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Abstract 
When deciding on a valuation model, an investor must be attentive to the juxtaposition between 

the usefulness, driven by complexity, and the simplicity of that particular model. This thesis 

employs an examination of four parsimonious equity valuation models (dividend discount model 

[DDM], residual income valuation model [RIV], abnormal earnings growth model [AEG], and 

the Ohlson-Juettner-Nauroth model [OJ]) and their usefulness in relation to the Nordic stock 

exchanges. Adding to previous studies, it also evaluates the impact of two different payoff 

schemes, analysts’ estimates and martingales. To elaborate on model performance, this study 

further investigates both the separate and conjoint effects from adding three complexity 

adjustments, i) extending the forecast horizon, ii) adjusting for bankruptcy risk, and iii) excluding 

transitory items from the earnings measure. The analysis is carried out using a proprietary 

measure, which considers a comprehensive view on accuracy and spread. In general, it is found 

that RIV consistently outperforms the other models, regardless complexity adjustments. Notably, 

the impact from adding complexity to the models is largely dependent on the combination of 

model specification and model inputs, but the models’ overall performance is increased. 

Nevertheless, the increased model performance from complexity adjustments must be assessed in 

light of the additional effort that such adjustments entail, as their marginal benefits are 

questionable. 
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1. Introduction 
On the purpose of valuation models, Stephen Penman (2005) discusses that 

consistency with valuation theory is not alone a sufficient argument for legitimizing the 

choice of model. He claims that, above all, valuation models have a purpose of utility, 

inasmuch as they should guide practitioners on what model to use, and how to properly 

use that particular model in the decision-making and assessment of investment 

opportunities: 

 

 

 It is of course imperative that a valuation model be consistent with 
valuation theory, but it is not sufficient. Valuation models are utilitarian 

– they serve to guide practice – so the choice between competing 
technologies ultimately comes down to how useful they are for the 
practical task of evaluating investments. (Penman, 2005) 

 

 

Furthermore, complex models have been argued for being more utilitarian than their 

simpler counterparts, in the sense that complex models are consistently more accurate in 

relation to observed market prices (Kaplan & Ruback, 1995; Bradshaw, 2004; Gleason, 

Johnson & Li, 2012). However, although it is important that a chosen valuation 

technology is useful, the chosen technology must also be simple, as investors actively seek 

ways to simplify their investment processes (Kahneman & Tversky, 1973; Peng & Xiong, 

2006; Beunza & Garud, 2007). Penman & Sougiannis (1998) stress the virtue of simplicity 

in equity valuation, and specifically argue that the allegedly complex discounted cash flow 

model (DCF) is cumbersome owing to its “untangling” of accruals back and forth to arrive 

at free cash flows. Consequently, it has been proposed that simpler valuation means, or 

valuation shortcuts (e.g. multiples), have taken an increasingly prominent place in 

valuation processes, notwithstanding their inferior performance in accuracy  

(Berkman, Bradbury & Ferguson, 2000; Asquith, Mikhail & Au, 2005; Demirakos, 

Strong & Walker, 2010; Cavezzali & Rigoni, 2013). Thus, although simpler means might 

not be as useful as more complex models, they are still virtuous because of their 

simplicity. For an investor this implies that the task of model choice ultimately comes 

down to finding a golden mean, which optimizes the trade-off between usefulness and 

simplicity. Such a model should reasonably be parsimonious in its setup, both in terms of 

specification and inputs. On the former, parsimony can be expressed in terms of few 

required parameters, pursued by an easy operation for obtaining an intrinsic value; on the 

latter, it can be translated into readily available inputs, with no adjustments or untangling 

required at all. Besides a parsimonious setup, such a model would also have to hinge on 

theoretically consistent logics, since investors feasibly wish to make decisions based on 

fundamentally derived values (Penman, 2012). 

 

To evaluate the usefulness of parsimonious models, this thesis aims to study 

four such setups and their performance relative to observed stock prices in the Nordic 

stock markets. The emphasis on usefulness is important for capital market practitioners, 

given the plethora of models available, but also for teachers of equity valuation at 

universities worldwide (Hickman & Petry, 1990). In addition, as the complexity of 

complex models has been shown to have a positive association with usefulness in terms of 

model performance, we will also consider the impact of adding complexity to the 

parsimonious model specifications. Does complexity increase the overall accuracy of 

parsimonious valuation models, or are some complexity adjustments more relevant than 
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others in that sense? And is there a sufficient degree of complexity for each parsimonious 

valuation model respectively? The examined models are the dividend discount model 

(DDM), the residual income valuation model (RIV), the abnormal earnings growth model 

(AEG) and the Ohlson-Juettner-Nauroth model (OJ). As they are theoretically equivalent 

(Bernard, 1995; Ohlson 1995; Penman, 2005; Brief, 2007), we further argue that they are 

equally parsimonious in their specification and input requirements. This assumption is 

recognized throughout the thesis. Complexity is investigated by incorporating three 

complexity adjustments to the model specifications. First, we examine the impact from 

extending the forecast horizon of each model. Secondly, as has been lacking in similar 

studies, the explicit linkage between bankruptcy risk and parsimonious valuation is 

studied. Thirdly, the thesis studies the impact on the models from excluding transitory 

items in the earnings measure. As a final approach, we examine these complexity 

adjustments’ conjoint impact.   

 

 Besides McCrae & Nilsson (2001), the extent to which the usefulness of 

parsimonious models has been studied on the Nordic markets is limited. In that sense, 

this thesis adds to the current literature by looking into markets with other characteristics 

than are commonly studied. Additionally, no other study highlights the trade-offs inherent 

in altering the degree of complexity in valuation models. Related, we introduce a 

proprietary measure, the AMA-score, which aims to quantify these trade-offs. Using this 

measure we take a systematic approach and examine the effects from introducing 

complexity adjustments to the original parsimonious model specifications, both separately 

and conjointly. 

 

In general, it is found that the performance differs considerably between the 

models, but that their relative rank persists regardless of complexity adjustment. 

Furthermore, it is also suggested that complexity, when added to the parsimonious 

formulations, does increase performance. However, this increase depends highly on 

specific model combinations. Hence, the empirical results support the view that there is a 

positive association between complexity and accuracy, but also an inherent trade-off 

between complexity and effort. This trade-off is at length translated into economic terms 

as the elasticity of valuation complexity, which aims to mirror the relative changes in 

model performance in terms of effort required for that particular performance. 

 

 Section 2 presents an overview of the previous literature related to valuation 

models, both in terms of theoretical and empirical progressions. Next, we present the 

method undertaken and the data sample used (section 3 and 4). In section 5 we present 

the results of the study, and also integrate analytical discussions on the findings, along with 

some of the implications that the results might render. Finally, section 6 concludes the 

paper, discusses the more general implications and provides avenues to future research.  

2. Previous research 

2.1. Dividend Discount Model (DDM) 

2.1.1. Theories on DDM 

 A classic approach to equity valuation is the dividend discount model 

(Rubinstein, 1976). Williams (1938) made the first explicit association between dividends 

and stock prices (Gordon, 1959; Damodaran, 2006), stipulating that “a stock is worth the 

present value of all the dividends ever to be paid upon it, no more, no less […]”, or 

equivalently 
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𝑃0 = ∑

𝐷𝑃𝑆𝑡

(1 + 𝜌𝑒)𝑡

∞

𝑡=1

 

 

 

(1) 

where P0 is the current share price, DPSt is the expected dividend at time t, and ρe is the 

cost of equity capital. The rationale behind the model is intuitive as dividends are the 

actual payments that an investor expects to receive from investing in a company’s stock. 

On a practical note, as dividend payout ratios generally remain stable over time (Lintner, 

1956; Jääskeläinen, 1967), DDM also mitigates any forecasting uncertainty. Despite these 

benefits, later studies have contended the alleged association between stock prices and 

dividends, and have also questioned the association of subsequent first order changes in 

these dividends (e.g. Shiller, 1981). Furthermore, the infinite properties of the model 

require dividend forecasting into perpetuity, a cumbersome activity, especially given 

companies’ theoretical possibility to last forever. Thus, to apply the model, it is 

reasonable to make it more manageable, which is subject to discussion next.   

 

 Over time, DDM was criticized for having omitted the aspect of growth, and 

how to accommodate for it in the model. Gordon & Shapiro (1956) and Gordon (1959) 

addressed this, by making growth an explicit parameter in the model
1

. They presented a 

parsimonious expression including growth, 

 

 
𝑃0 =

𝐷𝑃𝑆1

𝜌𝑒 − 𝑔
 

 

(2) 

where g is (steady state) growth. Obviously, the single condition that ρe > g must hold, as 

we otherwise would obtain negative or infinite share prices. Henceforward, growth had 

been accommodated for. Nevertheless, their model suffers from one significant limitation: 

it only considers one growth rate. Consequently, it is only suitable for those companies 

expected to grow at their current rate into perpetuity, and concurrently neglects those 

instances where companies experience different growth rates up until steady state, i.e. a 

state where all firm parameters (earnings, dividends, &c) grow at the same rate. Its 

simplicity thus produces a restriction. Furthermore, given that some companies 

experience supernormal growth (Rappaport, 1986), such a model becomes obsolete. 

Clendenin & Van Cleave (1954) conducted a study of stocks for such supernormal growth 

firms. They used alternative DDM applications with uniform discounting rates, and 

concluded that this resulted in absurdities, especially in terms of infinite share prices (cf. 

Gordon & Shapiro, 1956). Durand (1957) also discusses the flaw of applying uniform 

rates to DDM. Similar to Clendenin & Van Cleave, he argues that “if, […], g ≥ ρe, the 

sum of an infinite number of terms would again be infinite – […] – and a reasonable 

[investor] might […] object to paying the price” (p. 351; cf. Bernoulli, 1954)
2

. As a 

response to the inadequacies of uniform rate assumptions, more dynamic models 

emerged that considered growth over explicit forecast periods and truncate the valuation 

model at a steady state (Molodovsky, May & Chottiner, 1965; Bauman, 1969; Fuller & 

Hsia, 1984; Damodaran, 2006). 

                                                 
1

 They assumed that a corporation retained a fraction of its net income every year, and earned a rate of 

return on that retention, in addition to a return on the book value of equity. Furthermore, originally, the 

model was intended for backing out the cost of equity capital, but other studies won greater acclaim for such 

endeavours (e.g. Sharpe, 1964; Lintner, 1965; Mossin, 1966; Black, 1972; Fama & French, 1993). 
2

 Original notation g ≥ k, where k is the cost of equity capital. 
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After deciding on a proper specification for DDM, the next issue becomes 

deriving the inputs, i.e. dividends. On this, Hawkins (1977) discusses that although 

geometrically equating dividend growth rates with earnings growth rates might have been 

previously viable, it is not likely to persist given advances in accounting regimes. As 

earnings have become more volatile owing to new standards emphasising fair value 

accounting, this implies that net income has become a function also of “currency, interest 

rate and market value shifts – random events that create random figures” (p. 48). 

Regardless the potentially distortive effects, he argues that the source of dividends remains 

the same, in that forecasting future dividends is largely a matter of cash flow statement 

analysis (cf. Penman, 2012). Similarly, Rappaport (1986) stated that steady state growth 

rate assumptions understate stock prices, because the implications do not properly mirror 

that a “slowdown in sales also precipitates a slowdown in investment requirements” (p. 

54), and hence, a focus on cash flows will render correctly specified stock prices. Hurley 

& Johnson (1994) analysed the geometric approach of Gordon & Shapiro (1956) and the 

additive approach of Hawkins (1977) and Rappaport (1986), in relation to dividend 

stability. Using a small sample of utility companies, they concluded that the geometric 

approach rendered a more accurate estimate of the actual stock price, notwithstanding 

that the additive model might be more suitable for other industries than utility companies. 

2.1.2. Empirics on DDM 

Much of the early empirical DDM literature concerned DDM’s ability to 

explain stock market fluctuations. In a DDM setting, advocates of efficient markets would 

attribute stock price movements to “new information” about future dividends. However, 

LeRoy & Porter (1981) and Shiller (1981) challenged this view. By using variance bound 

statistical test, and applying a constant discount rate to DDM, they proposed that stock 

price indices seemed too volatile to be justified only by changes in dividends. However, 

Shiller’s (1981) variance test was questioned by Flavin (1983), for being estimated with 

downward bias in small samples and for the calculation of observed 𝑃𝑡
∗, inducing a bias 

toward rejection. Similarly, Marsh & Merton (1986) criticized the assumption of 

dividends being stationary around time trend, and Kleidon (1986) queried the variance 

bound tests for not concerning time-series relations, only cross-sectional ones. As a 

response, Campbell & Shiller (1987) and West (1988) revisited the variance bound tests, 

and found that, as previously alleged, fluctuations in stock markets are in fact too volatile 

to be explained by dividends alone. 

 

Albeit market movements might not be associated with dividend 

movements, Jacobs & Levy (1989) still see financial benefits with using the model, if 

taking an inefficient market for granted, as they presume that “the more accurate your 

forecasts, and the faster the expectations of others converge toward yours, the greater your 

profit” (1989; p. 19). Using a univariate regression, they concluded that DDM explained 

only a small part of the change in ex-post returns
3

. However, when using a multivariate 

regression of DDM together with other attributes
4

, the regression suggested predictive 

powers
5

. In an akin study, Sorensen & Williamson (1985) supported evidence that DDM 

could be useful in identifying mispricing. The authors evaluated ex-post portfolio 

performance using four different valuation techniques, a P/E-model and three DDM 

models with varying horizons. Next, the portfolios were ranked to identify under- or 

                                                 
3

 R2 = 0,037 
4

 E.g. P/E, yield, and size. 
5

 R2 = 0,439 
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overvaluation
6

. The rankings were used to construct five portfolios ranging from the most 

undervalued to the most overvalued stocks in the sample. Over the two succeeding years, 

the authors showed that annual returns were 30,46% and -5,17% for the most 

undervalued and overvalued portfolio respectively. In addition, they found a positive 

association between annual returns and model complexity, with the three-period DDM 

(P/E) model performing the best (worst). 

2.2. Residual Income Valuation model (RIV) 

2.2.1. Theories on RIV 

 In addition to the empirical questioning of DDM’s validity, also a theory-

based critique emerged coeval with Gordon and Shapiro, through Miller & Modigliani’s 

(1961) dividend irrelevancy proposition, which nullified DDM by neutralizing the value-

relevance of dividends. For many years, these contrasting theories created a research 

stalemate, with few contributions in the capital market research (Bernard, 1995), what 

Penman (1992) called “the dividend conundrum”; stock prices are based on dividends 

but dividends contain no information on stock prices. In response, subsequent research 

focus shifted paradigms, from explaining stock price behaviour to understanding the 

potential impact of accounting information on valuation (known as market-based 
accounting research; Lev & Ohlson, 1982; Lev, 1989). 

  

 The role of accounting and its value relevance in valuation is not novel, 

however. Daniels (1934) argues that lay readers of financial statements “usually believe[…] 

that the total asset figure of the balance sheet is indicative, and is intended to be so, of the 

value of the company” (p. 114), mirrored also in IASB’s Conceptual Framework, which 

emphasizes that accounting should be value-relevant. Ball & Brown (1968) showed an 

association between accounting and valuation, while also suggesting the existence of 

efficient markets
7

. But given the mentioned shift in paradigms, their theoretical rationale 

is based on explaining stock price behaviour, which acted counter the emerging research 

area of accounting information’s impact on valuation. RIV was a result of this research, 

although its underpinnings had been discussed much earlier.  

 

Preinreich (1938) discussed capital value as a function of an asset’s book 

value, and earnings less a required rate of return on that asset’s book value, i.e. residual or 

abnormal earnings. This became the foundation of capital values translated from 

accounting information. Besides Preinreich, the original RIV was most prominently 

advocated by Edwards & Bell (1961) and Peasnell (1981; 1982), albeit the latters’ 

specifications largely resemble the original model. However, the perchance most 

celebrated RIV application is Ohlson’s (1995) and Feltham & Ohlson’s (1995). 

Interestingly, although the RIV idea had existed for some time, Ohlson’s and Feltham & 

Ohlson’s contribution played a significant role in academia, particularly with regard to 

their view on the relation between a firm’s value and its accounting data (Bernard, 1995; 

Dechow, Hutton & Sloan, 1999; Lo & Lys, 1999). Out of the two, the more empirically 

tested application is Ohlson’s (1995)
8

. The backbone of Ohlson (1995) rests upon three 

assumptions; firstly, the price of a security is equal to the future expected dividends (i.e. 

                                                 
6

 The P/E model ranked firms on relative P/E-ratios (low to high), whereas the DDM applications were 

ranked based on deviation (DEV) from observed market prices, i.e. (intrinsic value)/price. On average, 

DEV was 1,577 for the most undervalued stock portfolio and 0,501 for the most overvalued one. 
7

 This suggestion has been challenged in similar studies (e.g. Foster, 1979; Bartov, Lindahl & Ricks, 1998). 
8

 Ohlson (1995) differs from Feltham & Ohlson (1995), as the latter focus on the separation of a firm’s 

operational and financial activities. 
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follows DDM). Secondly, the clean surplus relation (CSR) applies, meaning that any 

changes in the book value of equity are reported as income, dividends or capital 

contributions (Peasnell, 1981; Penman, 1992; Feltham & Ohlson, 1995). Feltham & 

Ohlson (1995) concluded that the two assumptions are sufficient to express market values 

in terms of book value and the present value of future expected abnormal earnings, such 

that 

 

 
𝑉0 = 𝐵𝑉0 + ∑

𝐸0[𝑥̃𝑡
𝑎]

(1 + 𝜌𝑒)𝑡

∞

𝑡=1

 

 

 

(3) 

where V0  is the current intrinsic value  of equity, Et[… ]  is an expectations operator 

reflecting all available information at time t, ρe is the cost of equity capital, BV0 is the 

current book value of equity, and x̃t
a depicts the (expected) abnormal earnings, defined as 

the difference between observed earnings, xt, and a cost of capital charge on the book 

value of the previous period, 

 

 𝑥𝑡
𝑎 = 𝑥𝑡 − 𝜌𝑒 ∙ 𝐵𝑉𝑡−1 

 

(4) 

Here, it is easy to see that abnormal earnings are separate from normal dittos. “Normal” 

earnings correspond to a “normal” (or required) return on the capital stock at time t, or 

equivalently displayed, xt
a = 0. Abnormal earnings imply that actual returns are separate 

from the required return (i.e. xt
a ≠ 0 ), and positive abnormal returns “indicate a 

‘profitable’ period” (Ohlson, 1995). Additionally, as in Preinreich (1938) and Peasnell 

(1982), as long as assumption two is honoured, the valuation model works for any 

accounting regime. 

 

 The third and final assumption tends to complicate the model. It presents a 

RIV adaptation that Feltham & Ohlson (1995) recognize as the linear information model 
or the Ohlson model, where other information, than accounting information, is assumed 

to impact the value of a company’s stock. Such an assumption is quite reasonable, as 

there ought to be other information in the capital markets that affects stock price. Alas, 

given this assumption, attempts to adhere to simplicity is diluted. Despite RIV’s similarity 

to the Ohlson model, we argue that the difference between the two should to be 

acknowledged, and that the two models should be treated separately, despite their shared 

heritage. In fact, many empirical studies of the Ohlson model omit the third assumption, 

but still refer to Ohlson (1995) as the theoretical basis, as though the effect of this 

assumption would be negligible. Lo & Lys (1999) argue that omission of the third 

assumption in many empirical studies (e.g. Frankel & Lee 1998; Dechow, Hutton & 

Sloan, 1999; Francis, Olsson & Oswald, 2000) is because it is oftentimes viewed as 

superfluous. As a result, they are ultimately empirical tests of the original RIV, not the 

Ohlson model. Furthermore, Ohlson himself (1999) deprecates the misspecifications of 

his model and humbly recognizes that “[o]rigination of RIV cannot be attributed to 

Feltham or Ohlson” (p. 118), whilst concurrently questioning the empirical significance of 

applying his model without the information dynamics.  

2.2.2. Empirics on RIV 

 Empirically, RIV appears to be more tested than the Ohlson model, owing 

perhaps to the difficulty in applying the latter. Additionally, any alleged superiority of the 

Ohlson model over RIV has been challenged in recent studies, suggesting that simpler 

models might be equally good or better to replicate actual stock prices (Hand & 
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Landsman, 1998; Lo & Lys, 1999). However, as noted, Ohlson himself questioned the 

validity of RIV. Particularly, he queried its heavy reliance on CSR to hold. He pointed to 

the possibility of changing the number of shares, which in turn causes a theoretical flaw in 

RIV, as this change is not permitted under CSR. This, in combination with a plethora of 

dirty surplus items, can cause a situation where changes in book value of equity cannot be 

attributed to changes in income, dividends or capital contributions (Ohlson, 2000; 2005; 

Penman, 2005). One way of circumventing this is by applying a plug, other than 

accounting information, but the solution is unorthodox, especially with regard to how 

such plugs should be interpreted. 

 

 Another issue concerns growth rates. Growth is as relevant for RIV as for 

DDM, but the two models challenge economic intuition for truncated valuations, as they 

in steady state assume constant growth rates. As discussed, arriving at proper growth rates 

is difficult, but given its impact on finite valuation models, the issue is central. Attempts 

have been made to accommodate the models for growth, and Penman (2005) explains 

that a “likely” scenario is one where high growth is expected in the short-term, turning “in 

a geometric fashion” to a lower rate in the long-term (cf. Brief, 2007)
9

. Both RIV and the 

Ohlson model are unable to integrate this finesse, and consequently forecasting growth 

remains a manual issue. Related, Ohlson (2005) suggested an alternative model, focused 

on book values regardless of (residual) earnings, which would capture Penman’s (2005) 

“abnormal book values growth”, implying an incremental view of changes in book value.  

2.3. Abnormal Earnings Growth model (AEG) 

2.3.1. Theories on AEG 

 Ohlson’s (2005) and Penman’s (2005) alternative view was most 

prominently elaborated on by Ohlson & Juettner-Nauroth (2005; henceforth OJ), which 

rendered the abnormal earnings growth model, or the OJ model. In theory, it evaluates 

the growth of abnormal earnings, not abnormal earnings per se. In addition, an important 

feature of AEG is its independence on CSR, which allows for more general specifications. 

Practically, it corresponds to financial analysts’ propensity to forecast earnings, not book 

values of equity or dividends (Sloan, 1996). Within financial accounting there has 

emerged an increased understanding for capital market’s propensity to emphasize 

earnings, and Walker (2006) stresses that standard setters must be more attentive to this 

fact by making the measurement of earnings more practically relevant for valuation 

purposes.  

