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Abstract

Technical analysis is a rather subjective graphical method of recording the
history of trading in a certain stock to deduct the probable future trend
in its return. By applying the automatic computer algorithm proposed by
Lo, Mamaysky and Wang (2000) on Swedish stock market data we separate
ourselves from the subjectivity of ordinary pattern recognition. In this way
we are able to systematically determine the informative content of ten com-
monly used technical indicators over the time-period of 1982 - 2006. At the
same time we also perform a large scale out-of-sample test of the ability of
the Lo, Mamaysky and Wang (2000) algorithm to detect technical patterns.
We conclude that the Lo, Mamaysky and Wang (2000) model performs well,
also on Swedish data, and that many of the technical patterns indeed contain
incremental information which could be useful for an investment strategy.
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1 Introduction

1.1 Technical Analysis

”The art of technical analysis, for it is an art, is to identify stock market
movement trends at an early stage and to open an investment posture when
a reversal of that trend is indicated.” (Pring, 1980)

Technical analysis is the method of forecasting future stock prices from ge-
ometric shapes in historical stock price movements and is also known as
charting. Technical analysis has played a role in investment strategies ever
since Edwards and Magee wrote their influential book ”Technical Analysis
of Stock Trends” in 1948, now considered the corner stone of pattern recog-
nition analysis. However, technical analysis has not been given the same
general acceptance as e.g. fundamental analysis among the broader public
of investors, both academics and practitioners. One reason for this is the
rather subjective side of technical analysis, where pattern recognition often
is in the eyes of the beholder. Technical analysis has long been considered
the black sheep of investment strategies and it has been given the not very
flattering nick names of voodoo finance and financial alchemy.

One of the most plausible reasons for the contempt for technical analy-
sis from the academic critics lie in the fact that technical analysis is based
on visual judgements whereas quantitative finance is mainly algebraic and
numerical. It follows that quantitative finance is less abstract and can be
practiced with the help of computers, numerical algorithms, mathematics
and statistics.

In order to close the gap between technical analysis and quantitative
finance attempts have been made to develop systematic and scientific ap-
proaches for the theory of technical analysis. In this paper we are using
such a method in order to conduct a computerized analysis when performing
technical analysis on Swedish stocks.

1.2 Research Objective

Our aim in this paper is to apply the same systematic and automatic ap-
proach to the practise of technical analysis using nonparametric kernel re-
gression as do Lo, Mamaysky and Wang (2000), but we intend to test the
algorithm on Swedish stock data.

By applying the same algorithm as Lo, Mamaysky and Wang (2000), our
study can be seen as a large scale out-of-sample test of their methodology.
As technical analysis is somewhat built around data mining, there are always
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reasons to believe that a certain algorithm performs very well on one sample,
but lacks the general capability to repeat the results for other data sets. If
the Lo, Mamaysky and Wang (2000) algorithm should be seen as general
and if there is some substance in technical indicators, we should expect fairly
similar results on our data set. At the same time as testing the Lo, Ma-
maysky and Wang (2000) model we test the informative content of technical
indicators in Swedish stock data. It is important to notice that the efficiency
of the Lo, Mamaysky and Wang (2000) model and the informative content
in technical indicators are tested simultaneously and only if both works we
will get statistically significant results. Finally, we intend to wrap up with
a short discussion of the usefulness of technical indicators as a trading tool
and its implications for the efficient market hypothesis.

As far as we are concerned no empirical study of this type has been con-
ducted on Swedish data, making our study the first of its kind and therefore
contributing to the research community. It is also worth noticing that this
paper must not be seen as a support for the trading strategies of techni-
cal analysis. It is rather the opposite way. We limit ourselves to apply the
Lo, Mamaysky and Wang (2000) algorithm on Swedish data, leaving for the
readers to make up their own mind about technical analysis as an investment
tool.

