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Abstract:

This paper investigates the predictive power of the information content of VIX options
with respect to VIX futures. Two sub-samples of variables are used in the analysis:
put-call ratios of daily option volumes and spreads among implied volatilities across
different moneyness levels, derived from VIX options prices. The statistical
significance and the forecasting accuracy of various predictive models are back-tested
through the computation of one-day ahead out-of-sample forecasts, using both
expanding and rolling estimation windows. Different statistical indicators are employed
to identify the best performing models. The results indicate that put-call ratio and
implied volatility skew variables possess predictive power with respect to VIX futures,

and their combined inclusion improves the forecasting accuracy.
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INTRODUCTION

Derivative instruments play a fundamental role in the development of modern financial
markets. This type of security is priced according to a non-arbitrage paradigm with
respect to the underlying asset and to the other securities traded in the market. Given
the relationship with the respective underlying instrument, an ever-increasing number
of authors have investigated the possible presence of information spillover from one
market to the other. Specifically, the focus has been the information content of
derivative instruments with respect to future prices and returns of underlying assets.
The main reason for information to be first incorporated and exploited in derivatives
markets is the higher level of leverage achievable through them. One class of
derivatives particularly affected by these dynamics are option contracts, since they are
priced using inputs directly derived from the underlying securities.

In the vast body of literature that deals with the information content of options, two
features have been extensively studied: the put-call ratio and the implied volatility
skew. The put-call ratio is generally defined as the ratio between the volume of put and
call options traded on a given day. It is both treated as an information indicator, which
reflects informed trading activity in the market, and as an investor sentiment indicator.
In this second instance, it is used as a contrarian indicator, where a high level of the
ratio indicates a great amount of fear in the market. Whether this comes from an
increased risk-aversion, more demand for insurance against market drops or just
overreaction to negative shocks, determines the goodness of the indicator. The implied
volatility skew comes from the asymmetry across various moneyness levels of the
expected volatility for the underlying asset implied by option prices. The implied
volatility skew is accounted by computing differences of implied volatilities among out-
of-the-money, at-the-money and in-the-money call and put options. These volatility
spreads may contain information about future prices and returns of the underlying
security. The results of this body of research indicate that the information content of
option markets, whether traded volumes or spreads in implied volatilities, does
possess forecasting power with respect to the future dynamics of the underlying asset.
The aim of this paper is to assess the forecasting power of VIX options on VIX futures,
using both classes of variables and combining them together. The innovative aspects
of this work with respect to the existing literature are that we combine trading volumes
and implied volatility spreads of VIX options and we employ them to predict the future
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dynamics of VIX futures. Previous researches either used the two groups of variables
separately or tried to assess their forecasting power with respect to equity indexes.
The study is conducted on daily data from January 3™, 2007 to August 31%, 2015. The
dependent variable, on which the forecasting power is assessed, is the one-day ahead
1% generic VIX future, VixF .. Different versions of put-call ratio and implied volatility
skew variables are constructed and their statistically significance checked through
univariate and multivariate regressions. Put-call ratios can be computed both using
raw or smoothed daily volumes data, and including only observations on options with
a specific maturity ranges. The implied volatility skew can be accounted using spreads
on different moneyness levels within the same type of option contract or considering
differences between call and put options skew. We conduct an in-sample analysis to
identify the most significant independent variables and then combine them to construct
various predictive models. In the last part of the paper, we recursively compute the
one-day ahead out-of-sample forecast, using both expanding and rolling estimation
windows, and the statistical performance of each model is assessed through different
statistical indicators. The results of this work prove that put-call ratio and implied
volatility skew variables have statistically significant predictive power with respect to
VIX futures. Predictive models that include these variables, perform better than the
benchmark model.

The paper is organized as follows. Section 2 includes an overview on the VIX index,
VIX futures and VIX options, while section 3 summarizes the existing relevant
literature. Section 4 contains the empirical analysis, including the construction of the
variables, the in-sample and the out-of-sample analysis. Section 5 reports the main

result, limitations and extensions. Section 6 concludes.



2. VIX INDEX, FUTURES AND OPTIONS

Academics and practitioners realized long ago that stochastic volatility is a
fundamental risk factor, which affects both the pricing and hedging of many financial
securities. The necessity to take into account stochastic volatility in assessing and
hedging portfolio returns required the creation of a reference index. In 1993, the
Chicago Board Options Exchange (CBOE) introduced the Volatility Index (VIX). It was
originally designed to measure the market’s expectation of 30-day volatility implied by
at-the-money S&P 100 option prices. It was updated in 2003, and it is since based on
the SPX. The majority of investors look at the VIX index because it provides useful
information about the current market mood, which can in turn be used to predict
potential market swings. Given its strong negative correlation to the SPX, it is also a
very effective risk management tool in equity portfolio management. However, other
market participants take positions in VIX derivatives instruments with the sole purpose
to speculate on the future direction of the market. VIX futures contracts were
introduced on March, 24™ 2004 and VIX options came along two years later, on
February, 24™ 2006. VIX derivatives are among the most actively traded contracts at
CBOE, because of their ability to hedge the risks of positions in the SPX index or to
heavily speculate on it.

2.1 VIX index

The VIX index, is an up-to-the-minute market estimate of the expected volatility of the
SPX index over the next 30 days. It is computed using real-time prices of options on
the SPX index traded during regular trading hours. The procedure used to compute
the VIX is articulated in three main steps.

1. Selection of the options contracts to be included in the computation:
The near-term and next-term call and put options to be used in the calculation are

selected. They are the options expiring in the first and second SPX contracts months.

2. Calculation of the variance of near-term and next-term options
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where:

3.

T = Time to expiration

F = Forward index level desired from index option prices

K, = First strike below the forward index level F

K; = Strike price of the i" out-of-the-money option: a call if K; > K,,
a put if K; < K, or both call and put if K; = K,

AK| = Interval between strike prices

R = Risk-free interest rate to expiration derived from the bond equivalent yield
of the U.S. T-bill maturing with the closest expiration date

Q(K;) = The midpoint of the bid-ask spread for each option with strike K;

Calculation of the VIX index:

The index is computed as the square root of the 30-day weighted average of the

variances derived in early in the procedure

Figure

T, and T, are the time to expiration of the near-term and next-term VIX options

measured in calendar days scaled by minutes. This is done in order to obtain

the same precision option and volatility traders commonly use.

N, is the number of minutes before the settlement of the near-term VIX options
N, is the number of minutes before the settlement of the next-term VIX options
N3, is the number of minutes in 30 days

N3¢5 is the number of minutes in 365 days

0% and 03 are the variances of the near-term and next-term VIX options

1 shows the trend of the VIX index during the observation sample used in our

analysis, from January, 3™ 2007 to August,31%' 2015. The index peaked during the

financial crisis on November, 20™ 2008 and touched its low on January, 24" 2007.
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Table 1: Summary statistics for VIX index

Max 31,09 80,86 56,65 4579 48,00 2666 2049 26,25 40,74
VCELUNN 1754 3269 3148 2255 2420 17,80 1423 14,18 1557
Min 9,89 16,30 19,47 1545 14,62 1345 11,30 10,32 11,95
St.Dev. NI 16,35 9,06 5,26 8,12 2,54 1,74 2,63 4,09

Figure 1: VIX index
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2.2 VIX futures
On March, 24™ 2004 VIX futures were introduced by the CBOE. They are standard

future contracts with cash settlement to a special opening quotation (SOQ) of VIX. The

price of VIX futures represents the expected spot 30-day implied volatility for the SPX
on the expiration date of the specific contract. Prices of VIX futures contracts could be
either higher or lower than the underlying VIX index. This is due to the fact that market
expectations for the future volatility may vary for each different expiration. The pricing
relationship between VIX futures and VIX index is unique. Almost all futures contracts
are structured on a "cost of carry" relationship, by which futures mirror the performance
of the underlying asset. With the ability to replicate the performance, there could be an
arbitrage if the future is mispriced relatively to its underlying asset. Arbitrageurs take
advantage of such mispricings when they occur, which directly causes futures
contracts to trade within a narrow range close to the price of the underlying instrument.
On the contrary, there is no such possibility as to replicate the performance of the VIX
index in the same way as other financial products. The formula to compute the VIX
index takes into account the mid-point between bid and offer of SPX option contracts,
and this does not necessarily represent a price where VIX futures contracts may be
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readily traded. This results in the inability of traders to quickly trade SPX options to
lock in a 30-day implied volatility versus the VIX index. Given the impossibility to
arbitrage between VIX index and VIX futures, there is no arbitrage-value relationship
between the two. VIX futures trading hours have been extended to nearly 24 hours a
day five days a week starting June 2014 and from July, 23™ 2015 VIX weekly futures
began trading at CBOE Futures Exchange. Below are reported the summary statistics
for the first three generic VIX futures (those expiring in one, two and three months
respectively) and their cross-correlation with the VIX index. It should be noticed how:

e the correlation of VIX futures with VIX index decreases for longer maturities,
which is consistent with the idea that the dependence of the future level of
expected volatility with respect to the VIX index, is smaller the longer the time

horizon.

e the mean value increases for longer maturities, while the standard deviation
decreases. This reflects not only the well-documented overestimation of implied
volatility over longer horizons, but also the lower variability, direct consequence
of the mean-reversion feature of the volatility itself.

Table 2: Summary statistics for VIX index and VIX futures

Wb 1st Generic VIX Future  2nd Generic VIX Future 3rd Generic VIX Future
Max 80,86 67,95 59,77 54,67
Mean 21,36 21,81 22,55 23,00
Min 9,89 10,43 11,89 12,83
# Obs 2181 2181 2181 2181
St.Dev. 10,16 9,17 8,12 7,42

Table 3: Correlations for VIX index and VIX futures
1st Generic VIX
Future

3rd Generic VIX
Future

2nd Generic VIX
Future

VIX

1,000 0,982 0,939 0,906
Index

1st Generic VIX 0,982 1,000 0,979 0,954
Future

2nd Generic VIX 0,939 0,979 1,000 0,992
Future

3rd Generic VIX 0,906 0,954 0,992 1,000

Future



Figure 2: VIX index and 1 - 2" - 3™ VIX futures
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VIX futures quickly became popular among investors and volatility traders. The
average daily traded volume experienced an exponential growth over the years,
topping 200,000 contracts traded daily in 2014.

Figure 3: Average daily volume of VIX futures
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2.3 VIX options
On February, 24™ 2006 VIX options began trading on the CBOE. The European style
option contracts are written on the VIX future with the corresponding maturity and have

cash settlement. Given the specific computation procedure of the VIX index, VIX
options expire on the Wednesday 30 days before the third Friday of the calendar month
after the expiring month. The settlement value is a special opening quotations (SOQ)
of VIX. VIX options liquidity is mainly concentrated on short maturities, with 65% of
contracts having less than 45 days to maturity (figure 10). The average daily traded
volume experienced a six-fold increase from 2007 to 2014 (figure 4). VIX option implied
volatility skew is uniquely shaped, with out-of-the-money call options showing higher
implied volatilities than in-the money call options. The implied volatility skew is thus
upward sloping, opposite from equity indexes options. Implied volatilities are also
generally higher for call than for put options. Both features are due to the particular
nature of the VIX and the hedging purposes VIX options are traded for. Given the great
complexity of this product and high risks associated, VIX options are mainly traded by

professionals and institutional investors.