 

 Abnormal earnings growth is defined as a period’s earnings plus dividends 

(theoretically) reinvested, in excess of the previous period’s earnings growing at the 

required rate of return, 

 

 𝑧𝑡 ≡ [𝐸𝑃𝑆𝑡+1 + 𝜌𝑒 ∙ 𝐷𝑃𝑆𝑡] − (1 + 𝜌𝑒) ∙ 𝐸𝑃𝑆𝑡 

 

(5) 

where EPSt is (expected) earnings per share at time t and DPSt is (expected) dividend per 

share at time t. Interestingly, although not necessary for the model, when CSR is assumed 

in AEG, OJ (2005) show that substituting the abnormal earnings expression above into 

                                                 
9

 For further reference, this comparison can be understood as the difference between RONIC and ROIC 

(Koller, Goedhart & Wessels, 2010), where RONIC is driven down to a lower rate from a previously higher 

ditto as time goes on.  
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RIV directly gives the AEG application, or the non-parsimonious AEG model 

(Jennergren & Skogsvik, 2007), as  

 

By dissecting the above equation, two terms comprise the intrinsic value; firstly, it is 

anchored on expected earnings in year one, capitalized with the cost of equity capital. The 

second term with zt captures abnormal earnings growth for future years up to a truncation 

point, T. One can imagine a scenario with zt = 0 for all future years, which implies that 

the value of a security is merely the capitalized earnings of year one
10

. However, when 

expecting abnormal earnings growth, the security is priced at a premium over the normal 

earnings performance. With regard to this, Penman (2005) sees that the AEG concept is 

advantageous over the residual income growth concept, as the former suggests a valuation 

of the incremental effect on earnings growth, not the growth in itself. Or rather 

 

 𝑧𝑡 = ∆(𝑥𝑡
𝑎) 

 

 

where ∆(… ) expresses change of the first order, and xt
a is the abnormal earnings in RIV

11

 

(Equation 4). To fully appreciate this, recall that mathematically, this implies that 

gAEG ≠ gxa, where g denotes growth, and the indices depict AEG and residual income 

respectively. The logic goes that if the level of a variable grows at a rate, so do its changes, 

but the converse is not true. Recognize that the growth rate, gAEG, is the long-term rate for 

expected abnormal earnings, and a declining rate seems conceptually plausible given 

assumptions on competition and steady state. Related, truncation and finite valuation 

models could benefit from the more incremental growth rates of AEG (Penman 2005). 

Yet the question remains: how does one capture growth in a finite AEG setting? OJ (2005) 

set up the original model for one forecast and one truncation period, assuming some 

properties related to zt, such that  

 

 𝑧𝑡+1 = 𝛾𝑧𝑡 
 

 

where 1 ≤ γ < (1 + ρe) and zt > 0. The parameter gamma, γ, aims to capture the growth 

in abnormal earnings growth in future periods. This assumption, together with the 

ubiquitous DDM assumption, present a complete application of the AEG model, a 

parsimonious application (Jennergren & Skogsvik, 2007), stating that  

 

 
𝑉0 =

𝐸𝑃𝑆1

𝜌𝑒
+

𝑧1

𝑅 − 𝛾
 

 

(7) 

with R = (1 + ρe), and γ = (1 + gAEG). Note that the right term of Equation 7 possesses 

the properties of constant growth (Gordon and Shapiro, 1956), hence subsuming this 

effect explicitly.  

 

                                                 
10

 This scenario also shows that the forward P/E ratio can be calculated by dividing both sides by EPS1 thus 

rendering P EPS1
⁄ =

1

ρe
 (Ohlson, 2005; Penman, 2012).  

11

 Perhaps more clearly as zt = xt
a ∙ gxa, where gxa is the constant growth in abnormal earnings (cf. Penman 

2005). 

 

𝑉0 =
𝐸𝑃𝑆1

𝜌𝑒

+
1

𝜌𝑒
∑

1

(1 + 𝜌𝑒)𝑡
∙ 𝑧𝑡

𝑇

𝑡=1

 

 

(6) 
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The parameter γ requires some supplementary discussion, as its dynamics 

are both theoretically appealing and practically relevant, and with the constant growth 

property in the parsimonious model, the effect of γ is significantly amplified, especially if 

γ approaches R. But what drives γ? Many things impact the expected abnormal earnings 

growth, but without conjecturing on this, let us consider the two most important ones. 

Firstly, as competition reasonably catches up with a firm, this will consequently render a 

situation where abnormal earnings move towards zero, forcing abnormal earnings down. 

The succeeding effect on γ is negative (e.g. Penman, 2005). Secondly, a conflicting effect 

is owing to the choice of accounting regimes reflected in the underlying accounting for the 

model. With unbiased accounting, there are no substantial differences between market 

values and book values. Conservative accounting, on the other hand, stresses prudence, 

generally understating assets and overstating liabilities. Furthermore, because of the 

reversal properties of accounting (Penman, 2012), these biased assessments must at length 

reverse. This has an ultimate impact on the expected future growth as eloquently 

displayed by Feltham & Ohlson (1995) with RIV, and is equally valid for AEG. They note 

that regardless dividend policy and available information at time t, it holds under 

unbiased accounting that the expected growth is approaching zero towards infinity (cf. 

Gao, Ohlson & Osztasewski, 2013). Under a conservative accounting regime though, 

growth will remain greater than zero also towards infinity, because of residual earnings 

persisting in such regimes
12

. The consequent effect on γ from this amendment is positive. 

So, when accommodating for the two opposing factors of competition on the one hand, 

and accounting bias on the other, a plausible assumption is that their respective effects 

offset, such that γ = 1 (Skogsvik & Juettner-Nauroth, 2013), i.e. a case of “no growth in 

eps performance” (OJ, 2005, p. 356). This assumption applied to the parsimonious AEG 

application, gives rise to a version of the model referred to as the PEG model, alluding to 

the PEG multiple and its relation to the growth of (expected) EPS. Given the common 

practice of using multiples for valuation purposes, the reference to PEG in this adaptation 

becomes particularly relevant (Ohlson & Gao, 2006).  
 

 Some important extensions of the AEG model have been presented (e.g. 

Jennergren & Skogsvik, 2011; Grambovas, Garcia, Ohlson & Walker, 2012). One with 

particularly theoretical implications for the parsimonious AEG model is presented by 

Penman (2005) and Jorgensen, Lee & Yoo (2011), in an attempt to determine the validity 

of AEG versus RIV. In short, their adaptation of AEG concerns the number of forecast 

periods. It is argued that the accuracy of AEG increases considerably when the number of 

periods increases, which they explain with that short-term earnings are polluted by some 

“noise”, or transitory items, that can distort a more long-term, sustainable level of earnings. 

This “noise” is given additional impact through the constant growth property in the model 

specification. Therefore, they argue, misstatements of earnings in previous years, can 

skew the value, even though earnings growth and return on equity convert to an expected 

“mean” in later years. Extending with one period, the model can be formulated as 

 

                                                 
12

 Ohlson & Gao (2006) also note an ”invariance aspect” of accounting regimes that may cancel the effects 

of the applied accounting standards as 𝑡 → ∞.  
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𝑉0 =

𝐸𝑃𝑆1

𝜌𝑒

+
𝑧1/𝜌𝑒

(1 + 𝜌𝑒)
+

𝑧2/𝜌𝑒

(𝑅 − 𝛾)(1 + 𝜌𝑒)
 

 

(8) 

2.3.2. Empirics on AEG 

 In relative terms, AEG is a new model. For that reason, the model and its 

applications have not been as empirically validated as older models have, with benefits 

and disadvantages to be recognized. One of the more eloquent critiques on AEG’s flaws 

is discussed by Penman (2005), where he clearly goes against OJ (2005), by suggesting a 

return to accounting fundamentals. Given AEG’s independence of accounting concepts 

(e.g. CSR), he asks “where is the accounting?”. Such concepts legitimize a model by 

putting it into an accounting context, but they also offer insight on how to forecast and 

build pro-forma analyses. Moreover, omitting the balance sheet creates another 

conceptual caveat in AEG. Firstly, it neglects the notion that “assets beget earnings” 

(Penman 2005, p. 373), i.e. that balance sheets provide information about future earnings. 

Secondly, there is a virtue in anchoring value to something known, like book values (cf. 

Daniels, 1934), which could reduce the need for forecasting all together. Penman argues 

that anchoring on 
𝐸𝑃𝑆1

𝜌𝑒
 goes against the fundamental analyst’s dictate of separating the 

known from the speculated (Penman, 2012), as the anchor is in itself a matter of 

speculation, both in the numerator and denominator. Related, he recognizes that AEG 

largely hinges on determining the cost of capital, which is an issue for RIV and DDM 

alike, but the capitalization property in AEG amplifies the issue. Additionally, one can 

question the use of earnings as a value parameter. As Brief (2007) argues, many empirical 

studies have noted that analysts often refer to other accounting and non-accounting 

information (other than earnings) as value-relevant
13

. Consequently, other models might 

better capture the full spectrum of value-relevant aspects, but as mentioned, in light of 

AEG’s relative youth, ruling out the model might be premature. 

  

 Empirical assessments of AEG’s validity have chiefly been concerned with 

deriving the costs of capital inherent in observed market prices, and their relation to 

commonly cited risk-proxies. For instance, to infer the risk premium implied by current 

prices, Gode & Mohanram (2003) used a two-period AEG, three years of forecasted EPS, 

and assumed that γ is equal to (1 + rf). For comparison, Gode & Mohanram also inferred 

the risk-premiums of two RIV models, differing only in the measurement of industry 

median ROEs. The risk premium was then evaluated threefold. First, they assessed how 

well the implied risk-premium correlates with other risk factors, e.g. systematic risk, 

earnings variability and size. What they found is that AEG-inferred risk-premiums 

correlate with the commonly cited risk factors, although the overall explanatory power 

was higher for the RIV application with industry-specific information in ROE. Second, 

the authors ran risk-premium estimates without using current prices, by observing the 

association between inferred risk-premium and the estimated ditto. Again, they found that 

RIV outperformed AEG. Finally, they tested the correlation between ex-ante risk-

premium and ex-post realized returns, and discovered significant associations between ex-

ante risk premiums and ex-post returns. In summary, AEG predicts three-year-ahead 

returns relatively well, although the industry-specific RIV model is superior for 

predictions in year one and two, which ultimately suggests a relative superiority of RIV 

over AEG 

 

                                                 
13

 This corresponds to Ohlson (1995) and his information dynamics addition to RIV. 
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Related to examinations on inferred costs of capital, previous studies have 

compared this with the PEG model to AEG. Botosan & Plumlee (2005) examined the 

relative reliability of cost of capital estimates (measured as risk-premium), by equating 

price with five different types of discounted forecasted future payoffs, out of which two 

were AEG and PEG applications. The authors initially studied the estimates’ ability to 

capture the same underlying construct, by comparing their average magnitude and relative 

correlation to a realized risk premium. They found systematic understatements in the 

estimates, although the AEG estimate provided the closest match. Further, when studying 

if the variations owed to some underlying construct, the results showed a majority of 

correlations being greater than 0,6, proposing such a construct. Next, they assessed the 

estimates’ relative reliability by regressing risk-proxies from firm-specific data on observed 

ex-post costs of equity. The inferred risk premiums were finally examined based on their 

predictability and association with these risk-proxies. Whereas the findings imply a stable 

association between inferred risk premiums from the PEG model and the regressed firm-

specific risk-proxies, the corresponding results for AEG were neither stable nor in line 

with theory – in other words, the two-period PEG model dominated the two-period AEG. 

However, Easton & Monahan (2005) ruled out Botosan & Plumlee (2005) as neither 

correct nor theoretically exhaustive, with their basing a relative rank of expected return 

measures on the regressed risk factors. Instead, they examined seven accounting-based 

proxies imputed from observed market prices and analyst forecasts to evaluate the 

reliability of the expected return estimates. The seven proxies included an inverse P/E-

ratio, two two-year PEG models with different dividend schemes and a perpetual 

abnormal earnings growth rate of zero, one AEG application with γ based on the risk-free 

rate (cf. Gode & Mohanram, 2003) and one AEG application allowing for variations in γ
14

, 

plus two RIV models, with differing assumptions on growth. By conducting regressions 

based on accounting-based proxies’ measurement error variance, Easton & Monahan 

(2005) used Voulteenaho’s (2002) linear decomposition of realized returns
15

 and found 

that none of these provide reliable estimates for the cost of equity capital
16

. On a specific 

level, the two-period PEG model with no dividend payouts performed worst, whereas the 

second PEG model and the AEG applications were beaten by the inverse P/E and RIV 

models. Interestingly, this shows that Easton’s (2004) ‘complex’ model performed second 

to worst, while the parsimonious E/P ratio was found to be as reliable as RIV. 

2.4. Empirics on model comparability  

2.4.1. Relative model performance 

From Ohlson (1995) and Feltham & Ohlson (1995), a new field in valuation 

research emerged, testing the validity of RIV and related models. Usually these models 

were evaluated on how well they could explain variations in stock prices, but also on their 

accuracy compared to observed prices. Bernard (1995) pioneered this field of research, 

and evaluated RIV and DDM’s ability to explain stock price variation. He set up three-

year RIV and DDM models (without terminal values) and regressed its components on 

the variations in stock price, with the rationale that if a good approximation can be 

obtained from RIV, a “large fraction” of price variations should be explained by RIV 

                                                 
14

 The AEG application allowing variations in 𝛾, is derived from Easton (2004) who argued for a more 

complex estimation of long-rung growth rates, as generally applied PEG models are too simplistic in their 

long-run assumptions. 
15

 Based on i) expected return, ii) cash flow news, and iii) return news. 
16

 The conclusion holds, even with robust checks controlling for changes in future payoffs and discount 

rates. 
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component estimates
17

. The results indicated that RIV explained 68% of the changes in 

stock prices, while 28% was explained by DDM (cf. LeRoy & Porter, 1981; Schiller, 

1981). According to Bernard, not only did this further accentuate the dividend 

conundrum (Penman, 1992), but it also highlighted the usefulness of accounting-based 

valuation. He attributed the regression’s deviation from full explainability to his applied 

assumptions, but also to its lacking ability of accommodating an infinite forecast horizon. 

When adjusting for the latter, the RIV components could explain up to 80% of the 

changes in stock price. 

 

Associated, Penman & Sougiannis (1998) examined DDM, RIV, DCF and 

a capitalized earnings model, but in contrast to Bernard (1995), they considered the issue 

of truncation as essential for finite horizon forecasts. For this purpose, the authors 

examined the bias in model performance, by including and excluding terminal values
18

. 

The findings suggested that when excluding the terminal value component, accounting 

based-models (RIV and capitalized earnings model) performed better than cash flow-

based dittos (DDM and DCF). Also when including the terminal value calculation, the 

relative ranks persisted. The authors attributed the results to the ability of accounting-

based model payoffs to ‘bring the future forward’ with the concept of accruals, with 

diminishing capital expenditures as charges against realized payoffs. More specifically, the 

authors ascribed much of RIV’s relative domination to that a significant part of its intrinsic 

value estimate comes from book value of equity, which makes it less susceptible to 

truncation estimates. Acknowledging terminal values, the results also proposed that the 

impact of this component was relatively greater in the DDM and DCF models, as a large 

portion of their intrinsic values lay at truncation.  

 

 By extending the results of Penman & Sougiannis (1998), Francis, Olsson & 

Oswald (2000) performed a study to define the accuracy of DDM, RIV and DCF models, 

using pricing errors
19

. They argued that biases based on portfolio intrinsic value estimates 

(i.e. Penman & Sougiannis, 1998) lack informative ability, since fundamental investors 

ultimately look to accuracy to determine any mispricing of individual securities. The 

results showed that RIV performed relatively better to DDM and DCF, and that DCF 

performed better than DDM. The median unsigned pricing error, defined as the absolute 

percentage deviation between calculated intrinsic value and observed price, or |
𝑉𝑡−𝑃𝑡

𝑃𝑡
|, was 

30% for RIV, and 41% (69%) for DCF (DDM). Performing regression analysis, the 

results were cemented as RIV estimates explained 71% of cross-sectional price changes, 

compared to 35% (51%) for DCF (DDM) (cf. Bernard, 1995). Furthermore, substituting 

forecasted with realized payoffs, the authors found that the relative ranks remained, 

although pricing errors were smaller using the former. The authors also mimicked 

Penman & Sougiannis’ bias approach, where they could confirm that RIV bias dominates 

                                                 
17

 In the analysis, Bernard (1995) assumed i) constant discount rates across all sample firms, ii) constant 

conservatism affecting book values across firms, iii) that abnormal earnings and dividend forecasts reflected 

all available information, and iv) that, in light of that information, the capital markets are efficient. 
18

 The performance of the models were evaluated by comparing observed prices with the intrinsic value 

estimates derived from ex-post realized payoffs averaged in portfolios over the period 1973-1990. For each 

model, ex-post portfolio valuation biases were calculated using signed pricing errors, or equivalently 
𝑉𝑡−𝑃𝑡

𝑃𝑡
. 

19

 In contrast to the previous study, the authors provided evidence based on individual firm value estimates 

and forecast data, and not on portfolio estimates derived from realized payoffs. Furthermore, another 

difference was the metric used to quantify performance, using accuracy instead of bias. Moreover, they 

investigated the accuracy through unsigned pricing errors. 



 15 

DDM and DCF. However, when substituting realizations with forecasts, the ranking 

became dependent on terminal growth rate assumptions
20

. 

 

With OJ (2005), empirical studies could extend their model comparisons 

by incorporating AEG as well. A forerunner on this was Penman (2005), who examined 

two-period AEG and RIV applications and their relation to observed market prices, using 

consensus ex-ante forecasts
21

. He found that RIV (AEG) had a median intrinsic value to 

price ratio (V/P) of 1,00 (2,02), but also that the V/P-variance was larger for AEG. Hence, 

RIV was more accurate and less volatile than AEG
22

. With a similar outset, Brief (2007) 

used the interquartile range (IQR) to estimate the standard deviation for both the RIV 

and AEG V/P distributions of Penman (2005)
23

. He found that the standard deviation of 

AEG (2,07) was four times larger than that of RIV (0,48), highlighting the more volatile 

outcomes of the former, just like Penman (2005), who explained the overvaluations of 

AEG in three ways. Firstly, they could be a result of overly optimistic analyst forecasts. 

Secondly, the second-year growth in abnormal earnings could be inflated by a depressed 

first-year abnormal earnings growth resulting from transitory items. Finally, he argued that 

the geometric decay in abnormal earnings growth was not representative for that priced by 

the market. All in all, he suggested that future research should employ longer forecast 
horizons to circumvent any inflated abnormal earnings growth resulting from transitory 
items. 

 

However, the notion of a single best model (RIV) was contended. 

Lundholm & O’Keefe (2001a; 2001b) argue that the different models should render the 

exact same intrinsic value, and findings suggesting otherwise are theoretically inconsistent. 

On an empirical note, Chang, Landsman & Monahan (2012) show that a proposition 

supporting a single best model is simply not true. They ranked a number of naïve and 

more complex RIV and AEG (cf. Grambovas, Garcia, Ohlson & Walker, 2012) 

applications, and found that AEG and RIV using a five-year horizon had the lowest 

median and mean unsigned pricing errors respectively. Hence, the model that was best 

for the typical firm, was not best on average. Furthermore, all models were ranked for 

each observation in the sample and interestingly, the five-year RIV and AEG only ranked 

first in 10,41% and 14,41% of the cases. Instead, a fifteen-year AEG ranked first most 

often (28,53%), with naïve RIV as second (19,10%) and naïve AEG (17,06%) in third. 

However, these models were also the least accurate for 37,58%, 39,73% and 18,06% of 

the observations. In addition, only three models ranked first more than 16,67% of the 

observations, implying that only three of the models frequently had a higher likelihood of 

placing first, than had the relative ranking been distributed randomly. All in all, these 

inconsistencies made the authors conclude that there simply is no single best model. 

2.4.2. Relative model performance with adjustments 

Besides a pure comparison of the actual models, many studies have also 

included different adjustments to study the impact that these have on different model 

                                                 
20

 Using 0% growth the study confirmed the previous results, whereas using 4% catapulted DCF to the top.   
21

 Valuations were made every year over the period 1975-2002 using data with U.S. trading equities, 

employing a constant cost of capital for all firms. 
22

 Furthermore, the results provided evidence for that RIV dominated AEG in accuracy for all, but one, 

years. 
23

 Brief (2005) assumed a normal distribution and set the standard normal deviate for the 25
th

 and 75
th

 

percentiles, to equal the deviation between each of these percentiles, and the mean of the observed 

distributions, divided by the standard deviation. 
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specifications. One such discussion relates to theoretically “ideal” terminal values. 

Penman (1997) provided formulations for these and also established the theoretical 

equivalence of the DDM, RIV and DCF models for finite horizons. The ideal terminal 

value estimates at the end of forecast horizon, T, were formulated as: Et(Pt+T) for DDM, 

Et(P − B)t+T for RIV and Et(P − FA)t+T for the DCF model, where Pt+T, Bt+T and FAt+T 

denotes the forecasted stock price, book value of equity and net financial assets at T. 

Whereas previous studies had omitted such terminal formulations (e.g. Penman & 

Sougiannis, 1998; Francis, Olsson & Oswald, 2000), Courteau, Kao & Richardson (2001) 

revisited these studies with the ideal terminal value expressions of Penman (1997), in 

order to establish “a level playing field” comparison. They compared signed and unsigned 

pricing errors, using both ideal formulations and the common ones relying on constant 

growth properties. The results indicated that pricing errors were significantly smaller for 

models with ideal terminal values, where RIV (DCF) had a median signed pricing error of 

4,73% (4,82%), whereas the common formulation yielded -37% (-41%) and -34% (-30%), 

for growth rates of 0% and 2% respectively. The analysis of accuracy yielded results 

similar to those of bias, confirming that common formulations performed worse than 

ideal. When testing for robustness, they found that RIV and DCF models applying ideal 

terminal values, explained a similar proportion of cross sectional stock-returns (93,0% 

versus 93,7%). Similar to Penman & Sougiannis (1998) and Francis, Olsson & Oswald 

(2000), the models with common formulations confirmed that RIV dominates cash flow 

models. Courteau, Kao & Richardson hence complemented the earlier studies, inasmuch 

as it provided a possible explanation for RIV’s domination, by highlighting that sensitivity 

of the estimates is largely owing to the choice of terminal value formulation.  

