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Abstract
The Swedish Phillips relationship was recently examined by Svensson (2015), who
found that the long-run trade-off is downward-sloping. Hence, there is an unemploy-
ment cost of inflation. He argues that this has occurred because inflation expecta-
tions are anchored to the inflation target, while average inflation has deviated from
the target. This empirical finding has a large implication on the estimation of the
Phillips curve. We wish to examine the Phillips relationship in light of the debate on
whether surveyed expectations are anchored, by using an econometric method that
is robust to whether this assumption holds or not. We study the Swedish Phillips
curve in a regime shifting framework using the same data as Svensson (2015) for
the period 1997Q4-2011Q4. We estimate a bivariate Markov-switching VAR with
inflation and the unemployment rate, with regime-dependent dynamics and het-
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1 Introduction
The economic relationship between inflation and unemployment, widely known as the
Phillips curve, is probably one of the most researched areas in economic literature.
Phillips (1958) found the first empirical evidence of a clear negative correlation between
wage inflation and the unemployment rate in the United Kingdom over the period 1861-
1957. This correlation was subsequently interpreted as causal, and suggested a trade-off
for policy makers to be made between inflation and unemployment. Over the years, the
Phillips curve has been rejected, reborn, and redeveloped in numerous different forms
and specifications.

Today, the Phillips curve has a rather different interpretation than it had 50 years ago.
The main critique of the original curve was formulated by Friedman (1968) and Phelps
(1968), who argued that it was impossible for a policy maker to achieve a different long-
run unemployment ratio other than the “natural rate”; which was consistent with the
aggregate production potential of the economy. Lucas (1972, 1973) introduced rational
expectations to the Phillips curve and argued that agents would incorporate the behavior
of a policy maker, trying to exploit the relationship, in their formation of expectations of
future inflation. The role of expectations is cardinal in the subsequent literature and a
key feature in both the Neoclassical and New Keynesian Phillips curve (NKPC), where
the latter has become the mainstream component of policy analysis and will provide the
theoretical foundation for our analysis.

Naturally, expectations also have a critical role in the empirical investigations of
the Phillips curve. As expectations are unobservable and hard to measure, the main
econometric effort has been to develop methods for estimating the curve in the absence
of expectations. Moreover, as the theoretical foundations of the Phillips curve suggest
a long-run Phillips curve that would be vertical, and as a consequence also impossible
to estimate, emphasis has been put on estimating the short-run Phillips curve.1 In the
short-run, the trade-off can still be exploited by the policy maker if the changes come as
a surprise to the rational agent.

Recent empirical findings by Svensson (2015) have indicated that the long-run Phillips
curve in Sweden and Canada has been sloping downward since 1997, and in the US since
2000. Svensson derives the long-run Phillips curve from his short-run estimates and finds
that the long-run curve is non-vertical and has a negative slope of approximately 0.75,
0.42 and 0.23 for Sweden, Canada and the US respectively. Svensson’s approach rests on
the assumption of constant inflation expectations. In defense of this assumption, Svens-
son points to Sweden and the US In Sweden expectations seem to have been anchored

1One important exception is the literature following King and Watson (1994), who suggested that
the long-run Phillips curve in fact could be tested when inflation has a unit root. That is, there are
low-frequency, permanent changes in the inflation rate, such as in the U.S. inflation data of the 1970s.
When inflation is a random walk, the data contain the relevant ‘experiment’ and the econometrician
can estimate the response of the unemployment rate to a permanent change in inflation. This exercise
typically fails to reject the hypothesis of a vertical long-run Phillips curve covering several countries
and relevant time periods (see e.g. King and Watson (1994), Rudebusch and Svensson (1999), Benati
(2012)).
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to the inflation target,2 and as noted by Fuhrer (2011), the US has maintained a stable
inflation rate with an implicit inflation target of 2 percent—commonly perceived to have
been followed by the Federal Reserve since the early 2000. In the Swedish case, Svensson
claims that expectations are non-rational and stable at the inflation target, even though
average inflation clearly has been undershooting the target over the period 1997-2012.
This would imply a cost to the economy corresponding to the increase in unemployment
caused by undershooting the target inflation. This cost has, in contrast to Sweden, not
been realized in Canada or the US, since inflation on average has been on target.

The usefulness of the survey on which Svensson bases his argument of constant
inflation expectations in Sweden is however subject to dispute.3 The problem, as stated
by Jonsson and Österholm (2012), is that it is impossible to assess whether expectations
are irrational and constant at the target, or just measured incorrectly. It would therefore
be attractive to reevaluate the existence of a non-vertical Phillips relationship in Sweden
by relaxing this assumption.

One approach for doing this would be to use an econometric method that allows
the relationship to change over the sample period due to different economic conditions,
such as changing expectations. This could be done with the Markov-switching model
of Hamilton (1989). The Markov-switching (MS) model assumes that an underlying,
unobserved regime process affects the data-generating process. This allows the parame-
ters of the econometric model to change according to the regimes such that the Phillips
relationship can be estimated with time-varying coefficients.

The MS model has, since the seminal work of Hamilton (1989) largely been applied
to the business cycle. Usage of the model outside of this area has been relatively rare.
This has occurred despite it being an appealing framework for studying any time-varying
economic relationship as the regimes in the MS model, in contrast to many other non-
linear time series models, are treated as exogenous. The reason for using this method
would hence be to see whether the model picks up shifts and changes in expectations that
from a theoretical perspective clearly would determine the data generating process, but
which are unobservable to the econometrician. If Svensson’s findings of a non-vertical
Phillips curve are robust using this approach, the assumption must also be eligible.

Studying inflation and the Phillips curve in a Markov-switching framework has previ-
ously been done by Nadal-De Simone (2000), Demers (2003), and Pagliacci and Barraez
(2010) (the Phillips curve), and by Evans and Wachtel (1993), Ricketts and Rose (1995),
Simon (1996), Blix (1999) Demers and Rodríguez (2001) (inflation dynamics). Of the
former, Demers (2003) studied the Phillips curve in Canada using two different models;
and found that an MS model with three regimes was more efficient than the methodology
used by Bai and Perron (1998).4 Pagliacci and Barraez (2010) estimated a NKPC on
data from Venezuela and used it to distinguish between periods when expectations were
“backward-looking” compared to when they were “rational”.

2Expectations are anchored in the sense that average inflation expectations equals the target although
average inflation falls short on the target.

3See e.g. Andersson et al. (2012), Flodén (2012), Andersson and Jonung (2014).
4In this approach, an unknown number of structural breaks are occurring at an unknown point in

time.
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Simon (1996) uses the model to study the inflation process in Australia, which has
been characterized by high volatility since the early 1960s, and is therefore difficult to
model in a linear framework. He interpreted the differences in the time series as shifts
in expectations that were either due to changes in the shocks hitting the system (such
as the oil-price shocks of the early 1970s) or because of changes in the monetary regime
(as in the early 1990s). Blix (1999) uses an MS-VAR on Swedish data to account for
the monetary policy regime shift in 1993, which allows the use of longer time series to
improve forecasts and overall precision.5

Since our empirical approach captures non-linearities in the data, it relates to the
empirical literature on non-linear Phillips curves. Laxton et al. (1995), Debelle and
Vickery (1997), Debelle and Laxton (1997), Tambakis (1998), Schaling (1999), Laxton
et al. (1999) and Zhang and Semmler (2004) , have studied convex Phillips curves in
the US, UK, Australia, Canada and other G7 countries. Eisner (1996) finds evidence
consistent with a concave Phillips curve and Filardo (1998) investigates a convex–concave
Phillips curve using US data. Regarding Sweden, Eliasson (2001) estimated the short-run
Phillips curve using a Smooth Transition Regression (STR) model for the period 1979Q2-
1997Q4. She rejected linearity, but since the non-linear form of the model that she used
and tested against the null does not have to be specified, the procedure does not propose
any particular shape of the curve. This seems to be a general problem in the literature,
as it is difficult to assess the exact form of non-linearity when comparing alternative
shapes, nonetheless, the time-variation of the parameters are robust (Dupasquier and
Ricketts, 1998). This also motivates the use of the MS model as it allows for any type
of non-linearity and estimates the particular form of it without the need for a priori
assumptions. Our study of the Phillips relationship also can be seen as a follow up on
Eliasson’s study as we estimate the Phillips curve for the period 1997Q4-2011Q4.

The rest of the text is structured as follows: Section 2 is a brief summary of the
Phillips curve, its theoretical foundations and empirical findings of the relationship in
Sweden. Section 3 then continues to explain the Markov-switching model. Section 4
describes our results followed by a discussion in Section 5 and Section 6 concludes our
findings.

2 The Phillips Relationship
The form of the NKPC has evolved out of a continuous debate between the Keynesian
and classical schools of economics over the past half-century. The original Phillips curve
was first observed by Phillips (1958) as the inverse relationship between unemployment
and money wage changes in the United Kingdom 1861-1957, and was later extended

5Even if a motivation in the literature is the model’s ability to handle data issues such as structural
breaks, the MS model has only shown small improvements to forecasts compared to linear models.
Inflation forecasting has become very problematic (there is a vast literature concerning the difficulties of
forecasting using U.S. data, see e.g. Stock and Watson (2007, 2009, 2010)), but an intrinsic deficiency
of the model is its inability to predict future regimes (Bessec and Bouabdallah, 2005). We are primarily
interested in the use of the model in the area of economic analysis rather than forecasting.
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by Samuelson and Solow (1960) to the more common trade-off between inflation and
unemployment. In an era that rejected the classical dichotomy and the neutrality of
demand-side policies, the neoclassical synthesis combined Keynes’ proposal of sticky
prices in the short-run, but maintained the classical theory of neutrality in the long-
run, thus making room for monetary policy affecting the real economy. Policy makers
believed during this time that an optimal policy consisted of choosing the ideal level of
inflation and unemployment along a non-shifting Phillips curve.

After the stagflation of the 1970s,6 the relationship took a step back towards the
classical view as the theoretical foundations of the curve were scrutinized by Friedman
(1968) and Phelps (1968). They argued in their “Natural Rate Hypothesis” that only
unexpected inflation can affect real variables and once policies become expected, the
classical dichotomy is restored and aggregate variables return to their potential level.
They modeled expectations about inflation in an adaptive manner, in which expectations
are adjusted in accordance with recent forecast errors about inflation.

The backward-looking assumption was subject to heavy criticism by Lucas (1972,
1973) popularly known as the Lucas critique. He argued that by being entirely backward-
looking, agents fail to take into account additional information available at the time,
which would not be rational. Adaptive inflation would under a scenario of accelerat-
ing inflation, despite being announced in advance, systematically predict the inflation
level inaccurately. In essence, the Lucas critique stated that the relation between any
two macroeconomic aggregates, results from decisions by individuals considering the
economic environment. When the economic environment changes, we can no longer ex-
pect the decisions of individuals to remain the same and hence the correlations between
macroeconomic aggregates alter. The most important implication for the Phillips curve
is that policy makers seeking to exploit the relationship between inflation and unem-
ployment, can not systematically surprise the agents of the economy, which calls for a
micro-founded approach when modeling the economy.

With the introduction of King et al. (1988)’s Real Business Cycle (RBC) theory,
the sticky price assumption was abandoned and the classical dichotomy was restored, in
which monetary policy can only influence the price-level and the Phillips curve becomes
a vertical line.

Although RBC models performed surprisingly well, their assumptions about fully
flexible prices stood in contrast with reality, Christiano et al. (1998). This sparked the
emergence of the New Keynesian school of economics. The new approach combined the
important developments of RBC theory, comprising the complexity of micro-founded
dynamic stochastic general equilibrium (DSGE) models capturing rational expectations,
but simultaneously departed from the assumption of fully flexible prices and the neu-
trality of monetary policy. In the New Keynesian school the scope of monetary policy
is, however, restricted to restoring the economy to its natural flexible price level, done
by managing forward looking expectations, featured in the Phillips curve.

In practice, and regardless of the theoretical foundations, the forward-looking com-
6The case of both high inflation and stagnating economic activity, a situation that would not be

possible according to the early Phillips relationship.
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ponent is in many econometric specifications proxied by past inflation. But more recent
studies have to a larger extent incorporated surveyed inflation expectations as a measure
of pure expectations of future inflation. There is, however, a debate over whether or not
surveyed inflation expectations can be used with confidence when estimating the Phillips
curve, a matter to which we will return later.

