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Abstract

Over the recent years, value at risk has become an industry standard for measuring downside
market risk. This thesis aims to give a thorough differentiation between the different types of
models used to estimate value at risk. It shows what gains to be achieved going from a symmetric
to an asymmetric model as well as a few other tweaks that can be done to potentially improve
the estimates. We provide a detailed comparison of several different kinds of approaches coupled
with a thorough backtesting procedure giving a precise evaluation of every alternative approach.
Our observations show the importance of choosing a model with regards to its end use and the
importance of not adhering too much to convention. Moreover, we show that the asymmetric
models prove superior in the analysed stock indices though it is hard to predict the winning

model beforehand.
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Abbreviations

ACF Autocorrelation Function

ADF Augmented Dickey-Fuller

ARCH Autoregressive Conditional Heteroskedasticity

CDF Cumulative Distribution Function

cov Covariance

GARCH Generalized Autoregressive Conditional Heteroskedasticity

MLE Maximum Likelihood Estimation

model(m,s)-dist. where model stands for the model name (e.g. sGARCH), m,s stands for
how many lags that are incorporated into the model (e.g. 2,1), and dist. stands for what distribu-
tion is assumed for the residuals (e.g. N). For example sGARCH(2,1)-N.

N Normal Distribution

NIG Normal-Inverse Gaussian Distribution

PDF Probability Density Function

sstd Skewed Student’s t-Distribution

std Student’s t-Distribution

VaR Value at Risk

var Variance

Q-Q plot Quantile-Quantile Plot



1 Introduction

The recent financial crisis has shown that there are substantial risks in finance and it has spurred
interest into measuring and managing theses risks. Financial risk is divided into four different
categories: market risk, liquidity risk, credit risk and operational risk (Jorion, 2007:22-27). The
most well-understood of these risks is market risk, which is the exposure that an investor has to
changes in the underlying market prices of its investments. It is usually approximated by historically
estimated volatility, however, this is not an optimal way of estimating market risk. For example,
volatility effectively treats above average return and below average return the same, even though
(for a long position) price increases above the average is something we want to achieve. For this
reason a new measure of market risk called value at risk (VaR) was developed and gained a lot of
momentum when J.P. Morgan published RiskMetrics in 1994 (Longerstaey and Spencer, 1996) and
has since then been widely implemented in the world of finance. Not only is it used within financial
institutions as a risk measurement tool as well as for risk management but also among regulators to
enforce capital requirements that are dependent on a firm’s specific risk exposure. Regulators also
give reprimands to institutions that fail to correctly estimate their VaR.

Why should the state meddle in a bank’s affairs? Let’s look at one example where financial
regulation of a bank’s risk is desirable. The risk of bank runs, which causes premature liquidation of
a bank’s long-term assets, has in many countries been alleviated by the state in the form of deposit
insurances (Diamond and Dybvig, 1983, showed that this could alleviate the risk of bank runs).
When banks have this insurance neither their investors nor their customers need to worry as much
about economic downfall since the state will step in and save the day. This is where a moral hazard
problem emerges because banks get an incentive to take on higher risk which in turn increases
the state’s risk of having to pay for the party (see Kareken and Wallace, 1978). To alleviate this
problem the state needs to accurately monitor and regulate a bank’s risk-taking.

VaR’s popularity has a lot to do with its simplicity. The measure is a single value that captures
a company’s exposure to market risk. VaR answers the question: how much might the company
lose due to adverse price movements in the market under normal circumstances? Estimating VaR,
however, is not a straightforward process and a lot of decisions have to be made regarding what
models to be used. In this thesis we will provide a thorough differentiation between the main
alternatives.

The data set that we are going to test the models on is the capitalisation-weighted stock market
index OMXS30 which is traded on the Stockholm Stock Exchange. It consists of the 30 most
frequently traded stocks in Sweden in terms of turnover. The complete data set consists of observed
daily closing prices from the beginning of January 2004 to the end of March 2016 which corresponds
to 3076 unique observations, all of which were downloaded from Yahoo Finance. We apply 64
different combinations of models and assumptions about the distribution of the residual which we use
to estimate VaR. When presenting the different distributions and models we also give our predictions
on which type of model that should provide the best estimates based on previous theory and

observations (e.g. leptokurtic distributions usually fit financial data well and models that account for



the leverage effect should give better predictions).! After having run all the estimations we evaluate
why the winning model was superior in this data set and compare it to the benchmark model as well
as to our predictions. Lastly we do a robustness test to see if the results are generalisable so that

similar models prevail for different indices.

1.1 Literature Review

There is a substantial literature that compares different ways of estimating value at risk, for example
see Kuester et al. (2006), Manganelli and Engle (2001) and Giot and Laurent (2004). To contribute
to this extensive literature we will evaluate the forecast precision of 64 different combinations of
ARCH-type models and assumptions about the residual distribution, much like what Hansen and
Lunde (2005) did when they compared several ARCH-type models with regards to their forecast
performance of conditional volatility. This thesis, on the other hand, compares the different models
with regards to the model’s forecast precision of VaR. We also provide the reader with a robustness

test for different assets. The evaluations of the estimates are done in an out-of-sample setting.

1.2 Research Question

This approach can be summarised in two research questions.

1. Which ARCH-type model and assumption of the residual distribution best predicts the one-
day-ahead 95% VaR and is this what is expected with regards to conventional theory?

2. Are the results robust to different underlying assets?

2 Theory and Methodology

In this section the theoretical framework applied in this thesis for measuring market risk will be
introduced together with the procedure followed to execute the analysis. To begin with, a few
cornerstone definitions for time series are introduced. Following that, VaR is introduced as well as
ways of estimating it through nonparametric methods and parametric methods. Two methods for
evaluating VaR estimates through backtesting are presented. In the last subsections methods for

exploratory data analysis as well as methods for model diagnostics are specified.

2.1 Time Series Concepts

This subsection introduces a few of the keystone concepts needed for an analysis of a financial time

series.

"However, there is uncertainty inherent in the analysis and sometimes the only differences between the models are
minor tweaks, making an attempt to pinpoint the exact model or distribution ex ante bound to be unsuccessful. We
will, therefore, mostly rely on inductive reasoning.



2.1.1 Market Returns

The continuously compounded return (log return) at time ¢ is defined as

() 8

where P, is the price of an asset at time ¢. The log returns are used over the arithmetic returns because

of the time additive properties as well as the advantageous statistical properties. Furthermore,
because we are not building a portfolio of different assets we need not worry about the drawback
that log returns are not portfolio additive. (Tsay 2013:4f)
VaR is usually expressed as a positive value. We therefore define the relevant loss random
variable as
Ly=—(1+r)P; (2)

where P; is the portfolio price such that losses are recorded as positive numbers while profits are

recorded as negative losses and as such denoted as negative numbers.

2.1.2 Information Set and Conditionality

In this thesis we will be doing estimations for ¢ that are conditional on the information set F;_1
that is available at t — 1 where F;—1 = {r1,...r.—1}. This means that since they are conditional
they depend on the outcomes inside the information set. We will estimate the conditional mean
pt = E[ri|Fi—1] and the conditional variance o? = var(r¢|F;_1) = E[(r; — 1t)?|Fi—1]. Because we
mostly deal with conditional estimations we call the conditional variance only variance whilst if it is

unconditional that will be explicitly specified.

2.1.3 Autocorrelation Function

In a stationary time series r; we have that the correlation between 7, and its k™ lag is

_cov(ry, ) cov(ry,Teg) Yk
pr = = =
V/var(ry) var(r_) var(r) Y0

(3)

for k € N, due to the fact that var(r;) = var(r,—x) in a stationary time series. In Equation (3) -
is the coiance between 7y and its k*® lag and ~g is the coiance between 7 and its 0% lag, i.e. its
variance. (Tsay, 2013:45-47)

2.1.4 Stationarity

A time series is strictly stationary when the joint distribution is time invariant. For the time
series models applied in this thesis, however, a weaker form of stationarity is sufficient called weak

stationarity (or sometimes covariance stationarity). Because only this weaker form is needed we will



in this thesis refer to weakly stationarity by simply stationarity. For a time series process, x; to be

weakly stationary the following three properties must be fulfilled:
i Elz] = p

i Bz — p)? =7 <

i cov(xy, Trik) = Yk

for all t € Z and k£ € N. This means that a time series is weakly stationary when the mean, the

variance and the autocovariance structure are time invariant. (Tsay 2013:40-43; Brooks 2002:230f)

2.1.5 Volatility Clustering

Many asset return series go through periods of relatively low volatility while other periods exhibit
relatively high. For example, the returns of S&P 500 had a period, after the crisis initiated by the
dot-com bubble had stabilised, that was relatively calm---especially from 2004---up until the the
unrest of 2007 and the Great Recession which initiated another period of high volatility. Noted
by Mandelbrot (1963) "large changes tend to be followed by large changes---of either sign---and
small changes by small changes" implying that absolute returns or squared returns exhibit positive

autocorrelation. This is what has come to be referred to as volatility clustering.

2.1.6 White Noise

A white noise (WN) process is a process with a mean zero and no covariance between its values at

different times. More formally: let z; be a time series, then
2 ~ WN(0, ¢2)

if and only if
(4)

2
z

for k£ € N where o7 is a constant. This means that it cannot be predicted other than a best guess at
the mean. A white noise process can follow different distributions such as the Gaussian distribution
or the Student’s t-distribution. (Brooks, 2002:232-234; Tsay, 2010:36)

The assumptions we will impose on the white noise term in this thesis are the following distribu-
tions: normal distribution, Student’s t-distribution, skewed Student’s t-distribution and normal-
inverse Gaussian distribution, abbreviated N, std, sstd and NIG respectively. The distributions are
discussed and their probability density function’s (PDF) are listed in the appendix section A.1.

