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Abstract

A large share of demand fluctuations over the business cycle are due to fluctuations in con-

sumer spending on durable goods. Households adjust their durable holdings infrequently,

and adjustment is even less likely when the economy is in a recession than when it is in

an expansion. This thesis investigates whether countercyclical variation in income uncer-

tainty can explain the procyclicality of durable adjustment. Higher income uncertainty in

recessions may lead households to postpone durable adjustment until the next expansion.

I present a simple model of durable adjustment and show that higher uncertainty leads to

an overall decline in the frequency of adjustment. The effect of time-varying uncertainty on

durable adjustment is quantified with an incomplete markets model. The results suggest

that a more left-skewed distribution of income growth during recessions can account for a

large part of the cyclicality in durable adjustment frequencies in PSID data. Countercyclical

left-skewness also performs better at explaining stylized facts than alternative hypotheses

although I find that aggregate income is an important determinant of durable adjustment.

Keywords: Uncertainty, durable goods, fixed adjustment costs, business cycle

JEL: B22, D8, D91, E21, E32

Supervisors: Winfried Koeniger†and Kelly Ragan‡

Date submitted: May 14, 2015

Date examined: May 26, 2015

Discussant: Simon Costa

Examiner: Johanna Wallenius

†winfried.koeniger@unisg.ch, University of St. Gallen (Swiss Institute for Empirical Economic Research)
‡Kelly.Ragan@hhs.se, Stockholm School of Economics



Acknowledgments

I would like to thank my supervisors Winfried Koeniger and Kelly Ragan for their invalu-

able input, advice and suggestions during the entire course of writing this thesis.

I also appreciate helpful comments from thesis seminar participants at the Stockholm

School of Economics.
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1. Introduction

Consumer spending on durable goods is highly cyclical and significantly more volatile

over the business cycle than non-durable consumption (Stock & Watson, 1999).1 An

important determinant of consumer durable expenditures is how often consumers adjust

their durable good holdings. Berger and Vavra (2015) show that households adjust durable

goods significantly less frequently in recessions than in expansions. To understand demand

fluctuations and implement effective stabilization policies, it is therefore of paramount

importance to understand what drives the volatility of durable goods spending.

In this thesis, I show that the higher levels of uncertainty usually associated with eco-

nomic disruptions can account for procyclical durable spending. Bloom (2014) shows that

various measures of economic uncertainty, such as stock market volatility, sales growth

rates and subjective uncertainty about GDP growth reported by professional forecasters,

are substantially higher in contractionary periods. Heightened uncertainty in these peri-

ods has a direct effect on households as well: Higher job displacement rates in recessions

have a long-lasting negative effect on earnings of displaced workers (Jacobson, LaLonde,

& Sullivan, 1993). Storesletten, Telmer, and Yaron (2004) find that the variance of an-

nual earnings growth is highly countercyclical. More recently, Guvenen, Ozkan, and Song

(2014) find that income growth is more left-skewed in recessions than in expansions.

I study the effect of time-varying uncertainty on the frequency of durable adjustment

under the assumption that households face fixed costs when adjusting their durable hold-

ings. Fixed adjustment costs, such as transaction fees, sales commissions or search costs,

can account for the low frequency of adjustment observed in microeconomic data. In-

action becomes valuable since deviations of actual durable holdings from the frictionless

optimum may be corrected by random fluctuations in household income rather than by

costly action. Hence, to be inactive and tolerate such deviations to some degree brings

less disutility than paying transaction costs in every period. In previous studies, a rise in

uncertainty leads to even more inaction, since more volatility in income implies a higher

probability that a given deviation from the optimum is erased by a change in income (see,

for example, Bertola and Caballero (1990); Bertola, Guiso, and Pistaferri (2005); Gross-

man and Laroque (1990)). Furthermore, more volatility means that benefits of adjusting

are nullified faster. A household might postpone its decision to buy a more expensive car

today when the probability that it would not be able to afford it tomorrow increases.

In this thesis, I aim to answer the question if and how well countercyclical uncertainty is

able to explain the less frequent adjustment of durable holdings in recessions. This thesis

will try to answer these questions quantitatively. To get an intuition of the mechanisms

at work, however, I begin by characterizing optimal durable adjustment decisions in a

1In the U.S., Black and Cusbert (2010) estimate a volatility of 2.7 relative to GDP for durable goods
consumption and 0.8 for non-durable consumption.
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simple two-period model with fixed adjustment costs. I find that, as expected, higher

uncertainty leads to less frequent adjustment overall. Surprisingly, however, downward

adjustment becomes more frequent. This result is explained by the precautionary savings

motive, which becomes stronger when uncertainty is higher. An increase in uncertainty

pushes households who are indifferent between inaction and adjusting downwards towards

adjusting because liquidating durables allows to increase savings to buffer against more

uncertain future income shocks. When durable goods depreciate, more household want to

adjust their durable holdings upwards than downwards. Therefore, the decline in upward

adjustment outweighs the increase in downward adjustment, which leads to less frequent

adjustment overall. I numerically solve an infinite-horizon version of this problem and

show that downward adjustment indeed increases in more uncertain periods. Thus, in my

calibration, the effect of the stronger precautionary savings motive outweighs the value

of waiting for new information.

In the quantitative part of the thesis, I address the question whether countercyclical

uncertainty can explain the procyclicality of durable adjustment by comparing model

simulated adjustment frequencies with actual adjustment in the data. I use an incomplete

markets model based on Berger and Vavra (2015) to quantify the effect of time-varying

uncertainty. In this thesis, I consider two forms of income uncertainty. First, I study

the case that the variance of income changes is countercyclical, which has been found

by Storesletten et al. (2004). In this specification, the dispersion of income growth is

much higher during recessions than it is during booms. Both large income losses as well

as large gains become more likely during recessions. Second, I consider the case that in

recessions, the distribution of income growth is more left-skewed than in expansions. This

has recently been documented by Guvenen et al. (2014). Countercyclical left-skewness

means that in recessions, large income losses become more likely, whereas large gains

become less likely. In this case, only the dispersion on the negative side of the income

growth distribution becomes larger in a recession, but the total dispersion of income

growth does not change.

I find that countercyclical left-skewness can explain both the volatility and the timing of

fluctuations in durable adjustment. However, countercyclical variance leads to variations

in adjustment frequencies which are not consistent with the data.

These findings have important implications for policy makers interested in stabilizing

the business cycle. If cyclical income risk intensifies business cycles, it may be more

effective to stabilize fluctuations in uncertainty, rather than implementing programs to

promote consumer spending. This would suggest the need for further research into the

causes of the increase in income uncertainty during recessions and what measures policy

makers can take to offset it.

To assess the relative importance of changes in uncertainty, this thesis investigates an
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alternative explanation for procyclical durable adjustment which is put forth by Berger

and Vavra (2015). They show that aggregate income shocks over the business cycle can

lead to less frequent adjustments during recessions because households have less wealth

and lower incomes. The intuition is that as incomes decrease, fewer households want to

adjust their durables stock upwards and more want to adjust them downwards. By the

same argument as before, depreciation implies that the former effect outweighs the latter.

Thus, in the quantitative part of this thesis, I consider three models: countercyclical

left-skewness, countercyclical variance and aggregate income shocks. The models are first

calibrated to match adjustment dynamics in the Panel Study of Income Dynamics (PSID)

during the period 1999–2011 using an indirect inference model proposed by Berger and

Vavra (2015). To assess their explanatory power, the models are then simulated for the

period 1968–1996, when the PSID survey was conducted every year and it is possible

to obtain data on annual adjustment frequencies. Evaluation of the models is based on

comparing the simulated adjustment frequencies with actual frequencies in the data.

Related research. This thesis is based on theoretical models of durable adjustment

pioneered by Grossman and Laroque (1990) and Bertola and Caballero (1990). Inspired

by the literature on investment theory, these models assume the presence of fixed ad-

justment costs, which leads households to adjust their durable stocks infrequently. Fixed

costs imply that reversing adjustment decisions is costly and thus that inaction becomes

valuable.

In these models, optimal adjustment choices are characterized by so called (S,s) rules.

This means that households are inactive as long as the durable stock is in a certain interval

around a target durable stock. When random income shocks push durable holdings out

of the inaction region, households adjust to their target durable stock. Such models have

been extensively studied and put to empirical tests by Attanasio (2000) and Bar-Ilan and

Blinder (1992), and both of these papers find that automobile purchases are consistent

with households behaving according to (S,s) rules.

Recently, Berger and Vavra (2015) have developed a powerful calibration method which

allows them to successfully explain the dynamics of durable adjustment in an incomplete

markets model. The models with time-varying uncertainty used in this thesis build upon

their work. In related research, Challe and Ragot (forthcoming) study how countercyclical

unemployment risk affects the dynamics of aggregate non-durable consumption. McKay

(2015) studies how the countercyclical left-skewness in income growth which has been

found by Guvenen et al. (2014) affects aggregate non-durable consumption dynamics.