2.1 Foundations of the New Keynesian Phillips Curve

The micro-founded New Keynesian economy features identical monopolistic competitive
firms facing constraints on their price adjustment ability, often modeled à la Calvo
(1983) or Rotemberg (1982). Depending on the chosen price-adjustment mechanism
and its inherent parameters, different degrees of price-rigidity can be achieved. Similarly,
the degree of monopolistic competition is governed by the elasticity of substitution, ε.7
Assuming perfectly flexible prices, monopolistically competitive firms reset their prices in
each period as a markup over nominal marginal costs. By introducing nominal rigidities,
firms maximize expected discounted future payoffs by setting the optimal current price,
taking into account the possibility of not being able to reset the price in each period.
Assuming Calvo-pricing in which (1− θ) represents the probability of a firm being able
to reset its price, the optimal reset price can be described in a log-linearization as a
markup over current and expected future weighted marginal costs

p∗i,t = (1− θβ)
∞∑
j=0

(θβ)jEi,t
(
mcni,t+j,t

)
, (1)

where β is the discount factor, Ei,t
(
mcni,t+j,t

)
is the expected nominal marginal cost

in period t + j for firm i faced in period t, when optimally setting price p∗i,t. This
captures the forward-looking characteristics of the NKPC in determining inflation. If
there is a continuum of firms i ∈ [0, 1] optimally setting their prices, using the law of
large numbers, the aggregate price level, pt, will be determined as a convex-combination
of the previous period’s prices and the average of the optimized prices in the current
period:

pt = θpt−1 + (1− θ)
1∫

0

p∗i,tdi (2)

To relate the firm-specific nominal marginal cost to the average marginal cost requires the
specification of the production function. Assuming a Cobb-Douglas production function,
it can be shown that

mcni,t+j,t = mcnt+j + αε

1− α
(
p∗i,t − pt+j

)
, (3)

7As ε tends to infinity, goods constitute perfect substitutes.
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where mcni,t+j,t represents the firms specific nominal marginal cost and mcnt+j,t represents
the average nominal marginal cost. Inserting (3) into (1) gives

p∗i,t − pt−1 = (1− θ)
∞∑
j=0

(θβ)j [κEt,t (mct+j) + Ei,t (πt+j)], (4)

with κ = 1−α
1−α+αε 6 1, π = pt−pt−1, and mct = mcnt −pt. Substituting (4) into (2) gives

the following equation

πt = (1− θ) (1− θβ)
∞∑
j=0

(θβ)j
[
κÊt,t (mct+j) + Êi,t (πt+j)

]
, (5)

where Êt =
1∫
0
Ei,tdi is the cross-sectional average expectation operator. Shifting the

equation forward by one period and assuming that expectations across firms equal ra-
tional expectations Ei,t ≡ Et we arrive at

Et (πt+1) = (1− θ) (1− θβ)
∞∑
j=0

(θβ)j [κEt,t (mct+j+1) + Ei,t (πt+j+1).] (6)

Combining (6) with (5) gives a difference equation expression for inflation:

πt = βEt (πt+1) + (1− θ) (1− θβ)
θ

κmct (7)

By letting xt represent a proxy for real marginal cost and ut denote an unobservable
disturbance term, the model can be rewritten as a forward-looking NKPC:

πt = βEt (πt+1) + λxt + εt (8)

The causal link between interest rates, marginal costs and inflation goes through con-
sumption.8 When consumers see nominal interest rates go down, the real interest rate
also goes down and an inter-temporal substitution of consumption towards more con-
sumption today, takes place through the Euler equation,

ct = Et {ct+1} −
1
σ

(it − Et {πt+1} − ρ)

where σ and ρ are parameters from the consumers’ utility function. This triggers an
increase in demand and as firms see production quantities go up, marginal costs also go
up due to decreasing marginal productivity. In response, firms increase prices, but in a
step-wise fashion. Thus, the decrease in the real interest rate is maintained for a few
periods, indicating that monetary policy has an impact on the real economy.9

8And possibly investment depending on the model, which is omitted in this example for simplicity.
9For a more thorough introduction to the benchmark New Keynesian model, see e.g. Gali (2008),

Chapter 3.
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2.2 An Econometric Formulation of the Phillips Curve

As mentioned, one main issue with the purely forward-looking NKPC (8) was its inability
to mimic U.S. inflation data and more specifically, its inherent sluggishness. Different
solutions were suggested, e.g. Gali and Gertler (1999)’s “hybrid” NKPC, with additional
lag terms explaining inflation, assuming that some firms set their prices according to a
backward-looking rule of thumb instead of the rational expectation of future inflation.
Using this combination of the old and new Phillips curve, econometricians were often
more successful in describing inflation persistence. A general formulation of these types
of Phillips curves can be expressed as

γ(L)πt = γfEt (πt+1) + λxt + η′wt + εt (9)

where γ(L) = 1 − γ1L − γ2L
2 − · · · − γlLl is a lag operator and wt denotes exogenous

control variables. Setting η = 0, this formulation nests most of the different Phillips
curves found in the literature, such as (8) with γ(L) = 1, the old Phillips curve with
γf = 0, and the hybrid with γ(L) = 1− γbL and γb + γf = 1.

Before Lucas (1972), the standard practice when estimating the old Phillips curve
was to check whether the lags of inflation summed to one, γ(1) = γ1 + γ2 + · · ·+ γl = 1,
inspired by Solow (1968) and Tobin (1968). A non-rejection of γ(1) translates to a
Phillips curve with an infinite slope and hence a non-existing long-run relationship. In
a specification similar to (9), where γf 6= 0, such procedure is seldom rejected by data.

There are two approaches for estimating the Phillips curve in the literature. Either
you estimate (9) as a single equation, called limited-information methods, or you esti-
mate (9) as a part of a larger system, full-information methods, in which (9) is one out
of several structural equations explaining the economy. This latter approach typically
consists of more or less complex dynamic stochastic general equilibrium (DSGE) models
and has the advantage of improving the precision of the estimates by imposing a the-
oretical structure on the variables. The downside is that potential misspecification in
any of the other equations of the theoretical model also induces the risk of bias on the
Phillips curve estimates.

The limited-information methods are more frequently used but are entailed with
some serious econometric problems according to Mavroeidis et al. (2014). Except for
the obvious one that xt could be correlated with the error term εt, the crucial problem
arise because of weak identification due to that Etπt+1 is unobserved and endogenous.
Mavroeidis et al. (2014) focus on this latter point, and summarize three different limited-
information approaches to estimate (9) when Etπt+1 is absent from the equation: (i) use
realizations instead of Etπt+1 and estimate the equation using a generalized instrumental
variable (GIV) approach, (ii) derive Etπt+1 from a reduced-form VAR, (iii) proxy for
Etπt+1 with measured inflation expectations from surveys.

The simplest case of (i) replaces Etπt+1 with the realization πt+1, but there are
variants of exclusion restrictions on any of the lags γ(L) in (9) that are then used as
instruments instead. The VAR approach (ii) basically forms an estimate of Etπt+1 from
the prediction of a reduced-form VAR of a vector consisting of, among other variables, πt
and xt. This estimate can then be inserted into (9). The survey approach (iii) simply uses

7



some measure of inflation expectations, such as inflation forecasts in (9). One important
implication is that the microfoundations of (9) are constructed under the assumption
that firms’ expectations are rational, and when surveyed inflation expectations are used,
e.g. forecasts, an additional error term εt = Etπt+1 − πst+1|t, must be included. If this
error term εt is correlated with either the forcing variable xt or inflation πt, the estimates
will be biased.

All approaches (i)-(iii) then typically proceed to estimate (9) using Generalized
Method of Moments (GMM). The identification of the parameters of (9) requires that
the GMM moment conditions are satisfied, but useful estimators of γ and λ can also
be obtained under weak identification when the moment conditions are nearly satisfied.
This ends up often being the case when estimating the Phillips curve in (9). Mavroeidis
et al. (2014) show that when identification is weak, the GMM estimates of (9) can be
biased in different directions and extremely sensitive to different specifications. This
may explain some of the conflicting results found in the literature and calls for a general
need to develop new methods and collect new data sets.

2.3 Recent Empirical Findings of the Swedish Phillips Relationship
The Phillips relationship in Sweden, Canada and the US has recently been investigated
by Svensson (2015), amongst others.10 Svensson (2015) examines surveyed inflation
expectations, collected for the Swedish Riksbank, and concludes that they seem to be
anchored to the official inflation target of the Riksbank, at 2 percent, rather than fol-
lowing actual inflation. Expectations are anchored in the sense that average inflation
expectations equals the target although average inflation has been lower over the period,
see Figure 1.11 Anchored inflation expectations are not uncommon, especially not in
countries where the central bank has committed to an inflation target based on inflation
forecasts and has transparently reported its policy decisions (Gürkaynak et al., 2007,
2010). Beechey et al. (2011) for example, find that long-run inflation expectations are
less anchored in the US compared to the Euro area, the latter having had an explicit
inflation target of 2 percent since 2003.12 The point is that average inflation in Sweden
over the period has fallen short compared to the target level,13 and that expectations,
if they were rational, should have adjusted down towards the actual inflation rate.

10Svensson (2015)’s findings has spurred a debate amongst economists (see e.g. Assarsson (2011),
Andersson et al. (2012), Flodén (2012)), as well as among monetary policy makers and the national
parliament.

11Svensson (2015) uses measured inflation expectations from TNS Sifo Prospera, that has been sur-
veying a panel of Swedish labor market parties, purchasing managers and money market players since
1996, with the aim of mapping inflation expectations (Prospera, 2014).

12The Federal Reserve has had an official inflation target of 2 percent since 2012.
13A couple of studies have calculated average inflation over the recent period. Assarsson (2011) studies

the period 1995-2010 and finds that revised CPI inflation has been on average 1.3 percent. Svensson
(2015) calculate average real-time inflation to be 1.4 percent and average revised CPI inflation to be 1.3
percent over the period 1997-2011 respectively. Andersson et al. (2012) calculates average real-time CPI
inflation to be 1.5 percent during the period 1995-2011.
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Figure 1: Average CPI inflation and inflation expectations at different horizons.

An explanation of the observed anchoring of expectations to the inflation target
rather than actual inflation, could be that the expectation formation process is biased
towards the communication of the inflation target, rather than actual inflation (Svensson,
2015). The expectations could be near-rational, as in Akerlof et al. (2000), where agents
neglect deviations from an inflation target when deviations are small enough. The only
difference in this case is that this applies to an inflation target of 2 percent instead of the
zero-inflation application in Akerlof et al. (2000). Jonsson and Österholm (2012) also
confirm that inflation expectations in the survey are irrational,14 which they conclude
can either be because the expectations’ formation process being suboptimal, or because
the recorded expectations are not the respondent’s true inflation expectations. They
point out that there is at the moment no method to establish whether expectations are
irrational or simply mis-measured, if not both.

Svensson (2015) further argues that with respect to the wage setting process in Swe-
den, the inflation target has become more important than anything else for determining
future wage levels. The wage formation process in Sweden is dominated by annual cen-
tral wage negotiations between labor unions and employer organizations.15 In these
negotiations, the inflation target of 2 percent is used rather than actual or forecasted in-
flation (Morin, 2009). Hence, evidence suggests an inflation/unemployment relationship
where inflation expectations have no or little importance in determining inflation.

Nonetheless, Svensson (2015) estimates the Phillips curve including surveyed ex-
pectations for Sweden’s inflation rate over 1997Q4-2011Q4 using CPI inflation and the

14To be precise, the inflation expectations in the survey are biased and inefficient, and evaluating
these expectations’ forecast ability shows that they are worse predictors of future inflation compared to
professional forecasting institutions and simple autoregressive models.

15Negotiations between the trade unions and employer organizations in the manufacturing industry
have set the standard for the entire Swedish wage-setting process since the establishment of the Industrial
Cooperation and Negotiation Agreement (ICNA) in 1997. (Konjunkturinstitutet, 2004). Thus, the wage
formation in Sweden is based on highly centralized coordination, which lead to a very similar development
in wages in the whole business sector over 1998-2011 (Konjunkturinstitutet, 2012).
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unemployment rate as a measure of the forcing variable xt. He uses two alternative
specifications for inflation expectations, corresponding to a NKPC and a New Classical
Phillips curve.16 The model with the best fit includes the first difference and a one
quarter lag of the unemployment rate. The coefficient for surveyed expectations is in-
significant and since the rest of the estimates are robust to whether expectations are
included or not, they are discarded from the equation. Svensson then derives the long-
run Phillips curve from his short-run estimates by taking the unconditional expectation
of the variables and rejects the Solow-Tobin test that γ(1) = 1. He concludes that the
long-run Phillips curve seems to be non-vertical and downward-sloping, with a slope of
about 0.75.

An alternate reason, pointed out by Svensson, for surveyed expectations to be in-
significant, is a lack of variation in current inflation.17 This is typically observed in situ-
ations where monetary policy is very effective at anchoring short-term expectations. In
this regard, effective monetary policy is bad for the econometric environment (Mavroei-
dis, 2010, Cochrane, 2011). However, there have been other surveys on inflation expecta-
tions that show that they vary more. Flodén (2012) compares the survey of expectations
commissioned by the Riksbank, with those of the National Institute of Economic Re-
search (Konjunkturinstitutet),18 and finds that the Riksbank’s survey and the NIER’s
household survey show stable expectations close to the target, while the business survey
does not, see Appendix Figure 7. Svensson (2015), however argues that the panel sur-
veyed on the commission of the Riksbank is a better predictor of the expectations that
are important for the wage formation in Sweden.

All in all, this debate do evoke some skepticism regarding the assumption of anchored
expectations and defines the rational for a re-investigating of the long-run Phillips curve.

3 A Regime Shifting Approach to the Phillips Curve
At the moment, it seems like the empirical literature based on limited-information meth-
ods has reached an upper bound of how robust inference one can make on the Phillips
curve. Nor do more complex full-information systems such as a DSGE model solve the
problem of unobserved expectations. Therefore, we instead propose the use of an econo-
metric approach that intuitively would handle unobservable elements that are important
in economic relationships.

The strategy is simply to use a Markov-switching model that can manage unobserved
16Using 1-year-ahead inflation expectations, the NKPC is specified with expectations lagged one quar-

ter back to avoid simultaneity problems, Et−1πt+4, while the New Classical Phillips curve has expecta-
tions lagged four quarters back, Et−4πt+4.

17Surveyed inflation expectations do actually vary rather much compared to the averages shown in
Figure 1, see Appendix Figure 5.

18The NIER’s Economic Tendency Survey consists of two parts, one business and one household survey,
see Appendix Figure 6, and aims at compiling consumers and businesses views on the economy. The
business tendency survey consists of a panel of 6,000 firms in the business sector, including all Swedish
firms with more than 100 employees and a random sample of smaller sized firms. The consumer tendency
survey takes a random sample of 1,500 households between 16 and 84 years old.
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changes in the economic conditions implied by changes in expectations. This is not a
novel idea: the MS model has been used in the purpose of inflation and the Phillips curve
under periods of changes in the structure of the economy and monetary policy regimes,
just because these have had large impacts on the underlying formation of expectations.
However, the MS model has in comparison been very underutilized outside of its first
obvious application on business cycles.