Even though return series often exhibit leptokurtosis this does not necessarily have to be
translated to a fat tail assumption for the white noise term. Jorion (2007:221f) explains that a data

set with fatter tails does not need to have been drawn from a true distribution that exhibits fat tails



but rather that it could be explained by autocorrelation in the data set causing the observations
to be temporarily drawn from a distribution exhibiting an increased likelihood of what would have
been viewed as outliers in a normal distribution (the same argument can be applied to peakiness
around the mean). In many data sets, both of these explanations (a true distribution with fatter
tails and autocorrelation) are likely to be part of the answer. Although, this makes ez ante (prior to

applying the volatility model) inference about which distribution best fits the residuals difficult.

2.2 Theory for Analysing the Data

To decide which model that is appropriate for a specific data set a thorough analysis of the data is
needed. Besides from analysing descriptive statistics we will also use a test of stationarity, the Q-Q
plots and most importantly the plots of the autocorrelation function (ACF). The Q-Q plots and
ACF are also used to evaluate the models ex post. These concepts are introduced in the following

subsections.

2.2.1 Test of Stationarity using ADF-tests

If the times series {r:} is stationary then it reverts to its mean. If that’s the case then small values
tend to followed larger values, and vice versa. In other words the level that the series is at will be a
good predictor of the change in the next period---it’s autoregressive. The augmented Dickey-Fuller
(ADF) test is used to determine whether the the time series exhibit stationarity or if there is some
structural break in the data set (Dickey and Fuller, 1979).

The ADF regression is

p
Arg=a+Bt+yr 1+ > SkArg+e
k=1

where €; is the regression error term, « is a constant, and 8 the coefficient on the time trend t. We
test
Ho Y = 0

against the one-sided alternative Hp : v < 0. The test statistic
DFyys = &/SE(I:)/)

is compared with DF_ iica. We draw DF.,icq from a table where the type I error is 5 percent.? If
DFys < DF_piticar then the null is rejected at a 5 percent significance level and we would conclude

that no unit root is present.

2This value is obtained automatically by statistical software, although there exists critical values for the Dick-
eyaASFuller t-distribution. For example, if the sample size is 500 and a test at 5 percent significance level the value is
3.42.



The test can be understood by noting that if the series is integrated then the lagged level of the
series, y;—1, are not of any help (in the presence of the lagged changes Ar;_j) in the change in return

i.e. the left hand side Ar;. If it is not of any help then v = 0 and the null hypothesis is not rejected.

2.2.2 Test Normality using Q-Q Plots

Besides inspecting the descriptive statistics and histogram plots of the frequency of returns we
use Q-Q plots to determine if the data is normally distributed or if it exhibits fatter tails. In a
normal Q-Q plot the assumed distribution is plotted using the expected values creating a straight
line with the theoretical probabilities on the y-axis and the sample quantiles on the x-axis. If the
observed data follows this theoretical distribution then the observed data points and the straight line
should coincide reasonably well. If the data exhibits fatter tails than a normal distribution then the
observed data points should deviate above the straight line in the lower end of the distribution and
below the straight line in the upper end of the distribution. The Q-Q plot can also be constructed
so that the straight line follows some other distribution (e.g. the Student’s t-distribution).

Sometimes a formal test is used such as the Jarque-Bera test but we prefer Q-Q plot because our
main objective is to verify whether the data has fat tails and will thus only rely on this to evaluate
the data’s distribution.

2.2.3 Test of Autocorrelation using ACF Plots

To evaluate the autocorrelation function of the returns and squared returns a few tests need be

introduced.

Test of Autocorrelation in the Returns

To determine if data is autocorrelated or not we use an ACF plot, see for example Figure 4 on
page 30. The autocorrelation function (ACF) displays how the different lags are correlated with the
current observation such that the Oth lag is perfectly correlated (because it is the current observation)
and the following correlations are displayed by bars above the respective lag. That is, we plot pg
from Equation (3) for different lags. In the ACF plot the dotted lines are for —1/7 +1.96/+/T where
T is the sample size and 1.96 = A\ g5. If a lag is above the dotted line it is statistically significantly

different from zero at the 5 percent level.

The Ljung-Box Test
For a more formal test of the autocorrelation the Ljung-Box test is used (Ljung and Box, 1978).
The null hypothesis of the test is

Hy:v=0 fork=1,..,K

10



against the alternative hypothesis that there exists a k such that v, # 0. The appropriate test

statistic is

T-1
=1

K .2
~y
QU =T(T+2) ) =+ (5)
k
where T is the number of observations in the data set. Under the null hypothesis Q(K) ~ x?(K).

We will be using a confidence region of 95%. (Hull 2012:508f)

The Student’s t-test

To formally test whether the mean is signficantly different from zero a one sample t-test is applied,
whereby we test Hy : p = 0 against Hy : p # 0. The relevant test statistic is T,ps = 1/ SE(ft) where
SE(-) is the standard error and f is the sample mean of our returns. We reject the null if the

observed test statistic tops > teriticar Where the critical value is drawn from a Student’s t-distrubution.

Test of Autocorrelation in the Squared Returns

If, on the other hand, the squared returns are autocorrelated then large absolute movements are
followed by large absolute movements the following days. This would be call for some model of the
conditional volatility that can account for this. To evaluate this, the same procedure is applied for

the squared returns as was applied for the returns.

2.3 Value at Risk

The recent century has seen many a company suffer under sudden bursts of financial instability
amplified by unsatisfactory risk measurement and management. Developed after the derivatives
infused financial crisis during the beginning of the 1990s, VaR has grown into one of the most
prominent ways of measuring and managing risk in a comprehensible and transparent way. It
gives an answer to how much an institution might lose under normal conditions in the form of "the
worst loss over a target horizon that will not be exceeded with a given level of confidence", Jorion
(2007:viii). VaR can be used to estimate the risk in a specific portfolio of assets as well as for the
total market risk faced by a financial institution. For a comprehensive and extensive outline of VaR
see Jorion (2007) and Duffie and Pan (1997).

2.3.1 VaR in Regulations

In order to force financial institutions to be better prepared for severe financial losses, regulators
enforce capital requirements on these institutions. Lately, in order to make these requirements
reflect the underlying risk that a specific institution faces, these capital requirements are being based
on calculations that take the firm’s underlying risk into consideration. These risk-based models are
generally based on VaR measurements conducted by the institutions themselves.

One such regulation is the Basel Accords developed by Basel Committee on Banking Supervision
(BCBS). It is currently adopted by many countries, including the United States (Federal Reserve,
2013) and the European Union (Dierick et al., 2005). It allows for the capital requirement based on

11



market risk to depend on an internally measured estimate of a company’s downside risk such as VaR.3
This puts pressure on the ability to verify the validity of a financial institution’s measurement of
their market risk. This is something regulators are able to do with VaR through backtesting---which
will be discussed in section 2.3.2. Failure to meet the validity requirements will result in reprimands
for the financial institution making it important both for society at large as well as for the financial
institution that the VaR is not underestimated. Moreover, if financial institutions overestimate
their VaR they are not allocating capital to maximise capital returns making pinpointing the VaR
estimate important both to keep financial institutions from bankruptcy as well as allowing them to

utilise the full potential of their capital. (Basel Committee on Banking Supervision, 2011)

2.3.2 Defining and Calculating VaR

In this subsection a definition of value at risk is introduced together with two alternative approaches
to estimating it, historical simulation and the modelling approach. See Tsay (2013:327-385) or Jorion
(2007:105-115) for a more detailed explanation of VaR estimation and its definition.

Defining VaR

VaR is the worst loss--—-which can be seen as a loss random variable at time ¢ denoted L;---over the
target horizon (in this thesis set to one day) that will not be exceeded with the given confidence
level 1 — p, where p € (0,1) is a small probability, usually 5% or 1%.* As mentioned in 2.1.1, losses
recorded in L; will be denoted as positive numbers whereas profits are seen as negative losses. VaR
is thus concerned with the upper tail quantile of 1 — p (or 0.95 and 0.99 respectively for the given

probabilities mentioned earlier) of the loss distribution. Mathematically this can be expressed
VaRi_, = inf{z|Fi(z) > 1 —p} (6)
where Fi(z) denotes the cumulative distribution function (CDF) of L;. Thus we have
PlL; <VaRi_p| >1—p

which is in line with what we specified earlier in this paragraph. Figure 1 displays the VaR loss
in the PDF of the continuous variable L; with an arbitrarily chosen distribution. From this it can
clearly be seen that VaR is the value such that the probability to observe a bigger loss is exactly
equal to 5%.

To estimate VaR it is important to assume that the underlying portfolio is constant or to

construct the portfolio so that it does not change over time because otherwise the underlying returns

3In the latest revision of these regulations from January 2016, however, the BCBS recommend the use of conditional
value at risk (referred to in the revision as expected shortfall) because of its ability to account for tail risk. It had
previously not been recommended due to the difficulties associated with backtesting. This is also why we choose to
focus on VaR in this thesis because of the need for a precise and thoroughly developed backtesting procedure. (Basel
Committee on Banking Supervision, 2016)

4We will choose p=0.05 because it gives us more violations in the backtesting procedure to base the statistical
tests on.

12
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Figure 1: VaR in the PDF of a loss random variable L.

might exhibit non-stationarity. This is because the probability distribution of potential losses would
change over time as some components or weights of the portfolio change.