Figure 4: Average daily volume of VIX options
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3. LITERATURE REVIEW

Equity instrument and option contracts trade in different markets, in distinct locations
and at different times. However, despite the presence of the above mentioned physical
constraints, the two markets are highly integrated between themselves, and
information revealed in one of them should be readily transmitted and incorporated in
the other one. Many researches focused on the behavior of informed investors, who
should theoretically first go to option markets, in order to exploit the greater leverage
derivatives offer. A growing stream of literature focuses on proving the existence of a
direct link between information embedded in option markets and the future dynamics
of the underlying assets. The findings suggest that information spillover may be
present from the option markets to the equity markets. Two classes of information have
been commonly studied and used in literature: the first one uses the information
contained in the volume of options traded and the ratio between the volumes of put
and call options. The second group includes information related to deviations from the
put-call parity and the shape of skew of the implied volatility. The following sections
give an overview of the relevant literature with respect to these topics. The last part
will review the literature regarding the relation between VIX index and VIX futures,

given the focus of this work.

3.1 Option volume and put-call ratio

Simon and Wigging (2001) examined the predictive power of different popular
investors’ sentiment measures in respect to future returns of SPX futures contract over
three different time horizons (10-20-30 days) from January 1989 to June 1999. The
measures the authors used in their analysis are the put-call ratio, the volatility index
(VIX) and the trading index (TRIN). They demonstrated that these variables do have
statistically significant predictive power and that they can be used as contrarian
indicators. This implies that periods of extreme high level of fear among investors in
the market provide convenient and remunerative buying opportunities. The last part of
the paper tests out-of-sample trading strategies, implemented during the second time
period of the observation sample. The results suggest that risk-adjusted profits could
be realized by buying SPX futures when fear indicators spike at high levels. Pan and
Poteshman (2006) found solid evidence in their work that options trading volume

contains information about future dynamics of the underlying assets. They computed
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put-call ratios from option volume of transactions initiated by buyers in order to open
new positions. Stocks possessing low put-call ratios outperform stocks with high put-
call ratios by more than 0.40% on the next day and more than 1% over the next week.
Dividing option signals used in the data analysis into parts that are publicly and non-
publicly available, they found that the root of the predictability derives from nonpublic
information and is not caused by market inefficiencies. The predictability is higher for
stocks with greater concentration of informed traders and for options with a higher
degree of leverage. Bandopadhyaya and Jones (2008) used in their work two investor
sentiment measures computed and made publicly available by the CBOE daily. This
is an ideal feature since it makes possible to retrieve and use them for everyone, both
academics and practitioners. The two variables considered are the put-call ratio and
the VIX index. The authors used daily data from January, 2" 2004 to April, 11" 2006
for their analysis and discovered that the put-call ratio does possess better explanatory
power than the VIX in explaining returns for the SPX index, even after including

different control variables.

3.2 Implied volatility skew and deviations from put-call parity

Doran, Peterson and Tarrant (2007) studied the information content of the shape of
the implied volatility skew and assessed its forecasting power with respect to market
dynamics. The analysis includes all options on the S&P 100 from 1984 to 2006, and
the results confirmed that the implied volatility skew derived from actually traded option
prices has predictive power in forecasting market movements. Furthermore, the
authors tested if this statistical significance is economically exploitable and found that
it is not. The findings are more robust in the short-term for out-of-the-money put
options. This is consistent with the paradigm of investors’ aversion to large market
drops. The predictive power also tends to decrease with longer options maturities.
Xing, Zhang and Zhao (2010) also assessed the cross-sectional predictive power of
the shape of the implied volatility skew with respect to future stock returns. They found
that stocks that have a heavily pronounced skew do underperform stocks with less
inclined volatility skew by almost 11% per year on a risk-adjusted basis. The
predictability remains statistically significant up to six months. The results of the work
are also coherent with the paradigm that informed traders, who possess negative news
are more likely to trade out-of-the-money put options, and that equity markets do not
quickly incorporate all the information embedded in option markets. Doran and Krieger
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(2010) studied how information contained in the implied volatility skew affects future
returns of the underlying assets. The results show that future returns can be related to
the spreads between call and put implied volatilities. Spreads between at-the-money
options have been computed to account for the middle of the skew, while the left side
has been defined by differences between out-of-the-money and at-the-money puts.
The work shows that many option-based measures of the implied volatility skew do
posses strong predictive power in forecasting the future dynamics of the underlying
assets. The authors also indicated that information is contained in different parts of the
implied volatility skew, particularly in two sections: in the middle, given by the difference
between at-the-money call and put volatility, and on the left-hand side of the skew,
between the out-of-the-money and at-the-money puts. Cremers and Weinbaum (2010)
provided strong evidences in their work that deviations from the put-call parity
incorporate statistically significant information with respect to future returns of the
underlying assets. They computed the differences in implied volatilities, also known as
volatility spread, for pairs of call and put options on the same underlying stock, with
equal strike price and time to expiration, to account for the above mentioned
deviations. Since single name option contracts may be exercised before maturity
(American style options), spreads among implied volatilities only represent deviations
from a theoretical pricing model and do not directly imply the presence of arbitrage
opportunities. However, they can be viewed as a way to pin down price pressure
signals in the derivatives market. These signals incorporate statistically significant
information, which are economically exploitable. A long-short portfolio in equities with
comparatively expensive calls versus comparatively expensive puts gains a risk-
adjusted abnormal return of 0.50% per week. The degree of predictability is greater
when option liquidity is high and stock liquidity low, whereas there is low predictability
when option liquidity is low and stock liquidity is high. The authors also discovered that,
first, option prices are far more likely not to adhere to the put-call parity relation when
the underlying stocks face high information risk, and second, that the degree of
predictability declines overtime. Chung, Tsai, Wang and Weng (2011) empirically
investigate the information content of SPX index and VIX options, under the
assumption that they both have forecasting power with respect to returns, volatility,
and density for the SPX index. The results of the paper show that the information
content implied in the two option markets is not identical or redundant. Predictive
models for the SPX index are statistically improved by including information recovered

14



from the VIX options. These findings are robust to different measures of realized
volatility and methods of density evaluation. An, Ang, Bali and Cakici (2014), found
that stocks presenting high spikes in call (put) implied volatilities during the previous
month do generate high (low) future returns. They implemented and back-tested a
long-short strategy based on decile portfolios sorted by past values of implied
volatilities; this position produced an average return of 1% per month and the spread
showed signs of persistence up to 6 months. In the paper also provides evidence about
how the cross section of equity returns possesses predictive power with respect to
option implied volatilities. Stocks with large returns in the previous periods exhibit
substantial increases in call and put options implied volatility during the next 30 days.
Despite being most significant over one month horizon, this predictability persists up
to six months. The high-frequency data used in this study proves that both option and
equity markets react quickly to external news, and that using high-frequency data,

options and stocks seem to be fairly priced in relation to each other.

3.3 VIX index and VIX futures

The temporal relationship between the VIX index and the VIX futures is affected by

peculiar features. Above all, the VIX index is not tradable since it is a forecasted implied
volatility derived from SPX options. Given the large amount of contracts that are used
in its calculations and the continuous rebalancing, it is not feasible to replicate the VIX
index through the basket of options form which it is derived. For all these reasons, the
classic cost of carry relationship is absent between spot and future prices. Another
feature that largely impacts the spot-future relation, is the mean-reverting property of
the volatility (i.e. a large increase in the current volatility will be followed by a decrease
in the future, and vice versa). The VIX index represents the next 30 days implied
volatility. The VIX future represents the expected volatility for the 30-day period in 30
days. If the option market forecasts a volatility decrease during the next 30 days, the
VIX spot will decrease. However, the price of the VIX future will not decrease to the
same extent, since the implied volatility will tend to revert to its long-run mean. Shu
and Zhang (2011) analyzed the price-discovery function and information efficiency of
the VIX futures market. Using a linear Engle-Granger cointegration test with an error
correction mechanism (ECM) they found that VIX futures prices lead spot VIX index
during the full time sample. This implies that VIX futures have some kind of price-
discovery function. Subsequently, a nonlinear Granger test was introduced, given the
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fact that the traditional linear test fails in detecting nonlinear casual relations. As a
result, a bi-directional causality between VIX spot and VIX futures prices has been
discovered, suggesting that both instruments’ prices react to new information
contemporaneously. These causality tests between the VIX spot and VIX futures do
provide an incidental comparison of the relative allure of using the SPX options or VIX
futures as hedging tools. Both SPX put options and VIX futures can be used to hedge
downside risks. On one hand, if investors prefer to trade options, the VIX spot derived
from option quotes will lead VIX futures; on the other hand, if investors are far more
attracted by VIX futures, those will lead VIX spot. Estimated quarterly parameters are
not statistically different from zero, thus producing further evidence in support of the
information efficiency of the VIX futures market. Karagiannis (2014) analyzed the lead-
lag relation between the VIX futures and VIX index price changes. The front month VIX
futures contract is used as proxy for the future market. In the paper a Johansen
cointegration approach with a vector error correction model and Granger causality
analysis are employed. The results indicate that VIX futures lead spot VIX index, thus
impling that VIX futures market do have a greater role in price discovery. Frijns,
Tourani-Rad and Webb (2014) studied the intraday dynamics of the VIX index and VIX
futures market for a period spanning from January 2, 2008 to December 31, 2012. The
authors applied a vector autoregressive (VAR) model using daily data, and detected
evidence of causality from the VIX futures to the VIX spot. However, calibrating a
vector auto regressive model with ultra-high frequency data, they found strong
evidence of bi-directional Granger causality between the VIX and the VIX futures.
Overall, the causality effect seems to be stronger from the VIX futures to the VIX index
than the other way around. Conducting impulse response functions and variance
decompositions analysis further confirm the dominance of the VIX futures. The work
also points out how this causality increased over the sample period, whereas the
reverse causality decreased. These findings suggest that the VIX futures have become
increasingly more important in the pricing of volatility. They further document how VIX
futures dominate the VIX spot in greater measure on days with negative returns, and
on days with high values of the VIX spot itself. This suggest that investors may use
VIX futures to hedge their positions rather than trading in the SPX index options on
those days.
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4. EMPIRICAL ANALYSIS

The analysis we conduct in this work aims to assess the information content of VIX
options with respect to VIX futures. Particularly, it focuses on the information contained
in the put-call ratio of options trading volume and in the implied volatility skew. The
general form of the models used in the paper is thus:

VixF¢+1) = a + + B[PCR variables]y + Bi[Skew variables]y + £y

* Biwith i =1,..,N where N is the total number of variables - valid for all the analysis

Variables contained in the put-call ratio group have been constructed using daily
trading volume data, while variables of implied volatility skew have been computed
through a linear interpolation process. After constructing the independent variables,
we proceed with an in-sample analysis. We run a number of univariate and multivariate
regressions in order to find the most significant variables to include in the predictive
models. We first consider all possible combinations of the independent variables and
then use three (stepwise, swapwise and combinatorial) additional automatic variable
selection procedures to find the most significant relations. In the next part of the paper,
we use the most significant independent variables to construct different predictive
models. We then proceed with a recursive back-testing exercise where we constantly
evaluate the one-day out-of-sample forecast of each predictive model in order to find
the most accurate ones. The performance evaluation is done through several different
statistical indicators, in order to be complete and avoid any bias that the use of a
particular indicator may cause. The predictive models have been estimated both using

an expanding and a rolling estimation window.