 

As discussed by Penman (2005), the consideration of horizon and transitory 

items is another palpable adjustment in equity valuation. One study that explicitly 

followed these adjustments, was Jorgensen, Lee & Yoo (2011), who examined RIV and 

AEG over longer horizons
24

. They justified their approach by criticizing previous AEG 

studies for being too reliant on the risk-proxies used for evaluating the results, when 

reverse-engineering an implied cost of capital (e.g. Gode and Mohanram, 2003; Botosan 

& Plumlee, 2005). They evaluated AEG, a PEG model and three RIV applications 

(RIVIT, RIVCT, RIVGT), all with two- or five-year forecasts
25

. AEG and PEG were less 

accurate than RIV, and were systematically overvalued in terms of V/P. Interestingly, 

PEG yielded lower errors than AEG, with V/Ps of 1,407 (1,298) for the two-year (five-

year) PEG, compared with 1,994 (1,749) for the two-year (five year) AEG. Subsequently, 

increasing AEG’s forecast horizon did lower the V/P. However, increasing the forecast 

horizon in RIV yielded mixed results, indicating RIV’s relative insensitivity to choice of 

forecast horizon (cf. Bernard, 1995). The mean RIV V/Ps were 1,111 (1,113), 0,829 

(0,937) and 0,952 (1,081) for the two-year (five-year) RIVIT, RIVCT and RIVGT models 

respectively. Also with unsigned pricing errors, the relative performance remained. In 

sum, all variations of AEG again exhibited higher pricing errors than the RIV applications, 

although the forecast horizon improved the accuracy of AEG, with an unclear effect on  

 

                                                 
24

 Expected payoffs were derived using analyst estimates. 
25

 The different versions of RIV had been circulating in the empirical literature for a while; (RIVIT) by Lee 

(1999), Gebhardt, Lee & Swaminathan (2001), and Liu, Nissim & Thomas (2002), assumes ROE to trend 

linearly from the level implied by analysts earnings forecasts for the end of the forecast horizon, to the 

industry median ROE by year 12, to yield a constant residual earnings in perpetuity. (RIVCT) was 

presented by Frankel & Lee (1998), Lee (1999) and Ali, Hwang & Trombley (2003), and assumes that 

residual incomes stay constant past the forecast horizon. The final (RIVGT), by Claus & Thomas (2000), is 

one where growth is assumed constant for the years preceding the forecast horizon (cf. OJ, 2005). 
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RIV. Like many previous studies, Jorgensen, Lee & Yoo praised RIV and attributed its 

consistency to its anchoring on book values of equity, whereas AEG sensitivity, on the 

other hand, emanated particularly from transitory items.  

 

In order to explain the overvaluations of AEG (and PEG) and its increased 

performance when extending the horizon, Jorgensen, Lee & Yoo (2011) evaluated the 

trend of expected future ROEs that were implied by the AEG valuations. These expected 

ROEs were compared to observed realized ROEs, and absolute (future) ROE errors 

were calculated. Dividing the sample firms into quintiles based on current ROE, they 

found that the short-term AEG and PEG models’ lower valuation accuracy was most 

distinct for the firms in the lowest ROE quintile. Furthermore, it was found that firms in 

this quintile largely overestimated ROE compared to the realized (future) ROE. In other 

words, increasing the forecast horizon, from two to five years, significantly improved the 

accuracy of these firms, and additionally mitigated large parts of the ROE overestimation 

gap.  

2.5. Elaborating on the empirical insights 

 The previous literature provides some interesting findings; RIV is seemingly 

a stronger model across the studies, whereas AEG systematically generates large 

overvaluations and deviations and DDM ends up somewhere in between the two. 

Further, to improve model performance, extending the horizon and reflecting over the 

terminal value formulations are two particularly stressed adjustments. Although previous 

studies offer valuable considerations to investors for assessing investments, the 

methodological differences between them make it difficult to draw any bigger conclusions, 

as they differ too much to justify such conclusions. In addition, previous studies only 

consider realized or analysts’ estimates as payoffs. The former might be a neat theoretical 

approach, but the practical relevance can be questioned since stock prices reflect 

unrealized payoffs, and the latter can be queried on the basis of ordinary investors’ 

alternatives. On the one hand, analysts forecast some financial items more distinctly than 

others, which benefit only the valuation models using those items, but on the other, the 

access to such forecasts is mainly restricted to institutional investors, or else only at a high 

price. Considering payoff schemes that are intuitive, easily constructed and thus more 

commonly used would be of interest for ordinary investors. Given the inconclusive results 

from the mutually inconsistent methodologies of previous studies, an investor would 

benefit from a more uniform and comprehensive review that takes the findings of the 

previous literature into account, by providing a “level playing field” in terms of 

specifications and inputs. 

 

Furthermore, previous literature has not explicitly considered model 

complexity. Instead, their theoretical underpinnings suggest that model complications are 

merely tests of robustness (e.g. horizon extension; Penman & Sougiannis, 1998), and not 

tools for increased model performance. However, since such “tests of robustness” have 

been proven to increase the performance of valuation models, we argue for a shift in 

paradigms, where research should investigate complexity adjustments as performance-

enhancing rather than as means to induce statistical significance. A more structured 

approach, for adding complexity to valuation models, would also allow for a more 

granular evaluation of performance in relation to complexity. In addition, this would 

provide valuable insights for investors, since such complexity adjustments are pervasive in 

all investment decisions. 

 



 19 

 All in all, a study that integrates a more comprehensive stance regarding 

model specifications, evaluation methodologies and payoff schemes would facilitate a 

level playing field comparison. Together with findings from previous studies, this would 

ultimately provide useful insights and tools for investors and academia alike. Such a 

structured approach has also been requested in previous research, perchance most 

eloquently by Jorgensen, Lee & Yoo (2011): 

 

 A theoretical approach might help more systematically identify 

conditions under which a specific implementation of a valuation 
model improves or deteriorates the valuation accuracy of resulting 
equity value estimates. (p. 469) 

 

Following the emphasis on conditions in the above quote, we argue that a structured 

approach, to assess the benefits from adding complexity, would shed light on a neglected, 

yet relevant, part of valuation modeling, while also help investors to consider the level of 

complexity sufficient for their discretionary needs. 

3. Method 
 Because of the need for a comprehensive study employing a level playing 

field comparison across parsimonious valuation models, we set out to perform a uniform 

examination of the DDM, RIV, AEG and OJ models [a]. In addition, we cater to an 

ordinary investor’s need for simpler means to arrive at forecasted payoff attributes. For 

this reason, we equip the models with two types of payoff schemes, estimates and 

martingales. Finally, we consider two consecutive three-year forecast periods (2009-2011 

and 2014-2016), implying two different valuation points in time. These points in time 

occur three days after reporting date in 2009 and 2014. Incorporating the above, intrinsic 

values are subsequently calculated for each model, payoff and valuation date, resulting in 

16 model combinations, four for each model. 

 

 Viewing complexity as a potentially performance-enhancing tool, we further 

consider the effects of different complexity adjustments on the above models’ 

performance. For this, we investigate the effects of three such adjustments, i) extension of 

the horizon [b], ii) incorporation of bankruptcy risk [c], and iii) exclusion of transitory 

items [d]. In turn, this investigation looks at the effects of these adjustments both 

separately and conjointly. Consequently, the examination renders three different, but still 

additive, studies; i) study of the non-adjusted parsimonious models, ii) study of the single-

adjusted parsimonious models, and iii) study of the multi-adjusted parsimonious models. 

Figure 1 presents a summary of the addressed model combinations in the three studies. 

All studies calculate intrinsic values in 2009 and 2014 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H
or

iz
on

[b
]

B
an

k
ru

pt
cy

[c
]

T
ra

ns
it
or

y 
it
em

s

[d
]

H
or

iz
on

 +

B
an

k
ru

pt
cy

H
or

iz
on

 +

T
ra

ns
it
or

y 
it
em

s

B
an

k
ru

pt
cy

 +

T
ra

ns
it
or

y 
it
em

s

H
or

iz
on

 +

B
an

k
ru

pt
cy

 +

T
ra

ns
it
or

y 
it
em

s

  
 M

ar
ti

n
ga

le

  
 E

st
im

at
es

H
o
ri

z
o
n

B
a
n

k
ru

p
tc

y

T
ra

n
si

to
ry

 i
te

m
s

S
in

g
le

 a
d

ju
st

m
e
n

ts
M

u
lt

ip
le

 a
d

ju
st

m
e
n

ts
P

a
rs

im
o
n

io
u

s

N
on

-a
dj

us
te

d

[a
]

In
p

u
ts

P
a
y
o
ff











































F
ig

u
re

1.
 S

u
m

m
a
ry

o
f

te
st

e
d

m
o

d
e
l
c
o

m
b

in
a
ti

o
n

s



 21 

3.1. Model specifications 

 For the parsimonious, single- and multi-adjusted studies, we calculate model 

specific intrinsic values using the specifications of DDM, RIV, AEG and OJ as presented 

in the literature review. Owing to the different applications of AEG, we perform two 

competing specifications; AEG that is a three-year model, and OJ, which is a one-year 

model (cf. OJ, 2005). The model formulations on which we base our calculations are as 

follows: 

DDM: 

 

 

𝑉0 = ∑
𝐷𝑃𝑆𝑡

(1 + 𝜌𝑒)𝑡
+

𝐷𝑃𝑆𝑇+1

𝜌
𝑒

− 𝑔
𝑠𝑠

(1 + 𝜌𝑒)𝑇

𝑇

𝑡=1

 

 

(9) 

 

RIV: 

 

 

𝑉0 = 𝐵𝑉𝑃𝑆0 + ∑
(𝑅𝑂𝐸𝑡 − 𝜌𝑒) ∙ 𝐵𝑉𝑃𝑆𝑡−1

(1 + 𝜌𝑒)𝑡

𝑇

𝑡=1

+
𝑞𝑇 ∙ 𝐵𝑉𝑃𝑆𝑇

(1 + 𝜌𝑒)𝑇
 

 

(10) 

 

OJ: 

 

 
𝑉0 =

𝐸𝑃𝑆1

𝜌𝑒

+

𝑧1
𝜌𝑒

⁄

𝑅 − 𝛾
 

(11a) 

 

 

 𝑧𝑡 = [𝐸𝑃𝑆𝑡+1 + 𝜌
𝑒

∙ 𝐷𝑃𝑆𝑡] − (1 + 𝜌
𝑒
) ∙ 𝐸𝑃𝑆𝑡 

 

(11b) 

 

AEG: 

 

 

𝑉0 =
𝐸𝑃𝑆1

𝜌𝑒

+ ∑

𝑧𝑡
𝜌𝑒

⁄

(1 + 𝜌𝑒)𝑡
+

𝑧𝑇+1
𝜌𝑒

⁄

(𝑅 − 𝛾)(1 + 𝜌𝑒)𝑇

𝑇

𝑡=1

 

(12) 

 

where 

 

𝑉0  = the intrinsic value of equity at valuation date, time 0;  

𝐷𝑃𝑆𝑡  = dividend per share at time t; 

𝑅𝑂𝐸𝑡  = return on owners’ equity at time t; 

𝐵𝑉𝑃𝑆𝑡  = book value per share at time t; 

𝐸𝑃𝑆𝑡  = earnings (net income) per share at time t; 

𝑧𝑡  = the abnormal earnings growth at time t; 

𝑞𝑇  = the permanent measurement bias at time T;  

𝜌𝑒  = cost of equity capital at valuation date; 

𝑔𝑠𝑠  = perpetual growth rate in steady state; 

𝛾  = (1 + 𝑔𝐴𝐸𝐺); and 

𝑅  = (1 + 𝜌𝑒). 

 

*all per share items are calculated using undiluted common shares outstanding. 
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Intrinsic value calculations and discounting procedures 
 Using the DDM, RIV, AEG and OJ models, intrinsic values are calculated 

for each firm three days after its annual reporting date in 2009 and 2014, henceforth the 

valuation date. In order to calculate intrinsic values at valuation date while keeping the 

models theoretically equivalent, we need to consider two specific adjustments with respect 

to the accounting-based RIV, AEG and OJ specifications above. Firstly, these three 

models’ theoretical equivalence with DDM is only obtained when their payoffs “arrive” at 

dividend payout date for every forecasted year. Hence, using the original specifications 

above (see Equations 10-12) would yield ex-dividend intrinsic values for RIV, AEG and 

OJ, at dividend payout date in year zero, or rather V0+f
EX . However, as we wish to compare 

intrinsic values with observed prices at valuation date, we need to consider the fraction of 

a year, f, that remains from valuation date until dividend payout date, as dividends are 

paid roughly three months after valuation date for our sample firms. When adjusting for 

this timing difference, we need to discount the calculated ex-dividend intrinsic values to 

valuation date. This amendment is ultimately shown as  

 

 
𝑉0

𝐸𝑋 =
𝑉0+𝑓

𝐸𝑋

(1 + 𝜌𝑒)0+𝑓
 

 

(13) 

 

Secondly, even though the first adjustment is necessary, the intrinsic values 

become theoretically inconsistent, since it would render ex-dividend intrinsic values at 

valuation date. This inconsistency stems from the fact that we at valuation date observe 

stock prices that are cum-dividend, reflecting the next upcoming dividend, DPS0+f. For 

this reason, a second adjustment is necessary to make the intrinsic values cum-dividend, 

and thus reflective of the upcoming dividend, by adding it to V0
EX in Equation 13. To 

perform this second adjustment, we simply discount the upcoming dividend, DPS0+f to 

valuation date, t = 0, using the same fraction, f, in the same manner as with V0+f
EX , or 

equivalently 

 

 𝐷𝑃𝑆0+𝑓

(1 + 𝜌𝑒)0+𝑓
 

 

(14) 

 

Equations 13 and 14 can be combined into one, summarized in Equation 15 as  

  

 
𝑉0

𝐶𝑈𝑀 =
𝑉0+𝑓

𝐸𝑋

(1 + 𝜌𝑒)0+𝑓
+

𝐷𝑃𝑆0+𝑓

(1 + 𝜌𝑒)0+𝑓
= [

𝑉0+𝑓
𝐸𝑋 + 𝐷𝑃𝑆0+𝑓

(1 + 𝜌𝑒)0+𝑓
] 

 

(15) 

 

where V0
CUM is the cum-dividend intrinsic value at valuation date, V0+f

EX  is the ex-dividend 

intrinsic value at dividend payout date, and DPS0+f the upcoming dividend at dividend 

payout date, in year 0. Moving forward, we refer to intrinsic values as V0
CUM, as calculated 

in Equation 15. DDM is not subject to the dividend adjustment, as the intrinsic value 

obtained is cum-dividend by definition (see Equations 9 and 16). With respect to the 

model specifications as presented in the literature review and above, some specification 

updates due to our intrinsic value calculation procedure are appropriate before 

proceeding. 
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Updated model specifications 
DDM: 

 

 

𝑉0 = ∑
𝐷𝑃𝑆𝑡+𝑓

(1 + 𝜌𝑒)𝑡+𝑓
+

𝐷𝑃𝑆3+𝑓

𝜌
𝑒

− 𝑔
𝑠𝑠

(1 + 𝜌𝑒)2+𝑓

2

𝑡=0

 

 

(16) 

 

For DDM, no cum-dividend adjustment is necessary, as we simply discount 

the next three estimated dividends per share at valuation date t = 0. However, we still 

need to adjust the power of our discount factors to incorporate the fact that intrinsic 

values are calculated at valuation date, not dividend payout date. In turn, and as evident 

from Equation 9 and 16, the first forecasted dividend occurs in year 0, and only needs 

discounting with the discount factor raised to fraction f, or 0 + f. 
 

RIV: 

 

 

𝑉0+𝑓
𝐸𝑋 = 𝐵𝑉𝑃𝑆0 + ∑

(𝑅𝑂𝐸𝑡 − 𝜌𝑒) ∙ 𝐵𝑉𝑃𝑆𝑡−1

(1 + 𝜌𝑒)𝑡

3

𝑡=1

+
𝑞𝑇 ∙ 𝐵𝑉𝑃𝑆3

(1 + 𝜌𝑒)3
 

 

 

(17) 

 

 
𝑉0

𝐶𝑈𝑀 = [
𝑉0+𝑓

𝐸𝑋 + 𝐷𝑃𝑆0+𝑓

(1 + 𝜌𝑒)0+𝑓
] 

 

 

 

As opposed to the DDM formulation, RIV needs updating to incorporate 

the cum-dividend adjustment, i.e. Equation 15. To simplify our approach, we follow our 

discussion above and first calculate an ex-dividend intrinsic value at dividend payout date 

in year 0, (t = 0 + f). Another difference from DDM, is that the first payoff in the RIV 

model is obtained year 1. For this reason, ROE and BVPS carry the indices (t + f) and 

(t − 1 + f) respectively, only to highlight the ex-dividend properties required for the RIV 

model to be theoretically consistent.  

 

OJ: 

 

 

 𝑉0+𝑓
𝐸𝑋 =

𝐸𝑃𝑆1

𝜌𝑒

+

𝑧1
𝜌𝑒

⁄

𝑅 − 𝛾
 

 

 

(18) 

 

 
𝑉0

𝐶𝑈𝑀 = [
𝑉0+𝑓

𝐸𝑋 + 𝐷𝑃𝑆0+𝑓

(1 + 𝜌𝑒)0+𝑓
] 

 

 

 

 

AEG: 

 

 

 𝑉0+𝑓
𝐸𝑋 =

𝐸𝑃𝑆1

𝜌𝑒

+ ∑

𝑧𝑡
𝜌𝑒

⁄

(1 + 𝜌𝑒)𝑡
+

𝑧4
𝜌𝑒

⁄

(𝑅 − 𝛾)(1 + 𝜌𝑒)3

3

𝑡=1

 

 

 

(19) 
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𝑉0

𝐶𝑈𝑀 = [
𝑉0+𝑓

𝐸𝑋 + 𝐷𝑃𝑆0+𝑓

(1 + 𝜌𝑒)0+𝑓
] 

 

 

 

 

Similar to RIV, the AEG and OJ models are also updated to incorporate 

the cum-dividend and adjustment, rendering two updated formulations. In addition and 

like RIV, the first forecasted payoffs occur in year 1. We recognize that AEG and OJ 

consider the cum-dividend earnings by definition (cf. Equation 11b; Penman, 2012), but 

as we initiate these models from t = 1, we omit DPS0+f  and must consequently add it by 

using Equation 14, ultimately Equation 15. Figure 2 summarizes the payoffs and the 

relevant dates for all models.  

 

 Figure 2. Forecasted payoffs and respective dates 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
Valuation date 

Market efficiency has been subject to much debate and research (e.g. Fama, 

1965; 1970; Ball & Brown, 1968; Grossman & Stiglitz, 1976; 1980; Shiller, 1981; Haugen, 

2012), and consensus on whether such a phenomenon exists has not been reached. We 

use a three-day absorption window to allow for possible frictions in the capital markets. 

However, given the arbitrary nature of this assumption, we calculate intrinsic value 

estimates for all models also at reporting date and five days after. This procedure is not 
intended to test the absorption effects from new information, but is solely done for the 

sake of testing the robustness of our findings. 

3.2. Model inputs 

Payoff forecasting procedures 
For the respective models, payoffs come in two variations, with different 

forecasting rationales. These payoff variations are either estimates or martingale. We refer 

to estimates as payoffs constructed from median financial item estimates provided by the 

analysts that cover the firms in our sample (e.g. EPS and BVPS). Due to the difficulty of 

finding historical analysts’ estimates, we follow Penman & Sougiannis (1998) and Francis, 

Olsson & Oswald (2000) and take realized payoffs as a proxy for estimates for the 

valuation period 2009-2013.  

 

Martingale, on the other hand, are payoffs obtained through a simple 

forecasting procedure based on historical financial item observations at valuation date, 

t = 0. The martingale rationale basically states that events of the past help inform events 
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of the future, such that the conditional expected value of the next observation, given all 

the past observations, is equal to the last observation, or equivalently 

 

 𝐸[𝑋𝑡+1|𝑋1, … , 𝑋𝑡] = 𝑋𝑡 

 

(20) 

 

In our case, the martingale properties of Equation 20 is elaborated on further, as we take 

an average of a firm’s financial performance over the past five years, and assume that this 

performance is representative for the firm’s performance also moving forward, in terms of 

a financial item X (e.g. EPS and DPS), such that  

 

 

𝐸[𝑋0+𝜏|𝑋−5, … , 𝑋−1] =
1

5
∑ 𝑋𝑡

−1

𝑡=−5

 

 

 

(21) 

 

This further implies that there are no upward or downward slopes of the model inputs. In 

some cases, such slopes are economically sensible, but for the sake of simplicity in the 

martingale operation, this consciously overlooked. Along the lines of Equations 20 and 

21, martingale ROEt estimates are obtained by equating ROEt with the pre-valuation date 

five-year historical ROEaverage, [
1

5
∑ ROEτ = ROEt

−1
τ=−5 ], keeping ROEt constant across the 

forecast period. EPS estimates are then derived with the application of the estimated ROEt 

on BVPSt−1. Following this procedure, martingale DPSt are obtained by the application of 

the pre-valuation date five-year historical payout-ratios (pr), [
1

5
∑ prτ = prt

−1
τ=−5 ]  on the 

derived EPSt. Finally, we adhere to keeping CSR intact when we derive BVPSt with the 

help of our EPSt and DPSt martingale estimates. Following this rationale, all martingale 

payoffs are consistent regardless the choice of valuation model, as they rely on the same 

underlying assumptions. Additionally, we limit our martingale ROEt estimates to values in 

the range of 0% to 100%, as we argue that values being systematically outside of this range 

are at odds with both economic sensibility and prior performance. However, and for the 

sake of robustness, we also calculate intrinsic values using a ROEt range of ρ𝑒,𝑗 to 100%, 

where ρ𝑒,𝑗 refers to the cost of equity capital for firm j in the sample. 

 

Cost of equity capital 
In this study, we use the capital asset pricing model (CAPM; Sharpe, 1964; 

Lintner, 1965; Mossin, 1966)
26

 to arrive at firm-specific costs of equity capital, i.e. 

 

 𝜌𝑒 = 𝑟𝑓 + 𝛽
𝑗

∙ [𝐸(𝑟𝑚) − 𝑟𝑓] 

 

(22) 

where 𝑟𝑓  is the intermediate-term treasury bond yield, and is based on the 10-year 

government bond yield for the country in which each firm denominates its reporting 

currency (Koller, Goedhart & Wessels, 2010). For example, firms using SEK as their 

reporting currency are assigned the 10-year Swedish government bond yield as a proxy for 

                                                 
26

 Hence omitting other models for determining the cost of equity capital. This is consciously done for two 

reasons. Firstly, it is outside the scope of this study to examine the accuracy of cost of capital models; for the 

sake of focus, considering several models could be an undermining procedure. Secondly, Jorgensen, Lee & 

Yoo (2011) embrace several such models (CAPM and Fama & French (1993)) in their study, and conclude 

that their results of the relative performances of the valuation models’ were not affected by this choice. 

Thus, the impact of the choice of cost of capital model is allegedly indifferent for the results.  



 26 

rf. βj is firm-specific
27

 and obtained by regressing 60 months of stock price variations on 

the index to which the corresponding stock belongs. The final term, [E(rm) − rf], captures 

the market risk-premium, and is assumed to be 5% (cf. Francis, Olsson & Oswald, 2000; 

Fernandez, Linares & Fernández Acin, 2014). We further assume that 𝜌𝑒  is constant 

across the forecast horizon, for any given firm and valuation date.  

 

Truncation values 

Truncation values are calculated using common terminal value formulations 

(cf. Penman, 1997; Courteau, Kao & Richardson, 2001), but still differ somewhat 

depending on model. For DDM (Equation 16), DPST+1+f is derived by bringing the last 

forecasted dividend DPST+f forward, using the perpetual steady state growth rate used for 

the truncation value. In line with previous studies (e.g. Francis, Olsson & Oswald, 2000), 

we set this perpetual growth rate to 4%. The truncation value of RIV (Equation 17), is 

obtained by multiplying book value per share for the last forecast year, T + f, with a 

permanent measurement bias, qT
28. To obtain firm-specific qT, we confer Runsten (1998) 

who developed industry-specific dittos, and assign these to each firm in our sample using 

SIC-codes provided in the data set. Finally, we consider the perpetual abnormal earnings 

growth parameter γ when truncating AEG and the OJ model (Equations 18 and 19). 