The MS model was first introduced by Goldfeld and Quandt (1973) and later Lind-
gren (1978) who built on Baum et al. (1970) and became popularized in the time series
literature by Hamilton (1989). In the MS model, the data generating process consists of
two components: (i) the Gaussian autoregressive model as the conditional data gener-
ating process and (ii) the regime shift function that is governed by a Markovian process
of order one. The model uses an iterative algorithm for determining the regimes given
an initial estimate of the parameters, and then estimates the parameters given these
regimes. The model does no attempt to explain the periodization of the regimes or why
they shift.

Since we are interested in the relationship between inflation and unemployment, we
use a Markov-switching Vector Autoregressive (MS-VAR) model, which is a multivariate
extension of Hamilton’s original univariate model, and was formalized into a general
econometric framework by Krolzig (1997). Following Krolzig (1997), the parameters
θ of the VAR process will be time-invariant, conditional on an unobservable regime,
denoted st, and letting st ∈ {1, 2, . . . ,M}. The conditional probability density function
of a time series is then

p(yt|Yt−1, st) =


f(yt|Yt−1, θ1) if st = 1
...
f(yt|Yt−1, θM ) if st = M

(10)

where yt = (y1t, . . . , yKt)′ is a K-dimensional observed time series vector, Yt−1 are the
observations {yt−j}∞j=1, and θm are the parameters in regime m. Given regime st, the
series is generated by a vector autoregressive process of order p, which in its general
form can be written as

yt = v(st) +
p∑
j=1

Aj(st)yt−j + et, et ∼ NID(0,Σ(st)), (11)

where, again, yt is a K-dimensional time series and et is assumed to be a Gaussian white
noise process with mean zero and variance-covariance given by Σ(st).

The intercept v(st), the autoregressive parametersA1(st), . . . , Ap(st), and the variance-
covariance matrix Σ(st) do all depend on st. The following example illustrates how the
intercepts change according to the prevailing regime:

v(st) =


v1 if st = 1
...
vM if st = M

11



It is possible to allow for different parameter-shifts and subsequently, the model can
be specified according to the regime-dependent parameters; I (shifting intercept), A
(shifting autoregressive paramters), and H (shifting heteroskedasticity).19

The regime st is generated by a discrete-regime, homogeneous first-order Markov
process, with a finite number of regimes, defined by the transition probabilities

pij = Pr(st+1 = j|st = i),
M∑
j=1

pij ∀i, j ∈ {1, . . . ,M}. (12)

Each transition probability pij , describes the probability that the Markov chain moves
from regime i at time t − 1 to regime j at time t. Since the Markov chain is of order
one, the current regime st only depends on the previous regime st−1 (called the Markov
property),

Pr(st|{st−j}∞j=1, {yt−j}∞j=1) = Pr(st|st−j ; ρ), (13)

where ρ denotes the parameters of the regime generating process. If we consider only
two regimes, st ∈ {1, 2}, the notation gets simpler and we can write the transition
probabilities as:

Pr(st = 1|st−j = 1) = p11
Pr(st = 2|st−j = 1) = p12
Pr(st = 1|st−j = 2) = p21
Pr(st = 2|st−j = 2) = p22

The probabilities can then be arranged into a matrix P:

P =
[
p11 p12
p21 p22

]
(14)

For the transition probabilities to be properly defined, they have to be non-negative
and sum to one over each row of P, i.e. for a two-regime Markov chain, p11 + p12 = 1,
p21 + p22 = 1, which allows us to write P as

P =
[

p11 1− p11
1− p22 p22

]
. (15)

In addition, it is assumed that the Markov chain is ergodic and irreductible,20 which
guarantees stationarity of the MS model.

19Hamilton (1989)’s model was in fact mean shifting, so that the mean µ = (IK −
∑p

j=1 Aj)
−1v

would make a one-time jump after a change in the regime. This turns out to complicate the model
unnecessarily, and will not be considered in this study.

20A Markov chain is irreductible when its state space contains a single communicating class. That is,
all regimes are accessible and communicate with each other and there are no regimes outside the set of
communicating regimes, i.e. the probabilities of moving from one regime to another are all non-zero. For
a Markov process to be ergodic, exactly one of the eigenvalues of P has to be unity and all others must
be inside the unit circle. When this holds, a stationary probability distribution of the regimes exists.
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Further, information about the realization of the regimes are collected in the regime
vector ξt,

ξt =
[
I(st = 1)
I(st = 2)

]
(16)

where I(·) is an indicator variable,

I(st = m) =
{

1 if st = m

0 otherwise.
(17)

The regime vector ξt thus represents the unobserved regime of the model. The ex-
pectation of ξt, E(ξt), denotes the probability distribution of st and has the following
properties:

E[ξt] =
[

Pr(st = 1)
Pr(st = 2)

]
=
[

Pr(ξt = ι1)
Pr(ξt = ι2)

]
(18)

where ιm is the m-th column of a (M × M)-dimensional identity matrix IM , where
M = 2, i.e. the number of different regimes. The unobserved regimes can be derived
from the data using a special filter and smoother algorithm.21

3.1 State-Space Representation of the MS-VAR
In order to work further with a MS-VAR model as in (11), it has proven useful to write
in a state-space form, as is often done for studies of time series with unobserved states.
22 If we let the time series vector be yt = (πt, ut)′, where πt is inflation in period t,
and ut is the corresponding unemployment rate, the model in (11) can be written in
state-space form as

yt = XtBξt + et, et ∼ NID(0,Σ)
ξt+1 = Fξt + zt+1, zt+1 ∼MDS

(19)

where Xt is the system inputs Xt = x̄′t ⊗ IK , where x̄′t = (1,y′t−1) = (1, y′t−1, . . . , y
′
t−p),

B is the matrix of coefficients B = (β1, . . . , βM ), βm is the coefficient vector in regime
m, βm = (v′m, α′m,t−1, . . . , α

′
m,t−p)′, and F is the transposed matrix of transition proba-

bilities, F = P′. The mean innovation process {zt} is a martingale difference series and
et is Gaussian as in (11).23

Hence, the component
πt = (x̄′t ⊗ ι1)Bξt + et,π

21The filter and smoothing algorithm was developed by Baum et al. (1970), Lindgren (1978), Hamil-
ton (1988, 1989, 1994a) and Kim, hence called the Baum–Lindgren–Hamilton–Kim (BLHK) filter and
smoother. The algorithm recursively reconstructs the path of the regime, {ξt}Tt=1, and derives three
different regime probabilities; the predicted, the filtered, and the smoothed regime probabilities, which
build on three different information sets (see Appendix, Section A.1.1 for details).

22A model written in state-space form will typically consist of two sets of equations: The measurement
equation, which describes the relationship between the observed time series and the unobserved state,
and the transition equation which describes the process of state.

23A series is a martingale difference series if its expectation, conditional on past values, is null, hence
the mean of {zt}, E[zt] = E[zt|{ξt−j}∞j=1] = 0.
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of the first equation in (19), where ι1 is the first row of a (K × K)-dimensional iden-
tity matrix IK , corresponds to the Phillips curve in (9) with Markov-switching, where
inflation expectations Etπt+1 and exogenous variables wt are absent from the equation.

The first equation in (19) is the measurement equation and the second equation is
the transition equation. Given the definitions above, the measurement equation can also
be written as

yt = (ξ′t ⊗Xt)vec(B) + et = ξ1tXtβ1 + · · ·+ ξMtXtβM + et, (20)

where ξmt functions as a dummy variable for being in regime m.
The transition equation could be interpreted as a representation of the expectation

formation process, and can be written as a VAR(1) process, as in Hamilton (1994b),

ξt+1 = Fξt + zt+1, zt+1 ≡ ξt+1 − E[ξt+1|ξt], (21)

where the second equality follows as the innovation process is a martingale difference
series. With this interpretation, expectations evolves according to the transition matrix
F. This is comparable to the interpretation of a time-varying Phillips curve by Nadal-
De Simone (2000), where expectations were modelled to evolve according to a random
walk. Similarly, (21) changes the economic conditions of the system in (20), as the
parameters are allowed to change over time. The number of regimes can be thought of
as a representation of the shapes that economy can take as a consequence of changes
in expectations. However, the econometric model leaves the causal interpretation of the
regime process open.

4 Estimation

The MS-VAR model in (19) can be estimated by Maximum Likelihood (ML). However,
since the regime generating process is unobserved, the ML estimation problem is highly
nonstandard (Franses and van Dijk, 2000). Therefore, as suggested by Hamilton (1990),
the estimation could be done using the Expectation Maximization (EM) algorithm de-
veloped by Dempster et al. (1977).24

As already mentioned, we estimate the Phillips curve as one of the equations in
a reduced bivariate VAR system, similar to King and Watson (1994).25 There is no

24The iterative algorithm will increase the value of the likelihood function and guarantees that a
maximum is reached (see the Appendix Section A.1.2). There is however a risk of getting stuck in
a local maxima of the likelihood function, and therefore the estimation should be started from some
different initial values. The initial values are chosen from a grid over an appropriate parameter space.
In our case, the grid typically consists of 10 steps. The possible combinations often turns out to be
over 1012, so we randomize a plausible number of these, often 10 000. Evaluation of the behavior of the
likelihood function can be done by examining the distribution of the final log likelihood values that each
initial value yields. This gives an indication of how complex the likelihood function of a specific model
are. See A.4 for a brief overview of the implementation of the estimation procedure in MATLAB.

25In a previous version, a univariate Markov-switching autoregressive model with exogenous variables
were instead used. This could be more easily compared to the limited-information Phillips curve estima-
tion as the forcing variable is left unexplained. However, we choose to model unemployment endogenously
in the system, as there is no clear theoretical reason for why the casual link actually is one-way.
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imposed structure on the system and we allow for any number of autoregressive lags and
let the data determine the most appropriate and parsimonious specification.

Further, as pointed out by Breunig et al. (2003), many studies that make use of
the MS model simply specify, estimate and report a model without being concerned
of testing whether the chosen model actually is correct.26 Since it is easy to reject a
linear over a non-linear model, the model selection procedure calls for a transparent and
extensive method for choosing the appropriate model.

We have followed a bottom-up strategy proposed by Krolzig (1997) which works in
conjunction with the usual Box-Jenkins, general-to-specific approach. The main steps
are (i) analysis of the individual variables of the time series vector of interest to determine
the lag order and number of regimes in the model and (ii) estimation of a preliminary
MS-VAR model and its evaluation against different alternatives. The alternative models
are characterized by different Markov-switching parameters (intercepts I, dynamics A,
and heteroskedasticity H) that may increase the fit of the data, but since overfitting is
a distinct possibility, we will favor the most parsimonious specification.

4.1 Data
We use the same Swedish quarterly data and sample period as Svensson (2015), ranging
from 1997Q4–2011Q4, see Figure 2. The data comes from Statistics Sweden (SCB)
and we use Svensson’s own seasonal adjustment of the time series.27 The inflation rate
is the real-time CPI inflation, measured as the change in CPI over each quarter and
annualized to correspond to a yearly change.28 The unemployment rate is the number
of unemployed divided by the labor force for the group of people between the age of 15
to 74. The sample consists of a total of 57 quarters and pre-sample periods to allow for
the autoregressive lags.

There are other possible measures of the underlying inflation rate: CPIF that keep
interest rate for households mortgage interest payment at a constant rate and CPIX that
in addition controls for changes in subsidies and indirect taxes. These has been used
as robustness checks in Svensson (2015) as well as CPI inflation at an annual rate, but
since they do not change the estimates substantially, they will not be considered here.29

26Strangely, many studies even present the estimates without reporting standard deviations and p-
values, and given how important this procedure is within the time-invariant, linear time series frame-
work, we see this as a major deficit in the empirical literature.

27The seasonal component has been adjusted using ARIMA-X12 and Eviews additive. The data can
be downloaded from http://larseosvensson.se/

28Svensson discusses whether it is appropriate to use real-time inflation data, or the revised data that
are published later but are corrected for any errors or mismeasurement. The former is available for policy
makers, firms, and households and will thus better reflect policy measures and economic outcomes at a
given point in time, while the latter probably more accurately correspond to the actual level of inflation
in the economy.

29CPI inflation at an annual rate introduces serial correlation because of overlapping data, and Svens-
son (2015) does not use this further his the analysis. However, this seems to be the main point of
Andersson and Jonung (2014)’s critique as they rather uses CPI at an annual rate instead of quarterly
annualized CPI, which they argue varies to much and therefore cannot be explained by surveyed inflation
expectations.
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Figure 2: CPI inflation and unemployment

4.2 ARMA Representation Based Model Selection
An ARMA structure in the autocorrelation function of the individual time series compo-
nents may reveal the characteristics of a data generating MS-AR process. The selection
procedure of Krolzig (1997) builds on the theoretical ARMA representations theorems
of MS models as a generalization of the results by Poskitt and Chung (1996) and Krolzig
(1995). Hence, by studying the autocorrelation function (ACF) and the partial auto-
correlation function (PACF), an ARMA(p∗,q∗) model can be identified, which then can
be translated to predetermine the (maximum) lag order and number of regimes of an
MSI(M)-AR(p) model.30

The inflation rate shows ARMA(1,1) characteristics, see the Appendix Figure 8.31

This would according to the ARMA representation theorems correspond to an MSI(2)-
AR(0) model (M = q∗+ 1 = 2, p = p∗− q∗ = 0), i.e. a Hidden Markov-Chain process.32

The ACF of the unemployment rate shows a non-decaying pattern, especially when
adding observations to the beginning of the sample, see the Appendix Figure 9. An
augmented Dickey-Fuller test can not reject the null of a unit root (not reported). This
can however be done by the first difference of the series and the ACF and PACF indicates
an AR(1) process (see Figure 8).