4.1 Data

The dataset used in our analysis comes from OptionMetrics WRDS (Wharton
Research Data Services) and includes data on all VIX options (CUSIP: 12497K). We
decided not to include data from 2006 given the low market liquidity and the high
dispersion of the observations. The sample used in the analysis thus ranges from
01/01/2007 to 31/08/2015. The total number of observations is 727,951, which
decrease to 257,788 after deleting all entries with daily trading volume equal to O.
Moneyness levels have been computed as the ratio between the strike price of the

option contract and the level of the 1st generic VIX future (VX1). Figure 5 reports the
17



total options trading volume per year, while figure 6 shows the yearly percentages. The
six-fold increase from 2007 to 2014 is an evidence of the importance that this derivative
instrument gained during recent years. Figure 7 and 8 report the number of implied

volatility observations per year in absolute and percentage terms, respectively.

Figure 5: Options trading volume per year
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Figure 6: Percentage of options trading volume per year

3% 49,

12% 5%

14%

21%

18%

= 2007 =2008 =2009 =2010 =2011 =2012 =2013 =2014 - 2015

18



Figure 7: Implied volatility observations per year

45.000
38.097 38.427
35.304 34.471
30.000 27.757 28.315
20173 20.933

14.311

15.000 I
0
2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 8: Percentage of implied volatility observations per year

11,0% 5,6%

7,8%

14,9% 8.1%

10,8%

13,4%

14,8%

= 2007 =2008 =2009 =2010 =2011 =2012 =2013 =2014 -2015

4.1.1 VIX futures

Given that the goal of this work is to investigate the information content of VIX options
with respect to VIX futures, we decided to use the one-day-ahead 1% generic VIX future
(VX1) as dependent variable. We perform a unit root test and the time series appears
to be integrated of order one, I(1), thus being non-stationary. In order to avoid spurious
regression results we decided to include the current 1st generic VIX future level in the
independent variables of the model. Given the existing literature on the relation
between VIX index and VIX futures, we also included the current VIX index level as
independent variable.
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4.1.2 Put-call ratio
The put-call ratio is defined as the ratio of the volume of put options over the volume
of call options traded in a given day. Generally, it is computed using all the contracts
traded in each given day, including all the expirations and strike prices. In this work, a
more sophisticated approach is followed. Various put-call ratios according to different
maturity buckets have been calculated. This is because different pieces of information
may be contained in ratios constructed starting from different maturity ranges.
Investors may take position VIX options having different maturities according to
specific purposes. This may cause different kind of information to be contained in
different maturity bucket. Moreover, ratios can be calculated by using raw totals of call
and put options volumes or, by first averaging the totals over a number of days, and
then dividing the averaged values. In the first case the classic put-call ratio is obtained,
while following the second method, a smoothed put-call ratio is calculated. We then
decided to compute the following put-call ratios in order to be detect every possible
piece of information contained in this variable:
1. Unsmoothed all days to maturity (PCRALL) - put-call ratio computed starting
from raw daily volumes and including all option contracts
2. Unsmoothed 1-30 days to maturity (PCR130) - put-call ratio computed starting
from raw daily volumes and including option contracts with expiration date
between 1 and 30 days
3. Unsmoothed 1-60 days to maturity (PCR160) - put-call ratio computed starting
from raw daily volumes and including option contracts with expiration date
between 1 and 60 days
4. Unsmoothed 15-45 days to maturity (PCR1545) - put-call ratio computed
starting from raw daily volumes and including option contracts with expiration
date between 15 and 45 days
5. Smoothed all days to maturity (PCRALLSM) - put-call ratio computed starting
from averaging daily volumes over 5 days and including all option contracts
6. Smoothed 1-30 days to maturity (PCR130SM) - put-call ratio computed starting
from averaging daily volumes over 5 days and including option contracts with
expiration date between 1 and 30 days
7. Smoothed 1-60 days to maturity (PCR160SM) - put-call ratio computed starting
from averaging daily volumes over 5 days and including option contracts with
expiration date between 1 and 60 days
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8. Smoothed 15-45 days to maturity (PCR1545SM) - put-call ratio computed
starting from averaging daily volumes over 5 days and including option contracts
with expiration date between 15 and 45 days

Table 4 and 5 report summary statistics and correlation for the eight put-call ratio
variables, while figure 9 and 10 indicate the absolute and percentage values of traded
option volumes across different maturity buckets. Figure 11 and 12 summarize the
frequency distribution of unsmoothed and smoothed put-call ratios. Given the
particular nature of VIX index and the main purpose of VIX options (hedging against
spikes in volatility by buying call options), we expect the frequency distribution to be
skewed to the left. The results are consistent, with almost 30% of observed put-call
ratios for both sub-samples are in the interval 0,3-0,5.

Table 4: Summary statistics for put-call ratios
PCRALL

PCR PCR PCR PCR PCR PCR

130 ALLSM 130SM  160SM  1545SM
Max 4,08 10,27 1807 463 1807 1,86 10,27 2,17 3,17
Mean 058 074 064 060 060 0,53 0,66 0,54 0,53
Min 0,02 001 000 002 001 007 0,05 0,06 0,05
"NolrWM 2181 2181 2181 2181 2181 2177 2177 2177 2177
SIS 044 079 091 048 073 025 0,55 0,28 0,33

Table 5: Correlations among put-call ratios
PCR PCR PCR PCR PCR PCR
130 1545 130SM 1545SM 160SM  ALLSM

PCR130 1,000 0,314 0,708 0,529 0,608 0,285 0,469 0,414
PCR1545 0,314 1,000 0,659 0,594 0,270 0,473 0,369 0,359
PCR160 0,708 0,659 1,000 0,818 0,533 0,507 0,591 0,548
PCRALL 0,529 0,594 0,818 1,000 0,414 0,444 0,500 0,575
PCR130SM 0,608 0,270 0,533 0,414 1,000 0,582 0,833 0,720
PCR1545SM 0,285 0,473 0,507 0,444 0,582 1,000 0,798 0,741
PCR160SM 0,469 0,369 0,591 0,500 0,833 0,798 1,000 0,894
PCRALLSM 0,414 0,359 0,548 0,575 0,720 0,741 0,894 1,000
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Figure 9: Options volume per maturity buckets
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Figure 10: Percentage of options volume per maturity buckets
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Figure 11: Put-call ratios frequency distributions
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Figure 12: Smoothed put-call ratios frequency distribution
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4.1.3 Implied volatility skew

The variables accounting for the implied volatility skew have been computed starting

from Doran and Krieger (2010). In the work, five measures have been used.

Above-Minus-Below (AMB) = ([(IV¢ommtIVp mm)-(IVemmtIVpotm)l/2); it is the
difference between the implied volatilities of the options pairs with moneyness
above and below 100%, respectively and accounts for the tails of the volatility
skew

Call-Out-Minus-At (COMA) = V¢ otm - IVcatm; it is the difference between the
implied volatility of out and at-the-money call options and accounts for the right
and middle side of the volatility skew for calls

Put-Out-Minus-At (POMA) = IV, otm - IVpatw; it is the difference between the
implied volatility of out and at-the-money put options and accounts for the left
and middle side of the volatility skew for puts

Cremers and Weinbaum (CW) = IV atm - IVp aTw; it is the difference between the
implied volatility of at-the-money call and put options and accounts for the
middle of the volatility skew

Zing, Zhang and Zhao (ZZX) = IVcotm - IVpatm; it is the difference between the
implied volatility of out-of-the-money call and at-the-money put options and
accounts for the section across the right call volatility skew and middle put
volatility skew
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Two of the variables can be combined to form another one of them, as
COMA+CW=2ZX. In order to account for the positive skew of implied volatility in VIX
options, (IVQQTM > IVc,ATM > |Vp,AT|\/| > |Vp,o'|'|\/|), we used modified versions of the above.

The variables considered in our analysis are therefore:

Above-Minus-Below (AMB) = ([(IVs.orm+IVp.m)-(Vemu+ Vo orm))/2)
Call-Out-Minus-At (COMA) = IV oy - Ve atm

Put-At-Minus-Out (PAMO) = IV atu - [Vp 01m

Call-At-Minus-Put-At (CAPA) = IV atu - IV, ATu
Call-Out-Minus-Put-At (COPA) = IV¢.o1u - IVpaM

o M o nh =

As in Doran and Krieger COMA+CW=2ZX, we have that COMA+CAPA=COPA. In
order to compute the measures, consistent values for OTM-ATM-ITM call and put
options were needed. Those values have been derived by linearly interpolating five

constant values of moneyness:

e 80% for deep OTM put and deep ITM call options
e 90% for OTM put and ITM call options

e 100% for ATM put and call options

e 110% for ITM put and OTM call options

e 120% for deep ITM put and deep OTM call options

The linear interpolation has been computed using the first value above and the first
value below the desired levels of moneyness. When this was not feasible for the lack
of observations on either sides, the two values, either above or below, have been used.
In all other cases, no values have been interpolated. Since we decided to use as
dependent variable the 1% generic VIX future, a constant interpolation at 30 days has
also been computed. This has been done by linearly interpolating the implied volatilities
corresponding to the two closest maturities to 30 days, one above and one below. All
five selected variables have been computed using both “deep” OTM-ITM (80%-120%)
and OTM-ITM (90%-110%) options. We decided to proceed in this way in order to be
as accurate as possible in measuring the variations in the skew of the implied volatility.
As a result, a total of nine variables has been constructed, since Call-At-Minus-Put-At
(CAPA) is computed using only ATM options.
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Deep-Above-Below (DAMB) = ([(IV¢,120%*1Vp,120%)-(1Vc 80%+1Vp,80%)]/2)
Above-Minus-Below (AMB) = ([(IV¢,110%+1Vp,110%)-(1Vc,90%+1Vp,90%)]/2)
Deep-Call-Out-Minus-At (DCOMA) = V¢ 120% - V¢ 100%
Call-Out-Minus-At (COMA) = V¢ 110% - V¢, 100%
Deep-Put-At-Minus-Out (DPAMO) = 1V 100% - 1Vp.80%
Put-At-Minus-Out (PAMO) = IV, 100% - 1Vp,90%

Call-At-Minus-Put-At (CAPA) = V¢ 100% - 1Vp,100%
Deep-Call-Out-Minus-Put-At (DCOPA) = V¢ 120% - IVp 100%
Call-Out-Minus-Put-At (COPA) = V¢ 110% - 1Vp,100%

1.
2.
3.
4.
5.
6.
7.
8.
9.