Following the discussion in the literature review, we assume that the different impacts of 

competition on the one hand, and conservative accounting on the other (cf. Skogsvik & 

Juettner-Nauroth, 2013), offset so that the effect on γ is zero, or equivalently γ = 1. 

3.3. Advanced model derivation and inputs 

After conducting the initial parsimonious study, we add three different 

complexity adjustments to our models. These are added in three separate steps and 

concern i) the forecast horizon, ii) bankruptcy risk, and iii) transitory items. Finally, we 

add these adjustments conjointly and examine their collective impact in four additional 

steps; horizon and bankruptcy risk; horizon and transitory items; bankruptcy risk and 

transitory items; and horizon, bankruptcy risk and transitory items. Whereas the 

parsimonious study renders 16 model combinations (four for each model), these 

additions (together with our robustness calculations) results in a total of 192 different 

model combinations, 48 for each type of model or rather 16 for each of the three 

additions.  

3.3.1. Extension of forecast horizon 

As a first step, we extend all models to incorporate a longer forecast horizon. 

The DDM, RIV and AEG models are extended to five-year instead of a three-year 

forecast horizons, whereas OJ is extended from a one-year to a two-year horizon (cf. 

Jorgensen, Lee & Yoo, 2011; see Equations 16-19). Hence, the only difference from the 

parsimonious approach is that DDM, RIV and AEG payoffs are forecasted over the 

periods 2009-2013 and 2014-2018, whereas OJ incorporates forecasted payoffs for the 

periods 2009-2010 and 2014-2015.  

                                                 
27

 Although arguments have been presented of the superiority of industry-betas in models like CAPM (e.g. 

Fama & French, 1997), we have decided to pursue this firm-specific approach, as the data is more readily 

available one the one hand, but also as arbitrary judgments on industry categorization are not required. 
28

 The permanent measurement bias reflects that a conservative accounting regime conceals the market 

values of the assets in the firm, and hence also the “true” value of equity (cf. Brainard & Tobin, 1968; 

Tobin, 1969). At length, this renders a situation where residual incomes persist in steady state and in zero-

NPV contexts. 
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3.3.2. Incorporation of bankruptcy risk 

Previous similar studies have omitted the fact that companies face the risk 

of going bankrupt (e.g. Penman & Sougiannis, 1998; Frankel & Lee, 1998; Penman, 2005; 

Jorgensen, Lee & Yoo, 2011), or have assumed so only implicitly. However, we argue that 

to better mirror the reality of capital markets, it makes sense to include this particular risk 

explicitly. Moreover, both realized payoffs and analysts’ estimates are by definition 

conditioned on survival, and thus, the intrinsic values of each model must be adjusted for 

with bankruptcy risk, to make the numerator and denominator theoretically consistent.  

 

There exists a plethora of studies discussing bankruptcy risk models, out of 

which Beaver (1966) and Altman (1968) are particularly renowned. However, they suffer 

from two drawbacks; firstly, their samples consist of equally many failing as surviving firms, 

which could cause bias in the results, since the actual failure ratio reasonably ought to be 

smaller than one in two (cf. Ohlson, 1980). Secondly, they look at US industrial firms 

only. This can in turn cause another bias, since Nordic firms could differ from their US 

counterparts, and consequently the models might produce inaccurate estimations of the 

risk of bankruptcy. For these two reasons, we use the bankruptcy prediction model by 

Skogsvik (1988), in which he studied a sample of medium to large Swedish manufacturing 

companies, comprising a relatively greater part of surviving firms than failing dittos. The 

model allows for predicting bankruptcy risk up to six years ahead, which in addition will 

make a valid contribution since the forecasts for each firm in the sample will run for one, 

two, three or five years from valuation date. 

 

The bankruptcy risk can be incorporated into the study by adjusting the 

equity cost of capital for each company with their respective bankruptcy risks. This 

adjustment is ultimately depicted as  

 

 
𝜌𝑒

∗ =
𝜌𝑒 + 𝑝(𝑓𝑎𝑖𝑙)

1 − 𝑝(𝑓𝑎𝑖𝑙)
 

(23) 

 

where 𝜌𝑒  is the firm-specific cost of equity capital and p(fail)  is the firm-specific 

bankruptcy risk (Skogsvik, 2006). For the bankruptcy-adjusted models, the cost of equity 

capital from Equation 23 replaces those of Equations 11b and 16-19, for each firm. The 

bankruptcy risks used in the models are averages of the calculated  p(fail) , such that  
1

𝑛
∑ 𝑝(𝑓𝑎𝑖𝑙)𝑡

𝑛
𝑡=1 ; e.g. a three-year model will use the average of p(fail) for year 1, 2, and 3. 

Furthermore, we will adjust the firm-specific bankruptcy risks to accommodate for any 

skewedness in the sample behind the Skogsvik model
29

. This will render more accurate 

bankruptcy risks, and hence also contribute to the overall accuracy in the cost of equity 

capital for each respective firm. Apart from the proportion of failure companies in the 

original sample, the adjustment requires an a priori probability of failure companies in the 

population of companies. This probability is calculated as the average firm-specific 

bankruptcy risk for the firms in the sample.  
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  Calculated as: 𝑝(𝑓𝑎𝑖𝑙)𝑃𝑂𝑃 = 𝑝(𝑓𝑎𝑖𝑙)𝐸𝑆 ∙ [
𝜋∙(1−𝑝𝑟𝑜𝑝)

𝑝𝑟𝑜𝑝∙(1−𝜋)+𝑝(𝑓𝑎𝑖𝑙)𝐸𝑆∙(𝜋−𝑝𝑟𝑜𝑝)
] 

 

where p(fail)ES is the probability of failure as predicted in the one-year model by Skogsvik (1988), π is the 

a priori probability of failure in the population of companies (i.e. 0.3%, 0,9%, 1.5% or 2.8% for this study 

[depending on horizon]), and prop is the proportion of failure companies in the estimation sample of 

companies, which in Skogsvik’s (1988) sample is 
51

379
= 0,1346 (Skogsvik & Skogsvik, 2013). 
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3.3.3. Earnings excluding transitory items 

As many authors have concluded, transitory items can have significant and 

distortive effects on valuation models in general, and AEG in particular (e.g. Penman, 

2005; Jorgensen, Lee & Yoo, 2011; Gao, Ohlson & Ostaszewski, 2013). For that reason, 

we intend to operate the valuation models with regard to earnings measures that are 

including and excluding transitory items, to see whether the exclusion of that “noise” in 

earnings could improve the models
30

. This implies that we replace the normal EPSt with 

the earnings per share excluding transitory items, EPSt
xt. This affects the Equations 11b 

and 17-19. In addition, it impacts our martingale estimates, since  

[
1

5
∑ ROEτ

xt = ROEt
xt−1

τ=−5 ]  will reflect and incorporate the exclusion of transitory items 

implicitly.  

3.4. Means for model evaluation 

To evaluate the performance of the models and their different 

combinations, we have chosen seven measures that have been commonly used in 

previous literature. These measures aim to capture two important aspects of assessing 

model performance, namely accuracy and spread. Accuracy captures how close to 

observed stock prices a model’s intrinsic value is, and spread aims to capture the 

deviation in accuracy. The accuracy measures are: mean V/P, mean PE, median PE, and 

MAPE. V/P is short for the intrinsic value for each model specification (V), scaled by 

observed stock price (P), such that 

 

 
[𝑉

𝑃⁄ ]
0,𝑗

=
𝑉0,𝑗

𝑃0,𝑗

 
(24) 

 

for each firm j, at valuation date, t = 0. The mean of V/P is simply obtained by summing 

up the V/P for all firms, and dividing by the number of firms, n, or rather 

 

 
[𝑉

𝑃⁄ ]
0,𝑖

=
1

𝑛
∑[𝑉

𝑃⁄ ]
0,𝑗

𝑛

𝑗=1

 
 

(25) 

 

for any model i, at valuation date, t = 0. 

 

Next, PE is short for signed pricing error, and is calculated as intrinsic value 

subtracted by observed stock price, and then deflated with observed stock price: 
 

 
𝑃𝐸0,𝑗 =

𝑉0,𝑗 − 𝑃0,𝑗

𝑃0,𝑗

 
(26) 

 

for each firm j, at valuation date, t = 0. The PE variable is subject to both mean (similar 

to Equation 25, but with PE0,j (PE0,i) instead of [V
P⁄ ]

0,j
([V

P⁄ ]
0,i

)) and median calculations.  

 

The final accuracy measure is the mean of unsigned (or absolute) pricing 

errors, MAPE (Beatty, Riffe & Thompson, 1999; Jorgensen, Lee & Yoo, 2011). Whereas 

PE above aims to capture the direction of the pricing error, MAPE is a measure for 

determining the magnitude or size of the pricing error – the smaller value of MAPE, the 

more accurate the model. MAPE is calculated as  

                                                 
30

 The chosen data for this procedure is EPS excluding transitory items in the FACTSET database. 
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𝑀𝐴𝑃𝐸0,𝑖 =

1

𝑛
∑ |

𝑉0,𝑗 − 𝑃0,𝑗

𝑃0,𝑗
|

𝑛

𝑗=1

 
 

(27) 

 

for any model i, at valuation date,  t = 0. 

 

 In terms of spread, we have chosen three measures, standard deviation of 

PE, 15% APE, and IQRPE. The standard deviation of PE is simply the standard 

deviation of Equation 26 above. The second measure, 15% APE (Kim & Ritter, 1999), 

represents the fraction of the total sample that obtains an unsigned pricing error (APE) 

that exceeds 15%. A smaller fraction indicates a less deviating model. This measure is 

mathematically formulated as 

 

 
15% 𝐴𝑃𝐸0,𝑖 =

1

𝑛
∑ 𝑌𝑗

𝑛

𝑗=1

 
 

(28) 

  

for any model i, at valuation date, t = 0. Yj is a binomial discrete variable, that aims to 

capture the number of firms that generate unsigned pricing errors larger than 15%. 

Hence, the variable possesses the complementary properties that 

 

 
𝑌𝑗 = {

1       𝐴𝑃𝐸𝑗 ≥ 15%       for all 𝑗 = {1, … , 𝑛}

0       𝐴𝑃𝐸𝑗 < 15%       for all 𝑗 = {1, … , 𝑛}
 

 

 

 

where j denotes the firms in the sample of total n firms. In total, the variable Yj will only 

include those firms that obtain unsigned pricing errors (APE) equal to or in excess of 

15%, in which case Yj will assume value 1. 

 

The last measure of spread is IQRPE, short for inter-quartile range of 

signed pricing errors, i.e. PE (Liu, Nissim & Thomas, 2002). The measure aims to reflect 

the range between the third and first quartiles in PE, where lower scores suggests less 

spread in the model. IQRPE can be ultimately be depicted as  

 

 𝐼𝑄𝑅𝑃𝐸0,𝑖 = 𝑄3[𝑃𝐸0,𝑖] − 𝑄1[𝑃𝐸0,𝑖] (29) 

 

for any model i, at valuation date, t = 0, where Qq[… ] denotes the quartile q for which the 

variable is calculated. 

3.4.1. The AMA-score 

Assessing a model’s performance along both accuracy and spread is not a 

clear-cut task. Similar to us, prior studies handle this by interchangeably considering 

accuracy and spread (e.g. Frankel & Lee, 1998; Penman, 2005; Brief, 2007). However, 

looking at these two dimensions simultaneously would be advantageous, as it would 

provide a more comprehensive picture of a model’s performance; a model is not 

necessarily good because it scores well in one of the dimensions. Furthermore, given that 

there is an inherent trade-off between the two dimensions (Faber, 1999; Newbold, 

Carlson & Thorne, 2012), it is wishful to consider the two concurrently. Therefore, 

before proceeding with a comparison of the models’ performances, we here introduce a 

measurement score to make such a comparison more accessible (see Appendix 1). In 
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order to overcome the cumbersome activity of looking at accuracy and spread 

successively, the performance assessment is simplified by looking at the two dimensions 

simultaneously. This is the basis for the AMA-score
31

, which considers both the accuracy 

and spread, by combining the MAPE (accuracy) and IQRPE (spread) measures, or 

mathematically 

 

𝐴𝑀𝐴0,𝑖 =
[1

𝐼𝑄𝑅𝑃𝐸0,𝑖
⁄ ]

𝑀𝐴𝑃𝐸0,𝑖
 

 

(30) 

 

for each model i at valuation date, t = 0. The AMA-score provides a measure of the 

relative (out)performance of a model and payoff combination, where the score (and 

hence model performance) increases with low values of MAPE (i.e. high accuracy) and 

IQRPE (i.e. tight or low spread). Consequently, a higher AMA-score suggests a relatively 

better model, in terms of both accuracy and spread.  

4. Data  
Data is collected from FACTSET, a comprehensive database of historical 

and forecasted financial statement items commonly used by investment banks, private 

equity firms and media. Using one database, this paper benefits from a uniform source of 

both forecasted and historical data, as all items in the financial statements are assessed 

similarly, and hence the risk of working with variables of differing bases is mitigated. The 

selected data comprise the five Nordic stock exchanges’
32

 large- and mid-cap lists, which 

total 303 firms. Financial firms
33

 are consciously omitted from the sample, as their 

common key financial items are influenced by more unorthodox accounting conventions. 

We also omit those firms that do not possess the data required for our model calculations. 

These exclusions render a final sample of 233 firms. This sample consists mainly of 

Swedish firms (49%) and are fairly equally distributed across sectors with slight overweight 

for manufacturing, process industry and medical technology firms (see Appendix 6). 

 

For these firms, we collect fourteen income statement
34

 and balance sheet 

items
35

. These items are used to obtain the model payoffs and bankruptcy risks for each 

year. Furthermore, we gather additional financial and non-financial data necessary for the 

CAPM and model computations
36

. FACTSET also provides exact reporting dates and 

dividend payout dates. The reporting date is the date at which a firm’s annual report 

becomes publicly available. The dividend payout date denotes the date where the 

proposed dividend from a firm’s most recent annual report is paid out to its shareholders. 

All of the above are gathered over 2004-2013 for historical inputs, and over 2014-2018 

for forecasted inputs. Forecasted financial items are the median forecasts of the analysts 

covering each respective firm. On average, each firm in the sample is covered by six 

brokers. The availability of data differs between firms and financial statement items, 

which results in a variation of firm-year observations depending on the model 
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 Anesten-Möller Accuracy score  
32

 Nasdaq-owned stock exchanges in Denmark, Finland, Iceland, Norway, and Sweden. 
33

 Financial institutions, investment companies and real-estate firms. 
34

 Revenues, EBIT, interest expense, EBT, tax expense, net income, net income excluding transitory items. 
35

 Shareholders’ equity, total assets, total liabilities, inventory, cash assets, current assets and current 

liabilities. 
36

 CAPM: 10-year treasury bond yield for Denmark, Finland, Iceland, Norway and Sweden for the risk. 

Other items: dividend per share, (common) shares outstanding, stock prices. 
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specification. For this thesis, this implies average firm-year observations of 590, 345, 485, 

and 311 for RIV, DDM, AEG, and OJ respectively. 

4.1. Descriptive statistics 

Table 2 reports a summary of the median of key variables used throughout 

this study. For the 233 firms the median market cap ranges from 3 156 to 3 832 EURm, 

mirroring the large size of the firms in our sample. Historically, these firms have 

experienced somewhat sluggish growth, but analysts expect these firms to grow stably at  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Sample statistics of key variables

Year t 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

No. of firms 233 233 233 233 233 233 233 233 233 233

Firm characteristics (EURm)

Market capt 3 213 3 823 3 156 3 431 3 832 n.a n.a n.a n.a n.a

Revenuest 3 998 4 033 4 353 4 587 4 562 4 892 5 379 5 865 5 599 16 048

  YoY growtht (%) -7% 7% 8% 4% 1% 5% 5% 4% 5% 6%

EBITt 208 341 369 289 388 435 524 584 929 2122

  Margint (%) 7% 9% 9% 8% 8% 9% 10% 12% 14% 20%

Discount rate (%)

CAPM disc. ratet 8,0% 7,3% 6,7% 6,1% 6,7% 5,7% 5,7% 5,7% 5,7% 5,7%

Risk-free ratet 3,2% 2,7% 2,1% 1,5% 2,3% 1,2% 1,2% 1,2% 1,2% 1,2%

One-year bankruptcy riskt 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%

Two-year bankruptcy riskt 0,1% 0,1% 0,1% 0,1% 0,1% 0,1% 0,1% 0,1% 0,1% 0,1%

Three-year bankruptcy riskt 0,2% 0,2% 0,2% 0,2% 0,2% 0,2% 0,2% 0,2% 0,2% 0,2%

Five-year bankruptcy riskt 0,6% 0,7% 0,6% 0,7% 0,6% 0,6% 0,6% 0,6% 0,6% 0,6%

Payoffs (EUR)

Estimates

  BVPSt 23 25 26 26 26 27 30 33 16 63

  EPSt 2,9 4,0 3,6 3,6 3,7 4,0 4,8 5,7 5,6 3,0

  EPS
xt

t 2,4 3,8 3,5 3,4 3,4 3,9 4,7 5,4 5,7 2,8

  DPSt 1,5 2,0 2,5 2,3 2,6 2,5 3,0 3,1 4,2 6,1

  ROEt (%) 10% 16% 14% 13% 13% 15% 17% 18% 17% 18%

  prt (%) 50% 54% 53% 57% 60% 57% 51% 50% 53% 51%

Martingale

  BVPSt 25 29 31 37 42 27 29 30 29 37

  EPSt 4,7 5,4 6,2 7,1 8,0 6,8 4,4 4,7 4,8 3,9

  EPS
xt

t 5,4 5,4 6,1 6,7 7,9 5,7 4,1 4,4 4,5 4,5

  DPSt 1,4 1,9 1,9 1,9 1,6 2,9 3,3 3,8 2,7 6,1

  ROEt (%) 21% 21% 21% 21% 21% 15% 15% 15% 15% 15%

  prt (%) 30% 35% 29% 28% 19% 41% 68% 74% 72% 61%

Notes:

Table 2 presents yearly medians for key variables in the study. Year t is the year to which key variables refer. 2009 and 2014 are years in 

which valuations are performed, all other years in the study are used for forecasting purposes. Market cap, Revenues and EBIT  are 

denominated in millions of Euro. Estimates for 2009-2013 refer to realized observations whereas those between 2014 and 2018 are 

the median of analyst forecasts. BVPSt  is the book value per share, EPSt is the earnings per share, EPS
xt

t is the earnings per share 

excluding transitory items, DPSt is the dividend per share, ROE t is the return on owners equity and is calculated as EPSt/BVPSt-1, 

finally prt is the payout ratio and is calculated as DPSt/EPSt.
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4-6% approaching 2018. In terms of profitability, the large firms have shown stable 

profitability over 2009-2013, with EBIT-margins of 7-9%. Looking forward, analysts 

anticipate this profitability to improve slightly towards 2018. Before proceeding, it is 

additionally worth mentioning that the reason for why revenues and EBIT catapult in 

2018, is because firms that have analysts’ estimates thus far into the future, are also the 

largest in the sample. 

 

 Costs of equity capital (CAPM disc. ratet) range between 6,1% and 8,0% for 

2009-2013. Further, they decrease over the period due to a decrease in the risk-free rates, 

as betas and risk-premiums are held constant. The costs of equity capital for 2014-2018 

are the same as that computed for the 2014 valuation. One-, two-, three- and five-year 

bankruptcy risks are relatively small, which reflects the large size of firms, and span across 

0,01% (one-year) to 0,73% (five-year). Furthermore, as expected, the longer the forecast, 

the higher the risk of bankruptcy. Again, the bankruptcy risk at the valuation of 2014, is 

held stable for the period 2014-2018 for all horizons. 

 

 With regards to payoff inputs, these will differ with the distinction of 

estimates versus martingale. In addition, estimates are based on realized payoffs (cf. 

Francis, Olsson & Oswald, 2000; Jorgensen, Lee & Yoo, 2011) for the period 2009-2013 

and on analysts’ estimates over 2014-2018. To begin with, as book values per share 

(BVPSt) and dividends per share (DPSt) are functions of EPSt, ROEt and payout ratios (prt), 

it becomes a question of observing the development of the latter. Firstly, ROEs for 

estimates’ payoffs range between 10-16% over the period 2009-2013, whereas martingale 

ROEs are held constant at 21% for the same period. Hence, martingale ROEs by large 

exceed those of estimates, as the former are based on the ROE development prior to 

2009. For the period 2014-2018, estimates’ ROEs pick up somewhat for a span of 15-

18%, compared to the constant martingale of 15%, which once again are based on the 

prior five-year average (i.e. 2009-2013). Secondly, looking at payout ratios, they are stable 

around 50-60% for estimate payoffs for 2009-2013 and 2014-2018. For martingale, there 

is a significant difference in payout ratios over the two periods, stemming from the 

martingale forecast routine as discussed previously. Finally, Table 2 also includes EPS 

excluding transitory items (EPSt
xt ). We see that, compared to normal EPS, there are 

systematic median transitory gains. Collectively, the statistics of Table 2 illustrate the 

stability of estimates’ key variables over our sample period, whereas their martingale 

counterparts show a larger variation. 

5. Results and discussion 

5.1. Study of the non-adjusted parsimonious models 

Table 3 presents the results for the study of the non-adjusted parsimonious 

models. Panel A orders the results in terms of Model and Period, whereas Panel B 

orders by Payoff and Period. As discussed, we use seven measures that aim to evaluate 

both accuracy (mean V/P, mean PE, median PE, MAPE) and spread (std. dev. PE, 15% 

APE, IQRPE) for each model combination.  