Several studies have investigated the effects of uncertainty on durable stock adjustment

in this framework. Eberly (1994) study empirically the effect of idiosyncratic uncertainty

on durable adjustment in the Grossman and Laroque (1990) model, which features stock
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market uncertainty but no idiosyncratic labour income risk. She finds that higher uncer-

tainty widens the consumer’s inaction band as predicted by the model. Foote, Hurst, and

Leahy (2000) study the effect of uncertainty in a setting with labour income risk. They

find that in PSID microdata, a household’s income risk is negatively correlated with the

probability to adjust its durable holdings. Bertola et al. (2005) show numerically that,

although the probability to adjust conditional on the deviation from the optimal durable

stock is decreasing in income risk, the relationship between unconditional adjustment

probability and income risk is not necessarily monotonic if there is a drift in the durable

stock, such as depreciation.

A limitation common to previous studies on durable adjustment is that uncertainty

is assumed to be constant over time. However, as we have seen, uncertainty is known

to vary substantially over the business cycle. Unlike previous analyses which statically

solve models for different uncertainty parameters (see, for example, Bertola et al. (2005)),

uncertainty is explicitly modelled as a stochastic process, which allows consumers to form

expectations about future uncertainty.

Furthermore, an important difference between this thesis and previous studies is that

most models do not account for non-durable consumption, which Berger and Vavra (2015)

find to be important to explain durable adjustment in the data. The contribution of this

thesis is to explicitly model non-durable consumption and assess the effect of uncertainty

on durable adjustment in this context both theoretically and quantitatively.

Knotek II and Khan (2011) use regression analysis and find that periods of higher

uncertainty are associated with lower consumer spending on durable goods. However,

since uncertainty is highly correlated with aggregate factors, it is hard to interpret their

results causally.

The rest of this thesis is organized as follows. Section 2 presents a simple model of

durable adjustment and characterizes the effect of uncertainty on optimal adjustment.

The dynamic model for the quantitative analysis is presented in Section 3, and Section 4

describes the data as well as the indirect inference procedure used to calibrate the model.

In Section 5, the quantitative results are presented. The thesis concludes with Section 6.

2. A Simple Model Of Durable Adjustment

This section presents and solves a simple two-period household problem of durable ad-

justment with fixed costs. Unlike many of the models in the previous literature, this

model lets households derive utility from a non-durable consumption good in addition to

a durable good.
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Household problem. Consider a household that lives for two periods, t = 1, 2, and

derives utility from durable and non-durable consumption. Consumption preferences are

given by

u(c1, d̄) + β Eu(c2, d),

with uc > 0, ud > 0, ucc < 0, udd < 0 and ucd ≤ 0.2 The parameter β is the discount factor,

ct denotes non-durable consumption in period t, and d̄ and d are the stock of durable goods

in period 1 and 2, respectively. The household’s preferences over non-durable and durable

consumption are homothetic.

In period 1, the household has an initial endowment of liquid assets a and durables

d̄. The household makes a saving decision into an asset s with gross return 1 + r and

can choose to adjust his durable stock d, which will affect utility in the next period. If

the household adjusts its durable stock, it has to pay a fixed adjustment cost F > 0. In

period 2, the household receives a stochastic income y2, enjoys non-durable consumption

y2 + (1 + r)s and durable consumption d.

In the following we are interested in characterizing how changes in uncertainty affects

the household’s decision to adjust its durable holdings.

Solution. Households solve

V (a) = max
s,d

u(c1, d̄) + β Eu(c2, d),

s.t. c1 = a− s− (d− d̄)− A(d− d̄)

c2 = y2 + (1 + r)s,

where A is adjustment costs which are zero when d = d̄ or F otherwise. Formally,

A(d− d̄) =

 0 if d = d̄

F > 0 otherwise.

Considering inaction and adjustment separately, we can define the value functions for

both cases as

V N(a) = max
s
u(a− s, d̄) + β Eu(y2 + (1 + r)s, d̄), and

V A(a) = max
s,d

u(a− s− (d− d̄)− F, d̄) + β Eu(y2 + (1 + r)s, d),

where the value of inaction and adjustment is denoted by V N(a) and V A(a), respectively.

2Subscripts to the utility function denote its partial derivatives; for instance, uc = ∂u/∂c.
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The value function V is given as the upper envelope of both value functions, that is

V (a) = max{V N(a), V A(a)}.
The first-order conditions for interior optima are given in the non-adjustment case by

uc(c
N
1 , d̄) = β(1 + r)Euc(cN2 , d̄))

and in the case of adjustment by

uc(c
A
1 , d̄) = β(1 + r)Euc(cA2 , d))

uc(c
A
1 , d̄) = β Eud(cA2 , d)).

Since the household has to pay a fixed cost F to adjust its durable stock, it does not

adjust for every asset endowment. For the household to prefer to adjust, the gain from

adjustment must be higher than the disutility of forgone consumption from paying the

costs. For instance, if the target durable stock d is sufficiently close to d̄, adjustment costs

exceed the benefits of adjustment, and hence the household prefers inaction.

The household’s optimal adjustment decision is characterized by a so called (S, s) policy.

This means that there is a set of asset endowments NA = {a ≥ 0 : V N(a) ≥ V A(a)} for

which inaction is optimal. This set is called the inaction region or the non-adjustment

set. Since both value functions are concave and continuous, this set is convex, closed and

bounded, which allows us to write NA = [a, a], where a and a are the bounds, or the

cut-offs, of the inaction region. Note that if d̄ is sufficiently large, then a > 0.

By the continuity of the value functions, the cut-offs of the inaction set a and a satisfy

the “value-matching” condition

V N(a) = V A(a), (1)

or equivalently,

u(cN1 , d̄) + β Eu(cN2 , d̄) = u(cA1 , d̄) + β Eu(cA2 , d).

Figure 1 shows how the value functions of adjustment and non-adjustment determine

the inaction region.
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Figure 1 – Value of Adjustment and Non-Adjustment

a a

V A

V N

a

In the case when the household adjusts, the durable stock is clearly adjusted upwards

at the upper cut-off and downwards at the lower cut-off.

Next, I determine how a change in uncertainty affects the inaction region. I consider

the case where by a change in uncertainty we mean a mean-preserving increase in the

variance σ2 of period 2 income y2. Appendix A shows that all results derived in this

section also hold for a marginal increase in the left-skewness of the distribution.

By the implicit function theorem, the value-matching condition (1) locally defines a

cut-off ã ∈ {a, a} as a differentiable function of σ2 with derivative given by

dã

dσ2
= −

∂
∂σ2V

A(a)− ∂
∂σ2V

N(a)
∂
∂a
V A(a)− ∂

∂a
V N(a)

(2)

= −β
d
dσ2 E[u(cA2 , d)− u(cN2 , d̄)]

uc(cA1 , d̄)− uc(cN1 , d̄)
, (3)

where the second line follows from applying the envelope theorem.

Consider the lower cutoff a. Increasing assets just a little bit makes the household prefer

inaction, and thus ∂/∂aV A(a) < ∂/∂aV N(a), which, by the envelope theorem, directly

implies uc(c
A
1 , d̄) < uc(c

N
1 , d̄). It follows that the denominator of expression (3) is negative

at the lower cut-off. Next consider the numerator. Approximate the utility function by

u(c2, d) ≈ u(c̄2, d) + uc(c̄2, d)ε+
1

2
ucc(c̄2, d)ε2,

where c̄2 = E[c2] and ε = c2 − c̄2. Taking expectations gives

E[u(c2, d)] ≈ u(c̄2, d) + uc(c̄2, d)E[ε] + ucc(c̄2, d)E[ε2] = u(c̄2, d) +
1

2
ucc(c̄2, d)σ2.
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Therefore,

dã

dσ2
≈ −β

2

ucc(c̄
A
2 , d)− ucc(c̄N2 , d̄)

uc(cA1 , d̄)− uc(cN1 , d̄)
. (4)

If preferences exhibit decreasing absolute risk aversion with respect to non-durable con-

sumption independent from durable consumption, then −ucc(c, d)/uc(c, d) is a decreas-

ing function of c.3 Letting χ(c) denote that function, we can thus write ucc(c, d) =

−χ(c)uc(c, d) and get

dã

dσ2
≈ −β

2

−χ(c̄A2 )uc(c̄
A
2 , d) + χ(c̄N2 )uc(c̄

N
2 , d̄)

uc(cA1 , d̄)− uc(cN1 , d̄)
. (5)

At the lower cut-off, first-order conditions imply

β(1 + r)E[uc(c
A
2 , d)] = uc(c

A
1 , d̄) < uc(c

N
1 , d̄) = β(1 + r)E[uc(c

N
2 , d̄)]. (6)

The opposite inequality holds at the upper cut-off. Therefore, we have that c̄A2 > c̄N2 at

the lower cut-off and c̄A2 < c̄N2 at the upper cut-off.

I make the assumption that at the lower cut-off a it holds that uc(c̄
A
2 , d) < uc(c̄

N
2 , d̄) and

at the upper cut-off a that uc(c̄
A
2 , d) > uc(c̄

N
2 , d̄). That is I assume that the inequalities

which hold for expected marginal utilities of consumption in period 2 also hold for marginal

utilities of expected consumption.4

From this assumption about marignal utilities of expected consumption and χ(c̄A2 ) <

χ(c̄N2 ), it follows that the numerator of expression (5) is positive. Hence, we have

dã/dσ2 > 0. The lower cutoff moves to the right as uncertainty increases. Households who

are indifferent between adjusting their durable holdings downwards and inaction choose

adjustment when uncertainty marginally increases.

