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ABSTRACT 

This paper aims to investigate the crashes of time series momentum and to explore a 

systematic approach that mitigates the crashes of this strategy. Similar to cross-sectional 

momentum, time series momentum is also prone to severe drawdowns subsequent of a 

market decline when market volatility is high, contemporaneous with market reversals. 

However, such crash risk and option-like behaviour appear to be statistically 

predictable. Based on the insight on momentum crashes, we construct a risk-managed 

time series momentum strategy (RTSMOM) through a dynamic loading on the basic 

time series momentum (BTSMOM) strategy using in-sample predictions of the 

strategy’s return and volatility. Our findings demonstrate that RTSMOM has a lower 

crash risk as negative volatility, maximum drawdown, VaR and expected tail loss 

decrease. Furthermore, RTSMOM has a higher average return and a substantial 

increased Sortino ratio. These findings are robust in subsample, back-testing, and cross 

asset analysis. 
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1 Introduction 

This paper aims to investigate the crashes of time series momentum and to mitigate 

such downside risk with a systematic approach that is based on the insight on 

momentum crashes. 

 

A momentum strategy bets on that past returns will predict return continuation in the 

future. It can be implemented by buying past winners and selling past losers (WML) 

cross-sectionally, which is called cross-sectional momentum, or can be based purely on 

a security’s own past return, which is called time series momentum.  

 

Cross-sectional momentum has gained increased popularity since the classical studies 

of Jegadeesh and Titman (1993) and Asness (1995). The premium generated from 

buying winners and selling losers has proved to be an asset pricing anomaly. Yet, since 

the recent study of Moskowitz, Ooi, and Pedersen (2012), time series momentum poses 

a greater puzzle than cross-sectional momentum. As shown by Moskowitz, Ooi, and 

Pedersen (2012), time series momentum generates even higher and steadier returns than 

cross-sectional momentum, while its premium cannot be explained by standard asset 

pricing risk factors and market indices. 

 

However, the time series momentum strategy is far from impeccable. Time series 

momentum is prone to large drawdowns subsequent of large market declines as the 

market reverses quickly, similar to its cross-sectional counterpart as studied by Daniel 

and Moskowitz (2014). According to the study of Moskowitz, Ooi, and Pedersen (2012), 

the largest drawdown of the cross asset strategy amounts to 15.2%, and that of an 

individual asset class portfolio accumulates to 56.2%. However, their sample period 

ends at December 2009, which means that potential losses could be larger as the market 

rebounded further after the crisis 2008. This feature of time series momentum produces 

a risk that can be unacceptable to investors. 

1.1 Research Motivation and Focus 

The aim of this study is to investigate the crashes of time series momentum, as 

introduced before, and to explore a systematic approach that mitigates such a drawback 

of this strategy. There are barely any studies on the crashes of time series momentum 
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and potential mitigation approaches, as time series momentum is an emerging topic 

within academia. Yet, regarding the crashes of cross-sectional momentum, a popular 

and credible explanation is the time-varying risk (Kothari and Shanken, 1992,  Grundy 

and Martin, 2001, Barroso and Santa-clara, 2014, Daniel and Moskowitz, 2014). Based 

on the insight on the crashes of cross-sectional momentum, there are several studies 

that have used a systematic approach to successfully mitigate the downside of cross-

sectional momentum compared to the original strategy, such as Barroso and Santa-

Clara (2014), and Daniel and Moskowitz (2014). Due to the close relationship of time 

series momentum and cross-sectional momentum, we are curious whether the crashes 

of time series momentum is associated with similar time-varying risks as cross-

sectional momentum and thus if it also can be mitigated through a rule-based approcach. 

Therefore, we aim to answer the following research questions: 

 

Does time-varying risks lead to the crashes of time series momentum? 

and 

Is there a systemic approach to mitigate the crashes of time series momentum? 

 

1.2 Summary of Study 

To explore our research questions, we initially investigate the crashes of time series 

momentum with a basic strategy, and then explore a mitigation approach using the 

insight on momentum crashes.  

 

We use 118 futures contracts to construct a basic time series momentum (BTSMOM) 

strategy using the construction method documented by Moskowitz, Ooi, and Pedersen 

(2012). Similar to their study, BTSMOM experiences large drawdowns – the largest 

one being nearly 25% over the period 1985:01 to 2015:02, while for an individual asset 

class the maximum drawdown is 63.3%. 

 

Through an in-depth analysis of the crash periods, we observe that time series 

momentum is especially vulnerable when the equity market experiences high volatility, 

contemporaneous with sharp market reversals. This characteristic is similar to the 

payoff of a short call option, in line with Daniel and Moskowitz (2014) findings on 

cross-sectional momentum. Such option-like behaviour is explained by the time-
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varying market beta of the strategy. Following the specification of Henriksson and 

Merton (1981), we compute the strategy’s up and down betas. Given that the market is 

in a bear market state, the up beta of the strategy is more than 1.5 times larger than the 

down beta (-0.68 versus -0.42). This implies that in the condition of a bear market state, 

the strategy is profitable when the market continues to fall, while the strategy suffers 

severe losses when market reverses to the upside. Based on the insight on momentum 

crashes, a model that predicts the strategy’s return is constructed. 

 

We construct a systematic approach that dynamically weights the loading on BTSMOM 

based on the methodology presented by Daniel and Moskowitz (2014). The approach 

takes into account our findings regarding time series momentum’s return predictability 

together with a common volatility prediction model, which combines GARCH-GJR 

volatility estimation and the strategy’s realised volatility. The dynamic weighting is set 

to maximise the in-sample Sharpe ratio of the strategy based on the strategy’s predicted 

return and volatility. 

 

The results for the main sample period 1985:01 to 2015:02 demonstrate that, compared 

to basic strategy, RTSMOM has 0.9% lower monthly negative volatility and the crash 

risk is mitigated with 16.6% lower maximum drawdown, 1.1% lower Value at Risk, 

and 1.7% lower expected shortfall. RTSMOM also has an increase in the average 

monthly return of 0.28%, which consequently raises the annualised Sortino ratio by 

79.4%. 

 

As a robustness check, we split the main sample into two evenly divided subsamples, 

on which the same analysis is conducted. We also conduct a back-test assessment based 

on the data prior to 1985. The performance of RTSMOM is consistent in all robustness 

checks, which gives weight to our findings in the main sample. We also categorise all 

118 futures contracts into four asset classes and conduct cross asset class analysis. The 

results support the risk-managing efficacy of the dynamic weighting system, although 

it fails to increase the average monthly return and Sortino ratio materially for the asset 

class rates. 
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1.3 Relationship with Existing Literature 

The studies most related to ours are Daniel and Moskowitz (2014) and Barroso and 

Santa-Clara (2014) in terms of momentum crashes and mitigation methods. However, 

they study the crashes of cross setional momentum, while our focus is on the crashes 

of time series momentum. Our study is also related to the research of Moskowitz, Ooi, 

and Pedersen (2012), as our study adopts their definition of time series momentum and 

is also conducted on cross asset class futures data. 

 

This study contributes to the existing literature in two aspects. Firstly, it investigates 

the crashes of time series momentum, and extends the study of Moskowitz, Ooi, and 

Pedersen (2012) from the perspective of risk management. This study is conducted with 

a broader range of futures contracts (118 in total) and a more up-to-date time window 

(1973:09 – 2015:02). Secondly, it explores a rule-based system that mitigates the 

crashes of time series momentum. Such system can be easily implemented and it 

improves the basic strategy materially, which leads to a more attractive investment 

strategy for investors. 

1.4 Outline 

The structure of this paper is as follows: Section 2 reviews the previous studies in the 

three related areas: cross-sectional momentum, time series momentum, and time-

varying risk of momentum. It is followed by section 3, which includes construction 

method of the basic strategy (BTSMOM), data preliminaries, and the performance of 

BTSMOM. We also investigate the momentum crashes, time-varying beta, and the 

prediction model of BTSMOM’s return. Section 4 introduces a risk-managed time 

series momentum strategy (RTSMOM) that is based on a dynamic weighting system. 

Furthermore a discussion regarding the performance of RTSMOM in the main sample 

period, subsample analysis, back-testing, and cross asset analysis is included. The final 

section includes the conclusion, limitations, and potential areas for further research. 
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2 Literature Review 

This section reviews the relevant previous studies in the areas of cross-sectional 

momentum, time series momentum, as well as crashes and return predictability for 

momentum strategies. 

2.1 Cross-Sectional Momentum 

In the financial literature, Jegadeesh and Titman (1993) and Asness (1995) first 

document momentum strategies in the U.S common stock returns. They sort stocks on 

their own past three to twelve months return, taking a long (short) position in the stocks 

in the top (bottom) 30%. They find that investors can earn positive abnormal returns 

that show a low correlation to standard risk factors, providing a challenge to the 

efficient market hypothesis. 

 

Jegadeesh and Titman (1993) motivate their study of momentum with “… a majority 

of the mutual funds examined by Grinblatt and Titman (1989) show a tendency to buy 

stocks that have increased in price over the previous quarter.” The momentum strategy 

return is introduced as an extension to the standard risk factors of Fama and French 

(1992, 1993) by Carhart (1997) and further demonstrates the observation made by 

Jegadeesh and Titman (1993) that mutual funds on average load positively on 

momentum. The momentum strategy has been further scrutinized in academia but has 

consistently shown large positive returns across different time periods and asset classes, 

justifying its status as a market anomaly. 

 

Israel and Moskowitz (2013) extends the time period, 1965-1989, studied by Jegadeesh 

and Titman (1993) and Asness (1995) by providing results from 1927-1965 and 1990-

2012. Geczy and Samonov (2013) conduct a study with data from 1802-2012, a study 

which the authors calls “the world’s longest back-test”. There is even evidence of the 

momentum effect that dates back to the Victorian age, presented by Chabot, Ghysels, 

and Jagannathan (2009).    