 

 Our primary results in Panel A suggest that, in terms of accuracy, DDM and 

OJ systematically overstates observed prices. On the other hand, RIV shows consistent 

understatements of observed prices, whereas the accuracy of AEG depends on the type of 

payoff; overstatement with martingale, and understatement with estimates. Looking at 

spread, Panel A further suggests that RIV outperforms the other models, but that DDM  
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Table 3. Results: Non-adjusted parsimonious model specifications 

Panel A
Ordered by Model and Period

Model Valuation year Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

DDM 2009 Estimates 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

DDM 2009 Martingale 1,17 0,17 -0,08 0,91 0,63 0,85 0,88 339 1,80

DDM 2014 Estimates 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

DDM 2014 Martingale 1,39 0,39 0,29 0,89 0,69 0,85 1,06 432 1,37

RIV 2009 Estimates 0,88 -0,11 -0,25 0,54 0,42 0,79 0,59 546 4,09

RIV 2009 Martingale 1,16 0,17 -0,04 0,92 0,58 0,77 0,80 567 2,17

RIV 2014 Estimates 0,71 -0,29 -0,40 0,71 0,53 0,90 0,46 651 4,09

RIV 2014 Martingale 0,69 -0,31 -0,47 0,61 0,56 0,92 0,49 651 3,68

AEG 2009 Estimates 0,81 -0,14 -0,10 12,69 5,58 0,88 4,93 621 0,04

AEG 2009 Martingale 11,31 10,32 2,68 33,90 10,40 0,93 5,79 405 0,02

AEG 2014 Estimates -5,70 -6,70 -0,53 17,31 11,93 0,97 17,65 657 0,00

AEG 2014 Martingale 6,59 5,59 1,16 19,85 5,74 0,91 3,26 378 0,05

OJ 2009 Estimates 4,65 3,57 1,41 20,81 8,13 0,92 5,70 211 0,02

OJ 2009 Martingale 3,80 3,43 1,21 9,53 3,68 0,91 3,51 176 0,08

OJ 2014 Estimates 7,57 6,99 3,19 19,58 9,36 0,98 5,76 220 0,02

OJ 2014 Martingale 3,35 3,20 0,57 12,56 3,48 0,89 2,25 185 0,13

Panel B
Ordered by Payoff and Period

Payoff Valuation year Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

Estimates 2009 DDM 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

Estimates 2009 RIV 0,88 -0,11 -0,25 0,54 0,42 0,79 0,59 546 4,09

Estimates 2009 AEG 0,81 -0,14 -0,10 12,69 5,58 0,88 4,93 621 0,04

Estimates 2009 OJ 4,65 3,57 1,41 20,81 8,13 0,92 5,70 211 0,02

Estimates 2014 DDM 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

Estimates 2014 RIV 0,71 -0,29 -0,40 0,71 0,53 0,90 0,46 651 4,09

Estimates 2014 AEG -5,70 -6,70 -0,53 17,31 11,93 0,97 17,65 657 0,00

Estimates 2014 OJ 7,57 6,99 3,19 19,58 9,36 0,98 5,76 220 0,02

Martingale 2009 DDM 1,17 0,17 -0,08 0,91 0,63 0,85 0,88 339 1,80

Martingale 2009 RIV 1,16 0,17 -0,04 0,92 0,58 0,77 0,80 567 2,17

Martingale 2009 AEG 11,31 10,32 2,68 33,90 10,40 0,93 5,79 405 0,02

Martingale 2009 OJ 3,80 3,43 1,21 9,53 3,68 0,91 3,51 176 0,08

Martingale 2014 DDM 1,39 0,39 0,29 0,89 0,69 0,85 1,06 432 1,37

Martingale 2014 RIV 0,69 -0,31 -0,47 0,61 0,56 0,92 0,49 651 3,68

Martingale 2014 AEG 6,59 5,59 1,16 19,85 5,74 0,91 3,26 378 0,05

Martingale 2014 OJ 3,35 3,20 0,57 12,56 3,48 0,89 2,25 185 0,13

Notes :

Table 3, Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. Models 

further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the observed 

prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of sample 

whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the inverse of 

IQRPE divided by MAPE.
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finds itself comfortably second. Both AEG and OJ show considerable spread. Panel B 

enables comparisons between payoff attributes. Considering both accuracy and spread, 

estimates appear to be better than martingale. Furthermore, looking solely at the estimate 

payoffs, ex-post (realized) is marginally better, along both accuracy and spread, than ex-

ante (analyst forecasts).  

 

By adding the AMA-scores to Table 3, we can more easily quantify and 

rank the models’ relative performance. Looking at the performance of each model with 

respect to payoff attributes (Panel B), the AMA-score suggests that RIV is considerably 

better than the other models, for all periods and payoffs. The AMA-score cements the 

proposition that DDM is better than both AEG and OJ. For the latter, the results are 

inconclusive, although it appears as though OJ more often than not scores higher than 

AEG. These findings mirror the pre-AMA results.  

 

When testing the robustness of these findings by altering the valuation date 

and underlying payoff assumptions with regard to ROE, we see that the relative model 

performance persists as do our previous results (see Appendix 2 and 5). 

 

Analysis 
 Both the relative strength of RIV over other models and its understating 

tendencies are in line with previous studies (Bernard, 1995; Penman, 1995; Penman & 

Sougiannis, 1998; Francis, Olsson & Oswald, 2000; Courteau, Kao & Richardson, 2001). 

Its relative strength has been attributed to its ability to anchor on something “real”, by 

anchoring on book values of equity. This appears to be true also in our case, where we 

can see that 61%
37

 of the intrinsic values from RIV emanate from the anchor, compared 

with 0%, 2% and 5% for DDM, AEG and OJ respectively. Hence, in the latter models, 

more value resides in estimations and speculations. Looking at terminal values, only 31% 

of RIV’s intrinsic values are captured by this term, whereas the equivalents for the other 

models range between 90-95%
38

. RIV’s anchoring on book values could also provide an 

explanation for the systematic understatement of prices. Given a ubiquitous use of 

conservative accounting and the characteristics this implies, book values of equity will 

mirror this conservatism, and be suppressed. A theoretically correct q-value would serve 

to mitigate this accounting bias, but given the understatement that we see, it appears as 

though the assigned q-values (to our sample firms) could be insufficient to correctly 

account for the “true” conservatism.  

 

 We also see substantial overestimations and spreads for the AEG and OJ 

applications, which is in line with Jorgensen, Lee & Yoo (2011). Observing the terminal 

values for the two models, these comprise 92% and 95% of the intrinsic values, in AEG 

and OJ respectively. As these models depend on the growth of abnormal earnings, not 

abnormal earnings per se, a constant growth in abnormal earnings would create an 

exponential evolution of the abnormal earnings growth
39

. Hence, a constant ROE estimate 

would drive a smooth development of a firm’s abnormal earnings, but at the same time 

an exponential one of the abnormal earnings growth. This would in turn create an 

overstated expected abnormal earnings growth at truncation, i.e. z4 in Equation 19. Given 

this, we can observe that in our sample (see Table 2) there are on average not only 

constant (martingale payoffs) but also increasing ROEs (estimate payoffs), possibly 

                                                 
37

 Median 
38

 DDM 90%, AEG 92%, and OJ 95%. 
39

 Remember that zt = ∆(xt
a) (Penman, 2005). 
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explaining the overestimations that we see. Further, the AEG and OJ applications display 

markedly larger spreads than their DDM and RIV counterparts (cf. Brief, 2007). Like 

DDM and RIV, the AEG and OJ payoffs are uncertain, but given the models reliance on 

growth capitalization, any deviations from the realized future abnormal earnings growth 

are given a more distinct weight in the intrinsic value calculations. Additionally, owing to 

the capitalization properties, the intrinsic value becomes increasingly sensitive also to the 

cost of equity capital (Penman, 2005).  

 

 In terms of payoff inputs, we observe that estimates serve as a better payoff 

for all models, than does martingale. Related, Francis, Olsson & Oswald (2000) find that 

estimates from analysts’ forecasts are more accurate than realized payoffs, but we cannot 

claim any such difference between the two. We attribute the relative advantage of 

estimates over martingale to the intricacies of generating payoff inputs, as our results 

suggest that our martingale inputs are too simplistic in their assumptions. Even when 

adjusting our ROE estimate limitation range
40

, martingale’s inferiority to estimates is 

cemented. Consequently, simple martingale forecasting, relying on five years of historical 

accounting data, is simply not adequate. Possibly, other information would have to be 

incorporated into the payoffs, to mirror other market events that cannot be properly 

reflected by accounting data, just as suggested by Ohlson (1995) and Feltham & Ohlson 

(1995) (e.g. Dechow, Hutton & Sloan, 1999).  

5.2. Study of the single-adjusted parsimonious models 

 Next, we adjust the parsimonious models [a] to accommodate for three 

complexity attributes, i) extension of forecast horizon [b], ii) incorporation of bankruptcy 

risk [c], and iii) earnings excluding transitory items [d]. Table 4 provides the AMA-scores 

for these different variations. 

5.2.1. Extension of forecast horizon [b] 

 Overall, 50% of the models are improved by the extension of forecast 

horizon
41

. The question on whether to extend this horizon or not, is largely a matter of 

what payoff inputs one uses, estimates or martingales. For all models but DDM, we see 

that when using estimates, extended horizons renders higher AMA-scores. Especially the 

RIV model shows an increase in AMA, impressive given its high initial score. AEG and 

OJ follow the same pattern, but the results are inconclusive, due to their low scores to 

begin with. However, when using martingale payoffs in these three models, the AMA-

scores decrease. On the other hand, DDM acts counter, where martingale (estimates) 

increases (decrease) its relative performance with extended horizons. Yet, overall we 

observe that the relative performance between the models persist, with the exception for 

the martingale payoffs of 2009, where DDM supersedes RIV as the best model. In 

addition, we also observe slight intra-model changes, especially true for DDM, which 

seems to become less sensitive to the choice of payoff input following the adjustment. 

  

Analysis 
 Previous studies have argued for extended horizons, as this is supposed to 

yield better accuracy (e.g. Jorgensen, Lee & Yoo, 2011). However, what we find 

contradicts such a proposition, and instead suggests that an extension is validated by the  

 

 

                                                 
40

 From 0% to a minimum of cost of equity capital, implying non-negative NPV investments. 
41

 Also confirmed when elaborating on valuation dates and ROE forecasting limitations (Appendix 3) 
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Table 4. Results: AMA-scores after single-adjustment 

Panel A
Ordered by Model and Period

Model Valuation year Payoff Parsimonious [a] Horizon [a] + [b] Bankruptcy [a] + [c] Transitory items [a] + [d]

DDM 2009 Estimates 2,36 2,20 2,58 2,36

DDM 2009 Martingale 1,80 2,03 1,83 1,80

DDM 2014 Estimates 2,41 2,38 2,57 2,41

DDM 2014 Martingale 1,37 2,49 1,64 1,37

RIV 2009 Estimates 4,09 5,16 4,07 4,31

RIV 2009 Martingale 2,17 1,23 2,18 2,35

RIV 2014 Estimates 4,09 5,12 4,12 4,07

RIV 2014 Martingale 3,68 3,53 3,49 3,67

AEG 2009 Estimates 0,04 0,05 0,04 0,06

AEG 2009 Martingale 0,02 0,00 0,02 0,03

AEG 2014 Estimates 0,00 0,00 0,01 0,00

AEG 2014 Martingale 0,05 0,01 0,06 0,05

OJ 2009 Estimates 0,02 0,03 0,01 0,03

OJ 2009 Martingale 0,08 0,05 0,09 0,10

OJ 2014 Estimates 0,02 0,05 0,02 0,02

OJ 2014 Martingale 0,13 0,09 0,14 0,10

Panel B
Ordered by Payoff and Period

Payoff Valuation year Model Parsimonious [a] Horizon [a] + [b] Bankruptcy [a] + [c] Transitory items [a] + [d]

Estimates 2009 DDM 2,36 2,20 2,58 2,36

Estimates 2009 RIV 4,09 5,16 4,07 4,31

Estimates 2009 AEG 0,04 0,05 0,04 0,06

Estimates 2009 OJ 0,02 0,03 0,01 0,03

Estimates 2014 DDM 2,41 2,38 2,57 2,41

Estimates 2014 RIV 4,09 5,12 4,12 4,07

Estimates 2014 AEG 0,00 0,00 0,01 0,00

Estimates 2014 OJ 0,02 0,05 0,02 0,02

Martingale 2009 DDM 1,80 2,03 1,83 1,80

Martingale 2009 RIV 2,17 1,23 2,18 2,35

Martingale 2009 AEG 0,02 0,00 0,02 0,03

Martingale 2009 OJ 0,08 0,05 0,09 0,10

Martingale 2014 DDM 1,37 2,49 1,64 1,37

Martingale 2014 RIV 3,68 3,53 3,49 3,67

Martingale 2014 AEG 0,05 0,01 0,06 0,05

Martingale 2014 OJ 0,13 0,09 0,14 0,10

Adjustments

Adjustments

Notes:

Table 4 shows model performance by AMA-score for the DDM, RIV, AEG and OJ-models. AMA-scores are calculated for each and 

every adjustment; hence, the adjustements are added separately in relation to the parsimounious models, and not additively (e.g. [a] + [c] 

hence implies a three-year, bankruptcy adjusted model). AMA-scores in bold and underscore highlight the best outcome for each model 

and adjustment combination.
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combined choice of payoff and model. With regards to payoff, our martingale exercise 

once again highlights the drawbacks with such simplified assumptions. These drawbacks 

are consistently apparent in the accounting-based models, suggesting a difficulty in 

forecasting accounting-based payoffs using a martingale approach. In DDM, on the other 

hand, a simple martingale forecasting of dividends appears to suffice. This could mirror 

the common notion that payout ratios are stable over time, and hence, that historical 

accounting data should capture such stable ratios also moving forward
42

. On a similar note, 

RIV’s terminal value as a fraction of total intrinsic value decreases from 31% to 13%, with 

a redistribution to the benefit of the explicit forecast periods. Hence, more emphasis is 

placed on the payoffs between valuation date and truncation point, a period in which the 

leverage from using analysts’ estimates should reasonably be substantial, given the nature 

of the profession. This could further explain why the simplistic martingale operations 

perform worse in the accounting-based models, given their reliance on EPS and ROE, 

which in turn demand far more in-depth firm-specific knowledge than can be 

accommodated for using simple historical regressions.  

5.2.2. Incorporation of bankruptcy risk [c] 

 When adjusting the parsimonious models for the risk of bankruptcy, the 

relative model performance rank remains. Looking at AMA’s development compared to 

the parsimonious setup, 79% of the model combinations benefit from including 

bankruptcy risk
43

. On a more granular level, we observe that all models but RIV benefit 

from this adjustment. RIV on the other hand is on average unchanged, if only slightly 

weakened. In terms of payoffs, no pattern is altered when adjusting for bankruptcy risk, in 

turn echoing the relative strength of estimates over martingale.  

 

Analysis 
 The benefit of the bankruptcy risk adjustment for DDM, AEG and OJ 

models can reasonably stem from the systematic intrinsic value overstatements from their 

respective parsimonious model specification (Table 4). As the introduction of the 

bankruptcy risk increases the cost of equity capital (cf. Skogsvik, 2006), MAPE will 

subsequently decrease, by the improvement of the V/P-ratio. In other words, with respect 

to the consistent overstatements, it appears feasible to include this adjustment in DDM, 

AEG and OJ. In terms of RIV, its low sensitivity to bankruptcy risk incorporation can be 

explained by that book values of equity (61% of intrinsic value) are unaffected by this 

adjustment.  

5.2.3. Earnings excluding transitory items [d] 

 The relative performance rank of the models from the parsimonious study 

persists also when excluding transitory items from EPS. With this adjustment, we deduce 

that 50% of the models benefit, with resulting higher AMA-scores
44,45

. Overall, we observe 

that this adjustment primarily impacts AEG and OJ, although there is a slight impact also 

on RIV. Furthermore, there appears to be no obvious distinction between estimate and 

martingale payoffs in terms of the change in AMA, but when examining the valuation 

years in combination with these payoffs, there is a clear pattern where payoffs of 2009  

                                                 
42

 The downside from using estimates instead is slight, which implies that analysts’ forecasts are equally good 

also with longer forecasting horizons. 
43 Also confirmed when elaborating on valuation dates and ROE forecasting limitations (Appendix 3) 
44

 DDM is excluded, due to its indifference from excluding transitory items, as it relies on normal EPS for 

their payout ratios. 
45 Also confirmed when elaborating on valuation dates and ROE forecasting limitations (Appendix 3) 
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distinctly improve AMA-scores, whereas those of 2014 decrease it. Hence, RIV, AEG 

and OJ are all improved using valuation year 2009, whereas the opposite is true for 2014.  

 
Analysis 
 Previous literature has discussed the potential impact of EPS adjusted for 

transitory items, but knowingly no study has tested the models for this. Instead, in order 

to adjust for these items, other studies have extended the horizon, with the rationale that 

such extensions would overcome the distortive effects, as transitory items are assumed to 

diminish over time. However, our data suggests that this is not the case, since a large 

proportion of the firms in our sample display transitory items both historically but also in 

analyst estimates moving forward (Table 2). As expected, the adjustment improves the 

performance of the AEG and OJ applications, but only for the valuation year of 2009, 

and not for 2014. These inconsistent results call for a more granular analysis. 

 

 In Table 5, we plot MAPE, IQRPE and AMA, along with their respective 

changes, for both the parsimonious applications and those including transitory items. In 

addition, the second far-right column depicts the effects on EPS, when adjusted for 

transitory items; a positive effect implies that EPS excluding transitory items has been 

adjusted upward compared to normal EPS. In the far-right column, we add V/P-ratios, 

which serve to note the under- or overvaluation from the parsimonious study ([a]: Table 

3). In other words, a V/P smaller (greater) than 1, would benefit from an EPS uplift 

(suppression), as this would increase (decrease) the intrinsic value, and consequently push 

the V/P-ratio towards 1. Considering the martingale payoffs in Table 5, we see that the 

models with valuation year 2009 display negative EPS adjustments combined with V/P-

ratios greater than 1. As expected, these models render increases in terms of AMA. 

Elaborating on the martingale operation, its negative EPS-effect emanates from that the 

historical five-year average of EPS excluding transitory items, has been distorted by 

transitory gains. The same line of reasoning holds for the martingale payoffs for valuation 

year 2014, but with opposite effects, i.e. historical transitory losses.  
 

As with martingale, the inter-year differences of estimates can be explained 

with differing EPS adjustments in combination with over- or undervaluation. But since 

estimates are obtained from three-year ahead forecasts, rather than five-year historical 

averages, the periods in which we have to consider any transitory items are different. 

Along these line, and as opposed to martingale, we see that estimates include transitory 

losses for models calculating intrinsic values in 2009, but transitory gains for those 

calculating in 2014. In sum, the observed inconsistent pattern, of the 2009 and 2014 

martingale and estimates valuations, are due to inherent differences in transitory gains or 

losses, and their respective effect on EPS, but also on the over- or undervaluations 

obtained from the parsimonious study.  

 

However, the above rationale is not consistent for the OJ application when 

using estimates. By investigating our sample of analysts’ estimate payoffs, we observe that, 

unlike martingale
46

, the estimate payoffs show variations in transitory items (in terms of 

size and sign) from one year to another. For instance, the 2009 EPS and 2010 EPS are 

both positively adjusted for transitory losses, but differ in size where the 2010 EPS is 

greater than its 2009 counterpart. Ceteris paribus, this would imply that the intrinsic value 

of OJ would increase, and in turn negatively affect MAPE. Nevertheless, we see that the 

                                                 
46

 Martingales are based on historical averages, and hence any transitory items of the past will persist moving 

forward, rendering smaller variations. 
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effect is opposite, and that MAPE of the 2009 OJ is strikingly improved. Looking at the 

basis of OJ (2005), such an effect can only be realized when  

[(1 + 𝜌𝑒) ∙ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑟𝑦 𝑖𝑡𝑒𝑚𝑠𝑡 > 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑜𝑟𝑦 𝑖𝑡𝑒𝑚𝑠𝑡+1 + 𝜌𝑒 ∙ 𝐷𝑃𝑆𝑡], implying that the numerator 

at truncation is decreased, hence also decreasing the intrinsic value
47

. We find evidence 

for such relations in our sample, providing an explanation for the initially inconsistent 

finding. To conclude, the effect from excluding transitory items has opposing effects on 

AMA, depending on which period our payoffs are based on (martingale) or forecasted 

over (estimates), stemming from different transitory adjustments to our sample firms over 

the studied period. 

5.2.4. Implications of the single-adjustment study  

 Previously, the study of the parsimonious models concluded the 

outperformance of RIV in relation to the other model specifications. Adding the 

complexity adjustments of horizon extension, bankruptcy risk and exclusion of transitory 

items, we observe that this outperformance remains. Notwithstanding the persistence of 

the relative inter-model performance, there are positive effects in the intra-model 

performances, suggesting gains from adding complexity to the parsimonious model 

formulations. Quantifying these gains, we see that, out of the 16 possible model and 

payoff combinations, the adjustments of horizon, bankruptcy risk and transitory items 

render the relatively best performing applications in five instances respectively, leaving 

only one best application in its parsimonious setup (Table 4). In other words, the 

complexity attributes all contribute to increase the accuracy and decrease the spread of 

the models.  

 

Looking solely at the best performing combinations, Table 6 displays their 

respective AMA-scores and relative change compared to their best performing 

parsimonious counterpart. Interestingly, being the relatively best model to begin with, 

RIV still displays the largest improvement in AMA-scores when adding complexity. 

Furthermore, adjusting for bankruptcy seems to be the most prominent adjustment for 

three out of the four best performing models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

For an investor looking to make no more than one adjustment to a 

parsimonious model, Table 6 provides significant guidance but also depicts the relative 

gains from such an adjustment. However, it should be duly noted that adjustments come 

at a price, as they reasonably require some degree of effort. Hence, there is an inherent 

trade-off between increased model performance on the one hand, and effort (e.g. because 

                                                 
47

 Or equivalently [(1 + 𝜌𝑒) ∙ ∆𝐸𝑃𝑆𝑡 > ∆𝐸𝑃𝑆𝑡+1 + 𝜌𝑒 ∙ 𝐷𝑃𝑆𝑡] (cf. Equation 11b). 

Table 6. Results Summary: Best performing single-adjusted model setups

Model Payoff Adjustment Score Δ%

DDM Estimates Bankruptcy [a] + [c] 2,58 7%

RIV Estimates Horizon [a] + [b] 5,16 26%

AEG Martingale Bankruptcy [a] + [c] 0,06 6%

OJ Martingale Bankruptcy [a] + [c] 0,14 12%

Model setup AMA-score

Notes:

Table 6 shows the best performing model setups with respect to AMA score. The percentage change in AMA-score reflects the 

increase (decrease) in relation to their respective parsimonious setups. 
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of cognitive and temporal limitations
48

) on the other. Therefore, a rational investor would 

wish to maximize the relation between the two, or in economic terms, wish to maximize 

the elasticity of valuation complexity, i.e. 𝑚𝑎𝑥 [
∆%𝐴𝑀𝐴

∆% 𝑒𝑓𝑓𝑜𝑟𝑡
](cf. Equation 30). Along these 

lines, it makes sense to consider not only the increase in AMA-scores, but also the relative 

effort required for each adjustment. In our opinion, the effort of extending the horizon is 

smaller relative to adjusting for bankruptcy or transitory items, as the latter require 

additional information and/or technical ability, whereas the former merely requires a 

mechanical extension of the original setup. Consequently, the horizon-adjusted RIV 

adheres to the maximization of the elasticity of valuation complexity better than the other 

models, illuminating its strength in terms of performance and effort required. 

5.3. Study of the multi-adjusted parsimonious models 

Given the benefits that the models experienced from single adjustments, 

one could expect an even larger benefit from conjoint adjustments. For this reason, Table 

7 displays four additional complexity combinations and their respective AMA-scores. We 

observe that the relative inter-model performance remains from the study of the single 

adjustments, namely that RIV is best in three cases, whereas DDM is strongest with the 

2009 martingale
49

. When adding complexity adjustments to the single-adjusted models, we 

see that AMA is improved for 30% of the outcomes.   

