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Abstract

Water purification is commonly referred to as an economically valuable ecosystem service. Yet,
the effect of upstream land-use on downstream water quality is poorly understood, and the economic
implications even less so. With panel data of upstream land-use, raw water quality and chemical costs
for 76 municipal water treatment plants in Sweden, this MSc thesis studies how land-use affects water
quality and, consequently, water treatment costs. The findings suggest that land-use affects levels of
E. coli (a microbiological pollutant) in downstream water, but the effect of E. coli on treatment costs
remains unclear. Instead, turbidity of water is found to increase treatment costs, but no significant
effect of upstream land-use on turbidity is found, possibly because of limited data quality. Whereas a
recently published study (Vincent et al., 2015) provided econometric evidence that upstream forests
reduce water treatment costs, it was only implicitly assumed that water quality was the channel for
this effect. By adding water quality data to the analysis, endogeneity concerns are addressed and a
better understanding is gained of how ecosystems create value by affecting water quality.
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1 Introduction

"The things which have the greatest value in
use have frequently little or no value in
exchange; on the contrary, those which have
the greatest value in exchange have frequently
little or no value in use. Nothing is more
useful than water: but it will purchase
scarcely anything; scarcely anything can be
had in exchange for it."

Adam Smith (1901)
An Inquiry Into The Wealth Of Nations

This is a study about clean freshwater and about the value of the ecosystem services that help provide
it. More specifically, the aim of this thesis is to study if and how the value of the natural processes that
bring reasonably clean surface water to the intakes of municipal water treatment plants in Sweden can
be econometrically inferred, by studying the treatment costs in these plants. Assuming that cleaner raw
water is less costly to treat, it is quite intuitive that land-uses from which the run-off water is clean, do
indeed provide a valuable service to water treatment plants and, hence, for society at large. This study
explores whether the monetary value of such ecosystem services can be quantified by studying them as
intermediate inputs into the water treatment plants’ production processes. A more thorough discussion
on the concept of ecosystem services is provided in section 2.1.

A safe supply of clean water is fundamental to human prosperity, and was highlighted as one of the
UN’s sustainable development goals, adopted by world leaders in the fall of 2015.1 Understanding the
ecological processes that determine water quality is key to ensuring a safe supply of clean drinking water,
but environmental scientists are better suited than economists for that work. However, economists can
apply their knowledge of firm and consumer behaviour to understand how these ecological processes create
value and how this value can be included in decision-making and economic theory (Atkinson, Bateman,
and Mourato, 2012).

The value of nature, and of the natural processes that are beneficial to society, is the key focus of
environmental economics. For a long time, environmental economists have built a foundation of knowledge
about the causes of environmental degradation (Dasgupta, 2008), its costs to society (Holmes, 1988;
Dearmont, McCarl, and Tolman, 1998; Mjelde et al., 1984) and possible cures (Arrow et al., 1996; Daily
et al., 2000; Jones and Vossler, 2014). The conceptual understanding of environmental resources as public
goods (Hardin, 1968) and their degradation as a consequence of un-internalised external costs (Pigou,
1924) is widely accepted and a rapidly growing body of empirical research is increasingly filling these
concepts with meaning and content. The increasing popularity of the concept of ecosystem services
has changed the focus from estimating the costs of environmental degradation to assessing the benefits
of nature, whether it is degraded or not. Many studies, the current one among them, aim to infer a
monetary value of environmental goods and services for which market prices do not reflect the benefits to
individuals and society, so-called valuation studies (see for example Gallai et al. 2009; Ghermandi et al.
2009; Byström 2000; Vincent et al. 2015). This area of research is highly policy relevant, as many societies
are making it a key priority to address market failures in order to halt environmental degradation and to
find ways of living up to the promise of sustainable development (Brundtland et al., 1987).

Traditionally, many valuation studies have used so-called stated preference and revealed preference meth-
ods. Since not least stated preference methods, which depend on survey-based data on stated willingness-

1The goals on the UN’s website: http://www.un.org/sustainabledevelopment/sustainable-development-goals/
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to-pay for different hypothetical environmental goods and services, have been criticised for being unreliable
(Kahneman and Knetsch, 1992; Daily et al., 2000), there has recently been calls for research using other
methods. Production and cost function based methods combine firm-level production and cost data with
environmental quality data to study how environmental quality affects consumer and producer surpluses.
In their meta-study on valuations of ecosystem services related to watersheds in the Nordic countries, Bar-
ton et al. (2012) explicitly call for more studies using the production cost approach. This study responds
to that call, as its aim is to estimate the effect of upstream land-use on downstream water treatment
costs. This is done in two stages, where first the effect of land-use on water quality is estimated and then
the effect of water quality on water treatment chemical costs.

Four different types of land-use are in focus in this study; forest, logged forest, agricultural and urban
areas — and two indicators of water quality; turbidity and E. coli. The first, turbidity, is a measure of
suspended solids in the water, which has been used in previous studies on the effects of water quality on
treatment costs (Dearmont, McCarl, and Tolman, 1998; Moore and McCarl, 1987; Holmes, 1988). The
second water quality parameter, E. coli, is a microbiological pollutant and a commonly used indicator
of pathogens, which is highly relevant in a water treatment context because of the current focus on
mitigating the risk of disease outbreaks. In 2010, a parasite known as Cryptosporidium made almost
half the population, approximately 27,000 individuals, of the Swedish town Östersund ill after it had
been spread through the public water supply (Widerström et al., 2014). After this event, several Swedish
municipalities have made or are considering investments in more modern, and often very expensive, water
treatment techniques.

A recently published study that uses the cost function method to value ecosystem water purification was
conducted in Malaysia by Vincent et al. (2015). This study, the first of its kind according to the authors,
used Geographic Information Systems (GIS) based land-use data and monthly data on short-run costs
from treatment plants in the Perak region of Malaysia to estimate the effect of land-use on treatment
costs. The study reported robust evidence that forests, especially virgin forests, in a water treatment
plant’s catchment area reduced the plant’s treatment costs relative to other upstream land-uses. The
current study employs a similar approach, but adds to the literature by studying water quality as the
intermediate link between land-use and treatment cost. Besides providing relevant information about how
land-use affects water quality, this approach also addresses an econometric concern in the Vincent et al.
study. Since water quality may not only affect treatment costs directly but also the quantity of water
that can be treated, water quantity is possibly an endogenous explanatory variable in their model.2 By
explicitly controlling for water quality in the cost function specification, such endogeneity concerns are
mitigated.

The current study is, to my knowledge, the first cost function based valuation study of ecosystem water
purification services in Sweden. Empirical results, from random effects as well as generalised method of
moments (GMM) estimations, indicate that forests reduce levels of E. coli in downstream water, but the
results can not be considered as very robust. No significant effect of upstream land-use on the turbidity
of water is found in this study, possibly because data on turbidity levels is too incomplete. In the second
stage of the analysis, where the effect of water quality on treatment costs is analysed, it is found that
the turbidity of raw water has a significant effect on chemical costs, whereas the effect of E. coli remains
unclear.

It is possible that low data quality is hampering inference of the effects studied in this paper. The
water quality data is an unbalanced panel dataset, something that can only partially be compensated for
by imputations. Another part of the dataset was created by the author, using Geographic Information
Systems (GIS). Combining maps from several different sources, data was obtained for the exact locations

2Vincent et al. (2015) are aware of this concern and use lagged values of water quantity as an instrumental variable to
address it.
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that were studied. The availability and quality of GIS data is, however, quite limited, which could be one
reason why the results are not more robust. Publicly available GIS data is currently becoming better as
well as more prevalent, which implies that future research on the effects of land-use will possibly be able
to benefit from higher precision maps.

Besides adding to the body of empirical research on ecosystem service valuations, this study provides some
input to the methodological development in the area of water purification service valuations. Nevertheless,
more research is clearly needed in order to understand how ecosystems affect the quality of drinking water,
in Sweden and elsewhere, as well as how land-use matters.

The rest of this thesis is structured as follows: Section 2 presents the backdrop to the study and describes
the concept of ecosystem services as well as how drinking water provision is governed in Sweden. Section 3
provides an overview of the academic literature about the economics of ecosystem services, with a focus on
water purification services, and how monetary valuations of these services can be used to enhance decision
making and complement national accounts. Section 4 specifies the research questions and in section 5 the
method is described as well as the data collection process. The results of the empirical analysis are given
in section 6 and section 7 concludes.

3



2 Background

In this section I will briefly explain the concept of ecosystem services and discuss the policy relevance of
deepening the understanding of how ecosystems contribute to the economy and how this can be measured.
I will also give some background information about how public drinking water provision is governed in
Sweden.

2.1 What are ecosystem services and why should we care about their value?

The concept of ecosystem services is about acknowledging that not all of what is produced in an economy
can be attributed to the productivity of human beings. For example, even the most talented and hard-
working farmer will find that he or she is in trouble if pollinators don’t do their job. Even if pollination
is a service that is given to farmers for free, it can not be considered as lacking value.3 The reason
why ecosystem service valuations have become the object of so much research (see section 3), is that
environmental economists increasingly argue that our understanding of the economy is only partial if we
ignore the production of ecosystems (Dasgupta, 2008).

The Millennium Ecosystem Assessment (UN, 2005), following an initiative launched by the UN secretary-
general Kofi Annan in 2000, was hugely influential in putting ecosystem services on the political agenda
and making the concept more known and used. The project mapped those ecosystem services that most
substantially enhance human well-being, evaluated their status and assessed if they were being used
sustainably.4 It was found that 15 out of the 24 services that were studied were not being sustainably
used and that the service in focus of the present study, freshwater purification, was among those that
were used in an unsustainable way. Since clean freshwater is a life necessity, it must be considered highly
relevant to find ways of ensuring the sustainability of the ecosystem services that sustain it. The fact
that clean water was highlighted as one of the UN’s 17 sustainable development goals, adopted by world
leaders in the fall of 2015, ensures that it will remain a political priority.

Another important contribution of the Millennium Ecosystem UN (2005) was that it categorised ecosystem
services in the way that is most often used today. These categories are provisioning services (such as the
provision of freshwater), regulating services (such as the purification of water), cultural services (such as a
breathtaking view) and supporting services (the underlying processes that support the entire ecosystem,
such as the nutrient cycle).

A much cited example of how ecosystems provide services, which is highly related to this current study, is
highlighted by Chichilnisky and Heal (1998) and regards the water provision in New York City. According
to their paper, the city was facing a multi-billion-dollar cost of a new filtration plant in order to reach
the Environmental Protection Agency’s (EPA) water standards, but avoided the cost by restoring the
upstream ecosystems in the Catskills watershed, north of the city. The authors have been criticised for
not correctly describing the actual situation in New York (Sagoff, 2002), but the case is mentioned here
as an illustration of the type of effect that could possibly exist.

Most water runs great distances through various types of landscapes before it is collected into a water
treatment plant in order to become drinking water. It is therefore highly complex to sort out exactly how
different ecosystems affect water quality and how their respective characteristics and locations matter.
Even though previous studies have shown that forests purify water and that agricultural land-uses reduce
water quality (see for example Tong and Chen 2002; Vincent et al. 2015), they have only roughly accounted
for the heterogeneity of forests and agriculture.

3For an actual assessment of the monetary value of all pollination in agriculture worldwide, see Gallai et al. (2009).
4Sustainability is defined, in this UN report, as current use that is not jeopardising future use, aligned with the definition

in Brundtland et al. (1987).
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Ecosystem services are, by their very definition, beneficial for people.5 The benefits can, however, be
direct or indirect and values can be for use or non-use of the services. In the field of environmental
economics, polar bears are commonly referred to in the context of non-use values. Clearly, there are
people who would be willing to pay something to save the polar bears, even though they have never seen
one in life and don’t intend to change that — only the knowledge that there are polar bears in the world
is a source of utility for these individuals. It could be argued that clean water can also be valued for its
existence and not only its use. However, the methodological approach in this study — valuing ecosystem
services based on how they enter a firm’s cost function — can only capture use values.

2.2 Drinking water in Sweden

With almost 100,000 lakes, freshwater is abundant in Sweden. There are approximately 1900 treatment
plants that produce drinking water for the public, and most of them are run by municipalities or mu-
nicipally owned firms. In some cases, several municipalities share the ownership of a firm that produces
drinking water for their inhabitants. Many of the firms that run water treatment plants also run the
wastewater treatment and some are also in the energy business. Consumers pay for their water use, but
prices are set by municipalities not on a marginal cost basis, but to cover all costs of water delivery as well
as wastewater treatment. Prices can thus not be expected to convey much information about treatment
costs.

In this paper, I have only studied treatment plants that treat surface water and thus all water quality
data refers to surface water as well. The majority of water treatment plants in Sweden treat groundwater,
but many of these plants are very small. In fact, half of the population drink treated surface water,
including the population of Sweden’s three largest cities — Stockholm, Gothenburg and Malmö. The
quality of the surface water is thus of high importance for a large share of the population, and it should
be kept in mind that the supply of drinking water is also an issue of public safety. Large-scale outbreaks
of waterborne disease are uncommon, but as late as November 2010 approximately 27,000 inhabitants of
Östersund were affected by disease after a parasite known as Cryptosporidium was spread through the
public water supply from one of the city’s treatment plants (Widerström et al., 2014). Since then, the
Swedish water treatment industry has had a strong focus on how to minimise the risk of such events and
several municipalities are considering costly investments in modern treatment techniques.6

2.3 Policy relevance

"In the quest to increase GDP, we may end up with a society in which citizens are worse off."

This quote is from the book Mismeasuring our lives by Stiglitz, Sen, and Fitoussi (2010), probably one
of the best examples of the political importance of the discussion around welfare measures and the role of
GDP in recent years. The book is the result of a project initiated by the former French president Nicolas
Sarkozy, who in 2008 asked Nobel prize winners Joseph Stiglitz and Amartya Sen as well as the French
economist Jean-Paul Fitoussi to form a commission and write a report about the shortcomings of GDP
and propose how to produce more relevant indicators to measure social progress.