 

Strong and persistent momentum effects are also present in the international equity 

markets and other asset classes. Rouwenhorst (1998) finds evidence of momentum in 

other developed equity markets, and Rouwenhorst (1999) documents momentum in 
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emerging equity markets. Asness, Liew, and Stevens (1997) demonstrate positive 

momentum in country indices. Among common stocks, there is also evidence that 

momentum strategies perform well for industry strategies, and for strategies that are 

based on the firm specific component of returns (Moskowitz and Grinblatt, 1999, 

Grundy and Martin, 2001, and Asness, Porter, and Stevens, 2000). Outside of equity 

markets,  Okunev and White (2003) find momentum in currencies; Miffre and Rallis 

(2007) and Erb and Harvey (2006) in commodities; Moskowitz, Ooi, and Pedersen 

(2012) in futures contracts; and Asness, Moskowitz, and Pedersen (2013) in bonds. 

Asness, Moskowitz, and Pedersen (2013) also integrate the evidence of intra cross-

sectional equity momentum with equity index, fixed income, currency, and commodity 

momentum. 

 

The momentum discussed previously belongs to the most frequent discussed 

momentum in the financial literature; cross-sectional momentum. Cross-sectional 

momentum is based on a security’s relative performance to its peers. In contrast, time 

series momentum focuses on the absolute past return of a security as a predictor of 

future price continuation. 

2.2 Time Series Momentum 

Our study emanates from the paper “Time series momentum” by Moskowitz, Ooi, and 

Pedersen (2012). The authors examine time series momentum returns across 58 futures 

contracts in a wide variety of asset classes for the years 1985 to 2009. They find 

significant positive returns in each of the 58 markets; the persistence in returns is 

strongest when a 12-month look back period and a 1-month hold period is applied. The 

authors construct a time series momentum strategy, by taking a long (short) position in 

all contracts that have had a positive (negative) excess return over the previous twelve 

months and rebalance the portfolio on a monthly basis. The results show that the time 

series momentum factor has large significant returns with a low exposure to standard 

risk factors in combination with the benefit of strong performance during market 

declines. 

 

The authors find that correlations of time series momentum strategies across asset 

classes are larger than the correlations of the asset classes themselves. This suggests 

that there is a mutual component that affects time series momentum strategies 
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concurrently across asset classes that is not present in the underlying asset classes 

themselves. Furthermore, the authors decompose the returns of a time series momentum 

and a cross-sectional momentum strategy in an auto-covariance component, a cross-

covariance component, and a dispersion in mean returns component. The authors find 

that positive auto-covariance is the main driver of both the time series and cross-

sectional momentum effect. There is a small effect from the dispersion in mean present. 

However, the effect of cross-covariance is negligible for cross-sectional momentum 

and even negative for time series momentum which implies that time series momentum 

will have higher return than cross-sectional momentum as it only captures the auto-

covariance and the dispersion in mean components. 

 

The authors conclude that the characteristics of time series momentum agree with many 

of the existing behavioural and rational asset pricing theories. The existence of positive 

time series momentum and the subsequent reversal hints that it is consistent with 

theories of sentiment leading to initial under-reaction and later on over-reaction. The 

fact that different types of investors across different markets are producing the same 

price patterns at similar time poses a challenge to some theories. In addition, the authors 

cannot find a link between time series momentum and investor sentiment measures 

from the literature. In an attempt to better explain the driver of time series momentum 

the authors investigate the trading activity of hedgers and speculators. They find that 

speculators on average trade with time series momentum and appear to profit from the 

strategy at the expense of hedgers. One explanation to this might be that speculators 

earn a premium through time series momentum by providing liquidity to hedgers. The 

authors in this way provide an alternative explanation for the existence of time series 

momentum.    

2.3 Momentum Crashes, Time-Varying Risk, and Return Predictability 

Our study is related to the time-varying risk of momentum strategies and the 

predictability of future volatility and return in order to find a dynamic weighting scheme 

that improves the performance of the time series momentum strategy. Daniel and 

Moskowitz (2014) focus on the drawback of cross-sectional momentum, which they 

call “momentum crashes”. They show that cross-sectional momentum is prone to large 

drawdowns, these drawdowns occur after a period of negative market returns and a 

subsequent reversal. These results are in line with those of Cooper, Gutierrez, and 
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Hameed (2004) and Stivers and Sun (2010), as they show that the momentum premium 

falls to zero when the past three-year market return is negative and that the momentum 

premium is low when market volatility is high. Daniel and Moskowitz (2014) further 

show that low ex-ante expected returns in panic states is the consequence of a 

conditionally high premium linked to the option-like payoff of past losers. 

 

Cross-sectional momentum has proved to generate large returns but with the cost of a 

very high excess kurtosis. One possible cause for the excess kurtosis could be time-

varying risk (see Engle, 1982 and Bollerslev, 1986). Kothari and Shanken (1992), and 

Grundy and Martin (2001) find that a cross-sectional momentum strategy has a pro-

cyclical time-varying beta exposure. In rising markets, the strategy increases its market 

beta loading making it vulnerable to sudden market reversals. In falling markets the 

cross-sectional momentum strategy has a negative conditional beta loading. This 

negative beta loading is what causes the strategy’s large drawdowns when markets 

reverse to the upside. Grundy and Martin (2001) argue that hedging this time-varying 

beta exposure reduces the crashes of the momentum strategy and leads to a more stable 

return series. However, Daniel and Moskowitz (2014) show that when using betas 

without look-ahead bias, Grundy and Martin (2001) hedged the exposure using 

forward-looking betas, and, there is no mitigation in the crashes of the momentum 

strategy.  

 

Barroso and Santa-Clara (2014) find that the volatility of cross-sectional momentum is 

highly variable over time but also predictable. They propose to scale the exposure to 

the strategy by its own realized variance, targeting a constant volatility of the strategy, 

in order to risk-manage the momentum strategy. They find that this weighting scheme 

nearly eliminates the momentum crashes and almost doubles the Sharpe ratio of the 

momentum strategy. The reason Barroso and Santa-Clara (2014) find that it is possible 

to risk-manage momentum with realized variance but not with time-varying beta is due 

to the composition of momentum volatility. They find that the market component is a 

minority of the total volatility and that the strategy specific part is the main component. 

Furthermore, the specific risk is more persistent and predictable than the market 

component.  
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Due to the fact that the momentum strategy’s volatility itself is predictable and distinct 

from the predictability in mean returns, Daniel and Moskowitz (2014) design a dynamic 

momentum strategy that varies its exposure to the momentum strategy in order to 

maximize the unconditional Sharpe ratio of the strategy. The results show that the 

dynamic strategy significantly outperforms the standard momentum strategy and other 

suggested constant volatility variations of momentum strategies (e.g. Barroso and 

Santa-Clara, 2014). The authors conduct robustness checks across countries and asset 

classes, and results are consistent. All studies referred to in this section deal with cross-

sectional momentum. Therefore, this paper aims to contribute with new insights on the 

time-varying risk of time series momentum and to explore how suggested improvement 

mechanisms for cross-sectional momentum affect the performance of a time-series 

momentum strategy. 
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3 Basic Time Series Momentum 

This section presents our study on the performance and crashes of the basic time series 

momentum strategy. To start with, the portfolio construction method and data 

description is described. 

3.1 Portfolio Construction and Data Preliminaries 

3.1.1 Portfolio Construction Method 

We construct the time series momentum strategy by adopting the methodology of 

Moskowitz, Ooi, and Pedersen (2012). Firstly, the trading signal for each individual 

asset is decided based on the asset’s return over the previous 12 months in excess of the 

risk free rate. The strategy takes a long (short) position if the asset’s past excess return 

is positive (negative).  

 

Secondly, the position of each individual asset is scaled by its own ex-ante volatility 

due to the following reasons: (1) it prevents a few assets from driving the majority of 

the strategy’s return, as the return volatility of the assets differs substantially across 

asset classes but also within an asset class; (2) it is also econometrically beneficial to 

have a time series with a relative stable volatility so the strategy’s return is not 

dominated by a few extremely volatile periods.  

  

The position size of each asset is scaled by the target volatility and its ex-ante volatility. 

The target volatility of 40% is kept the same as what Moskowitz, Ooi, and Pedersen 

(2012) use, as it increases the comparability of our portfolio to others in the previous 

literature. As all individual assets are aggregated into a single strategy the volatility of 

the strategy is roughly the same as the volatility of the SMB, HML, WML, and the 

CSMOM factors that we use in our analysis. The return for an individual asset is 

therefore given by:  

  𝑟𝑠,𝑡+1
𝑇𝑆𝑀𝑂𝑀 = 𝑠𝑖𝑔𝑛(𝑟𝑠,12𝑚 )

40%

𝜎𝑡 
𝑟𝑠,𝑡+1                                  (1) 

Aggregating the individual assets into a strategy gives the following return calculation 

for the overall strategy: 

𝑟𝑇𝑆𝑀𝑂𝑀,𝑡+1 =
1

𝑁
∑ [𝑠𝑖𝑔𝑛(𝑟𝑠,12𝑚 )

40%

𝜎𝑡 
𝑟𝑠,𝑡+1]                       (2)

𝑁

𝑠=1
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To compute the ex-ante volatility for each individual asset, a simple exponentially 

weighted moving average model of lagged squared daily returns is used as follows:  

𝜎𝑠,𝑡
2 = 261 ∑[𝛿𝑖(1 − 𝛿)(𝑟𝑠,𝑡−1−𝑖 − 𝑟̅𝑠,𝑡)

2
]

∞

𝑖=0

                                (3) 

where the scalar 261 annualizes the estimated daily variance, the weights 𝛿𝑖(1 − 𝛿) 

adds up to one, and, the average return 𝑟̅𝑠,𝑡 is the exponentially weighted average return. 

The parameter is set so that the centre of the mass of the weights is 60 days, i.e. 

∑ 𝛿𝑖(1 − 𝛿) = 60∞
𝑖=0  . To insure that no look-ahead bias occurs, we use one period 

lagged volatility estimate.  

3.1.2 Data Preliminaries 

The following subsection will present the futures data that has been used in this thesis 

and the adjustments made to the futures prices. The data consists of futures prices, 

exchange rates, index benchmarks, and standard risk factors for evaluation purposes.  