Even though a unit root motivates the use of an MS model, the ARMA representation
procedure is not very clear of how to interpret an integrated process. If we for the moment

30Under regularity conditions the ARMA representations will show the actual lag order and number
of regimes, but the equality is not guaranteed to hold and then only the maximum p and M can be
determined.

31Spikes in the ACF and PACF at the first lag indicate this, even though it is hard to tell whether
the autocorrelation function cuts (an MA(1) process), or tails off, since the correlation coefficient in this
case is rather small.

32The Hidden Markov process with no dynamics and only a shifting intercept is seldom used model in
economics, but more usual in the engineering literature.
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overlook the I(1)33 and study the ACF, we can rule out both a pure MA(q) process as the
ACF does not cut to zero, as well as a pure AR(p), since the decay is not geometric. The
PACF with oscillating decay is in addition characteristic for a positive MA coefficient.
An ARMA(2,1) process could be plausible for the unemployment time series. This would
correspond to an MSI(2)-AR(1) model (M = q∗ + 1 = 2, p = p∗ − q∗ = 1).

Given the tentative results of an MSI(2)-AR(0) and an MSI(2)-AR(1) of the two AR
components in our VAR, we will consider a two-regime VAR.34 As the unemployment
series is integrated, the ARMA representation selection of one lag may not be appropri-
ate, but we will begin with estimating an MSI(2)-VAR(1) (MSI-VAR(1) from now on),
and check whether the model is consistent before considering additional lags.

4.3 Model Selection

The estimates of the MSI-VAR(1) and MSI-VAR(2) are shown in the first and the
second column of Table 1. The regimes are rather persistent and equally distributed
over the sample (see Appendix Figure 10). A plot of the various log likelihood found
by the search algorithm shows a well-behaved likelihood function with relatively few
local maxima (see Appendix Figure 11). Most of the coefficients of the MSI-VAR(1)
are significant and have the expected sign. Examining the internal consistency of the
MSI-VAR(1) however reveal autocorrelation in the residuals series of the unemployment
rate. A Ljung-Box test of the generalized one-step ahead prediction errors and the
Rosenblatt-transformed standard normal series (both reported) finds enough evidence
to reject the null hypothesis of no autocorrelation.35

A likelihood ratio (LR) test of the null hypothesis of only one lag gives the likelihood
ratio of 52.95 and can be rejected. Hence, we move over to the MSI-VAR(2) model.
The regimes of the MSI-VAR(2) are quite different from the MSI-VAR(1) and much
more volatile even though the expected duration of each regime is rather similar to the
MSI-VAR(1). The model has slightly more insignificant parameters. The residuals of

33Eliasson (2001) similarly cannot reject an ADF test of a unit root, but chooses to neglect this as it
seems to be due to asymmetries rather than non-stationarity.

34There is a general concern with parsimony with regard to the number of regimes in small sample
sizes, as the parameters rapidly increase: an MSIAH(2)-VAR(1) with K = 2 has 20 parameters, an
MSIAH(3)-VAR(1) has 29.

35The generalized, one-step prediction errors are defined as in Krolzig (1997) as

êt|t−1 = yt − E[yt|Yt−1;λ = λ̃] = yt −XtB̃F̃ξ̂t−1|t−1

and has just been divided by the standard deviation. The Rosenblatt transformation of the residuals
are calculated as

Zt = Φ−1

 M∑
m=1

Pr (ξt = ιm|Yt−1)
et∫

−∞

f (êmt|ξt = ιm,Yt−1) det


where Φ−1 is the inverse of the standard normal cumulative distribution function (see Smith (2008) for
details).
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Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

vπ 4.666*** 6.364*** 6.747** 5.340* 6.479*** 7.179*** 4.348** 14.847 1.555 24.067**
[1.771] [1.960] [2.640] [3.102] [1.530] [1.666] [2.108] [43.420] [1.457] [11.546]

vu 1.266*** 1.496*** 0.562** 0.345 0.603*** 0.857*** 0.204 1.026 0.552* 0.036
[0.371] [0.432] [0.278] [0.292] [0.224] [0.243] [0.296] [1.082] [0.334] [1.263]

a11 0.494** -0.398 0.384*** -0.531
[0.230] [2.611] [0.116] [1.843]

a21 -0.024 -0.055 -0.053** -0.007
[0.023] [0.066] [0.024] [0.043]

a12 -0.845 -8.054 0.039 -10.966
[0.905] [18.393] [0.565] [20.544]

a22 1.487*** 1.530** 1.498*** 1.630
[0.091] [0.768] [0.165] [1.262]

b11 -0.029 -0.570 0.112 -1.555
[0.215] [0.834] [0.092] [4.511]

b21 0.044* 0.018 0.028 0.146
[0.025] [0.068] [0.031] [0.180]

b12 0.402 6.130 -0.150 8.327
[0.754] [13.067] [0.529] [19.974]

b22 -0.530*** -0.631 -0.573*** -0.667
[0.076] [0.722] [0.141] [1.125]

Var(π) 0.214 4.665 0.505 1.942
[0.101] [1.893] [0.172] [8.901]

Cov(π,u) -0.017 -0.184 -0.011 0.062
[0.030] [0.256] [0.079] [0.733]

Var(u) 0.011 0.026 0.034 0.004
[0.006] [0.008] [0.012] [0.008]

p11

p22

T 38.75 18.25 21.70 35.30 26.13 30.87 45.993 11.008 44.687 12.313

LL
AIC
BIC
MSC
SSRπ

Rπ
2

SSRu

Ru
2

LB êπ,t|t-1
LB êu,t|t-1

LB Zπ,t
LB Zu,t

LB êπ,t|t-12

LB êu,t|t-1
2

LB Zπ,t2

LB Zu,t
2

0.000

Notes: Estimated standard errors are shown in brackets. ***,**,* indicates significance on a 1 %, 5% and 10% level. The variance-
covariance matrix has been calculated using the conditional score method in Hamilton (1993,1996). T is the expected duration in each 

regime. The AIC, BIC are calculated as usual (see e.g. Frühwirth-Schnatter (2006), Lütkepohl (2007)) while the MSC is calculated 
according to Smith et al (2006). p-values are reported on the Ljung-Box tests of autocorrelation and heteroskedasticity.

0.987
0.997
0.987
0.995
0.531
0.203
0.525
0.206

0.912
0.792
0.827

0.601
0.009
0.821
0.888
0.810

0.121
0.616
0.139
0.544
0.000
0.759

-0.559**
[0.243]

0.358
0.201

123.62

3.04

153.11
0.205
0.000

[0.206]

0.826***
[0.053]

2.119
[0.580]
-0.217
[0.144]
0.054
[0.016]
0.893
[0.084]
0.755

185.329
253.278
222.109

MSI-VAR(1) MSI-VAR(2) MSIH-VAR(2) MSIA-VAR(2)

-84.77 -58.30 -43.16

-2.002
[0.019]

-0.044**
[0.159]
0.238

-0.680***
[1.196]
1.359
[0.021]
0.046**

-45.32

0.167
[0.108]

-0.089***
[0.021]

191.723
168.707
167.175

-34.82

0.127
0.583
0.127
0.583
0.998
0.996
0.998
0.996

125.644140.647126.314

0.021

0.962

0.301
134.68

0.973
1.90

0.303

1.991
[0.098]

157.699

0.975
0.262
0.752
0.991
0.975
0.991
0.998

0.416
0.583
29.19
0.791

139.70
0.275

1.87
0.973

0.055

0.965

0.851
28.75

182.849
181.129

[0.131]
0.548
[0.154]
0.230
[0.005]
0.022
[0.112]
-0.130
[0.745]

199.466

150.597195.549

2.18
0.969
0.959

0.957
0.946
0.761

-0.056***
[0.120]

[0.198]
-0.182
[0.115]

1.619***

[0.114]
-0.527***
[0.463]
0.071
[0.026]
0.022
[0.114]

-0.199**
[0.118]

1.430***
[1.487]

TABLE 1: Estimation Results of the MSI, MSIH, MSIA and MSIAH

[0.280]
0.269
[0.100]
0.793

0.015
[0.053]
0.029
[0.345]
1.169

[0.005]
0.823
[0.117]
0.279
[0.298]

0.241**

[0.116]
0.592
[0.121]
0.534

[0.504]
-0.833**
[0.018]

MSIAH-VAR(2)

R̅u2!

R̅π2 
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unemployment look like white noise, but we can reject the null of homoskedasticity in
the Rosenblatt-transformed unemployment residual.

From this model we can test for alternative models in several directions, with regime
dependent heteroskedasticity and dynamics as the main options. The LR test can reject
the null hypothesis of homoskedasticity conditional on the same lag order.36 The log
likelihood of the MSIH-VAR(2) is –43.16 compared to –58.30 of the MSI. The LR test
of regime dependent dynamics can also not reject the null of regime independent lags,
as the log likelihood of the MSIA model is –45.32. Here a considerable problem however
arises as the MSIA model seems to be hard to estimate. The regime duration is highly
skewed with about 46 quarters in the first regime but only 11 quarters in the second. As
a consequence, almost all parameters in the second regime are insignificant and we fear
that the low duration in that regime results in poor estimates. A fundamental prerequi-
site of the estimation of the Markov-switching model is that the regimes are somewhat
prolonged to be identifiable. If this requirement is met, the estimation algorithm has the
ability of finding a potential maximum. We therefore argue that this model most likely
is a bad alternative, given the small number of observations in our sample.

We also conduct the LR test for the joint hypothesis of homoskedasticity and regime
independent lags and can reject the null. The MSIAH-VAR(2) has a log likelihood of
–34.82, the lowest of all estimated models. However, the MSIAH model has the same
problems of not fulfilling the prerequisites regarding the regimes as it has a similar skew-
ness towards one regime. Compared to the MSI-VAR(2), there are 11 more parameters
to estimate, adding up to a total of 26, which may be the upper bound with a sample
size of 57 observations.

Given the estimation problems of the MSIA and MSIAH models and considering the
increasing risk of local maxima as the likelihood function can be flat in more directions
when more complex models are evaluated, we consider the MSIH models as our best
alternative. The expected regime duration are evenly distributed with 26 quarters in
the first and about 31 quarters in the second regime. The regimes are very volatile as
there is about a 0.5 chance of switching out of each regime. This makes the model a bit
hard to interpret. The intercept of the first equation in the system shifts from 6.48 in
the first regime to 7.18 in the second and the intercept in the second equation is higher
in regime 2 as well. Regime 2 seems to be the high-volatility regime as the variance of
inflation is more than 20 times as high as it is in regime 1. All parameters are significant
at acceptable levels except the second lag of inflation in the second equation and the
second lag of unemployment in the first.

As an alternative, an estimated MSA-VAR(1) model is shown in Table 2.37 The
36We consider testing of models with different lag order as well, but as with the MSI-VAR(1), the

MSIA and MSIAH with only one lag points at similar problems of remaining autocorrelation in the
unemployment residuals (not reported) and we therefore will not consider them as alternatives.

37Assuming that the main reason for the econometrician to use the MS model is because of changes in
the mean of the time series of interest, Krolzig (1997) proposes that estimating an MSI model often is an
appropriate start for evaluating different Markov-switching models. However, if we suspect the dynamics
to be an important feature of the time series, estimating an MSA model could also be appropriate as we
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Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

vπ

vu

a11 0.623*** -0.180 0.556** -0.192 0.173 0.120
[0.172] [0.164] [0.273] [0.168] [0.154] [0.195]

a21 -0.118*** -0.039 -0.059 -0.013 -0.052 -0.041*
[0.025] [0.028] [0.043] [0.030] [0.042] [0.022]

a12 -0.600*** -0.609*** -4.686*** -2.078* -0.855 -5.387***
[0.227] [0.204] [1.302] [1.263] [0.616] [1.726]

a22 0.879*** 0.830*** 1.651*** 1.446*** 1.392*** 1.718***
[0.043] [0.045] [0.260] [0.147] [0.157] [0.179]

b11 -0.439*** -0.374 -0.292** -0.309
[0.163] [0.274] [0.121] [0.272]

b21 0.022 0.036 0.031 0.030
[0.036] [0.024] [0.032] [0.031]

b12 3.647*** 0.933 -0.172 4.462***
[1.167] [1.200] [0.511] [1.671]

b22 -0.701*** -0.530*** -0.474*** -0.769***
[0.240] [0.125] [0.150] [0.164]

Var(π) 0.234 3.046 0.398 7.077
[0.119] [1.378] [0.206] [5.917]

Cov(π,u) -0.023 -0.130 -0.037 -0.105
[0.038] [0.227] [0.075] [0.367]

Var(u) 0.012 0.026 0.044 0.014
[0.008] [0.008] [0.018] [0.010]

p11

p22

T 22.34 34.66 21.94 35.06 26.11 30.89 37.649 19.351

LL
AIC
BIC
MSC
SSRπ

Rπ
2

SSRu

Ru
2

LB êπ,t|t-1
LB êu,t|t-1

LB Zπ,t
LB Zu,t

LB êπ,t|t-12

LB êu,t|t-1
2

LB Zπ,t2

LB Zu,t
2

[0.136]
-0.648***
[0.546]
0.270
[0.025]

TABLE 2: Estimation Results of the MSA, MSAH and MSH

MSA-VAR(1) MSA-VAR(2) MSAH-VAR(2) MSH-VAR(2)

2.948**

[0.156]
1.589***
[0.565]
-0.559
[0.021]
-0.034
[0.125]
0.279**

0.405

0.054**
[0.105]
-0.028

[1.291]

[0.300][0.250]
0.481*
[1.926]

8.521***

[0.522] [0.321]
-0.150 -0.073

1.869 1.069

[1.524]
5.552***

[2.338]
9.749***

[0.010] [0.007]
0.730 0.453 0.490

[0.125] [0.067]
0.042 0.023

-60.66

[0.337]
1.142***

[0.322]
0.501

0.835 0.674 0.554 0.527
[0.127] [0.136] [0.122] [0.253]

0.777
[0.192] [0.167] [0.146] [0.120]

117.81 167.33
219.42 191.01 158.67 214.32

204.72
112.90 132.28 39.06 151.91

0.211
0.270 0.105 0.716 -0.105

1.92
0.964 0.975 0.418 0.973

0.962
0.736 0.983 0.797 0.955

0.994

0.152 0.214 0.953 0.156
0.837 0.825 0.170 0.862

0.602 0.951 0.719 0.956

Notes: Estimated standard errors are shown in brackets. ***,**,* indicates significance on a 1 %, 5% and 10% level. 
The variance-covariance matrix has been calculated using the conditional score method in Hamilton (1993,1996). T 
is the expected duration in each regime. The AIC, BIC are calculated as usual (see e.g. Frühwirth-Schnatter (2006), 
Lütkepohl (2007)) while the MSC is calculated according to Smith et al (2006). p-values are reported on the Ljung-

Box tests of autocorrelation and heteroskedasticity.

