer only 2% over the course of

the identified liquidity stress period. It is grounded on the idea that investors perceive liquidity dry

outs as transitory and therefore only penalize assets that are likely to be sold in the short-term. Since

investors are more risk-averse in times of distress, high-yield bonds are the first in line to be liquidated,

and thus investment grade bonds only show marginal return effects with respect to liquidity shocks,

perceived to be of temporary nature.

These results can be useful for several practical applications. First, it may serve as a basis to

further clarify the extent to which apparent abnormal returns of investment strategies simply display

liquidity premia or are indeed harvested by superior skills. Second, it may shed light on potential

policy reactions to severe liquidity dry outs in the corporate bond market. As predicted by the model

of Brunnermeier and Pedersen (2009), decreasing liquidity and increasing volatility can reinforce each

other. In order to break the downward spiral, policy makers would be advised to direct potential

liquidity provisions (comparable to the current quantitative easing in the U.S.) on the high-yield

sector. However, we want to cite Tolstoy from his novel Anna Karenina: “Happy families are all alike;

every unhappy family is unhappy in its own way”. As our analysis is predominantly based on the

subprime crisis, future liquidity stress periods may exert different characteristics. However, we hope

that our analysis serves as a good starting point to understand the behavior of corporate bond returns

and thus of investors themselves.
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Appendices

Appendix A: Detailed Data Preparation and Filtering Process

In the following, we describe in detail our data preparation and filtering process since all results are

very sensitive to small changes in the data preparation process and as a thorough description of how

to edit TRACE’s transaction data for future academic research does not exist so far to the best of our

knowledge. We hope that this overview might serve as a comprehensive guideline about the different

steps which are necessary to obtain a useful data set for studying liquidity with the TRACE database

so that future researchers may save a considerable amount of time. We are happy to provide our Stata

and Matlab codes, as well as our data sets upon request.

Our sample data is obtained from the two databases TRACE and FISD which we both access via

the Wharton Research Data Services.

• Step 1 – Obtaining and filtering transaction data from TRACE: We start by retrieving

all transactions reported to the TRACE database from October 1, 2004 until September 30, 2013.

Those transactions are secondary over-the-counter transactions and comprise approximately 90%

of the entire trading volume of corporate bonds in the U.S.. We collect transaction information

such as trade date, trade price, trade size and the corresponding CU.S.IP identifier and issuing

company.

• Step 2 – Applying the Dick-Nielsen (2009) error filters: The FINRA regulation requires

most of the secondary OTC transactions in the corporate bond market to be recorded within 15

minutes. However, since the reporting is done manually by the involved brokers, Dick-Nielsen

(2009) finds that erroneous reporting accounts for approximately 8% of all TRACE transactions

and develops three filters in order to detect and correct these deficiencies:

– Deleting true duplicates: In case of inter-dealer trades, each transaction is transmitted by

both dealers and consequently reported twice. The duplicate transactions are identified

by having the same intra-day message sequence number which specifically identifies each

transaction.

– Deleting same-day corrections: If the disseminating party realizes an erroneous report

within the same day, it can report a corrected transaction notice. Since the original report

still shows up in TRACE, we identify them by the message sequence number in the corrected

report and delete them. Furthermore, the disseminating party can simply cancel a report

by sending a cancellation notice. In that case, both the original and the cancellation record

have to be deleted.

– Deleting reversals: Reversals are corrections that are performed on a later date than the

original report. For each reversal, the original report is deleted.

• Step 3 – Applying price filters on transaction level: We apply several filters that shall

detect wrong reports which have not been corrected or cancelled. Due to the importance of
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price for our subsequent analyses, we focus on detecting erroneous price entries. Those comprise

mistakes such as typos or, by mistake, reporting yields as prices. Consequently, the filters aim

at identifying unusual price jumps among transactions. The following filters are based on the

filters of Edwards et al. (2007), Han and Zhou (2011) and Friewald et al. (2012).

– Absolute price filter: We exclude all transactions with prices less than $2 and more than

$500.

– Intra-day median filter: The filter eliminates any transaction where the price deviates by

more than 25% from the daily median.

– Preceding transactions median filter: The filter eliminates any transaction where the price

deviates by more than 25% from the median of the five preceding transactions. Those

preceding transactions can either fall in the same trading day or in the most recent traded

day before.