 

a. Futures data 

Our data consists of 118 futures prices1, among them 45 commodities contracts, 14 

exchange rates contracts (both single currency indices and cross-currency pairs), 23 

government bonds contracts, and 36 equity index contracts, from January 1972 to 

February 2015. Yet, our main sample starts from January 1985 based on the 

considerations that (1) a sufficient amount of contracts is needed in order for the 

strategy to be truly diversified; (2) it allows for consistency with the pioneering study 

by Moskowitz, Ooi, and Pedersen (2012), but further expands the sample they used 

with the interesting post financial crisis period 2010-2015; (3) a back-test, in which the 

omitted data from January 1972 to December 1984 is used, can be conducted as a 

robustness check of the results from the main sample. 

 

There are several reasons why futures data is chosen for this thesis: (1) it gives us access 

to a wide range of assets in several asset classes. This is a prerequisite in order for the 

strategy to be diversified enough so the characteristics are driven by time series 

momentum rather than sample specific conditions for an asset class or even a single 

                                                            
1 All futures data was generously provided to us by Andreas Clenow from ACIES Asset Management, 

an Absolute Return Capital Management firm based in Switzerland. For a complete list of each contract, 

please refer to Appendix A. 
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asset; (2) future markets are liquid which insures that the strategy is implementable and 

not only of theoretical interest; (3) as the strategy includes both long and short positions, 

future contracts are ideal in the sense that it is just as easy to take a short position as a 

long position.  

 

However, due to the limited life span and roll over gap of futures contracts, we back 

adjust the futures data to remove the roll over gap by matching the old contract’s closing 

price with the new contract’s closing price on the roll over date. A detailed explanation 

of the back adjustment method is presented in Appendix B. 

 

b. Exchange rates 

To allow us to make meaningful comparisons and to aggregate the returns of the 

individual positions of the strategy, all futures prices are converted to US dollars. The 

14 cross-currency pairs against US Dollars used are as follows: Australian Dollars, 

Canadian Dollars, Euro, British Pounds, Japanese Yen, Hong Kong Dollars, South 

African Rand, Swiss Francs, Swedish Krona, Malaysian Ringgit, Singapore Dollars, 

Norwegian Krone, and South Korean Won. All exchange rates data is downloaded from 

Datastream. 

 

c. Asset pricing benchmarks – risk factors 

In order to evaluate the strategies, we employ commonly used asset class indices and 

factor returns, namely the MSCI World equity index, JP Morgan Global Government 

Bond (JPMGGB) index, Standard & Poors Goldman Sachs Commodity Index (GSCI), 

MKT-Rf, SMB (Small Minus Big), HML (High Minus Low) and WML (Up Minus 

Down)1. The data for the asset class indices was obtained from Bloomberg data terminal, 

whilst the data for the factor returns was obtained from Kenneth French’s data library2. 

 

The cross asset class cross-sectional momentum (CSMOM) factor3, constructed by 

Asness, Moskowitz, and Pedersen (2013), is also used to investigate the relationship 

                                                            
1 The data used for constructing the factors is stock data from 23 developed countries accessed from the 

CRSP database. A more detailed account of the factors can be found in Fama and French (2012), “Size, 

Value and Momentum in International Stock Returns”. 
2 Please refer to http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
3 The factor is formed by the 65 futures contracts that are ranked on their past 2-12 month return. A zero-

cost portfolio is constructed by going long the group with the best returns and going short the group with 

the worst returns. 
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between time series momentum and cross-sectional momentum on an across asset class 

level. The underlying data for the construction of the CSMOM factor is future returns 

for equity indices, fixed-income, exchange rates, and commodities. This adds another 

layer of comparability to our study. The CSMOM factor is downloaded from Tobias 

Moskowitz web page (2015)1. 

 

All the data used in this study are obtained from either well-known databases or credible 

online data libraries. Therefore, we believe that the data are of sufficient quality for the 

empirical results to be reliable. 

3.2 Momentum Portfolio Performance 

Fig.1 plots the cumulative excess monthly returns from 1985:01 to 2015:02 for the (1) 

basic time series momentum strategy (BTSMOM), (2) the passive long strategy, and (3) 

the MSCI World index. For comparison, the passive long strategy invests in all possible 

long position of every futures contract we study, and each contract is scaled by the same 

amount of constant volatility like BTSMOM. 

 

Though our investment universe is broader than only equity futures, the MSCI World 

index is still used as the market benchmark based on the following considerations: (1) 

it simplifies our calculation and also includes information of 23 equity markets, 

covering a broad geographical area and provides comprehensive information of the 

global economy; 2) the momentum of each asset classes are significantly correlated, as 

shown by Asness, Moskowitz, and Pedersen (2013) in the paper “Value and Momentum 

Everywhere”. 

 

As shown in Fig.1, the BTSMOM demonstrates a relatively steady stream of positive 

returns, compared to the passive long strategy and the MSCI World index, which is 

consistent with the findings of Moskowitz, Ooi, and Pedersen (2012). In Tab.1 return 

and risk statistics of the three portfolios are displayed. Compared to the passive long 

strategy and the MSCI World index, the monthly return volatility of the BTSMOM is 

4.5% and 0.9% lower respectively, while it also has a higher average monthly return, 

1.1%, and 1.6%, respectively. 

                                                            
1 Please refer to http://faculty.chicagobooth.edu/tobias.moskowitz/research/data.html 
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Fig. 1 Cumulative Excess Return of BTSMOM, Passive Long Strategy, and MSCI World 

The graph plots the cumulative monthly excess return of basic time series momentum portfolio 

(BTSMOM), passive long portfolio, and MSCI World, from 1985:01 to 2015:02. BTSMOM invests 

across all futures contracts we investigate which are weighted by their own volatilities as defined in 

equation (3). The passive long strategy invests in possible long position in each contract that is also 

scaled by its own volatility. 

 

We also decompose the return of BTSMOM, and observe significant alpha over a 

number of benchmark indices and asset pricing factors, as shown in Tab.2. In Panel A, 

the monthly and the non-overlapping quarterly returns of BTSMOM are decomposed 

by the classical Fama-French factors and market indices. BTSMOM has a statistical 

significant positive abnormal return of 1.7% and 4.9% on a monthly and quarterly basis 

respectively, and only the cross-sectional momentum factor (WML) has a significant 

loading upon BTSMOM in both regression at the 5% significance level. In Panel B the 

results when regressing the Value and CSMOM factor of Asness, Moskowitz and 

Pedersen (2013) is displayed. CSMOM is a cross asset factor that should provide 

insights into what extent cross-sectional momentum explains time series momentum 

due its similarities in underlying assets to BTSMOM. In addition to the cross asset value 

and momentum factor, the MSCI World index is also included in the regression as a 

proxy for the broader market. Adjusted for the VAL and CSMOM factors, BTSMOM, 

once again, delivers a highly significant abnormal return of 1.5% and 4.2% on a 

monthly and quarterly basis.  
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Tab. 1 Monthly Return Statistics 

This table summarises the monthly return statistics of BTSMOM, passive long strategy and the MSCI 

World index over the time period of 1985:01 – 2015:02. The Sharpe ratio and the Sortino ratio are 

annualised, while all other statistics are reported on a monthly basis. Volatility represents standard 

deviation and absolute kurtosis is reported. 

  BTSMOM Passive Long Strategy MSCI World 

Average Return 2.0% 0.9% 0.4% 

Minimum Return -13.1% -18.2% -19.1% 

Maximum Return 15.1% 110.7% 11.1% 

Volatility 3.5% 8.0% 4.4% 

Negative Volatility 2.3% 3.5% 3.3% 

Skewness -0.10 7.14 -0.70 

Kurtosis 5.09 100.33 4.74 

Sharpe Ratio 2.00 0.40 0.33 

Sortino Ratio 3.06 0.89 0.43 

Maximum Drawdown 23.9% 43.0% 59.7% 

95% VaR -3.4% -8.5% -7.2% 

Expected Shortfall -5.8% -11.4% -10.7% 

 

Tab. 2 Return decomposition of BTSMOM 

Panel A reports the results of time series regression of monthly return and non-overlapping quarterly return of BTSMOM 

on MSCI World Equity Index, GS Commodity Index, JPM Government Bond Index, and global Fama French factors, 

SMB, HML, and WML. The Panel A regression sample period is from 1990:01 to 2015:02. Panel B presents the results 

replacing Fama French factors with Asness, Moskowitz, and Pedersen (2013) Value (VAL) and Momentum (CSMOM) 

Everywhere factors, which captures the value and cross-sectional momentum globally across asset classes. The Panel B 

regression sample period is from 1985:01 to 2015:02. 

Panel A Regression of BTSMOM on Fama French Global Factors and Indices 

    Intercept 

MSCI 

World SMB HML WML SP GSCI JPM GBI   
 

Monthly  
Coefficient 1.7% -0.01 -0.14 0.16 0.40 0.00 -0.08  19% 

(T-stat) (8.53) (-0.11) (-1.47) (1.86) (7.65) (-0.08) (-0.73)   

Quarterly 
Coefficient 4.9% 0.11 -0.11 0.31 0.44 -0.07 -0.10  25% 

(T-stat) (7.25) (1.48) (-0.64) (2.57) (5.11) (-1.28) (-0.66)     

Panel B Regression of BTSMOM on Asness, Moskowitz, and Pedersen (2013) factors 

    Intercept CSMOM VAL  

MSCI 

World         
 

Monthly  
Coefficient 1.5% 1.07 0.44 -0.02     28% 

(T-stat) (8.9) (10.45) (3.48) (-0.59)      

Quarterly 
Coefficient 4.2% 1.23 0.74 0.03     35% 

(T-stat) (7.31) (7.72) (3.74) (0.45)           

 

3.3 Post Crisis Crashes and Optionality   

As shown in Fig. 1, BTSMOM is profitable during the height of the financial crisis, but 

it suffers from crashes and sustained drawdowns following market declines when the 

market volatility is high and the market rebounds swiftly. This characteristic of time 
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series momentum is coherent with the findings of Moskowitz, Ooi, and Pedersen (2012) 

and has been observed in studies on cross-sectional momentum, such as Daniel and 

Moskowitz (2014). 

 

In the worst case scenario, as shown in Tab. 1, BTSMOM loses 13.1% in one month 

and the largest drawdown accumulates to 23.9%. For a general investor, such a large 

loss can be unbearable and demonstrates the demand for a risk management approach 

for BTSMOM. Our analysis will continue by investigating the periods when BTSMOM 

performs at its worst to get a thorough understanding of the strategy’s drawdowns in 

order to potentially mitigate the crash risk and improve the performance of BTSMOM. 