This result is striking since previous models of durable adjustment imply that the in-

action region widens at both bounds (see Grossman and Laroque (1990), Bertola et al.

(2005) and Eberly (1994)). The difference between the current and previous models is due

to the presence of a non-durable consumption good. The intuition behind this result is

that households who are on the margin of selling their durable goods and face an increase

in uncertainty want to insure against the more volatile consumption in the next period.

The precautionary savings motive leads households close to the lower cut-off to save more

3This assumption is, for example, satisfied for any decreasing absolute risk aversion (DARA) utility
function with a Cobb-Douglas aggregator. The constant relative risk aversion (CRRA) utility function,
which is frequently used in the literature on durable goods, thus satisfies this condition.

4This assumption always holds in numerical simulations with the CRRA utility function presented in the
subsequent section and when income is normally distributed or is a mixture of two normally distributed
variables with close enough means. However, I neither provide a formal proof nor the conditions under
which this assumption holds.
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by selling off durables. It is important to emphasize that this model is not dynamic and

does not consider the benefits that accrue from waiting until future income shocks correct

the gap by itself. However, it sheds light on a mechanism affecting households’ adjust-

ment decisions which has not been discussed so far: More uncertainty makes previously

indifferent households willing to liquidate durables to increase their buffer-stock savings.

In the quantitative part of this thesis, I show that under my calibration and assumptions

about consumption preferences, this result holds also in a dynamic environment.

We will see next that an increase in uncertainty also increases the upper cut-off. From
d
da
V A(a) > d

da
V N(a) it becomes clear that both the numerator and the denominator in

(5) flip signs at a. This result implies that upward adjustment decreases in response to

an increase in uncertainty. The intuition is that households on the margin of adjusting

upwards want to save more to offset the higher consumption risk in the next period.

I have shown that both cut-offs increase as uncertainty increases. But which increase is

of larger magnitude? The answer to this question follows readily from the characterization

of the cut-off’s derivative (5). Since consumption choices increase monotonically in assets,

non-durable consumption is higher at the upper cut-off in the case of adjustment as well

as inaction. Decreasing absolute risk aversion then implies that, in absolute terms, the

numerator becomes small faster than the denominator. The derivative is thus lower at

the upper cut-off than at the lower cut-off, which implies that the inaction region of the

household becomes smaller as uncertainty increases — a result that is even more at odds

with previous models. Though interesting, this effect is not as important as it may seem,

since it is unlikely that household’s positions relative to the inaction band are uniformly

distributed.

We have established that higher uncertainty leads households at the lower cut-off to

adjust and households near the upper cut-off to be inactive. Hence, downward adjustment

increases and upward adjustment declines. Which of these effects dominate the overall

effect on adjustment depends on the distribution of asset holdings a relative to the durable

holdings d̄. A simple way to understand how this distribution might look like is to add

depreciation to the model. The model’s implications in the presence of depreciation are

very intuitive. If durable holdings depreciate over time, households are more likely to

adjust their durable stock upwards than downwards. A larger number of households

are near the upper cut-off, and thus the positive effect of an increase in uncertainty

on downward adjustment is offset by the negative effect on adjusting upwards. Overall

adjustment thus declines.

It is interesting to note that the implications of an increase in uncertainty are qualita-

tively the same as a decrease in aggregate income. Declining aggregate income is captured

by decreasing E[y2] in the model. Clearly, a decrease in aggregate income shifts the in-

action region to the right by exactly that amount. Therefore, in recessions, the effects of
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changes in uncertainty and aggregate variables go in the same direction.

This simple model only considers two periods and does not capture the benefits of

waiting that are present in a dynamic environment, where adjustment decisions can be

made in each period. In a dynamic version of this model, there will also be a “wait-

and-see” effect on the inaction region. For this reason and to quantify the effects, this

thesis proceeds by setting up a comprehensive dynamic model which is solved numerically

and evaluated on its ability to explain fluctuations in durable adjustment frequencies in

the data. We will see that the implications on upward and downward adjustment are

confirmed numerically in the dynamic model.

3. The Dynamic Model

3.1. Model Description

The model is an incomplete markets model based on Berger and Vavra (2015). In essence,

is an infinite-horizon version of the simple model introduced in the last section.

The economy is populated by a continuum of ex-ante identical households who live

forever. In each period, households earn a stochastic income and derive utility from the

consumption of non-durable and durable goods. The stock of durable goods depreci-

ates over time. Furthermore, like in the simple model presented in the previous section,

adjusting durable holdings requires the household to pay a fixed cost.

Households solve

max
{ct}∞t=0,{at}∞t=1,{dt}∞t=0

E
∞∑
t=0

βtu(ct, dt+1)

subject to at+1 + ct + dt+1 = (1 + r)at + (1− δ)dt + yt − A(dt, dt+1)

and at ≥ 0,

where at, dt, ct and yt denotes assets, durable stock, non-durable consumption and income,

respectively, in period t. The parameter β is the quarterly discount factor and δ is the

depreciation rate. The fixed adjustment cost is proportional to the stock of durables and

current income. It is given by

A(d, d′) =

 0 if d′ = [1− δ(1− χ)]d

F d(1− δ)d+ F ty otherwise,

where F d is the fraction of current durables and F t is the fraction of income that the

household has to pay when adjusting his durable stock. The F t parameter can be used to

model adjustment costs which also depend on the business cycle. Following Berger and
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Vavra (2015), I also use “required-maintenance” parameter χ, which allows households to

offset part of the depreciation without having to adjust durable stocks.5

For the numerical analysis, I use the constant relative risk aversion (CRRA) utility

function with Cobb-Douglas aggregation:

u(c, d) =
(cαd1−α)1−γ − 1

1− γ
.

The contribution of this thesis is to model a binary uncertainty process st which deter-

mines the distribution of income growth. More specifically, I let the distribution of yt+1

depend on (yt, st). The process st is described later in detail. For now it is sufficient to

assume that (yt, st) is Markov, which will allow for a recursive formulation of the problem.

Note that prices of durable goods are normalized to unity for all periods because this

thesis is not interested in modelling price effects. Surely, the rapid increase and subsequent

fall of US house prices affect economic incentives to buy houses. However, since the goal

of this thesis is to study fluctuations over the business cycle, long-term developments in

the housing market can be safely ignored.

The model period is quarterly. At the beginning of each period, the household learns

his state (at, dt, yt) and makes a consumption and saving choice (at+1, dt+1, ct). With this

timing, dt+1 is the household’s end-of-period durable stock.

The problem can be rewritten recursively as

V (a, d, y, s) = max
c,d′,a′

u(c, d′) + β E[V (a′, d′, y′, s′)|y, s]

subject to a′ + c+ d′ = (1 + r)a+ (1− δ)d+ y − A(d, d′),

a ≥ 0

and the law of (y′, s′) given (y, s).

For computational feasibility, I will solve the model only in partial equilibrium, treating

interest rates and wages as fixed. This is not necessarily innocuous. There is a large

body of literature studying the role of equilibrium assumptions in models of lumpy firm

investment. Like households when adjusting their durable holdings, firms face fixed costs

when adjusting their capital stock, which leads to infrequent adjustment. Among others,

Khan and Thomas (2008, 2003) find that general equilibrium dampens the aggregate

implications of fixed costs. They argue that the requirement of household consumption

smoothing constrains the extent to which firms can react to aggregate shocks. This leads

to smooth aggregate series and dampens changes in the adjustment decisions across the

business cycle.

The same argument could hold for the economy studied in this thesis. Adding general

5I refer to Berger and Vavra (2015) for a discussion of the parameter χ.
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equilibrium conditions to the current model would impose constraints on households.

However, Berger and Vavra (2015) find that when households have both illiquid durables

d in addition to liquid assets a as saving instruments, this direct link between aggregate

series is broken. They introduce general equilibrium into their model and show that the

lumpiness in durable adjustment persists. Hence, it is reasonable to assume that the

results derived in this thesis from partial equilibrium models are not undone in general

equilibrium.

3.2. The Business Cycle

To keep the model conceptually simple and computationally feasible, the business cycle

is modelled as a two-state Markov chain S = {st}∞t=0 with values in {R,E}. That is,

the economy is either in a recession (R) or in an expansion (E). Uncertainty jumps up

immediately when transitioning from an expansion to a recession, and drops when the

economy goes into a recession. Moreover, for all households the state of the economy st

is observable at time t.

I estimate the process from NBER recession indicators using the method of maximum

likelihood. The transition matrix is depicted in Table 1.

Table 1 – Transition Probabilities for Business Cycle Process S

R E
R 0.829 0.171

(0.059) (0.059)

E 0.040 0.960
(0.015) (0.015)

Standard errors are given
in brackets.