1.3 Thesis Outline

The outline of this thesis can be summarized as follows. In the first section
we give a short introduction to the subject of the thesis and our research
objectives. In the second section we provide an overview of the previous
research done on the subject. We discuss the efficient market hypothesis,
general support for technical analysis and the Lo, Mamaysky and Wang
(2000) paper. In the third section we map out the theoretical framework and
the major analytical tools related to the study. We describe the foundations
and the important patterns of technical analysis. We provide an introduction
to smoothing estimators and a thorough explanation of the specific smoothing
estimator used in this study, namely the kernel regression. We also introduce
the statistical distribution tests that we use. In the forth section we provide
a detailed description of our methodology. We describe the data we have
used and our algorithm for automating technical analysis. The analysis of
our results is provided in section five. Finally, we summarize in section six.
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2 Previous Research

In order to describe the previous research conducted in the area of techni-
cal analysis, we aim to take a funnel approach. Since technical analysis by
definition is nonsense if the market indeed is efficient, we start with a dis-
cussion of the efficient market theory and focus on evidence discarding the
hypothesis. We will then narrow the discussion to more direct support for
technical analysis, trying to give a brief overview of the research conducted
on the subject so far. Finally, we give an overview of one specific article of
great importance to our paper - Foundations of Technical Analysis: Compu-
tational Algorithms, Statistical Inference and Empirical Implementations by
Andrew W. Lo, Harry Mamaysky and Jiang Wang (2000).

2.1 Evidence on the Efficient Market Hypothesis

The search for predictability in asset returns has been on investors’ and
academics’ minds since the birth of organized financial markets. It follows
that a great deal of research has been conducted on examining the efficiency
of stock market price formations. In recent years, doubts have been raised
about the efficient market hypothesis, something that would give indirect
support to the possibility of technical analysis.

A number of papers suggest that stock returns are not fully explained
by common risk measures. For example, a significant link between expected
return and fundamental variables such as price-earnings ratio, market-to-
book ratio, and size has been found (see, for example, Basu (1977) and
Fama and French (1992)). Another group of papers have brought in light
systematic patterns in stock returns related to various calendar events such
as the weekend effect, the turn-of-the-month effect and the January effect
(see, for example, Schwert (2003) and Lakonishok and Schmidt (1988)).

Another direction of research directly related to the theory explained
above provides evidence of predictability of equity returns from past returns.
This is the so called weak form of market efficiency (see, for example, Fama
(1991)). The fact that past prices can be used to predict future returns
is the sole base for technical analysis and a fact all technical analysts take
for granted. In fact, when studying the academic work on this subject, the
expression technical analysis is often used as a wider expression for past
prices containing information of future returns. Lo and MacKinlay (1988)
strongly rejects the random walk model and suggests that the returns of their
created portfolios are auto-correlated in a paper that tests the random walk
hypothesis for weekly stock market returns. Treynor and Ferguson (1984)
show that past prices, when combined with other valuable information, can
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indeed be helpful in achieving unusual profit. Brown and Jennings (1989)
use a two-period dynamic model of equilibrium to demonstrate that rational
investors use historical prices in forming their demands and to illustrate
the sensitivity of the value of technical analysis to changes in the values of
exogenous parameters.

Many papers have documented that average stock returns are related to
past performance. Jegadeesh and Titman (1993) documents that strategies
which buy stocks that have performed well in the past and sell stocks that
have performed poorly in the past generate significant positive returns over
a three to twelve month trading window. DeBond and Thaler (1985, 1987)
states that stock prices overreact to information suggesting that buying past
losers and selling past winners achieve excess returns. In line with previ-
ous papers, De Bondt and Thaler (1985) also show that over a three to five
year holding period stocks that performed poorly over the previous three to
five years achieve higher returns than stocks that performed well over the
same period. Chan, Jegadeesh and Lakonishok (1996) examines whether the
predictability of future returns from past returns is because of the market’s
underreaction to information, in particular to past earnings news. Their re-
sults point in the direction that we have a market responding only gradually
to new information. Rouwenhorst (1998) shows that between 1980 and 1995
an internationally diversified portfolio of past medium-term winners outper-
forms a portfolio of medium-term losers after correcting for risk by more than
1 percent per month.