 

Fig.2 plots the daily cumulative excess return of BTSMOM in its two largest drawdown 

periods of the main sample. These two periods are selected with the purpose to 

investigate the post crisis crashes that we study more generally in this paper.  

 

The first period is from August 2008 to August 2010. As shown in Fig.2 (A), BTSMOM 

accumulates a 25.7% return that outperforms the market by 65% from August 2008 to 

October 2008. However, when the market rebounds sharply in October 2008, 

BTSMOM experiences a severe drawdown and moves inversely to the market. The 

market then has another drop followed by a rebound to the upside in November 2008. 

During this rebound BTSMOM struggles and losses 12.9%. The market continues in a 

state of high volatility from March 2009 until August 2010 with several periods of 

drawdowns and sudden rebounds. Two such periods are in March 2009 and July 2009, 

these periods results in a 33.4% loss for the strategy, underperforming the market by 

63.8%. 
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Fig. 2 Crashes of Time Series Momentum 

The figure plots the cumulative daily excess return of the basic time series momentum strategy (TSMOM) 

and MSCI World over two crash periods in the main sample. Fig.2 (A) displays the first crash period 

2008:08 to 2010:08, and Fig.2 (B) graphs the second crash period 2011:05 to 2012:05. 
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A similar pattern is observed when the market rebounds in the second drawdown period 

2011:05 to 2012:05, as demonstrated in Fig. 2 (B). From August 2011 to November 

2011, the market experienced a very volatile period with a series of dramatic plunges 

and rebounds. During this period, the return of BTSMOM drops by 20%. A similar 

period follows although in a milder fashion. Over the entire period, BTSMOM 

underperforms the market by 12%.  

 

To summarise the key points of post crisis crashes, we observe some option-like 

behaviour of BTSMOM, similar to what Daniel and Moskowitz (2014) found with 

regards to cross-sectional momentum. More specifically, the strategy’s return pattern 

behaves like the payoff structure of a short call option during the end of a market decline. 

When the market has moved close to its bottom position, the strategy will pick up small 

gains if the market falls further. However, if the market reverses, the strategy will 

experience large losses. The strategy’s vulnerability to sharp market rebounds from a 

bottom position is due to the fact that the strategy establishes large short positions 

during the market decline. Combining the information from Fig.2 and Fig.1, we find 

that most of the largest drawdowns of BTSMOM are associated with this optionality.  

 

We further illustrate BTSMOM’s optionality with a set of time series regression on the 

return of BTSMOM and the market index, as displayed in Tab.3. The explanation is 

conducted in two steps. We first explain the beta difference in bear markets, and then 

explain the optionality in beta in post-bear market periods. 

 

To capture the differences in expected return and market beta in market downturns like 

previous studies (Daniel and Moskowitz, 2014 and Grundy and Martin, 2001), we first 

construct an ex-ante bear market dummy variable𝐼𝐵,𝑡−1, which equals one if the past 12 

months market return prior to month 𝑡 is negative. Compared with the standard CAPM 

model, equation (4), we observe a striking change in the market beta of BTSMOM and 

a higher R-square, after adding the bear market indicator 𝐼𝐵,𝑡−1  to the regression, 

equation (5), as shown in Tab.3. The market beta of the strategy in a non-bear market 

state 𝛽𝑅𝑚
is significantly positive, 0.22, meaning it rises with the market’s upward trend, 

while the bear market beta is  𝛽𝑅𝑚
+ 𝛽𝐵 = −0.42 , reflecting the positive return 

generation during negative market conditions.  
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𝑅̃𝐵𝑇𝑆𝑀𝑂𝑀,𝑡 = 𝛼0 +  𝛽𝑅𝑚
𝑅̃𝑚,𝑡 + 𝜀𝑡̂                                       (4) 

𝑅̃𝐵𝑇𝑆𝑀𝑂𝑀,𝑡 = (𝛼0 + 𝛼𝐵𝐼𝐵,𝑡−1) + (𝛽𝑅𝑚
+ 𝛽𝐵𝐼𝐵,𝑡−1)𝑅̃𝑚,𝑡 + 𝜀𝑡̂               (5) 

𝑅̃𝐵𝑇𝑆𝑀𝑂𝑀,𝑡 = (𝛼0 + 𝛼𝐵𝐼𝐵,𝑡−1) + (𝛽𝑅𝑚
+ (𝛽𝐵 + 𝛽𝑈,𝐵𝐼𝑈,𝑡)𝐼𝐵,𝑡−1)𝑅̃𝑚,𝑡 + 𝜀𝑡̂   (6) 

Equation (6) further introduces an additional term that aims to capture the optionality 

of time series momentum – the contemporaneous bull market indicator 𝐼𝑈,𝑡 , which 

equals one if the market return is positive in the month 𝑡. Like Henriksson and Merton 

(1981), we employ a cross term of the ex-ante bear market indicator and the 

contemporaneous bull market indicator 𝐼𝑈,𝑡𝐼𝐵,𝑡−1𝑅̃𝑚,𝑡 in the regression, which attempts 

to explain the post bottom crashes of the BTSMOM.  

 

The results show that in the condition of a bear market, the down beta (the beta when 

market falls in the next period) is negative; 𝛽𝑅𝑚
+ 𝛽𝐵 = −0.26. However, given the 

bear market condition, the up beta (when the market rebounds to the upside in the next 

period) is even more negative; 𝛽𝑅𝑚
+ 𝛽𝐵 + 𝛽𝑈,𝐵 = −0.68. This means the BTSMOM 

experiences crashes when the market rebounds, and therefore provides empirical 

evidence of its option-like behaviours. 

Tab. 3 Optionality of Time Series Momentum Return 

This table shows the results of three monthly time-series regressions run over the period from 1985:01 

– 2015:02. In all regression models, the dependent variable is the monthly return of BTSMOM. The 

independent variables are a dummy ex-ante indicator for bear markets 𝐼𝐵,𝑡−1, which equals one if 

cumulative market excess return over the last 12 months is negative, the excess market return 𝑅̃𝑚,𝑡, 

and a contemporaneous bull market indicator 𝐼𝑈,𝑡 , which equals one if contemporaneous monthly 

excess return is positive. 

  Estimate Coefficients 

 (1) (2) (3) 

Intercept 1.14 0.80 0.80 

 (29.56) (14.61) (14.65) 

 

 0.60 0.69 

  (8.21) (5.31) 

 

-0.12 0.22 0.22 

 (-3.03) (4.02) (4.03) 

 

 -0.60 -0.48 

  (-8.25) (-5.1) 

 

 -0.42 

   (-1.96) 

 

1.8% 13.8% 14.4% 

F-stat 9.16 26.36 20.84 

F test P-value 0.00 0.00 0.00 
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3.4 Market Stress and Momentum Return Prediction 

As discussed in 3.3, BTSMOM is subject to crashes when the market volatility is high 

contemporaneous with market rebounds. However, we find that these extreme returns 

are not spikes, rather they span over numerous months, such as from March 2009 to 

June 2009, and September 2011 to Nov 2011, as can be seen in Fig.2. This suggests 

that there is a possibility to predict the returns of BTSMOM and to optimise the strategy 

with a timing system.  

 

In terms of predicting the strategy’s return, an interpretation of the option-like 

behaviour, discussed in 3.3, is that the value of such a short call options should be a 

function of the future market variance. From an empirical aspect, this hypothesis is also 

coherent with the fact that when crashes occur, the market volatility is usually high. 

Tab. 4 Momentum Returns and Estimated Market Variance 

This table shows the results of four monthly time-series forecasting models run over the period from 

1985:01 – 2015:02. In all models, the dependent variable is the monthly return of BTSMOM. The 

independent forecast variables are ex-ante estimated market variance𝜎𝑚,𝑡−1, constructed by the daily 

return over the past 6 months before month t, cumulative market excess return over the last 12 months 

before month t, 𝑅̃𝑚,𝑡−1, and the cross term between them 𝑅̃𝑚,𝑡−1𝜎𝑚,𝑡−1. 

  Estimate Coefficients 

 (1) (2) (3) (4) 

Intercept 1.03 1.07 1.04 1.09 

 (244.31) (65.49) (187.42) (47.27) 

 

-1.24 -1.96  -4.24 

 (-2.75) (-3.64)  (-2.44) 

 

-0.03  -0.06 

  (-2.41)  (-2.5) 

 

  -1.82 -0.73 

   (-2.96) (-1.38) 

 

2.1% 3.6% 2.4% 4.1% 

F-stat 7.58 6.73 8.77 5.13 

F test P-value 0.01 0.00 0.00 0.00 

 

To assess this hypothesis, we regress BTSMOM’s monthly return on the ex-ante 

estimated market volatility, 𝜎𝑚,𝑡−1, and the cumulative market return, 𝑅̃𝑚,𝑡−1, which 

replaces the bear market indicator to better capture the return pattern. A cross-term of 

the ex-ante market volatility and past market return, 𝑅̃𝑚,𝑡−1𝜎𝑚,𝑡−1,is employed in the 

regression as well. The ex-ante estimated market variance is constructed by daily 

market return data over the last six months, while the cumulative return is calculated as 
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the market return over the past 12months prior to month 𝑡. The predicting regression 

model is shown below:  

 

𝑅̃𝐵𝑇𝑆𝑀𝑂𝑀,𝑡 = 𝛼0 +  𝛽𝑅𝑚
𝑅̃𝑚,𝑡−1 + 𝛽𝜎𝑚

𝜎𝑚,𝑡−1 + 𝛽𝑐𝑟𝑜𝑠𝑠𝑅̃𝑚,𝑡−1𝜎𝑚,𝑡−1 + 𝜀𝑡̂        (7) 

 

As presented in Tab. 4, the future market variance and the market state indicator 

forecast future momentum returns. Columns (1) and (2) show significantly negative 

coefficients of estimated market variance and past market returns, which implies that 

BTSMOM generates lower returns in the state of high market stress. Adding the cross 

term of volatility and the market state indicator, columns (3) and (4) further infer that 

BTSMOM’s returns are extremely poor during highly fluctuating market downturns.  
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4. Risk-Managed Time Series Momentum  

Based on the analysis of BTSMOM in section 3, a risk-managed time series momentum 

strategy (RTSMOM) is constructed in this section. RTSMOM employs dynamic 

weights on BTSMOM dependent on the predicted return and volatility of BTSMOM. 