• Step 4 – Aggregating transactions to daily data: As we perform our liquidity measures

on daily prices, we aggregate the intra-day transactions for each bond into a single summary

observation that consists of the dollar volume-weighted price, the high and low prices and total

trading volume of each day. In order to precisely capture the total returns sensitivity to liquidity

changes, we transform the clean prices of TRACE into dirty prices according to the following

formula:

Pricedirty = Priceclean +Accrued Interestt +
T∑
t=0

Coupont

• Step 5 – Applying price filters on daily level: Manually examining the dataset, we identify

that erroneous price records are likely to appear in clusters (e.g. the broker submits the yield

instead of the price for many consecutive transactions before correcting his reporting behavior).

Consequently, we redo the median filter on trading day level in order to capture these clusters

of false records.

– Trading day median filter: The filter eliminates any transaction where the price deviates

by more than 25% from the median of the five preceding or subsequent days of trading.

• Step 6 – Merge the TRACE database with credit rating information from FISD:

The Mergent FISD database provides information about credit ratings from Standard & Poor’s,

Moody’s, Fitch Ratings, and Duff and Phelps Rating for almost all U.S. corporate bonds.

We assign the credit rating of the most recent date at which a bond’s rating was initiated

or changed to every trading day of the specific bond, irrespective from which of the four agencies

the rating stems from. Furthermore, we translate the official rating categories into a numeric

scale from 10 to 0 with 10 being the highest rating (10=AAA, 9.5=Aa1/AA+, 9=Aa2/AA . . .

1.5=Caa2/CCC, 1=Caa3/CCC-, 0.5=Ca/CC, 0=C/D).

• Step 7 – Merge the TRACE database with bond characteristics from FISD: Besides

rating information, the Mergent FISD database also offers a wide range of bond issue-specific
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characteristics that we merge with our TRACE data set. We exclude convertible, exchangeable,

puttable and perpetual bonds, as well as bonds denoted in foreign currencies. However, we retain

callable bonds as this feature is very standard for bonds and applies to 56.9% of the bonds in

our sample.

• Step 8 – Construct liquidity measures on daily level: The filtered and merged data

set is used to apply our inter-day liquidity measures on daily price / return information. De-

tailed information about the specification of the liquidity measures can be found in section 4

(Methodology).

• Step 9 – Generate monthly returns and liquidity measures: In order to investigate the

effects of liquidity changes on bond returns, we chose a monthly time horizon. Therefore, we

exclude all months of a bond with less than 10 traded days since its liquidity measures which

are constructed on a daily level might exhibit large biases. We define a month’s return by

the relative change from the preceding month’s latest dirty price to the current month’s latest

dirty price. Furthermore, we require that these two prices stems from transactions in the last

weeks of the respective months. Every month of a bond which does not meet this criterion is

disregarded. The daily liquidity measures are aggregated to a monthly basis according to the

rationales outlined in section 4 (Methodology).

• Step 10 – Winsorizing liquidity measures: An analysis of the distribution of monthly

liquidity shows that there are a few very severe outliers. Since all liquidity measures are based

on price changes to certain dimensions, corporate events such as bankruptcy, restructuring and

takeover announcements result in extremely high illiquidity scores so that we exclude them by

winsorizing the 1% of highest illiquidity measures.

70



Appendix B: Derivation of Extended Corwin-Schultz Liquidity Measure31

We assume that the bond price follows a diffusion process and that the spread of S% is constant over

the estimation period of T days. We further assume that the daily high price is buyer-initiated and is

grossed up by half of the spread, whereas the daily low price is assumed to be seller-initiated and is

discounted by half the spread. Hence, we can write[
ln

(
H0
t

L0
t

)]2

=

[
ln

(
HA
t (1 + S/2)

LAt (1− S/2)

)]2

, (23)

where H0
t and L0

t denote the observed high and low bond prices for day t, respectively and HA
t and

LAt denote the actual high and low bond price for day t, respectively. Rearranging this expression

leads to [
ln

(
H0
t

L0
t

)]2

=

[
ln

(
HA
t

LAt

)]2

+ 2

[
ln

(
HA
t

LAt

)][
ln

(
2 + S

2− S

)]
+

[
ln

(
2 + S

2− S

)]2

. (24)

Under the assumption that the bond price follows a geometric Brownian motion and is observed

continously over a relatively small period of time, Parkinson (1980) and Garman and Klass (1980)

show that the expection of the natural logarithm of the the high to low bond ratio is proportional to

the variance of the bond:

E

{
1

T

T∑
t=1

[
ln

(
Ht

Lt

)]2
}

= k1σ
2
HL, (25)

where Ht and Lt denote the high and low bond prices for day t and k1 = 4ln(2). In a similar setting,

Parkinson (1980) shows that the same general rationale also holds for a non-squared ratio

E

{
1√
T

T∑
t=1

[
ln

(
Ht

Lt

)]}
= k2σHL, (26)

where Ht and Lt denote the high and low bond prices for day t and k2 =
√

8
π . Taking expectations

of (21) and substituting the expressions from (22) and (23) yields to

E

{[
ln

(
H0
t

L0
t

)]2
}

= k1σ
2
HL + 2k2σHL

[
ln

(
2 + S

2− S

)]
+

[
ln

(
2 + S

2− S

)]2

. (27)

The expectation of the sum of
∑T−1

j=0 ln

(
H0

t+j

L0
t+j

)
over T single days is

E


T−1∑
j=0

[
ln

(
H0
t+j

L0
t+j

)]2
 = Tk1σ

2
HL + 2Tk2σHL

[
ln

(
2 + S

2− S

)]
+

[
ln

(
2 + S

2− S

)]2

. (28)

For simplification purposes we set

α =

[
ln

(
2 + S

2− S

)]
, (29)

which allows us to rewrite (25) as

31Our derivation follow closely the procedure in Corwin and Schultz (2012).
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E


T−1∑
j=0

[
ln

(
H0
t+j

L0
t+j

)]2
 = Tk1σ

2
HL + 2Tk2σHLα+ Tα2. (30)

We further set

β = E


T−1∑
j=0

[
ln

(
H0
t+j

L0
t+j

)]2
 , (31)

and hence we can simplify (27) as follows

Tk1σ
2
HL + 2Tk2σHLα+ Tα2 − β = 0, (32)

In order to solve this equation, we need an additional second equation with the same unknowns. For

this purpose we square the equation for the high-low ratio from the T-day period[
ln

(
H0
t,t+T−1

L0
t,t+T−1

)]2

=

[
ln

(
HA
t,t+T−1

LAt,t+T−1

)]2

+ 2

[
ln

(
HA
t,t+T−1

LAt,t+T−1

)]
α+ α2, (33)

where Ht,t+T−1 is the high price over the T days t, t + 1, ..., t + T − 1 and Lt,t+T−1 is the low price

over the T days t, t+ 1, ..., t+ T − 1. Taking expectations and setting

γ = E


[
ln

(
H0
t,t+T−1

L0
t,t+T−1

)]2
 (34)

and further assuming that

E

[
ln

(
Ht,t+T−1

Lt,t+T−1

)]2

= E

[
1

T

T∑
t=1

ln

(
Ht

Lt

)]2

= k1σ
2
HL, (35)

and

E

[
ln

(
Ht,t+T−1

Lt,t+T−1

)]
= E

[
1√
T

T∑
t=1

ln

(
Ht

Lt

)]
= k2σHL, (36)

we get

Tk1σ
2
HL + 2

√
Tk2σHLα+ α2 − γ = 0. (37)

Solving (29) for α yields to

α = −k2σHL +

√
k2

2σ
2
HL − k1σ2

HL +
β

T
. (38)

Rearranging this expression gives us

α = −k2σHL +

√
σ2
HL

(
k2

2 − k1

)
+
β

T
. (39)

When we further plug (36) into (34), we get

Tk1σ
2
HL+2

√
Tk2σHL

(
−k2σHL +

√
σ2
HL

(
k2

2 − k1

)
+
β

T

)
+

(
−k2σHL +

√
σ2
HL

(
k2

2 − k1

)
+
β

T

)2

−γ = 0.