Table 6: Summary statistics for implied volatility skew variables
DCOMA COMA DPAMO PAMO CAPA DCOPA

Max 0,79 0,42 0,35 0,19 0,57 0,28 0,34 0,45 0,39
Mean 0,35 0,19 0,17 0,09 0,18 0,09 0,00 0,16 0,09
Min -0,41 -0,26 -0,17 -0,18 -0,14 -0,07 -0,16 -0,07 -0,06
# Obs 2181 2181 2181 2181 2181 2181 2181 2181 2181
St.Dev. 0,14 0,08 0,06 0,04 0,09 0,04 0,02 0,06 0,04

Table 7: Correlations implied volatility skew variables
DCOMA COMA DPAMO

DAMB 1,000 0,971 0,885 0,885 0,894 0,906  -0,181 0,815 0,710
AMB 0,971 1,000 0,910 0,924 0,865 0,925  -0,144 0,854 0,770
plofelliie 0,885 0,910 1,000 0,960 0,711 0,781 -0,186 0,928 0,777
(ofelV /e 0,885 0,924 0,960 1,000 0,729 0,796  -0,215 0,877 0,796
DI\ (Ol 0,894 0,865 0,711 0,729 1,000 0,936  -0,094 0,674 0,619
PAMO 0,906 0,925 0,781 0,796 0,936 1,000 -0,113 0,737 0,670
(OG220 -0,181 -0,144 -0,186 -0,215  -0,094 -0,113 1,000 0,193 0,420
plofolzZNN 0,815 0,854 0,928 0,877 0,674 0,737 0,193 1,000 0,935
COPA 0,710 0,770 0,777 0,796 0,619 0,670 0,420 0,935 1,000

4.2 In-sample analysis

4.2.1 Methodology
To identify the most explicative and relevant variables to use in the out-of-sample
analysis, multivariate regressions are estimated and the significance of each
coefficient is assessed. We both tested VIX index and 1% generic VIX future for
stationarity. Running an Augmented Dickey-Fuller test on both time series, the null
hypothesis of unit root cannot be rejected at 1% for neither of them (Panel 1, Panel 2).
In the test, a trend and a constant have been included. The results do not change if
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only a constant or neither a constant and a trend are included. Augmented Dickey-
Fuller tests have been run on the first differences for both VIX index and 1°' generic
VIX future. The null hypothesis of unit is rejected at 1% for both of them (Panel 3, Panel
4). Even though both variables are integrated of order one, I(1), we decided to use
models in levels instead of differences because the two variables are cointegrated
(Panel 5), and the series of residuals is stationary. Therefore, there is no danger of
having spurious regressions. We included the VIX future lagged as well as the VIX
index lagged in the independent variables, in order to avoid the omitted variable bias.
We decided not to use an error correction model (ECM) since models in levels are
more easily tractable and the forecasting results will not substantially change. Given
all the above, the following base model has been constructed:

ViXF(t+1) =a+ BiViXF(t) + ,B/ViXS(t)

The base model proves to be a good fit with both coefficients highly significant (Panel
6). The residuals are tested for serial correlation using both a correlogram (Panel 7)
and a LM serial correlation test (Panel 8). Both tests confirm the presence of serial
autocorrelation among residuals. Furthermore, through a White test the presence of
heteroskedasticity is detected (Panel 9). The base model is therefore re-estimated
using HAC (Newey-West) as covariance method in the OLS estimation. This does not
change the value of the estimated parameters but adjust the standard errors and t-
statistics accordingly (Panel 10). This is the base model to which put-call ratio and
implied volatility skew variables groups will be added, in order to find the most relevant

ones.

ViXF(t+1) =qa+ BiViXF(t) + B/ViXS(t) + ,8,[PCR variab/es](t) + ,8,-[Skew variables](t)

The four groups of independent variables are the following:

Table 8: Independent variables

Put-call ratios Smoothed put-call ratios Implied volatility skew Deep implied volatility skew

PCRALL PCRALLSM AMB DAMB
PCR130 PCR130SM COMA DCOMA
PCR160 PCR160SM PAMO DPAMO
PCR1545 PCR1545SM CAPA CAPA
COPA DCOPA
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As a first step in our analysis, we add each group of variables to the base model and
evaluate the statistical significance of the coefficients of each variable. Given the fact
that COMA+CAPA=COPA and DCOMA+CAPA=DCOPA, the groups of implied
volatility skew are further divided into two subgroups each, one including CAPA and
the other COPA and DCOPA, respectively. This procedure is followed in order to avoid
problems of collinearity among regressors. The following six multivariate regressions

are then estimated.

1. VixFuq) = a + BVixFy + BiVixSy + B{PCR variables] (Panel 11)
2. VixFpq = a + BVixFy + BVixSy + BIPCRSM variables]y (Panel 12)
3. VixFuq) = a + BiVixFy + BiVixSy + Bi[Skew variables-ex CAPA] (Panel 13)
4. VixFu.q) = a + BVixFy + BiVixSy + Bi[Skew variables-ex COPA] (Panel 14)
5. VixFuq) = a + BVixFy + BVixSy + Bi[Deep-Skew variables-ex CAPA]y (Panel 15)
6. VixFpq =a + BVixFy + BVixSy + Bi{Deep-Skew variables-ex DCOPA]y (Panel 16)

In the regression models with PCR and PCRSM variables, options Total Volume has
been added as control variable. Confronting CAPA versus COPA/DCOPA, the
presence of the first variable improves the significance of the other coefficients
(especially for COMA and DCOMA). Therefore, only the variable CAPA has been
employed in the analysis from this point onward, dropping COPA and DCOPA. The
next step is combining the remaining variable groups, evaluating the first pass
regression results and then proceeding to eliminate all the not statistically significant
variables, until the final regression model contains only variables with significant

coefficients. We start from the following four regression models:

1. VixFysq) = a+BVixFy+BiVixSy + B{PCR variables]y + Bi[Skew variables] (Panel 17)
2. VixFyq) = a+BVixFy+B;VixSy + B[PCR variables]y + Bi{Deep Skew variables]y (Panel 18)
3. VixFy.q) = a+BVixFy+B;VixSy + B[PCRSM variables]y + Bi[Skew variables] (Panel 19)
4. VixFy.q) = a+BVixFy+BVixSy + B[PCRSM variables]y + B{Deep-Skew variables];, (Panel 20)

We eliminate the least significant independent variables and re-estimate each
regression model with the independent variables left. The process continues until all
the remaining coefficients are statistically significant. The resulting final regression
models are explicitly reported below.
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1. VixFier) = a+BiViXFy+BVixSy+ BPCR1304 + BPCRALLy + BCOMAy + BCAPA;y  (Panel 21)
2. VixFpy) = a+BVixFu+BVixSy+ BPCR130y + BPCRALLy + BIDCOMAy + BCAPAy (Panel 22)
3. VixFpuy = a+BVixFu+BVixSy+ BPCR160SMy + BCOMA ) + BICAPA (Panel 23)
4. VIXF(ar) = a+BVixFy+BVixSy+ BPCR160SMy + BIDCOMA 4 + BCAPA (Panel 24)

In addition, other three methods of estimation have been used to find the most
significant independent variables. We employed three automatic variable selection
procedures. The stepwise-forward method begins with no additional independent
variables in the model, then proceeds to add the regressor with the lowest p-value
among those pre-specified. Then the variable with the next lowest p-value is added. At
this point, both added variables are checked against the backwards p-value criterion.
If a regressor has a p-value higher than the specified threshold, it is removed from the
estimation. Once all the removal steps have been computed for all the independent
variables, the next regressor is added. For each successive step of the procedure,
every previously added variable is tested again against the backwards threshold and
possibly removed. The stepwise-forwards procedure stops when the smallest p-value
of the regressors not yet added is higher than the established forwards stopping
threshold. The swapwise method begins with no additional regressors in the model,
then proceeds to add the variable that maximizes the resulting regression R?. The
regressor that brings the greatest increase in the R? is then included. For each couple
of variables added, they are compared individually with all regressors not yet included,
and it is calculated whether the R? could improve if an inside variable is swapped with
an outside one. If this improvement is feasible, then the inside regressor is replaced
by the outside one. If there are more swaps that could possibly increase the R? the
swap that yields the greatest improvement is made. After setting the target number of
regressors, the combinatorial method evaluates each possible combination of these
variables, and identifies the combination that yields the highest R? in the regression
using the specified regressors. Differently from the stepwise-forward and swapwise
methods, this method evaluates every possible combination of variables, thus making
it the most computational intensive among the three. With a great number of potential
regressors, the combinatorial procedure may take quite a long time to estimate the
final regression model. In each of the three estimation methods, VixFyand VixSy) are
always included in the regression model. For swapwise and combinatorial procedure

the number of regressors to be included is five. Each of the three methods has been
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used to compute the set of four equations obtainable combining all the variables
groups (PCR, PCRSM, SKEW, DEEP-SKEW).

o Stepwise:
1. VixFysq) = a+BVixFy+BiVixSy + B{PCR variables]y + Bi[Skew variables] (Panel 25)
2. VixFyq) = a+BVixFy+B;VixSy + B[PCR variables]y + B{Deep Skew variables]y (Panel 26)
3. VixFy.q) = a+BVixFy+B;VixSy + B[PCRSM variables]y + Bi[Skew variables] (Panel 27)
4. VixFy.q) = a+BVixFy+BVixSy + B[PCRSM variables]y + B{Deep-Skew variables];, (Panel 28)
e Swapwise:
5. VixF.q) = a+BVixFy+B;VixSy + B[PCR variables]y + Bi{Skew variables]y (Panel 29)
6. VixF.q) = a+BVixFy+B;VixSy + B[PCR variables]y + B{Deep Skew variables]y (Panel 30)
7. VixFyeq) = a+BVixFy+B;VixSy + B[PCRSM variables]y + Bi[Skew variables] (Panel 31)
8. VixF.q) = a+BVixFy+B;VixSy + B{PCRSM variables]y + B[Deep-Skew variables]y, (Panel 32)
e Combinatorial:
9. VixF.q) = a+BVixFy+B;VixSy + B[PCR variables]y + B{Skew variables]y (Panel 33)
10. VixFsq) = a+B;VixFy+BVixSy + B{PCR variables]y + Bi[Deep Skew variables] (Panel 34)
1. VixF i) = a+BVixFy+BiVixSy + B{PCRSM variables]y + B{Skew variables]y (Panel 35)
12. VixF+1) = a+BVixFy+BiVixSy + B{PCRSM variables]y + B[Deep-Skew variables]y (Panel 36)
4.2.2 Results

We analyze the results of all the regressions obtained using the above four procedures

and we investigate the statistical significance of each independent variable numerous

times in different models. We select the most relevant independent variables to be

used in the construction of predictive models for the out-of-sample analysis:

PCRALL

PCR130

DCOMA = V¢ 120% - V¢ 100%
COMA = V¢ 110% - 1Vc 100%
DPAMO = IV 100% - IVp.80%
PAMO = IVy 100% - Vp,00%
CAPA = IV¢ 100% - 1Vp,100%
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The results are in line with what we expected. For what the put-call ratio variables
concern, we found that the most significant variables are the ratios constructed using
all available options (PCRALL) and using only options with 1 to 30 days to maturity
(PCR130). In the first case, information from total daily traded volumes gets
incorporated, while in the second variable only short term signals are detected, which
we expected to contain valuable information with respect to the first maturing (near-
term) VIX future. Furthermore, put-call ratio computed using raw total daily traded
volumes perform better than those computed using smoothed volumes. This is a
sensible since through the smoothing process we loose day-specific information
contained in daily volumes, thus affecting the exploitable information content of this
variable. On the other hand, the results for the implied volatility skew variables are
consistent too. The selected variables reflect the whole section of the skew. DCOMA
and COMA account for the right side of the skew, while DPAMO and PAMO stand for
the left side. CAPA controls for the spread between the skews of call and put options.
Moreover, skew variables computed with “deep” moneyness levels (80% and 120%)
are found to be comparatively less significant than variables calculated with less
extreme moneyness levels (90% and 110%).