We observe that RTSMOM has a mitigated crash risk with a lower negative volatility 

and maximum drawdown. While it has a nearly tripled cumulative return which 

increases the annualised Sortino ratio by 79.7%. 

4.1 Dynamic Weighting System 

We start by establishing a dynamic weighting scheme of BTSMOM based on its 

forecasted return and volatility. The weight changes as the basic strategy is rebalanced 

on a monthly frequency. Further, we assume no transaction costs and no interest gained 

from unallocated capital. As explained in detailed in Appendix C, the dynamic strategy 

aims to maximise the in-sample Sharpe ratio and at time 𝑡 − 1 the expected optimal 

weight in next period, is given by 

𝑤𝑡−1
∗ =

1

2𝜆
 
𝜇𝑡−1

𝜎𝑡−1
2                                                       (8) 

where 𝑤𝑡−1
∗  is estimated at period 𝑡 − 1 for the next month, 𝜇𝑡−1 = 𝔼𝑡−1[𝑅̃𝐵𝑇𝑆𝑀𝑂𝑀,𝑡] 

is the conditional expected return of BTSMOM for the next month, 𝜎𝑡−1
2 =

𝔼𝑡−1[(𝑅̃𝐵𝑇𝑆𝑀𝑂𝑀,𝑡 − 𝜇𝑡−1)2] is the conditional expected volatility of BTSMOM for the 

next month, and 𝜆 is a time-invariant risk-tolerant scalar that controls the risk exposure 

of the dynamic portfolio. 

 

As for the return forecasting (𝜇
𝑡−1

), equation (7) explained in Section 3.4 enables us to 

estimate the return for time 𝑡 at time 𝑡 − 1. For each proxy, we regress BTSMOM 

monthly returns on the market’s past 12 months return, the realized market volatility in 

the past 6 months, and a cross term of them two. 

 

With regards to the volatility prediction, we first fit the well-known GARCH-GJR 

(Glosten, Jagannathan, and Runkle, 1993) model to the monthly return series of 

BTSMOM, for the purpose of capturing the asymmetric shocks while maintaining 

computing simplicity. The process is defined as: 

𝑅𝐵𝑇𝑆𝑀𝑂𝑀,𝑡 = 𝜇 + 𝜀𝑡 ,        𝜀𝑡~𝑁(0, 𝜎𝑡
2)                                 (9) 
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𝜎𝑡
2 = 𝜔 + 𝛽𝜎𝑡−1

2 + [𝛼 + 𝛾𝐼(𝜀𝑡−1 < 0)]𝜀𝑡−1
2                      (10) 

In order to include the information from the trailing window as well as forward-looking 

estimates, the final volatility prediction is conducted through a linear combination of 

the past 6 months realized volatility prior to month 𝑡 and the predicted volatility from 

the GARCH-GJR model. A further detailed description is presented in Appendix D.  

4.2 Risk-Managed Momentum Performance 

 
Fig. 3 TSMOMs Performance in Main Sample Period 

Fig. 3 (A) plots the cumulative monthly excess return of the risk-managed time series momentum 

(RTSMOM), basic time series momentum strategy (BTSMOM) and MSCI World in the main sample 

period, 1985:01 to 2015:02. Fig. 3 (B) displays the weights of RTSMOM over the entire period, with 

average weight reported in the parentheses. The weight of RTSMOM is changed on a monthly basis, 

defined by equation (8). 
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Fig.3 (A) plots the cumulative monthly return of RTSMOM in the time period 1985:01-

2015:02. The risk aversion parameter lambda is selected such that the in-sample 

volatility of RTSMOM is the same as for BTSMOM, 3.5% per month. Over the entire 

sample period, RTSMOM has a steadier performance compared to BTSMOM, as it 

experiences smaller drawdowns in the post-crisis periods of 1999, 2009 and 2012, while 

it nearly triples the profits of BTSMOM over the whole sample period. 

 

Fig. 3 (B) displays the weight loading of RTSMOM over time, which is within the range 

of -0.4 to 2.1. On average, the weight is 0.985, very close to one. It infers that the high 

cumulative return of RTSMOM depends on the timing ability rather than employing 

leverage. 

 

Tab. 5 Monthly Return Statistics of TSMOMs in Main Sample Period 

This table summarises the monthly return statistics of BTSMOM, RTSMOM, and the differences 

between them (changes) over the period of 1985:01 – 2015:02. Sharpe ratio and Sortino ratio are 

annualised, while all other statistics are reported on a monthly basis. Volatility represents standard 

deviation and absolute kurtosis is reported. In the third column, all the changes are taken as absolute 

differences of the two strategies, except for the Sharpe ratio and Sortino ratio which are taken as 

relative differences. 

  BTSMOM RTSMOM Changes 

Average Return 2.02% 2.30% 0.28% 

Minimum Return -13.1% -6.1% 7.05% 

Maximum Return 15.1% 17.6% 2.52% 

Volatility 3.5% 3.5% 0.00% 

Negative Volatility 2.3% 1.4% -0.84% 

Skewness -0.10 0.79 0.90 

Kurtosis 5.09 4.71 -0.38 

Sharpe ratio 2.00 2.27 13.66% 

Sortino ratio 3.06 5.51 79.70% 

Maximum Drawdown 23.9% 7.3% -16.69% 

95% VaR 3.4% 2.3% -1.09% 

Expected Shortfall 5.8% 4.1% -1.70% 

 

To analyse the RTSMOM further than Fig.3 (A), Tab. 5 presents the monthly return 

statistics of RTSMOM. We observe that the dynamic weighting system effectively 

mitigates the crashes, while also generating higher return. Compared with BTSMOM, 

RTSMOM demonstrates: 

1) 0.28% higher monthly return on average over the whole sample 362 months, 

and 2.5% higher maximum return. 
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2) 0.9% lower negative volatility on average per month, suggesting more positive 

shocks and skewness given the same amount of volatility by construction.  

3) 79.7% higher Sortino ratio, meaning a largely improved negative risk-adjusted 

return. 

4) Mitigated crash risk with 16.6% lower maximum drawdown, 1.1% lower 95% 

VaR, 1.7% lower expected shortfall, and 7.0% lower minimum monthly return. 

 

Tab. 6 Return decomposition of RTSMOM 

Panel A reports the results of time series regression of monthly return and non-overlapping quarterly return of 

RTSMOM on MSCI World Equity Index, GS Commodity Index, JPM Government Bond Index, and global Fama 

French factors, SMB, HML, and WML. The Panel A regression sample period is from 1990:01 to 2015:02. Panel B 

presents the results replacing Fama French factors with Asness, Moskowitz, and Pedersen (2013) Value (VAL) and 

Momentum (CSMOM) Everywhere factors, which captures the value and cross-sectional momentum globally across 

asset classes. The Panel B regression sample period is from 1985:01 to 2015:02.  

Panel A Regression of RTSMOM on Fama French Global Factors and Indices 

    Intercept 

MSCI 

World SMB HML WML SP GSCI JPM GBI   
 

Monthly  
Coefficient 2.1% 0.00 -0.14 0.17 0.30 0.00 -0.04  11% 

(T-stat) (9.91) (-0.06) (-1.44) (1.84) (5.63) (-0.11) (-0.35)   

Quarterly 
Coefficient 6.0% 0.10 -0.04 0.31 0.38 -0.06 -0.09  18% 

(T-stat) (8.31) (1.16) (-0.22) (2.4) (4.13) (-1.03) (-0.53)     

Panel B Regression of RTSMOM on Asness, Moskowitz, and Pedersen (2013) factors 

    Intercept CSMOM VAL  

MSCI 

World         
 

Monthly  
Coefficient 1.9% 0.89 0.43 -0.04     19% 

(T-stat) (10.32) (8.24) (3.24) (-0.99)      

Quarterly 
Coefficient 5.4% 1.08 0.67 -0.04     26% 

(T-stat) (8.23) (5.96) (2.99) (-0.58)           

 

We replicate the return decomposition as in section 3.2, and compare the results to 

Tab.2, which further proves the outperformance of RTSMOM over BTSMOM. As 

shown in Tab.6 Panel A, we observe that RTSMOM generates a 2.1% monthly 

abnormal return on average, 0.4% higher than BTSMOM. On a quarterly basis, 

RTSMOM outperforms BTSMOM with a 1.1% abnormal return with a 6.0% alpha. As 

expected, the explanatory ability of all factors decreases, and WML is still the only 

significant loading in both regression at the 5% significance level. Panel B further 

investigates the relationship with cross-sectional momentum by using the cross asset 

factor CSMOM. Once again, the alpha of RTSMOM is significantly positive 1.9% and 

5.4% on a monthly and quarterly basis, which is higher than BTSMOM by 0.4% and 

1.2% respectively. 
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4.3 Crash Time Performance 

To further investigate the performance of RTSMOM during crash periods, we select 

the same two periods as in 3.3 to illustrate how the dynamic weighting mitigates the 

crashes of time series momentum. 

 

As presented in Fig. 4 and Fig. 5, RTSMOM decreases its loading on BTSMOM when 

the market experiences large volatility with a number of swift rebounds. In the first 

crash period (Fig. 4), the weight on BTSMOM drops sharply, from 0.78 to -0.41 during 

a seven months period starting from October 2008, while the return of BTSMOM 

fluctuates. The average weight on BTSMOM is only 26.4% over the whole period. The 

cumulative return is steady over the time period and outperforms BTSMOM and the 

market, by 10% and 25% respectively. 

 
Fig. 4 TSMOMs Performance in First Crash Period 

Fig. 4 (A) plots the cumulative daily excess return of the risk-managed time series momentum 

(RTSMOM), basic time series momentum strategy (BTSMOM) and MSCI World in the first crash period, 

2008:08 to 2010:08. Fig. 4 (B) displays the weights of RTSMOM over this period, with average weight 

reported in the parentheses. The weight of RTSMOM is changed on a monthly basis, defined by equation 

(8). 