3.3. Idiosyncratic Income

As research on earnings risk over the business cycle shows, uncertainty is extremely coun-

tercyclical (Guvenen et al., 2014; Storesletten et al., 2004). The contribution of this

thesis is to model income with time-varying idiosyncratic risk and to quantify the effect

of uncertainty shocks on durable adjustment.

First, let us assume that incomes of households are independent from each other and

that the mean income is uncorrelated with the business cycle. In the next section, I de-

scribe how to add aggregate income to the model. The logarithm of individual earnings

log yt follows an AR(1). The innovations of the process have mean zero and their distri-

bution is described by a cumulative distribution function Fst(ε), depends on the state of
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the business cycle st. That is

log yt+1 = ρ log yt + εt with εt ∼ Fst and E[εt] = 0.

This specification allows for a time-varying distribution of income growth log yt+1− log yt.

In the model with constant uncertainty, innovations are normally and identically dis-

tributed in both states of the economy. This simple AR(1) is estimated by Berger and

Vavra (2015) using PSID data. They estimate a standard deviation of 0.1 and a persis-

tence of 0.975.

For the process with countercyclical uncertainty, I will explore two distribution functions

for the innovation terms εt to model the two different kinds of income risk estimated by

Storesletten et al. (2004) and Guvenen et al. (2014).

The innovation of the process with countercyclical variance is a normal distribution

with mean zero and variance depending on the state of the business cycle. I use the

parameters estimated by Storesletten et al. (2004) to calibrate the income process. Since

they estimate a yearly process, I rescale the innovations in order to match the variance of

the process. This is described in appendix E.6 I set the persistence to 0.95, the standard

deviation in the expansion to σStoresletten
E = 0.09 and the standard deviation in the recession

to σStoresletten
R = 0.15. Figure 2a shows the distribution of earnings growth of a household

with an average income for the process with countercyclical left-skewness.

6To ensure comparability between the models, all income processes are further scaled such that E[yt|st] =
1 for all st, t.
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Figure 2 – Income Growth Distribution

(a) Countercyclical variance (b) Countercyclical left-skewness

Source: Author’s calculations

The process with countercyclical left-skewness uses a process proposed and estimated

by Guvenen et al. (2014). I will explore this type of risk by using their parameterization of

a mixture of two normally distributed variables with different means and variances. The

means of the both components depend on the state of the business cycle. More formally,

the idiosyncratic income component is modelled as

log yt+1 = ρ log yt + εt with εt ∼

N(µ1st , σ1) with probability p1

N(µ2st , σ2) with probability 1− p1.

The parameters are similarly rescaled and shown in Table 2.7 Figure 2b shows the distri-

bution of earnings growth of an average-income household for the process with counter-

cyclical left-skewness.

7The discretization of the process with time-varying skewness introduces a bias in the conditional mean
when using standard methods. I resort to a simulation based approximation scheme described in ap-
pendix D.
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Table 2 – Parameters of the Quarterly Countercyclical Left-Skewness Process

Parameters

ρ 0.979

µ1E 0.049

µ2E -0.011

µ1R -0.042

µ2R 0.038

σ1 0.133

σ2 0.0004

p1 0.490

3.4. Aggregate Income

Aggregate income can be added as a further AR(1) process yat independent of each house-

hold’s income. Household income then consists of an aggregate and a household-specific

component. Total income is thus given by

log yt = log yat + log yit,

with idiosyncratic income yit as specified in the previous section.

Since in the model with constant uncertainty aggregate income does not need to be

correlated with the state of the economy st, we can take aggregate income to be a simple

AR(1) with normally distributed innovations. Therefore,

log yat = ρayat−1 + et with et ∼ N(0, σe).

I estimate this process using hp-filtered GDP data from 1960–2013, which delivers ρa =

0.876 and σe = 0.008.8

However, this aggregate income process cannot be used for the models with time-varying

uncertainty. Aggregate income would be uncorrelated with the state of the economy, which

is not realistic. It should be increasing in expansions and decreasing in recessions. To

model aggregate income in a more realistic way, I use a Markov switching AR(1) model

with switching intercepts and persistence in the spirit of Hamilton (1989), who first showed

that these models are very accurate in describing business cycles. The switching model is

given by

log yat = cast + αs log yat−1 + et with et ∼ N(0, σe).

8All estimations are documented in Appendix E.
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Unlike Hamilton (1989), I consider the states st to be observable, which makes it easy

to estimate the process using maximum likelihood. I estimate µR = −0.008, µE = 0.002,

αR = 0.45, αE = 0.40, and σe = 0.009.

4. Data and Calibration

4.1. Data

To calibrate the dynamic models, I use the 1997–2011 sample of the Panel Study of

Income Dynamics (PSID) as compiled by Berger and Vavra (2015).9 This period is

selected because from 1997 on, the PSID contains detailed information on durable and

non-durable consumption and assets holdings. As we will see, such detailed data are

necessary for the calibration procedure to match the dynamics of durable adjustment

implied by the model to the data.

From 1997, the PSID survey was conducted every two years. Following Berger and

Vavra (2015), I restrict the panel to home-owning households of which the household head

is at most of age 65. The key variables contained in the data set are liquid assets, durable

holdings, non-durable consumption as well as a dummy variable indicating whether a

household adjusts its durable stock in a given period. Data on durable holdings include

houses and vehicles, which together cover almost all durable spending. The adjustment

dummy is defined using a combination of survey questions and actual changes in durable

holdings. A household is considered to adjust its durable stocks if it reports to have

moved or sold either its home or any of its vehicles in the last three years and if the

absolute change in its durable holdings exceeds a threshold of 20%.10 This combination

of self-reported adjustment and actual changes in durable holdings is used because either

measure alone is not reliable to identify adjustment. There are two reasons for this. First,

the survey questions on adjustment refers to the preceding three years, which might lead to

counting the same adjustment twice, since the survey is conducted biennially. Moreover,

these indicators would count as an adjustment when a household moves to another city for

a new job, for example, although the size of the durable stock remains unchanged. Second,

measurement errors in reported durable holdings may bias adjustment frequencies. Thus,

defining adjustment using a combination of these indicators reduces the probability of

spurious adjustments.

The quantitative performance of the models is compared with 1968–1996 PSID adjust-

9I use the Stata code of Berger and Vavra (2015) to generate the 1999–2011 panel.
10This threshold value is suggested by Berger and Vavra (2015). The median change of durable holdings

is 4% if the household reports no adjustment and 40% if adjustment is reported. A threshold of 20%
roughly splits this distance. I experimented with thresholds of 15% and 25% and, although the level of
mean adjustment changes, the calibration as well as the numerical results remain unaffected.
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ment data. During this period, the PSID survey was conducted yearly, which allows to

measure the fluctuations of adjustment frequencies over the business cycle. The time se-

ries of adjustment frequencies is constructed in a similar fashion as before, but using only

information on housing since information on other durable goods was not collected before

1997. The adjustment dummy is set to one if the absolute change in durable holdings

exceeds 12% and the household reports to have sold its house in the preceding year.

I use seasonally-adjusted real GDP from the U.S. Bureau of Economic Analysis (BEA)11

data to estimate aggregate income. The definition of recessionary periods is taken from

the National Bureau of Economic Research (NBER). Following Guvenen et al. (2014), on

whose research the calibration of the process with countercyclical left-skewness is based,

I treat the 1980–1983 period as one single recession rather than two shorter ones.

4.2. Calibration Method

To decrease the dimensionality of the parameter space, I do not calibrate all the parame-

ters of the model but use benchmark estimates from previous research. Following Berger

and Vavra (2015), I set r = 0.0125, γ = 2 and δ = 0.018. I deviate from their paper by

calibrating the parameter β to the data instead of using an estimate from the literature.

The reason is that different income distributions lead to differences in the level of durable

stocks and asset holdings in the models. Since these levels are sensitive to the choice of

β, I include it in the calibration routine. Moreover, I use a local optimization algorithm,

which is more efficient than Berger and Vavra (2015)’s grid search and makes adding

parameters less costly.

I use an indirect inference method, pioneered by Berger and Vavra (2015), to calibrate

the parameters. This method allows to match microeconomic adjustment dynamics in the

data. The idea is the following. As we have seen in the analysis of the simple adjustment

model, fixed adjustment costs cause households not to adjust their durable holdings in

every period. For each household, there exists some durable stock d? that it adjusts to if

the value of adjustment is higher than the value of inaction. This difference between this

target durable stock and its actual durable stock is called the gap. More precisely, the

gap x is defined as x = log(d?)− log(d) ≈ (d? − d)/d.

A higher gap implies that the household is closer to one of the bounds of the inaction

set. The higher the gap, the higher the opportunity cost of forgone utility and the more

likely it is that the household is willing to bear the fixed adjustment cost. Therefore, for

a given gap, the probability to adjust, which is called the adjustment hazard, is increasing

in the gap. This is also one of the characteristics of the models analyzed by papers such

as Grossman and Laroque (1990) or Bertola and Caballero (1990).