The ambition to include the value of ecosystem services in decision-making is becoming increasingly
important as a theme in policy around the world. A report demanded by the Swedish government in 2013
proposed several reforms to visualise and integrate the value of ecosystem services and the EU’s so-called
Biodiversity strategy has as one of its objectives to assess the economic value of ecosystem services and

5Ecosystem Services are defined in The Millennium Assessment as "the benefits people obtain from ecosystems".
6For the purpose of this study, two study visits were made at water treatment plants, to provide insight into the

treatment process. During these visits, conversations were held with plant technicians and issues of investments in new
treatment technique were discussed. The study visits were made in Järfälla and Västerås during the fall of 2015.
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integrate these into accounting and reporting systems at EU and national level by 2020 (Barton et al.,
2012).7 On a global scale, there is the UN’s System of Environmental-Economic Accounting (SEEA),
which is a satellite system to the System of National Accounts (SNA). Studies of ecosystem service values
are clearly necessary to underpin these policy goals.

7The Swedish government report, in Swedish, can be found at: http://www.regeringen.se/contentassets/
ba53cd9f18b74f348eb0ff31e8280d60/ synliggora-vardet-av-ekosystemtjanster-sou-201368. The EU’s biodiversity strategy can
be found at http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm
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3 Literature overview

The purpose of this study is to econometrically infer the value of the ecosystem service of water purifi-
cation, measured as an input to the production of drinking water in municipal water treatment plants in
Sweden. In order to guide the reader through the relevant research fields, environmental and ecological
economics, and to position the current study in these fields, I will use this section to introduce some
basic concepts and, thereafter, give a brief overview of the body of environmental valuation studies made
to date. I will specifically focus on different conceptual approaches to environmental valuation studies,
introduce the cost function method and present some relevant empirical results. The literature will be
related to the current study along three different dimensions: (i) Methodological choices, where the fo-
cus has often been on so-called stated preference methods but where calls for research have emphasised
production/cost function approaches; (ii) the different ways in which environmental valuation studies are
used and integrated into economic thinking; and (iii) the emphasis on some specific ecosystem services in
previous empirical research — and where there are gaps.

3.1 Basic concepts in environmental economics

The field of environmental economics is to a large extent based on the concept of external costs: when an
economic actor pollutes the air, the water or the ground without having to pay for the damage he or she is
inducing on others, the cost is spread out among all those who use the air/water/ground, hence external.
Making the polluter pay for the full cost of his or her actions (i.e. internalising the cost) requires that
the external costs of pollution and other environmental degradation are assessed, which has often been
the objective of research in environmental economics. The pioneer behind the concept of external costs
was A.C. Pigou, who pointed out situations where, in his words, "marginal trade net product is greater
than marginal social net product" (Pigou, 1924).

Another important concept in environmental economics is that of public goods, most famously framed
by Hardin (1968) in his hugely influential The Tragedy of the Commons. The title refers to a pasture
open to all herdsmen of some area (a commons), where they can let their cattle roam. The commons is
a public good, which is why the herdsmen, being rational and seeking to maximise their own gain, will
have very weak incentives to abstain from adding another animal to the herd even if there are so many
cattle in the pasture that it is being overgrazed. In Hardin’s words: "Each man is locked into a system
that compels him to increase his herd without limit — in a world that is limited. Ruin is the destination
toward which all men rush, each pursuing his own best interest in a society that believes in the freedom
of the commons" (Hardin, 1968, p. 1244). Lakes and streams are clearly public goods and, even though
there are regulations about what people can and cannot do with Swedish water bodies, property rights
are absent when it comes to the water that runs through the Swedish landscape. Hardin’s concept is thus
very relevant in the context of this study.

3.2 The value of the environment and the methods to find it

Dasgupta (2008) relates Hardin’s claim about public goods to the concept of ecosystem services by saying
that "property rights to natural capital are often either vaguely defined or weakly enforced, meaning that
nature’s services are underpriced in the market" (p. 2). Whereas Hardin and Pigou focused mainly on the
costs of environmental degradation, Dasgupta highlights the benefits of the services that nature constantly
provides. These are mirror images, and the true cost of environmental degradation must reflect the benefit
that is lost. This is why much research in environmental economics has been focused on understanding
the types of benefits people enjoy from the environment, and it is the reason why so-called valuation
studies have become an increasingly important part of environmental economics (Atkinson, Bateman,
and Mourato, 2012).
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Several methods have been used in environmental valuation, all with their specific advantages and draw-
backs. In their thorough literature review of the field of ecosystem service valuations, Atkinson, Bateman,
and Mourato (2012) list the most commonly used methods for environmental valuation as being stated
preference methods, revealed preference methods, adjusted market prices and production function methods.

In valuation studies with stated preference methods — many times a method called contingent valuation
is used — respondents are typically asked about their willingness to pay for some non-market good. Since
respondents are asked about a hypothetical payment, their responses might differ from payments that
they would actually make — hence the term hypothetical bias. A related critique has been put forward by
Kahneman and Knetsch (1992) who claimed that the validity of contingent valuation methods suffered
from respondents’ insensitivity to scope. For example, Kahneman and Knetsch found that residents of
Toronto expressed a willingness to pay to prevent the drop in fish populations in all Ontario lakes that
was only slightly higher than the willingness to pay to preserve the fish stocks in only a small area of
the province. They call this problem the embedding effect. In a meta-analysis of 28 stated preference
valuation studies, Murphy et al. (2005) confirm that biases exist, but argue that they can be mitigated
by study design and calibration techniques.

Two well-known revealed preference methods are travel cost and hedonic pricing. In a study using the
travel cost method, a lower bound of the value of a nature area would be inferred by observing what
visitors are willing to pay to travel there (assuming that they get no utility from the travelling experience
in itself). An example of a study using hedonic pricing, which is relevant in the context of the current
study, is given by Leggett and Bockstael (2000). They study how waterfront real estate prices in a county
in the Chesapeake bay on the US east coast are affected by local water quality, and find that an increase
in fecal coliform bacteria in the water significantly depresses property prices. This is thus another way
to estimate the value of the ecosystem service studied in the current paper and it shows how different
methods value different aspects of value. Even in the study by Leggett and Bockstael, the estimated value
of higher water quality should be seen as a lower bound since, for example, the benefit of visitors to the
area is not included.

Clearly, there is a range of problems and limitations in ecosystem valuation studies. A few of those are
mentioned by Daily et al. (2000), who claim for example that contingent valuation surveys, in which
individuals are asked to value hypothetical environmental changes, are "improving but still notoriously
unreliable" (Daily et al., 2000, p. 4). The authors mention that all methods that rely on individual
preferences to construct social values, i.e. stated and revealed preferences, are heavily influenced by how
much individuals know about the environment, hence the outcome is not more informed than the people
whose values are being assessed. However, Daily et al. remind the reader of an important point: even
market prices are flawed as an indication of value, if externalities mean that prices are not reflecting the
full social costs of production. To conclude, no valuation method is perfect and the best choice depends
on the object and purpose of the specific study. The plethora of valuation techniques probably reflects
the complexity of valuing environmental change.

3.2.1 Production/cost function based methods

One way to infer the value of environmental goods and services, and the method that will be deployed
in the current study, is to identify situations in which these are factors in the production function of a
market good. In these cases, estimated production functions or cost functions can be used to link the
physical effects of environmental change to changes in market prices and quantities and ultimately to
producer and consumer surpluses.

One example of such a study is given by Mjelde et al. (1984), who use data on ambient ozone levels (a
pollutant known for its negative effect on crop yields) and firm-level data from crop-producing farms in
the state of Illinois, US, to estimate a production function with air quality as one of the arguments besides
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capital and labor, assuming that farmers adjust the levels of inputs based on observed yield in order to
maximise profit. They find that, at the average level of ambient ozone, a 1% increase in ozone leads to
a 0.408% decrease in profits. They find that total cost of ozone pollution was USD 226 million for crop
producing farmers in Illinois in 1980.

Neeliah and Shankar (2010) use a similar framework to study the effect of ozone on crop yields in the
UK, adding to the analysis that farmers may adjust both inputs and outputs (choice of crop) in response
to observed yields. They use a panel dataset of 66 UK cereal farms over 6 years and include fixed effects
to calculate profit elasticities with regards to ozone levels. Their findings suggest that a 10% increase in
ozone, above its mean value, would lead to a 1.3% decrease in variable farm profits (significant at the 10%
level).

Daily et al. (2000) claim that methods based in cost functions (such as "valuing natural water purification
at the cost of its technological alternative, a filtration plant for instance", p. 4) provide only partial, lower
bound indications of value, because it does not take into account the value of e.g. clean lake water for
swimming in the summer or the improved habitat for fish. This must clearly be true in the case of ozone
and agricultural production as well, since low ozone levels must also be valued for its health implications,
for example.

A range of studies have used cost function based methods to study the costs of water pollution (Dearmont,
McCarl, and Tolman, 1998; Moore and McCarl, 1987; Holmes, 1988) and the study by Vincent et al.
(2015) uses a similar approach to value upstream ecosystem services. These studies will be treated more
thoroughly in section 3.5.1, below.

3.3 Taking the value of the environment into account

As a consequence of external costs and the public good characteristic of many environmental benefits,
market forces cannot be expected to lead to the most economically efficient use of environmental resources.
That is why environmental valuation studies often come to be used as information inputs into decision
making regarding resource and environmental management. If the monetary value of the environmental
benefits of, say, a wetland area are greater than the economic value of the same area being drained and
used for some other purpose, then social welfare is clearly not maximised if the area is drained. According
to A. M. I. Freeman, Herriges, and Kling (2014, p. 10), if the objective of policy-making is to maximise
net social economic value, then benefit-cost analysis becomes the tool to reach optimum management and
decision-making becomes almost mechanical. Clearly, this is a very idealised view of decision-making and
the process of correctly estimating marginal benefit and marginal cost curves remains a challenge.

Arrow et al. (1996) argue for the use of benefit-cost analysis as one of the fundamental criteria for
evaluating proposed regulations in such fields as environment, health and safety. They highlight an
example of a drinking water regulation that the US Environmental Protection Agency (EPA) implemented
in 1979 that was assessed to save lives at a cost of USD 200,000 per life saved. Compared with another
regulation regarding wood-preserving chemicals that was estimated to save lives at a cost of USD 6.3
trillion, benefit-cost analysis should tell policy-makers to make the drinking water regulation stricter and
the one regarding wood-preserving chemicals less strict (given that both regulations are in place primarily
to save lives). Not only does benefit-cost analysis illuminate such trade-offs in policy-making, it can also
tell decision-makers how much regulation is "enough".

An illustrative example of a location-specific benefit-cost analysis is given by Barbier (2007) in a study
where the economic value of mangroves in Thailand is estimated and social values for services such as
reduction of coastal flooding are compared with private values if the mangroves are converted for shrimp
farming. Whereas private profits double from around USD 600 to USD 1,200 if a representative hectare
of mangrove is converted, the social value of a conserved mangrove is estimated at around USD 12,000.
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This is a situation where an environmental valuation integrated in a benefit-cost analysis would lead to a
more economically efficient outcome.

On a micro-level, valuation studies of the environment and its services could be used as an aid in decision-
making and public policy. But it could also play a role on a much larger scale, in national income statistics.
GDP is by far the most commonly used statistic to evaluate the health of an economy, but it is no surprise
to economists that GDP is a rather imperfect measure of economic performance (Dasgupta, 2009), and
only a crude proxy of human well-being (see for example Deaton 2007 for a discussion about how GDP
correlates with self-reported life satisfaction and health).

The value of the environment and the goods and services it provides may seem negligible in official
statistics on national income, such as GDP. That is because GDP only reflects the value of production at
market prices and, as previously discussed, markets tend to be non-existent for most environmental goods
and services. Consequently, argues Dasgupta (2008), national income statistics would look quite different
if shadow prices for ecosystems and ecosystem services were included. This relates to the current study
in the sense that when treatment plants pay for chemicals, this adds to GDP, but if ecosystem services
substitute chemicals, this is not accounted for.

3.4 Ecosystem service valuation

From an economic point of view, ecosystem services can be any contribution of the natural world to the
generation of goods and services which people value. This can be physical products (such as food) as well
as services that generate use values (such as recreational areas that people can visit) and even non-use
goods that are valued simply for their continued existence (use and non-use values are introduced in
section 2.1).

Economic valuations of ecosystems require some understanding of the natural (biological, ecological,
chemical or physical) processes that are in play. For this, natural scientists are irreplaceable. They can
explain how upstream land-use affects water purification or why a wetland might be helpful in reducing
eutrophication of a lake or the sea. But to put an economic value on these ecosystem services, we need
also to understand how these services come into play in peoples’ utility functions and firms’ cost or
production functions. Atkinson, Bateman, and Mourato (2012) gives the somewhat obvious example that
the recreation value of a woodland depends on where it is located, since it is likely to give rise to higher
social value the more proximate it is to a potential visiting population and the larger the amount of visitors
the higher is the aggregated utility. The amount of economic valuation studies on ecosystem services has
grown "at an almost exponential rate" during recent years (Atkinson, Bateman, and Mourato, 2012, p.
22) and a few contributions will be mentioned in the following paragraphs.

An especially illustrative ecosystem service is pollination. Compared with e.g. the nutrient cycle, which
just passively goes on in the background, pollination can more intuitively be understood as a service,
with pollinators such as honeybees actively transferring pollen and upholding the productivity of plants.
Gallai et al. (2009) estimated the value of pollination for agricultural production worldwide and found
the total economic value to be of the order of EUR 153 billion (quite clearly, a number that should be
taken as indicative).

Costanza et al. (1997) aimed to estimate the value of 17 ecosystem services for the entire biosphere. Using
previously conducted valuation studies, they estimated an average value of a certain ecosystem service per
biome, then multiplying the average value with the total area on the globe of that specific biome.8 They
claimed that the value of the ecosystem services studied were in the range of USD 15-64 trillion per year,
with an average of USD 33 trillion (global gross national product was around USD 18 trillion per year at

8Biomes is a very rough classification of the earth into different types of areas. In Costanza et al. (1997) the planet
consists of 16 biomes, such as desert, open ocean and tropical forest.
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the time). Even though the authors stressed the fact that their study only gave a "crude initial estimate"
of the total value of ecosystem services, the study was heavily criticised. One example of this critique
comes from Bockstael et al. (2000). They approve of the general ambition of Costanza et al. — showing
the aggregate value of the natural world — but argue that the approach makes little sense. Whereas
Costanza et al. seem to talk about the economic value of ecosystems as if the choice were between having
them as they are or not having them at all, Bockstael et al claim that "economic value is about tradeoffs
and as such requires defining the alternatives clearly". In their view, ecosystem service valuation must
be about evaluating well-defined changes to ecosystems. The approach of the current study is in line
with this view, as the purpose is to find how water quality and treatment costs are affected by marginal
changes of different upstream land-uses.