 

                                                            
1 

A negative weight means that RTSMOM is exposed to a mean reverting strategy, this possibility helps 

to mitigate downside of the strategy in the crash periods studied. The weight is negative in only 6 out of 

362 months over the entire sample, and thus it does not change the strategy significantly. 
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A similar situation applies to the second crash period, shown in Fig. 5. Over the whole 

period, from May 2011 to May 2012, the average loading on BTSMOM is only 49%, 

as the market experiences high volatility and a serial of rebounds. The BTSMOM 

suffers a loss of 19%, while RTSMOM outperforms its counterpart and the market by 

14% and 2% respectively, even though the return of RTSMOM is almost static. 

 

The results above shows that the dynamic weighing system is able to predict the returns 

and volatility of BTSMOM based on the in-sample historical information. The dynamic 

weighting reduces crashes and drawdown risks of RTSMOM by keeping a small weight 

on BTSMOM. 

 

 
Fig. 5 TSMOMs Performance in Second Crash Period 

Fig. 5 (A) plots the cumulative daily excess return of the risk-managed time series momentum 

(RTSMOM), basic time series momentum strategy (BTSMOM) and MSCI World in the second crash 

period, 2011:05 to 2012:05. Fig. 5 (B) displays the weights of RTSMOM over this period, with average 

weight reported in the parentheses. The weight of RTSMOM is changed on a monthly basis, defined by 

equation (8). 
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4.4 Sub-Sample Analysis 

We split the entire main sample evenly into two sub-periods and conduct the same 

analysis on each sub-sample as a robustness check. These two sub-sample periods are 

1985:01 - 1999:07 and 1999:08 – 2015:02. For each sub-period, the same return and 

volatility prediction approach is employed, and the risk aversion parameter is selected 

so that the in-sample volatility of RTSMOM is the same as for BTSMOM in each period. 

 
Fig. 6 TSMOMs Performance in First Subsample Period 

Fig. 6 (A) plots the cumulative monthly excess return of the risk-managed time series momentum 

(RTSMOM), basic time series momentum strategy (BTSMOM) and MSCI World in the first subsample, 

1985:01 to 1999:07. Fig. 6 (B) displays the weights of RTSMOM over this period, with average weight 

reported in the parentheses. 

 

Generally, RTSMOM demonstrates similar risk-managing characteristics in each 

subsample, coherent with the results obtained in the full sample. As shown in Fig.6 and 

Fig.7, RTSMOM shows a steadier positive return pattern and yields a higher cumulative 

return, compared with BTSMOM in each subsample. In a further analysis on the 

monthly return statistics as shown in Tab.7, we observe higher average return, lower 

negative volatility, more positive skewness in RTSMOM monthly returns compared to 

BTSMOM. More impressively, the dynamic weighting system mitigates the 

momentum crashes with a lower maximum drawdown, VaR and expected shortfall, 

while increases the strategy’s annualised Sortino ratio by 37.1% and 62.2% respectively 

for the first and second subsample.  
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Fig. 7 TSMOMs Performance in Second Subsample Period 

Fig. 7 (A) plots the cumulative monthly excess return of the risk-managed time series momentum 

(RTSMOM), basic time series momentum strategy (BTSMOM) and MSCI World in the second 

subsample, 1999:08 to 2015:02. Fig. 7 (B) displays the weights of RTSMOM over this period, with 

average weight reported in the parentheses.  

 

Tab. 7 Monthly Return Statistics of TSMOMs in Subsample Periods 

This table summarises the monthly return statistics of BTSMOM, RTSMOM, and the differences between them 

in the two subsample periods. The two periods are divided evenly; the first subsample is from 1985:01 to 

1999:07, and the second subsample is from 1999:08 to 2015:02. The Sharpe ratio and Sortino ratio are 

annualised, while all other statistics are reported on a monthly basis. Volatility represents standard deviation 

and absolute kurtosis is reported. In the third column, all the changes are taken as absolute differences of the 

two strategies, except for the Sharpe ratio and Sortino ratio which are taken as relative differences. 

  first half   second half 

 Start 1985:01 End 1999:07  Start 1999:08 End 2015:02 

  BTSMOM RTSMOM Changes   BTSMOM RTSMOM Changes 

Average Return 2.30% 2.40% 0.10%  1.44% 1.73% 0.29% 

Minimum Return -8.2% -5.8% 2.41%  -14.2% -11.3% 2.91% 

Maximum Return 14.9% 12.7% -2.18%  13.4% 22.6% 9.22% 

Volatility 3.1% 3.1% 0.00%  4.0% 4.0% 0.00% 

Negative Volatility 1.9% 1.5% -0.47%  2.5% 1.8% -0.64% 

Skewness 0.11 0.35 0.24  -0.18 1.27 1.44 

Kurtosis 4.98 3.69 -1.29  4.47 7.83 3.35 

Sharpe ratio 2.59 2.69 4.2%  1.26 1.52 20.1% 

Sortino ratio 4.11 5.64 37.1%  2.03 3.30 62.2% 

Maximum Drawdown 8.2% 5.8% -2.41%  28.5% 12.7% -15.73% 

95% VaR 2.4% 2.4% -0.04%  4.1% 3.0% -1.07% 

Expected Shortfall 4.4% 3.7% -0.71%   7.2% 5.1% -2.06% 
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4.5 Back-Testing 

In this section, the robustness of the dynamic weighting is further checked by 

conducting a back-test on the data prior to 1985. The same dynamic weighting approach, 

as used on the main sample 1985-2015, is used on the period 1973:09 to 1984:12. The 

return and volatility of BTSMOM is predicted, and then used to optimise the in-sample 

Sharpe ratio with the risk parameter set so that RTSMOM has the same volatility as the 

basic strategy. 

  

 

Fig. 8 TSMOMs Performance in Back-Test 

Fig. 8 (A) plots the cumulative monthly excess return of the risk-managed time series momentum 

(RTSMOM), basic time series momentum strategy (BTSMOM) and MSCI World in the back-testing 

period, 1973:09 to 1984:12, while Fig. 8 (B) graphs the cumulative daily excess return of three portfolio 

in the back-testing crash period 1975:03 – 1975:08. Fig. 8 (C) and (D) display the weights of RTSMOM 

over the entire back-testing period and back-testing crash period respectively, with average weight 

reported in the parentheses of (C) and (D). The weight of RTSMOM is changed on a monthly basis, 

defined by equation (8). 

  

In this back-test, the RTSMOM strategy performs similarly to its performance in the 

main sample period. As displayed in Fig.8 (A) (C), RTSMOM demonstrates a robust 
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timing ability and generates a steadier return with a 9.87 higher cumulative return (per 

one unit of initial capital), compared with BTSMOM.  

 

Tab.8 lists the monthly return statistics in detail: Compared to BTSMOM, RTSMOM 

monthly return is increased by 0.43%, while the negative volatility is reduced from 2.4% 

to 1.5%. As a result, the annualised Sortino ratio increases by 92.4%. The dynamic 

weighting approach effectively lowers the crash risks with a 6.94% lower maximum 

drawdown, 0.52% VaR at 95% percentile, and 2.3% expected tail loss. The skewness 

of RTSMOM turns from -0.07 to 0.54, even though the volatility is the same, as the 

negative tail risk decreases. 

Tab. 8 Monthly Return Statistics of TSMOMs in Back-Test 

This table summarises the monthly return statistics of BTSMOM, RTSMOM, and the differences 

between them in the back-testing period from 1973:09 to 1984:12. The Sharpe ratio and Sortino ratio 

are annualised, while all other statistics are reported on a monthly basis. Volatility represents standard 

deviation and absolute kurtosis is reported. In the third column, all the changes are taken as absolute 

differences of the two strategies, except for the Sharpe ratio and Sortino ratio which are taken as 

relative differences. 

  BTSMOM RTSMOM Changes 

Average Return 1.95% 2.38% 0.43% 

Minimum Return -12.7% -6.2% 6.49% 

Maximum Return 12.8% 12.4% -0.43% 

Volatility 4.1% 4.1% 0.00% 

Negative Volatility 2.4% 1.5% -0.88% 

Skewness -0.07 0.54 0.61 

Kurtosis 3.64 2.73 -0.91 

Sharpe ratio 1.64 1.99 21.9% 

Sortino ratio 2.82 5.43 92.4% 

Maximum Drawdown 19.2% 12.2% -6.94% 

95% VaR 4.0% 3.5% -0.52% 

Expected Shortfall 6.9% 4.6% -2.30% 

 

To further investigate the crash periods, the performances of the two strategies are 

presented in Fig. 8 (B) and (D). Over the drawdown period from March 1975 to August 

1975, BTSMOM cumulative return declines from 1.2% to -18% due to high market 

volatility and a serial of market rebounds. In the same period, RTSMOM swiftly adjusts 

its weight on BTSMOM from the leveraged weight of 180% to only a 17.8% weight on 

average over the crash period. The dynamic weighting approach reduces crashes and 

tail losses, though its return is quite flat during periods of high market volatility. Over 

the whole crash period, RTSMOM has 21% higher return than BTSMOM, which 
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empirically supports the risk managing efficacy of dynamic weighting system in the 

back-test period. 

4.6 Cross Asset Analysis 

Having shown the robustness in the subsample analysis and back-test, we examine the 

efficacy of the dynamic weighting approach further in each individual asset class to 

check its robustness. 

 

First we categorise each contract into four asset classes over the whole main sample 

and back-test periods, from January 1972 to February 2015. For each asset class, 

BTSMOM starts once there are ten contracts available to allow for sufficient 

diversification, and RTSMOM is initiated eight months after the start of BTSMOM. 

 
Fig. 9 TSMOMs Performance in Cross Asset Analysis 

Fig.9 (A), (B), (C), and (D) plots the cumulative monthly excess return of the risk-managed time series 

momentum (RTSMOM) and basic time series momentum strategy (BTSMOM) from investments in 

individual asset classes of commodities, currencies, rates, and equities, respectively. For each asset class, 

the portfolio initiates on the month when it has ten individual assets - the sample period for each asset 

class is 1973:09-2015:02, 1999:01-2015:02, 1991:05-2015:02 and 1993:10-2015:02 respectively. 
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Fig. 9 shows the log return (as the magnitude of simple return for some asset classes is 

too large and exceeds the limit of our computing program) of the four asset classes. 