In this thesis we will estimate the VaR for one day ahead. This is also what is commonly done in
practice due to the difficulty of estimating it further ahead. To extend the VaR estimate N days into
the future one might use the square root of time rule in which the N —day VaR = 1 —day VaR-v/N.
This is also allowed by the Basel accords. Suffice it to say, the one-day-ahead forecast of VaR is the

relevant form that is of interest.

Historical Simulation

One way of estimating a VaR is through historical simulation (Hull 2012:474-478). This is executed
by extracting the historical returns from the window of estimation and using them to simulate the
PDF of the losses. The 1 — p'! quantile is then extracted and used as the 1 — day VaR,, estimate.’
This approach is non-parametrical as no assumptions regarding the distribution or its parameters
need be facilitated. The the main drawback of this approach is that it gives equal weights to every
observation ignoring the fact that more recent observations might carry more information on the
future volatility than older once do. More specifically we discussed in section 2.1.5 that squared
return tend to be autocorrelated. Thus, given that the time series exhibits this empirical property,

some model that can account for this autocorrelation is bound to be superior.5

Modelling Approach
To account for the autocorrelation in the squared return one might try a parametric modelling
approach through some weighting scheme, shown in Tsay (2013:327-385) and Jorion (2007:110-113).

5VaR is usually expressed in the home currency and therefore needs to be multiplied by the portfolio price P;.

SKuester et al. (2006) compared unconditional models (such as historical simulation) with conditional models
(such as the GARCH model) and concluded that only the conditional models gave satisfactory forecast results. We
will therefore not include historical simulation in our analysis and instead focus on the comparison between the more
appropriate symmetric models and the asymmetric models.

13



The formula for calculating VaR is
VaRy = (fix + 20.956¢)Pr—1 (7)

where fi; is the estimated mean in the rolling sample F;_1, zg.95 is the 1 — p*® quantile in the white
noise distribution where p=0.05, o; is the estimated volatility using the information set F;_; and
Pi—1 is the portfolio value at ¢t — 1. In Equation (7) what often proves to be most interesting and
difficult to estimate is the volatility J¢, atleast for financial data with short intervals, and the whole
of section 2.4 is dedicated to it. In this thesis we will assume that P;—; = 1 such that the forecast
0.95'" quantile in the loss distribution is the portfolio’s VaR. This is at no loss of generality and it is
done for easier notation. To understand this equation we break it down into it’s individual parts.

The model for the return at time ¢ is
T = [t + €t (8)

where &; is some innovation (or shock) that moves the return away from fi;. This innovation can be
modelled by

Et = (3tzt. (9)

Here, &; could be based purely on the historically estimated variance or it could be forecast using
some weighting scheme and forecast procedure, introduced under section 2.4, which can enable
the volatility to be conditional on the information set up until ¢ — 1. This can allow for volatility
clustering to be present in the model and hence allow the model to adapt to periods of increased

volatility. The random variable z; is usually assumed to follow the standardised normal distribution.

2.3.3 Backtesting VaR

To ensure that the estimated VaR complies with reality the predictions need to be evaluated ez post
using a backtesting procedure. To begin with, we first have to specify a framework for how to treat
an observed loss that is in excess of the VaR estimate. One such approach is to define a time series

of such violations as an indicator variable I; for the forecast VaR at time ¢, made at ¢t — 1, as

1, if Ly > VaRl_th
0, if Ly < VaRy_,;

t (10)

The variable I; can then be used to count every time the observed loss is greater than the (1 — p)
VaR estimate which we call a violation.

For an effective VaR measure, two properties must be satisfied (Christoffersen, 1998):

1. the probability of observing a violation in the data set should be p---or sufficiently close to p

unconditionally on the information set available at time ¢ — 1. More formally, E[I;] = p.

14



2. the probability of observing a VaR violation is not dependent on violations observed during
the previous days. Hence, VaR violations should not come distributed in clusters. This can be
expressed as E[I;|F;_1] = p, Vt, where F;_1 denotes the information set available at time ¢ — 1.
As opposed to property 1, this property concerns the efficiency of the estimate conditional on

the information set at ¢t — 1.

To test these properties we will be using the Kupiec test for the first property and Christoffersen’s
test for the second property referred to as the unconditional coverage (uc) test and the conditional

coverage (cc) test respectively.”

Kupiec’s Test of Unconditional Coverage

The uc test (Kupiec, 1995) evaluates whether the observed ratio between violations and the number
of out-of-sample estimates corresponds to the level of significance specified in the VaR calculations,
e.g. with a significance level of p = 0.05 we should expect to observe that 5% of the out-of-sample
estimates are in excess of the VaR estimate. Let T be the number of out-of-sample estimates and NV

be the number of violations. Then the null hypothesis of the test is
Hy e :p=0.05

against Hy : p # 0.05. The appropriate test statistic is

)G

Under the null hypothesis LR, is asymptotically distributed as x?(1). The test is for a 95%
confidence region and thus, with one degree of freedom, to reject the null hypothesis we would need
to observe LR,. > 3.841.

LRy =2l [1-p)" "p"] +2In (11)

Christoffersen’s Test of Independence

The test of independence developed by Christoffersen (1998) evaluate the conditional efficiency
that a violation today does not give any information whether there will be a violation or not the
following day. Christoffersen states that it is not enough for a VaR model to simply get the number
of violations correct but also to account for clustered returns so that the VaR violations will not
experience any clustering. For the VaR estimate to exhibit conditional coverage (i.e. nonclustered
violations) the probability of observing a violation should not be affected by whether there was a
violation the day before or not. To test if the observed distribution is significantly different from

this, Christoffersen developed a hypothesis test where the null hypothesis is

Hypg :m=m9=m

"The two tests are summarised by Jorion (2007:143-152).
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against the alternative hypothesis mg # 71 where 7; is the probability of observing a violation at
time t if I;_; = 7 was observed the previous day and 7 is simply the unconditional probability of

observing a violation. The test statistic is
LRing = ~2In[(1 — )P0t T0)z(Tor+Ti)] 9 In[(1 — o) o000 (1 — my)Thoal]  (12)

where T;; is the number of days where outcome I; = j followed outcome I;_; = i the day before.
The test statistic LR;,q is asymptotically distributed as x?(1) under the null hypothesis. Once again
we reject the null hypothesis if LR;,q > 3.841 with a 95% confidence level.

One important critique of Christoffersen’s test is that it only treats two consecutive violations as
a cluster and hence ignores violations that occur with a few days days between them. Even though

violations that are a few days apart might be a consequence of clustering.

Conditional Coverage Test

To test both unconditional and conditional coverage at the same time we use the cc test in which
Hoce:p=mo=m1.
Christoffersen (1998) proposed the combined test statistic
LRcc = LRyc + LRina (13)

where LR, under the null hypothesis is distributed as x?(2). For a 95 percent confidence level we
reject the null hypothesis if LR.. > 5.991.

2.4 Modelling Conditional Volatility

If the time series exhibit autocorrelation and an equal weighting scheme is used to forecast volatility
then if a VaR violation is observed we are more likely to observe a VaR violation the following
day. This is because we know that large values tend to be followed by large values---the volatility
clusters together as discussed under Section 2.1.5---and this would not be accounted for in the model
that puts equal weights on all observations---i.e. making the violations cluster together as well.
These models are "dumb" in the sense that, even though we as researchers know that the risk is
higher during these limited periods of high volatility, the models do not alter their risk estimates
accordingly. For this reason several volatility models that could adapt to these clusters and hence
account for them in their estimates were developed.

Originally developed by Engle (1982), the autoregressive conditional heteroscedastic (ARCH)
model laid the foundation for many different conditional volatility models. The most prominent
of these is the standard generalized autoregressive conditional heteroscedastic (sGARCH) model
put forth by Bollerslev (1986). For an introduction to the subject see Tsay (2010:109-173). The R
package that is mainly used in this thesis is the rugarch package by Ghalanos (2015).
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2.4.1 Symmetric GARCH models

In Equation (8) on page 15 we see that the returns are modelled by ry = py + &¢. If we let e, = oy
as in formula (9) then ; follows a, sGARCH(1,1) process if the conditional variance o? can be
described by

0f =w+aiel_ + froi (14)

under the constraints w > 0, a; > 0, f1 > 0 and a1 + 81 < 1. Oftentimes, it can be assumed
that p; = 0 which makes 5,52_1 = r,_1.8 The variable 0t2_1 is the previous day’s estimation of the
conditional variance.

The innovation ¢; in Equation (8) is the deviation from the mean that cannot be explained by
the mean equation. It is therefore sometimes referred to as the residual of the mean equation. In
this thesis, however, the mean equation will simply be a constant. For some time series the mean
equation needs to be modelled (for example using an ARMA model) and this is common for monthly
or quarterly data. Because we will be using daily data the return is close to zero and the mean
equation, therefore, does not need to be modelled.

In Equation (14), o1 and f; are the respective weights on the previous day’s innovation, 6?_1,
and the estimation of the previous day’s conditional variance, at{l. There is, however, a third
weight ~ that is put on the long-run unconditional variance V. These have been simplified to w
such that

w=~VL. (15)

This simplified form is usually used for estimating the parameters, i.e. w, a1 and f;. Because the
weights must sum to unity such that
v+ P=1,

where, for the (1,1) model, P=ai+ 8 (which is called persistence and is a measure of the extent
that a relatively high volatility today will affect the forecast volatility in the future) must sum to
less than one, which is what we specified under the constraint a1 + 1 < 1, for the weight on v to
take on a positive value needed for a stationary process.® (Hull, 2012:502f)

In the analysis we will also use the concept of half-life to facilitate further differentiation between
the models. It is defined as the number of days it takes for half of the reversion back to the
unconditional volatility V;, to complete. Mathematically it is expressed as,

—In2

halflife = —— (16)
InP

8This is often a reasonable assumption when the conditional volatility is estimated for a short window---say an
hour or a day. This is because the mean usually is small for these short intervals, especially relative to the standard
deviation (Hull 2012:479f). However, this assumption can be formally tested using a t-test.