3.4.1 Ecosystems as natural assets

Several authors, including Daily et al. (2000), Dasgupta (2008) and Barbier (2011), describe ecosystems
as natural capital that, if properly managed, yields a flow of services such as the production of goods (e.g.
timber), life-fulfilling conditions (such as beauty and serenity) and life supporting processes (e.g. water
purification). When human intervention degrades an ecosystem, the effect on human well-being can have
an inter-temporal dimension: there is a potential change in peoples’ future prospects and the change in
the future flow of services should affect the value of the natural capital asset (Atkinson, Bateman, and
Mourato, 2012). Natural capital is thus comparable to other types of capital in that the net present value
of the stock reflects current and expected benefit flows.

Barbier (2011, p. 234-239) adopts this view and claims that natural, physical and human capital together
determine the economic opportunities that are available and obtainable for present and future generations.
As any capital owner or manager, society must decide how to manage this capital stock so as to maximise
current benefit flows as well as the future value of the stock. It may, however, not necessarily be the
case that only the aggregate stock matters, but also the composition. The question is thus, according to
Barbier, whether the three types of capital are perfectly substitutable.

Dasgupta (2008) uses the same framework with three types of capital, but claims that natural capital is
different from human and physical capital in the way in which it depreciates. Whereas all three types of
capital depreciate if they are misused or overused, natural capital (i) can depreciate irreversibly, (ii) might
not be replaceable and (iii) can collapse abruptly. The view of ecosystems as natural capital assets leads
to an interesting interpretation of the word sustainability : for any act that harms ecosystems, and hence
depletes natural capital, the same act must lead to the build up of physical or human capital with the
same value or larger — otherwise the act is making society poorer and development is not sustainable.
For this reason, Dasgupta claims that standard national accounting measures will not detect if economic
development is sustainable or not, since the value of services obtained from natural capital are missing in
standard economic accounts.

The concept of ecosystems as natural capital, besides physical and human capital can be linked to the
current study, as I will examine the cost at which the water purification service provided by ecosystems in
Swedish landscapes (natural capital) can be substituted by water purification in treatment plants (physical
capital).

3.4.2 Geographical variability of ecosystem services

An important aspect of environmental valuation is that location is likely to matter. For this reason,
Bateman et al. (2002) argued for the use of Geographic Information Systems (GIS) in environmental and
resource economics. In their view, spatial relationships are often significant elements of the problems
analysed in environmental economics and GIS can contribute to the sophistication of such analyses.
One example where the spatial relationships are given much consideration is provided by Polasky et al.
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(2011), who use a GIS-based model to study the economic effects of five different land-use scenarios for
the state of Minnesota, USA, comparing returns to land-owners from timber and agriculture production
as well as urban development with estimated social values of water quality, carbon sequestration and
habitat quality. With the spatial precision of the model they were able to integrate the local returns of
agriculture and the flows of agricultural run-off to local pollution levels of the Mississippi river. They find
that an agricultural expansion is the scenario that generates the highest private returns but is also the
scenario that generates the lowest social benefit, due to declines in water quality and carbon storage as
well as declines in habitat quality. The spatial sophistication of the study does not only lead to better
understanding of local environmental changes, but also means that trade-offs between different scenarios
are more credible.

For many ecosystem services, location close to population centers is an important determinant of value.
Brander and Koetse (2011) conduct a meta-analysis of a number of valuation studies focused on open
space in urban areas. They include results from studies using two different valuation methods, contingent
valuation and hedonic pricing, and find that population density increases open space value, regardless of
the valuation method. In a similar meta-analysis for wetlands, Brander, Florax, and Vermaat (2006) also
found a significant relationship between population density and the value of wetlands. These findings
are intuitive, since ecosystem services are valued on the basis of their contribution to human welfare,
hence their value should increase as more individuals can benefit from them. Quite clearly, the value of
ecosystems that purify water should be greater the larger the population is that can benefit from the
cleaner water.

Another characteristic of ecosystems that is specifically important in densely populated areas is resilience
to shocks. Safe water provision is important to study in this context, since e.g. droughts and waterborne
disease outbreaks are threats that grow with the population density. The contribution of ecosystems to
resilience against such shocks is sometimes referred to as insurance value (Gomez-Baggethun and Barton,
2013). Even though it is beyond the scope of the current study, the drinking water purification of upstream
ecosystems could clearly be evaluated in an insurance value framework. If a waterborne disease is spread
through the public water supply of a larger city, like the case in Östersund 2010 (Widerström et al.,
2014) discussed in section 2.2, the costs can be enormous and the value of minimising the risk should
reflect that.9 Hence, if ecosystem services help protect water bodies from microbiological pollution and
pathogens, they should be valued for the risk reductions they provide. Clearly, this value should reflect
the amount of people that depend on the specific water body that is protected. Consider the lake Mälaren,
west of Stockholm, which supplies drinking water to approximately 2 million people only in the greater
Stockholm area (Ledesma, Köhler, and Futter, 2012) and to several other cities as well. Although difficult
to estimate, the value of keeping this lake safe from health hazards can not be ignored.

One important objective of the current study is to find which types of land-use that correlate with water
quality. Tong and Chen (2002) might give some insight about what to expect. They used a GIS-based
model to study how agricultural, residential, commercial and agricultural land-uses correlated with a
number of water quality variables in a watershed in Ohio, USA. They found that nitrogen, phosphorus
and coliform bacteria were positively correlated with commercial, residential and agricultural land-uses,
but negatively correlated with forests. However, the effect of land-use on water quality is complex and
not only does type of land-use matter but also the location of the land-use relative to the lake or stream
where the water quality is measured. A common theme in the water quality literature is riparian zones.
These are zones along the water bodies that, under certain conditions and with the right land-uses, can
stop pollutants, not least nutrients, from reaching the water (Lowrance et al., 1997). According to Sliva
and Williams (2001) there is an ongoing scientific dispute about whether land-use of the entire catchment

9An even more catastrophic example is from Milwaukee, Wisconsin where, in 1993, an estimated 400,000 people became
ill and more than 100 died after Cryptosporidium had passed through one of the local water treatment plants and entered
the drinking water supply (Mac Kenzie et al., 1994).
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area or only that of the riparian zone is a better predictor of water quality. With a statistical and GIS-
based approach they found that catchment area land-use predicted water quality slightly better than what
buffer zones did, but the results did not give any clear answers. According to their results, the run-off
from urban land is the most important source of water pollution, whereas forests are negatively correlated
with several pollutants. The effect of agricultural land-use was not found to be strong, which contradicts
findings from several other studies.

3.5 The value of water

Valuation studies of ecosystem services regarding water are quite common in the literature. An especially
recurring object for valuation studies is wetlands, a likely explanation being that wetlands is a type of
nature that provides a broad range of ecosystem services but also that wetland areas have been declining
quite dramatically — according to Carlsson, Frykblom, and Liljenstolpe (2003), more than 90% of the
original wetlands in southern Sweden have been eradicated to make place for urban and agricultural
land-uses.

The declining amounts and areas of wetlands have in some countries been countered by political instru-
ments to construct new wetlands. Ghermandi et al. (2009) provide a meta-analysis of wetland valuation
studies, comparing the values of natural and constructed wetlands. They do find higher monetary valua-
tions for constructed wetlands, which might not be very surprising considering that these wetlands were,
most likely, constructed in some specific location in order to carry out some specific biological or ecological
service (unlike natural wetlands that are spread out across the landscape in a more random fashion).

In Sweden, one especially important service provided by wetlands is the abatement of agricultural run-off,
especially nutrients. The eutrophication problems of the Baltic sea is a likely reason for why wetlands
have become the focus of so much research. Byström (2000) used the replacement cost method to estimate
the value of wetlands for abatement of agricultural nitrogen runoff to the Baltic Sea. With this method,
a value of wetlands was obtained by comparing the cost of using wetlands for nitrogen abatement to the
second most cost-effective measure to reduce nitrogen levels. It was shown that, in order to reduce nitrogen
run-off from agricultural sources by 50%, wetlands provided substantial cost-savings and the value of this
service was estimated at SEK 210 million (Byström, 2000). Gren (1995) also studied investments in
wetlands for nitrogen abatement, this time on Gotland, an island off the Swedish east coast, and found
that the utility of a marginal investment in wetlands is higher than the utility of a marginal investment
in sewage treatment plants. The difference is mainly attributed to (i) the natural growth of wetlands
whereas sewage treatment plants depreciate; and (ii) that wetlands also provide other benefits.

3.5.1 Drinkable water

Most water runs great distances through various landscapes before it is collected into a water treatment
plant. Even though it is intuitively easy to accept that some ecosystems are better than others at
providing clean water, the exact impact of upstream land-use on downstream water treatment is quite
poorly understood (Vincent et al., 2015; Tong and Chen, 2002). The importance of this knowledge is
often mentioned, however, for example by Davies and Mazumder (2003) who argue that questions of
drinking water quality is too much focused on raw water treatment, and that more attention should be
given towards watershed management — thus relying on natural capital rather than physical capital to
provide clean water (for a discussion on these concepts, see section 3.4.1). This clearly calls for more
research on (i) how catchment area characteristics, such as upstream land-use, affects water quality and
(ii) the substitutability between ecosystem water purification and regular water treatment. The current
study investigates these issues.

A recent development in this field is the study by Vincent et al. (2015), where a panel dataset with water
treatment costs and upstream land-uses for 41 water treatment plants in the Perak region of Malaysia is
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used to derive the monetary value of water purification by tropical forests. With monthly observations of
water treatment costs over 14 years, they have enough observations to control for time-invariant treatment
plant specific effects as well as time-specific effects. In their statistical specification, land-use can be of
three different types — virgin forest, logged forest and non-forest — and the value of both types of forest
land-use are estimated relative to all non-forest land-uses.10

They find that both virgin and logged forests have a significantly negative effect on treatment costs, the
effect being slightly stronger for virgin forests. The marginal value of the ecosystem service is defined as
"the annual reduction in treatment cost that results from avoiding the conversion of one hectare of virgin
forest to a non-forest land-use" (Vincent et al., 2015, p. 23). This is what the treatment plant should be
willing to pay for the conservation of an additional hectare of forest, if the ecosystem service was provided
by a market actor. A downward sloping curve is estimated, which implies that the treatment plants
should be willing to pay diminishing amounts to protect additional hectares of forest. The contribution
of virgin forests, valued at the marginal reductions in treatment costs that they generate, was found to
be worth more, on average, than a third of the treatment plants’ aggregate expenditures on labor, energy,
chemicals and maintenance. This signals that upstream ecosystem services are highly relevant for the
production of drinking water in Malaysia.

An econometric concern in the study by Vincent et al. (2015) follows from the fact that water quality is
not included in the analysis — it is only implicitly assumed to be the factor linking land-use to treatment
costs. Since water quality may not only affect treatment costs but also influence the quantity of water
that can be treated in a given time-frame, water quantity, which is used as an explanatory variable in
the cost function specification, may in fact be endogenous. To address this issue, the authors use the
second lag of water volume as an instrumental variable. Their results are robust to the IV specification
and a formal test, Wooldridge’s robust score test, does not reject the null hypothesis that water volume
is exogenous.

Dearmont, McCarl, and Tolman (1998) studied how water treatment chemical costs were affected by
turbidity levels of raw water for a sample of surface water treatment plants in Texas. Like Vincent et
al. (2015) they had access to monthly data from the treatment plants on amount of treated water and
chemicals used and carried out a panel data regression in which chemical costs per 1000 gallons of water
were predicted by the amount of treated water and the turbidity and pH levels, with annual rainfall as
control variable. They find that a 1% reduction of the turbidity level can be expected to reduce chemical
costs by 0.27%. Extrapolating this result, they estimate that a 1% reduction of turbidity levels across
Texas, would save approximately USD 70, 000 annually in chemical costs for plants that treat surface
water.

In a similar type of study, Holmes (1988) estimated a water treatment plant’s cost function but, in
contrast to Dearmont, McCarl, and Tolman (1998), he studied all short-run treatment costs and how
they were affected by the turbidity level of the raw surface water. He found a substantially lower cost-
turbidity elasticity than Dearmont, McCarl, and Tolman, at 0.07. However, extrapolating the result, it
was estimated that suspended solids, measured as turbidity, induced costs of USD 458-661 million across
all surface water treatment plants in the US. Holmes (1988) linked the water quality issue to agricultural
run-off, but did not provide empirical evidence for this link. Moore and McCarl (1987) studied how the
costs of two water treatment chemicals, alum and lime, as well as sediment removal costs, were affected
by turbidity levels in the Willamette Valley of Oregon, USA, and reported an estimated elasticity of
approximately 0.33. These three studies were all conducted before the concept of ecosystem services
gained popularity. However, it should be noted that these damage function studies, where the costs of

10In the study by Vincent et al. (2015) logged forest refers to secondary forest, which has re-grown after timber harvest.
Their use of the word logged should thus not be confused with the way it is used in the current study, where it refers to land
that has recently been logged and is currently in a transitional state.
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pollution were estimated, can be seen as a mirror image of the benefits of pollution controlling ecosystems.

A paper which uses an approach very similar to that of the current study has been published by the
American non-profit Trust for Public Land (J. Freeman, Madsen, and Hart, 2008).11 The authors study
how upstream land-use affects water quality, as indicated by total organic carbon (TOC), alkalinity and
turbidity of the water and how these water quality variables affect treatment costs. Their cross-sectional
analysis of data from 60 US water treatment plants show indications that urban and agricultural land-uses
correlate with increased levels of turbidity and that forests correlate with lower levels of turbidity and
TOC. In this study, turbidity was not found to significantly affect treatment chemical costs, but taken
together, the three water quality variables studied correlated positively with chemical costs.

3.6 Contributions of the current study

In this section I have discussed the evolution of valuation studies, its methodological development and
its importance in policy-making and national accounts as well as the concept of ecosystems as natural
capital. I have also referred to a range of studies about how ecosystems help generate clean water and
how the value of this service can be estimated.

It has been found that production/cost function methods have been applied to value ecosystem water
purification in previous research, most recently by Vincent et al. (2015). Before that, several studies have
investigated the economic costs of raw water turbidity (Holmes, 1988; Dearmont, McCarl, and Tolman,
1998). However, I have found no similar study conducted in Sweden and the only study, to my knowledge,
that deploys a combined approach of studying both the effects of land-use on water quality and of water
quality on water treatment costs is a non peer-reviewed paper published by the Trust for Public Land,
an American non-profit (J. Freeman, Madsen, and Hart, 2008). An advantage of this combined approach
is that it addresses the endogeneity concern raised by Vincent et al., by explicitly controlling for water
quality in the cost function specification.