Compared to BTSMOM, RTSMOM shows an improved performance in all asset 

classes with mitigated crash risk. Even though the return of RTSMOM grows slower 

than for the basic strategy during some highly volatile time periods for the currency and 

equity asset classes, the strategy cumulates a higher return over time. 

 

To analyse the return of RTSMOM further, Tab. 9 presents the statistics of monthly 

return series for four asset classes. For all asset classes except rates, the results is largely 

consistent with the results from previous section - RTSMOM has a higher average 

monthly return, a lower negative volatility, which consequently boosts the Sortino 

ratios by more than 30%. Apart from that, dynamic weighting reduces the crash risks 

with a lower maximum drawdown, 95% VaR and expected shortfall.  

 

For the asset class rates, RTSMOM still has a mitigated crash risk with a 11.07% lower 

maximum drawdown, 0.8% lower 95% VaR, and 0.63% lower expected shortfall, even 

though the dynamic weighting fails to raise the average return and decrease the negative 

volatility effectively. This is explained by the fact that the basic rates strategy seems to 

be highly fluctuating but less than 50% (3.1% out of 7.2%) of its volatility is due to 

negative shocks, consistent with its positive skewness. This means that the maximum 

Sharpe ratio weighing system will avoid the high volatility periods when the basic 

strategy actually is more likely to benefit from right tail events. However, the dynamic 

weighting still mitigates the crash risk of asset class rates as defined, and provides a 

slightly higher Sortino ratio. 

 

Overall, the findings are consistent from the cross asset analysis, subsample analysis, 

and back-testing study, and further support the robustness of the risk-managing system 

of RTSMOM. Compared to BTSMOM, RTSMOM has a mitigated crash risk and a 

steadier return pattern, which raises the risk-return indicator Sortino ratio. 
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Tab. 9 Monthly Return Statistics of TSMOMs in Cross Asset Analysis 
This table summarises the monthly return statistics of BTSMOM, RTSMOM, and the differences between them 

for the four asset classes, commodities, currencies, rates, and equities. For each asset class, the monthly return 

starts on the month when it has ten individual assets. The Sharpe ratio and Sortino ratio are annualised, while 

all other statistics are reported on a monthly basis. Volatility represents standard deviation and absolute kurtosis 

is reported. In the third column, all the changes are taken as absolute differences of the two strategies, except 

for the Sharpe ratio and Sortino ratio which are taken as relative differences. 

  Commodities   Currencies 

 Start 1973:09 End 2015:02  Start 1999:01 End 2015:02 

  BTSMOM RTSMOM Changes   BTSMOM RTSMOM Changes 

Average Return 1.22% 1.36% 0.14%  1.90% 2.02% 0.12% 

Minimum Return -16.2% -14.0% 2.15%  -47.5% -21.7% 25.76% 

Maximum Return 19.4% 19.4% 0.01%  61.2% 87.5% 26.33% 

Volatility 4.0% 4.0% 0.00%  8.2% 8.2% 0.00% 

Negative Volatility 2.5% 2.1% -0.38%  5.8% 3.3% -2.47% 

Skewness -0.04 0.67 0.70  1.11 6.18 5.08 

Kurtosis 4.88 5.49 0.61  22.96 64.03 41.07 

Sharpe ratio 1.06 1.18 11.58%  0.80 0.85 6.49% 

Sortino ratio 1.68 2.21 31.44%  1.14 2.11 85.83% 

Maximum Drawdown 26.4% 23.0% -3.40%  63.3% 21.7% -41.63% 

95% VaR 5.2% 4.4% -0.80%  6.6% 4.8% -1.85% 

Expected Shortfall 7.4% 6.5% -0.96%   13.6% 8.5% -5.16% 

        

  Rates   Equities 

 Start 1991:05 End 2015:02  Start 1993:10 End 2015:02 

  BTSMOM RTSMOM Changes   BTSMOM RTSMOM Changes 

Average Return 3.87% 3.87% 0.00%  1.15% 1.57% 0.42% 

Minimum Return -13.9% -14.3% -0.45%  -20.6% -17.1% 3.48% 

Maximum Return 74.8% 79.6% 4.81%  33.2% 49.4% 16.23% 

Volatility 7.2% 7.2% 0.00%  6.6% 6.6% 0.00% 

Negative Volatility 3.1% 3.1% -0.07%  4.0% 3.2% -0.73% 

Skewness 3.29 4.11 0.82  0.58 2.88 2.30 

Kurtosis 33.82 43.52 9.70  6.20 19.38 13.17 

Sharpe ratio 1.85 1.85 -0.11%  0.60 0.82 36.83% 

Sortino ratio 4.28 4.38 2.26%  1.00 1.68 67.78% 

Maximum Drawdown 33.8% 22.7% -11.07%  51.1% 36.7% -14.44% 

95% VaR 5.4% 4.6% -0.80%  9.2% 5.6% -3.68% 

Expected Shortfall 8.6% 8.0% -0.63%   12.4% 9.7% -2.68% 
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5 Conclusion 

The purpose of this paper has been to investigate whether time-varying risk leads to the 

crashes of time series momentum, in similar fashion as for cross-sectional momentum 

documented by Daniel and Moskowitz (2014). Furthermore, we also set out to explore 

a systematic approach to mitigate the crashes of time series momentum based on our 

findings. In order to examine this back-adjusted futures data for 118 individual 

contracts have been used, all futures data has been received from ACIES Asset 

Management. 

 

We find that a basic time series momentum strategy (BTSMOM) exhibits abnormal 

positive returns which provide a challenge to standard asset pricing models. However, 

BTSMOM experiences several large drawdowns in periods after large market declines, 

when the volatility is high in combination with sharp market reversals to the upside. 

Such characteristics are coherent with the findings of Moskowitz, Ooi, and Pedersen 

(2012) and have also been observed in studies on cross-sectional momentum, for 

example Daniel and Moskowitz (2014).  

 

In a detailed analysis of the crash periods of BTSMOM we observe an option-like 

behaviour and, more specifically, during the end of market declines the strategy’s return 

pattern behaves like the payoff structure of a short call option. This characteristic can 

be explained by the strategy’s difference in up and down beta conditioned on bear 

market state. Such return optionality is statistically significant, and therefore enables a 

model for predicting the future return of the time series momentum strategy.  

 

In order to curtail the crashes of BTSMOM, a risk-managed time series momentum 

strategy (RTSMOM) is constructed based on a dynamic weighting system that 

maximises the in-sample Sharpe ratio using predicted strategy return and volatility. The 

dynamic weighting mechanism mitigates the crashes and enhances the return of 

RTSMOM, which leads to a substantial increase in the Sortino ratio. 

 

The robustness checks conducted on subsamples, back-testing and individual asset 

class analysis indicate that the dynamic weighting approach improves the time series 

momentum strategy from a risk-management perspective. The results support the risk-
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managing efficacy of RTSMOM empirically, even though RTSMOM fails to increase 

the average monthly return and Sortino ratio substantially for the asset class rates. 

 

Our suggestion for further research is based on the limitations and the findings of our 

study. We have chosen not to account for transaction costs in this study as this would 

still only be an estimate without further expertise on how real futures trading works. 

This would obviously be of interest for further research to explore in detail the main 

challenges, such as capacity and liquidity constraints, and costs for implementing a time 

series momentum based strategy in a real trading setting.  

 

Given the enhanced performance of RTSMOM through the dynamic weighting 

mechanism it would be of interest to further study in what way the dynamic weighting 

affects the performance of time series momentum. An obvious extension would be to 

try to break done the value added between the prediction of return and volatility.  

 

As discussed in section 4.6, the dynamic weighting mechanism fails to materially 

improve the performance of the asset class rates. We argue that this is due to rates 

relativity low amount of negative volatility in relation to total volatility. Optimizing the 

Sharpe ratio will target total volatility and makes no distinction between positive and 

negative volatility but from an investor perspective, there is obviously a huge difference. 

An interesting extension to our study would be to construct the dynamic weighting 

scheme so it maximizes the Sortino ratio rather than the Sharpe ratio. 
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Appendix 

 

A List of Futures Contracts  

Equity indices: SPI 200 (Australia), FTSE 100 (UK), Hang Seng (Index and Mini, Hong 

Kong), S&P 500 (US, Index and E-mini), Nikkei 225 (Japan, index and combined), 

CAC 40 (France), TOPIX (Index and Mini, Japan), FTSE/JSE Top 40 (South Africa), 

S&P 400 MidCap (US), SMI (Switzerland), Russell 2000 (Index and Mini, US), DAX 

(Germany), OMXS30 (Sweden), IBEX 35 (Spain), EOE (Netherlands), MIB FTSE 

(Index and Mini, Italy), MSCI Taiwan (Taiwan), MSCI Singapore (Singapore), Nasdaq 

100 (US), KLSE Composite (Malaysia), Euro STOXX 50 (Europe), OBX (Norway), 

S&P/TSX 60 (Canada), KOSPI 200 (South Korea), S&P CNX Nifty (India), Dow Jones 

Industrial Average (US), FTSE/ASE 20 (Greece), S&P 600 SmallCap (Index and E-

mini, US), Hang Seng China Enterprise Index (Hong Kong), CBOE Volatility Index 

(volatility of S&P 500 index). 

 

Rates: US T-bond, US 2 year T-note, US 5 year T-note, US 10 year T-note, Australian 

3 month Bill, Australian 3 year Bond, Australian 10 year Bond, Great Britain Long Gilt 

(8.75-13 years), Great Britain 3 month, Eurodollar 3 month, Canada 3 month Banker’s 

Acceptance Rate, Canadian 10 year Bond, Euroyen 3 month, Japanese 10 year Bond 

(Index and Mini), Euribor 3 month, Swiss 10 year Bond, German Bund Euro, German 

Bobl Euro, German Schatz Euro, Korean 3 year T-bond, Italian Long-Term Bond, 

French 10 year OAT Euro. 

 

Currencies: CAD/USD, YEN/USD, CHF/USD, GBP/USD, EUR/USD, AUD/USD, 

KRW/USD, EUR/CHF, EUR/YEN, EUR/GBP, Mexican Peso Index, New Zeeland 

Dollar Index, US Dollar Index. 