 

In terms of specific adjustments, the conjoint addition of extended horizon 

and bankruptcy risk ([a] + [b] + [c]) comprise a majority of the enhanced outcomes. 

Furthermore, the benefit from introducing [[a] + [b] + [c]] is much more apparent when 

using estimate payoffs, and particularly those derived from analysts’ forecasts, as we see 

unanimous improvement for all models using this payoff. The [[a] + [b] + [c]] adjustment 

also noticeably improves the performance of DDM, since three out of the four best 

DDM applications hinge upon the [[a] + [b] + [c]] combination. The relatively strong 

performance of this multiple combination casts a shadow over the other combinations, 

where the bankruptcy and transitory item adjusted applications ([a] + [b] + [d]) are 

particularly weak
50

. Fully adjusted models ([a] + [b] + [c] + [d]), improve performance in 

13% of cases compared to its single-adjusted counterparts. However, any actual additional 

performance over the double-adjusted (e.g. [a] + [b] + [c]) combinations occur in only 3% 

of the possible outcomes. 

 

Analysis  
 The [[a] + [b] + [c]] combination highlights two interesting results; its 

positive effect on DDM and its positive effect on models employing analysts’ forecast. For 

DDM, we saw that the single-adjustment of extending the horizon ([b]) made the AMA-

scores more uniform across the DDM variations. When adding bankruptcy risk ([c]) the 

previous uniforming effect is amplified, with the negative effect on MAPE and IQRPE 

that the bankruptcy risk adjustment single-handedly brings. As for analysts’ forecast, their 

effect on MAPE and IQRPE in the [[a] + [b] + [c]] setting is similarly positive to that of 

DDM. Simply put, this is an effect emerging from two AMA-increasing adjustments 

combined into one, i.e. horizon extension and bankruptcy risk collectively. On a more 

granular level, we attribute the extended horizon’s positive effect to our previous  

 

                                                 
48

 See among others Kahneman & Tversky, 1973, March, 1978 and Beunza & Garud, 2006. 
49 Also confirmed when elaborating on valuation dates and ROE forecasting limitations (Appendix 4 and 5) 
50

 Yielding only one best model. 
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discussion, where we argued that this adjustment illuminated analysts’ skills in a longer 

explicit forecast period. Secondly, the improvement from bankruptcy risk adjustments 

could stem from that analysts’ estimates are conditioned on survival, by definition. Hence, 

without adjusting the cost of equity capital for the risk of bankruptcy, the models will 

operate with inputs of differing assumptions.  

5.3.1. Implications of the multi-adjustment study 

 Even though the [[a] + [b] + [c]] adjustment is the most positively 

contributing adjustment, one should be cautious about adding complexity to the single-

adjusted models, as 70% of all model combinations do not benefit from such 

adjustments. Of the remaining adjustments (30%) that increase the AMA-score, there are 

clear differences in how much they actually add in AMA-terms. For example, the  

[[a] + [b] + [c]] and [[a] + [b] + [c] + [d]] adjustments add roughly 25% in performance, as 

opposed to the [[a] + [b] + [d]] and [[a] + [c] + [d]] adjustments, which only contribute 7%. 

This leaves us to conclude that the effort of adjusting for transitory items ([d]) might not 

be worthwhile, whereas the previously alleged strong combination of [b] and [c] does 

provide additional performance, considering all model combinations. From a practical 

point of view, these conclusions provide general insights to an investor facing the choice 

of adding complexity to any single-adjusted model. More specifically, if an investor would 

pursue such adjustments, he or she should also consider the fact that they add particular 

value to DDM in terms of model, and analysts’ forecasts in terms of payoffs.  

 

Though one can question the addition of further complexity to the single-

adjusted models, we still see benefits from such adjustments for the best performing 

model combinations, where DDM, RIV and AEG all gain from such additions. Table 8 

highlights this, and also displays AMA-scores for the best model combinations. We see 

that the relative performance rank remain, but also that optimal payoffs have changed 

(compared to Table 6) for DDM and AEG. In summary, the best performing DDM use 

martingale payoffs, and is adjusted by extending the horizon and adding bankruptcy risk. 

RIV and AEG ideally use estimate payoffs and all complexity adjustments  

([[a] + [b] + [c] + [d]]), whereas OJ requires only the bankruptcy risk adjustment and 

martingale payoffs. Hence, Table 8 provides a more specific and comprehensive recipe 

for how to optimally construct the DDM, RIV, AEG and OJ applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the far-right section of Table 8, the relative changes in AMA that come 

from one additional complexity adjustment is displayed. Firstly, DDM sees an AMA 

increase from adding one complexity adjustment to the best parsimonious application 

(+7%), but particularly so to the best single-adjusted model (+25%). Further, the fully 

Table 8. Results Summary: Best performing model setups and marginal change in AMA

AMA-score

Model Payoff Adjustment Score Single Double Full

DDM Martingale [a] + [b] + [c] 3,24 7% 25% 0%

RIV Estimates [a] + [b] + [c] + [d] 5,55 26% 4% 3%

AEG Estimates [a] + [b] + [c] + [d] 0,09 6% 28% 30%

OJ Martingale [a] + [c] 0,14 12% -18% -32%

Model setup Additive AMA-score Δ%

Notes:

Table 8 shows the best performing model setups with respect to AMA score for all models and adjustments. The percentage change in the 

additive AMA-score reflects the increase (+) or decrease (-) in relation to their respective parsimonious, single-adjusted and double-adjusted 

setups. 
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adjusted one is unaffected
51

. Secondly, RIV sees a large AMA increase from adjusting the 

best parsimonious model (+26%), and positive yet smaller effects for the other 

adjustments (4% and 3% respectively). Finally, the AEG and OJ applications display 

different patterns, as the former sees an increase in AMA from each and every 

complexity adjustment, whereas the latter has an opposing effect from increasing 

complexity. However, this difference reasonably resides in the fact that they rely on 

different payoff schemes. In addition, the results of AEG and OJ are less noteworthy than 

those of DDM and RIV, as a rational investor would not pursue the use of any of the 

models given their relatively poor performance. Hence, AEG and OJ show inconclusive 

results, but DDM and RIV see benefits from adding complexity.  

 

Furthermore, Table 8 can act as a compass for when to stop adjusting the 

models with complexity. Nevertheless, as has been previously discussed, adding 

complexity comes at a price, and a rational investor should be considerate of the trade-off 

between increased performance of a model and the effort required to obtain that 

performance. By consequently adhering to the maximization of the elasticity of valuation 

complexity, the far-right section of Table 8 suggests that a double-adjustment is justified 

for DDM, as this renders a momentous increase compared to the single-adjustment, but 

also as there are no additional gains from adjusting fully. RIV on the other hand has a 

different pattern, where a single-adjustment could be argued as sufficient, at least in terms 

of elasticity. Although we see additional gains from making RIV more complex than only 

by a single-adjustment, these gains are only marginal, shedding light on the efforts 

required for these complexity adjustments. Given the subjective nature of effort, the 

complexity adjustment of RIV (and DDM) depends on several factors, e.g. investor skill, 

size of investment, temporal constraints, &c. For instance, the effort of performing a 

double-adjustment to RIV might be relatively lower for an investor with strong accounting 

skills, which in turn could justify the additional gain of 4% that this adjustment implies. 

However, despite the reliance on investor discretion, we deem that the extended horizon 

adjustment ([b]) requires less skill than do adjusting for bankruptcy risk and transitory 

items. For this reason, we argue that the single-adjusted RIV displays the best 

characteristics from an elasticity point of view, as it obtains a relatively high AMA for a 

relatively simple complexity adjustment.  

6. Conclusion and implications 
A review of previous literature provides some valuable insight to ordinary 

investors as it cements the importance of truncation values, payoff schemes and horizon 

length in valuation modelling. In addition, the previous literature shows that complexity 

adjustments increase the performance of valuation models. Interestingly though, this 

literature does not explicitly address complexity adjustments (e.g. horizon extension), but 

rather use them as tests of robustness to underpin its suggested findings. Owing to the 

literature’s inconsistency in terms of inputs used and means to evaluate the performance 

of models, ordinary investors would benefit from a comprehensive study, setting the 

record straight in a “level playing field” comparison. Because of the increased 

performance of models incorporating complexity adjustments, ordinary investors would 

also benefit from an exposition of what these adjustments do to model performance, by 

using a more structured approach. 

 

For this reason, we in a first step investigated the performance of the DDM, 

RIV, AEG and OJ models under uniform assumptions and periods in a study of the non-

                                                 
51

 As expected, given DDM’s indifference to transitory items as previously discussed. 
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adjusted parsimonious models. In addition, we developed a uniform evaluation measure, 

the AMA-score, which considers both accuracy and spread in an attempt to more easily 

quantify and enable conclusions regarding model performance. Using this AMA-score, 

we found that RIV outperforms the other models, that DDM comes comfortably second 

and that the AEG and OJ models overvalue observed stock prices to the extent that they 

become inadequate to ordinary investors. Similar to Penman (2005; 2012), we attribute 

RIV’s outperformance to its ability to anchor on book value of equity, or something 

“real”, whereas the relative inferior results of DDM, AEG and OJ are attributed to their 

respective large parts of intrinsic value residing at truncation (90-95%). For AEG and OJ, 

the large truncation values are attributed to constant ROE estimates approaching 

truncation, in turn creating an exponential development of abnormal earnings growth. 

 

The study of the non-adjusted parsimonious models also facilitates a 

comparison between payoffs relying on estimates and those relying on a simpler 

forecasting procedure hinging on recent historical performance, martingale. The results 

suggests that estimates serve as the better payoff scheme for all models, accentuating the 

relative advantage of a more complex forecasting procedure, or access to it. 

 

Building on the level playing field comparison, we set out to investigate the 

effects and potential benefits from the addition of complexity adjustments, given the lack 

of previous research in the area but also because of the practical implications such an 

investigation would provide to ordinary investors’ modeling process. This addition was 

carried out in two steps, where in the first, adjustments for horizon, bankruptcy risk and 

transitory items were added separately to the parsimonious model formulations. The 

second step investigated the effects from combining these complexity adjustments, both in 

relation to the parsimonious and the single-adjusted formulations. The study of single-
adjusted parsimonious models suggests that the addition of complexity adjustments to the 

parsimonious formulations contribute to increased performance, but that this increase 

often comes with restrictions with respect to payoff and model. For example, an extension 

of the horizon benefitted the RIV model using estimate payoffs, and DDM using 

martingale. Furthermore, the incorporation of bankruptcy risk was the adjustment that 

increased the performance of most models, expected as a majority of model variations 

overestimated intrinsic values with respect to observed prices. Interestingly, the top-

performing model combinations incorporated a complexity adjustment, once again 

highlighting the benefits from such adjustments but also the knowledge of the specific 

formulation in which these are present. 

 

In the final study of multi-adjusted parsimonious models, the results and 

conclusions were in line with those provided by the single-adjusted, since any 

performance gains from including adjustments depended on specific model 

combinations. The adjustments that to the greatest extent contributed to performance 

were those including horizon extension and bankruptcy risk incorporation conjointly, i.e. 

([a] + [b] + [c]). By adding the complexity adjustments in steps, we could also analyze the 

marginal performance gain or loss from one additional adjustment to the best-performing 

combination of each model. This analysis showed that DDM benefits from double-

adjustments, and RIV from single-adjustments.  

 

No specific guidance is given on whether, or to which extent, investors 

should pursue such adjustments, but the results highlight the inherent trade-offs from 

such a pursuit. In our view, complexity adjustments come at different costs to different 
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investors, as there is reason to believe that the effort to accommodate for the adjustments 

will differ depending on investor constraints. For this reason, we introduced the concept 

of elasticity of valuation complexity, with the notion that a rational investor would wish to 

maximize the performance of the valuation model given the investor’s constraints at 
valuation date. In light of this, our analysis of the marginal performance increase from 

one additional adjustment can work as a compass for investors facing the choice of 

complexity adjustments.  

 

With respect to the above, this paper contributes to existing research in 

three important ways. In a first step, the paper facilitates a “level playing field” 

comparison between models, necessary for an ordinary investor facing the choice of 

multiple valuation models and payoff methodologies. Secondly, the paper accentuates a 

yet neglected area within valuation research, as it structurally highlights the inherent gains 

from the addition of complexity, and provides recipes for optimally designing valuation 

models with regards to both accuracy and spread. Finally, the paper touches upon the 

concept of model performance in relation to the effort necessary to accommodate for 

complexity adjustments.  

 

 For future research, the last point on effort in relation to complexity 

adjustment could be elaborated on further. For instance, the AMA-score provides a 

quantifiable measure on the accuracy and spread of a complexity-adjusted model, but as 

long as effort is kept a qualitative parameter, the discussion on elasticity becomes more 

hypothetical in nature. In a scenario where an average investor’s effort could be quantified 

(e.g. an effort index, time, or number of adjustments), would help quantify the 

relationship[
∆% 𝐴𝑀𝐴

∆% 𝑒𝑓𝑓𝑜𝑟𝑡
] and consequently provide more guidance on the topic. However, 

this venture has been outside the scope of this study, but having introduced a means for 

capturing the relative performance of valuation models also in contexts of increased 

complexity, we look forward to fruitful attempts to take this elasticity approach even 

further. 

 

Furthermore, following the scope of this paper, we also see an opportunity 

for future studies to consider other complexity attributes than those presented in this 

thesis. Here, we have discussed quantifiable adjustments made to model inputs, in terms 

of e.g. bankruptcy risk. Future research could continue on this path, but could also 

consider any inherent complexity in the original model specification per se. In other 

words, instead of assuming that the models are equally parsimonious and simple to begin 

with, one could argue that some models are more complex in their mere parsimonious 

specification than others, and would in turn have a greater effort associated with its 

application already in a non-adjusted parsimonious study.  

 

 

 

 

 

 

 

 

 



 48 

7. References 
 

Ali, A., Hwang, L-S. & Trombley, M.A. (2003). Residual-Income-Based Valuation 

Predicts Future Stock Returns: Evidence on Mispricing vs. Risk Explanations. The 
Accounting Review, vol. 78, no. 2, pp. 377-396 

Altman, E.I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of 

Corporate Bankruptcy. Journal of Finance, vol. 23, no. 4, pp. 589-609 

Asquith, P., Mikhail, M.B. & Au, A.S. (2005). Information Content of Equity Analyst 

Reports. Journal of Financial Economics, vol. 75, no. 2, pp. 245-282 

Ball, R. & Brown, P. (1968). An Empirical Evaluation of Accounting Income Numbers. 

Journal of Accounting Research, vol. 6, no. 2, pp. 159-178 

Bartov, E., Lindahl, F.W., & Ricks, W.E. (1998). Stock Price Behaviour Around 

Announcements of Write-Offs. Review of Accounting Studies, vol. 3, no. 4, pp. 327-346 

Bauman, W.S. (1969). Investment Returns and Present Values. Financial Analysts 
Journal, vol. 25, no. 6, pp. 107-120 

Beatty, R.P, Riffe, S.M. & Thompson, R. (1999). The Method of Comparables and Tax 

Court Valuations of Private Firms: An Empirical Investigation. Accounting Horizons, vol. 

13, no. 3, pp.177-199 

Beaver, W.H. (1966). Financial Ratios as Predictors of Failure. Journal of Accounting 
Research, vol. 4, no. 3, pp. 71-111 

Berkman, H., Bradbury, M.E. & Ferguson, J. (2000). The Accuracy of Price-Earnings 

and Discounted Cash Flow Methods of IPO Equity Valuation. Journal of International 
Financial Management & Accounting, vol. 11, no. 2, pp. 71-83 

Bernard, V.L. (1995). The Feltham-Ohlson Framework: Implications for Empiricists. 

Contemporary Accounting Research, vol. 11, no. 2, pp. 733-747 

Bernard, V.L. & Thomas, J.K. (1989). Post-Earnings-Announcement Drift: Delayed Price 

Response or Risk Premium? Journal of Accounting Research, vol. 27, supplement, pp. 1-

36  

Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. 

Econometrica, vol. 12, no. 1, pp. 23-36 

Beunza, B. & Garud, R. (2007). Calculators, lemmings or frame-makers? The 

intermediary role of securities analysts. The Sociological Review, vol. 55, Supplement S2, 

pp. 13-39 

Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing. The Journal of 
Business, vol. 45, no. 3, pp. 444-455 

Botosan, C.A. & Plumlee, M.A. (2005). Assessing Alternative Proxies for the Expected 

Risk Premium. The Accounting Review, vol. 80, no. 1, pp. 21-53 



 49 

Bradshaw, M.T. (2004). How do Analysts Use their Earnings Forecasts in Generating 

Stock Recommendations?. The Accounting Review, vol. 79, no. 1, pp. 25-50 

Brainard, W.C. & Tobin, J. (1968). Pitfalls in Financial Model Building. The American 
Economic Review, vol. 58, no. 2, pp. 99-122 

Brief, R.P. (2007). Accounting Valuation Models: A Short Primer. ABACUS, vol. 43, no. 

4, pp. 429-437 

Campbell, J.Y. & Shiller, R.J. (1987). Cointegration and Tests of Present Value Models. 

Journal of Political Economy, vol. 95, no. 5, pp. 1062-1088 

Cavezzali, E. & Rigoni, U. (2013). Financial Analysts’ Accuracy: Do valuation methods 

matter? Working paper (August), no. 9/2013, Università Cà Foscari Venezia, Venice, 

Italy 

Chang, W-J., Landsman, W.R. & Monahan, S.J. (2012). Selecting an Accounting-Based 

Valuation Model. Working paper (January), INSEAD/UNC Chapel Hill, VA 

Claus, J.J. & Thomas, J.K. (2000). Equity Premia as Low as Three Percent? Empirical 

Evidence from Analysts’ Earnings Forecasts for Domestic and International Stock 

Markets. Working paper, Columbia University, NY 

Clendenin, J.C. & Van Cleave, M. (1954). Growth and Common Stock Values. The 
Journal of Finance, vol. 9, no. 4, pp. 365-376 

Courteau, L., Kao, J.L. & Richardson, G.D. (2001). Equity Valuation Employing the 

Ideal versus Ad Hoc Terminal Value Expressions. Contemporary Accounting Research, 
vol. 18, no. 4, pp. 625-661 

Damodaran, A. (2006). Valuation Approaches and Metrics: A Survey of the Theory and 

Evidence. Working paper (November), Stern School of Business, New York City, NY. 

Available at http://people.stern.nyu.edu/adamodar/pdfiles/papers/valuesurvey.pdf  

Daniels, M.B. (1934). Principles of Asset Valuation. The Accounting Review, vol. 9, no. 2, 

pp. 114-121 

Dechow, P.M., Hutton, A.P. & Sloan, R.G. (1999). An empirical assessment of the 

residual income valuation model. Journal of Accounting and Economics, vol. 26, no. 1-3, 

pp. 1.34 

Demirakos, E.G., Strong, N. & Walker, M. (2010). Does valuation model choice affect 

target price accuracy? European Accounting Review, vol. 19, no. 1, pp. 35-72 

Durand, D. (1957). Growth Stocks and the Petersburg Paradox. The Journal of Finance, 
vol. 12, no. 3, pp. 348-363 

Easton, P.D. (2004). PE Ratios, PEG Ratios, and Estimating the Implied Expected Rate 

of Return on Equity Capital. The Accounting Review, vol. 79, no. 1, pp. 73-95 

Easton, P.D. & Monahan, S.J. (2005). An Evaluation of Accounting-Based Measures of 

Expected Returns. The Accounting Review, vol. 80, no. 2, pp. 501-538 

http://people.stern.nyu.edu/adamodar/pdfiles/papers/valuesurvey.pdf


 50 

Edwards, E.O. & Bell, P.W. (1961). The Theory and Investment of Business Income. 
University of California Press; Oakland, CA, United States. 

Faber, N.K.M. (1999). A closer look at the bias-variance trade-off in multivariate 

calibration. Journal of Chemometrics, vol. 13, no. 2, pp. 185-192 
 

Fama, E.F. (1965). The Behavior of Stock-Market Prices. The Journal of Business, vol. 

38, no. 1, pp. 34-105 

Fama, E.F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. 

The Journal of Finance, vol. 25, no. 2, pp. 383-417  

Fama, E.F. & French, K.R. (1993). Common risk factors in the returns on stocks and 

bonds. Journal of Financial Economics, vol. 33, no. 1, pp. 3-56 

Fama, E.F. & French, K.R. (1997). Industry Costs of Equity. Journal of Financial 
Economics, vol. 43, no. 2, pp. 153-193 

Feltham, G.A. & Ohlson, J.A. (1995). Valuation and Clean Surplus Accounting for 

Operating and Financial Activities. Contemporary Accounting Research, vol. 11, no. 2, 

pp. 689-731 

Fernandez, P., Linares, P. & Fernández Acin, I. (2014). Market Risk Premium Used in 

88 Countries in 2014: A Survey with 8,228 Answers. Working paper (June), University of 

Navarra (IESE). Available at 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2450452  

Flavin, M.A. (1983). Excess volatility in the financial markets: A reassessment of the 

empirical evidence. Journal of Political Economy, vol. 91, no. 6, pp. 929-956  

Foster, G. (1979). Briloff and the capital market. Journal of Accounting Research, vol. 17, 

no. 1, pp. 262-274 

Francis, J., Olsson, P. & Oswald, D.R. (2000). Comparing the Accuracy and 

Explainability of Dividend, Free Cash Flow, and Abnormal Earnings Equity Value 

Estimates. Journal of Accounting Research, vol. 38, no. 1, pp. 45-70 

Frankel, R. & Lee, C.M.C. (1998). Accounting valuation, market expectation, and cross-

sectional stock returns. Journal of Accounting and Economics, vol. 25, no. 3, pp. 283-319 

Fuller, R.J. & Hsia, C-C. (1984). A Simplified Common Stock Valuation Model. 

Financial Analysts Journal, vol. 40, no. 5, pp. 49-56 

Gao, Z, Ohlson, J.A. & Ostaszewski, A.J (2013). Dividend Policy Irrelevancy and the 

Construct of Earnings. Journal of Business Finance & Accounting, vol. 40, no. 5-6, pp. 

673-694 

Gebhardt, W.R., Lee, C.M.C. & Swaminathan, B. (2001). Toward an Implied Cost of 

Capital. Journal of Accounting Research, vol. 39, no. 1, pp. 135-176  

 

 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2450452


 51 

Gleason, C.A., Johnson, W.B. & Li, H. (2012). Valuation model use and the price target 

performance of sell-side equity analysts. Contemporary Accounting Research, vol. 30, no. 