0.073

0.000 0.972 0.208 0.996
0.651 0.465 0.960 0.572

-79.39 -49.01 -38.90

0.483 0.408 0.977

0.000 0.994 0.256

0.955 0.967 0.185

2.52 1.77 40.70

0.414 0.313 0.797

241.54 180.85 160.20

188.78 144.02

R̅π2 

R̅u2!
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MSA-VAR(1) is well estimated by the algorithm and has persistent regimes. The log
likelihood is –79.39 compared to –84.77 of the MSI-VAR(1) and information criteria
prefers the MSA model.38 However, the unemployment residuals are autocorrelated.
With an additional lag, this problem can be solved and the MSA-VAR(2) has well be-
haved residuals in both of the variables. It has a higher log likelihood, –49.01, compared
to the MSI-VAR(2). The regimes are more volatile but the expected regime duration
is similar to the model with only one lag. The LR test with null hypothesis of ho-
moskedasticity can be rejected at all acceptable significance levels but the likelihood
ratio of regime dependent intercepts is 7.37 and close to the critical value, even though
we reject the null. A joint test of homoskedasticity and regime dependent intercepts can
be rejected.39 The MSAH-VAR(2) has a higher log likelihood than the MSIA-VAR(2)
and the highest of all other models except MSIAH-VAR(2). It is also preferred by the
AIC and BIC when comparing all models, also the unnested MSIH-VAR(2). The MSC,
however chooses the MSIAH-VAR(2).40

If we consider the information criteria where the AIC and BIC selected the MSAH
model over the MSIH, we can conclude that it seems that the data is best explained
by changing dynamics rather than changes in the intercepts. Regime-dependent het-
eroskedasticity is however an important feature in both models. The sum of squared
residuals SSRπ is significantly reduced in both the MSIH and MSAH compared to ho-
moskedastic models and the amount of sample variation that can be explained by the
model is high, even though it is worse in explaining the relatively low variation in the
unemployment data.

We proceed according to the Box-Jenkins procedure and check whether we can make
the MSAH-VAR(2) more parsimonious by restricting insignificant parameters, see Ta-

may find different, non-nested models that we cannot evaluate by extensions to the MSI.
38The Akaike (AIC) and Schwarz Baysian (BIC) information criteria of Kullback-Leibler divergence for

the MS model are constructed as is common for multivariate models, see Lütkepohl (2007), Frühwirth-
Schnatter (2006). In addition the Markov Switching criteria by Smith et al. (2006) is reported. This
criteria is primarily for comparison of models with different number of regimes and variables and has not
been tested for consistency for comparison of different Markov characteristics. We do however report
this as the criteria penalizes the log likelihood with respect to the expected duration of the regimes. The
MSC is constructed as

MSC = −2 lnL(λ̃|YT ) +
M∑
s=1

T̂s(T̂s +AsK)
BsT̂s −AsK − 2

(22)

where T̂s = tr(Ŵs), Ŵs = diag(ξ̂1i|T , . . . , ξ̂Ti|T ). As and Bs are set as in Smith et al (2006) to As = M
Bs = 1.

39The tests containing the unrestricted models of MSIA and MSIAH have however the same estimation
problems as discussed above.

40As there are only two more parameters in an MSIAH-VAR(2) compared to the MSAH-VAR(2) with
a total of 24, we could suspect the same problem with estimating this model. However, the regimes are
more equal in duration even though both regimes shift with a high probability. Hence we do not end up
with all parameters in one regime being obviously badly estimated but the precision of the estimates are
reduced compared to less complex models. This reveals the problem of evaluation and selecting different
MS models when the sample size is small. This is since the log likelihood almost always increases when
allowing more parameters to shift even though the precision of the estimates falls significantly.
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Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

vπ

vu

a11 0.180* -0.005 0.181 0.073 0.180* 0.181* -0.003 0.181 0.165
[0.108] [0.242] [0.112] [0.268] [0.109] [0.110] [0.246] [0.112] [0.103]

a21 -0.052** -0.036 -0.053** -0.031 -0.052** -0.036 -0.053** -0.030 -0.053** -0.030 -0.051** -0.036
[0.022] [0.027] [0.023] [0.025] [0.022] [0.026] [0.022] [0.026] [0.022] [0.024] [0.022] [0.025]

a12 -0.811 -5.311*** -0.837 -5.354*** -0.809 -5.301*** -0.826 -5.331*** -0.824 -5.326*** -1.030*** -5.374***
[0.782] [1.848] [0.739] [1.806] [0.764] [1.688] [0.756] [1.845] [0.760] [1.647] [0.208] [1.645]

a22 1.391*** 1.717*** 1.379*** 1.696*** 1.390*** 1.716*** 1.382*** 1.703*** 1.382*** 1.702*** 1.409*** 1.723***
[0.145] [0.182] [0.140] [0.169] [0.145] [0.176] [0.139] [0.172] [0.140] [0.169] [0.132] [0.174]

b11 -0.285** -0.286** -0.180 -0.284** -0.283** -0.283** -0.297***
[0.112] [0.115] [0.251] [0.112] [0.114] [0.110] [0.107]

b21 0.030 0.019 0.028 0.0303 0.0187 0.028 0.028 0.031 0.018
[0.022] [0.025] [0.023] [0.022] [0.025] [0.021] [0.021] [0.022] [0.025]

b12 -0.196 4.367** -0.170 4.434** -0.1974 4.358*** -0.177 4.394** -0.177 4.389*** 4.407***
[0.730] [1.827] [0.694] [1.802] [0.718] [1.684] [0.711] [1.839] [0.721] [1.644] [1.640]

b22 -0.474*** -0.768*** -0.470*** -0.751*** -0.474*** -0.767*** -0.471*** -0.757*** -0.471*** -0.756*** -0.492*** -0.773***
[0.133] [0.171] [0.132] [0.162] [0.134] [0.166] [0.129] [0.164] [0.130] [0.161] [0.120] [0.163]

Var(π) 0.235 3.272 0.240 3.305 0.240 3.305 0.241 3.315
[0.296] [0.941] [0.280] [0.944] [0.278] [0.978] [0.322] [0.973]

Cov(π,u) -0.024 -0.137 -0.025 -0.153 -0.025 -0.152 -0.024 -0.141
[0.029] [0.071] [0.029] [0.070] [0.030] [0.072] [0.032] [0.071]

Var(u) 0.012 0.026 0.013 0.027 0.013 0.027 0.012 0.026
[0.007] [0.008] [0.007] [0.008] [0.007] [0.008] [0.007] [0.008]

p11

p22

T 26.136 30.864 26.52 30.48 26.13 30.87 26.62 30.38 26.507 30.493 26.507 30.493

LL
AIC
BIC
MSC
SSRπ

Rπ
2

SSRu

Ru
2

LB êπ,t|t-1
LB êu,t|t-1

LB Zπ,t
LB Zu,t

LB êπ,t|t-12

LB êu,t|t-1
2

LB Zπ,t2

LB Zu,t
2

44.3844.3544.4042.52

Notes: Estimated standard errors are shown in brackets. ***,**,* indicates significance on a 1 %, 5% and 10% level. The standard errors and p-values have 
been calculated by bootstrapings 10 000 simulated time series with size T+100 from the estimated model. The 100 first observations are discarded to get 
independence from starting values. T is the expected duration in each regime. The AIC, BIC are calculated as usual (see e.g. Frühwirth-Schnatter (2006), 

Lütkepohl (2007)) while the MSC is calculated according to Smith et al (2006). p-values are reported on the Ljung-Box tests of autocorrelation and 
heteroskedasticity.

0.736 0.944 0.737 0.682 0.682 0.760
0.739 0.727 0.740 0.735 0.735 0.680
0.948 0.949 0.947 0.957 0.956 0.941
0.958 0.960 0.958 0.958 0.958 0.951
0.116 0.111 0.118 0.081 0.082 0.116
0.748 0.747 0.748 0.756 0.756 0.770
0.526 0.313 0.536 0.483 0.489 0.527
0.800 0.806 0.800 0.807 0.807 0.828

0.365
0.112

0.366
0.112

0.365
0.111

0.392
0.149

42.43
0.393
0.151

42.60
0.391
0.147

0.485
[0.155]
0.549
[0.153]

0.71 0.72 0.71

39.70 38.17 39.67

156.847 156.554 152.831

-40.01 -39.87 -40.03

0.485 0.510

0.71 0.71 0.71
0.79 0.80 0.79 0.80 0.80 0.79

39.36 39.35 39.54
162.421 162.111 162.449 162.472 162.487 162.129

152.876 148.848 148.486
118.03 117.74 116.06 116.10 114.12 113.75

-40.05 -40.06 -39.88

0.549 0.559 0.551 0.551 0.549
[0.153] [0.149] [0.153] [0.151] [0.152]

0.505 0.505 0.498
[0.155] [0.153] [0.151] [0.150] [0.153]

[0.029] [0.029]
0.012 0.013
[0.007] [0.007]

0.234 0.240
[0.294] [0.254]
-0.024 -0.025

[0.325] [0.284] [0.325] [0.292] [0.288] [0.318]
0.494 0.549* 0.495 0.537* 0.538* 0.489

TABLE 3: Estimation Results of Different Constrained MSAH-VAR(2) Models

b11
(2) = 0 b21

(2) = 0 a11
(2) = b11

(2) = 0 b11
(2) = b21

(2) = 0
a11

(2) = b11
(2) = b21

(2) =   
0

b12
(1) = a11

(2) =  b11
(2) = 

0

[1.772] [1.665] [1.646] [1.684] [1.581] [1.584]
8.368*** 8.362*** 8.360*** 8.320*** 8.315*** 8.539***

R̅π2 

R̅u2!
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ble 3.41 This could be motivated both in terms of forecasting and economic analysis,
as it increases the overall fit and precision of the estimates. We find that imposing re-
strictions on three of the parameters that are being close to zero does not significantly
alter the log likelihood. We test for several different restrictions, but see evidence of
autocorrelation in the unemployment residual when imposing any restriction on that
equation in the system.

The best alternative is achieved when we impose the effect of the two quarter lag of
unemployment on inflation to be equal to zero in regime 1 (b(1)

12 = 0) and the persistence of
inflation being zero in regime 2 (a(2)

11 = b
(2)
11 = 0). We can reject the null hypothesis when

performing a LR test of the restricted model versus the unrestricted. All residuals are
white noise, and there is no evidence of remaining heteroskedasticity (the residual series
are plotted in figure 12, 13 and 14) The restricted model has 10 significant parameters
with high precision (significant at about a 1% significance level), while most of the
insignificant parameters are small in magnitude (the exception is vu and a11 that have
a standard deviation of about 3/5 of the estimate). The log likelihood is –39.88 and the
model is selected by the AIC and BIC compared to all other alternative specifications.42

5 Discussion
Applying the bottom-up strategy for selecting the Markov characteristics and lag order of
our MS model lead us to a model with regime-dependent dynamics and heteroskedasticity
while the intercepts were regime-independent. This is interesting since significant regime-
independent intercepts points towards a rather stable Phillips relationship, which do not
shift up and down as expectations are changing. Even though our sample size is small
in relation to the complexity of the model, we were able to yield a model with relative
high precision and fit. The estimated reduced-form system can be written in matrix
form where Âm, B̂m are the shifting autoregressive parameter matrices of the first and
second lag and Σ̂m the regime-dependent variance-covariance matrix. The system can
be written as[

πt
ut

]
=
[
v̂π
v̂u

]
+
[
â11 â12
â21 â22

]
m

[
πt−1
ut−1

]
+
[
b̂11 b̂12

b̂21 b̂22

]
m

[
πt−2
ut−2

]
+
[
eπ,t
eu,t

]
V̂ =

[
8.539
0.489

]
Â1 =

[
0.165 −1.030
−0.051 1.409

]
1

Â2 =
[

0 −5.374
−0.036 1.723

]
2

B̂1 =
[
−0.297 0
0.031 −0.492

]
1

B̂2 =
[

0 4.407
0.018 −0.773

]
2

Σ̂1 =
[

0.241 −0.024
−0.024 0.012

]
1

Σ̂2 =
[

3.314 −0.141
−0.141 0.026

]
2

41Since Krolzig (1997) does not provide any estimators featuring parameter constraints we have for
this purpose derived them ourselves, see Appendix, Section A.1.3

42The MSC selects a model with the only restriction that b21(st = 2) = 0, but we choose the more
parsimonious model with three restrictions.
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P̂ =
[

0.498 0.502
0.451 0.549

]
T̂ =

[
26.507
30.493

]
The processes in the two regimes are primarily characterized by the changing Σ̃m.