Moreover, in their survey of ecosystem valuation studies in the Nordic countries, Barton et al. (2012,
p. 52-53) identify a knowledge gap in the area of regulating ecosystem services, such as water pollution
control, and a lack of studies using production function based methods. The current study is intended to
contribute to filling these identified gaps.

Research is also called for by Atkinson, Bateman, and Mourato (2012) about how ecosystem services are
related to spatial variability. Adding to that, Polasky et al. (2011) claim that knowledge of how land-use
affects ecosystem service provision and values is a precondition for efficient land-use. The current study
is taking steps to contribute to this type of understanding.

11It should be noted that the study by J. Freeman, Madsen, and Hart (2008) is not a peer-reviewed article.

15



4 Research question

This MSc thesis is intended to add to the literature on ecosystem service valuations in the Swedish context,
by studying the effect of upstream land-use on downstream water treatment costs. Specifically, it will try
to answer the following questions:

1. Does upstream land-use significantly affect pollution levels in downstream water?

2. Does pollution levels in surface water significantly affect the chemical costs of water purification in
Swedish municipal water treatment plants?

3. Can the marginal values of the contributions from different types of ecosystems to water purification
be estimated by studying their effect on chemical costs of municipal water treatment plants?

4.1 Theoretical predictions

This subsection summarises some results from previous research on the effect of land-use on water quality
and the effect of water quality on treatment costs. Most of these studies are treated more thoroughly in
the literature review (section 3) but are mentioned here to briefly introduce the expected results.

Forest ecosystems are mentioned in the literature as a positive factor for water quality (Saarikoski et
al., 2015; Tong and Chen, 2002; Vincent et al., 2015), hence that is the expected result in the current
study as well. Consequently the clearing of forest can be expected to be negative for water quality. It is
quite established that removal of forest increases long-term water discharge and leads to higher flows in
streams and rivers (Bosch and Hewlett, 1982), which can lead to higher run-off of sediment and pollutants.
Costa, Botta, and Cardille (2003) study a large catchment area in Brazil that has experienced a dramatic
conversion from forest to agricultural land-use and find significantly higher stream flows (they do not
study the effect on water quality). Thus, a negative sign is expected for forest land-uses and a positive
effect for logged forests on downstream water pollution levels and, consequently, for treatment costs.

It should be noted, however, that Sweden does not experience the same type of land-use conversion as
Brazil and many other parts of the developing world. Even though forestry is an important economic
activity in Sweden, the Swedish forest cover is rather constant because logging and re-growth is balanced.
The lower rate of land-use change in Sweden is likely to make statistical inference more difficult, which
will be discussed in section 5.

Tong and Chen (2002) study the effect of four types of land-uses — residential, commercial, forest and
agriculture — on downstream water quality in one watershed in southeastern Ohio, USA. They find,
among other things, that agriculture, residential and commercial land-uses significantly increase levels
of nutrients and fecal coliform. My dataset allows me to test the effect on water quality of urban land-
uses, as well as forest and agriculture. Following Tong and Chen (2002), agricultural land-uses are thus
expected to lead to higher levels of microbiological pollution. It should be noted that agriculture and
forest constitute a much larger share of the Swedish landscape than urban areas, and the effect of urban
land-use might therefore be harder to infer statistically.

Regarding the effect of water quality on treatment costs, Dearmont, McCarl, and Tolman (1998) as well as
Holmes (1988) and Moore and McCarl (1987), have estimated treatment cost elasticities to turbidity. All
have reported significant effects, but the estimated elasticities range from 0.07 to 0.33. I have not found
studies that report how water treatment costs are affected by levels of E. coli or other microbiological
pollutants.
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5 Method and data

In this section I will describe the methodology used in this study, as well as the data and the data
collection process. The econometric specification is in part based on the cost function of municipal water
treatment plants in Sweden, which is why the methodology section below will treat the theory of how
ecosystem services can be valued as a factor input of production, and then describe how the theory can
be applied to the specific situation and the data at hand.

My approach to the valuation of ecosystem water purification in Sweden is to assess how ecosystem
services in Swedish landscapes affect the quality of raw water and how this, in turn, affects costs in
water treatment plants. The relationship between land-use and treatment costs is thus divided into two
different processes that are studied separately. With monthly panel data over 14 years for 76 different
water treatment plants and their upstream catchment areas, the aim of this study is to quantify the effect
of upstream land-use on two water quality measures, turbidity and E. coli (the first process), and then
use these water quality measures as independent variables to study their effect on chemical costs in the
treatment plants (the second process).12

5.1 The cost function approach to environmental valuation

The theory of how to derive welfare measures for changes in an environmental quality parameter, which
enters directly into the production function of a firm, is given by A. M. I. Freeman, Herriges, and Kling
(2014). An increase in this parameter, let’s call it q, is assumed to increase the output attainable with
any given set of inputs — or vice versa, an increase in q decreases the amount of inputs required for the
production of a given amount of the final product.

In many instances, valuation with the production function approach is based on the change in producer
and consumer surplus that follows after a change in q, which requires knowledge of supply and demand
functions. However, no such knowledge is necessary if the following two assumptions can be made: (i) q is
a perfect substitute for other inputs of production and (ii) that price elasticity of demand is close enough
to zero, so that the change in production costs does not lead to changes in output. If these assumptions
are true, then the change in production cost fully captures the value of the change in q, and can be
calculated as long as the substitution relationship between q and other inputs of production are known.

The motivation for why the first assumption can be made in the context of raw water quality and water
treatment is that the intake water at most treatment plants is always monitored and computer software
adjusts the chemical dosage instantaneously when the water quality changes.13 Hence, an increase in raw
water quality will lead to an instant reduction in chemical costs.

Regarding the second assumption, consumer prices for drinkable water in Sweden are so low that price
elasticity of demand can be assumed to be close to zero. Höglund (1997) used water price and consumption
data from the period 1980-1992 to estimate the price elasticity of demand for Swedish municipal water
and found the elasticity to be approximately -0.10 for marginal price changes and approximately -0.20 for
average price changes, which is significant but small.14 Consequently, almost the entire benefit of increased
raw water quality will be captured by cost savings in water treatment plants. These cost savings should,
in the long run, be transferred back to consumers, since production of drinking water is a municipal
responsibility and not-for-profit in Sweden. It should be noted, however, that many municipalities have
decided to let publicly owned firms run the water treatment facilities, which may introduce other incentives

12The two water quality variables, E. coli and turbidity, are thoroughly introduced in section 5.2.2.
13Chemical dosage was one of the issues discussed during the study visits at treatment plants, held in Järfälla and Västerås

during the fall of 2015.
14The pricing policy varied across municipalities during the study period, but in general kept consumers uninformed about

marginal price. This is why, according to the author, elasticity is higher for average price than for marginal price.
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than in treatment plants that are owned directly by the municipality.

5.1.1 The water quality model

Acknowledging that I have very much better data, in terms of quality as well as quantity, of water quality
measures than of treatment plant costs, the effect of land-use on water quality (the first process) will be
studied in more detail than the cost function (the second process). Whereas the cost data from treatment
plants is yearly, the dataset on water quality contains observations of a rather irregular frequency. This is
because treatment plants are allowed to report their test results whenever they conduct a water quality
test. Some of the treatment plants in the sample do this very regularly, others do not. I constructed a
dataset with monthly observations, despite quite a few missing values. If more than one water quality
test was conducted during a specific month, the average value for that month was used.

The water quality model has the following form:

ln(Qim) = β1ln(Liy) + β2ln(rim) + β3ln(wim) + vi + θm,y + εim

where Qim is water quality at plant i, varying by month, Liy is a matrix of land-use measures varying by
year, rim is rainfall and wim is total water flow, vi is time-invariant characteristics that are specific to each
upstream area and θm,y is a time specific fixed effect that can be month or year specific. Furthermore, εim
is an error term and the β are parameters to be estimated. The time subscripts y and m signify whether
the variable varies per month or year. All variables are introduced in section 5.2.

5.1.2 The cost function

The second part of this study is based on the chemical cost function of treatment plants. In this case,
data is yearly and the model is specified as

ln(Ciy) = β1ln(Qiy) + β2ln(voliy) + β3ln(riy) + β3ln(wiy) + vi + θy + εiy

where Ciy is chemical costs in treatment plant i during year y, Qiy is a matrix of water quality parameters
(year averages) and voliy is treated water volume. The control variables are total rainfall during the year,
riy, and average yearly water flow, wiy. The panel structure of the data allows me to estimate vi as
time-invariant plant-specific characteristics and θy as plant-invariant annual characteristics. Besides this,
εiy is an error term and the β are parameters to be estimated.

5.2 Data collection

Most Swedish water treatment plants are run by their respective municipalities and cost data is only
obtainable at the actual plant, municipality or municipal company running it.15 Thus, a smaller number
of plants were sampled and asked to provide cost data for this analysis. Out of the 194 surface water
treatment plants in Sweden, 77 have provided water quality data to the Swedish Geological Survey (SGU)
since the year 2000, which made these plants a natural sample.

Water treatment plants can take either ground water or surface water as their main input. The reason
I chose to only study surface water treatment plants is twofold: (1) they tend to use the same water
treatment techniques, so comparability is high, and (2) surface water can be expected to be more directly
affected by land-use than ground water. Regarding reason number 1, surface water treatment plants tend
to be more dependent on chemicals in the treatment process, which makes them more suitable for the
current study.16

15In several cases, it turned out, cost data was not obtainable at all, since reorganisations and/or bad administration had
lead to people not knowing where to find it.

16During the data collection process, I visited two water treatment plants to understand the process and talk to those
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5.2.1 Cost data

The quality of raw water can affect treatment costs in several ways. Factors such as chemical dosage,
electricity use and the need for extra personnel can all be affected in the short run, when the water quality
changes. One factor that could possibly be even more important is that many municipalities currently
consider large investments in new treatment equipment, such as membrane filters worth several hundred
million SEK. This is a consequence of the cryptosporidium outbreak in Östersund of 2010 as well as
expectations that water quality will be reduced in the future due to climate change and/or a current
trend of more organic material in many northern European water bodies.17 However, treatment plant
operators were quite clear that chemical use, more than any other factor, varies with raw water quality
in the short run. For this reason, only chemical costs will be used in the cost function specification.

E-mails were sent out to all water treatment plants in the sample, asking how much money had been
spent on water treatment chemicals per year between 2000 and 2014. I also asked how many m3 drinking
water had been delivered during each year, in order to calculate per-unit chemical cost. Clearly, this is
overly simplistic, since choice of chemicals and price per unit of chemical is likely to differ both over time
and across treatment plants (unit and year fixed effects in the panel data regressions can possibly control
for some of these effects). Assuming that all treatment plants try to minimise chemical cost per unit of
treated water, I chose to use this simplistic procedure. I received data from 13 different treatment plants,
in total 171 yearly observations.18 Chemical costs were adjusted for inflation using the Swedish consumer
price index.19 Some summary statistics for the cost data is given in table 1.

Table 1 Summary statistics chemical costs

Variable Mean Std.Dev. Min Max Observations

Chem. cost (SEK/annum) overall 2,072,629 2,610,605 59,870 9,865,648 N=171
between 2,513,724 n=13
within 588,445

Water quantity (m3/annum) overall 11,889,381 16,255,643 123,856 46,100,000 N=171
between 16,100,000 n=13
within 992,277

Chem. cost per unit (SEK/m3) overall 0.296 0.176 0.073 .979 N=171
between 0.172 n=13
within .069

5.2.2 Water quality data

The data available from SGU limited the sample of potential treatment plants to include in the study to
77 plants. These were the only plants with time-series going back to the year 2000 for their raw water
test results data, which is also the year when the first land-use data is available for Sweden (see section
5.2.3). One of these plants was excluded, because it had not been used for the last six or seven years and
its catchment could not be properly identified in the GIS software.

Water treatment plants feed in new data into the SGU database as often as they please. They are allowed
to introduce new parameters to the database, which has given a rather broad range of parameters.
The treatment plants in the sample had collectively reported 335,577 test results, distributed over 1,464

running it. I also visited the Swedish University of Agricultural Sciences (SLU) to talk to Stephan Köhler, a Landscape
biogeochemist and specialist on the effects of land-use on water quality.

17This was discussed during study visits at treatment plants. For more information on the trend of more organic material
in the water, see for example Haaland et al. (2010).

18Some treatment plants could only retrieve data for shorter period of time, which is why the panel data set is unbalanced.
19The CPI is available online at http://www.scb.se/pr0101/.
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different parameters.20 A parameter is here defined both by what is measured and how it is measured.
For example, the concentration of E. coli was measured in eight different ways, which resulted in eight
different parameter specifications because clearly, concentrations measured with different methods can
not be compared to each other.

The data provided the opportunity to study a rather large group of water quality parameters, even though
none of them provided a complete panel dataset, with observed values for all treatment plants and all
months in the study period. The potentially relevant variables, for which there were enough observations
to enable statistical analysis, were microorganisms, coliform bacteria, E. coli, nitrite, ammonium, chemical
oxygen demand (COD), color and turbidity.

Based on two criteria, data availability and relevance in previous studies, I chose to study E. coli (measured
in membrane filter) and the turbidity of the water. E. coli, which is a bacteria and a commonly used
indicator of microbiological pollution, is measured by the number of bacteria per 100 ml of raw water. It
is also the water quality variable for which the SGU data provided the largest amount of observations.
Turbidity is a commonly used indicator of water quality, since it indicates the presence of sediment,
suspended clay, silt, finely divided organic matter, algae and other microorganisms. It is measured in
a unit called Formazin Nephelometric Unit (FNU), which is based on how infrared light is scattered in
the water, and has been used in previous studies of how water quality affects chemical costs in water
treatment plants (Dearmont, McCarl, and Tolman, 1998; Holmes, 1988; Moore and McCarl, 1987). Some
descriptive statistics for the water quality variables as well as rainfall and total water flow, which will be
used as control variables, are found in table 2.