1, pp. 80-115 

Gode, D. & Mohanram, P. (2003). Inferring the Cost of Capital Using the Ohlson-

Juettner Model. Review of Accounting Studies, vol. 8, no. 4, pp. 399-431 

Gordon, M.J. (1959). Dividends, Earnings, and Stock Prices. The Review of Economics 
and Statistics, vol. 41, no. 2, part 1, pp. 99-105 

Gordon, M.J. & Shapiro, E. (1956). Capital Equipment Analysis: The Required Rate of 

Profit. Management Science, vol. 3, no. 1, pp. 102-110 

Grambovas, C., Garcia, J.M.L., Ohlson, J.A. & Walker, M. (2012). Permanent Earnings 

vs. Reported Earnings: Does the Average Difference Approximate Zero? Working paper 

(June), Universidad Carlos III de Madrid/Stern School of Business (New York City, 

NY)/Manchester Business School/CKGSB (Beijing). Available at 

http://ssrn.com/abstract=1999363  

Grossman, S.J. & Stiglitz, J.E. (1976). Information and Competitive Price Systems. The 
American Economic Review, vol. 66, no. 2, pp. 246-253 

Grossman, S.J. & Stiglitz, J.E. (1980). On the Impossibility of Informationally Efficient 

Markets. The American Economic Review, vol. 70, no. 3, pp. 393-408 

Hand, J.R.M. & Landsman, W.R. (1998). Testing the Ohlson model: v or not v, that is 

the question. Working paper (August), UNC Chapel Hill, VA. Available at 

http://ssrn.com/abstract=126308  

Haugen, R.A. (2012). The New Finance: the case against efficient markets. Englewood 

Cliffs: Prentice Hall 

Hawkins, D.F. (1977). Toward An Old Theory of Equity Valuation. Financial Analysts 
Journal, vol. 33, no. 6, pp. 48-53 

Hickman, K. & Petry, G.H. (1990). A Comparison of Stock Price Predictions Using 

Court Accepted Formulas, Dividend Discount, and P/E Models. Financial Management, 
vol. 19, no. 2, pp. 76-87 

Hurley, W.J. & Johnson, L.D. (1994). A Realistic Dividend Valuation Model. Financial 
Analysts Journal, vol. 50, no. 4, pp. 50-54 

Jacobs, B.I. & Levy, K.N. (1989). How Dividend Discount Models can be Used to Add 

Value. Presentation to the Institute of Chartered Financial Analysts Conference 

“Improving Portfolio Performance with Quantitative Models”, (April)  

Jennergren, L.P. & Skogsvik, K. (2007). The Abnormal Earnings Growth Model: 

Applicability and Applications. SSE/EFI Working Paper Series in Business 
Administration (September), no. 2007:11. Available at 

http://swoba.hhs.se/hastba/abs/hastba2007_011.htm  

http://ssrn.com/abstract=1999363
http://ssrn.com/abstract=126308
http://swoba.hhs.se/hastba/abs/hastba2007_011.htm


 52 

Jennergren, L.P. & Skogsvik, K. (2011). The Abnormal Earnings Growth Model, Two 

Exogenous Discount Rates, and Taxes. Journal of Business Finance & Accounting, vol. 

38, no. 5-6, pp. 505-534 

Jorgensen, B.N., Lee, Y.G. & Yoo, Y.K. (2011). The Valuation Accuracy of Equity Value 

Estimates Inferred from Conventional Empirical Implementations of the Abnormal 

Earnings Growth Model: US Evidence. Journal of Business Finance & Accounting, vol. 

38, no. 3-4, pp. 446-471 

Jääskeläinen, V. (1967). Growth of Earnings and Dividend Distribution Policy. The 

Swedish Journal of Finance, vol. 69, no. 3, pp. 184-195 

Kahneman, D. & Tversky, A. (1973). On the Psychology of Prediction. Psychological 
Review, vol. 80, no. 4, pp. 237-251 

Kaplan, S.N. & Ruback, R.S. (1995). The Valuation of Cash Flow Forecasts: An 

Empirical Analysis. The Journal of Finance, vol. 50, no. 4, pp. 1059-1093 

Kim, N. & Ritter, J.H. (1999). Valuing IPOs. Journal of Financial Economics, vol. 53, no. 

3, pp. 409-437 

Kleidon, A.W. (1986). Bias in Small Sample Tests of Stock Price Rationality. The 
Journal of Business, vol. 59, no. 2, pp. 237-261 

Koller, T., Goedhart, M. & Wessels, D. (2010). Valuation. Measuring and Managing the 
Value of Companies (5

th

 ed.). John Wiley and Sons, Hoboken, NJ, United States. 

Lee, C.M.C. (1999). Accounting-Based Valuation: Impact on Business Practices and 

Research. Accounting Horizons, vol. 13, no. 4, pp. 413-425 

LeRoy, S.F. & Porter, R.D. (1981). The Present-Value Relation: Tests Based on Implied 

Variance Bounds. Econometrica vol. 49, no. 3, pp. 555-574 

Lev, B. (1989). On the Usefulness of Earnings and Earnings Research: Lessons and 

Directions from Two Decades of Empirical Research. Journal of Accounting Research, 

vol. 27, no. 3, pp. 153-192 

Lev, B. & Ohlson, J.A. (1982). Market-Based Empirical Research in Accounting: A 

Review, Interpretation, and Extension. Journal of Accounting Research, vol. 20, 

supplement, pp. 249-322 

Lintner, J. (1956). Distribution of Incomes of Corporations Among Dividends, Retained 

Earnings, and Taxes. The American Economic Review, vol. 46, no. 2, pp. 97-113 

Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in 

Stock Portfolios and Capital budgets. The Review of Economics and Statistics, vol. 47, no. 

1, pp. 13-38 

Liu, J., Nissim, D. & Thomas, J. (2002). Equity Valuation Using Multiples. Journal of 
Accounting Research, vol. 40, no. 1, pp. 135-172 

 



 53 

Lo, K. & Lys, T. (1999). The Ohlson Model: Contribution to Valuation Theory, 

Limitations, and Empirical Applications. Working paper, University of British 

Columbia/Northwestern University.  

Lundholm, R. & O’Keefe, T. (2001a). Reconciling Value Estimates from the Discounted 

Cash Flow Model and the Residual Income Model. Contemporary Accounting Research, 

vol. 18, no. 2, pp. 311-335 

Lundholm, R. & O’Keefe, T. (2001b). On Comparing Residual Income and Discounted 

Cash Flow Models of Equity Valuation: A Response to Penman 2001. Contemporary 

Accounting Research, vol. 18, no. 4, pp. 693-696 

March, J.G. (1976). Bounded Rationality, Ambiguity, and the Engineering of Choice. Bell 
Journal of Economics, vol. 9, no. 2, pp. 587-608 

Marsh, T.A. & Merton, R.C. (1986). Dividend variability and variance bounds tests for 

the rationality of stock market prices. The American Economic Review, vol. 76, no. 4, pp. 

483-499 

McCrae, M. & Nilsson, H. (2001). The explanatory and predictive power of different 

specifications of the Ohlson (1995) valuation models. The European Account Review, vol. 

10, no. 2, pp. 315-341 

Miller, M.H. & Modigliani, F. (1961). Dividend Policy, Growth, and the Valuation of 

Shares. The Journal of Business, vol. 34, no. 4, pp. 411-433 

Molodovsky, N., May, C. & Chottiner, S. (1965). Common Stock Valuation: Principles, 

Tables and Application. Financial Analysts Journal, vol. 21, no. 2, pp. 104-123 

Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica, vol. 34, no. 4, 

pp. 768-783 

Newbold, P., Carlson, W. & Thorne, B. (2012). Statistics for Business and Economics, 

(8
th

 ed.). Pearson Education Ltd., London, United Kingdom 

Ohlson, J.A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. 

Journal of Accounting Research, vol. 18, no. 1, pp. 109-131 

Ohlson J.A. (1995). Earnings, Book Values, and Dividends in Equity Valuation. 

Contemporary Accounting Research, vol. 11, no. 2, pp. 661-687 

Ohlson, J.A. (1999). Earnings, Book Values, and Dividends in Equity Valuation: An 

Empirical Perspective. Contemporary Accounting Research, vol. 18, no. 1, pp. 107-120 

Ohlson, J.A. (2000). Residual Income Valuation: The Problems. Working paper (March), 

Stern School of Business, New York City, NY 

Ohlson, J.A. (2005). On Accounting-Based Valuation Formulae. Review of Accounting 
Studies, vol. 10, no. 2-3, pp. 323-347 

Ohlson, J.A. & Gao, Z. (2006). Earnings, Earnings Growth and Value. Foundations and 
Trends in Accounting, vol. 1, no. 1, pp. 1-70 



 54 

Ohlson, J.A. & Juettner-Nauroth, B.E. (2005). Expected EPS and EPS Growth as 

Determinants of Value. Review of Accounting Studies, vol. 10, no. 2-3, pp. 349-365 

Peasnell , K.V. (1981). On Capital Budgeting and Income Measurement. ABACUS, vol. 

17, no. 1, pp. 52-67 

Peasnell, K.V. (1982). Some Formal Connections between Economic Values and Yields 

and Accounting Numbers. Journal of Business Finance & Accounting, vol. 9, no. 3, pp. 

361-381 

Peng, L. & Xiong, W. (2006). Investor Attention, Overconfidence and Category Learning. 

Journal of Financial Economics, vol. 80, no. 3, pp. 563-602 

Penman, S.H. (1992). Return to Fundamentals. Journal of Accounting, Auditing & 
Finance, vol. 7, no. 4, pp. 465-483 

Penman, S.H. (1997). A Synthesis of Equity Valuation Techniques and the Terminal 

Value Calculation for the Dividend Discount Model. Review of Accounting Studies vol. 2, 

no. 4, pp. 303-323 

Penman, S.H. (2005). Discussion of ‘‘On Accounting-Based Valuation Formulae’’ and 

‘‘Expected EPS and EPS Growth as Determinants of Value’’. Review of Accounting 
Studies, vol. 10, no. 2-3, pp. 367-378 

Penman, S.H. (2012). Financial Statement Analysis and Security Valuation. McGraw Hill 

Higher Education, New York City, NY, United States 

Penman, S.H. & Sougiannis, T. (1998). A Comparison of Dividend, Cash Flow, and 

Earning Approaches to Equity Valuation. Contemporary Accounting Research, vol. 15, 

no. 3, pp. 343-383 

Preinreich, G.A.D. (1938). Annual Survey of Economic Theory: The Theory of 

Depreciation. Econometrica, vol. 6, no. 3, pp. 219-241 

Rappaport, A. (1986). The Affordable Dividend Approach to Equity Valuation. Financial 

Analysts Journal, vol. 42, no. 4, pp. 52-58 

Rubinstein, M. (1976). The valuation of uncertain income streams and the pricing of 

options. Bell Journal of Economics, vol. 7, no. 2, pp. 407-425 

Runsten, M. (1998). The Association between Accounting Information and Stock Prices. 
PhD diss., Stockholm School of Economics 

Sharpe, W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under 

Conditions of Risk. The Journal of Finance, vol. 19, no. 3, pp. 425-442 

Shiller, R.J. (1981). Do Stock Prices Move Too Much to be Justified by Subsequent 

Changes in Dividends? The American Economic Review, vol. 71, no. 3, pp. 421-436 

Skogsvik, K. (1988). Prognos av finansiell kris med redovisningsmått. PhD diss., 

Stockholm School of Economics 



 55 

Skogsvik, K. (2006). Probabilistic Business Failure Prediction in Discounted Cash Flow 

Bon and Equity Valuation. SSE/EFI Working Paper Series in Business Administration, 

(May).  

Skogsvik, K. & Juettner-Nauroth, B. (2013). A note on accounting conservatism in 

residual income and abnormal earnings growth equity valuation. The British Accounting 
Review, vol. 45, no. 1, pp. 70-80 

Skogsvik, K. & Skogsvik, S. (2013). On the choice based sample bias in probabilistic 

bankruptcy prediction. Investment Management and Financial Innovations, vol. 10, no. 1, 

pp. 29-37 

Sloan, R.G. (1996). Do Stock Prices Fully Reflect Information in Accruals and Cash 

Flows about Future Earnings? The Accounting Review, vol. 71, no. 3, pp. 289-315 

Sorensen, E.H. & Williamson, D.A. (1985). Some Evidence on the Value of Dividend 

Discount Models. Financial Analysts Journal, vol. 41, no. 6, pp. 60-69 

Tobin, J. (1969). A General Equilibrium Approach to Monetary Theory. Journal of 
Money, Credit and Banking, vol. 1, no. 1, pp. 15-29 

Voulteenaho, T. (2002). What drives firm-level stock returns? The Journal of Finance, 

vol. 57, no. 1, pp. 233-264 

Walker, M. (2006). Comments on the Proposed Conceptual Framework for Financial 

Reporting. Comment paper CL 27, published 2006-10-29. Available at 

http://www.ifrs.org/Current-Projects/IASB-Projects/Conceptual-
Framework/DPJul06/Comment-Letters/Pages/CL27.aspx  

West, D.K. (1988). Dividend Innovations and Stock Price Volatility. Econometrica, vol. 

56, no. 1, pp. 37-61 

Williams, J.B. (1938). The Theory of Investment Value. Harvard University Press, 

Cambridge, MA, United States (1997 reprint, Fraser Publishing) 

 

 

 

 

 

 

 

 

 

http://www.ifrs.org/Current-Projects/IASB-Projects/Conceptual-Framework/DPJul06/Comment-Letters/Pages/CL27.aspx
http://www.ifrs.org/Current-Projects/IASB-Projects/Conceptual-Framework/DPJul06/Comment-Letters/Pages/CL27.aspx


 56 

8. Appendix 

Appendix 1: The AMA-score rationale 

The AMA-score is inspired and deduced from the common statistical property that there 

exists an inherent trade-off between accuracy and spread. This notion is particularly 

discussed in terms of the relationship between model performance and model complexity 

(Faber, 1999; Newbold, Carlson & Thorne, 2012). The rationale goes that as model 

complexity increases, the accuracy improves but with the cost of increased spread, such 

that the first-order relationships can be viewed as  

 

 
𝛿𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝛿𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
= [−

𝛿𝑆𝑝𝑟𝑒𝑎𝑑

𝛿𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
] 

 

 

The AMA-score is a means of capturing both accuracy and spread into one, and more 

specifically doing so by considering two common measures for these phenomena, namely 

the mean of absolute pricing errors (MAPE) for the accuracy dimension, and the inter-

quartile range of pricing errors (IQRPE) for the spread dimension, such that for a model i 

the ultimate performance in terms of AMA can be expressed as  
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⁄ ]

𝑀𝐴𝑃𝐸𝑖
 

 

 

for any model i, considering firms j = {1, … , n}. Considering these effects, the above lines 

of reasoning can be more eloquently depicted graphically, as considered below  

 

Figure A1. The accuracy-spread trade-off and the AMA evolution 
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Figure A1 captures that as complexity increases, accuracy goes down but 

spread goes up. In total, these two are mutually exclusive in comprising the notion of a 

total error, which in turn is aimed to be minimized (dotted line in figure). The AMA-

scores mitigates the risk of looking solely at accuracy or spread, as there is an inherent 

relationship between them. Instead, the AMA-score helps by considering both 

dimensions and hence maximize the relative performance of these dimensions, such that 

the total error is moving towards its minimum (shaded AMA-area). This renders that well-

performing models will perform well along both these dimensions and any increase in 

complexity, will not necessarily render an increased total error. 
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Appendix 2: Non-adjusted parsimonious model specifications 

 

 
 
 
 

Table B3. Results: Non-adjusted parsimonious model specifications (ROE: +100 & Coc)

Panel A
Ordered by Model and Period

Model Period Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

DDM 2009-2011 Estimates 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

DDM 2009-2011 Martingale 1,17 0,17 -0,08 0,91 0,63 0,85 0,88 339 1,80

DDM 2014-2016 Estimates 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

DDM 2014-2016 Martingale 1,39 0,39 0,29 0,89 0,69 0,85 1,06 432 1,37

RIV 2009-2011 Estimates 0,88 -0,11 -0,25 0,54 0,42 0,79 0,59 546 4,09

RIV 2009-2011 Martingale 1,20 0,21 -0,02 0,97 0,61 0,79 0,83 567 1,98

RIV 2014-2016 Estimates 0,71 -0,29 -0,40 0,71 0,53 0,90 0,46 651 4,09

RIV 2014-2016 Martingale 0,73 -0,27 -0,45 0,71 0,58 0,92 0,50 651 3,43

AEG 2009-2011 Estimates 0,81 -0,14 -0,10 12,69 5,58 0,88 4,93 621 0,04

AEG 2009-2011 Martingale 10,63 9,64 2,28 32,69 9,73 0,92 5,28 438 0,02

AEG 2014-2016 Estimates -5,70 -6,70 -0,53 17,31 11,93 0,97 17,65 657 0,00

AEG 2014-2016 Martingale 5,67 4,67 0,95 17,62 4,89 0,89 3,41 486 0,06

OJ 2009-2010 Estimates 4,65 3,57 1,41 20,81 8,13 0,92 5,70 211 0,02

OJ 2009-2010 Martingale 3,97 3,22 1,19 9,15 3,46 0,90 3,40 193 0,08

OJ 2014-2015 Estimates 7,57 6,99 3,19 19,58 9,36 0,98 5,76 220 0,02

OJ 2014-2015 Martingale 3,82 3,07 0,50 11,65 3,35 0,88 2,82 218 0,11

Panel B
Ordered by Payoff and Period

Payoff Period Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

Estimates 2009-2011 DDM 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

Estimates 2009-2011 RIV 0,88 -0,11 -0,25 0,54 0,42 0,79 0,59 546 4,09

Estimates 2009-2011 AEG 0,81 -0,14 -0,10 12,69 5,58 0,88 4,93 621 0,04

Estimates 2009-2010 OJ 4,65 3,57 1,41 20,81 8,13 0,92 5,70 211 0,02

Estimates 2014-2016 DDM 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

Estimates 2014-2016 RIV 0,71 -0,29 -0,40 0,71 0,53 0,90 0,46 651 4,09

Estimates 2014-2016 AEG -5,70 -6,70 -0,53 17,31 11,93 0,97 17,65 657 0,00

Estimates 2014-2015 OJ 7,57 6,99 3,19 19,58 9,36 0,98 5,76 220 0,02

Martingale 2009-2011 DDM 1,17 0,17 -0,08 0,91 0,63 0,85 0,88 339 1,80

Martingale 2009-2011 RIV 1,20 0,21 -0,02 0,97 0,61 0,79 0,83 567 1,98

Martingale 2009-2011 AEG 10,63 9,64 2,28 32,69 9,73 0,92 5,28 438 0,02

Martingale 2009-2010 OJ 3,97 3,22 1,19 9,15 3,46 0,90 3,40 193 0,08

Martingale 2014-2016 DDM 1,39 0,39 0,29 0,89 0,69 0,85 1,06 432 1,37

Martingale 2014-2016 RIV 0,73 -0,27 -0,45 0,71 0,58 0,92 0,50 651 3,43

Martingale 2014-2016 AEG 5,67 4,67 0,95 17,62 4,89 0,89 3,41 486 0,06

Martingale 2014-2015 OJ 3,82 3,07 0,50 11,65 3,35 0,88 2,82 218 0,11

Notes :

Table B3, Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. 

Models further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the 

observed prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of 

sample whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the 

inverse of IQRPE divided by MAPE.
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Appendix 3: Single-adjusted parsimonious model specifications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A4[b]. Results: Horizon-adjusted model specifications (single-adjusted)

Panel A
Ordered by Model and Period

Model Period Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. Dev 

PE
MAPE

15% 

APE

IQRP

E

Firm-year 

obs.

AMA-

score

DDM 2009-2013 Estimates 1,16 0,16 0,03 0,69 0,53 0,80 0,86 555 2,20

DDM 2009-2013 Martingale 1,03 0,03 -0,10 0,76 0,56 0,84 0,88 535 2,03

DDM 2014-2018 Estimates 1,12 0,12 0,03 0,73 0,50 0,86 0,84 175 2,38

DDM 2014-2018 Martingale 1,21 0,21 0,14 0,66 0,51 0,73 0,78 185 2,49

RIV 2009-2013 Estimates 0,88 -0,12 -0,21 0,51 0,39 0,76 0,50 890 5,16

RIV 2009-2013 Martingale 1,54 0,55 0,19 1,98 0,89 0,85 0,92 930 1,23

RIV 2014-2018 Estimates 0,63 -0,37 -0,39 0,57 0,45 0,83 0,44 415 5,12

RIV 2014-2018 Martingale 0,72 -0,28 -0,42 0,57 0,52 0,88 0,55 645 3,53

AEG 2009-2013 Estimates 2,84 1,90 0,64 13,03 5,19 0,91 4,19 1020 0,05

AEG 2009-2013 Martingale 28,45 27,46 3,59 108,30 27,52 0,94 8,67 635 0,00

AEG 2014-2018 Estimates -8,50 -9,50 -10,84 12,13 11,21 0,97 17,98 175 0,00

AEG 2014-2018 Martingale 13,61 12,61 1,98 54,76 12,65 0,92 5,27 180 0,01

OJ 2009-2011 Estimates 1,92 0,92 0,12 15,09 6,64 0,92 5,55 424 0,03

OJ 2009-2011 Martingale 5,05 4,89 1,34 16,23 5,13 0,90 3,78 352 0,05

OJ 2014-2016 Estimates 4,77 4,77 2,40 7,91 5,05 0,97 4,29 440 0,05

OJ 2014-2016 Martingale 4,06 4,10 0,53 17,69 4,38 0,91 2,43 370 0,09

Panel B
Ordered by Payoff and Period

Payoff Period Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE

IQRP

E

Firm-year 

obs.

AMA-

score

Estimates 2009-2013 DDM 1,16 0,16 0,03 0,69 0,53 0,80 0,86 555 2,20

Estimates 2009-2013 RIV 0,88 -0,12 -0,21 0,51 0,39 0,76 0,50 890 5,16

Estimates 2009-2013 AEG 2,84 1,90 0,64 13,03 5,19 0,91 4,19 1020 0,05

Estimates 2009-2011 OJ 1,92 0,92 0,12 15,09 6,64 0,92 5,55 424 0,03

Estimates 2014-2018 DDM 1,12 0,12 0,03 0,73 0,50 0,86 0,84 175 2,38

Estimates 2014-2018 RIV 0,63 -0,37 -0,39 0,57 0,45 0,83 0,44 415 5,12

Estimates 2014-2018 AEG -8,50 -9,50 -10,84 12,13 11,21 0,97 17,98 175 0,00

Estimates 2014-2016 OJ 4,77 4,77 2,40 7,91 5,05 0,97 4,29 440 0,05

Martingale 2009-2013 DDM 1,03 0,03 -0,10 0,76 0,56 0,84 0,88 535 2,03

Martingale 2009-2013 RIV 1,54 0,55 0,19 1,98 0,89 0,85 0,92 930 1,23

Martingale 2009-2013 AEG 28,45 27,46 3,59 108,30 27,52 0,94 8,67 635 0,00

Martingale 2009-2011 OJ 5,05 4,89 1,34 16,23 5,13 0,90 3,78 352 0,05

Martingale 2014-2018 DDM 1,21 0,21 0,14 0,66 0,51 0,73 0,78 185 2,49

Martingale 2014-2018 RIV 0,72 -0,28 -0,42 0,57 0,52 0,88 0,55 645 3,53

Martingale 2014-2018 AEG 13,61 12,61 1,98 54,76 12,65 0,92 5,27 180 0,01

Martingale 2014-2016 OJ 4,06 4,10 0,53 17,69 4,38 0,91 2,43 370 0,09

Notes :

Table A4[b], Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. 