 

Commodities: Wheat, Soybean Meal, Soybeans, Corn, Oat, Soybean Oil, Silver, 

Platinum (COMEX and Tokyo), Frozen Orange Juice, Cattle Live, Cocoa, Kansas City 

Wheat, Copper HG, Sugar #11, Robusta Coffee, Lumber, Orange Juice, Cotton #2, 

Lean Hogs, Cocoa LCE, Cattle Feeder, Coffee, Wheat Spring MGE, Gold (COMEX 

and Tokyo, Rapeseed (WCE and ICE), Palladium, NY Harbour ULSD, Crude Oil Light, 

Gasoline Reformulated Blendstock, Gas Oil (Combined), Rough Rice, White Sugar #5, 
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Natural Gas Henry Hub (NYMEX), Brent Crude Combined, Rubber, Palm Oil Crude, 

Natural Gas (ICE), Wheat Milling, White Maize, Gasoline, EUA Emissions, Crude Oil 

WTI.             

 

B Futures Price Back Adjustment Method 

Futures contracts have a limited time span due to its expiry date. So when trading a 

strategy on futures over a time period you actually trade a number of contracts. When 

to close a positon in one contract and open a position in a later contract, i.e. when to 

“roll over”, is generally given by a set rule. This can be decided by open interest, 

volume or a combination of them both. In this thesis all calculations are based on the 

fact that the strategy is invested in the contract with the highest open interest. The first 

step to create a return series for a futures contract is to concatenate the prices of the 

traded contracts.  

To illustrate the adjustment process we assume that the live span of a front contract 

is1,2 ⋯ 𝑡, ⋯ 𝑇 + 1 , the rollover date is 𝑇 + 1, and the closing price of the front contract 

at time 𝑡 is 𝑝(𝑡). Further assume the closing price of the back contract at time 𝑇 + 1 

is 𝑞(𝑇 + 1), so at the rollover date 𝑇 + 1 the strategy closes its position (i.e. sells) at 

the price 𝑝(𝑇 + 1) and establish a new position at the price 𝑞(𝑇 + 1). The strategy’s 

actual return between period 𝑡 and 𝑇 + 1 is given by: 

(𝑝(𝑇 + 1) − 𝑝(𝑡))

𝑝(𝑡)
 

However, the return calculation based on the unadjusted time series will mistakenly 

account for the roll-over gap as well, which shows that the return is:  

𝑞(𝑇 + 1) − 𝑝(𝑡)

𝑝(𝑡)
 

In order to adjust for the price gap between 𝑞(𝑇 + 1) and 𝑝(𝑇 + 1) to make the return 

calculations correct, each price 𝑝(𝑡) on every date 𝑡 on and before date 𝑇 is adjusted 

as follows: 

𝑝(𝑡)𝑎𝑑𝑗  =
𝑞(𝑇 + 1)

𝑝(𝑇 + 1)
∗ 𝑝(𝑡)                                                      

Alternatively, it can be expressed as: 

𝑝𝑎𝑑𝑗(𝑡)  = 𝑟𝑜𝑙𝑙𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑝(𝑡)                                    (9) 

𝑟𝑜𝑙𝑙𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑞(𝑇 + 1)

𝑝(𝑇 + 1)
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This leads to the return calculation on adjusted time series equals to strategy actual 

return at time 𝑇 + 1: 

𝑞(𝑇 + 1) −
𝑞(𝑇 + 1)
𝑝(𝑇 + 1)

∗ 𝑝(𝑡)

𝑞(𝑇 + 1)
𝑝(𝑇 + 1)

∗ 𝑝(𝑇)
=

(𝑝(𝑇 + 1) − 𝑝(𝑡))

𝑝(𝑇)
 

 

To back-adjust a contract other than the adjacent contract the process is similar to the 

one period back-adjustment is shown above. The difference is that the unadjusted price 

at time 𝑡 - 𝑝𝑛(𝑡) - is adjusted by the cumulative rollover ratio from contract 2 to contract 

n given by 

∏
𝑞𝑖(𝑇 + 1)

𝑝𝑖(𝑇 + 1)

𝑛

𝑖=2

 

Where 𝑞𝑖 𝑎𝑛𝑑 𝑝𝑖 are front contract and new contract, respectively, for contract i, and   

𝑝𝑖(𝑇 + 1) and 𝑞𝑖(𝑇 + 1) are their unadjusted prices at the roll-over day 𝑇 + 1. 

Thus, the adjusted price for contract n is then given by: 

𝑝𝑛
𝑎𝑑𝑗(𝑡) = 𝑝𝑛(𝑡) ∏

𝑞𝑖(𝑇 + 1)

𝑝𝑖(𝑇 + 1)

𝑛

𝑖=2

 

 

C Maximum Sharpe Ratio Optimisation 

This appendix explains the maximum Sharpe ratio optimisation approach employed in 

the dynamic weighting presented in Section 4.1. 

The assumed setting is that in the discrete period from 1,2,…,T, investors can allocate 

capital in two assets, a risky asset, the basic time series strategy in this study, and a risk 

free asset. No trading cost and no interest for risk free asset are assumed. Further assume 

over the period 𝑡 to 𝑡 + 1, the excess return on risky asset  𝑟̃𝑡+1 is distributed normally, 

which a conditional mean 𝜇𝑡 and conditional variance 𝜎𝑡
2. That is: 

𝜇𝑡 = 𝔼𝑡[𝑟̃𝑡+1]   and  𝜎𝑡
2 = 𝔼𝑡[(𝑟̃𝑡+1 − 𝜇𝑡)2]                      (11) 

Suppose investors know 𝜇𝑡 and 𝜎𝑡
2 at 𝑡 = 0 for  𝑡 ∈ {0, … , 𝑇 − 1}, and investors aim 

to maximise the full period Sharpe ratio of a managed portfolio by allocating a fraction 

𝑤𝑡 of portfolio value in the risky asset and a fraction 1 − 𝑤𝑡 in the risk-free asset at the 

beginning of each period 𝑡 ∈ {0, … , 𝑇 − 1}. Thus, at time 𝑡 the expected return and 

variance of the portfolio in next period, 𝑡 + 1 is: 
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𝑟̃𝑝,𝑡+1 = 𝑤𝑡𝑟̃𝑡+1 ∼ 𝑁(𝑤𝑡𝜇𝑡 , 𝑤𝑡
2𝜎𝑡

2) 

The Sharpe ratio over T periods is: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝔼[

1
𝑇

∑ 𝑟̃𝑝,𝑡
𝑇
𝑡=1 ]

√𝔼[
1
𝑇

∑ (𝑟̃𝑝,𝑡 − 𝑟𝑝̅)2𝑇
𝑡=1 ]

 

Given assumptions above, to maximise Sharpe ratio is equivalent to solving the 

optimisation problem as follows: 

max
𝑤0,…,𝑤𝑡−1

𝔼[
1

𝑇
∑ 𝑟̃𝑝,𝑡

𝑇

𝑡=1

] 

𝑠. 𝑡.  𝔼 [
1

𝑇
∑(𝑟̃𝑝,𝑡 − 𝑟𝑝̅)

2
𝑇

𝑡=1

] = 𝜎𝑝
2 

If the period length is sufficiently short, then𝔼𝑡 [(𝑟̃𝑝,𝑡 − 𝑟̅)
2

] ≈  𝜎𝑡
2 = 𝔼𝑡[(𝑟̃𝑡+1 − 𝜇𝑡)2]. 

With this approximation, it arrives the Lagrangain as below:  

max
𝑤0,…,𝑤𝑡−1

ℒ ≡ max
𝑤𝑡

(
1

𝑇
∑ 𝑤𝑡𝑟̃𝑡+1 

𝑇−1

𝑡=0

) − 𝜆(
1

𝑇
∑ 𝜎𝑝

2

𝑇−1

𝑡=0

) 

Further substitute in the conditional expectation from equation (11), it gives the 

following function:  

max
𝑤0,…,𝑤𝑡−1

ℒ ≡ max
𝑤𝑡

(
1

𝑇
∑ 𝑤𝑡𝜇𝑡 𝑇−1

𝑡=0 ) − 𝜆(
1

𝑇
∑ 𝑤𝑡

2𝜎𝑡
2𝑇−1

𝑡=0 )                  (12) 

Take the first order conditions of (12), it arrives the optimising condition as shown 

below: 

𝜕ℒ

𝜕𝑤𝑡
|𝑤𝑡= 𝑤𝑡

∗ =
1

𝑇
∑ 𝜇𝑡 − 2𝜆𝑤𝑡

∗𝜎𝑡
2

𝑇

𝑡=1

= 0    ∀𝑡 ∈ {0, … , 𝑇 − 1} 

It suggests the optimal fraction allocated in risky asset is 𝑤𝑡
∗ given by: 

𝑤𝑡
∗ =

1

2𝜆
 
𝜇𝑡

𝜎𝑡
2 

 

D Volatility Forecasting of Time Series Momentum 

This appendix explains the estimated ex-ante volatility needed in the dynamic 

weighting system explained in Section 4.1. 
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As explained in Section 4.1, the GARCH-GJR model (Glosten, Jagannathan, and 

Runkle, 1993) is firstly used to fit the monthly return series of the basic time series 

momentum strategy (BTSMOM) as shown below: 

𝑅𝐵𝑇𝑆𝑀𝑂𝑀,𝑡 = 𝜇 + 𝜀𝑡 ,        𝜀𝑡~𝑁(0, 𝜎𝑡
2)                                          

𝜎𝑡
2 = 𝜔 + 𝛽𝜎𝑡−1

2 + [𝛼 + 𝛾𝐼(𝜀𝑡−1 < 0)]𝜀𝑡−1
2                                

To combine the predicted information from GARCH process and existing information, 

then, we conduct a predicting regression of realised monthly volatility at month 𝑡 on 

estimated monthly volatility of month  𝑡  from GARCH-GJR model (𝜎̂𝐺𝐴𝑅𝐶𝐻,𝑡 ) and 

realised volatility at 𝑡 − 1 calculated from the past 6 month daily return (𝜎̂126,𝑡−1). The 

results are displayed below:  

  Intercept 
   

Coefficient 0.013 0.310 0.191 16% 

(T-stat) (6.34) (5.09) (2.40)   

Finally, the fitted estimate 𝜎𝑡̂, together with predicted return, is used as an input into 

the dynamic weighting approach as shown by equation (8). 

 

𝑅2 