9Tf v < 0 then the process will not experience mean reversion which is when the level of variance returns to normal
levels after experiencing some shock, i.e. when o7 > V5. Hence, the variance will not have a drift towards the long-run
variance, Vi, (which is unconditional on previous innovations), and will instead move entirely conditionally on past
innovations (past innovations are persistent) or even move away from the mean, Vz, if the weight is less than zero.
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where P is the persistence parameter.
To allow for more of the previous days to affect the current one-day-ahead estimation of the

conditional volatility, Equation (14) can be extended to an sSGARCH(m,s) model by changing it to

m S
ol =w+ Z gt + Z Bjaf,j (17)
i=1 j=1
. max(m,s) . .
under the constraints w > 0, a; > 0, 8; > 0 and > ,—; (v + Bj) < 1. Persistence is now
given by

. m s
P = ZO&Z‘ + Zﬁ]
=1 =1

For most circumstances, however, many argue that the sGARCH(1,1) model is appropriate because
it incorporates earlier days’ observations in ¢ ; which is the volatility forecast for ¢ — 1 made with
the information available at ¢ — 2 which includes the volatility forecast for £ — 2 made with the
information available at ¢ — 3 and so on. The model therefore includes prior innovations. In this
thesis we will test a (2,1) model to hopefully improve on the forecast precision through a more

precise effect of the innovation for ¢ — 2.

The Component sGARCH

Lee and Engle (1999) developed the component sGARCH (csGARCH). They acknowledged the
fact that volatility exhibited a long-run memory (i.e. high persistence) and therefore tried to
more accurately account for this by decomposing the conditional volatility into a short-run and a
long-run trend. They further motivated this by looking at the movements in the implied volatility
term structure of equities, interest rates and foreign exchange markets and noting that, for shorter
maturities, the volatility of implied volatility was higher than for longer maturities. By letting ¢

denote the long-run trend then the csGARCH (m,s) model can be written as
m S
ot =q+ Y ai(efy—aqi)+> Bi(o7;—aj) (18)
i=1 j=1

where the long-run trend is

G =w+ pg—1 + ¢(5%71 - 015271)‘

Persistence and unconditional volatility are given by the same formula as in the GARCH(m,s)
model. This means that the expected volatility in the very long-run will converge to the same
unconditional volatility as the GARCH(m,s) model.

2.4.2 Asymmetric GARCH models

The symmetric sGARCH models hold a distinct disadvantage, they fail to account for the asymmetric
effects in financial time series of returns on volatility. Observed by Black (1976), volatility tends to

be affected more by returns below expectation and less by returns above expectation (something
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that has come to be known as the leverage effect).!® This section introduces several models that
tries to alleviate the symmetric constraint of the sGARCH models. The main differences between
these models are mainly that they try to model asymmetry in different ways.

The asymmetric treatment of returns above or below expectation can be displayed for the
different models in a news impact curve (Pagan and Schwert, 1990). It shows the effect that a
particular innovation will have on the forecast volatility in a specific model. A symmetric model
will treat return above and below expectation equally (and will therefore be symmetric around the
expected value) whilst an asymmetric model may have different effects depending on if the return is

above or below (and might therefore be distributed asymmetrically around the expected value).

The Exponential GARCH model
Nelson (1991) developed an asymmetric model called the exponential GARCH (EGARCH). The

variance follows an EGARCH (m,s) process if

m

In(0f) =w+ > (aze—i+7i (|z—i] — Elzil)) + > BijIn (07 ;) (19)

i—1 j=1

where w, o, 7v;, 3; are parameters to be estimated and z; is the white noise term. By inspecting
the equation above we note that a; captures the sign effect and ~; captures the size effect---this is
important since it’s a major distinction from the sGARCH model.

The persistence is given by
S
P=> 5
j=1

in the EGARCH model which differs from persistence in the sGARCH model. The unconditional
variance is given by Vi = 11"]5. (Tsay, 2013:215-221)
Previous research has shown that increasing the number of parameters rarely beats a (1,1) model.

We will, however, test a (2,1) for the same reason as for the sGARCH model.

The GJRGARCH model
Another asymmetric model is the GJRGARCH model developed by Glosten et al. (1993). In this

model the conditional variance is modelled by

m p
atg =w+ Z (ais,?_i + %’Itfzf?—i) + Z ﬁjgg—j (20)
i=1 J=1

10This leverage effect stems from that the markets tend to react differently to positive news and negative news.
The most prominent explanation for this is that when prices depreciate, companies’ debt-to-equity ratio appreciate.
Hence, the companies become more leveraged causing volatility to increase. (Ait-Sahalia et al. 2013)
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where a; and ; are as in the sGARCH model, I;_; is an indicator variable and ~; captures the

leverage effect. The indicator variable is

1, if Et—i S 0
t—i —

0, if €ty >0

and thus ~; scales the effect of a negative innovation.

The persistence parameter is here given by
m m S
P=) ai+) vr+) B (21)
i=1 i=1 j=1

where Kk = F [It,izf_i] which is the probability of drawing an observation below zero in the distribu-

tion.

Asymmetric Power ARCH

The models introduce until now are based on autocorrelation in the squared returns. Taylor (1986)
observed that it was more common for the autocorrelations in the absolute returns to be bigger than
in the squared returns, suggesting that a model that is based on autocorrelation in the absolute
returns might posses superior prediction performance. A model that can account for this Taylor
effect as well as asymmetric effects was developed by Ding et al. (1993) called asymmetric power
ARCH (apARCH). It models the conditional volatility as

m S
ol =w+ Z ailleil — vigr—i) + Z Bior-, (22)
i=1 j=1

where a; and 3 are as in the sGARCH mode, v; is the leverage parameter and § € RT is the
asymmetric power parameter which is a Box-Cox transformation of o;.'' What makes this model
stand out is that it actually contains the sGARCH model as a special case (when 6 = 2 and ; = 0, V4)
as well as the girGARCH (when 0 = 2). The model thus should allow for more fine tuning than
those two models.

The persistence parameter is given by
m S
PS5
i=1 j=1

where x; = F(|z| — 752)° which is the expected value of z; under the Box-Cox transformation of the

term with ;.

""Box and Cox (1964) introduced the power transformation function called Box-Cox transformation.
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The unconditional variance is given by

o \2/0
Vi = — .
t (1—P)
AVGARCH

Taylor (1986) and Schwert (1990) discusses the absolute value GARCH (AVGARCH) model where
the volatility is modelled as

m S
or=w+ > o i(|z—i — nail — i (ze—s — 120))+ Y _ Biory (23)
i—1 =1

where shifts and rotations in the news impact curve are modelled with 79; and ny; respectively and

il < 1.
Persistence in the model is given by

R m S
P=D airit) 5
i=1 j=1

where k; = F (|ze—; — m2i| — m1i (2e—i — m2i)) which effectively is the expected value of the standard-

ised residual z; under the Box-Cox transformation. The unconditional variance is given by

(;} 2
Vi = — .
r <1P>

NGARCH

Higgins and Bera (1992) developed the nonlinear GARCH (NGARCH) model. The conditional
volatility follows a NGARCH process when

m S
of =w+ Y aiol i(|z-il)’+ ) Bio) (24)
i=1 Jj=1

where § € RT is the asymmetric power parameter. The non-negative restriction on § makes sure
that the conditional variance is defined for all innovations.
Persistence in the NGARCH model is given by

R m S
P = Z kg + Z Bj
i—1 j=1

where k; = F (]zt_i])d which is the expected value of z; under the Box-Cox transformation and the

Vi = - .
g (1—P)

21

unconditional variance is given by




NAGARCH
Engle and Ng (1993) introduced another nonlinear GARCH model called the nonlinear asymmetric
GARCH (NAGARCH) model. In this model the variance is given by

m S
of =w+ > o} (|- —nul)®+ ) Biot (25)
i=1 J=1

where shifts in the news impact curve is captured in 7y;.

Persistence is again given by the same formula as for AVGARCH but now x; is given by
2
ki = B ([2t—i — n2l)
and the unconditional variance is given by

w
Vi, = — .
k (1—P>

2.4.3 Maximum Likelihood Estimation

To estimate the GARCH parameters we use maximum likelihood estimation (MLE). Let 6 =
(w, a1, B1) be the parameters, and let r = (r1,...,r7) be the returns data. The likelihood function

is defined as
T

Lo;r) =[] r0e10).

t=1
The log-likelihood function ¢(6; r) is the natural log of the likelihood function i.e. £(6;7) =1In L(0;r) =
Zle In f(r | #) and we use £(6;r) because it is easier to work with in practice.

When calculating the maximum likelihood estimate 0 v we want to maximize the likelihood-
function £ given the data. But because the log-likelihood function ¢ = In £ is monotonically
increasing function of £ we can---instead of maximizing the likelihood function---maximize the
log-likelihood function. This yields the same estimates but is faster computationally. Denoting the

maximum likelihood estimate 0 v we define
O = arg méaxﬂ(e;r)
where r is the data and ¢(0;r) is the log-likelihood function.