11NIPA Table 1.1.6
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If the desired durable stock and thus the gap were observed in the data, this would

allow us to match the adjustment dynamics of the model to the data by choosing param-

eters to let the distribution of gaps and the adjustment hazard in the model target their

counterparts in the data. Unfortunately, this gap is not observable. However, Berger and

Vavra (2015) offer a way to use this method nonetheless. They suggest to impute gaps

to the data using the model. Once gaps are imputed, we can compute the distribution of

gaps and the adjustment hazard in the data, which then allows to match the distribution

in the model with the distribution the model implies for the data.

To impute gaps we can proceed as follows. Let zm denote the vector of state variables

in the model. The model implies a policy function d?m = gm(zm). Note that the necessary

state variables consumption, assets and durable holdings are observable from PSID data.

The model’s policy function implies a gap for any given observation. We can use this to

impute gaps to the data by applying the policy function to the observations in the data.

That is we can define d̂?d = gm(zd). Since adjustment decisions are known, this also allows

us to compute conditional hazards.

For the more interested reader, I refer to the discussion of this method by Berger and

Vavra (2015). I describe this procedure in detail in Appendix C. One of the few data sets

which contains all the necessary variables on durable holdings, non-durable consumption

is the PSID during 1999–2011.12

4.3. Calibration Results

The calibrated parameters are presented in Table 3. Column 1 reports the calibrated

parameters for the model which has constant uncertainty. These parameter values are

used for the model with aggregate income shocks.13 Column 2 and 3 report the calibration

results for the models with countercyclical left-skewness and countercyclical variance,

respectively. The parameters are similar for constant uncertainty and for countercyclical

left-skewness. The model with countercyclical variance has slightly different parameters,

although it is hard to say if these differences are significant since we do not know the

standard errors of the point estimates.14

12According to Berger and Vavra (2015), the Italian Survey of Household Income and Wealth (SHIW) is
the only other data set besides the PSID 1999–2011 sample also containing the necessary variables.

13To remain comparable with Berger and Vavra (2015) and to reduce computation time, the constant
uncertainty model is not calibrated using actual U.S. aggregate income shocks.

14It would be straightforward to obtain standard errors from bootstrapping. To economize on computa-
tion time, and since precise estimates of the parameter values are of no particular interest in this thesis,
I refrain from doing so.
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Table 3 – Calibrated Parameters

Uncertainty

Constant Time-Varying

Left-Skewness Variance

Parameters (1) (2) (3)

α (Utility flow non-dur) 0.87 0.87 0.83

χ (Required maintenance) 0.81 0.84 0.88

Fd (Fixed cost stock) 0.0596 0.0563 0.0387

Ft (Fixed cost time) 0.0024 0.0022 0.0012

β (Discount factor) 0.963 0.966 0.972

σε (Measurement error) 0.01 0.04 0.07

Minimized objective 0.1837 0.2435 0.4113

Notes: Col. 1 reports the calibration results from the model with constant uncertainty.

This model is calibrated without aggregate shocks. Cols. 2 and 3 report the calibration

results from the models with time-varying left-skewness and variance, respectively. These

models are calibrated using the actual sequence of binary recession indicators from NBER.

Figures 4–6 show the fit of all three models. In each figure, the upper graph shows the

density of gaps in the model and in the data. The bottom part shows the adjustment

hazard, that is the frequency of adjustments conditional on the gap. As predicted by the

theory, the higher the gap, the more likely is the household to adjust its durable stock.

Overall, all models fit the data relatively well. The gap distribution is approximately

concentrated around zero and adjustment hazard is increasing in the gap. In particular,

the fits of the constant-uncertainty model and the model with countercyclical left-skewness

are excellent. However, the countercyclical variance fits the data slightly worse than the

other two models.

When comparing the relative fits, it is important to keep in mind that the income

process in the constant-uncertainty model is explicitly targeting income in the 1999–2011

PSID data, whereas the processes estimated by Storesletten et al. (2004) and Guvenen

et al. (2014) are based on an older PSID sample and an entirely different data source,

respectively. Therefore, the income processes in the countercyclical-uncertainty models

are not calibrated to the sample, which might put them at a relative disadvantage when

comparing them with the baseline model.

The mean of the adjustment frequencies is more than two times higher in all three

models than in the data. The average adjustment rates in the model with and constant

uncertainty, countercyclical left-skewness and countercyclical variance are 20.7%, 20.6%

and 21.7%, respectively, compared to only 9.0% in the data.15

15This is also the case in the simulations by Berger and Vavra (2015).
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The worse fit of the countercyclical-variance model already foreshadows that it is prob-

ably not the right model to explain adjustment behaviour in the data, at least using the

parameterization of Storesletten et al. (2004).

Figure 4 – Fit of Model with Constant Uncertainty

Source: Author’s calculations
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Figure 5 – Fit of Model with Countercyclical Left-Skewness

Source: Author’s calculations
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Figure 6 – Fit of Model with Countercyclical Variance

Source: Author’s calculations

5. Results

The models are evaluated on their ability to predict yearly adjustment frequencies in

PSID data from 1968 to 1996. To simulate adjustment frequencies, all models are solved

using the calibrated parameters. Then I pick recession indicators s1968q1, . . . , s1996q4 and

aggregate income shocks log ya1968q1, . . . , log ya1996q4 to reproduce actual U.S. business cycles

and hp-filtered U.S. GDP from 1968 to 1996. Using these shocks, I simulate a panel of

200.000 households and aggregate it to annual frequency. Yearly adjustment frequencies

are calculated using the same threshold criterion as for the data but without self-reported
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adjustment indicators (see Section 4.1).16

5.1. Countercyclical Left-Skewness

Figure 7 shows average adjustment frequencies for each year during the period 1968–1996

in PSID data as well as the aggregated series from the simulation of the model with

countercyclical left-skewness. To get an idea of the precision of the measurements of

adjustment frequencies in the data, the figure depicts the 95% confidence interval for the

estimates.17

I begin by summarizing the stylized facts of durable adjustment in the data. Yearly

adjustment is very infrequent: only 4.3% of households adjust their durable stock in a

period of one year.18 In recessionary periods, adjustment frequencies are significantly

lower than otherwise. Adjustment responds very abruptly to the start of a recession or an

expansion. At the onset of a recession, adjustment rates go down abruptly. Consider the

1980–1983 recession, when adjustment jumps down from its highest level to the lowest in

the sample period. A similarly swift response is seen after the recession when adjustment

rates shoot up rapidly.

In the model with countercyclical left-skewness, the adjustment frequencies behave as

predicted by the simple model of durable adjustment presented in Section 2. Like in the

data, adjustment jumps down when the economy enters a recession and shoots up when

it enters an expansion.

16Appendix B documents in detail how the model is solved and simulated.
17The confidence interval is constructed by approximating the estimator’s distribution with a normal

distribution, that is assuming that estimates p̂t are normally distributed with standard error
√

p̂t(1−p̂t)
nt

.

Note that nt is varying because the number of households satisfying the age and home-owner restriction
in each survey is changing.

18Figure 7 and subsequent figures depicting series of adjustment frequencies do not show absolute ad-
justment frequencies but only deviations from the mean. The reason is that all of the models predict
that households adjust more often than they do in reality. Since this thesis focuses on fluctuations
of adjustment over the business cycle, the question of how well the mean is matched is not of great
interest.
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Figure 7 – Mean Adjustment Frequencies in Period 1968–1996 in PSID and Model with
Countercyclical Left-Skewness

Source: Author’s calculations

However, the model misses somewhat on the timing of the jumps in adjustment rates.

While households in the model react immediately to changes in uncertainty, there appears

to be a delay of about one year in the data. This can still be consistent with the model.

Households usually do not know when the state of the economy switches into a recession

until later when its effects become more apparent. It is plausible that households perceive

the increase in uncertainty later than when the economy swings into a recession. Another

explanation is that the increase in income uncertainty does not exactly coincide with the

beginning of a recession as the National Bureau of Economic Research (NBER) dates it.

I am, however, not able to provide evidence on either of these hypotheses.
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There is also some discrepancy between the magnitude of the cycles in adjustment

frequencies in the model in the data. In the data, fluctuations of adjustment frequencies

are higher over the business cycle than in the model. This is likely due to aggregate factors

which affect the decision to adjust durable holdings. In particular, as I have shown in

Section 2, the implications on durable adjustment from declines in expected income and

increases in uncertainty are very similar. Procyclical fluctuations in aggregate income and

wealth would therefore magnify the effect of uncertainty and vice versa.

Another pattern implied by the model is that adjustment frequencies are increasing

during recessions because the higher left-skewness of income shocks increases the disper-

sion of durable gaps. Thus, more households are forced by their changes in income to

adjust. This leads to a rise in adjustment frequencies over time, which can be observed

in the model during the recession from 1980 to 1983. This effect is less substantial in the

data than it is in the model, although we should note that there is only one recession

of this duration in the data, which is not enough to conclusively assess the dispersion

effect in the data. It is also possible, that the effect might be neutralized in the data by

aggregate factors.

The analytical result derived in Section 2 suggests that downward adjustment increases

and upward adjustment decreases at the beginning of a recession. This result also holds

in the numerical simulation of the dynamic model and is consistent with PSID data. This

can be seen in Figure 13 in Appendix F, which shows the simulated frequencies of upward

and downward adjustment in the model and in the data.