Table 2 Summary statistics: Water quality variables and rain

Variable Mean Std.Dev. Min Max Observations

E. coli (No./100ml) overall 4.529222 17.10525 0.5 453.5 N=7981
between 12.01337 0.5 78.68938 n=76
within 13.39359 -61.66016 390.0122 T-bar=105.013

Turbidity (FNU) overall 2.1745 3.897188 .025 130.285 N=4076
between 2.145615 .1510484 10.23045 n=76
within 3.191816 -7.145954 123.899 T-bar=53.6316

Rain (mm/month) overall 64.75694 38.91686 0.7 268 N=12768
between 12.23182 47.0006 97.40119 n=76
within 36.97109 -28.34425 259.945 T=168

Total water flow (m3/sec) overall 60.16456 157.4863 0 1770 N=12768
between 141.4305 0.0201961 597.125 n=76
within 71.14082 -316.9604 1400.193 T=168

Even though only two pollutants are in focus, it can be argued that these two are indicative of other
water pollution as well, since several water quality parameters are strongly correlated, especially within
their "type", i.e. microbiological pollutants, nutrients and a third group with COD, color and turbidity.
I studied these correlations using fixed effects regressions and the results are found in table 3. Another
important thing to note in this table is that there are quite few observations in the regressions, because
the observation is dropped entirely if there is any missing data. Out of 12768 (the dataset if it were
complete), only 1,276 observations include measurements of turbidity, COD and color simultaneously.

In the original data, some labs have not reported values of zero for E. coli and turbidity, but instead
specified the values at the smallest detectable concentration. Since, in this case, the true value lies
somewhere between zero and the smallest detectable concentration, I included the parameter in two

20The data was extracted from the original Excel file and assembled into new spreadsheets using a Python code, which
sorted the data according to id-code of the treatment plant, the date of the water quality test and the observed value. In
the final datasets, yearly and monthly averages were used for each treatment plant.
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forms, one where all those measurements were coded as zero and one where they were coded at the
smallest detectable concentration. All econometric analysis in this study is based on the mean of those
two values.

Table 3 Correlations between pollutants

(1) (2) (3)
VARIABLES ln (ecoli) ln (ammonium) ln (color)

ln (microorganisms) 0.0608***
(0.0140)

ln (coliform bact.) 0.226***
(0.0243)

ln (nitrite) 0.335***
(0.0656)

ln (COD) 0.567***
(0.0731)

ln (turbidity) 0.268***
(0.0389)

Constant -0.126* -2.586*** 2.330***
(0.0748) (0.340) (0.129)

Observations 5,092 2,951 1,276
R-squared 0.215 0.093 0.441
No. of treatment plants 75 76 46

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

5.2.3 Land-use data

Data on land-use was obtained as shape-files from three different sources.21 I received a highly detailed
map of Sweden, from the Swedish mapping, cadastral and land registration authority.22 This map includes
all buildings in Sweden and their type, which means that water treatment plants can be separated from
other buildings. Since this map is only available in its last updated form, I used another source of land-use
data that made it possible for me to extract time-series: the Corine Land Cover (CLC) maps with land-use
in 44 different categories for most European countries (a list of the categories is found in appendix B).23

The CLC maps are provided for 1990, 2000, 2006 and a not-yet-validated update for 2012. I use the three
latter versions (Sweden was not included in the first version), which means that I can follow land-use
changes over 13 years. However, the fact that I have high frequency (approximately one observation per
month) data on water quality, but only three measurements on land-use over the entire time period poses
a dilemma. Following Vincent et al. (2015) I chose to linearly interpolate the land-use changes between
the measurement years, allowing variation between but not within years. This interpolation is likely to
cause two problems:

Measurement error: Clearly, all land-use changes in Sweden between 2000 and 2006 as well as 2006
and 2012 can not have happened exactly linearly over time, so linear interpolation will cause measurement
error. I find no reason to believe that this error should be systematic, so assuming that the error is random
it will cause attenuation bias: regression coefficients will be biased towards zero (Wooldridge, 2008, p.
319-320). This would imply that regression coefficients are more likely to be conservative and less likely

21A type of data used in geographical information system (GIS) software. I used the free software QGIS to extract the
data into spreadsheet format.

22In Swedish: Lantmäteriet.
23These maps are made available by the Copernicus land monitoring services, coordinated by the European Environment

Agency (EEA).
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to be exaggerated estimates of the true effect.

The Moulton problem: When the dependent variable is allowed to vary at a higher level (per month
in this case) than the explanatory variables (which only vary per year), there is a risk that standard errors
are underestimated. This downward bias on the standard errors was shown by Moulton (1986), but can
be addressed by clustering standard errors on a higher level. Following Vincent et al. (2015), I cluster
standard errors by treatment plant.

Shape-files with catchment areas was collected from the Swedish Meteorological and Hydrological Institute
(SMHI). One file contains the most detailed breakdown of Sweden into 52,778 basins, in which all run-off
water has one unique drainage point. This file is linked to another file in which each basin is represented
including all its upstream basins. Since the entire upstream area can be very large, I needed to limit it.
One important reason for this is that some catchments stretch into neighbouring Norway and Finland and
the CLC maps can differ between countries. I decided to include only land-use changes within a circle
with radius 100 kilometers from the water treatment plant. It is not obvious how distance matters in this
context and even in the water research community there is a scientific debate about whether the entire
catchment or only zones closer to water (riparian zones) matter more for downstream water quality (Sliva
and Williams, 2001). The distance limit of 100 km in the current study was thus rather practical than
scientific. An advantage of this limit, however, is that several of the treatment plants in the sample used
raw water from the same lake (eleven of the treatment plants in the sample take their raw water from
lake Vättern for example). With no limitation of the catchment area, these treatment plants would be
considered as equally affected by the same land-use changes, whereas with the limitation, land-use differed
according to the treatment plant’s location around the lake. To study the how the distance between land-
use changes and water treatment plants matters, a test was conducted in which a subset of the treatment
plants were studied with a limit of the upstream area to 30 km from the treatment plant. Almost 50% of
the treatment plants had small enough catchments that the entire upstream area was included in the 30
kilometre circle.

Table 4 Summary statistics for land-use

Variable Mean SD SD (between) SD (within) b/w ratio Median Min Max

Catchment area (ha) 252821 373926 - - - 60875 126 1870823
Urban % 0,0123 0,0179 0,0180 0,0004 45 0,0077 0,0000 0,1131
Agriculture % 0,1112 0,1052 0,1056 0,0002 528 0,1041 0,0000 0,4089
Wetland % 0,0153 0,0256 0,0257 0,0000 - 0,0084 0,0000 0,1749
Waterbodies % 0,1806 0,1225 0,1230 0,0000 - 0,1446 0,0000 0,4493
Forest % 0,5725 0,1607 0,1600 0,0216 7.4074 0,5978 0,0983 0,9749
Logged % 0,0667 0,0626 0,0591 0,0215 2.7488 0,0528 0,0000 0,3752
Other % 0,0410 0,1493 0,1499 0,0001 1499 0,0000 0,0000 0,8485

The process of extracting land-use data from maps is described in appendix A and summary statistics for
the land-use variables for the 76 studied catchment areas are presented in table 4. An important thing to
note is that variation in land-use within catchment areas over time is very low, especially for urban and
agricultural land-uses (see figures 1 and 2). In fact, the parameter estimates for urban and agricultural
land-uses are likely to be difficult to estimate with fixed effects regressions, since more than half of the
water treatment plants have zero within variation for these two variables (in a fixed effects regression,
time-invariant variables are differenced out, see section 5.3). Wetlands have often been the focus of studies
on water purification. However, as can be seen in table 4, the within-variation in wetlands is zero, and
its effect on water quality can thus not be studied in a fixed effects framework.
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Figure 1 Within variations for forest and logged forest.

Figure 2 Within variations for urban and agricultural land-uses.

5.2.4 Control variables

An important variable to control for is rain, which is expected to increase run-off of pollutants into
waterways and increase turbidity of the water. For the same reason, total water flow in the water body is
expected to affect pollution levels as well. Flow is to some extent a consequence of rain, but e.g. snowmelt
can have dramatic effects as well, especially in the spring. Model based data for rainfall as well as total
flow is available from SMHI, for each of the basins in the most detailed breakdown.24 Rainfall is thus
only at the most detailed level, but flow takes all upstream flow into account. All variables that will be
used in the econometric analysis are briefly presented and defined in table 5 and CLC land-use categories
are found in appendix B.

24The data is available for download at http://vattenwebb.smhi.se/modelarea/.
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Table 5 Variable definitions and expected signs

Variable name Description Expected sign

ln(E. coli) Observed values, # of bacteria per 100 ml water (ln). N/A
ln(turbidity) Observed values, measured in FNU (ln). N/A
ln(1 + forest) Share of upstream forest land-use (CLC categories 311, 312 and 313) plus 1 (ln). Negative.
ln(1 + logged) Share of upstream cleared forest land-use (CLC category 324) plus 1 (ln). Positive.
ln(1 + agriculture) Share of upstream agricultural land-use (CLC categories 211, 222, 231 and 242) plus 1 (ln). Positive.
ln(1 + urban) Share of upstream urban land-use (CLC categories 111 - 142) plus 1 (ln). Ambiguous.
ln(rain) Modeled value of rainfall (mm/month) in locality of treatment plant (ln). Positive.
ln(flow) Modeled value of total water flow (m3/sec) in locality of treatment plant (ln). Positive.
For a discussion on expected signs see section 4.1.

5.2.5 Data quality

The data suffers from a few limitations. The most important one is probably the irregularity with which
water treatment plants have reported water quality data to the SGU database. This makes the panel
dataset unbalanced and means that for some water quality parameters, statistical inference can suffer from
too few observations, especially when dynamic relationships are studied and lagged values included. It also
introduces a possible bias, since quality tests can have been conducted only at times when concentrations
of pollutants were especially high or low — a type of bias that is less likely in cases where treatment
plants have reported data on a regular basis. It is, however, unlikely that treatment plant operators could
manipulate the data, since all water quality tests are conducted by labs separate from the treatment
plants and it is the labs, not the treatment plants, that deliver the data to the SGU database. This issue
will be discussed further in section 5.3.2.

The most recently released CLC land cover data is used in this analysis in order to assure the longest
possible time series. The 2012 release has not yet been validated by the data provider, however, and it
is therefore possible that there are errors in the land-use data. Assuming that this error is random, it
should cause estimated regression coefficients to be more conservative (see paragraph about measurement
error in section 5.2.3). It should also be noted that the level of detail is not as high in the CLC maps
as it is in maps that are available from the Swedish mapping, cadastral and land registration authority.
However, this authority does not currently make it possible to obtain a time-series of maps.

The cost data was collected by the author, using a very simplistic e-mail survey. Treatment plants were
first asked for a broad set of data regarding chemical costs and usage, but almost none of the plants could
accommodate the requests. I therefore asked only for the aggregated costs of water treatment chemicals
per year. This is clearly too simplistic to give anything more than indications of how treatment costs
correlate with water quality.

5.3 Panel data analysis

The fact that I have panel data over 76 water treatment plants and their upstream areas over the years
2000-2013 allows me to control for unobserved unit-specific as well as time-specific effects (by year or
month). In this subsection I will describe the most common methods to analyse panel data, as well as
discuss advantages and disadvantages of different model specifications and the trade-offs between them.

Consider a model of the form
yit = α+ βxit + vi + εit (1)

where vi is a time-invariant, unit-specific, error term and εit is a "regular" error term with mean zero,
that is uncorrelated with x and itself. If the equation above is true, it must also be true that

ȳi = α+ βx̄i + vi + ε̄i (2)
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where ȳi, x̄i and ε̄i are time-averages for each unit i. Subtracting (2) from (1) gives

(yit − ȳi) = β(xit − x̄i) + (εit − ε̄i) (3)

thus, the time-invariant, unit-specific, error term has been subtracted out of the equation (and the same
would be true for any variable that did not vary over time). Equation (3), estimated by OLS, is known
as the fixed-effects estimation.

One way of estimating panel data, without disregarding the effects of time-invariant variables, is to use
random-effects. This is a weighted average of the estimates produced by equation (2) (also known as the
between-effects) and (3), given by

(yit − θȳi) = (1− θ)α+ β(xit − θx̄i) + [(1− θ)vi + (εit − θε̄i)]

where θ is a function of σ2v and σ2ε . If σ2v = 0 then θ = 0 as well and equation (1) can be estimated by
OLS directly. The opposite, σ2ε = 0 and θ = 1, gives equation (3) and a fixed-effects model. The crucial
point for the choice of model is thus what can be assumed about the individual specific effect, vi. If vi is
correlated with the explanatory variables, xit, then the random effects model is inconsistent and biased.
If vi is random, the model can be specified as

yit = α+ βxit + ηit

where ηit = vi + εit with E(ηit) = 0, and consistently estimated with a random effects model. A formal
test for this specification choice is the Hausman test, in which the null hypothesis is that the random
effects model is consistent.25 It should be noted that the fixed effects model is consistent under both the
null and alternative hypotheses.

One factor to take into account when choosing which model to use, is that fixed effects models do not
allow the estimation of time-invariant variables. A related, but less recognised, problem of fixed effects is
its inefficiency in estimating the effect of variables that have very limited variation over time (Plümper
and Troeger, 2007). As can clearly be seen in table 4, variation within panels is strongly dominated
by variation between panels in the case of land-use data. This can hamper inference. Not only does
it imply low levels of statistical significance but estimates can also be imprecise (Wooldridge, 2002, p.
286). Using Monte Carlo simulations, Plümper and Troeger study how the root mean squared errors
(RMSE), thus taking both bias and inefficiency into account, of a regular fixed effects model depends
on the ratio of within and between variation (b/w ratio). They conclude that the regular fixed effects
model becomes less reliable when the b/w ratio increases, and the choice of model should take this ratio
into account.26 According to the authors, the choice of model becomes a trade-off between the ability to
compute estimates of rarely changing variables and avoiding omitted variable bias. This is also emphasised
by Beck (2001) who states that "If variables of interest are being lost because of the inclusion of fixed
effects, the researcher must weigh the gains from including fixed effects against their costs. [...] Like most
interesting issues, this is a matter of judgement, not slavish adherence to some 0.05 test level" (Beck,
2001, p. 285).

Another potential problem in the econometric analysis is autocorrelation. If the autocorrelation is an
AR(1) process, in which case the error term is given by εit = ρεi,t−1 + uit with |ρ| < 1 and uit being IID

25There are two versions of the Hausman test. I mainly used the version that is based on (Wooldridge, 2002, p. 290-291),
which can be used with robust and clustered standard errors. When I needed to test specifications that were adjusted for
autocorrelation, I used the version based of Hausman (1978).