The variance of the forecast errors of inflation is significantly higher in the second regime
compared to the first. The correlation between the two forecasting errors as well as the
variance of the unemployment error are also larger in magnitude in the second regime.
The changes in the dynamics indicates that inflation has much more persistence in first
regime while apparently the opposite is true for the unemployment rate.

The regimes have been similar to other more complex models and show a rather
volatile path between the two regimes (see Figure 3). The unconditional probability
of being in a given regime, p1 and p2 are 0.473 and 0.527 respectively.43 The regime
probabilities for staying in each regime are around 0.5, and on the threshold for when
the regimes are said to be persistent or not. This also makes the regimes rather hard
to interpret from a structural perspective: They do not follow a clear pattern such that
prolonged periods under one regime being followed by the other, a characteristic of the
regime one often is interested to find with the MS model (such as e.g. when studying
business cycle fluctuations). Comparing the time path of the inflation rate with the
regime periodicity it is evident that it does not follow any clear pattern. If we return
to the above discussion of inflation expectations, we could for example have suspected
to find some co-movement with the inflation gap, contemporaneous or intertemporally
correlated to some degree.
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Smoothed regime probability for regime 1 of a constrained MSAH−VAR(2)

Figure 3: Smoothed probability for regime 1, Pr(st = 1).

The probably most important test we could conduct in this study is to test for linear-
ity. Unfortunately, an intrinsic problem with the MS model is that it is not evident how
to perform a test against a linear model. A time-invariant Gaussian VAR(p) model can

43The unconditional regime probabilities are calculated as p1 = [1 − p22]/[2 − p11 − p22] and p2 =
[1− p11]/[2− p11 − p22].

24



be written as a MS(1)-VAR(p) which is nested in the MS(M)-VAR(p) models. However,
equivalence of the VAR parameters θ1 = θ2 = · · · = θM makes the transition probabili-
ties pij unidentifiable, and these nuisance parameters cause a bias of the LR against the
null as the probabilistic distribution is non-standard (Hansen, 1992).

A solution proposed by Krolzig (1997) would be to test a model with some regime-
dependent parameters against a MSH model (with only regime-dependent heteroskedas-
ticity) given that the alternative model also assumes heteroskedasticity. The LR ratio
when testing an unconstrained MSAH-VAR(2) against a MSH-VAR(2) is 43.53 (critical
value 15.51) and we can reject the null hypothesis that all parameter except Σm are
regime-independent, see Table 2. Given that heteroskedasticity is an important feature
of the data, we consider this as a plausible test against a linear alternative.44

An additional test would be to see whether we parametrically can encompass real
data characteristics from simulations on our estimated model. Failure to encompass the
sample mean and variance within plausible levels should be seen as a sign of misspec-
ification and erroneous usage of the MS model, when the true data generating process
is better explained in another way. In Figure 4 we display the sample means, variances
and covariance (indicated by straight line) of our time series, and we encompass all of
the important features seen in the data rather well.

Before continuing the discussion of the estimated model, it is in place to remember
that the estimated VAR is in a reduced form. The forecasting errors eπ,t and eu,t
could be composed by a combination of the underlying structural shocks εu,t and επ,t,
and if we do not impose any identifying restriction on the specific form of how they
relate to each other, the system remains unidentified. Since it is hard to find credible
identification restrictions, especially for non-linear models, the large bulk of the literature
have focused on either generalized impulse response analysis (GIRF) and forecast error
variance decomposition (GFEVD)45 (Krolzig, 2006, Karamé, 2012, Do et al., 2013, Lanne
and Nyberg, 2014) or on recursive identification through Choleski decomposition (Weise,
1999, Ehrmann et al., 2003, Droumaguet, 2012).

However, since the use of identifying restriction imposes rather much ambiguity de-
pending on the theoretical stance, see discussion in e.g. King and Watson (1994), Kilian
(2011), we consider only the reduced form estimates as they provide enough information
to characterize the Phillips relation.46 Foremost, we wish to establish comparability with

44A possible future extension would be to follow the procedure suggested by Lenčuchová (2011), using
the White (1987) test for serial correlation and Hamilton (1996)’s approach for dynamic specification
test or, as is more common, by generating the probabilistic distribution with Monte Carlo methods to
get appropriate critical values for the test statistics.

45The generalized versions of the IRF and FEVD basically consider shocks to each equation of the
system, i.e. in et, instead of the uncorrelated structural shocks εt.

46Imposing restrictions can have rather large implication on the empirical conclusions and should be
implemented with care. King and Watson (1994) use a similar bivariate system to study the long-run
Phillips relationship under three different identifications, corresponding to a traditional Keynesian (TK),
a rational expectation monetarist (REM), and a real business cycle (RBC) interpretation of the model
economy. The TK and the RBC corresponds to different orderings of a recursive system and yield the
most extreme results while the REM identification ends up being some form of ‘mainstream’ approach
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Svensson (2015), and since he uses a single-equation estimation, we would be less able to
compare our estimates if we imposed identifying restrictions. Alternatively, the results
could be interpreted as a recursive ordering with πt and ut, and hence that structural
shocks in the unemployment equation has no contemporaneous effect on inflation.47 As
pointed out in Staiger et al. (1997), it is rather plausible that inflationary effects of tight
demand occur with a lag.

Concentrating on the component of the VAR system (19) corresponding to the short-
run Phillips curve equation (9), we yielded two rather similar inflation processes in both
regimes, that differ most with regard to the volatility in the error terms. In the first
regime, inflation shows persistence where the two lags sum up to –0.132, keeping in mind
that the first lag is insignificant, while inflation in the second regime has no persistence
at all.

Regime 1: πt = 8.539 + 0.165πt−1 − 0.297πt−2 − 1.030ut−1 + eπ,t

Regime 2: πt = 8.539− 5.374ut−1 + 4.407ut−2 + eπ,t,

It is rather clear that the Solow-Tobin test of γ(1) can be rejected and it is therefore
not far-fetched to establish a non-vertical long-run Phillips curve, as in Svensson (2015).
Eliasson (2001) do not test for a non-vertical Phillips curve in her study of the period
1979Q2-1997Q4, but the sum of the lags of her short-run estimates were significantly
larger. In addition, she also found that the short-run trade-off varied with time, as well
as the intercept, which was excluded from the linear benchmark Phillips curve for the
same period.

We look further at the long-run component of the inflation–unemployment trade-off.
We can do the same exercises as in Svensson (2015), and back out the long-run coefficient
from the short-run estimates by taking the unconditional expectation of each variable,
E{πt} = π, E{ut} = u, and E{eπ,t} = 0.48 This yields a Phillips curve trade-off of
–0.910 in the first regime and –0.967 in the second where the slope in the first regime
is possibly overestimated due to the lack of precision in the lag of inflation. Since the
trade-off is rather similar in both regimes, it is not very far-fetched to talk about a
long-run slope even though the regimes are not that persistent.

This implies a slightly steeper Phillips curve compared to Svensson’s, average bench-
mark of –0.75. If we take the average with regard to the expected duration in each
regime, we get a slope of –0.94. Calculating the unemployment cost that would be en-
tailed with an average inflation 0.6 percent lower compared to the target, yield a 0.64
percent higher unemployment. As pointed out by Svensson, the slope of the curve is
sensitive to starting date, but our estimate could be viewed as rather conservative as
the curve flatten out including additional and fever observation at the beginning of the
sample.49

that gives room for both demand and supply disturbances in the business cycle.
47In this case, the reduced-form estimates of the Phillips curve are in fact identical to the structural

model.
48Basically we find it as ∂π/∂u = [â11 + b̂11]/[1− â12 + b̂12].
49A flatter Phillips curve implies a higher unemployment cost.
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To conclude, it seems like the estimates of our non-linear Phillips curve are rather sim-
ilar compared to linear specifications even though we have considerable regime-dependent
heteroskedasticity included in our model. Most notable is that the testing procedure
found a model with regime-independent intercepts, which points towards a stable Phillips
relationship which do not change because of varying expectations. As the regimes of the
model were highly non-persistent, it is not clear how to interpret the non-linearity from
an economic perspective, other than that some observations contributed to much higher
residual variance.

6 Conclusion
We have in this study investigated the Phillips relationship in Sweden by estimating a
Markov-switching VAR that corresponded to a bivariate system with inflation and the
unemployment rate. We were able to fit an internally consistent and parsimonious model
to the data that was modelled with time-varying and regime-dependent dynamics and
heteroskedasticity. The model encompassed the empirical moments of the data well and
was tested against several different MS model specifications.

The resulting processes in our two regime MSAH-VAR(2) model had a more persis-
tent inflation process the first regime, while the other was dominated by higher variance
and volatility in the residuals. The regime periodicity did not comove with the inflation
time series path in such a way that it could be clearly interpreted as changes in expecta-
tions. The resulting long-run estimates of the Phillips trade-off had a slope of –0.910 in
the first regime and –0.967 in the second. Even though the interpretation of a long-run
relationship in a Markov framework are conceptually rather vague, we argue that the
processes are so similar so that we can confirm the existence of a non-vertical long-run
Phillips curve for the period 1997Q4-2011Q4. This would imply an unemployment cost
of about 0.64 percent, deduced from our reduced form estimates, which of course should
be interpreted with care in accordance with the structural VAR time-series literature.

A limitation in this study is that we have not considered different time-spans of our
data, mainly because of the computational burden estimating the model. In addition,
we have not used alternative measures or definitions of inflation or the forcing variable
as robustness, other than those of the benchmark, Svensson (2015), model.50

Direction of future investigations of the Phillips curve in the Markow-switching
framework can easily be pinned down as there are many aspects that we leave out.
We have not considered the forecasting performance of the model and neither tested it
more closely against a linear specification, other than a heteroskedastic MSH model. In
addition, we have not looked further into the GIRF and GFEVD as is common practice
in the non-linear time series literature, even though we rather would see an analysis
of a structural model, perhaps using heteroskedasticity for identification which would
enabling statistical testing of imposed restrictions, see e.g. Lanne and Lütkepohl (2008),
Netšunajev (2013).

50Svensson consider e.g. the unemployment gap by subtracting a time-varying NAIRU, which however,
as it varies very little over the period, do not change the results.
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A Appendix

A.1 Derivations

A.1.1 The BLHK-Filter and Smoother

How do we make inference on the regime probabilities ξt? This, it turns out, can be
done using a relatively simple and straight-forward filter and smoothing algorithm. The
algorithm could be seen as a discrete version of the Kalman (1960) filter, but because of
its discrete support, allows for full derivation of the conditional distribution of the state
variable, instead of just the two first moments as in the Kalman filter. The filtered and
smoothed regime probabilities are used further for setting up the likelihood function and
are important components in the estimation algorithm.

The filter is an iterative algorithm for predicting ξt+1 on the basis of the observations
Yt = (y′t, y′t−1, . . . , y

′
t−p)′. For every period t = 1, . . . , T , the filter makes inference on the

present regime ξt and a one-period-ahead forecast of the next coming regime ξt+1 using
the information up to point t. Hence, for each iteration, the information set used will
increase by that period’s observation, until the whole sequence of regime probabilities is
determined.

Assuming that the parameters θ are known, the filter collects the conditional prob-
ability distribution of ξt+1 in a vector ξ̂t+1|t, called the predicted regime probabilities,

ξ̂t+1|t = E[ξt+1|Yt ] =

 Pr(ξt+1 = ι1|Yt)
...

Pr(ξt+1 = ιM |Yt)

 (23)

Because of the binary nature of the components of ξ̂t+1|t, this is both the conditional
mean and the probability distribution of ξt+1 conditional on Yt. In the same manner,
the inference on the current regime vector ξt, the filtered regime probabilities, are

ξ̂t|t = E[ξt|Yt ] =

 Pr(ξt = ι1|Yt)
...

Pr(ξt = ιM |Yt)

 . (24)

Using matrix notation, the filtered probabilities are computed as

ξ̂t|t =
ηt � ξ̂t|t−1

1′M (ηt � ξ̂t|t−1)
=

ηt � F(ξ̂t−1|t−1)
1′M (ηt � F(ξ̂t−1|t−1)

, (25)

where 1M is a (M × 1) vector of ones, � denotes element-wise matrix multiplication,
and the second equality follows from the formulation of F = P′, which is defined exactly
as the transition matrix between two adjacent regime vectors ξt+1 = Fξt. Hence, we can
forecast the next period’s regime and get the predicted probabilities ξ̂t+1|t:

ξ̂t+1|t = Fξ̂t|t =
F(ηt � ξ̂t|t−1)
1′N (ηt � ξ̂t|t−1)

, (26)
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If we have an initial regime vector ξ0, we can recursively derive the filtered and predicted
regime probabilities by iterating (25) and (26) for t = 1, . . . , T , to get the whole sequence
of regime probabilities {ξ̂t|t}Tt=1 and {ξ̂t|t−1}Tt=1.

The smoother algorithm updates the filtered probabilities by using the whole sample
information up until time T to get the smoothed regime probabilities, ξ̂t|T . Hence, the
filtered probabilities are updated with the unused information Yt+1.T = (y′t+1, . . . , y

′
T )′.

While Hamilton (1988, 1989) derived ξ̂t|T using the whole past history of the regime,
Kim proposed a much less computationally demanding version of the smoother using
the Markov property (13) to condense the necessary information set to condition on.
However, as Hamilton (1994b) points out, this algorithm is only applicable when the
Markov process is first-order, and the conditional density function (10) depends on
st, st−1, . . . only through st.

The smoother algorithm computes ξ̂t|T by iterating backwards, j = 1, . . . , T − 1,
using the last filtered probability ξ̂T |T and can be written as

ξ̂T−j|T =
[
F′(ξ̂T−j+1|T � ξ̂T−j+1|T−j)

]
� ξ̂T−j|T−j (27)

where � denotes element-wise matrix division.