5.2. Countercyclical Variance

The simulated adjustment frequencies in the model with countercyclical variance are

shown in Figure 8. Clearly, the fluctuation of the adjustment rates in the model are too

extreme compared to the data.
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Figure 8 – Mean Adjustment Frequencies in Period 1968–1996 in PSID and Model with
Countercyclical Variance

Source: Author’s calculations

To understand the high volatility of adjustment rates, it is useful to separate the dis-

persion effect from the effect on the household’s inaction region. The effect of the higher

uncertainty on the inaction region is reflected in the immediate jump downwards when

entering a recession. It is relatively small in the scale of this figure and its magnitude is

similar to the one in the model with countercyclical left-skewness. However, the disper-

sion effect due to higher variance of income growth is much higher. The impact of this

effect is clearly visible at the beginning of 1980s, where adjustment rates skyrocket during

the recession.

The strikingly different performance of the model with time-varying variance compared
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to time-varying left-skewness suggests that the kind of uncertainty that households face

is important. It is also possible that the estimates of Storesletten et al. (2004) are not

very precise. To rule out that this result is due to the scaling of the income process to

quarterly frequency, as described in Appendix E, I repeated the simulation with different

scaling factors. However, the magnitude of the fluctuations does not change significantly.

Hence, it is safe to conclude that the results do not give support to this specification of

time-varying income risk.

5.3. Alternative Hypothesis: Aggregate Income Shocks

An alternative explanation for cyclical durable adjustment is that declines in aggregate

income and wealth lead to lower desired durable holdings and thus less frequent upward

adjustment. To investigate the hypothesis, I simulate the model with constant income

uncertainty by picking the sequence of actual GDP and feeding them into the simulation

as aggregate income shocks. Figure 9 shows the average adjustment frequencies in each

year during the period 1968–1996 in PSID data and as simulated from the model.
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Figure 9 – Mean Adjustment Frequencies in Period 1968–1996 in PSID and Model with
Constant Uncertainty

Source: Author’s calculations

In general, the model does a good job matching the cyclicality of the adjustment rates.

In particular, in the first half of the sample, adjustment frequencies in the model follow the

data closely. The model also matches well the magnitudes of the cyclicality in adjustment

rates, which seems to suggest that aggregate factors play an important role.

However, it does not manage to capture the abrupt decline of adjustment at the start

of a recession and the rapid shoot-up when the economy comes out of it. Adjustment

frequencies follow aggregate income and are thus at its peak when a recession starts and at

its trough when the recession ends. Consider, for example, the recession from 1980 to 1983.

The simulated adjustment frequencies are decreasing during the entire recession, when in
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the data, after the initial jump downward, there is no further decrease in adjustment.

Furthermore, in the recession in 1990, aggregate income as measured by GDP does

not appear to affect adjustment frequencies in the data. On the contrary, adjustment

frequencies in the model and in the data seem to move in opposite directions in the

second half of the sample.

5.4. Countercyclical Left-Skewness + Aggregate Income Shocks

We have seen that both countercyclical left-skewness and aggregate income shocks are able

to explain the basic pattern of the cyclicality in adjustment frequencies in the data. This

suggests to explore the performance of a model with both countercyclical left-skewness

and aggregate income shocks combined. The results of this model are discussed in this

section. To simulate the model, I use the Markov switching AR(1) process presented and

estimated in Section 3 to model aggregate income. The model is solved using the same

calibration like for the countercyclical left-skewness model. When simulating this model,

both NBER business cycle dates as well as actual aggregate income shocks are fed into

the model.

The numerical results depicted in Figure 10 are disillusioning. Rather than comple-

menting each other, effects of uncertainty and aggregate income appear to cancel out. An

explanation for the bad performance of this combined model is that it is not calibrated

to the data. Calibration is more important for this model in order to weigh the relative

magnitudes of the effects of time-varying left-skewness and aggregate shocks. Moreover,

the introduction of the Markov switching model for the aggregate income process might

not be suitable to model household expectations about aggregate income. Thus, the

bad performance of this model should not be taken as conclusive evidence against either

hypothesis.
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Figure 10 – Mean Adjustment Frequencies in Period 1968–1996 in PSID and Model with
Countercyclical Left-Skewness and Aggregate Income Shocks

Source: Author’s calculations

5.5. Discussion

The previous results suggest that the countercyclical left-skewness model and the model

with aggregate income shocks can each explain part of the stylized facts of durable adjust-

ment over the business cycle. Countercyclical variance, however, generates fluctuations

in adjustment which are much more volatile compared to the data. Aggregate income

explains well the magnitudes of adjustment frequencies but does not explain the abrupt

decrease in adjustment. Time-varying left-skewness, on the other hand, predicts the

rapid jumps that are observed in the data but does not fully account for their magni-
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tudes. However, the effect of uncertainty is still substantial and can explain a large part

of the variation in adjustment rates.

When comparing the match of these two models, it is important to take into account

that the fluctuations from the model with time-varying uncertainty come from a simple

binary process for uncertainty. Therefore, it is not surprising that this model cannot re-

produce the richness of behaviour of the data. In reality, recessions differ substantially in

severity and in the level of uncertainty. For example, Baker, Bloom, and Davis (2013) and

Bloom (2014) show that economic policy uncertainty and stock market volatility, respec-

tively, differ significantly by recessions. Similarly, uncertainty in earnings changes is not

either high or low but is likely to vary continuously. This heterogeneity is captured by the

model with aggregate income shocks, which uses GDP data on a much finer scale. From

this perspective, the good performance of the model with countercyclical left-skewness is

very promising. Further research is needed to have richer data on income uncertainty to

capture the heterogeneity of recessions.

As I have pointed out before, the fluctuations in adjustment in the model with coun-

tercyclical left-skewness and in the data appear to be lagged by one year. The simulated

response to uncertainty shocks precede the actual response in the data. As we know from

the literature on dating business cycles, it is not easy to determine if the economy is

about to enter a recession (Aastveit, Ravazzolo, & van Dijk, 2014; Askitas & Zimmer-

mann, 2011). In this thesis, I assumed that the state of the economy is public knowledge

and that households immediately learn the state and adjust their behaviour. In reality,

this is often not the case, and when and how households adapt their expectations about

the economy matters for aggregated adjustment decisions. If there is indeed a delay be-

tween the begin of a recession as dated by NBER and when households learn about the

state of the economy, this explains the lag between the simulated series and the actual

series.

6. Conclusion

This thesis offers three new results on time-varying uncertainty and durable adjustment.

First, time-varying uncertainty about future income can account for a substantial part

of the empirical variation in the frequency of durable adjustment. Consistent with the

data, countercyclical left-skewness implies a sharp decrease in adjustment at the beginning

of a recession and an immediate and sizable increase when the economy begins to recover.

This depressing effect on adjustment is further magnified by a decline in aggregate income

and wealth levels.

Second, countercyclical variance as estimated by Storesletten et al. (2004) has implau-

sible implications on durable adjustment, suggesting that the characterization of income
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risk over the business cycle by Guvenen et al. (2014) is more accurate. The left-skewness

rather than the variance of income growth is countercyclical.

Third, I show analytically in a two-period model of durable adjustment that higher un-

certainty decreases overall adjustment. However, a spike in income uncertainty increases

downward adjustment because the motive for precautionary savings becomes stronger and

households are willing to liquidate their durables in order to offset shocks to future con-

sumption. Depreciation implies that the latter effect is stronger than the former, which

leads to an overall decline in adjustment when uncertainty increases. The result holds

numerically in an infinite-horizon version of this problem.

The evidence this thesis provides suggests that fluctuations in uncertainty may be an

important determinant of the volatility of consumer durable expenditures. Thus, policy

makers should focus on decreasing economic uncertainty if the goal is to stabilize the

economy. However, as Bloom (2014) note, this is made difficult by the fact that research

on policy implications of uncertainty is still at an early stage.
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Appendices

A. Appendix to A Simple Model Of Durable

Adjustment

The results about the effect of uncertainty on adjustment presented in the text also hold

for uncertainty in the form of higher left-skewness if one assumes that the household is

prudent, that is if its preferences exhibit a convex marginal utility function. We can

approximate expected marginal utility as

E[u(cA2 , d)] ≈ u(c̄A2 , d) +
1

2
ucc(c̄

A
2 , d)σ2 − 1

6
uccc(c̄

A
2 , d)γ3,

where γ3 = −E[ε3] is the negative of Pearson’s moment coefficient of skewness and is

higher for a more left-skewed distribution. I use the negative of the skewness coefficient

to have a measure that is positively related to the level of uncertainty. Therefore,

da

dγ3
≈ −β

6

−uccc(c̄A2 , d) + uccc(c̄
N
2 , d̄)

uc(cA1 , d̄)− uc(cN1 , d̄)
.

As shown by Kimball (1990), the theory of precautionary savings is isomorphic to the

Arrow-Pratt theory of risk aversion. Hence, if prudence is decreasing with consumption,

then −uccc(c, d)/ucc(c, d) is a decreasing function of c. Let this decreasing function be

denoted by χ̄(c). We can write uccc(c, d) = −χ̄(c)ucc(c, d) = χ̄(c)χ(c)uc(c, d). Since the

product of two positive decreasing functions is also decreasing, by the same argument

as before, the numerator has the opposite sign of the denominator and thus the cut-offs

shift to the right as left-skewness is higher. Similarly, the lower cut-off increases to a

larger extent than the upper cut-off and the inaction region thus shrinks as left-skewness

increases.