(40)
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Rearranging this expression yields to

σ2
HL

[
k2

2

(
2− 2

√
T
)

+ k1 (T − 1)
]

+ σHLk2

(
2
√
T − 2

)√
σ2
HL

(
k2

2 − k1

)
+
β

T
+
β

T
− γ = 0. (41)

This equation can be solved numerically for σHL. When we further substitute this solution in α, we

can calculate the spread S. To simplify the estimation in practice, we ignore Jensen’s inequality in

(23) and assume the following

E

{
1

T

T∑
t=1

[
ln

(
Ht

Lt

)]}
=

√√√√E

{
1

T

T∑
t=1

[
ln

(
Ht

Lt

)]}2

=
√
k1σ2

HL =
√
k1σHL. (42)

This means that k2
2 = k1,which simplifies (36) (now with ᾱ instead of α) to

ᾱ = −k2σHL +

√
β

T
. (43)

Using this simplified ᾱ in equation (38) leads to

σ2
HLk

2
2

(
T − 2

√
T + 1

)
+ σHLk22

(√
T − 1

)√β

T
+
β

T
− γ = 0. (44)

We can rewrite this expression as

σ2
HLk

2
2

(√
T − 1

)2
+ σHLk22

(√
T − 1

)√β

T
+
β

T
− γ = 0. (45)

Dividing the whole term by k2
2

(√
T − 1

)2
yields to

σ2
HL +

2
√

β
T

k2

(√
T − 1

)σHL +
β
T

k2
2

(√
T − 1

)2 =
γ

k2
2

(√
T − 1

)2 . (46)

Further simplifiying this expression gives us

σHL +

√
β
T

k2

(√
T − 1

)
2

=
γ

k2
2

(√
T − 1

)2 . (47)

Solving this equation for σHL yields to

σHL =

√
γ −

√
β
T

k2

(√
T − 1

) . (48)

Plugging (44) into (40) gives us

ᾱ =

√
β
T −
√
γ

√
T − 1

+

√
β

T
=

√
β
T −
√
γ +
√
β −

√
β
T√

T − 1
. (49)

Further simplifiying yields
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ᾱ =

√
β −√γ
√
T − 1

. (50)

This ᾱ can then be used for the generalized high-low spread estimate, which is a transformation of α

in (26)

S =
2 (eᾱ − 1)

1 + eᾱ
. (51)
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Appendix C: Supplementary Tables and Figures

Table 9: Cumulative Average Default Rates in the U.S. from 1981 – 2005

This table displays the historical cumulative default probability per rating and per time left until matu-
rity. They are based on the time period of 1981 to 2005 for the U.S.. The cumulative default proba-
bilities incorporate both the probability of directly defaulting from the current credit rating, but also the
probability to first deteriorate in rating and subsequently default. The information is from the Standard
& Poor’s Annual 2005 Global Corporate Default Study which can be downloaded under the following link:
http://www.gastransmissionnw.com/rate_case_filings/documents/SPGTN18.pdf

Time horizon
1 2 3 4 5 6 7

AAA 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1%
AA 0.0% 0.0% 0.1% 0.2% 0.3% 0.4% 0.5%
A 0.1% 0.2% 0.3% 0.5% 0.7% 0.9% 1.2%
BBB 0.3% 0.7% 1.2% 1.9% 2.6% 3.4% 4.0%
BB 1.1% 3.2% 5.8% 8.2% 10.3% 12.4% 14.0%
B 5.4% 11.8% 17.3% 21.4% 24.4% 26.7% 28.7%
CCC/C 27.2% 37.0% 42.8% 46.7% 50.1% 51.4% 52.6%

9 10 11 12 13 14 15
AAA 0.3% 0.4% 0.4% 0.4% 0.4% 0.5% 0.6%
AA 0.7% 0.8% 0.8% 0.9% 1.0% 1.1% 1.1%
A 1.8% 2.1% 2.3% 2.5% 2.7% 2.9% 3.1%
BBB 5.1% 5.7% 6.3% 6.8% 7.2% 7.7% 8.3%
BB 16.8% 17.9% 18.9% 19.6% 20.3% 20.7% 21.3%
B 31.4% 32.7% 33.8% 34.7% 35.8% 36.7% 37.5%
CCC/C 54.8% 55.7% 56.4% 57.2% 57.8% 58.4% 58.4%
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Table 10: Portfolio-Sorted Illiquidity Measures

This table shows the average bond portfolio illiquidity for 25 portfolios sorted by liquidity and quality during
our sample period from 11/04 – 09/13. Illiquid and liquid are defined as the bond portfolios with the highest
and lowest illiquidity, respectively and junk and quality are defined as the the bond portfolios with the lowest
and highest rating, respectively. Panel A, Panel B, Panel C, and Panel D display the level of illiquidity based
on the Amihud measure, the Pastor-Stambaugh measure, the Roll measure, and the Extended Corwin-Schultz
measure, respectively.