2.4.4 Information Criteria

The parameters are estimated such that the Likelihood function is maximized, but the likelihood is
not merely a tool to give us the estimated parameters but is also useful in comparing two or more
models in seeing which of them better fits the data. The value of the likelihood functions for the
compared models are reported in the data analysis under section 3.3 but in order to compare models

with a different number of parameters there are a few information criteria frequently used such as
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Akaike (AIC), Bayesian (BIC), Shibata (SIC) and Hannan-Quinn (HQIC). We will use AIC and

HQIC because they compliment each other well. The definitions are
AIC =2p — 20 (26)

and
HQIC = —2£ + 2pIn (InT) (27)

where p is the number of estimated parameters in the model, ? is the log-likelihood value, L
is likelihood value and T is the sample size. A reason for picking one model over another, if they
perform similarly, is to pick the one with the lowest information criteria. As seen from the formulas
AIC and HQC penalizes a model with many parameters but rewards a high likelihood.

In this thesis, information criteria are used to determine whether one model fits better in the
estimation window than another. We include these becuase a model should not only perform well in

the forecasting window but also be sound according to statistical theory.

2.4.5 Rolling Window Estimation

t* t r) r2) () O it VaR; T ™ I;
1—wg | "—wp
2 2—wg | ro—wp | T2—wg
Lwe__ | 0 ___|. ro__ | ro__ | ____ ] S I N
wr + 1 1 71 9%1) 01 i1 VaR; 71 (7“1 — ﬂl)z Oor1l
wg + 2 2 9(2) 09 2 VaRsy 79 (7“2 — [i2 2 Oor1l
wg +wp | wp 91(1)11;1:) Gwp | flwp | VaRup | Twp | (Twp — flwg)? | 0 or 1

Table 1: Rolling Window Estimation

Divide the whole data set into two windows: the estimation window, denoted wg, and the
forecasting window, denoted wp. The estimation window goes from ¢* =1 to t* = n(wg) and the
forecasting window goes from t* = n(wg) + 1 to t* = n(wg) + n(wr). where n(wg) and n(wg)
denotes the length of each window. In our sample the length of the windows are n(wg) = 2076,
going from 2 January 2004 to 28 March 2012, and n(wp) = 1000, going from 29 March 2012 to
1 April 2016.'2 For easier notation we define ¢ so that the forecasting window starts at ¢t = 1 so
do note that t # t*. Forecasting of the VaR estimates is done using rolling window estimation

summarised in Table 1 in which we use wg and wr instead of n(wg) and n(wpr) for easier notation.

12The reason these intervals for wg and wr have been chosen is because: (1) When estimating wg we want a
good balance between getting enough observations to obtain precise estimates whilst only using relevant data. (2)
When estimating wr we want to make sure that we have enough observations to get statistically reliable results when
evaluating the backtesting procedure.
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Define 0 to be the parameter vector so for a GARCH-n 6 = (w, «, 3) and for a GARCH-std
0 = (v,w,a, ). In this explanatory example the parameter vector will be updated every day. The
reestimation of the parameter vector 6 is done to keep them up-to-date which improves forecasting
precision. The first parameter vector is denoted 9%1) where the subscript 1 stands for ¢ and the
superscript (1) stands for stands for the first estimation of parameters.!> The estimation is done
using the data available up until ¢ which is the information set F;_;. The parameters are estimated
using MLE as described in section 2.4.3.

Volatility is forecast using the parameters 9%1) together with the volatility formula that is being
used, see section 2.4.1 and 2.4.2. For the first day ¢ = 1 the innovation gq is, as always, set to the
previous day’s innovation. The previous day’s estimated volatility 6o, however, is treated differently
the first time and is set to the sample standard deviation in wg.

The mean is forecast using the sample mean. Using our notation () from the table we have
that ji; = mean(r(!)) and more generally fi; = mean(r().

VaR is forecast using the mean forecast, the volatility forecast and the quantile from the assumed

distribution for the innovations as in Equation (7) where P,y; = 1 giving us
VaR; = fiy + 20.950¢

where 2995 is the quantile from the assumed distribution for the innovations &;.14 In this thesis we
will for example assume that z ~ t(v) where v is estimated via MLE separately for both models.!®

The realised return at time ¢, rry, is revealed only after we have forecast VaR; so for example
we use data (V) to estimate VaR; then wait until markets close the following day and only after
the markets have closed rrq is revealed to us. The indicator variable I; takes on the value 1 if
rry > VaRy, i.e. if the loss at day t is bigger than our stated VaRj.

After all this have been done (parameter estimation, sigma forecast, mean forecast, VaR
calculation and violation calculation) the window is rolled forward one day---and the procedure is
repeated again but this time using the data set 7). This goes on until the end of the forecasting
window and then we have n(wg) = 1000 different VaR estimates and their violations which is ready
to be backtested in order to answer the question of which model is the most reliable for forecasting

value at risk in our out-of-sample setting.

13As a side note, if we update the parameters every second day the column 6™  would read
9@,9§1>,é§2),éi2),éé3>, ...,9%%%). In our analysis, however, the parameter vector will only be updated every 100
days for the first ranking procedure and every 20 days for the more thorough model comparison. We do this because
the parameters do not change a lot on a daily basis and this also increase the speed of computation.

4 The careful reader will note that this estimation and forecast is done while knowing all the data up until the
forecasting window while not knowing (ignoring) the information that comes after. If you will, the forecast could be
said to be done after the markets close but before they open the next day.

5For example using R we get gt(1 — 0.05/2,df = 9) = 2.262 whereas the quantile for normal distribution is
gnorm(1l — 0.05/2) = 1.96.
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2.4.6 Mean Squared Error

Another model selection tool is the mean squared error (MSE). It is used to determine how close the

volatility estimates are to the realised volatility. The mathematical formula is

msp=°E _ 1 > (i =) (28)

n(wr)  n(wr)

where n(wg) is the number of estimations, SSE is sum of squared errors, 6; is the estimated volatility
and oy is the realised volatility. MSE has value when choosing a model for estimating, for example,
a financial institutions VaR because it can help them to not take a model that overestimates the
risk. This is important because, as we mentioned in section 2.3.1, overestimating the risk hinders

the financial institution from allocating capital efficiently.

2.5 Model Diagnostics

In the GARCH model we impose a theoretical distribution on the white noise term z;, for example
a normal or Student’s t-distribution. In order to check if this assumption is fulfilled or not we
plot the standardized residuals & to check the adequacy of the mean equation and 7 to check the
adequacy of the volatility equation. If they appear as white noise then the assumption is fulfilled.

The standardized residuals are calculated as
€t = (29)

where €, = r; — [iy according to the GARCH model equation (8). Upon comparing the white noise
term z; = &;/0; and the formula for € we see that it is indeed logical to evaluate the assumed
distribution of z by plotting &. This is also done for the .

To evaluate whether the standardized residuals seem to be white noise we plot the autocorrelation
function, in which there should be no apparent autocorrelation, as well as the Q-Q plot, where the
standardized residual should follow the assumed distribution. This is done in the Data Analysis

under section 3.5.

3 Data Analysis

We begin with an exploratory data analysis to evaluate how the returns can be modelled given
our research question. We then fit all 64 models to OMXS30 in the estimation window. We use
these 64 models to forecast one-day ahead VaR in the forecasting window and these forecasts are
then backtested using the uc and cc tests. Using the performance of the models with regards to
backtesting, we pick the winning model and compare it to the benchmark model.

We need to be very careful about the distinction between the estimation window wg and the

forecasting window wg. The estimation window is used in the exploratory data analysis as well as
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to estimate the first parameters and the forecasting window is used in VaR testing in section 3.4
and onwards.

Lastly, we do a robustness test of our findings to other stock indices.

3.1 Exploratory Data Analysis

In this section the following steps will be performed:
(1) prices are plotted together with returns and stationarity is tested using the ADF-test,

(2) descriptive statistics are tabulated and the normal Q-Q plot of the return series is created

together with a histogram displaying the frequency of returns,

(3) ACF of returns is plotted together with the Ljung-Box test to evaluate the autocorrelation in

returns,
(4) test if the mean return is statistically different from zero using a t-test,

(5) ACF of squared returns is plotted together with the Ljung-Box test to evaluate the autocorrelation

in squared returns,
(6) test if the mean squared return is statistically different from zero using a t-test, and
(7) conclude what type of model should prove superior using statistical and financial theory.

From these steps we draw the following conclusions. From step (1) we conclude that returns are
stationary. From step (2) we see that the distribution of returns is more leptokurtic than a normal
distribution. However, drawing any conclusions regarding the best distribution assumption for the
residuals from this is dubious because, as we discussed in subsection 2.1.6, the model that gets applied
could "pick up" these tail events, thus rendering any fat-tail assumption superfluous. Furthermore,
the distribution exhibit low but noticeable skewness making inference regarding appropriate skewness
assumption difficult as well. From step (3) we can see some autocorrelation in the returns from
the ACF plot and the LB test confirms this. However, step (4) shows that the return series is not
statistically different from zero---hence we need not model the mean equation. Moving on to squared
returns we see from step (5) that squared returns exhibit clear autocorrelation and this time the
t-test in step (6) show that squared returns are statistically significantly different from zero---hence
we need to model the variance equation. In step (7) we conclude that an asymmetric ARCH-type

model is likely to perform best.

3.1.1 Stationary of Prices and Returns

In Figure 2 we plot the prices and returns for OMXS30 from 2 January 2004 to 28 March 2012
referred to as the window of estimation w,. Prices see a big dip during the Great Recession and in

line with what Schwert found in his article from 1989---that volatility clustering tend to be more
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pronounced during economic recessions---we see a tendency for volatility clustering to becomes more
prominent during this period.

To be able to estimate the conditional volatility models in this thesis we need the data set to be
stationary. According to a Dickey Fuller-test the price series is not stationary (which also clearly

can be seen from the plot) whilst the return series is stationary. We can therefore model the return
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Figure 2: Adjusted closing prices (above) and returns (below) for OMXS30.