B. Solving the Dynamic Model

I describe the solution to the dynamic model when household income also includes an

aggregate component. The dynamic model is solved using a Value Function Iteration

(VFI) algorithm. Like in the simple model of durable adjustment presented in the text,

we can consider the value of adjustment and the value of inaction separately and state

the household problem:
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V A(a, d, yi, ya, s) = max
c,d′,a′

u(c, d′) + β E[V (a′, d′, yi, y
′
a, s
′)|yi, ya, s]

V N(a, d, yi, ya, s) = max
c,a′

u(c, d(1− δ(1− χ))) + β E[V (a′, d(1− δ(1− χ)), y′i, y
′
a, s
′)|yi, ya, s]

V (a, d, yi, ya, s) = max{V A(a, d, yi, ya, s), V
N(a, d, yi, ya, s)}

subject to a′ + c+ d′ = (1 + r)a+ (1− δ)d+ yi + ya − A(d, d′),

a ≥ 0

and the law of (y′i, y
′
a, s
′) given (yi, ya, s).

Moreover, we can resort to a trick used by Berger and Vavra (2015) to speed up com-

putation by noting that the value of adjusting only depends on a household’s net cash-

on-hand w = (1 + r)a+ d(1− δ)− F d(1− δ)d− F t(yi + ya). This allows us to eliminate

one state variable and we can write

Ṽ A(w, yi, ya, s) = max
c,d′,a′

u(c, d′) + β E[V (a′, d′, y′i, y
′
a, s
′)|yi, ya, s]

subject to c = w + yi + ya − d′ − a′.

All state variables are discretized. The values for Ṽ A and V N are computed separately

and the associated optimal choices are saved for both. In a second step the algorithm

iterates over a grid of (a, d, yi, ya, s) and computes cash-on-hands w. The value of ad-

justment Ṽ A is obtained by interpolating the function on the cash-on-hand grid, which is

compared to V N to get V = max{Ṽ A, V N}.
For the calibration and the main results I use 100 grid points each for assets and

durables, 85 for net cash-on-hands and 21 for idiosyncratic income. Aggregate income ya

is discretized using the method of Tauchen (1986) on a grid with 7 points. The idiosyn-

cratic income processes are discretized using two methods. The process with time-varying

variance is discretized using Tauchen (1986), whereas the process with countercyclical left-

skewness is discretized using a simulation-based method described in Appendix D.

To solve for the policies, the algorithm then starts with an initial guess of the value

function, computes Ṽ A and V N for all states, and then updates the guess for the value

function. The algorithm iterates until the maximum norm of two subsequent value func-

tions is below 0.01.19 The maximum of the objective function is found by an Nelder-Mead

algorithm. Since the objective displays many local maxima, I run the algorithm from 4

distinct initial simplices at points in the choice space and with different volumes. When

maximizing the value of adjustment, we are looking for a two-dimensional policy. The

starting values are computed by using a simple heuristic which has proven to deliver

19I experimented with smaller convergence tolerances but results did not change significantly.
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precise solutions.20

For each state, the algorithm computes three possible guesses of the optimal solution

using a simple heuristic. These guesses are then given as the starting point for Nelder-

Meade in order to ensure that the algorithm finds the global maximum. This has turned

out to be a very fast and reliable solution method, and, compared to trying all possible

choices to find the maximum, it has the advantage that it allows to solve the problem on

a much larger grid.

The expectation E[V (a′, d′, yi
′, ya′, s′)|yi, ya, s] is computed as

E[V (a′, d′, yi
′, ya

′, s′)|yi, ya, s] =
∑
y′i,y

′
a,s

′

V (a′, d′, yi
′, ya

′, s′) Pr(yi
′, ya

′, s′|yi, ya, s),

where Pr(X|Y ) is the conditional probability function of a random variable X given Y .

By independence of yi
′, ya

′ and s′, and given (yi, ya, s), we can write

Pr(yi
′, ya

′, s′|yi, ya, s) = Pr(yi
′, ya

′|yi, ya, s, s′) Pr(s′|yi, ya, s)

= Pr(yi
′|yi, ya, s, s′, ya′) Pr(ya

′|yi, ya, s, s′) Pr(s′|yi, ya, s)

= Pr(yi
′|yi, s) Pr(ya

′|ya, s) Pr(s′|s),

the product of three quantities that follow readily from the discretization method and

from our estimated transition matrix for the business cycle states.

Before simulating the model, the final policy functions are obtained by solving the model

for one more iteration on a finer grid with each 140 grid points for assets and durables

and 120 grid points for net cash-on-hands. The model is simulated for a panel of 25.000

households for the calibration and 200.000 households for the out-of-sample predictions.21

First, the income process is simulated for 150 periods in order to start with a stationary

income distribution. The algorithm uses the real shock sequence from the U.S. economy

for the business cycle state and aggregate income.

The household panel is generated by starting with a uniform asset and durable distri-

bution and then using the policy functions for each household to find its state at t + 1

given the state at t. The policy functions are interpolated bilinearly for (a, d) states that

are not on the grid for which the model was solved. The first 200 periods are dropped in

order to remove the dependence on the initial conditions.

20The heuristic computes the guess for d′ as a fraction of net assets w + ya + yi in the adjustment case.
Similarly, the guess for a′ is computed. One starting value is always (d’,a’)=(0,0) to capture corner
solutions.

21I choose such a large sample size for the 1986–1996 out-of-sample predictions because for smaller
sample sizes the simulated adjustment frequencies are somewhat volatile, whereas the gap distribution
and adjustment hazards are precisely estimated with a smaller sample.
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C. Description of the Calibration Procedure

The calibration method is based on Berger and Vavra (2015). Since the method had to be

adapted to calibrate the models in this thesis, this section exactly describes the procedure

by which they have been calibrated.

C.1. Measurement Errors

Since PSID data comes from a survey, it is inherently prone to measurement errors.

The calibration method Berger and Vavra (2015) propose allows to deal with that in a

straightforward manner. Let z be a variable of interest, such as consumption or durable

holdings. Let ẑ be a measurement of this true value z. If there are measurement errors,

then ẑ 6= z in general.

Following Berger and Vavra (2015) I assume the following relationship between variables

and their measurement:

ẑ = (1 + σεε)z, (7)

with ε ∼ N(0, 1). The standard deviation σε of the measurement error is a parameter and

calibrated from the data.

C.2. Calibration Procedure

Let p denote the vector of parameters of the model, excluding the measurement error

σε. The objective function of the calibration is denoted by F (p) and will be described

in further detail below. The local optimum p? = arg minF (p) is searched locally from

different starting points in the parameter space using a Nelder-Meade algorithm. Since

the estimates from Berger and Vavra (2015) already give a good starting guess, this speeds

up the computation and increases the precision of the match. Note that Berger and Vavra

(2015) solved the model for a grid of parameters.

The objective function F (p) to be minimized is computed for each parameter p as

follows.

1. Fix a set of shocks ζ for a panel of households with sample size n = 25000 using the

model-specific income process. In the model with constant uncertainty, the income

process is burned-in for 150 periods and then simulated for all households, which is

the same as in Berger and Vavra (2015). For the models with time-varying uncer-

tainty, I pick the NBER recession indicators s1968q1, . . . , s1996q4 to reproduce actual

U.S. business cycles and use it to simulate the idiosyncratic household incomes. This

differs from Berger and Vavra (2015), who do not use actual aggregate data for the

calibration part.
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2. For each vector of parameters p, solve the model and simulate a panel using the

shocks ζ to obtain time series for target durable stock d?mi, actual durable stock dmi,

assets ami and non-durable consumption cmi for each observation i = 1, . . . , n.

3. Estimate the linearized policy function

log(d?mi) = β0 + β1 log dmi + β2ami + β3 log cmi + β4
dmi
cmi

. (8)

Linearization is used in order to achieve an unbiased predictor in the presence of the

assumed multiplicative measurement errors. Refer to Berger and Vavra (2015) for

a discussion about the advantages of linear predictors and about the performance

of different specifications.

4. Aggregate the model to biannual frequency. These observations are denoted by

(d?ami, d
a
mi, a

a
mi, c

a
mi).

5. Using the estimated β vector I then impute the target durable holdings log?di to

the observations in the PSID data using equation (8). The gap in the data is then

given by xdi = log d?di − log ddi. This gives non-parametric estimates of the density

function f̂d and the hazard function ĥd.
22

6. To obtain the model counterpart of the gap density and adjustment hazard, the

algorithm proceeds as follows. Let gσε be a grid of measurement error parameters.

Then fix a sequence of normally distributed shocks εdj, εaj and εcj, j = 1, . . . , n,

for durables, assets and non-durable consumption, respectively, with mean zero

and standard deviation 1. For each σε in gσε , generate new model observations

(daεmi, a
aε
mi, c

aε
mi) using identity (7). Then use (8) to impute gaps to the model and

obtain xaεmi. Similarly, compute estimates of the density function f̂mε and ĥmε.