26To counter the problem of rarely changing variables, Plümper and Troeger (2007) propose an estimation technique that
they call fevd, fixed effects vector decomposition. This proposed method was heavily criticised by Breusch et al. (2011) who
claim that fevd is just a Hausman-Taylor instrumental variable approach that is avoiding making important assumptions
about exogeneity. The critique is directed towards the proposed fevd estimation approach, not Plümper and Troeger’s
motivation for why a new estimation approach is needed.
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(0, σ2u), it can be analysed with a method derived by Baltagi and Wu (1999). This method estimates ρ and
uses this estimate to transform the data and remove autocorrelation. To remove the fixed effects with the
transformed data, the first observation of each panel is dropped. An important advantage of this method
is that Baltagi and Wu (1999) developed it explicitly to work with unbalanced panels with gaps, such as
the dataset in the current study. A disadvantage is that it is unable to control for heteroskedasticity.

5.3.1 Dynamic panel data estimation

One advantage of panel data is that it allows a type of instrumental variable estimation, even in cases
where suitable instrumental variables are hard to find. The generalised method of moments (GMM),
allows the use of lagged values of variables in the model as instruments. These types of models can also
control for autocorrelation and heteroskedasticity, while the instrumental variables handle endogeneity.
Several techniques have been proposed for this type of estimation — one that is commonly used was
developed by Arellano and Bond (1991), and it is pedagogically described by Roodman (2009b). Even
though the estimator was designed for short panels (large N , small T ), it will be used here as a robustness
check rather than the main specification.

In order to remove fixed effects, as well as handle dynamic panel bias (which is not likely to be present
in panels with large T , as in the current study), the data is transformed. Two such transformations
are proposed by Roodman (2009b): the first-difference transform and the forward orthogonal deviations
transform, originally developed by Arellano and Bover (1995). Since first-difference transformations mag-
nifies gaps in unbalanced panels, forward orthogonal deviations is a more appropriate choice in the current
study. Instead of subtracting the previous observation from the current, it subtracts the average of all fu-
ture available observations of the variable. An additional advantage is that it leaves all lagged observations
outside the formula, which means that they are available as instruments.

5.3.2 Handling missing data

The water quality data from SGU is not intended to be a panel dataset of any particular frequency, but
should rather be seen as a collection of comparable water quality test results over a long time. Fitting
them into a panel dataset with monthly observations thus yields a panel with many missing values, since
several treatment plants report their results at a lower frequency than monthly. Another explanation is
that some treatment plants report a test result for e.g. E.coli measured by another method than most of
the other plants. Even though most econometric packages and estimation commands can run with missing
values in the data, dropping all time periods which contain missing data would deprive the analysis from
substantial information.27 One way to handle missing data is to impute values. This is not uncommon in
the panel data context, one reason being that respondents often drop out of survey panels. One famous
example is the Michigan Panel Study of Income Dynamics (PSID), which suffered a loss of almost 50% of
its initial sample between 1968 and 1989. Fitzgerald, Gottschalk, and Moffitt (1998) study the effect of
this attrition on the reliability of results. Even though they find that attrition is significantly related to
such characteristics as income and education level of respondents, they do not find that it has seriously
distorted the representativeness of the panel. Another example is the Student Teacher Achievement Ratio
(STAR) project in Tennessee, a large-scale randomised experiment where approximately 11,000 students
in 79 schools were followed. This study suffered from 20% to 30% attrition rates annually and imputation
was used by e.g. Dee (2004) to handle missing test scores.

Both these examples show rates of missing data that are comparable to the current study. Arguably,
it can be considered less problematic in this case, since missingness is very unlikely to be correlated to
upstream land-uses and raw water quality. Rather, missingness can be expected to be attributed to some

27The standard procedure is often to perform so-called complete case analysis, in which all observations with missing
values are dropped and estimation is based on those that remain.
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characteristic of the treatment plant or the municipality that runs it, such as lack of funding for test labs
or a lack of interest in reporting test values to the SGU register. Thus the risk of selection bias, such as
may be expected in the choice to withdraw from a survey, should be smaller.

Regardless of why data is missing, it is still likely to reduce estimation efficiency — a problem that can
be mitigated by imputation. Most imputation methods are based on the assumption that the missing
data is missing at random (MAR) or missing completely at random (MCAR), where the first indicates
that missingness can somehow be predicted by the variables in the dataset and the second means that the
missing values are entirely random. If the missing data is missing not at random (MNAR), imputation
is more troublesome (Nicoletti, 2006). Quite clearly, it is almost impossible to prove anything about the
missing values with certainty, since they cannot be observed. What remains for the researcher to do, is to
study the patterns of missing data and make assumptions about what caused the missingness. I created a
new variable that would take the value 1 if E. coli was missing and 0 otherwise, and studied the correlations
between this new variable and the other variables in the dataset. If data would be missing systematically
for episodes with high or low levels of E. coli in the water, there would probably be a correlation with
rainfall, since rain is a very strong predictor of E. coli concentrations. However, this correlation is found
to be −0.0156, which suggests that missing values for E. coli should not be systematically higher or lower
than the reported test results.

A common method traditionally has been to fill out the missing values with the mean of the variable in
question, so-called mean imputation. This rather unsophisticated method may actually predict missing
data quite well, but distorts estimated variance and correlations (Schafer and Graham, 2002). With
artificially low variance, there is a risk that significance is overstated when the data is analysed. There
are, however, several other methods to impute data, each with their advantages and drawbacks. I have
chosen to use multiple imputation (MI), recommended by e.g. Schafer and Graham (2002). Whereas
one imputation represents one set of plausible values for the missing data, MI represents multiple sets of
plausible values drawn from a distribution, acknowledging the fact that we can only make educated guesses
of what the true values are. Traditionally, quite few sets of imputed data have been used, Royston (2004)
mentions 3-5 sets for example, but recent research has recommended larger numbers. Each complete
dataset is analysed independently and parameter estimates are averaged across the copies to give a single
estimate.

5.4 Limitations

Quite clearly, to fully capture the value of ecosystem water purification as an intermediate input to
municipal water treatment all costs — short-run and long-run — in Swedish water treatment plants
should be studied. It is not unlikely that the long-run cost function of treatment plants could be influenced
equally or even more by ecosystem service water purification than the short-run cost function. The current
discussions in several Swedish water treatment plants about whether to invest in membrane filters or other
modern techniques, worth several hundred million SEK, was mentioned in section 5.2.1. It would be of
very high interest to study whether the need for municipal investments in water treatment equipment
is correlated to upstream ecosystem services. Because of data constraints this did not seem possible,
however.

Other aspects that could affect municipal water treatment costs are e.g. the ownership structure of
treatment plants (discussed briefly in section 5.1) or which political party that happens to be in power in
the specific municipality, since political preferences are likely to influence investments in water treatment.
This is beyond the scope of the current study, however.
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6 Empirical analysis

In the following section I will present the results of the econometric analysis. The first part of the section
will be devoted to studying how land-use affects water quality and the second part will analyse the effect
of water quality on treatment chemical costs.

6.1 Does land-use affect water quality?

Regressions on water quality measures and land-use were made using the dataset with monthly observa-
tions from January 2000 to December 2013 (T = 168) over 76 water treatment plants. I will first present
results of how land-use affects E. coli, which is the variable with the largest amount of observations,
and then turbidity, which has been shown in previous research to be an important determinant of water
treatment costs.

6.1.1 Concentrations of E. coli

Results from fixed effects regressions with E. coli as the dependent variable are found in table 6. Quite
clearly, coefficient estimates vary with the specification — except the coefficient for rainfall, which remains
in the range 0.125 - 0.165 and significant at the 1% level regardless of the specification. The R2 is very low
in these fixed effects regressions, especially when no lagged dependent variables are included, which implies
that the within-variation explains very little of the variation in the dependent variable. The only land-use
effects that are significantly different from zero are found using the Baltagi-Wu regressions in column 4
(the method is described in section 5.3) adjusting for autocorrelation of type AR(1). These results are
not robust to heteroskedasticity, however, which makes it quite likely that significance is overestimated.
Baltagi-Wu and Beck-Katz regression results are included, because they each provide different methods
to handle serial correlation.

The modified Wald test for groupwise heteroskedasticity in fixed effects models rejected the null hypoth-
esis of homoskedasticity at the 1% level. To counter heteroskedasticity, as well as the Moulton problem
(mentioned in section 5.2.3), standard errors are calculated using so-called Huber-White sandwich es-
timates, clustered at treatment plant level, in specifications 1-4. In column 6, using Beck and Katz’s
panel-corrected standard errors, panel-level heteroskedastic errors are assumed. I used Wooldridge’s test
for autocorrelation in panel data to distinguish whether the errors are serially correlated or not.28 The
null hypothesis of no first order autocorrelation was rejected at the 1% level, so this clearly needs to be
controlled for.

The fact that levels of E. coli are persistent can be seen in columns 4 and 6, with two lags of the dependent
variable (both significant at the 1% level) included as regressors. With the lags included, parameter
estimates of forest and logged land switch signs to negative. This is the expected sign for forests but
unexpected for logged land. Including lagged dependent variables comes at the cost of losing quite a
few observations since, if two lags are included, each gap in the dataset means that three observations
are lost. One great advantage of the Baltagi-Wu approach in this case is that serial correlation can be
addressed without losing a large number of observations. This is a reason why the results of column 4 are
interesting, in spite of the risk of underestimated standard errors.

Another risk when including lagged dependent variables in a fixed effects regression, as in columns 3,
4 and 6 of table 6, is the so-called dynamic panel bias, identified by Nickell (1981). This bias arises
when time-means are subtracted from each observation, see equation (3) in section 5.3, because lagged
dependent variables become correlated with the error. The bias is not mitigated by increasing N, but it

28Drukker (2003) performed a simulation study of this test and found no indication that the test would fail to identify
autocorrelation in unbalanced panels or in the presence of gaps in the data. This information is relevant here, since the
panels are unbalanced in the current study.
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Table 6 E. coli fixed effects estimations

(1) (2) (3) (4) (5) (6)
ln(E. coli) FE FE FE FE BW-FE BK-FE

ln (1 + forest) 12.50 17.93 -0.176 -2.606 -1.156*** -2.112
(12.24) (16.26) (8.883) (9.495) (0.373) (7.816)

ln (1 + logged) 7.414 12.16 -0.408 -2.862 -1.885* -2.685
(8.818) (11.44) (6.412) (6.676) (1.047) (5.293)

ln (1 + agriculture) 290.5 305.3 90.47 1.095 -174.2
(454.0) (451.9) (428.0) (1.304) (203.3)

ln (1 + urban) 199.1 173.5 111.0 -13.45** 24.10
(203.0) (197.5) (183.2) (5.716) (95.91)

ln (rain) 0.142*** 0.153*** 0.153*** 0.165*** 0.125*** 0.169***
(0.0249) (0.0253) (0.0229) (0.0244) (0.0159) (0.0165)

ln (flow) 0.0952*** 0.100*** 0.0600** 0.0494** 0.107*** 0.0468***
(0.0332) (0.0339) (0.0251) (0.0237) (0.0137) (0.0126)

ln (E. coli) t-1 0.308*** 0.271*** 0.253***
(0.0312) (0.0282) (0.0161)

ln (E. coli) t-2 0.0943*** 0.0710***
(0.0163) (0.0163)

Constant -7.912 -41.72 -32.14 -9.194 0.398*** 3.427
(7.359) (47.77) (46.40) (43.77) (0.0733) (5.908)

Year FE No Year Year Year Year Year

Observations 7,549 7,549 6,369 5,860 7,473 5,860
R-squared 0.020 0.028 0.120 0.126 0.583
No. of treatment plants 76 76 76 75 76 75

Robust standard errors in parentheses, except BW.
BW is Baltagi-Wu AR(1)-adjustment. BK is Beck-Katz with panel specific AR(1).

*** p<0.01, ** p<0.05, * p<0.1

is with increasing T. With a long panel, as in the current study, bias is thus likely to be less of a problem.
Nevertheless, a dynamic panel data estimation will be performed in section 6.1.5 below, not only because
of the risk of dynamic panel bias, but also because it is a way to address several potential estimation
issues, including serial correlation, heteroskedasticity and endogeneity.

It should be noted that coefficients cannot be interpreted straightforwardly from the regression table,
since land-use is specified as the logaritm of 1 + L/A, where L is the specific land-use and A is total
upstream area.29 A measure of elasticity is thus given by β̂

(
L/A

1+L/A

)
. It must also be mentioned again

that the coefficients for agricultural and urban land-uses might be less credible as a consequence of the
very small within-variance. In columns 2-4, parameter estimates for these two variables are much larger
in magnitude than what can be expected to be true and they are very far from significant.

More precise estimates could possibly be estimated by a random effects model, provided that the assump-
tion holds that the unit specific effects, vi are uncorrelated with the explanatory variables, xit. To test
this assumption, I conducted two versions of the Hausman test, first for the model in column 2 of table
6. Here, the test statistic is χ2 = 8.67 (p-value 0.0699). For the same test with the model in column 4,
thus including year dummies as well as lagged dependent variables, the test statistic is χ2 = 7.51 (p-value
0.1111). These two results can be taken as indications that random effects can be used. As discussed
in section 5.3, it can also be argued that the choice between random and fixed effects models can be a
trade-off between the costs and benefits of using the two models, rather than a strict rule-based decision.
In the current case, the benefits of using random effects is that the cross-sectional variation contains
substantial information that is disregarded with fixed effects. The cost of using random effects is the risk

29The reason for this specification is that the share of some land-uses are zero in several areas, in which case the logarithm
is not defined.
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of omitted variable bias — a risk that should be kept in mind when studying the results.

For random effects regression results, see table 7. Coefficients estimated with random effects have the
expected signs and estimates change less depending on specification, even though they still do not appear
as very robust. Clearly, it cannot be proven that omitted variable bias is not present in the random effects
model, but parameter estimates are more in line with expected results and the negative effect of forests
and the positive effect of agriculture on levels of E. coli in the water are statistically significant.