3.1.2 Descriptive Statistics and Q-Q Plots

The mean return is 0.0003, very close to zero, as expected since we have daily data and there is
no time for a return to occur. This is confirmed by the t-test which shows that the mean is not
statistically significantly different from zero as the test have a p-value of 0.4462.

The minimum value of the daily returns is —0.0751 occured on 2008-10-06 and the maximum
value is 0.0987 occured on 2008-11-24. The first quantile and third quantile are —0.0070 and 0.0078
respectively. These values, combined with the lower part of Figure 2 describe the return series.

The returns have a skewness of 0.0544 and more importantly kurtosis = 7.3103 which is 4.3103
higher kurtosis than the normal distribution. This higher kurtosis is observed in the left part of

Figure 3. We could use these values to test if the data is normal using a Jarque-Bera test but we
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rely on the Q-Q plot instead because of the difficulties in trying to determine an exact distribution
for the residuals ex ante.

In Figure 3, we can see that the distribution is leptokurtic. In the histogram displaying the
frequency of returns (left) we see that the distribution is more peaked at the mean than normality.
From the normal Q-Q plot (right) we see that the return series exhibits fatter tails as is evident
from its deviation above the straight line in the lower tail and its deviation below the straight line

in the upper tail.
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Figure 3: The histogram (left) shows that the distribution is leptocurtic and the Q-Q
plot (right) shows that the return distribution has fatter tails than normality.

So what can be inferred from this? We see from the GARCH-model on page 15 that r; = iz + 61 2¢
where z; is assumed to follow some distribution. Does this mean that z; should be assumed to follow
a fat tailed distribution like the t-distribution? What needs to be remembered is that z; is the
distribution of the standardised residual (not the raw return) making them highly dependent on the
specific volatility model applied. Our data shows clear kurtosis, suggesting that the assumption of a
Student’s t-distribution for the white noise term might be more appropriate than that of normality.
Although, this is provided that the volatility model does not pick up all of the tail events and the
peakiness around the mean. However, as we discussed in section 2.1.6, some of the tail events are
likely to be picked up by our volatility models but not all, making the assumption of a Student’s
t-distribution still quite probable to be superior to normality for most of the models but we cannot

say for sure ex ante to applying the volatility model.

3.1.3 ACF Plots of Return

In Figure 4 we display two ACF plots. On the y-axis we have the value of the ACF, see ~y; in
equation (3), and on the x-axis we have the number of lags k. The left plot is the ACF of the
return series and the right plot is the ACF of the squared returns. We use the ACF plot to see if
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Figure 4: ACF plots for returns and squared returns.

the time series are autocorrelated or not. If 4 lies within the dotted lines for many values of k
then the data is not serially correlated, otherwise it is. The number of "many" is up to researcher.
Formal statistical tests may be used---in this case the Ljung-Box test---and we do use this test in
conjunction with the visual ACF plots to thoroughly evaluate whether the series are autocorrelated
or not. Although, we consider the ACF plot to be a more useful tool than the Ljung-Box test and
rely more on the plots.

By looking at the left plot in Figure 4 we see that there is some autocorrelation, though not
very distinct. The Ljung-Box test give a p-value of 0.0045 which indicates that the lags are indeed
autocorrelated and this would indicate the need to model the mean equation. However, the t-
test that was conducted in subsection 3.1.2 did not show that the mean of the return series was
statistically significantly different from zero leading us to conclude that the mean is too small to
have any significant effect on the results. Because of this, we will not model the mean equation p;
with an AR(p) or ARMA(p,q) model but instead use a constant mean p_ which for most practical
purposes can be though of as zero. We will therefore sometimes refer to innovations and returns

interchangeably.

3.1.4 ACF Plots of Squared Return

By looking at the right part of Figure 4 we see that squared returns exhibit strong autocorrelation
according to the ACF plots and this is verified by a p-value of less than 2.2 - 1071 for the Ljung-Box
test. A t-test also confirms that the squared returns are indeed statistically significantly different
from zero since the p-value is zero. Hence there exists ARCH effects. This is an argument for using
a GARCH model.
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Furthermore, the Ljung Box-test display a p-value close to zero so we draw the same conclusions
as the ACF plots (namely that squared returns are correlated) thus the formal tests point in the

same direction as the plots---we should use a GARCH model for our data.

3.1.5 Conclusion of EDA

What distribution should be assumed for the white noise term? According to our EDA we deem
it more probable that a fat-tailed distribution best fits the residual assumption (though this is
very uncertain). We also conclude that there is no need to model the mean equation because it
is not statistically significantly different from zero, therefore we assume it to be constant and, for
all practical purposes, essentially zero. There is, however, strong autocorrelation in the squared
returns giving apparent reason that a GARCH-type model should be used to model the conditional
volatility.

The asymmetric models are likely to perform better than the symmetric models because of the
leverage effect. Exactly which one, however, is difficult to say because the main differences between

the models are minor tweaks to how the asymmetric treatment is modelled.

3.2 GARCH Model Competition

In this section we do a rolling fit of all the 64 GARCH models. From these models we calculate
their individual VaR estimates and backtest these estimates. Based on the backtesting results we
rank the models from best to worst.

From the rolling window procedure!® each GARCH model produce 1000 VaR forecasts. These
forecasts are backtested using cc test and uc test. The models are then ranked according to their
p-value from the cc test from high to low.!” Results from the backtesting are summarised in Table
2. This table shows the top 10 rows from Table 6 in Appendix section A.2.

A clear result from Table 2 is that asymmetric models perform much better than symmetric
models, because there are no symmetric models in the table (which is what we expected beforehand).
More precisely, the AVGARCH, eGARCH and apARCH models perform well---as do models with
sstd and NIG distributed innovations (even though the winner has the assumption of normality).
The winning model having the normal assumption shows the difficulty of trying to predict the best
residual assumption ez ante.

For this data set there were two winning models, AVGARCH(2,1)-N and eGARCH(2,1)-std.
We have done a thorough analysis of both models but because they do not differ in a meaningful

way we will only present the former here.

'6As a detail, in the rolling window procedure the parameters are refitted every 100 days. One model did not
converge, this was the NAGARCH(2,1)-sstd.

17Tf two models have the same p-value from the cc test we rank them based on the uc test’s p-value. These p-values
are referred to as cc-p and uc-p. The reason for ranking on the p-value is that we wish to accept the null hypothesis
that the violations are not clustered and that the number of violations are correct with respect to VaR’s confidence
level. The higher the p-value the farther away we are from rejecting the null. Hence this is a reasonable sorting
criteria.
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The remaining part of this thesis will compare the winning model AVGARCH(2,1)-N from this
table with a benchmark model and discuss how they differ. We will also mention why it’s important

in risk measurement.

cc-p  uc-p actual

AVGARCH(2,1)-N 0.949 0.885 51
eGARCH(2,1)-std  0.949 0.885 51
eGARCH(2,1)-N  0.904 0.884 49
apARCH(1,1)-sstd  0.847 0.770 48
apARCH(2,1)-sstd  0.847 0.770 48
AVGARCH(2,1)-sstd 0.847 0.770 48
apARCH(1,1)-nig 0.847 0.770 48
apARCH(2,1)-nig 0.847 0.770 48
AVGARCH(2,1)-nig 0.847 0.770 48
AVGARCH(1,1)-std 0.845 0.566 54

Y

Table 2: Top 10 models from the backtesting evaluation.

3.3 Model Comparison of Winner and Benchmark

In this section we compare a benchmark model with the winning model from Table 2. Thus the two

models to be compared are:
1. the winning model AVGARCH(2,1)-N also called winner, and
2. the benchmark model sGARCH(1,1)-N also called benchmark.

Firstly, we motive our choice of benchmark model as well as perform a fit and comparison of the
two models in the estimation window. Secondly, we compare the VaR backtesting results and VaR
forecast plots from these models and discuss the results. The VaR forecast plots are accompanied
by the very important news impact curve. These two plots highlights the key differences that
distinguishes the winner from the benchmark. Lastly, we assess model fit and assumptions using

diagnostical plots of the standardised residuals.

3.3.1 Fitting the GARCH Model and Estimated Coefficients

Why do we use an sGARCH(1,1)-N as the benchmark? In choosing our benchmark we have to
decide on three things: Firstly, the family: standard, E-, GJR-, AV-, N- etc. We chose the sGARCH
because it is heavily used as well as being the first GARCH model to be developed. Secondly, the
number of lagged innovations: either (1,1) or (2,1) model. We chose (1,1) because it is the standard
choice. Thirdly, the assumed distribution for the innovation: normal, std, sstd, and NIG. We chose
a normal distribution because our winning model AVGARCH-N have a normal distribution and this
make the comparison more appropriate.

The winner and benchmark models are fitted to the data from the estimation window. The

results are seen in Table 3 and Table 4. Table 3 shows the unconditional mean, unconditional
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variance, persistence, halflife, likelihood, and information criteria. Table 4 shows rounded estimated
coefficients, their standard errors, the t values, and p-values. Note that this is going to be the first
set of parameters ép in our rolling window analysis, see details in section 2.4.5. These estimates
are used in the calculation of VaR;. We will analyse these first estimated coefficients and some

important facts are summarised in two separate bullet lists commenting the two tables.