A.1.2 The EM Algorithm

The EM algorithm iterates over two separate steps: (i) The Expectations step (E),
where the unobserved regimes ξt are estimated, using the smoothed probabilities ξ̂t|T .
In addition, the conditional probabilities Pr(ξ|Y, λ(j−1)) are computed from the BLHK-
filter and smoother using the parameter vector λ(j−1) from the previous iteration. (ii)
The Maximization step (M), where an estimate of λ is derived from the solution of the
first order conditions of the maximization of the likelihood function using the smoothed
probabilities ξ̂t|T (λ(j−1)) from the last E-step.

Hence, each iteration of the EM algorithm involves a pass through the BLHK filter
and smoother at the E-step, and the following estimation of the parameters at the M -
step, that are subsequently used in the next iteration’s E-step, and so on. The likelihood
function can be derived as a by-product of the BLHK filter and smoother,

L(λ|Y ) ≡ p(YT |Y0;λ)

=
T∏
t=1

p(Yt|Yt−1, λ)

=
T∏
t=1

∑
ξt

p(yt|ξt, Yt−1, θ)Pr(ξt|Yt−1, λ)

=
T∏
t=1

η′tξ̂t|t−1 =
T∏
t=1

η′tFξ̂t−1|t−1

(28)

where ηt is a vector containing the conditional densities p(yt|ξt, Yt−1) for each state. The
maximum likelihood (ML) estimates are then obtained by maximizing the likelihood
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function L(λ|Y ) given the adding-up restrictions,

P1M = 1
1′Mξ0 = 1,

and the non-negativity restrictions,

ρ ≥ 0, σ ≥ 0, ξ0 ≥ 0.

The ML estimate λ̃ is the solution to the first-order conditions of the maximization of
the constrained log-likelihood function,

lnL(λ) ≡ lnL(λ|YT )− κ′1(P1M − 1M )− κ2(1′Mξ0 − 1).

where κ1 and κ2 are the Lagrange multipliers for the adding-up respectively non-negativity
restrictions. The FOCs are hence given by

∂ lnL(λ|YT )
∂θ′

= 0

∂ lnL(λ|YT )
∂ρ′

− κ′1(1′M − IM ) = 0

∂ lnL(λ|YT )
∂ξ′0

− κ21′M = 0.

The iteration of the E andM -steps are guaranteed to increase the value of the likelihood
function, so that it finally reaches a fixed-point where λ̃(j) = λ̃(j−1) coincides with the
maximum of the likelihood function L(λ|Y ).

A.1.3 Constrained Estimator for MSAH-VAR

To rewrite the estimator into a form allowing for constraints on any number of arbitrary
parameters, the order of parameters must be rearranged such that the ones constrained
are positioned at the end of the vector. This implies that the matrix X̄m also must be
rearranged as to comply with the positions of the parameters. Since X̄m contains the
regressors for all K equations, changing the position of a given column will effect the
corresponding parameter in allK equations and hence the possibility to apply restrictions
for an individual equation is ruled out. To overcome this, we define X̄∗m ≡ X̄m ⊗ Σ−1

m

which allows us to rearrange columns corresponding to individual parameter constraints.
Obviously, the shift of columns for a parameter in one regime, implies that we must shift
the matching columns for all regimes.

β̃ =
(

M∑
m=1

(
X̄ ′mΞ̂mX̄m

)
⊗ Σ̃−1

m

)−1( M∑
m=1

(
X̄ ′mΞ̂m

)
⊗ Σ̃−1

m

)
y (29)

The next step is to rearrange the estimator such that it can be rewritten in terms of
X̄∗m. For the first term in the estimator we can rewrite it in the following manner.(

X̄ ′mΞ̂mX̄m

)
⊗ Σ̃−1

m =
((

Ξ̂mX̄m

)′
X̄m

)
⊗
((

Σ̃m × Σ̃−1
m

)
Σ̃−1
m

)
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=
((

Ξ̂mX̄m

)′
⊗
(
Σ̃m × Σ̃−1

m

))(
X̄m ⊗ Σ̃−1

m

)
=
((

Ξ̂mX̄m

)
⊗
(
Σ̃m × Σ̃−1

m

))′ (
X̄m ⊗ Σ̃−1

m

)
=
((

Ξ̂m ⊗ Σ̃m

) (
X̄m ⊗ Σ̃−1

m

))′ (
X̄m ⊗ Σ̃−1

m

)
(
X̄ ′mΞ̂mX̄m

)
⊗ Σ̃−1

m =
(
X̄m ⊗ Σ̃−1

m

)′ (
Ξ̂m ⊗ Σ̃m

)′ (
X̄m ⊗ Σ̃−1

m

)
(30)

For the second term, the preceding equivalence hold.(
X̄ ′mΞ̂m

)
⊗ Σ̃−1

m =
(
Ξ̂mX̄m

)′
⊗ Σ̃−1

m

=
((

Ξ̂mX̄m

)
⊗
(
I × Σ̃−1

m

))′
=
((

Ξ̂m ⊗ I
) (
X̄m ⊗ Σ̃−1

m

))′
(
X̄ ′mΞ̂m

)
⊗ Σ̃−1

m =
(
X̄m ⊗ Σ̃−1

m

)′ (
Ξ̂m ⊗ I

)′
(31)

Substituting in X̄∗m into (31) and (30), (29) can be rewritten as.

β̃ =
(

M∑
m=1

X̄∗
′
m

(
Ξ̂m ⊗ Σ̃m

)
X̄∗m

)−1( M∑
m=1

X̄∗
′
m

(
Ξ̂m ⊗ I

)′)
y

Now we can impose restrictions using standard time-series procedures51 and rewrite the
estimator into its ultimate form.

γ̃ =
(

M∑
m=1

R′X̄∗
′
m

(
Ξ̂m ⊗ Σ̃m

)
X̄∗mR

)−1( M∑
m=1

R′X̄∗
′
m

(
Ξ̂m ⊗ I

)′ (
y− X̄∗′mr

))

Where R is a pick-matrix and r contains the constraints such that the following holds.

β̃ = Rγ̃ + r

51See e.g. Lütkepohl (2007), section on linear constraints.
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A.2 Tables

MSI-
VAR(1)

MSI-
VAR(2)

MSIH-
VAR(1)

MSIH-
VAR(2)

MSA-
VAR(1)

MSA-
VAR(2)

MSAH-
VAR(1)

MSAH-
VAR(2)

MSIA-
VAR(1)

MSIA-
VAR(2)

MSIAH-
VAR(1)

MSH-
VAR(2)

LR (H0: vech(Σi) = vech(Σm)) 39.625 30.283 23.729 20.210 18.765 21.003
Critical value 7.815 7.815 7.815 7.815 7.815 7.815
p-value 0.000 0.000 0.000 0.000 0.000 0.000
LR (H0: ai = am) 25.592 25.950 4.731 16.670
Critical value 9.488 15.507 9.488 15.507
p-value 0.000 0.001 0.316 0.034
LR (H0: vi = vm) 14.819 7.370 9.855 8.164
Critical value 5.992 5.992 5.992 5.992
p-value 0.001 0.025 0.007 0.017
LR (H0: vech(Σi) = vech(Σm) U ai = am) 44.356 46.953 43.517
Critical value 14.067 19.675 15.507
p-value 0.000 0.000 0.000
LR (H0: vech(Σi) = vech(Σm) U vi = vm) 33.584 28.373
Critical value 11.071 11.071
p-value 0.000 0.000
LR (H0: p = 1) 52.952 43.610 60.759 57.240 53.310 55.549
Critical value 9.488 9.488 9.488 9.488 9.488 9.488
p-value 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 4: Likelihood Ratio Tests

Notes: LR statistic, critical values, and p-values. The null hypothesis in parenthesis. The test under the null has a χ2-distribution, with r degrees of freedom.

A.3 Figures
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Figure 5: CPI inflation and Prospera inflation expectations.
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Figure 6: CPI inflation and NIER inflation expectations.
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Figure 7: CPI inflation and NIER and Prospera inflation expectations.
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Figure 8: Empirical autocorrelations
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Figure 9: ACF’s of unemployment for different sample periods
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Figure 10: Smoothed probability for regime 1 of all models
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Figure 11: Frequency and log likelihood for different starting values
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Figure 12: Conditional residuals of the MSAH-VAR(2)
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Figure 13: Generalized and Rosenblatt-transformed residuals of the MSAH-VAR(2)
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Figure 14: Smoothed residuals of the MSAH-VAR(2)
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A.4 Matlab

In this section follows a short description of our approach when building the estima-
tion models in matlab, followed by an example of the code for the most flexible model,
MSIAH-VAR. To ensure consistency and avoid errors in the code, we have created a
simulation section (see: A.4.1), in which we can generate data from some given param-
eters. The advantage of this approach is that we know the true parameters of the data
and thus can evaluate the performance of our estimators regarding both the estimation
of parameters from the observable data and the hidden Markov-chain. The next script
A.4.2 prepares the data and sorts the order of the regressors in the event of constraints,
such that it complies with the estimator. The algorithm for starting values A.4.3 makes
a linear regression and places a grid around it. From the combinations of the grid around
the linear regression, we draw a random sample, which serves as the starting values for
our estimation. The starting values are entered into the EM-script A.4.4, which starts
the BLHK-filter A.4.5 and generates state probabilities for the given estimates. The
state probabilities are returned into the EM-script where they serve as weights for the
ML-estimation. The procedure continues iteratively until the parameters have converged
and the estimates and state probabilities are presented.

A.4.1 Simulation

function [ data, beta_gen,P, A,S,eps,sigma_gen ] = ...
data_simulation_MSIAH(K,T,p,M,constraints,r)

if M<1|M>3|K<1|K>3 |p<1|p>4
error('The following intervals are accepted as inputs M [2,3],K [1,3], p [1,4]')

end
%% I Initialization

%% TRANSITION PROBABILITIES
% Transitions probabilities from state 1

p11 = 0.8;
p12 = 0.1;
p13 = 1−p11−p12;

% Transitions probabilities from state 2
p21 = 0.1;
p22 = 0.8;
p23 = 1−p21−p22;

% Transitions probabilities from state 3
p31 = 0.03;
p32 = 0.05;
p33 = 1−p31−p32;

P = [p11 p12 p13; p21 p22 p23; p31 p32 p33];

if M==2
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P = P(1:M,1:M);
P(1,:) = P(1,:)./sum(P(1,:),2);
P(2,:) = P(2,:)./sum(P(2,:),2);

end

if min(min(P))==0
error('All transition probabilities must be positive')

end
%% DATA GENERATING PARAMETERS
% Starting values for y

start_data(:,1) = [0.3 0.4 0.2 0.12 0.4 0.32 0.08 0.24 0.1 0.64 0.43 0.31]';
% Standard errors for the data generating process
% State 1

std_dev_f1 = .3;
std_dev_x1= .5;
std_dev_z1 = .5;

% State 2
std_dev_f2 = .2;
std_dev_x2 = .5;
std_dev_z2 = .7;

% State 3
std_dev_f3 = 0.3;
std_dev_x3 = 0.5;
std_dev_z3 = 1.2;

std_dev(:,:,1) = [std_dev_f1; std_dev_x1; std_dev_z1] ;
std_dev(:,:,2) = [std_dev_f2; std_dev_x2; std_dev_z2] ;
std_dev(:,:,3) = [std_dev_f3; std_dev_x3; std_dev_z3] ;

std_dev = std_dev(:,:,1:M);

for s=1:M
sigma_gen(:,:,s) = diag(std_dev(1:K,:,s).^2);
end

varz = char('f','x','z');

% STATE 1
% Intercepts
f_0_1 = −2;
x_0_1 = −0.3;
z_0_1 = −0.2;

% AR lag 1 state 1
f_f_1_1 = 0.1;
x_f_1_1 = 0.7;
z_f_1_1 = 0.1;
.
.
.

48



We have excluded the rest of the parameters since they make up a very extensive list

for i = 1:M % This loop runs over the states
for j = 1:K % This loop runs over the variables
for s = 1:p % This loop runs over the lags

% This if−condition is in order to write out the
% intercepts and the parameters of the first lag

if s==1

eval(['A(j,1,i)=' sprintf('%s',varz(j)) '_0_' num2str(i) ';']);

end

% This loop writes out the the variables we are
% regressing on for all the lags

for q = 1:K

eval(['A(j,(K*(s−1)+1)+q,i)=' sprintf('%s',varz(j)) '_' ...
sprintf('%s',varz(q)) '_' num2str(s) '_' num2str(i) ';']);

end

end
end
end

A(find(constraints==1))=r(find(constraints==1));
for i = 1:M
beta_gen(:,i) = reshape(A(:,:,i),K^2*p+K,1)';
beta_gen(:,i) = beta_gen([find(constraints(:,i)==0); find(constraints(:,i)==1)],i);

%eval(['beta' num2str(i) '_gen = reshape(A(:,:,i),K^2*p+K,1);'])
end

rand_st = randn(T,1);
S=zeros(T,1);
S(1,1) = 1; % State that the first states is equal to 1

for t = 1:T−1
% This sums upp P along the 2nd dimension for the state
% row

temp_P = cumsum(P(S(t),1:M),2);
i =1;
while cdf('Normal',rand_st(t),0,1)−temp_P(i)>0

i = i+1;
end
S(t+1) = i;

end

%% This part generates the data by using the generated states in the previous section
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data = zeros(K*T+K*p,1);
data(1:K*p,1) = start_data(1:K*p,1);
% Plugging in the starting values as first data point.

for t=1:T
eps(:,t)=(diag(sigma_gen(:,:,S(t)))).^(1/2).*randn(K,1);
end

for t=1:T;
data(t*K+p*K−K+1:t*K+p*K,1) = flipud(A(:,1,S(t))+A(:,2:end,S(t))...