Table 7 E. coli random effects estimations

(1) (2) (3) (4) (5) (6)
ln(E. coli) RE RE RE RE BW-RE BK-RE

ln (1 + forest) -1.002 -0.349 -0.824* -0.747* -0.541 -1.109***
(1.194) (0.953) (0.480) (0.425) (0.831) (0.276)

ln (1 + logged) -1.361 0.255 0.259 0.139 0.580 -0.251
(1.198) (1.131) (0.474) (0.386) (0.965) (0.229)

ln (1 + agriculture) 1.856 1.169** 0.930** 1.949** 0.922***
(1.510) (0.583) (0.441) (0.965) (0.244)

ln (1 + urban) 5.142 1.126 0.832 3.552 0.370
(5.316) (2.102) (1.677) (4.680) (0.876)

ln (rain) 0.144*** 0.157*** 0.193*** 0.206*** 0.129*** 0.202***
(0.0249) (0.0254) (0.0309) (0.0291) (0.0158) (0.0172)

ln (flow) 0.0954*** 0.0939*** 0.0107 0.00518 0.0985*** -0.00198
(0.0300) (0.0306) (0.0130) (0.0102) (0.0131) (0.00573)

ln (E. coli) t-1 0.610*** 0.442*** 0.434***
(0.0546) (0.0281) (0.0156)

ln (E. coli) t-2 0.273*** 0.212***
(0.0277) (0.0158)

Constant 0.117 -0.596 -0.398 -0.452 -0.420 -0.223
(0.716) (0.584) (0.296) (0.277) (0.534) (0.197)

Year FE No Year Year Year Year Year

Observations 7,549 7,549 6,369 5,860 7,549 5,860
R-squared 0.441
No. of treatment plants 76 76 76 75 76 75

Robust standard errors in parentheses, except BW.
BW is Baltagi-Wu AR(1)-adjustment. BK is Beck-Katz with panel specific AR(1).

*** p<0.01, ** p<0.05, * p<0.1

6.1.2 Multiple imputation to handle missing data

As discussed in section 5.3.2, inference can possibly improve if missing values are imputed. For E. coli,
test values are missing for approximately 38% of the treatment plant-month pairs. The missing values are
not evenly distributed across treatment plants, however. For those treatment plants with a large share of
empty cells, imputation is less reliable. Dropping the treatment plants that have more than 50% of the
observations missing (23 treatment plants) reduces the rate of missing values to approximately 26%.

The amount of imputations needed for a certain efficiency has been shown to be given by (1 + λ/m)−1,
where λ is the proportion of missing values and m is the number of imputations (Schafer and Graham,
2002, p. 165). With λ = 0.26 it should thus suffice with m ≈ 5 imputations to reach 95% efficiency. In
their review of imputation methods, Schafer and Graham (2002) provide an example in which 80% of the
data is missing and multiple imputation was conducted with m = 20.

Imputing values for E.coli based on predictive mean matching, I obtained an almost balanced panel for
54 treatment plants. Predictive mean matching uses a normal regression to obtain linear predictions,
then uses these predictions to form a set of nearest neighbours from the non-missing values. Finally, it
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randomly draws an imputed value from this set of neighbours. The choice of number of nearest neighbours
is a trade-off between possible bias, which increases with the number of neighbours, and variance, which
can be too low if the number is small.

I used a regression with modeled values of rainfall and total water flow, percentages of forest, logged,
agricultural and urban land-uses and estimated treatment plant fixed effects as explanatory variables to
make 20 imputations, each making a random draw from 5 nearest neighbours. Fixed effects regression
results with the imputed data are found in table 8. The results show no significant effect of land-use at
all, but rain and total water flow are significant and the magnitude of their coefficients are in the same
magnitude as in the earlier estimations. The parameter estimate for the forest variable has the unexpected
positive sign in all fixed effects estimations (columns 1-3), but a negative sign when random effects are
assumed in column 4. However, it is far from significant in all 4 specifications.

Quite clearly, imputations did not help with statistical inference. One possible reason is that a significant
share of the treatment plants are dropped in these regressions, so the larger amount of observations per
plant might be balanced out by the smaller number of plants. All in all, only a slightly larger number of
observations are gained.

Table 8 E.coli estimations with multiple imputations

(1) (2) (3) (4)
ln(E. coli) FE FE FE RE

ln (1 + forest) 6.154 10.47 8.211 -1.780
(8.944) (11.16) (9.444) (1.942)

ln (1 + logged) 4.085 7.978 6.333 -0.359
(6.662) (8.134) (6.891) (1.454)

ln (1 + agriculture) 201.9 172.9 142.5 0.639
(358.2) (387.9) (336.5) (1.511)

ln (1 + urban) 95.35 120.7 105.7 -1.203
(149.3) (180.2) (155.1) (3.060)

ln (rain) 0.126*** 0.136*** 0.141*** 0.172***
(0.0264) (0.0270) (0.0254) (0.0364)

ln (flow) 0.108*** 0.112*** 0.0942*** 0.0122
(0.0286) (0.0295) (0.0263) (0.0196)

ln (E. coli) t-1 0.168*** 0.516***
(0.0251) (0.0567)

Constant -26.20 -26.26 -21.57 0.384
(38.31) (43.61) (37.62) (1.258)

Time FE No Year Year Year

Observations 8,383 8,383 8,295 8,295
No. of treatment plants 53 53 53 53

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

6.1.3 Turbidity levels

Turbidity is a highly relevant parameter to study, since previous research has found that it has a notable
effect on chemical costs in treatment plants — for example, Dearmont, McCarl, and Tolman (1998) found
that a 1% increase in turbidity of raw water increased chemical costs in treatment plants by 0.27%.
However, the SGU data for turbidity is much less complete than the data for E. coli, so the relatively
smaller number of observations is likely to reduce estimation precision and reliability. Estimation results
are found in table 9. Just like the estimations with E. coli as the dependent variable, R2 is very low in these
fixed effects regressions, especially when no lagged dependent variables are included. The within-variation
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thus explains very little of the variation in turbidity levels. The only significant effect of land-use is found
using the Beck-Katz fixed effects regression in column 4, in which urban land-use is estimated to reduce
turbidity (significant at the 10% level). As can be seen in columns 3 and 4, where a lagged dependent
variable is added as a regressor, turbidity is persistent and just like in the case of E. coli the parameter
estimates for forest and logged land switch sign to negative when controlling for this persistence. This
comes at a cost of losing additional observations, however. Somewhat surprisingly, Wooldridge’s test for
autocorrelation in panel data yields an F-statistic of 3.453 (p-value = 0.0700) so the null hypothesis of no
first order autocorrelation cannot be rejected at the 5% level. Therefore, no AR(1)-corrected models are
included.

As can also be seen in columns 3 and 4, when the Beck-Katz regression is not controlling for panel-specific
serial correlation of type AR(1), estimated coefficients are identical to regular fixed effects. Standard errors
are smaller however, which is because they are not calculated using Huber-White sandwich estimates. The
Hausman test for fixed or random effects (performed on the model of column 3 in table 9) yields the test
statistic χ2 = 41.36 (p-value = 0.0000), implying that the random effects model should not be used. No
such estimation results are thus presented here. As in the case for E. coli, rainfall and total water flow
are found to significantly increase turbidity levels, regardless of the model specification.

Table 9 Turbidity fixed effects estimations

(1) (2) (3) (4)
ln(turbidity) FE FE FE BK-FE

ln (1 + forest) 9.262 18.52 -0.381 -0.381
(11.11) (13.58) (22.23) (15.42)

ln (1 + logged) 3.957 10.13 -3.073 -3.073
(7.154) (8.900) (13.91) (9.798)

ln (1 + agriculture) 147.5 -19.72 -19.72
(211.6) (390.9) (228.4)

ln (1 + urban) 61.69 -104.1 -104.1
(109.9) (189.3) (92.51)

ln (rain) 0.0933*** 0.0918*** 0.0633** 0.0633***
(0.0265) (0.0271) (0.0316) (0.0196)

ln (flow) 0.0648* 0.0647* 0.0890** 0.0890***
(0.0333) (0.0330) (0.0361) (0.0134)

ln (turbidity) t-1 0.276*** 0.276***
(0.0798) (0.0261)

Constant -5.624 -26.80 4.191 0.670
(6.431) (21.92) (43.38) (10.08)

Time FE No Year Year Year

Observations 3,994 3,994 1,912 1,912
R-squared 0.020 0.032 0.135 0.790
No. of treatment plants 76 76 65 65

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

6.1.4 Testing the implication of shorter distance to treatment plants

The analysis above is conducted on all land-use changes that happened upstream of any of the water
treatment plants in the sample within a circle of 100 km from the plant. Since there is no consensus in
previous studies about how to make the choice of this distance (there is rather a scientific debate on the
matter, see Sliva and Williams 2001), a test was conducted in which I studied a subset of plants where
the maximum distance between land-use and plant was reduced to 30 km. The amount of studied water
treatment plants were reduced to 62 and the number of observations dropped accordingly. Estimation
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results are found in table 10.

Intuitively, land-use changes closer to the treatment plants are expected to matter more for water quality
of the plants’ raw water, but on the other hand observations are fewer and land-use changes even less
than when a larger area is studied. The specification in column 1 of table 10 corresponds to that in
column 4 of table 6. Signs remain unchanged and all land-use effects are equally insignificant. In column
2, which is a random effects model that corresponds to column 4 of table 7, the effect of forest changes
from significantly negative to practically zero, logged and agricultural land switch sign from positive to
negative and urban is found to be significantly positive. Columns 3 and 4 of table 10 correspond to
columns 2 and 3 of table 9, with and without lagged values of the dependent variable as regressors. Signs
remain similar in column 3, and far from statistically significant. In column 4, however, agricultural and
urban land-uses switch sign to positive, which is the expected direction. Agriculture is even significant
at the 10% level, but the magnitude of the estimated coefficient is unrealistically large. The coefficient
can interpreted as the elasticity by recalculating according to β L/A

1+L/A . Evaluated at the average share
of agricultural land-use (approximately 11%) the elasticity would thus be 21.8, which does not seem
reasonable. A likely explanation to the unrealistic coefficient estimate is the minimal within-variation for
agricultural land-uses.

Table 10 FE and RE estimations with shorter distance to plants

(1) (2) (3) (4)
VARIABLES ln(E. coli) FE ln(E. coli) RE ln(turbidity) FE ln(turbidity) FE

ln (1 + forest) -4.900 -0.00468 5.710 -13.24
(9.110) (0.497) (11.88) (23.37)

ln (1 + logged) -4.589 -0.308 1.930 -11.65
(6.479) (0.433) (7.978) (14.81)

ln (1 + agriculture) 156.1 -0.0221 186.4 217.9*
(291.8) (0.385) (145.8) (129.3)

ln (1 + urban) 58.89 4.167** 56.96 13.16
(146.7) (1.930) (78.77) (59.96)

ln (rain) 0.154*** 0.189*** 0.0944*** 0.0626*
(0.0262) (0.0317) (0.0294) (0.0335)

ln (flow) 0.0477 0.0290* 0.0664* 0.0902**
(0.0288) (0.0155) (0.0363) (0.0388)

ln (E. coli) t-1 0.287*** 0.454***
(0.0296) (0.0282)

ln (E. coli) t-2 0.0990*** 0.273***
(0.0168) (0.0305)

ln (turbidity) t-1 0.278***
(0.0843)

Constant -15.93 -0.737** -27.09 -20.80
(35.18) (0.373) (19.40) (23.04)

Observations 4,943 4,943 3,575 1,753
R-squared 0.135 0.032 0.138
No. of treatment plants 61 61 62 56

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

One possible explanation for why most of the previous results do not hold when studying the area closer to
the treatment plants is that a smaller area studied means that even less land-use change is observed over
the time-series. It should also be remembered that the estimations in table 10 are based on a subset of
the treatment plants. These estimations are thus based both on fewer observations and less longitudinal
variation. These results should not be taken to imply that land-use closer to the treatment plants matters
less for water quality. It is likely that the situation in Sweden, with relatively low rates of land-use change,
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requires that larger areas are studied in order to find significant effects. Not least with fixed effects panel
data estimations.

On a related note, it is likely that land-use in riparian zones — those areas nearest to water bodies
— matter more for water quality than does land-use further from water bodies. Studying the effect
of land-use in riparian zones would be of high interest, and GIS-data is available. However, land-use
regulations are more strict in these zones than in most other areas, so variation over time is likely to be
even lower in these zones, which might make fixed effects estimation impossible.

6.1.5 Dynamic models

Since the estimations in sections 6.1.1 and 6.1.3 showed that both E. coli and turbidity levels are highly
persistent, the data is analysed using Arellano-Bond GMM with the data transformed by forward orthog-
onal deviations. This should also be seen as a robustness check, even though the results presented so far
have not been very robust. The estimator, described in section 5.3.1, is based on the assumptions that
the data-generating process (1) is dynamic, so current realisations of the dependent variable depends on
past ones, (2) that some regressors may be endogenous and (3) that the idiosyncratic disturbances may
have unit-specific heteroskedasticity and serial correlation but that they are uncorrelated across units.

Whereas the land-use variables are treated as potentially endogenous, flow and rain are assumed to be
strictly exogenous. Lags of the land-use variables are thus used as GMM-type instruments, but the length
of the panel (T = 168) means that the amount of lags used must be limited, since there can easily be too
many. It has been recommended in the literature to test the sensitivity of the model to different amount
of lags, which is why I include lags 2-4 in one case and in another case I collapse the instrument matrix
to one column of instruments, as is described by Roodman (2009a, p. 148). The instrument count is
presented together with estimation results in table 11.

As can be seen in table 11, forests are found to significantly reduce levels of E. coli in the water — a result
that is not robust to all changes in the instrument count and number of lags of the dependent variable,
but both magnitude and sign remains somewhat the same. The effect of agriculture on levels of E. coli
has the expected positive sign in all specifications but is not significant. The effects of logged and urban
lands are ambiguous and switch signs. The effect of rain is positive and highly significant as in most other
specifications throughout this study.

In line with the previous analysis, the GMM estimation results do not tell us much about the effects of
land-use on turbidity levels. Whereas forests are found to significantly reduce levels of turbidity in the first
specification (column 4), the sign is positive in the third specification (column 6). In fact all parameter
estimates switch sign depending on specification, except logged (always negative, never significant) and
rain and flow (always positive, but not always significant). A likely explanation is, as before, that we
have far too many missing values for turbidity, a problem that is magnified when lags of the dependent
variable are included as regressors.

6.2 Does water quality affect treatment costs?

Acknowledging that the data for chemical costs in water treatment plants is very limited — an unbalanced
panel with yearly observations from 13 treatment plants over the years 2000-2014 — I studied how costs
were affected by the raw water quality, measured by the indicators studied in section 6.1, turbidity and
E. coli. Fixed effects regression results are found in table 12.