7. The objective function is then given by

F (p) = min
ε∈gσε

∫
(f̂d(x)− f̂mε(x))2dx+

∫
(ĥd(x)− ĥmε(x))2dx. (9)

The calibration procedure matches the gap density and the hazard in the model

with their model-implied counterparts in the data.

A technical detail is that the optimal measurement parameter is found for each set of

parameters. Instead of solving min(p,ε) Fε(p) like Berger and Vavra (2015) this procedure

solves minp(minε Fε(p)). This brings a significant speed-up. The inner minimum is solved

22Following Berger and Vavra (2015) I use 21 bins to estimate the gap distribution and adjustment
hazard.
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very quickly because the compute-intensive step is solving and simulating the model.

Recomputing gaps for different vectors of measurement errors, in contrast, is very cheap.

D. Discretization of the Process with Countercyclical

Left-Skewness

The changing skewness of the income process of Guvenen et al. (2014) is critical. Unfortu-

nately, usual methods to approximate autoregressive processes using finite-state Markov

chains are not adequate for a stochastic process with non-zero skewness. In this section, I

show that I cannot resort to one of the standard discretization methods such as Tauchen

(1986) and instead propose another method, which I will assess numerically. Although

every discretization method for processes which can take values from an unbounded set

introduces skewness near the bounds of the grid, even when approximating normal dis-

tributions, this effect can be mitigated by choosing a large enough grid size. Therefore,

Tauchen (1986)’s method works well for the processes in this thesis with a skewness of

zero.

Alternative discretization methods such as the Rouwenhorst (1995) method focus on

normal distributions as well. More recently, Gospodinov and Lkhagvasuren (2014) propose

a moment-matching method based on the Rouwenhorst method which allows to match

conditional moments with higher accuracy. Although in theory this method also provides

a way to match the conditional skewness of the process, in the case of the process estimated

by Guvenen et al. (2014), it neither matches the relevant conditional moments nor does

the shape of the discretized distribution bear any resemblance to the original.

The method I use to approximate the Markov chain is the following.23 Let Y = {Yt}∞t=0

be an X-valued stochastic process we would like to approximate on a finite grid Ȳ =

{Ȳ1, . . . , Ȳn} ⊂ R with X ⊂ R. Let the function d : X 7→ Ȳ map Yt to the nearest

grid points in Ȳ , that is d(y) = arg minYi∈Ȳ |Yi − Y |. Then define the discretized process

Ỹ = {Ỹt}∞t=0 by Ỹt = d(Yt). Note that Ỹ is not Markov in general.

The finite-state approximation Markov chain is denoted by Ŷ and is defined as the

Markov process with transition probabilities given by

Pij = Pr(Ỹt+1 = Ȳj|Ỹt = Ȳi), (10)

where Pij is the probability of transitioning from state Yi to Yj. Simulating the process

Ỹ a large number of times allows to estimate the transition matrix P .

Little is known about the approximation process Ỹ . However, it is easy to show that

conditional as well as unconditional moments converge to the moments of the original

23The method is also proposed in an unpublished note by Schmitt-Grohé and Uribe (2014).
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process as the grid gets arbitrarily fine. Instead of providing a theoretical analysis of

the model, I numerically investigate the approximation errors of the moments of the

conditional distribution for both methods.

Figure 11 shows the approximation errors of the conditional moments for the simulation

method and for the method of Tauchen (1986). The two regimes of the process, recession

and expansion, are shown separately. In both regimes, the Tauchen method misses sub-

stantially on the conditional mean. Errors in the mean are much smaller for the method

that is presented here. Approximation errors of the conditional mean play a key role in

our switching model. As shown in Figure 11a and Figure 11b, the conditional mean of

the approximation is biased upward in an expansion and downward in a recession. Under

this approximation scheme, switching from an expansion to a recession not only changes

the skewness of the process but also substantially affects the conditional mean. Changes

in household behaviour between recessions and expansions are then jointly caused by

changes in mean and uncertainty, and it would be impossible to distinguish the effects.

The conditional variance is well-matched by Tauchen’s method, whereas the simulation

method is upwards biased. However, the bias of the simulation method remains constant

for between recession and expansion and does therefore not bias the results. In match-

ing the skewness, the simulation method consistently does a better job than Tauchen’s

method. Especially in the recession case, when left-skewness is very high, the method

has a low error, but also in the expansion the simulation method is consistently more

accurate.

Although neither method can match all three conditional moments of the process, I

argue that the simulation method should be preferred for two reasons. First, it better

matches the skewness of the process. Since the purpose of this process is to model counter-

cyclical left-skewness, the skewness of the discretization should be as close as possible to

the exact process. Second, the simulation method more precisely matches the conditional

mean and, more importantly, does not introduce a shift in the mean between recessions

and expansions.
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Figure 11 – Approximation errors of Tauchen’s method and the simulation method

(a) Conditional mean (expansion) (b) Conditional mean (recession)

(c) Conditional variance (expansion) (d) Conditional variance (recession)

(e) Conditional skewness (expansion) (f) Conditional skewness (recession)

Source: Author’s calculations

Note: This figure shows approximation errors of the conditional moments, defined as the difference between the moment

of the discretized process and the theoretical moment, for both discretization methods. The errors are depicted for the

subset of the grid for income containing 95% of the values in the stationary distribution.
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E. Estimation and Calibration of Stochastic

Processes

E.1. Calibration of Individual Income Processes

I take the specification of the countercyclical variance income process from Storesletten et

al. (2004) and the process with countercyclical left-skewness from Guvenen et al. (2014).

However, both papers estimate annual processes whereas the models in this thesis are

quarterly. Ideally, the income processes are re-estimated in a quarterly model. However,

for computational as well as methodological reasons this thesis uses a simpler approach

by rescaling the innovations such that unconditional variances of the processes coincide

with estimates from PSID data.

This section briefly outlines the procedure for the process with left-skewness. In the

process taken from Guvenen et al. (2014) the innovation is a mixture variable. Scaling a

mixture random variable is equivalent to scaling the components of the mixture by the

same factor. Therefore, to match process variances, we can compute the unconditional

variance of the mixture variance Var(ε) and set the scaling factor to α =
√
σ2

target/Var(ε).

Then the parameters of the mixture components of εα = αε are given by µiα = αµi and

σiα = ασi.

Let P = (p, 1 − p) be the stationary distribution of the business cycle regime Markov

process. Then the unconditional variance is given by

Var(ε) = E[ε2]− E[ε]2

= E[E[ε2|S]]− E[E[ε|S]]2,

where S denotes the business cycle’s regime. Since we assume E[ε|S] = 0 for all S, this

gives

Var(ε) = pE[ε2R] + (1− p)E[ε2E],

where εR is the innovation in the recession case and εE is the innovation in an expansion.

To calculate the variance, the stationary distribution of the business cycle process is

computed. I find p = 0.1907. The component parameters of the mixture are taken from

Guvenen et al. (2014). However, I shift component means such that E[εS] = 0 for each

state S.

The parameters used are depicted in the following table.
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Table 4 – Parameters of the Yearly Process, Adjusted from Guvenen et al. (2014)

Parameters Yearly

ρ 0.979

µ1E 0.119

µ2E -0.026

µ1R -0.102

µ2R 0.094

σ1 0.325

σ2 0.001

w 0.490

These values for the parameters imply α = 0.41, which gives the parameters in Table 2.

Similarly, the process of Storesletten et al. (2004) is rescaled to match the unconditional

variance of the state-independent process. The annual estimates by Storesletten et al.

(2004) are 0.21 and 0.12 in a recession and an expansion, respectively. To match the

unconditional quarterly variance in the PSID, σ2
target = 0.1, I find α = 0.706 using the

formula above. For quarterly income growth, this gives a standard deviation of 0.148 in

a recession and 0.085 in an expansion.

E.2. Estimation of Aggregate Income Processes

E.2.1. AR(1)

Table 5 – Estimated AR(1) Process for Aggregate Income

Parameters Estimate Std. Error
ρa 0.876 0.034
σe 0.0076 0.0003

Maximum likelihood estimates from 1960–2013
quarterly GDP data (hp-filtered).
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E.2.2. MS-AR(1)

Table 6 – Estimated Markov Switching AR(1) Process for Aggregate Income

Parameters Estimate Std. Error
caR -0.008 0.001
caE 0.002 0.000
ρaR 0.940 0.057
ρaR 0.855 0.034
σe 0.006 0.000

Conditional maximum likelihood estimates from
1960–2013 quarterly GDP data (hp-filtered) and
NBER recession indicators as described in Sec-
tion 4.1.
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F. Countercyclical Left-Skewness: Upward and

Downward Adjustment

Figure 13 – Upward and Downward Adjustment in the Model with Countercyclical Left-
Skewness and in PSID Data

(a) Countercyclical Left-Skewness: Upward
adjustment

(b) Countercyclical Left-Skewness: Down-
ward adjustment

(c) PSID: Upward adjustment (d) PSID: Downward adjustment

Source: Author’s calculations
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