4.3 Out-of-sample analysis

4.3.1 Methodology

In the out-of-sample analysis we evaluate and compare the one-day-ahead forecasts
obtained by twenty different predictive models (Panel 37), constructed using the
relevant independent variables found in the in-sample analysis.

VixF s = a + BVixFg + BVixS

ViXFtar) = @ + BViXFg + BVixSy + BPCR130y

ViXF 1) = a + BVixF ) + BVixSy + BPCRALL

ViXF 1) = a + BVixF g + BVixSg + BPCR1304 + BPCRALL

ViXFq) = a + BVixF gy + BVixSy + BCOMAy + BCAPAy

VixFq) = a + BVixF g + BVixSy + BDCOMA ) + BICAPAy

ViXF 1) = a + BVixFg + BiVixSg + BPAMO + BCAPA,

ViXF 1) = a + BVixFg + BVixSy + BDPAMOy + BCAPA)

VIXF 1) = @ + BViXF g + BVixSy + BPCR1304 + BCOMAg + BCAPA«
. VixFq = a + BVixFy + BVixSy + BPCR1304 + BDCOMA y + BCAPA
. VixFq = @ + BVixFy + BVixSy + BPCR1304 + BPAMOy + BCAPA

© ® N o O R Db =

-
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12. VixFer) = a + BVixFy + BVixSgy + BPCR130p + BDPAMOy + BCAPA

13. VixFyuq = a + BVixFgy + BVixSy + BPCRALLy + BCOMAy + BCAPA

14. ViXF ) = @ + BVixFg + BiVixSy + BPCRALLy + BDCOMAy + BCAPAy

15. VixF s = a + BVixF g + BVixSg + BPCRALL + BPAMOy, + BICAPAy

16. ViXF s = a + BVixFg + BVixSy + BPCRALLy + BDPAMOy) + BCAPA

17. VixFer) = a + BVixFy + BVixSgy + BPCR130p + BPCRALLy + BCOMA ) + BCAPAy
18. VixFier) = a + BVixFy + BVixSy + BPCR130p + BPCRALL 4y + BDCOMA ) + BCAPA«
19. VixFur) = a + BVixFy + BVixSy + BPCR130p + BPCRALL s + BPAMOy + BCAPA 4
20. VixFer) = a + BVixFy + BVixSy + BPCR130y + BPCRALLyy + BDPAMOy, + BCAPA

For all the models, one-day ahead out-of-sample forecasts, using both expanding and
rolling estimation window, are computed. The expanding estimation window method
takes as initial sample the period that spans from 03/01/2007 to 30/12/2011. The one-
day ahead forecast and its standard error for 03/01/2012 are calculated and stored.
The estimation sample is then expanded to include the actual observation of
03/01/2012. Subsequently, a new model is estimated on the sample 03/01/2007 to
03/01/2012 and the one-day ahead forecast with its standard error are computed for
04/01/2012. This procedure continues until the one-day ahead forecast and the
associated standard error for 31/08/2015 are calculated. The rolling window method
takes as initial sample a period of 1260 days (five years of daily data) that spans from
03/01/2007 to 30/12/2011. The one-day ahead forecast and its standard error for
03/01/2012 are calculated and stored. The estimation sample is then rolled one day
forward, from 04/01/2007 to 03/01/2012. Subsequently, a new model is estimated on
this sample and the one-day ahead forecast with its standard error are computed for
04/01/2012. This procedure continues until the one-day ahead forecast and the
associated standard error for 31/08/2015 are calculated.

4.3.2 Results
In order to evaluate the out-of-sample statistical performance of the models, the

following statistical indicators have been computed for each model:

e Mean absolute error (MAE):

1 ~
MAE ==X lye — il
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which represents the average of the absolute differences between actual and
forecasted values.
e Mean absolute percentage error (MAPE):

Y=Yt

_1gT
MAPE = T, [*

which represents the average of the absolute differences in percentage between actual
and forecasted values.

e Root mean squared prediction error (RMSE):

1 A
RMSE = \/;Z?:l(yt — 902

which represents the sample standard deviation of the differences between actual and
forecasted values. RMSE aggregates the magnitude of errors in forecasts for different
times into a single measure of predictive power accuracy. It is a good way to compare
forecasting errors of different models for a specific variable, but not among different
variables, since it is scale-dependent.

e Theil-U statistic:

—— 2
yT-1 Ye+1—Yeta
t=1

. Y
Theil-U = —
T-1 Yt+1—Yt)

t=1 ( Y¢

where Y., is the value of the forecast at time t+1, while Y, and Y,,, are the actual
values of the variable at time t and t+1, respectively. Theil-U statistic is a measure of
relative accuracy and it squares the deviations giving more weight to large errors.
The interpretation of this statistic is as follows:

o Less than 100%: The forecasting technique is better than guessing

o Equal to 100%: The forecasting technique is about as good as guessing

o More than 100%: The forecasting technique is worse than guessing

¢ Mean Correct Prediction of Direction of Change (MCPDC):

This statistical indicator indicates the frequency the model predicts a change in sign in
the forecasted variable corresponding to the one the actual observation experienced.
This advantages of this measures are twofold. First, there is no the sign related bias
typical of RMSE. In addition, it is directly linked to trading profits, which usually rely on
correct predictions of direction for price changes.
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¢ Theil-Inequality coefficient:

/%le(Yt—mz

Theil-l = — 1
Lo ESL 002

The value of this performance statistics is always between 0 and 1 given the way it is
computed. The interpretation is as follows:
o If Theil-l coefficient is equal to 0, then Y, = ¥, for all forecasts and it
means that there is a perfect fit
o If Theil-l coefficient is equal to 1, then the predictive performance is as
inaccurate as it possibly could be
Theil-I coefficient may be rescaled and decomposed into three proportions of
inequality: bias, variance and covariance. Bias proportion is an indicator of systematic
error. The closer the bias proportion to 0, the better itis. A high value of bias proportion
suggests a systematic over or under prediction. Variance proportion reflects the ability
of the predicted values to replicate degree of variability in the variable forecasted. If
the value of variance proportion is high, then the actual series has considerably
fluctuated whereas the predicted ones has not. Covariance-proportion accounts for the
unsystematic error. The closer the covariance proportion to 1, the better it is.

Table 8 and Table 9 report the values of performance statistics for all models using an
expanding and a rolling estimation window, respectively. The three best performing
models according to each statistic have been selected and the results are the same

for the two estimation window methods:

17. ViXF(t+1) =qa+ B,‘ViXF(t) + BiViXS(t) + B/PCR130(t) + B,‘PCRALL(O + B,‘COMA(t) + ,B,'CAPA(U
18. VI'XF(t+1) =a+ B,‘ViXF(t) + B,‘ViXS(t) + B,’PCR130(¢) + B,‘PCRALL({) + B,‘DCOMA(O + B,’CAPA([)
9. VI'XF(t+1) =a+ B,‘VI.XF(I) + B,‘ViXS(t) + B,’PCR130(1} + B,‘COMA(O + B,’CAPA([)

The findings are consistent with the economic intuition. Both put-call ratios do have
predictive power, but PCR130 does perform better than PCRALL. This can be related
to the fact that it only contains short-term contracts (with time to maturity between 1
and 30 days), which are supposedly more closely related to the dynamics of the near-
term VIX future. Among implied volatility skew variables, the most significant are
COMA and CAPA. COMA represents the right section of the skew of call options and

reflects the effect of the large demand for protection against implied volatility spikes.
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CAPA represents the spread between at-the-money call and put implied volatilities and
also reflects the greater demand for call options in order to hedge implied volatility

upward jumps.

Table 9: Performance statistics for predictive models with expanding estimation window
MAE MAPE RMSE Theil-U MCPDC Theil-l Bias Variance Covariance
ILINEN 0,66059 3,910% 0,94295 99,094% 50,65% 0,02844 1,336% 0,160% 98,504%
I[N 0,56501 3,341% 0,83703 87,843% 53,48% 0,02526 0,785% 0,026% 99,189%
V[N 0,65168 3,857% 0,93138 98,065% 51,09% 0,02810 1,175% 0,241%  98,584%
VLW 0,56270 3,323% 0,83220 87,093% 54,02% 0,02512 0,873% 0,000% 99,127%
V[N 0,60617 3,559% 0,89194 93,337% 55,33% 0,02696 0,061% 0,054% 99,886%
V[N 0,60444 3,550% 0,88469 92,796% 55,98% 0,02677 0,043% 0,250% 99,707%
VLA 0,62776 3,713% 0,90901 95,442% 53,04% 0,02743 0,926% 0,040% 99,034%
Vol [IR:MN 0,63520 3,755% 0,91722 96,146% 52,28% 0,02766 1,502% 0,149%  98,349%
"L AN 0,52286 3,083% 0,79085 83,018% 59,46% 0,02392 0,000% 0,656%  99,344%
VLN 0,52347 3,089% 0,79017 83,115% 59,67% 0,02391 0,080% 0,973%  98,947%
VL EINERN 0,53065 3,140% 0,80049 84,266% 58,15% 0,02418 0,302% 0,200%  99,497%
\V[eYelsI N 0,53782 3,181% 0,80726 84,773% 58,70% 0,02437 0,620% 0,058%  99,322%
VL EIREIN 0,59990 3,526% 0,88223 92,417% 56,20% 0,02666 0,103% 0,008%  99,889%
VL EINPAN 0,59690 3,508% 0,87548 91,847% 55,65% 0,02648 0,005% 0,108%  99,887%
VLN EN 0,61761 3,653% 0,89547 94,176% 53,59% 0,02703 0,791% 0,087%  99,122%
VT [IMIGIN 0,62652 3,706% 0,90412 94,962% 53,91% 0,02727 1,338% 0,235%  98,428%
[T VAN 0,52086 3,068% 0,78482 82,030% 60,00% 0,02373 0,009% 0,414% 99,578%
[ KEN 0,52079 3,070% 0,78375 82,062% 59,67% 0,02371 0,030% 0,668%  99,302%
VL EINEEN 0,52847 3,123% 0,79446 83,286% 57,93% 0,02399 0,404% 0,083%  99,513%
e[Sl 0,53531 3,162% 0,80139 83,832% 58,15% 0,02419 0,755% 0,007%  99,238%

Table 10: Performance statistics for predictive models with rolling estimation window