*flipud(data(K*(t−1)+1:t*K+p*K−K,1))+eps(:,t));
end

data=reshape(data,K,T+p);
data = flipud(data);
data = data';

end

A.4.2 Loading and preparing data

den_var1 = 1;
den_var2 = 1;
den_var3 = 0;
den_use = [den_var1 den_var2 den_var3];
K = 2;
p = 1;
M = 2;

%% LOADING DATA

load_inf_s = 1; % Svensson inflation
load_unem_s = 1; % Svensson unemployment
load_inf_exp_1_pro = 0; % Loads inflation expectations from prospera 1 yr
load_inf_exp_2_pro = 0; % Loads inflation expectations from prospera 2 yr
load_inf_exp_5_pro = 0; % Loads inflation expectations from prospera 5 yr
load_inf_exp_hh = 0; % Loads inflation expectations from hh, KI
load_inf_exp_co = 0; % Loads inflation expectations from companies, KI
load_inter = 0; % Loads repo−rate
load_gdp_gap = 0; % Loads gdp gap

load = [0 0 0 load_inf_s load_unem_s load_inf_exp_1_pro...
load_inf_exp_2_pro load_inf_exp_5_pro...
load_inf_exp_hh load_inf_exp_co load_inter load_gdp_gap];

cutoff_end = 9; % How many periods are cut off at the end
cutoff_beg = 13; % How many observation are cut off at the

% beginning.

data_temp = importdata('Data_SMSW.xlsx');
data = data_temp.data;
date = datenum(data(1:end,1),data(1:end,2),0,0,0,0);
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data = data(1+cutoff_beg:end−cutoff_end,load==1);
date = date(1+cutoff_beg:end−cutoff_end);

%% CONSTRAINTS

con_ind = []'; % Indices of the parameters to be constrained
constraints = zeros(K^2*p+K,M);
constraints(con_ind)=1;
con_val = []'; % Set the value for the constrained parameter
r = zeros(K^2*p+K,M);
if sum(con_ind)>0

r(con_ind) = con_val;
end

T = size(data,1)−p;
y = reshape(data(p+1:end,:)',K*T,1);

% Matrix of regressors
Xbar0 = ones(T,K*p+1);
for t = 1:T

for k = 1:p
Xbar0(t,2+k*K−K:1+k*K)=data(t+p−k,:);

end
end

Xbar = repmat(kron(Xbar0,eye(K)),[1 1 M]);
for s = 1:M

Xbar(:,:,s) = Xbar(:,[find(constraints(:,s)==0); find(constraints(:,s)==1)],s);
end
if (size(Xbar,1)~=T*K) | (size(Xbar,2)~=K*(K*p+1))

error('Xbar dimensions not correct')
end

R = cell(M,1);
temp = eye(K^2*p+K);
for s = 1:M

temp2 = temp;
temp2(end−sum(constraints(:,s),1)+1:end,:)=[];
R{s} = temp2';
r_est(:,s)= r([find(constraints(:,s)==0); find(constraints(:,s)==1)],s);

end

initial_algo_max_MSIAH % Algorithm for generating starting values

%% Start iteration
iterate = zeros(size(initial_beta,3),1);

parfor w=1:size(initial_beta,3)
beta = initial_beta(:,:,w);
[lambda,xit,xiT,xiT2,xit1,eta,Utilde,i] = EM_MSIAH(sigma,beta,P,xi0,data,...
Xbar,K,y,p,T,den_use,M,R,r_est,w);
iterate(w,1) = i;
final_estimate(:,:,w) = lambda;
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final_estimate_prob(:,:,w) = catpad(1,xiT,xit);
likelihood(w,1) = sum(diag(log(eta)'*xiT));
end

A.4.3 Algorithm for starting values

if M~=2
error('This script works only for M=2')
end

% INITIAL VALUE ALGORITHM IS USED FOR MAX PARAMETERS

min_initial = −3; % Min. value that we run the grid over
max_initial = 3; % Max. value that we run the grid over
grid_steps = 5; % Number of steps on our grid

for i=1:grid_steps
grid(i) = min_initial + (i−1)*((max_initial−min_initial)/(grid_steps−1));

end

initial0=kron(inv((Xbar0'*diag(ones(1,T))*Xbar0))*Xbar0'*diag(ones(1,T)),eye(K))*y;

P = [0.5 0.5; 0.5 0.5]; % Initial guess for the Markov parameters
xi0 = [0.4 0.6]'; % Initial guess for the initial state

% Initial guess for covarince matrix

B_1=reshape(initial0,K,(K*p+1));
Y(1:T,:)=data(p+1:T+p,:);
One_M=ones(2,1); % Vector of ones with M as length.

Utilde=kron(One_M,Y)−kron(eye(2),Xbar0)*([B_1 B_1]');
Xi=diag([ones(1,T) zeros(1,T)]');
sigma=T^(−1)*Utilde'*Xi*Utilde;
sigma = repmat(sigma,[1 1 M]);

var_weights = reshape(repmat(diag(sigma(:,:,1)),1,K*p+1),K^2*p+K,1);

if sum(den_use,2)<K % We use a limited number of equations to determine the density

error('The search algorithm is not checked for sum(den_use,2)<K')

initial1 = reshape(getfield(reshape(initial0,K,K*p+1),...
{find(den_use==1),1:K+1}),sum(den_use)*(K+1),1);

elements = sum(den_use)*(K*p+1);
% This an auxilary vector for the loop
beta_intermed = zeros(elements,1);
n=0;
k=0;
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beta = zeros(sum(den_use)*(K+1),1,size(grid,2)^elements);
[k,beta] = loop(k,elements,grid,n,beta,beta_intermed,initial1,var_weights);

temp = repmat(reshape(initial0,K,K*p+1),[1,1,size(grid,2)^elements]);

temp(find(den_use==1),:,:) = reshape(beta,[sum(den_use),(K+1),size(grid,2)^elements]);

temp = reshape(temp,[K+K^2,size(grid,2)^elements,1]);

beta1(:,1,1:size(grid,2)^(2*elements))=KronProd({temp,ones(1,size(grid,2)^elements)});
beta2(:,1,1:size(grid,2)^(2*elements))=kron(ones(1,size(grid,2)^elements),temp);

clear beta temp initial1

elseif sum(den_use,2)==K

elements=size(initial0,1);
% This an auxilary vector for the loop
beta_intermed=zeros(elements,1);
n=0;
k=0;
beta=zeros(K+p*K^2,1,size(grid,2)^elements);
[k,beta,n] = loop(k,elements,grid,n,beta,beta_intermed,initial0,var_weights);

end
% Number of chosen values from the initial
% values algorithm

if nr_init>size(grid,2)^(M*(elements−K^2*p)+K^2*p)
nr_init=size(grid,2)^(M*(elements−K^2*p)+K^2*p);

end
% Indices for the nr_init selected
% startingvalues
if size(grid,2)^(M*elements)< 10^10

initial_beta_ind = [datasample(linspace(1,size(grid,2)^(M*elements),...
size(grid,2)^(M*elements)),nr_init,'Replace',false)];
% Reducing the number of initial values by drawing a random sample

else
initial_beta_ind = randi([0 size(grid,2)^(M*elements)],1,nr_init);

end
% The set of starting values for all states are
% created

initial_beta = [beta(:,:,ceil(initial_beta_ind/size(beta,3))) ...
beta(:,:,initial_beta_ind−size(beta,3)...

*(ceil(initial_beta_ind/size(beta,3))−1))];

A.4.4 EM-algorithm

function [lambda,xit,xiT,xiT2,xit1,eta,Utilde,i] = ...
EM_MSIAH(sigma,beta,P,xi0,data,Xbar,K,y,p,T,den_use,M,R,r_est,w)

it = w
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% Check for positive definite Sigma
for s=1:M
[~,pos] = chol(sigma(:,:,s));
if pos~=0

error('Sigma is not positive definite')
end
clear pos
end

tol = 10^−5; % Tolerance of convergence critera
i = 1;
lambda(:,:,i) = catpad(1,beta,reshape(sigma,K,K*M),P,xi0');

while convergence(lambda,i)>tol
if i>1000
break

end
%% II Expectation Step

[xit, xiT, xiT2,xit1,eta] = BLHK_filter_MSIAH(data, Xbar, lambda, i,K,T,p,den_use,M);

% Obtaining the filtered and smoothed regime probabilities from the
% BLHK filter.

%% III Maximization Step

joint = sum(xiT2(:,1:end−1),2);
marg = sum(xiT(:,1:end−1),2);

for s = 1:M
for q = 1:M

P(s,q) = joint(q*M−M+s)/marg(s);
end

end

% 2. Regression Step: Normal Equations for the parameters

% Estimation of the beta coefficients
Y(1:T,:) = data(p+1:T+p,:);
Ttilde = sum(xiT,2);
for s = 1:M

Xi1(:,:,s) = diag(xiT(s,:));
beta(:,s) = R{s}*(inv(R{s}'*(Xbar(:,:,s)'*KronProd({Xi1(:,:,s),...
eye(K)},[2 1])*Xbar(:,:,s)*R{s}))*R{s}'*((KronProd({Xi1(:,:,s),eye(K)},...
[2 1]))*Xbar(:,:,s))'*(y−(Xbar(:,:,s)*r_est(:,s))))+r_est(:,s);
B(:,:,s) = reshape(beta(:,s),K,(K*p+1));

end

% Estimation of the sigma matrix (heteroskedasticity)
Utilde = kron(ones(M,1),Y)−...
reshape(multiprod(Xbar,permute(beta(:,1:M),[1 3 2]),[1 2]),K,T*M)';
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for s = 1:M
sigma(:,:,s) = (Ttilde(s))^(−1)*Utilde(1+(s−1)*T:s*T,:)'*...
Xi1(:,:,s)*Utilde(1+(s−1)*T:s*T,:);

end

xi0 = xiT(:,1);

%% IV Final steps

% Updating lambda

i = i+1;
lambda(:,:,i) = catpad(1,beta,reshape(sigma,K,K*M),P,xi0');

end
lambda = lambda(:,:,end);

end

A.4.5 BLHK

function [xit,xiT,xiT2,xit1,eta] = BLHK_filter_MSIAH(data,Xbar,lambda,i,K,T,p,den_use,M)
% BLHK_filter
K2 = sum(den_use,2); % Number of variables that are used in the BLHK filter
beta = lambda(1:K^2*p+K,1:M,i);
sigma = reshape(lambda(K^2*p+K+1:K^2*p+2*K,1:M*K,i),K,K,M);
P = lambda(K+K^2*p+K+1:K+K^2*p+K+M,1:M,i);
xi0 = lambda(K^2*p+2*K+3,1:M,i)';
F = P'; % The transition matrix (transformed P matrix)
xit = zeros(M,T); % Matrix containing the filtered regim probabilities
xit1 = zeros(M,T); % Matrix containing the predicted regim probabilities
xiT = zeros(M,T); % Matrix containing the smoothed regim probabilities
xiT2 = zeros(M^2,T);% Matrix containing the joint regim probabilities
eta = zeros(M,T); % Vector containing the probability densities

%% Start the filter

for t=1:T % Forward recursion t = 1, ... , T

for s =1:M
temp(:,s) = Xbar((t−1)*K+1:(t−1)*K+K,:,s)*beta(:,s);
ybar(:,s) = temp(find(den_use==1),s);

end

sig_index = [kron(find(den_use==1)',ones(sum(den_use,2),1)) ...
kron(ones(sum(den_use,2),1),find(den_use==1)')];

for s = 1:M
sigma2(:,:,s) = (reshape(sigma(sub2ind(size(sigma(:,:,s)), ...

sig_index(:,1), sig_index(:,2))+(s−1)*(K*K))...
,sqrt(size(sig_index,1)),sqrt(size(sig_index,1))))';

eta(s,t) = (2*pi)^(−K2/2)*det(sigma2(:,:,s))^(−1/2)*...
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exp(−(1/2)*(data(t+p,find(den_use==1))'−ybar(:,s))'...
*(sigma2(:,:,s)^−1)*(data(t+p,find(den_use==1))'−ybar(:,s)));

end

% Solving for the posterior inference (filtered regime probabilities),
% using the prior inferences and the conditional densities.

if t==1
xit(:,t) = (eta(:,t).*xi0)/(ones(M,1)'*(eta(:,t).*xi0));

else
xit(:,t) = (eta(:,t).*xit1(:,t−1))/(ones(M,1)'*(eta(:,t).*xit1(:,t−1)));

end
xit1(:,t) = F*xit(:,t);

end

%% Start the smoother

for s=T−1:−1:1 % Backward recursion j = 1, ... , T−1

if s==T−1
xiT(:,s) = xit(:,s).*(F'*(xit(:,s+1)./xit1(:,s)));

else
xiT(:,s) = xit(:,s).*(F'*(xiT(:,s+1)./xit1(:,s)));

end
end

xiT(:,T) = xit(:,T);

for s=1:T−1
xiT2(:,s) = P(:).*kron((xiT(:,s+1)./xit1(:,s)), xit(:,s));

end
end

56


	Introduction
	The Phillips Relationship
	Foundations of the New Keynesian Phillips Curve
	An Econometric Formulation of the Phillips Curve
	Recent Empirical Findings of the Swedish Phillips Relationship

	A Regime Shifting Approach to the Phillips Curve
	State-Space Representation of the MS-VAR

	Estimation
	Data
	ARMA Representation Based Model Selection
	Model Selection

	Discussion
	Conclusion
	Appendix
	Derivations
	The BLHK-Filter and Smoother
	The EM Algorithm
	Constrained Estimator for MSAH-VAR

	Tables
	Figures
	Matlab
	Simulation
	Loading and preparing data
	Algorithm for starting values
	EM-algorithm
	BLHK