Panel A: Amihud Measure
Illiquid 2 3 4 Liquid

Quality 3.20 1.21 0.57 0.26 0.07
4 2.98 1.15 0.59 0.27 0.07
3 2.66 1.11 0.58 0.29 0.10
2 2.90 1.11 0.56 0.28 0.10

Junk 2.90 1.06 0.57 0.26 0.09

Panel B: Pastor-Stambaugh Measure
Illiquid 2 3 4 Liquid

Quality 4.84 1.11 0.29 0.12 0.03
4 3.77 0.76 0.30 0.12 0.03
3 2.37 0.53 0.21 0.09 0.04
2 3.23 0.60 0.23 0.12 0.04

Junk 3.86 0.64 0.24 0.13 0.07

Panel C: Roll Measure
Illiquid 2 3 4 Liquid

Quality 1.80 1.13 0.79 0.56 0.29
4 1.81 1.18 0.82 0.56 0.31
3 1.75 1.14 0.84 0.59 0.33
2 1.97 1.17 0.86 0.59 0.37

Junk 2.08 1.33 0.88 0.64 0.42

Panel D: Extended Corwin-Schultz Measure
Illiquid 2 3 4 Liquid

Quality 1.35 0.98 0.77 0.70 0.63
4 1.38 1.01 0.81 0.75 0.70
3 1.35 1.00 0.83 0.66 0.56
2 1.38 1.05 0.86 0.70 0.66

Junk 1.59 1.28 0.94 0.77 0.60
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Table 11: Portfolio-Sorted Return and Rating

This table shows the average monthly bond portfolio returns in excess of the one-month T-bill return on 25
portfolios sorted by liquidity and quality dduring our sample period from 11/04 – 09/13. Illiquid and liquid
are defined as the bond portfolios with the highest and lowest illiquidity, respectively and junk and quality
are defined as the the bond portfolios with the lowest and highest rating, respectively. Panel A, Panel B,
Panel C, and Panel D display the actual returns, the yield-to-maturity, the expected returns, and the rating,
respectively.
loss spira

Panel A: Actual Returns
Illiquid 2 3 4 Liquid

Quality 2.52% 2.98% 1.79% 1.41% 1.37%
4 4.21% 2.79% 2.61% 2.43% 2.34%
3 5.17% 4.27% 3.61% 2.99% 2.44%
2 3.39% 4.29% 4.22% 3.40% 2.99%

Junk 6.16% 2.89% 3.56% 3.15% 3.75%

Panel B: Yield-to-Maturity
Illiquid 2 3 4 Liquid

Quality 5.64% 4.40% 4.07% 3.74% 3.01%
4 5.50% 4.47% 4.04% 3.68% 3.22%
3 5.62% 4.81% 4.31% 3.93% 3.49%
2 7.23% 5.54% 5.26% 4.81% 4.41%

Junk 10.25% 10.44% 9.05% 8.41% 7.62%

Panel C: Expected Returns
Illiquid 2 3 4 Liquid

Quality 3.95% 2.85% 2.23% 1.99% 1.68%
4 4.43% 3.13% 2.61% 2.38% 2.25%
3 4.28% 3.45% 3.12% 2.75% 2.48%
2 4.28% 3.57% 3.69% 3.47% 3.33%

Junk 4.83% 3.76% 3.88% 3.74% 3.20%

Panel D: Rating
Illiquid 2 3 4 Liquid

Junk 3.06 3.18 3.07 2.89 3.45
2 5.47 5.47 5.47 5.49 5.25
3 6.60 6.58 6.60 6.61 6.62
4 7.55 7.55 7.55 7.53 7.53

Quality 8.65 8.56 8.55 8.52 8.75
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Table 12: Portfolio-Sorted Excess Returns during NBER Recession

This table shows the average monthly bond portfolio returns in excess of the one-month T-bill return of 25
portfolios sorted by liquidity and quality during recession periods identified by the NBER recession indicator
for our sample period from 11/04 – 09/13. Illiquid and liquid are defined as the bond portfolios with the highest
and lowest illiquidity, respectively, and junk and quality are defined as the the bond portfolios with the lowest
and highest rating, respectively. LMI is defined as the difference in the return of the highest liquidity portfolios
(regardless of rating) and the return of the lowest liquidity portfolios (regardless of rating). QMJ is defined as
the difference in the return of the highest quality portfolio (regardless of liquidity) and the return of the lowest
quality portfolio (regardless of liquidity). The statistical significance of the spread is tested via a t-test, where
an asterik indicates whether the spread is statistically significant at the 5% significance level.