MAE MAPE RMSE Theil-U MCPDC Theil-I Bias Variance Covariance
Voo SN 0,66588 3,946% 0,94592 99,394% 50,54% 0,02851 1,751% 0,202% 98,048%
\V[eYe[SIW2A 0,57619 3,419% 0,84357 88,665% 54,13% 0,02544 1,536% 0,000% 98,464%
\V[elo[SIReIN 0,66341 3,939% 0,93725 98,692% 50,87% 0,02825 2,105% 0,309% 97,586%
VeS8 0,57503 3,409% 0,83883 87,899% 54,13% 0,02529 1,775% 0,022% 98,203%
\V[eYs[SIRI 0,60950 3,588% 0,88805 93,101% 56,74% 0,02685 0,013% 0,175% 99,812%
(Voo [-IN-IN 0,61487 3,634% 0,88129 92,794% 57,93% 0,02667 0,119% 0,823% 99,058%
VoY S 0,62658 3,706% 0,90810 95,507% 53,48% 0,02741 0,660% 0,037% 99,303%
VoY1 0,63509 3,754% 0,91793 96,223% 52,50% 0,02769 1,357% 0,169% 98,475%
[T INBN 0,52793 3,126% 0,78792 83,098% 60,33% 0,02383 0,000% 0,774% 99,225%
\V/[eTo [0 0,53230 3,163% 0,78912 83,565% 61,85% 0,02388 0,089% 1,629% 98,282%
(VLo [IEMN 0,53496 3,174% 0,80257 84,785% 59,24% 0,02424 0,394% 0,087% 99,519%
(VoY [SIPPAN 0,54376 3,223% 0,81169 85,447% 58,80% 0,02450 0,876% 0,003% 99,122%
\V[eTe SN 0,60491 3,567% 0,87887 92,204% 56,85% 0,02656 0,061% 0,127% 99,812%
Vel [-IEFA 0,60947 3,608% 0,87274 91,913% 58,26% 0,02640 0,033% 0,701%  99,266%
(VL[N 0,62130 3,681% 0,89620 94,471% 54,13% 0,02705 0,687% 0,069%  99,244%
(Ve[S 0,63093 3,737% 0,90651 95,279% 54,35% 0,02734 1,446% 0,256% 98,299%
[T\ AN 0,52543 3,108% 0,78080 81,922% 61,30% 0,02361 0,013% 0,574%  99,413%
Y CIREN 0,52970 3,144% 0,78131 82,276% 61,63% 0,02364 0,040% 1,343% 98,617%
(Y[l [-IN I 0,53402 3,166% 0,79604 83,712% 58,26% 0,02404 0,512% 0,027%  99,462%
|\ IO 0,54247 3,212% 0,80540 84,439% 57,93% 0,02431 1,047% 0,006% 98,947%
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5. FINAL REMARKS

5.1 Key results

Through the analysis conducted in this work, we reach a number of important

conclusions:

Put-call ratio and implied volatility skew variables do have statistical significant
predictive power with respect to future dynamics of VIX futures. Through
univariate and multivariate regressions, we assessed the significance of the
coefficients for both sub-sets of variables, and we obtained positive results in
these terms.

Predictive models, which include these variables, perform better than the
benchmark model. We confront the performance of the benchmark model
versus models including put-call ratio and implied volatility skew variables with
respect to their accuracy in out-of-sample forecast. The results indicate how a
predictive model, which does not include any of these variables, does
underperform predictive models, which instead include them.

There is an additional contribution to the forecasting accuracy when the
combine effects of these variables is considered. Predictive models constructed
using the two sub-samples of variables do perform better in the out-of-sample
forecast exercise, showing better statistical indicators with respect to their
performance.

In the put-call ratio variables sample, the ones performing better are those
computed using raw total daily traded volumes instead of smoothed volumes.
This can be explained by the the fact that through the smoothing process we
lost valuable information contained in the specific daily traded volumes.
Among implied volatility skew variables, those performing better are the ones
computed using moneyness levels of 90% and 110%. This may be related to
the lower market liquidity for contracts with more extreme moneyness levels,
which may impair the ability of new information to be quickly incorporated in
those contracts.
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5.2 Limitations

One limitation of this work is the approach followed to compute the implied
volatility skew variables. Constant levels of moneyness at 80%, 90%, 100%,
110% and 120% with associated implied volatilities have been used. The data
have been derived through a linear interpolation process. Given the shape VIX
options implied volatility surface, more accurate results may be obtained
through a more sophisticated interpolation procedure, for example using a
polynomial function instead of a linear one.

Another limitation is that the analysis started from a model in levels and not in
differences, thus limiting the scope of our analysis. This approach is justified by
the presence of a cointregating relationship between VIXindex and VIX futures,
which makes us comfortable we are not dealing with spurious regressions.
Nevertheless, we could have used an error correction model to define the base
model, in order to fully capture the dynamics between VIX index and VIX futures

and possibly improve the accuracy of the forecast.

5.3 Extensions

The analysis conducted in this work could be extended in the following way.

The predictive power of implied volatility skew may be assessed with respect to
VIX futures on longer maturity, i.e. 2" or 3™ generic VIX future (ticker: VX2 and
VX3). Specifically, the interpolation process could target a constant value of
implied volatility at 60 or 90 days.

The base model may be more accurately specified through a vector error
correction model (VECM), given the cointegration and the bi-directional
causality between VIX index and VIX futures.

VIX weekly futures and VIX weekly options began trading at CBOE on July, 23"
2015 and October, 8" 2015, respectively. The analysis we did in this work may
be conducted using data derived from these new securities and investigate if
put-call ratio and implied skew variables still retain forecasting power.
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6. CONCLUSION

The existing literature dealing with the information content of option markets with
respect to the underlying assets mainly focuses on one type of information at a time,
either the put-call ratio or the implied volatility skew. We consider the combine effect
of the two set of information in our analysis. Furthermore, we assess the information
spillover from VIX options markets instead of equity options markets. VIX options
began to trade in 2006 and the empirical literature concerning them is still far from
being exhaustive. The contribution of this work is then clear: investigate the combined
predictive power of put-call ratio and implied volatility skew of VIX options with respect
to VIX futures. In our analysis, we first construct a number of independent variables:

e eight put-call ratio variables, both normal and smoothed, according to different
maturity buckets given the fact that different kind of information may be revealed
from the trading volumes of contracts having different expirations.

¢ nine implied volatility skew variables, considering both the skew within the same
option contract type (i.e. spreads between out-of-the-money and at-the-money
call options) and between call and put options (i.e. spreads between at-the-
money call and at-the-money put options). We also differentiated the variables
computing them with different levels of moneyness: 90%-110% for OTM and
ITM versus 80%-120% for “deep” OTM and ITM.

As a second step, we conduct an in-sample analysis where we run a number of
multivariate regressions, following different procedures, in order to identify the most
significant variables. We employ these variables to build twenty different predictive
models. The last part of the work focuses on the evaluation of the out-of-sample
forecasting performance of twenty different models, through a wide variety of statistical
indicators. The results indicate that both put-call ratio and implied volatility skew have
predictive power with respect to VIX futures, and the forecasting accuracy increases
when the two sets of information are considered together. Put-call ratios computed
using raw daily trading volume perform better then those derived using smoothed
volumes. Both the implied volatility skew within the same type of contract and the
spread in volatilities between call and put options have forecasting power with respect
to VIX futures.
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8. APPENDIX

Panel 1: Augmented Dickey-Fuller test for VIX Index
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Panel 2: Augmented Dickey-Fuller test for 1st Generic VIX Future
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Panel 3: Augmented Dickey-Fuller test for Delta VIX Index

0000000 {onsnels-4oqoid
BF0900°Z jels uosiepa-ulging  SEZFGRS Jsners-4
LI9GFET ¥ ABJd uUInND-ueUUEH  Z0F GBS pooynaxl fo7
906FFT' ¥ Uouajdd Ziemyds  9z0'0048 pisal palenhs wng
DETBET ¥ Uouajld ojul 8xledyY  Q0EZ00'Z uoissalfial jo '3’
NEZSH0'E leajuspuadsp 'Q's 88ZEL50 palenhs-y pajsnipy
GELLODD leajuspuadap ueap  BITFLGD palenhs-o
9ES6°0 881850°0- S0-3E8'9 90-386'c-  (.L00ZIE0MLIANTH LD
LBS80 825410 9119800 8825100 0]
ooooo 905604 % LEFLZOD 0EBOOL'D (Z'(E)L0dsxINa
0oooo 9LL9Z 'S L1L9ZE0D £91291°0 (z'(Z-)L0dsxInNGg
0oooo 8FFBZS9 FEELYOO TBBELTOD (Z'(1L)L0dsxnNg
0oooo FLFL98Z-  LEBBYOD £L09ZF - {1 L0dSxIna
‘qoidd sNelS 003 'PIS Jusdysod a|iElEA
sjuawsnipe Jaye g/ |7 :suoneAlasqo papnjay)
GLOZSLESR 200Zi0 L7 ((paisnipe) ajdwes
CLIB0 BWIL 9LZ0IS0 Bled
salenhg lsea ;poulsy
(Z'LOdSxKINQ algenes uspuadag
uonenh31sa] 18||In4-A8xa1q pajuaLlbny
‘san|ea-d papIs-au0 (966 L) UOUUIBW,
cesLTlLE- |848] %01
FLBLLFE- [8A3] %G
FOZT96'E- [8A8] % | ‘Sanjea [BINNI S
0ooo'o Fi¥19°82- sSNels 158143 IN4-A84 217 pajuswbny
&+ qoid snes

(cz=RAepew 'S uo paseq - Jjewolny) £ yibua be
pual] Jeaur] 'uelsun) :snousboxy
Jooiun e sey (LOdSHIAIQ (SIsayodiH Ny

Panel 4: Augmented Dickey-Fuller test for Delta 1st Generic VIX Future

Qoooo0'o {ansnels-4poqoid
65 LFO0E jels uosiepa-ulging  L90S° L8 Jsners-4
BELELFE A8JAd UUIND-UBUUEH  pRLRLLE- pooyljax) 6o
FOE0BFE OB ZIEMYIS  08L°280F pisal palenbs wng
LZB63YE UOLald ojul axqlexy  E0F0LE°L uoissalhal jo'3'g
85zZeln’e leajuapuadap 'S 7999850 palenbs-y pajsnipy
¥6L000°0 leajuspuadap ueap  LOELESD palenbs-y
9z48°0 0Lr09L'0-  S0-3L9°F 90-36¢2-  (.200Z/E0/1LJANTYLE
GZHL0 EELEQTD ZEB8S00 L8FSL00 o)
cooon 0BEEL9E ZBELZ00 6258200 (Z'(L)349nLn4dLa
0ooo0 LP998'9E- S8ZLEDD CLEEGL - {{13dnLn417a
qoid usnels-] 0413 'pPIS uanIand aqelEA
suawsnipe 1aye 84 L7 :SU0NBAI3SI0 papn|au)
GLOZILER £00Ti800) (paisnipe) ajdwes
glLi60 8wl 91Z0ic0 8ied
salenbg jsea poylsp
(Z'39NLN4 1730 Blgenes Juapuadaq
uonenh31sa] 18| |n4-A8xa1q pajuaLliny
‘san|ea-d papIs-au0 (966 L) UOUUIB,
LEgLzLE- 343 %01
TLBLLFE- [3A3] %5
09ZZ96°¢C- [3A3] % | ‘San|ea [BIjUI IS8 L
0oooo 1 ¥998°9¢- snels 1581 43)IN 4-Aa8421J pajuawbny
£ 00dd Msnels