AVGARCH(2,1)-N  sGARCH(1,1)-N
Unc. Mean 0.000082 0.000749
Unc. Variance 0.000225 0.000223
Persistence 0.980318 0.988307
Halflife 35 59
Likelihood 6160 6109
AIC —5.926 —5.881
HQIC —5.917 —5.878

Table 3: Coefficient Comparison

The information in Table 3 is commented on in the bullet points below.

e The information criterions AIC and HQIC are very close to each other but they slightly favour

winner over benchmark.

e Recall that halflife measures how long it takes for half of the shock to disappear, see
details in section 2.4.1. Because halflife for winner is lower than for benchmark, we know
that the winning model will go back to its unconditional variance faster after a shock. (This
difference in inertia is also reflected in the the calculated persistence where Persistence™™™ " <

benchmark

Persistence so these two estimates show the same thing but halflife have a nicer

economic interpretation.)
e The unconditional mean is lower in winner than in benchmark.

e The unconditional variance is about the same for both models. This means that in the long

run both models revert back to the same mean variance.

The information in Table 4 is commented on in the bullet points below.

o We see that 7 is close to 1 and «; close to zero for both models---as is expected with financial
data.

e The ay are pretty close to each other, 7/10 vs 8/10. For benchmark «; is not significant

whereas for winner it is.

e There is only an ay for winner because it is a (2,1) model. It is the weight put on the innovation
that occurred two days before. It is natural to expect a lower 81 when as is present because

€(—2 is also present in oy_1.
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AVGARCH(2,1)-N

Estimate Std. Error t value p-value

w 0.0003 0.00 10.50 0.000
o 0.0705 0.00 42.97 0.000
a2 0.0491 0.00 16.24 0.000
51 0.8575 0.01 129.11 0.000
M1 1.0000 0.10 10.38 0.000
712 0.6595 0.02 26.76 0.000
No1 0.3518 0.04 8.05 0.000
729 -2.2701 0.04 -52.37 0.000

sGARCH(1,1)-N

Estimate Std. Error t value p-value

w 0.0000 0.00 0.36 0.721
o 0.0883 0.05 1.71 0.088
51 0.9000 0.06 14.61 0.000

Table 4: Coefficients and robust standard errors.

e The 7 values are not discussed in detail, but rather seen as the values that create the shift and

rotation in the news impact curve that is presented later on.

By inserting the estimated parameters into the AVGARCH formula, Equation (23) on page 22,

we get the estimated model

oy = wtarop1(|z—1 — n21| — M1 (ze—1 — n21))+
+azoia(|z—2 — n22| — Mma(zi—2 — n22)) + Prop1 =
= 0.00034-0.07050¢—1(|z¢—1 — 0.3518] — 1.0000(2;—1 — 0.3518))+
+0.049104_2 (|z¢—2 + 2.2701| — 0.6595[2;—2 + 2.2701]) + 0.85750¢_1.

Because we allow AVGARCH(2,1) to model the innovations more precisely---through treating the
t — 1 lag and t — 2 lag individually---it is better at forecasting VaR in our out-of-sample setting.
However, this does not necessarily have to be the case because there could be some change between
wg and wp that could make a (1,1) model better. Remember that 79; shifts the news impact curve
and 7; rotates the news impact curve.

It is worth noting that the coefficients are not the same throughout our entire forecasting
window, because we do a rolling window procedure where the parameters are updated. Updating
the parameters does not only change the coefficients but also the standard errors and thereby the
p-values. Thus the low p-values in Table 3 should be taken with a grain of salt---it is only for the
first set of parameters 8. After the specified time newly available data is used to reestimate the
parameter vector and we get the second set of parameters (2) and so on. If there is a more volatile
period then some parameter values might become insignificant, since during volatile periods the

standard errors increase since we get less certain about our estimates. This is one reason why models
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are not as suitable during periods of high volatility. Therefore, during crisis, we should trust our
models less.

Do note that we have done a new fit for the benchmark model and the winning model. The
reason we do a new rolling window estimation (instead of keeping the old one that was used when
the models competed against each other) is so that we can now refit the parameter vectors every 20
days'® allowing for more precise estimates.'”

As a last note, we do the fit using data from the estimation window. The purpose of using only
the estimation window, and not the entire sample is that we want to reserve the forecasting window

to test our model---peeking at the forecasting window beforehand would be statistical cheating.

3.4 VaR Backtesting

In this section we show why the AVGARCH(2,1)-N outperforms the benchmark according to VaR
backtesting, described in 2.3.3. We also plot the VaR forecasts and calculate the MSE.

3.4.1 Tabulated Results

Since we use a five percent VaR and a forecasting window of length 1000 the expected number of
violations is 0.05 - 1000 = 50 = expected regardless of which model is used. The actual violations are
actual = fofF ) I in other words the sum of I; in the forecasting window. The farther away actual
is from expected the worse the model is. If actual < expected the model is said to overestimate risk,
and if actual > expected the model is said to underestimate risk. Overestimating the risk is bad
for the bank because it leads to unnecessary capital reserves and it is bad for the society because
resources are not used efficiently. Moreover, underestimating the risk is bad for the bank because it
leads to punishments from regulators and, in the worst case scenario, may even force a liquidation
of the bank which can be very costly for society at large. For these reasons the best models have
actual very close to expected.

The unconditional coverage test (uc test) tells us if the number of violations are correct. The
null may be framed as Ho . = number of violations are correct. The conditional coverage test (cc
test) tells us if violations are clustered and if the number of violations are correct. The null may be
framed as Ho . — violations are not clustered and number of violations are correct. For details of
these test see section 2.3.3. We apply the cc test as well as the uc test and summarise the findings
in Table 5. In this table it is obvious that winner outperforms benchmark with respect to VaR
backtesting.

Given the formulation of the null hypothesis of the cc test and the uc test, we wish to ‘‘accept”
the null hypothesis (or more formally “fail to reject’”). When both models succeed at the hypothesis
testing we can decide which one is the better by looking at which model have the highest p-value

since the higher the p-value the farther away we are from rejecting the null. Using this idea, winner

18 A refit every day would be excessive, the parameters do not change that much.
19t was impractical to get these precise estimates before because we fitted 64 models so we did a refit every 100
days. Now, however, we now only need to do it for two models this is computationally possible to refit more often.
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expected actual cc-p uc-p
Winner AVGARCH(2,1)-N 50 51 0.949 0.885
Benchmark sGARCH(1,1)-N 50 65 0.104 0.037

Table 5: Results from VaR backtesting. Winner is better than benchmark, based on
actual number of violations as well as the p-values from cc test and uc test.

is better than benchmark with respect to VaR backtesting because the p-value for the uc test and cc
test is higher than for benchmark. (If given the choice to interpret either uc-p or cc-p we would
chose cc-p since the null of the latter tests clustering as well as unconditional coverage.)

Even someone who is not familiar with interpreting p-values should notice that winner outperforms
benchmark with respect to VaR backtesting simply by comparing the actual number of violations
and noting that 51 is closer to expected = 50 than 65 is. This is important because with 15 more
violations than what is expected VaR is not a reliable measure of risk. This would lower a banks

readiness to severe economic downturn and would also be call for reprimands from the regulators.

3.4.2 VaR Forecast Plot

In Figure 5 we plot the forecast value at risk together with the realised return rr; as well as marking
the violations with a circle. Hence, if a violation have occurred at time ¢ then this day is marked
with a circle on the horizontal axis. An inspection of how the circles are spread out can be considered
a (crude) visual test if the violations are independent. Figure 5 is the most important figure in this
thesis.

The VaR forecast VaR; varies over time, and when returns are more volatile the VaR forecast
increases---this behaviour is evident from the GARCH-formula by the relationship between 6, and
r4_1. The forecast VaR for the two models have similar properties because the lines exhibit similar
patterns. But the winning model adapts faster to changing circumstances, as can be seen from the
volatile period towards the end of the sample, and it incorporates the asymmetric effects, as can be
seen during periods of large losses. That the winning model adapts faster may be good for estimating
risk precisely but it makes it difficult for the bank to allocate capital correctly since the risk changes

so often.

3.4.3 Impact of Asymmetry

Financial data often exhibit an asymmetric effect, as discussed in section 2.4.2 on page 19. The
winning model AVGARCH(2,1)-N is able to incorporate this asymmetry into its treatment of
innovations. Something that the benchmark model is unable to do. The asymmetric effects are
illustrated in the news impact curve in part (a) of Figure 6 which is the second most important
figure in this thesis.

Given a positive innovation g;_1 > 0 we have that gvnner < ghenchmark I other words when
there is good news the winning model blows up volatility less than the benchmark model does. This

is desired because sufficiently large positive returns does not give cause for as much an increase in
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Figure 6: News impact curve for both models. The winning model increase the forecast
volatility ; more when the shock €;_1 is negative.

37



risk. Avoiding to blow up the volatility forecast when times are good will improve the MSE which
makes the capital allocation more efficient.?°

Given a negative innovation &;_1 < 0 we have that g0ner > ghenchmark n other words when
there is bad news the winning model affects the volatility forecast more than the benchmark model
does. As discussed under subsection 2.4.2 this is done because volatility tends to increase more when

prices fall due to the leverage effect.

3.4.4 MSE

The Mean Squared Error (MSE) is a measure of how tight the estimated VaR line is to the returns.
A low MSE measure will be shown in the VaR plot as having very little white space between the
gray realised return and the black VaR line. It matters to banks because of capital requirements.
MSE can be thought of as a proxy of how much money is put in the reserve.

MSE is calculated from data in the forecasting window just like the cc test and uc test is. The
cc test is used to see if the actual number of violations correspond to the expected and if these
violations are independent or clustered. By contrast, MSE is used to see how tight the VaR forecast
is to the realised return. The lower the MSE the better the model is.