Junk 2 3 4 Quality QMJ
Illiquid 0.19% 0.54% 0.41% 0.50% 0.40% 0.21%

2 -0.11% 0.76% 0.50% 0.19% 0.53% 0.65%*
3 -0.36% 0.49% 0.55% 0.46% 0.47% 0.83%*
4 -0.11% 0.41% 0.40% 0.40% 0.31% 0.41%

Liquid 0.27% 0.73% 0.61% 0.40% 0.30% 0.03%
LMI 0.08% 0.19% 0.20% -0.09% -0.10%

Table 13: Portfolio-Sorted Excess Returns during Liquidity Stress Regime

This figure shows the average monthly bond portfolio returns in excess of the one-month T-bill return of 25
portfolios sorted by liquidity and quality during the liquidity stress regimes identified by the Viterbi paths.
Illiquid and liquid are defined as the bond portfolios with the highest and lowest illiquidity, respectively, and
junk and quality are defined as the the bond portfolios with the lowest and highest rating, respectively. LMI
is defined as the difference in the return of the highest liquidity portfolios (regardless of rating) and the return
of the lowest liquidity portfolios (regardless of rating). QMJ is defined as the difference in the return of the
highest quality portfolio (regardless of liquidity) and the return of the lowest quality portfolio (regardless of
liquidity). The statistical significance of the spread is tested via a t-test, where an asterik indicates whether
the spread is statistically significant at the 5% significance level. Panel A displays the excess returns for the
stress periods predicted by the regime-switch based on the Amihud measure and Panel B displays the excess
returns for the stress periods predicted by the regime-switch based on the Extended Corwin-Schultz measure.

Panel A: Regime-Switch Amihud Illiquidity Measure
Junk 2 3 4 Quality QMJ

Illiquid -3.07% -0.22% -0.51% -0.29% -0.30% 2.77%*
2 -2.52% -0.15% -0.49% -0.41% 0.31% 2.83%*
3 -2.23% -0.32% -0.03% 0.16% 0.18% 2.41%*
4 -1.84% -0.15% -0.01% 0.18% -0.02% 1.81%*

Liquid -0.90% 0.63% 0.36% 0.18% 0.11% 1.01%*
LMI 2.17%* 0.85%* 0.87%* 0.47%* 0.41%

Panel B: Regime-Switch Extended Corwin-Schultz Illiquidity Measure
Junk 2 3 4 Quality QMJ

Illiquid -2.40% -0.53% -0.39% -0.57% -0.03% 2.37%*
2 -1.82% -0.39% -0.49% -0.33% 0.21% 2.03%*
3 -1.68% -0.42% -0.16% 0.07% 0.07% 1.74%*
4 -1.65% -0.44% -0.13% 0.09% -0.03% 1.62%*

Liquid -1.16% -0.05% 0.21% 0.06% 0.00% 1.17%*
LMI 1.24%* 0.48% 0.60%* 0.63%* 0.04%
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Table 14: Illiquidity Level Shocks for Distressed Times

This table displays the difference in average liquidity level of 25 portfolios sorted by liquidity and quality during
the liquidity stress regimes identified by the Markov regime-switch based on the Amihud illiquidity measure
and the normal stress periods. Illiquid and liquid are defined as the bond portfolios with the highest and
lowest illiquidity, respectively, and junk and quality are defined as the the bond portfolios with the lowest and
highest rating, respectively. Panel A displays the average illiquidity shock for the Amihud measure and Panel
B displays the the average illiquidity shock for the Extended Corwin-Schultz measure.

Panel A: Amihud Illiquidity Measure
Junk 2 3 4 Quality

Illiquid 2.11 0.81 1.43 1.52 1.03
2 1.02 1.11 0.88 0.74 0.81
3 0.41 0.65 0.46 0.26 0.07
4 0.04 0.15 0.20 0.18 0.04

Liquid 0.15 0.01 0.01 0.05 0.01

Panel B: Extended Corwin-Schultz Illiquidity Measure
Junk 2 3 4 Quality

Illiquid 0.80 0.60 0.88 0.83 0.74
2 0.68 0.75 0.96 1.07 0.97
3 0.70 0.90 0.99 0.94 0.71
4 0.68 0.86 0.92 1.13 1.04

Liquid 1.02 1.72 1.14 1.60 1.06
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