Blume, Easley and O’Hara (1994) investigate the informational role of
volume, something considered being of great importance to technical ana-
lysts. They show that volume provides information on information quality
that cannot be deducted from the price statistics. They also show how vol-
ume, information precision, and price movements relate, and demonstrate
how sequences of volume and prices can be informative.

2.2 Support for Technical Analysis

Technical analysis has experienced surging support both among practitioners
and in the academic world (Lo and MacKinlay, 1999). More or less direct
support for technical analysis has been given in a number of studies. One
of the first illustrations of technical analysis is the discussion of Dow Theory
in Rhea (1932). In far more recent studies, Pruitt and White (1988) try to
directly determine the profitability performance of a technical trading system
including price, volume, and relative strength indicators on individual stock
issues. The study shows that the trading system has the ability to beat a
simple buy-and-hold strategy over a significant period of time and therefore
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generates support for technical analysis. Neftci (1991) investigates statistical
properties of technical analysis in order to determine if there is any objective
foundation for the attractiveness of technical pattern recognition. The paper
examines whether formal algorithms for buy and sell signals similar to those
given by technical analysts can be made and whether the rules of technical
analysis are useful in prediction in excess of the forecasts generated by the
Wiener-Kolmogorov prediction theory. The article shows that most patterns
used by technical analysts need to be characterized by appropriate sequences
of local minima and/or maxima and if defined correctly, technical analysis can
be useful over and above the Wiener-Kolmogorov prediction theory. Brock,
Lakonishok and LeBaron (1992) test two of the simplest and most popu-
lar trading rules, moving average and trading range break (resistance and
support levels). The result shows strong support for the technical strategies
when compared with four popular null models: the random walk, the AR(1),
GARCH-M, and the Exponential GARCH. Dittmar, Neely and Weller (1997)
are using genetic programming techniques to find technical trading rules and
find strong evidence of economically significant out-of-sample excess returns.

2.3 The Lo, Mamaysky and Wang (2000) Paper

The common denominator in the papers discussed in the previous section are
that they all use fairly simple patterns, e.g. crossing trend lines, and compare
them to a theoretical development of stock prices. The one exception is
Neftci (1991) who showed that, in principle, all technical analysis patterns
can be formally defined using particular sequences of local minima of maxima.
However, he does not show whether it gives excess return, only that it has
predictive power.

Following the reasoning of Neftci (1991), there is one special article that
opened our eyes since it is the only one in our knowledge that with the
help of computer algorithms tries to replicate the work of a trained technical
analyst. Lo, Mamaysky and Wang (2000) propose a systematic and auto-
matic approach to technical pattern recognition and apply the method on
US stock data to evaluate the effectiveness of technical analysis. In order of
doing so, they first need to extract nonlinear patterns from noisy data, i.e.
the stock price development. They use a class of statistical estimators called
smoothing estimators for this task. More specifically, they use a specific type
called kernel regression. Using this regression they apply their algorithm for
automating technical analysis on the daily returns of several hundred US
stocks from 1962 to 1996. They find that over the 31-year sample period,
several technical indicators do provide incremental information and are in
fact suggesting that technical analysis may have some practical value.

7



3 Theoretical Framework

3.1 On Technical Analysis

In its application to the stock market, the term technical has come to have
a very special meaning, quite different from what we normally interpret into
the term. It refers to the study of the market itself as had it its own life.
Technical analysis is ”the science of recording, usually in graphic form, the
actual history of trading (price changes, volume of transactions, etc.) in a
certain stock and then deducting from that pictured history the probable
future trend” (Edwards and Magee, 1997).