In columns 1 and 2 of table 12, the per-unit cost of chemicals is used as the dependent variable and in
column 3 and 4, aggregate cost is used and quantity of treated water is added as a regressor. The fact
that water quantity is not significant is quite surprising. Since only aggregate chemical costs are studied
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Table 11 Arellano-Bond GMM estimations

(1) (2) (3) (4) (5) (6)
VARIABLES ln (E. coli) ln (E. coli) ln (E. coli) ln (turbidity) ln (turbidity) ln (turbidity)

ln (1 + forest) -1.068*** -0.773 -1.011*** -2.971*** -0.551 0.205
(0.240) (0.478) (0.389) (0.539) (0.889) (0.989)

ln (1 + logged) -0.0949 -0.0345 0.220 -1.472 -3.219 -0.300
(0.322) (0.680) (1.426) (0.986) (3.728) (6.675)

ln (1 + agriculture) 0.304 0.234 2.916 -1.578** 0.261 3.985
(0.363) (0.445) (1.939) (0.766) (1.773) (3.342)

ln (1 + urban) -1.676 1.096 -22.99** 0.553 0.888 -31.34
(1.916) (1.386) (11.39) (1.762) (5.870) (26.97)

ln (rain) 0.165*** 0.129*** 0.184*** 0.404*** 0.124 0.0475
(0.0292) (0.0408) (0.0297) (0.0863) (0.0810) (0.0322)

ln (flow) 0.00576 0.000525 0.0313 0.00252 0.0429 0.0773**
(0.00959) (0.0125) (0.0280) (0.0227) (0.0700) (0.0303)

ln (E. coli) t-1 0.791*** 0.703*** 0.278***
(0.0361) (0.0654) (0.0309)

ln (E. coli) t-2 0.111** 0.103***
(0.0449) (0.0181)

ln (turbidity) t-1 0.884*** 0.685*** 0.298***
(0.0451) (0.103) (0.0971)

ln (turbidity) t-2 -0.0348 0.104***
(0.116) (0.0380)

Time FE Year Year Year Year Year Year
Lags 2-4 2-4 collapsed 2-4 2-4 collapsed
No. of instruments 1463 1779 840 1406 1430 837

Observations 6,369 5,860 5,860 1,912 1,515 1,515
No. of treatment plants 76 75 75 65 50 50

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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and I have not controlled for the amounts used, year fixed effects are included in columns 2 - 4 and should
to some extent control for price changes on chemicals that affect all treatment plants simultaneously. In
column 3 I dropped the rain variable, which made the parameter estimate for turbidity less significant,
in spite of adding some more observations to the analysis (this is because rain statistics for 2014 was
not yet available from SMHI at the time of writing). Looking at the R-squared, as well as the estimated
coefficients for rain and the constant, year fixed effects ameliorates the model significantly.

Judging from these results, it seems quite clear that turbidity is the most relevant pollutant to study
in order to predict chemical costs in water treatment plants. Since both costs and turbidity levels are
expressed in logaritms, the coefficient can be interpreted as an elasticity, implying that a 1% increase in
turbidity levels increase chemical costs in water treatment plants by 0.10 - 0.13 %. This is lower than
what was found by Dearmont, McCarl, and Tolman (1998), who reported a chemical cost elasticity of 0.27
but higher than the figures estimated by Holmes (1988), who found an elasticity of 0.07 for all short-run
water treatment costs. This result is thus in line with previous findings.

Yearly rainfall is included in this regression as a control variable, but it is interesting in itself. The
estimated elasticity of approximately 0.2 means that a year during which rainfall is 1% above average,
chemical costs can be expected to be 0.2% above average. Considering that most climate change models
predict up to 40% more precipitation in Sweden in the future (Arheimer et al., 2005), the effects on water
quality and water treatment costs should not be neglected.

Table 12 Cost function estimations

(1) (2) (3) (4)
VARIABLES ln (cost/m3) ln (cost/m3) ln (total cost) ln (total cost)

ln (m3 water) -0.542 0.400 0.458
(0.329) (0.350) (0.329)

ln (turbidity) 0.126*** 0.108*** 0.0950** 0.108***
(0.0222) (0.0323) (0.0370) (0.0323)

ln (ecoli) -0.00131 -0.0293 -0.0302 -0.0293
(0.0183) (0.0216) (0.0229) (0.0216)

ln (rain) -0.00823 0.210** 0.210**
(0.104) (0.0948) (0.0948)

Constant -1.346* 5.155 7.451 5.155
(0.703) (4.715) (5.187) (4.715)

Time FE No Year Year Year

Observations 138 138 150 138
R-squared 0.070 0.291 0.221 0.265
No. of treatment plants 13 13 13 13

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

6.3 Further steps to be taken

It is quite likely that the fixed effects analysis is hampered by the low variation over time of land-use
variables. To some extent, this is an unavoidable consequence of a slowly changing landscape in a country
with strict regulations on land-use. But it is plausibly also a question of data quality. With higher
precision maps, smaller land-use changes can be detected, and with more land-use classes the changes
between different types of forests, for example, could be studied. Fortunately, GIS-data is currently
developing quite rapidly, with both quality and quantity of maps increasing quite rapidly, so future
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studies can possibly benefit from more and better data on land-use change. A longer dataset, including
land-use changes over more years, could possibly ameliorate inference of the effects of land-use as well.
At this point, I have not found data sources that would allow longer time-series or higher precision.

Forest ecosystems have been highlighted by previous research as important for water purification. Forests
are, however, heterogenous. Vincent et al. (2015) separate logged forest from virgin forest and find that
the latter has a more positive effect on water quality.30 The CLC land-use data did not allow such a
separation between forest types. Considering that Vincent et al. find that virgin forest is significantly
more efficient than other forest-types at providing clean water, a separation of the forest variable into e.g.
production forest and non-production forest could possibly have yielded more robust results.

Another methodological issue that needs to be resolved is that of which land-use that is most relevant
— the land-use that is (i) close to the treatment plant, (ii) close to upstream water bodies or (iii) all
upstream land-use. This issue clearly points to the need for interdisciplinary work. Environmental
economists need to team up with hydrologists, biologists and geographers to better understand this issue
in ecosystem service valuations.

30A reminder: In the study by Vincent et al. (2015), "logged forest" refers to secondary forest. In the current study it
refers to land that has recently been logged and is currently in a transitional state.
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7 Discussion and conclusions

The aim of this study has been to econometrically infer a monetary value of the water purification services
of ecosystems, using a cost function based valuation method. The dataset, constructed by the author
and combining cost data from treatment plants, land-use data from publicly available GIS-files and water
quality data from the Swedish Geological Survey, allowed fixed and random effects as well as GMM
analysis of how upstream land-use affects water quality and how water quality, in turn, affects treatment
costs. Unfortunately, the data is of limited quality, with a rather large proportion of missing values, which
is one likely explanation to the lack of robust results. In spite of data limitations, indications have been
found in random effects specifications as well as Arellano-Bond GMM specifications that upstream forests
do reduce levels of E. coli downstream. However, logging of forests is not found to significantly increase
levels, which would be expected given the effect of forests. One possible explanation lies in the fact that a
large proportion of Swedish forests are production forests, thus regular logging is a part of this ecosystem.
With data that could separate primary and secondary forest, it is likely that results would be different. If
so, then that would also be in line with the findings of Vincent et al. (2015), who show that virgin forests
reduce water treatment costs more than what secondary forests do.

Studying how upstream land-use affects levels of E. coli, the results are ambiguous for the effects of
urban and agricultural land-uses. One likely explanation is that the within-variation is very low for these
land-uses. With a random effects specification, thus including cross-sectional variation in the analysis,
agricultural land-uses are found to significantly increase levels of E. coli (see table 7).

Results are even less robust when studying the effect of upstream land-use on turbidity levels. This is
likely to be explained at least to some extent by the even more limited data availability for turbidity.
Consequently, not much can be said in this study about how land-use affects turbidity of downstream
water. This is clearly problematic when the ambition is to study the effect on water treatment chemical
costs, because the cost function estimates in section 6.2 show that turbidity is an important determinant
of chemical costs, whereas no effect is found for E. coli. In order to plausibly estimate how upstream
land-use affects water treatment costs, it is essential that the effect of upstream land-use on turbidity
levels in Swedish water bodies is studied further. Better data is surely needed for this purpose.

Even though it is possible that the benefits to society of decreased levels of microbiological pollutants in
water bodies cannot be captured by the chemical cost function valuation method explored in this study,
it surely does not mean that reducing levels of E. coli is without value. Considering the immense costs
of waterborne disease outbreaks, carried through the public water supply, this service might indeed be
more valuable than the reduction of chemical costs in water treatment plants. This study has pointed out
that forests seem to reduce levels of E. coli downstream, implying that forest ecosystems do provide this
service to society. What remains is to find ways of quantifying the value of that service.

Safeguarding water resources is a political priority, in developing as well as developed countries. Several
previous studies have argued that safe and clean drinking water is not only an issue of water treatment
technology but also of watershed management. This can be connected to the academic discussion about
the substitutability between physical and natural capital, referred to in section 3.4.1. The fear of future
water quality degradation is currently making Swedish municipalities invest in modern, and expensive,
water treatment equipment. With better understanding of how upstream land-use affects water quality,
investments in watershed management could be compared to these water treatment investments to see
what is more cost-efficient. In developed countries, however, land tends to be expensive and the public
sector can often afford these types of investment. In many developing countries, the opposite is more likely
to be true, which is why watershed management is likely to be a more economically viable alternative in
these countries. Studies like the current one can be well placed to inform decision-makers about these
types of trade-offs.
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This study was inspired by the recently published and first-of-its-kind valuation study by Vincent et al.
(2015), which studied the effects of upstream land-use on downstream water treatment costs in Malaysia.
Whereas Vincent et al. were able to present robust econometric evidence that upstream forests reduce
water treatment costs, they barely touched the question of how forests actually affect water quality — it
was only implicitly assumed that water quality was the link between land-use and treatment costs. The
current study, which cannot establish the link assumed by Vincent et al., illuminates the importance of
studying both parts of this relationship.

In order for studies like this one to be of higher relevance for ecosystem service valuation, more geographic
precision is needed. If a significant relationship between upstream land-use and downstream water quality
can be robustly proven, the next step is to discuss how the location of the specific land-use matters. One
aspect that can be of importance is topography of the landscape, for example whether a certain land-use
is in a slope or not. It is not unlikely that the land-use changes that have been studied in this paper
appeared too far from water bodies to have a significant effect on water quality. An interesting next
step would be to reduce the amount of land studied, and narrow down the focus towards areas closer to
water, e.g. riparian zones. A test was conducted in section 6.1.4, where the maximum distance between a
land-use change and the treatment plant was reduced to 30 km, instead of 100 km. This was only done for
a subset of the treatment plants and their upstream areas, however. The fact that this analysis did not
give any significant results (except that the coefficient for urban land-use was found to have a significant
effect on levels of E. coli in a random effects regression) should not be taken as an indication that land-use
closer to treatment plants matters less for water quality at the plants’ raw water intake. Rather, it is
likely to be explained by the even lower within-variation of land-use. Since land-use in proximity to water
is quite heavily regulated in Sweden, it is likely that panel data estimations of land-use in these zones will
suffer from very low longitudinal variation and fixed effects estimations might not be possible.

Rain and total water flow have been used as control variables throughout the econometric analyses in
this study. Almost regardless of the specification and the variables studied, rainfall has been found to
significantly increase levels of water pollutants as well as treatment costs. This is interesting in its own
right, not least since climate change is likely to increase precipitation and total water flow in Sweden.
Thus, municipal water providers, and consumers, need to prepare for higher water treatment costs in the
future. These costs should not be disregarded when estimating the economic consequences of climate
change, and this could possibly be an important avenue of future research.

This study is part of a growing body of ecosystem service valuation studies, an area of which the policy
relevance is growing, as a consequence of the increasing ambitions to include the value of environmental
goods and services in decision making and national accounts. From the early understanding of environ-
mental degradation as a consequence of public goods and external costs (Pigou, 1924; Hardin, 1968),
emanated the view that ecosystems constantly contribute to the economic system and that it should be
considered an integral part of it (Dasgupta, 2008). Consequently, just as the net present value of human
and physical capital is determined by current and expected flows of income, ecosystems can be treated as
economic assets that yield a flow of economically valuable benefits. To know the value of the stock, we
must understand these benefit flows (Barbier, 2011). The current study has contributed to this type of
understanding in the context of water purification in Sweden.

Several methods have been proposed for the valuation of ecosystem services, each with its advantages and
disadvantages (Daily et al., 2000). In the area of watershed ecosystem services in the Nordic countries,
there have been calls for research using the cost function approach to valuation (Barton et al., 2012, p.
52-53). This study has responded to that call.

Since clean water is a prerequisite for life, the importance of finding cost efficient ways to safeguard
this resource can hardly be exaggerated. The current study has contributed to this area of research
by discussing methodological development and highlighting complexities such as how to best study the
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effect of land-use (such as choosing the distance to treatment plant or water body), which water quality
parameters that matter most (only turbidity or E. coli as well) and which economic effects in society
(water treatment costs, treatment equipment investments or waterborne disease outbreaks) that should
be studied in relation to the water quality parameters chosen. Even though much work remains in order
to credibly estimate the value of the water purification services of ecosystems and to include this value in
decision-making and national accounts, steps have been taken toward this end.
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A GIS Data collection

In this appendix, the land-use data extraction process is described with simple screenshots and captions.
The extraction was done by the author, using the software QGIS, and the data was then converted
to spreadsheets. All figures are screenshots from QGIS (version 2.10.1) and they include the following
layers: catchment areas from SMHI, the BY-layer (buildings) from the Swedish mapping, cadastral and
land registration authority and the so-called Change Layer 2006-2012 from CLC.31

Figure 3 The small black dot at the southwestern end of the lake is the water treatment plant.
31The catchment area layer is available at http://vattenwebb.smhi.se/ and the CLC change layer is available at

http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view. The BY layer is part of the product Fastighet-
skartan, which is not publicly available.
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Figure 4 The upstream area of the water treatment plant is identified.

Figure 5 A circle with radius 30 km around the water treatment plant is created.
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Figure 6 The intersection of the two layers will be the area relevant to study.

Figure 7 A layer is added with all land-use changes between 2006 and 2012. Their meta-data, with
land-use category before and after the change as well as number of hectares of the area, can be
extracted to a spreadsheet.
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B Land-use categories

Figure 8 The different classes for land-use.
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