The calculated values are MSEY"" ~ 4.6 - 1078 and MSEbnchmark ~ 4.9 .107% and the

fraction is

MSEwinner
MSEbenchmark ~

telling us that the the winner model have a 6 percent lower MSE than the benchmark.

0.94

3.4.5 Conclusion of VaR Backstesting

There are three distinct reasons why winner is more appropriate than benchmark. (1) The cc test
and VaR forecast plots suggest violations are less clustered in winner. (2) The actual violations are

closer to the expected for winner. (3) MSE is lower for winner.

3.5 Model Diagnostics

In this section we show that the standardised residuals are close to white noise, hence the model
assumptions are fulfilled.

As described in section 2.5 we would like to conclude that the standardised residuals

29The inequality is a minor simplification of the truth so we give the whole story in this footnote. The careful
reader observes that when e;_; is sufficiently negative (e.g less than —0.055) then in fact §i2¢""e" > gbenchmark pyy
as illustrated in the histograms in Figure 6 (b) and (c). It is rarely the case that e, is sufficiently negative in the
full sample, as seen by histogram (b)---to be precise it occurs 9 times. And it never occurs in the forecasting window,

as seen by histogram (c).
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follow a white noise process. To be able to say that & follows a white noise process we want the

following assumptions to be fulfilled:

(1) uncorrelated &,

(2) uncorrelated &,

(3) & ~ N(0,1), and

(4) & looks like white noise.

Assumption (1) is needed because then the mean equation is good. In this thesis we have used a
constant (rather than an ARMA model) for the mean. The residuals from this mean equation are
then modelled by a GARCH model. The assumption is tested by an ACF plot of the standardised
residuals. Autocorrelation in & is not present if the value of «; for most lags k lies within the dotted
lines in an ACF plot. It can also be tested formally using a Ljung-Box test.

Assumption (2) is needed because then the volatility equation is good. It is tested the same way
as the first assumption but using € instead of &. If there is no correlation there is no ARCH effects
left in the residuals, indicating that the GARCH model was successful in removing the ARCH effect
we observed in Figure 4 on page 30.

Assumption (3) is needed because when fitting a GARCH model we have assumed a certain
distribution (for the winning model we assumed a normal distribution). If that assumption is wrong
then the model assumptions are not met. It is tested by plotting the theoretical quantiles of the
assumed distribution against the sample quantiles of €; in a Normal Q-Q Plot. If the theoretical
distribution is similar to the sample distribution it will be a straight line.

Assumption (4) is that the standardised residuals should look like white noise, which is of course
needed in order for us to draw the conclusion that we consider it to be white noise. This is seen
visually from drawing a time series plot of &. In the best of worlds you would compare this to plots
with simulated white noise and see if they look alike, but for brevity we skip this.

In Figure 7 these assumptions are evaluated for the winner AVGARCH(2,1)-N and the benchmark
sGARCH(1,1)-N. Both plots look very similar. More importantly, both models fulfil the four
assumptions reasonably well though there is a small deviation in the the Q-Q plots making it not a
perfect fit. Especially the lower tails deviate from the normal distribution. If one cares about a 1
percent VaR or a conditional VaR then it would be more appropriate to use another distribution or
perhaps model the tails using extreme value theory. However, this thesis is concerned with the 5

5th

percent VaR so the departure from the normal distribution below the percentile does not affect

the the estimate making it not as sensitive to the deviation observed here.
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4 Conclusions

In this thesis we differentiate between several potential models when it comes to VaR forecast precision
and rank them accordingly using conventional backtesting methods in an out-of-sample setting. The
winning model, AVGARCH(2,1)-N, is considerably better than the benchmark, sGARCH(1,1)-N.
The benchmark model has 30% more violations than what is expected making it unsatisfactory as a
risk measure. The winning model only has 2% more violations than what is expected---making it a
reliable risk measure for the analysed time series. See Figure 5 for an overview of how the models
perform throughout the forecasting window.

Previous literature and common conception is that the GARCH(1,1) model is an appropriate
model for forecasting conditional variance. We have shown the importance of selecting a model with
regards to its end application and purpose---in our case to forecast VaR---and the importance of
evaluating the models with regard to this same end purpose. What is usually assumed more is that
the (1,1) models are enough so that any more developed models are often not considered. In our
analysis, 7/10 of the 10 best models are (2,1) models, suggesting that this more developed form
proved better when it comes to forecast VaR in our data set.

What makes the winning AVGARCH(2,1)-N model outperform the sGARCH(1,1)-N model is
primarily its asymmetric treatment of positive and negative innovations, seen in Figure 6. It is
apparent that OMXS30 exhibit a leverage effect in its market reactions to price changes and this can
be picked up by the winning model. Something that the benchmark model is unable to do. Not only
does this make the benchmark model underestimate the risk after negative price movements---which
makes us observe more violations---but this also makes the benchmark model overestimate the risk
after positive price movements---which leads to bad capital allocation efficiency (which is captured in
the lower MSE for the winning model). For this data set the asymmetric models prove substantially
better than the symmetric ones.

To test the robustness of these results we apply the same method to other stock market indices
and find that the asymmetric models clearly outperform throughout the data sets. Although, there
are slight variations between the specific asymmetric models that prevail. We do not, however, find
that the (2,1) models prove considerably better in the other indices.

These observations show the importance of choosing a model with regards to its end use and
purpose as well as the importance of not adhering too much to convention. We also demonstrate
that asymmetric models outperform symmetric models and that this finding also holds for different

indices.
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4.1 Future Research

We see four potential areas for future research that would be of interest. Because we limit our analysis
to stock indices it would be interesting to see whether the asymmetric models also outperform when
analysing other asset classes such as bonds, foreign exchange and commodities.

Another important analysis that would be of interest to look into is the critique of Christoffersen’s
test that it only treats consecutive violations as clusters and not violations with one or two days
between them, discussed under subsection 2.3.3. This test is one that we rely heavily on and perhaps
some other backtesting evaluation method would yield a different result.

Because of the growing importance of conditional VaR---especially after the latest revision of the
Basel Accords-—-it would be interesting to do an evaluation of the different models’ forecast precision
with respect to their conditional VaR backtesting performance.

Model uncertainty has been ignored in this thesis. We have estimated GARCH parameters
with MLE and used these estimates to calculate volatility forecasts. The estimated parameters,
however, are uncertain as can be seen from their standard errors. A practitioner needs to keep model
uncertainty in mind. One way to demonstrate this uncertainty in a richer way is to not only report
the standard errors but also (1) plot the parameters over time with their standard error bands, (2)
plot the density of the parameter estimates (3) do a simulation with some given set of parameters

and compute the RMSE. This could potentially be used to further differentiate between the models.
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A Appendix

A.1 Distribution Assumptions

The Normal Distribution
The normal (or Gaussian) distribution is one that is commonly assumed for the distribution of

returns. If z; is normally distributed then its PDF is

1 1 (2 —p)?
f(z) = ﬁexp (‘2 ) 02> (30)

and when z; follows a standardized normal distribution we have that

Elx| = v/2/r. (31)

The validity of the normality assumption can often be questioned when it comes to financial
return series because they often exhibits leptokurtosis, i.e. the distribution has fat tails and is more
peaked at the mean (Praetz, 1972; Brooks, 2002:179f).

The Student’s t-Distribution

To allow for an assumption that matches the leptokuritc distribution that financial data often
exhibit we are going to evaluate the assumption of the Student’s t-distribution. This was also the
distribution that Bollerslev proposed in his article from 1987. If z; follows a t-distribution then it

has the following density function

f(z) =

L (45 (= )\~ (F)
VBT (v)2) <1+ Bv ) 32)

where I'(+) is the gamma function, v is the distribution’s degrees of freedom, and « and g are the
location and scale parameters respectively. When z; follows a standardized Student’s t-distribution

we have that

2vv =2I'((v +1)/2)
=L w/2)/r
Note that as v — oo the fraction tends to y/2/7 which mimics the the fact that a t-distribution

tends to a Normal distribution when v — oo.

E|Zt’ = (33)

The Skewed Student’s t-Distribution

In many cases, the true distribution is not symmetrically distributed around the mean but instead
skewed positively or negatively. Previous literature has found that returns often exhibit some
skewness (Harvey and Siddique, 1999 and the references therein) and that skewed distribution
assumptions often are superior in estimating VaR, for example see Kuester et al. (2006) . If
it is assumed that the distribution is symmetric when the true distribution is skewed then the

model becomes subject to skewness risk. To alleviate this we will assume that the the WN term
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is distributed as the skewed Student’s t-distribution (Fernandez and Steel, 1998). If z; follows a
skewed Student’s t-distribution then its PDF is

2 _

f(z]§) = Eret [f(Ez)H(—2) + f(€ 1Zt)H(Zt)] (34)
where ¢ € RT is the skew parameter and H(-) is the Heaviside function. When the distribution
is symmetric £ = 1. This means that if we assume this distribution then the model can account
for distributions that are skewed as well as symmetric. Because financial data often exhibit
skewness combined with the flexibility of this assumption makes it likely that the skewed Student’s

t-distribution will prove superior to the normal and Student’s t-distribution.

The Normal-Inverse Gaussian Distribution
Another distribution that can account for fat tails and skewness is the normal-inverse Gaussian
(NIG) distribution (Barndorff-Nielsen, 1978). The PDF of the NIG distribution is

adKq (oz\/(?? + (2t — u)2>
f(z) = exp (07 + Bzt — 1)) (35)
T\ 0% + (2 — p)?
where J is a scale parameter, K7 is the modified third kind Bessel function, « denotes the tail
heaviness, 3 denotes the asymmetry parameter and v = \/a? — 32.

A.2 Complete Results from the Backtesting Procedure
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