Models further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the 

observed prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of 

sample whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the 

inverse of IQRPE divided by MAPE.
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Table B4[b]. Results: Horizon-adjusted model specifications (ROE: +100 & Coc)

Panel A
Ordered by Model and Period

Model Period Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. Dev 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

DDM 2009-2013 Estimates 1,16 0,16 0,03 0,69 0,53 0,80 0,86 555 2,20

DDM 2009-2013 Martingale 1,03 0,03 -0,10 0,76 0,56 0,84 0,88 535 2,03

DDM 2014-2018 Estimates 1,12 0,12 0,03 0,73 0,50 0,86 0,84 175 2,38

DDM 2014-2018 Martingale 1,21 0,21 0,14 0,66 0,51 0,73 0,78 185 2,49

RIV 2009-2013 Estimates 0,88 -0,12 -0,21 0,51 0,39 0,76 0,50 890 5,16

RIV 2009-2013 Martingale 1,61 0,62 0,25 2,00 0,93 0,87 0,95 930 1,13

RIV 2014-2018 Estimates 0,63 -0,37 -0,39 0,57 0,45 0,83 0,44 415 5,12

RIV 2014-2018 Martingale 0,77 -0,23 -0,41 0,64 0,53 0,89 0,58 645 3,24

AEG 2009-2013 Estimates 2,84 1,90 0,64 13,03 5,19 0,91 4,19 1020 0,05

AEG 2009-2013 Martingale 26,32 25,33 3,21 104,11 25,41 0,91 8,14 690 0,00

AEG 2014-2018 Estimates -8,50 -9,50 -10,84 12,13 11,21 0,97 17,98 175 0,00

AEG 2014-2018 Martingale 10,30 9,30 1,45 46,62 9,46 0,88 4,11 250 0,03

OJ 2009-2011 Estimates 1,92 0,92 0,12 15,09 6,64 0,92 5,55 424 0,03

OJ 2009-2011 Martingale 5,21 4,55 1,21 15,55 4,79 0,90 3,50 386 0,06

OJ 2014-2016 Estimates 4,77 4,77 2,40 7,91 5,05 0,97 4,29 440 0,05

OJ 2014-2016 Martingale 4,50 3,80 0,48 16,35 4,08 0,89 2,55 436 0,10

Panel B
Ordered by Payoff and Period

Payoff Period Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

Estimates 2009-2013 DDM 1,16 0,16 0,03 0,69 0,53 0,80 0,86 555 2,20

Estimates 2009-2013 RIV 0,88 -0,12 -0,21 0,51 0,39 0,76 0,50 890 5,16

Estimates 2009-2013 AEG 2,84 1,90 0,64 13,03 5,19 0,91 4,19 1020 0,05

Estimates 2009-2011 OJ 1,92 0,92 0,12 15,09 6,64 0,92 5,55 424 0,03

Estimates 2014-2018 DDM 1,12 0,12 0,03 0,73 0,50 0,86 0,84 175 2,38

Estimates 2014-2018 RIV 0,63 -0,37 -0,39 0,57 0,45 0,83 0,44 415 5,12

Estimates 2014-2018 AEG -8,50 -9,50 -10,84 12,13 11,21 0,97 17,98 175 0,00

Estimates 2014-2016 OJ 4,77 4,77 2,40 7,91 5,05 0,97 4,29 440 0,05

Martingale 2009-2013 DDM 1,03 0,03 -0,10 0,76 0,56 0,84 0,88 535 2,03

Martingale 2009-2013 RIV 1,61 0,62 0,25 2,00 0,93 0,87 0,95 930 1,13

Martingale 2009-2013 AEG 26,32 25,33 3,21 104,11 25,41 0,91 8,14 690 0,00

Martingale 2009-2011 OJ 5,21 4,55 1,21 15,55 4,79 0,90 3,50 386 0,06

Martingale 2014-2018 DDM 1,21 0,21 0,14 0,66 0,51 0,73 0,78 185 2,49

Martingale 2014-2018 RIV 0,77 -0,23 -0,41 0,64 0,53 0,89 0,58 645 3,24

Martingale 2014-2018 AEG 10,30 9,30 1,45 46,62 9,46 0,88 4,11 250 0,03

Martingale 2014-2016 OJ 4,50 3,80 0,48 16,35 4,08 0,89 2,55 436 0,10

Notes :

Table B4[b], Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. 

Models further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the 

observed prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of 

sample whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the 

inverse of IQRPE divided by MAPE.
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Table A4[c]. Results: Bankruptcy-adjusted model specifications (single-adjusted)

Panel A
Ordered by Model and Period

Model Period Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. Dev 

PE
MAPE

15% 

APE

IQRP

E

Firm-year 

obs.

AMA-

score

DDM 2009-2011 Estimates 1,15 0,15 -0,04 0,85 0,53 0,75 0,72 351 2,58

DDM 2009-2011 Martingale 1,13 0,13 -0,14 0,89 0,62 0,88 0,88 339 1,83

DDM 2014-2016 Estimates 1,17 0,17 0,02 0,70 0,51 0,79 0,77 477 2,57

DDM 2014-2016 Martingale 1,33 0,33 0,18 0,86 0,65 0,81 0,94 432 1,64

RIV 2009-2011 Estimates 0,88 -0,11 -0,25 0,54 0,42 0,80 0,59 546 4,07

RIV 2009-2011 Martingale 1,16 0,16 -0,04 0,92 0,58 0,76 0,80 567 2,18

RIV 2014-2016 Estimates 0,72 -0,28 -0,39 0,71 0,53 0,88 0,46 651 4,12

RIV 2014-2016 Martingale 0,73 -0,27 -0,43 0,65 0,55 0,91 0,52 651 3,49

AEG 2009-2011 Estimates 0,79 -0,15 -0,13 12,52 5,36 0,87 4,61 621 0,04

AEG 2009-2011 Martingale 10,72 9,73 2,41 32,43 9,81 0,93 5,45 405 0,02

AEG 2014-2016 Estimates -5,20 -6,20 -0,52 15,93 11,03 0,97 17,20 657 0,01

AEG 2014-2016 Martingale 6,20 5,20 1,05 18,40 5,36 0,90 3,30 378 0,06

OJ 2009-2010 Estimates 4,21 3,15 1,31 17,77 17,77 0,91 5,54 211,00 0,01

OJ 2009-2010 Martingale 3,62 3,23 1,18 9,18 3,48 0,90 3,38 176,00 0,09

OJ 2014-2015 Estimates 6,54 5,90 2,90 17,10 8,10 0,98 5,34 220,00 0,02

OJ 2014-2015 Martingale 3,15 2,96 0,52 11,94 3,25 0,95 2,16 185,00 0,14

Panel B
Ordered by Payoff and Period

Payoff Period Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE

IQRP

E

Firm-year 

obs.

AMA-

score

Estimates 2009-2011 DDM 1,15 0,15 -0,04 0,85 0,53 0,75 0,72 351 2,58

Estimates 2009-2011 RIV 0,88 -0,11 -0,25 0,54 0,42 0,80 0,59 546 4,07

Estimates 2009-2011 AEG 0,79 -0,15 -0,13 12,52 5,36 0,87 4,61 621 0,04

Estimates 2009-2010 OJ 4,21 3,15 1,31 17,77 17,77 0,91 5,54 211 0,01

Estimates 2014-2016 DDM 1,17 0,17 0,02 0,70 0,51 0,79 0,77 477 2,57

Estimates 2014-2016 RIV 0,72 -0,28 -0,39 0,71 0,53 0,88 0,46 651 4,12

Estimates 2014-2016 AEG -5,20 -6,20 -0,52 15,93 11,03 0,97 17,20 657 0,01

Estimates 2014-2015 OJ 6,54 5,90 2,90 17,10 8,10 0,98 5,34 220 0,02

Martingale 2009-2011 DDM 1,13 0,13 -0,14 0,89 0,62 0,88 0,88 339 1,83

Martingale 2009-2011 RIV 1,16 0,16 -0,04 0,92 0,58 0,76 0,80 567 2,18

Martingale 2009-2011 AEG 10,72 9,73 2,41 32,43 9,81 0,93 5,45 405 0,02

Martingale 2009-2010 OJ 3,62 3,23 1,18 9,18 3,48 0,90 3,38 176 0,09

Martingale 2014-2016 DDM 1,33 0,33 0,18 0,86 0,65 0,81 0,94 432 1,64

Martingale 2014-2016 RIV 0,73 -0,27 -0,43 0,65 0,55 0,91 0,52 651 3,49

Martingale 2014-2016 AEG 6,20 5,20 1,05 18,40 5,36 0,90 3,30 378 0,06

Martingale 2014-2015 OJ 3,15 2,96 0,52 11,94 3,25 0,95 2,16 185 0,14

Notes :

Table A4[c], Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. 

Models further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the 

observed prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of 

sample whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the 

inverse of IQRPE divided by MAPE.



 62 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B4[c]. Results: Bankruptcy-adjusted model specifications (ROE: +100 & Coc)

Panel A
Ordered by Model and Period

Model Period Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. Dev 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

DDM 2009-2011 Estimates 1,15 0,15 -0,04 0,85 0,53 0,75 0,72 351 2,58

DDM 2009-2011 Martingale 1,13 0,13 -0,14 0,89 0,62 0,88 0,88 339 1,83

DDM 2014-2016 Estimates 1,17 0,17 0,02 0,70 0,51 0,79 0,77 477 2,57

DDM 2014-2016 Martingale 1,33 0,33 0,18 0,86 0,65 0,81 0,94 432 1,64

RIV 2009-2011 Estimates 0,88 -0,11 -0,25 0,54 0,42 0,80 0,59 546 4,07

RIV 2009-2011 Martingale 1,20 0,21 -0,03 0,97 0,61 0,79 0,82 567 2,00

RIV 2014-2016 Estimates 0,72 -0,28 -0,39 0,71 0,53 0,88 0,46 651 4,12

RIV 2014-2016 Martingale 0,78 -0,22 -0,42 0,75 0,58 0,91 0,53 651 3,24

AEG 2009-2011 Estimates 0,79 -0,15 -0,13 12,52 5,36 0,87 4,61 621 0,04

AEG 2009-2011 Martingale 10,24 9,25 2,24 31,57 9,35 0,92 5,13 429 0,02

AEG 2014-2016 Estimates -5,20 -6,20 -0,52 15,93 11,03 0,97 17,20 657 0,01

AEG 2014-2016 Martingale 5,28 4,28 0,91 16,34 4,53 0,88 3,43 486 0,06

OJ 2009-2010 Estimates 4,21 3,15 1,31 17,77 17,77 0,91 5,54 211 0,01

OJ 2009-2010 Martingale 3,78 3,02 1,12 8,80 3,27 0,89 3,08 193 0,10

OJ 2014-2015 Estimates 6,54 5,90 2,90 17,10 8,10 0,98 5,34 220 0,02

OJ 2014-2015 Martingale 3,54 2,77 0,45 11,05 3,08 0,95 2,48 218 0,13

Panel B
Ordered by Payoff and Period

Payoff Period Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

Estimates 2009-2011 DDM 1,15 0,15 -0,04 0,85 0,53 0,75 0,72 351 2,58

Estimates 2009-2011 RIV 0,88 -0,11 -0,25 0,54 0,42 0,80 0,59 546 4,07

Estimates 2009-2011 AEG 0,79 -0,15 -0,13 12,52 5,36 0,87 4,61 621 0,04

Estimates 2009-2010 OJ 4,21 3,15 1,31 17,77 17,77 0,91 5,54 211 0,01

Estimates 2014-2016 DDM 1,17 0,17 0,02 0,70 0,51 0,79 0,77 477 2,57

Estimates 2014-2016 RIV 0,72 -0,28 -0,39 0,71 0,53 0,88 0,46 651 4,12

Estimates 2014-2016 AEG -5,20 -6,20 -0,52 15,93 11,03 0,97 17,20 657 0,01

Estimates 2014-2015 OJ 6,54 5,90 2,90 17,10 8,10 0,98 5,34 220 0,02

Martingale 2009-2011 DDM 1,13 0,13 -0,14 0,89 0,62 0,88 0,88 339 1,83

Martingale 2009-2011 RIV 1,20 0,21 -0,03 0,97 0,61 0,79 0,82 567 2,00

Martingale 2009-2011 AEG 10,24 9,25 2,24 31,57 9,35 0,92 5,13 429 0,02

Martingale 2009-2010 OJ 3,78 3,02 1,12 8,80 3,27 0,89 3,08 193 0,10

Martingale 2014-2016 DDM 1,33 0,33 0,18 0,86 0,65 0,81 0,94 432 1,64

Martingale 2014-2016 RIV 0,78 -0,22 -0,42 0,75 0,58 0,91 0,53 651 3,24

Martingale 2014-2016 AEG 5,28 4,28 0,91 16,34 4,53 0,88 3,43 486 0,06

Martingale 2014-2015 OJ 3,54 2,77 0,45 11,05 3,08 0,95 2,48 218 0,13

Notes :

Table B4[c], Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. 

Models further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the 

observed prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of 

sample whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the 

inverse of IQRPE divided by MAPE.
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Table A4[d]. Results: Transitory item-adjusted model specifications (single-adjusted)

Panel A
Ordered by Model and Period

Model Period Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. Dev 

PE
MAPE

15% 

APE

IQRP

E

Firm-year 

obs.

AMA-

score

DDM 2009-2011 Estimates 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

DDM 2009-2011 Martingale 1,17 0,17 -0,08 0,91 0,63 0,85 0,88 339 1,80

DDM 2014-2016 Estimates 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

DDM 2014-2016 Martingale 1,39 0,39 0,29 0,89 0,69 0,85 1,06 432 1,37

RIV 2009-2011 Estimates 0,90 -0,10 -0,23 0,54 0,41 0,79 0,57 546 4,31

RIV 2009-2011 Martingale 1,12 0,12 -0,06 0,86 0,55 0,77 0,77 546 2,35

RIV 2014-2016 Estimates 0,71 -0,29 -0,40 0,71 0,53 0,91 0,46 651 4,07

RIV 2014-2016 Martingale 0,70 -0,30 -0,46 0,67 0,57 0,92 0,48 630 3,67

AEG 2009-2011 Estimates 0,89 -0,05 -0,01 7,14 4,19 0,89 4,29 591 0,06

AEG 2009-2011 Martingale 8,68 7,69 2,26 22,38 7,76 0,93 4,85 405 0,03

AEG 2014-2016 Estimates -8,16 -9,16 -7,74 16,85 13,39 0,96 18,89 642 0,00

AEG 2014-2016 Martingale 7,73 6,73 1,16 35,10 6,89 0,89 2,91 408 0,05

OJ 2009-2010 Estimates 3,86 3,01 1,67 10,24 5,67 0,91 5,19 200,00 0,03

OJ 2009-2010 Martingale 3,34 2,92 1,10 7,19 3,16 0,92 3,30 175,00 0,10

OJ 2014-2015 Estimates 7,42 7,01 3,17 20,03 9,45 0,99 5,95 215,00 0,02

OJ 2014-2015 Martingale 3,63 3,53 0,72 14,99 3,77 0,88 2,63 186,00 0,10

Panel B
Ordered by Payoff and Period

Payoff Period Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE

IQRP

E

Firm-year 

obs.

AMA-

score

Estimates 2009-2011 DDM 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

Estimates 2009-2011 RIV 0,90 -0,10 -0,23 0,54 0,41 0,79 0,57 546 4,31

Estimates 2009-2011 AEG 0,89 -0,05 -0,01 7,14 4,19 0,89 4,29 591 0,06

Estimates 2009-2010 OJ 3,86 3,01 1,67 10,24 5,67 0,91 5,19 200 0,03

Estimates 2014-2016 DDM 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

Estimates 2014-2016 RIV 0,71 -0,29 -0,40 0,71 0,53 0,91 0,46 651 4,07

Estimates 2014-2016 AEG -8,16 -9,16 -7,74 16,85 13,39 0,96 18,89 642 0,00

Estimates 2014-2015 OJ 7,42 7,01 3,17 20,03 9,45 0,99 5,95 215 0,02

Martingale 2009-2011 DDM 1,17 0,17 -0,08 0,91 0,63 0,85 0,88 339 1,80

Martingale 2009-2011 RIV 1,12 0,12 -0,06 0,86 0,55 0,77 0,77 546 2,35

Martingale 2009-2011 AEG 8,68 7,69 2,26 22,38 7,76 0,93 4,85 405 0,03

Martingale 2009-2010 OJ 3,34 2,92 1,10 7,19 3,16 0,92 3,30 175 0,10

Martingale 2014-2016 DDM 1,39 0,39 0,29 0,89 0,69 0,85 1,06 432 1,37

Martingale 2014-2016 RIV 0,70 -0,30 -0,46 0,67 0,57 0,92 0,48 630 3,67

Martingale 2014-2016 AEG 7,73 6,73 1,16 35,10 6,89 0,89 2,91 408 0,05

Martingale 2014-2015 OJ 3,63 3,53 0,72 14,99 3,77 0,88 2,63 186 0,10

Notes :

Table A4[d], Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. 

Models further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the 

observed prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of 

sample whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the 

inverse of IQRPE divided by MAPE.
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Table B4[d]. Results: Transitory item-adjusted model specifications (ROE: +100 & Coc)

Panel A
Ordered by Model and Period

Model Period Payoff
Mean 

V/P

Mean 

PE

Median 

PE

Std. Dev 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

DDM 2009-2011 Estimates 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

DDM 2009-2011 Martingale 1,14 0,14 -0,04 0,75 0,57 0,89 0,82 339 2,14

DDM 2014-2016 Estimates 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

DDM 2014-2016 Martingale 1,33 0,33 0,17 0,87 0,66 0,86 0,93 438 1,65

RIV 2009-2011 Estimates 0,88 -0,11 -0,25 0,54 0,42 0,79 0,59 546 4,09

RIV 2009-2011 Martingale 1,20 0,21 -0,02 0,97 0,61 0,79 0,83 567 1,98

RIV 2014-2016 Estimates 0,71 -0,29 -0,40 0,71 0,53 0,90 0,46 651 4,09

RIV 2014-2016 Martingale 0,73 -0,27 -0,45 0,71 0,58 0,92 0,50 651 3,43

AEG 2009-2011 Estimates 0,89 -0,05 -0,01 7,14 4,19 0,89 4,29 591 0,06

AEG 2009-2011 Martingale 8,25 7,25 2,11 21,73 7,34 0,93 4,59 432 0,03

AEG 2014-2016 Estimates -8,16 -9,16 -7,74 16,85 13,39 0,96 18,89 642 0,00

AEG 2014-2016 Martingale 6,74 5,74 0,98 31,65 5,94 0,87 3,05 504 0,06

OJ 2009-2010 Estimates 3,86 3,01 1,67 10,24 5,67 0,91 5,19 200 0,03

OJ 2009-2010 Martingale 3,49 2,71 1,07 6,88 2,94 0,90 2,97 193 0,11

OJ 2014-2015 Estimates 7,42 7,01 3,17 20,03 9,45 0,99 5,95 215 0,02

OJ 2014-2015 Martingale 4,07 3,33 0,63 13,92 3,59 0,88 2,95 218 0,09

Panel B
Ordered by Payoff and Period

Payoff Period Model
Mean 

V/P

Mean 

PE

Median 

PE

Std. dev. 

PE
MAPE

15% 

APE
IQRPE

Firm-year 

obs.

AMA-

score

Estimates 2009-2011 DDM 1,19 0,19 0,03 0,86 0,54 0,78 0,78 351 2,36

Estimates 2009-2011 RIV 0,88 -0,11 -0,25 0,54 0,42 0,79 0,59 546 4,09

Estimates 2009-2011 AEG 0,89 -0,05 -0,01 7,14 4,19 0,89 4,29 591 0,06

Estimates 2009-2010 OJ 3,86 3,01 1,67 10,24 5,67 0,91 5,19 200 0,03

Estimates 2014-2016 DDM 1,23 0,23 0,08 0,72 0,53 0,79 0,78 477 2,41

Estimates 2014-2016 RIV 0,71 -0,29 -0,40 0,71 0,53 0,90 0,46 651 4,09

Estimates 2014-2016 AEG -8,16 -9,16 -7,74 16,85 13,39 0,96 18,89 642 0,00

Estimates 2014-2015 OJ 7,42 7,01 3,17 20,03 9,45 0,99 5,95 215 0,02

Martingale 2009-2011 DDM 1,14 0,14 -0,04 0,75 0,57 0,89 0,82 339 2,14

Martingale 2009-2011 RIV 1,20 0,21 -0,02 0,97 0,61 0,79 0,83 567 1,98

Martingale 2009-2011 AEG 8,25 7,25 2,11 21,73 7,34 0,93 4,59 432 0,03

Martingale 2009-2010 OJ 3,49 2,71 1,07 6,88 2,94 0,90 2,97 193 0,11

Martingale 2014-2016 DDM 1,33 0,33 0,17 0,87 0,66 0,86 0,93 438 1,65

Martingale 2014-2016 RIV 0,73 -0,27 -0,45 0,71 0,58 0,92 0,50 651 3,43

Martingale 2014-2016 AEG 6,74 5,74 0,98 31,65 5,94 0,87 3,05 504 0,06

Martingale 2014-2015 OJ 4,07 3,33 0,63 13,92 3,59 0,88 2,95 218 0,09

Notes :

Table B4[d], Panel A and B, present valuation accuracy measures and their distributions for the DDM, RIV, AEG and OJ-models. 

Models further vary by type of payoff and period in which these payoffs are forecasted. V/P refers to intrinsic values scaled by the 

observed prices. PE is the signed pricing error, and MAPE is the mean absolute (unsigned ) pricing error. 15%APE is the percentage of 

sample whose absolute pricing errors is over 15%. IQRPE is the inter-quartile range of pricing errors. Finally, AMA-score is the 

inverse of IQRPE divided by MAPE.
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Appendix 4: Multi-adjusted parsimonious model specifications (100% & 𝝆𝒆) 
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Appendix 6: Summary of sample firm statistics 

 
 
 Table A8. Summary of sample firm statistics

Sector of sample firms

Orderd by No. of firms No. of firms % of sample

Producer Manufacturing 37 16%

Health Technology 27 12%

Process Industries 21 9%

Consumer Non-Durables 14 6%

Industrial Services 13 6%

Electronic Technology 12 5%

Retail Trade 12 5%

Transportation 12 5%

Consumer Services 11 5%

Commercial Services 10 4%

Consumer Durables 10 4%

Energy Minerals 10 4%

Non-Energy Minerals 10 4%

Energy Minerals 9 4%

Technology Services 9 4%

Communications 7 3%

Distribution Services 7 3%

Utilities 2 1%

Total 233 100%

Geographic origin of sample firms

Orderd by Country No. of firms % of sample

Denmark 52 22%

Finland 35 15%

Iceland 11 5%

Norway 21 9%

Sweden 114 49%

Total 233 100%