(cz=RAepew 'S uo pased - Jjewolny) | yibua beq
puall lesul Juelsuos ;snoushox3
Jooijun e sey (INLN4 LA sIsayjodi InN

42



Panel 5: Johansen cointegration test for VIX index and VIX futures
Date: 0511 0/16 Time: 16:33
Sample (adjusted): 1/10/2007 8/31/2015
Included observations: 2176 after adjustments
Trend assumption: Linear deterministic trend {restricted)
Series: _1FUTURE VIXSPOT
Lags interval (in first differences): 1 to 4

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
MNo. of CE(8) Eigenvalue Statistic Critical Value Prob.*
MNone * 0.055373 138.5148 258721 0.0000
Atmost1* 0.006669 14.55960 12.51798 0.0225
Trace testindicates 2 cointegrating egn(s) at the 0.05 level
* denotes rejection ofthe hypothesis at the 0.05 level
MacKinnon-Haug-Michelis {1999) p-values
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)
Hypothesized Max-Eigen 0.05
MNo. of CE(8) Eigenvalue Statistic Critical Value  Probh*
MNone * 0.055373 123.9552 19.38704 0.0001
Atmost1* 0.006669 14.55860 1251798 0.0225

Max-eigenvalue test indicates 2 cointegrating egn(s) atthe 0.05 level
* denotes rejection of the hypothesis atthe 0.05 level
**MacKinnon-Haug-Michelis {1999) p-values

Unrestricted Cointegrating Coefficients (normalized hy h™S11*h=I):

_TFUTURE VIXSPOT  @TREND(1/04/07)
-0.680594 0.625676 -2.34E-05
-0.108845 -0.012034 -0.000767

Unrestricted Adjustment Coefficients (alpha):

D{_1FUTURE) 0.169678 0.094416
DVIXSPOT) -0.018655 0.161907
1 Cointegrating Equation{s): Log likelihood -7026.204

MNarmalized cointegrating coefficients {standard error in parentheses)
_1FUTURE VIXSPOT  @TREND(1/04/07)
1.000000 -0.919308 3.43E-05
(0.01443) (0.00023)

Adjustment coefficients (standard error in parentheses)
D{C1FUTURE)  -0.115482
(0.01977)
DVIXSPOT) 0.012696
{0.02902)
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_TFUTURE

Method: Least Squares
Date: 05/02/116 Time: 10:22
Sample (adjusted): 1/04/2007 813152015
Included observations: 2180 after adjustments

Panel 6: Base Model with VIX Index Lagged and VIX Future Lagged
Dependent Variable:

Variable Coefficient Std. Error t-Statistic Proh.
C 0.440710 0.083257 5.293345 0.0000
_1FUTURE(-1) 0.902875 0.016724 53.98608 0.0000
YVIXKSPOT(-1) 0.078810 0.015102 5.218483 0.0000
R-squared 0.977887 Mean dependentvar 21.80986
Adjusted R-squared 0.977867 S.D. dependentvar 9171855
S.E. of regression 1.364508 Akaike info criterion 3.460841
Sum squared resid 4053.320 Schwarz criterion 3.468667
Log likelihood -3769.316 Hannan-Quinn criter. 3.463702
F-statistic 48136.89 Durhin-YWatson stat 2168751
Proh{F-statistic) 0.000000
Panel 7: Correlogram of Residuals from Base Model up to 10 Lags
Date: 05/02/116 Time: 10:24
Sample: 1/03/2007 8/31/2015
Included ohservations: 2180
@-statistic probabilities adjusted for 1 dynamic regressor
Autocorrelation Partial Carrelation AC PAC (Q-Stat Prob*
[ ) 1 -0.085 -0.085 15.706 0.000
i i 2 -0.078 -0.086 28.962 0.000
{ I 3 -0.023 -0.038 30.102 0.000
i s 4 0.018 0.006 30.817 0.000
i i 5 -0.071 -0.075 41.942 0.000
P i 6 0.033 0021 44278 0.000
[ I 7 -0.030 -0.038 46.295 0.000
[ I 8 -0.030 -0.037 48.292 0.000
fr I 9 -0.037 -0.047 51.286 0.000
i P 10 0.057 0.036 58.320 0.000

*Prohahilities may not be valid far this equation specification.
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Panel 8: LM Serial Correlation Test for Residuals from Base Model
Breusch-Godfrey Serial Correlation LM Test:

F-statistic 7.087545 Prob. F(10,2167) 0.0000
Obs*R-squared 69.04248 Prob. Chi-Square(10) 0.0000
Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 05/02/116 Time: 10:24
Sample: 1/04/2007 8/31/20145
Included observations: 2180
Presample missing value lagged residuals setto zero.
Variahle Coefficient Std. Error t-Statistic Prob.
C -0.191584 0.088672 -2.160586 0.0308
_1FUTURE(-1) -0.000469 0.016581 -0.028265 0.9775
VIXKSPOT(-1) 0.009419 0.015044 0.626084 05313
RESID{1) -0.109083 0.022160 -4.922883 0.0000
RESID{-2) -0.108381 0.022102 -4.803703 0.0000
RESID{-3) -0.057294 0022136 -2.588245 0.0097
RESID{-4) -0.018148 0.022107  -0.820957 04118
RESID{-5) -0.088138 0.022100 -3.988133 0.0001
RESID{-6) -0.001115 0.022125 -0.050409 0.9598
RESID{7) -0.057152 0022136 -2.581820 0.0099
RESID{-8) -0.051043 0.022138 -2.305566 0.0212
RESID{-9) -0.055317 0.022003 -2.514109 0.0120
RESID{-10) 0.025117 0.021908 1.146433 0.2517
R-squared 0.031671 Mean dependentvar 1.99E-15
Adjusted R-squared 0.026309 S.D. dependentvar 1.363882
S.E. of regression 1.345822 Akaike info criterion 3.437832
Sum squared resid 3924948 Schwarz criterion 3471746
Log likelihood -3734.237 Hannan-Quinn criter. 3.450230
F-statistic 5.906287 Durbin-Watson stat 1.996904
Proh{F-statistic) 0.000000

45



Panel 9: Heteroskedasticity Test for Residuals from Base Model

Heteroskedasticity Test: White

F-statistic 1238172 Prob. F(5,2174) 0.0000
Obs*R-squared 483.1957 Prob. Chi-Square(5) 0.0000
Scaled explained SS 2466.604 Prob. Chi-Square(s) 0.0000
Test Equation:
Dependent Variahle: RESID*2
Method: Least Squares
Date: 05/02/116 Time: 10:25
Sample: 1042007 8/31/2015
Included observations: 2180
Variable Coefficient Std. Error t-Statistic Prob.
C 0.932946 0.799803 1.166469 0.2436
_1FUTURE(-1)"2 -0.031792 0.014584  -2.179904 0.0294
_MFUTURE1™IXSPOT(-1)  0.059513 0.023349 2.548868 0.0109
_1FUTURE(-1) -0.261924 0.205743  -1.273066 0.2031
VIXKSPOT{-1)"2 -0.023091 0.009483  -2.4349893 0.0150
VIXSPOT{-1) 0.195848 0173276 1.130273 0.2585
R-squared 0.221649 Mean dependentvar 1.859321
Adjusted R-squared 0.219853 S.D. dependentvar 5.950524
S.E. of regression 5.255834 Akaike info criterion 6.159303
Sum squared resid 6005413 Schwarz criterion 6.174956
Log likelihood -6707.640 Hannan-Quinn criter. 6.165025
F-statistic 123.8172 Durhin-Watson stat 1.867981
Prob{F-statistic) 0.000000
Panel 10: Base Model re-estimated with HAC Covariance Method
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02/116 Time: 10:27
Sample (adjusted): 1/04/2007 813172015
Included observations: 2180 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)
Variahle Coefficient Std. Errar t-Statistic Prob.
C 0.440710 0.100923 4366783 0.0000
_1FUTURE(-1) 0.902875 0.028826 31.32145 0.0000
VIXKSPOT(-1) 0.078810 0.027344 2.882184 0.0040
R-squared 0.977887 Mean dependentvar 21.80986
Adjusted R-squared 0.977867 S.D. dependentvar 9171855
S.E. ofregression 1.364508 Akaike info criterion 3.460841
Sum squared resid 4053.320 Schwarz criterion 3.468667
Log likelihood -3769.316 Hannan-Quinn criter. 3.463702
F-statistic 48136.89 Durbin-Watson stat 2168751
Proh{F-statistic) 0.000000 ‘Wald F-statistic 21905.36
Prob{wald F-statistic) 0.000000
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Panel 11: Model with Put-Call Ratios Variables

Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02/116 Time: 10:45

Sample (adjusted): 1/05/2007 8/31/2015
Included observations: 1924 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 0.470353 0.135240 3.477925 0.0005
_1FUTURE(-1) 0.938344 0.034287 27.36757 0.0000
VIXKSPOT(-1) 0.052579 0.031868 1.6499189 0.0991
PCR130 -0.168627 0.037353 -4.514375 0.0000
PCR1545 0.003277 0.058707 0.055825 0.9555
PCR160 -0.082732 0127319  -0.649802 0.5159
PCRALL -0.241496 0114928  -2101257 0.0357
TOTALVOLUME 2.29E-07 1.38E-07 1.653614 0.0984
R-squared 0.978912 Mean dependentvar 21.94410
Adjusted R-squared 0.978835 S.D.dependentvar 9271782
S.E. of regression 1.348874 Akaike info criterion 3.440567
Sum squared resid 3486.088 Schwarz criterion 3.463694
Log likelihood -3301.825 Hannan-Quinn criter. 3.448076
F-statistic 12705.99 Durbin-Watson stat 2.226880
Proh{F-statistic) 0.000000 ‘Wald F-statistic 6242 867
Prob{wald F-statistic) 0.000000
Panel 12: Model with Smoothed Put-Call Ratios Variables
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02/116 Time: 10:43
Sample (adjusted): 1/09/2007 8/31/2015
Included observations: 2162 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)
Variahle Coefficient Std. Errar t-Statistic Prob.
C 0.407118 0.118803 3.426838 0.0006
_1FUTURE(-1) 0.916518 0.032589 28.12365 0.0000
VIXSPOT(-1) 0.069326 0.029942 2.315348 0.0207
PCR1305M 0.061251 0.045275 1.352874 01762
PCR15455M 0.111843 0.131919 0.847817 0.3966
PCR160SM -0.304220 0.229615  -1.324911 0.1853
PCRALLSM -0.097258 0.253253  -0.384034 0.7010
TOTALVOLUME 1.92E-07 1.40E-07 1.371584 01703
R-squared 0.977864 Mean dependentvar 21.87086
Adjusted R-squared 0977792 S.D. dependentvar 9183420
S.E. of regression 1.368545 Akaike info criterion 3.469067
Sum squared resid 4034.259 Schwarz criterion 3.480080
Log likelihood -3742.061 Hannan-Quinn criter. 3.476752
F-statistic 13593.33 Durbin-Watson stat 2183918
Proh{F-statistic) 0.000000 ‘Wald F-statistic 7128131
Prob{wald F-statistic) 0.000000
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Panel 13: Model with Implied Volatility Skew Variables (except CAPA)
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 13:31
Sample (adjusted): 1/05/2007 8/28/2015
Included observations: 2166 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1510112 0.237380 6.361315 0.0000
_1FUTURE(-1) 0.882536 0.030876 28.58364 0.0000
VIXSPOT(-1) 0.079752 0.027865 2.862067 0.0042
AMB -2.606554 1.682900 -1.548846 01216
COMA 4036683 2437177 1.656295 0.0978
PAMO 2.417661 1.799176 1.343760 01792
COPA -8.587569 1509189 -5.690188 0.0000
R-squared 08978522 Mean dependentvar 21.87047
Adjusted R-squared 0.978463 S.D. dependentvar 9164939
S.E. of regression 1.345009 Akaike info criterion 3.433905
Sum squared resid 3805.737 Schwarz criterion 3.452263
Log likelihood -3711.919 Hannan-Quinn criter. 3.440619
F-statistic 16394.05 Durbin-Watson stat 2150576
Prob{F-statistic) 0.000000 ‘Wald F-statistic 8054.188

Proh{wald F-statistic) 0.000000

Panel 14: Model with Implied Volatility Skew Variables (except COPA)
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 13:31
Sample (adjusted): 1/05/2007 8/28/2015
Included observations: 2166 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1510112 0.237380 6.361315 0.0000
_1FUTURE(-1) 0.882536 0.030876 28.58364 0.0000
VIXSPOT{-1) 0.079752 0.027865 2.862067 0.0042
AMB -2.606554 1.682900 -1.548846 01216
COMA -4.550886 2.255893  -2.017333 0.0438
PAMO 2.417661 1.799176 1.343760 01792
CAPA -8.587569 1509189 -5.690188 0.0000
R-squared 0.8978522 Mean dependentvar 21.87047
Adjusted R-squared 0.978463 S.D. dependentvar 9164939
S.E. of regression 1.345009 Akaike info criterion 3.433905
Sum squared resid 3805.737 Schwarz criterion 3.452263
Log likelihood -3711.919 Hannan-Quinn criter. 3.440619
F-statistic 16394.05 Durbin-Watson stat 2150576
Prob{F-statistic) 0.000000 ‘Wald F-statistic 8054.188

Proh{ald F-statistic) 0.000000




Panel 15: Model with Deep Implied Volatility Skew Variables (except CAPA)
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 13:30
Sample (adjusted): 1/05/2007 8/31/2015
Included observations: 2167 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1.656892 0.240334 6.894130 0.0000
_1FUTURE(-1) 0.888742 0.031072 28.60225 0.0000
VIXSPOT(-1) 0.072215 0.028173 2563231 0.0104
DAMB -0.650427 0.605524  -1.074157 0.2829
DCOMA 4270844 1.911218 2.234620 0.0255
DPAMO 1.283254 0.650433 1.972923 0.0486
DCOPA -8.976016 1.513802  -5.929450 0.0000
R-squared 0.978684 Mean dependentvar 21.87257
Adjusted R-squared 0978625 S.D. dependentvar 9163345
S.E. of regression 1.339707 Akaike info criterion 3.426003
Sum squared resid 3876.798 Schwarz criterion 3.444355
Log likelihood -3705.075 Hannan-Quinn criter. 3.432714
F-statistic 16528.69 Durbin-Watson stat 2139357
Prob{F-statistic) 0.000000 Wald F-statistic 7672.249

Proh{wald F-statistic) 0.000000

Panel 16: Model with Deep Implied Volatility Skew Variables (except DCOPA)
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 13:30
Sample (adjusted): 1/05/2007 8/31/2015
Included observations: 2167 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1.656892 0.240334 6.894130 0.0000
_1FUTURE(-1) 0.888742 0.031072 28.60225 0.0000
VIXSPOT(-1) 0.072215 0.028173 2563231 0.0104
DAMB -0.650427 0.605524  -1.074157 0.2829
DCOMA -4.7058171 1.074915  -4.377249 0.0000
DPAMO 1.283254 0.650433 1.972923 0.0486
CAPA -8.976016 1.513802  -5.929450 0.0000
R-squared 0.978684 Mean dependentvar 21.87257
Adjusted R-squared 0978625 S.D. dependentvar 9163345
S.E. of regression 1.339707 Akaike info criterion 3.426003
Sum squared resid 3876.798 Schwarz criterion 3.444355
Log likelihood -3705.075 Hannan-Quinn criter. 3.432714
F-statistic 16528.69 Durbin-Watson stat 2139357
Prob{F-statistic) 0.000000 Wald F-statistic 7672.249

Proh{ald F-statistic) 0.000000




Panel 17: Model with Put-Call Ratios and Implied Volatility Skew Variables
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Panel 18: Model with Put-Call Ratios and Deep Implied Volatility Skew Variables
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Panel 20: Model with Smoothed Put-Call Ratios and Deep Implied Volatility Skew Variables
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Panel 21: Final Model with Put-Call Ratios and Implied Volatility Skew Variables
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 14:47
Sample (adjusted): 1/05/2007 8/31/2015
Included observations: 2018 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1.508635 0.223684 6.744479 0.0000
_1FUTURE(-1) 0911624 0.032882 2772376 0.0000
VIXSPOT{-1) 0.060412 0.029938 2.017805 0.0437
PCR130 -0.180524 0.033831 -5.336018 0.0000
PCRALL -0.295545 0.076665  -3.855023 0.0001
COMA -6.537230 1117474  -5.850007 0.0000
CAPA -9.511689 1.567152  -6.069410 0.0000
R-squared 0.9799387 Mean dependentvar 21.96038
Adjusted R-squared 0979927 S.D. dependentvar 9.275581
S.E. of regression 1.314152 Akaike info criterion 3.387723
Sum squared resid 3472988 Schwarz criterion 3.407182
Log likelihood -3411.212  Hannan-Quinn criter. 3.394865
F-statistic 1641217 Durbin-Watson stat 2.188608
Prob{F-statistic) 0.000000 ‘Wald F-statistic 7857.423

Proh{wald F-statistic) 0.000000

Panel 22: Final Model with Put-Call Ratios and Deep Implied Volatility Skew Variables
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 13:41
Sample (adjusted): 1/05/2007 8/31/2015
Included observations: 2018 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1.631288 0.240122 6.793587 0.0000
_1FUTURE(-1) 0.912582 0.032733 27.87934 0.0000
VIXSPOT{-1) 0.057588 0.029867 1.928135 0.0540
PCR130 -0.171570 0.033425 -5133008 0.0000
PCRALL -0.291559 0.076501 -3.811191 0.0001
DCOMA -4.040235 0.682905 -5916243 0.0000
CAPA -9.320941 1.558944  -5.979009 0.0000
R-squared 0.980042 Mean dependentvar 21.96038
Adjusted R-squared 0.979983 S.D. dependentvar 9.275581
S.E. of regression 1.312331 Akaike info criterion 3.384949
Sum squared resid 3463.367 Schwarz criterion 3.404408
Log likelihood -3408.414 Hannan-Quinn criter. 3.392091
F-statistic 16458.69 Durbin-Watson stat 2179600
Prob{F-statistic) 0.000000 ‘Wald F-statistic 7809.075

Proh{ald F-statistic) 0.000000
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Panel 23: Final Model with Smoothed Put-Call Ratios and Implied Volatility Skew Variables
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 14:52
Sample (adjusted): 1/08/2007 8/31/2015
Included observations: 2165 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1.526844 0.215883 7.072553 0.0000
_1FUTURE(-1) 0.892850 0.031654 28.20625 0.0000
VIXKSPOT(-1) 0.072531 0.028728 2524775 0.0116
PCR160SM -0.212612 0.092669 -2.294322 0.0219
COMA -7.0889497 1.114923  -6.358286 0.0000
CAPA -8.861742 1.515403  -5.847781 0.0000
R-squared 0.978506 Mean dependentvar 21.88140
Adjusted R-squared 0.978457 S.D. dependentvar 9162968
S.E. ofregression 1.344810 Akaike info criterion 3.433289
Sum squared resid 3805.163 Schwarz criterion 3.449041
Log likelihood -3710.546 Hannan-Quinn criter. 3.439056
F-statistic 19657.88 Durhin-Watson stat 2152074
Proh{F-statistic) 0.000000 ‘Wald F-statistic 9669.043

Proh{ald F-statistic) 0.000000

Panel 24: Final Model with Smoothed Put-Call Ratios and Deep Implied Volatility Skew Variables
Dependent Variable: _1FUTURE
Method: Least Squares
Date: 05/02116 Time: 14:49
Sample (adjusted): 1/08/2007 8/31/2015
Included observations: 2165 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed
handwidth = 8.0000)

Variahle Coefficient Std. Errar t-Statistic Prob.
C 1.744539 0.234768 7.430815 0.0000
_1FUTURE(-1) 0.891540 0.031546 28.26176 0.0000
VIXSPOT(-1) 0.0693813 0.028588 2.445505 0.0145
PCR160SM -0.163327 0.094675 -1.725129 0.0846
DCOMA -4.754654 0.682946 -6.961978 0.0000
CAPA -8.817605 1.497441 -5.888448 0.0000
R-squared 0.978656 Mean dependentvar 21.88140
Adjusted R-squared 0.978606 S.D. dependentvar 9162968
S.E. ofregression 1.340225 Akaike info criterion 3.426320
Sum squared resid 3878.004 Schwarz criterion 3.442062
Log likelihood -3702.991 Hannan-Quinn criter. 3.432077
F-statistic 19798.58 Durhin-Watson stat 2142373
Proh{F-statistic) 0.000000 ‘Wald F-statistic 9476.789

Proh{ald F-statistic) 0.000000




Panel 25: Stepwise Model with Put-Call Ratios and Implied Volatility Skew Variables
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Panel 26: Stepwise Model with Put-Call Ratios and Deep Implied Volatility Skew Variables
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Panel 27: Stepwise Model with Smoothed Put-Call Ratios and Implied Volatility Skew Variables
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Panel 28: Stepwise Model with Smoothed Put-Call Ratios and Deep Implied Volatility Skew Variables
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Panel 29: Swapwise Model with Put-Call Ratios and Implied Volatility Skew Variables
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Panel 30: Swapwise Model with Put-Call Ratios and Deep Implied Volatility Skew Variables
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Panel 31: Swapwise Model with Smoothed Put-Call Ratios and Implied Volatility Skew Variables
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Panel 32: Swapwise Model with Smoothed Put-Call Ratios and Deep Implied Volatility Skew Variables
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Panel 33: Combinatorial Model with Put-Call Ratios and Implied Volatility Skew Variables
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Panel 34: Combinatorial Model with Put-Call Ratios and Deep Implied Volatility Skew Variables
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Panel 35: Combinatorial Model with Smoothed Put-Call Ratios and Implied Volatility Skew Variables
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Panel 36: Combinatorial Model with Smoothed Put-Call Ratios and Deep Implied Volatility Skew

Variables
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Panel 37: Independent Variables included in the Predictive Models
VIX Future VIX Spot COMA DCOMA PAMO DPAMO CAPA
PCR130 PCRALL
(t-1) (t-1) (t) (t) (t) (t) (t)

x

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10
Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19
Model 20

X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X
X X X X

X X X X X X X X X X X X X X X X

X X X X X X X X

X X X X
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