The general goal of technical analysis is to identify regularities in the time-
series of prices by extracting nonlinear patterns from noisy data. It follows,
that charts are the working tools of the technical analyst. Volume, or the
trading activity in a stock, also plays an important role for the technical
analyst (see, for example, Blume, Easley and O’Hara (1994)).

In this paper, and following Lo, Mamaysky and Wang (2000), we have fo-
cused on five pairs of technical patterns that are considered being among the
most popular and famous patterns of traditional technical analysis. These
are head-and-shoulders and inverted head-and-shoulders, broadening tops
and bottoms, triangle tops and bottoms, rectangle tops and bottoms, and
double tops and bottoms. Of course, there are many other technical indi-
cators that could have been used, some of which might be easier to find
with the help of computers. Famous once include moving averages, flags,
gaps and trend lines (see, for example, Edwards and Magee (1997)). Since
we, following Lo, Mamaysky and Wang (2000), use an advanced computer
method to determine non-linear patterns in stock price charts, our focus lies
on those patterns that are most difficult to quantify analytically and where
the proposed method provides the most value added.

One must keep in mind that the definitions of the various patterns are a
bit random and subject to the opinion of different authors. This of course
makes it harder to conduct a general study on technical indicators. Nev-
ertheless, we have chosen to use the definitions proposed by Edwards and
Magee (1997) and Nilsson and Torssell (2000) combined with Lo, Mamaysky
and Wang (2000). For graphical representations of the patterns, please see
page 11.

3.1.1 Head-and-Shoulders

The head-and-shoulders pattern is not only the most famous, but also one
of the more common and, by all odds, considered the most reliable of the
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major patterns. It can appear in two ways, as normal head-and-shoulders or
as inverse head-and-shoulders.

The normal head-and-shoulders pattern consists of four parts: the two
shoulders, the head and the break-out. It starts with a strong upward trend
during which the trading volume becomes very heavy, followed by a minor
recession on which trading volume decreases. This is the left shoulder. The
next section starts with another high-volume rally which reaches a higher
level than the top of the left shoulder, and then another downturn on less
volume which take prices down to somewhere near the bottom level of the
preceding recession. It can be higher or lower but in any case below the top
of the left shoulder. This is the head. Then comes a third increase, but this
time during much less volume than that of the first two increases, which fails
to reach the height of the head before another decline sets in. This is the right
shoulder. Finally, a decrease of the stock price in this third recession down
through a line, called the neckline, drawn across the bottoms of the declines
on both sides of the head. This decline should close below the neckline by an
amount approximately equal to 3 percent of the stock’s market price. This is
the confirmation or the break-out. The break out of the head-and-shoulders
pattern is a signal for selling the stock.

The inverted head-and-shoulders pattern looks the same as the normal
one apart from the obvious fact that it is turned upside down. The break out
of the inverted head-and-shoulders pattern is a signal for buying the stock.

3.1.2 Broadening Tops and Bottoms

The broadening patterns start with very narrow fluctuations and then widen
out between diverging boundary lines. The tops start with a maximum and
the bottoms start with a minimum.

The trading activity during a broadening formation usually remains high
and irregular throughout its construction. The appearance of this patterns
suggest that the market is approaching a dangerous stage indicating that
new commitments should not be made and any holdings should be cashed in
at the first good opportunity. It is reasonable to assume that the prices, if
they break away from the formation, will go down. Thus, by all means, the
broadenings are sell signals.

3.1.3 Triangle Tops and Bottoms

Historically, triangles have developed at periods of major trend changes and
they are therefore considered as important since these are the periods which
are most relevant for an investor to realize. Triangles normally signal a
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consolidation in the market, terminating an up or down move only temporary
and preparing for another strong move in the same direction at a later stage.

The triangle tops are composed by a series of price fluctuations, starting
at a maximum, where every new fluctuation is smaller than the last one.
This creates a down-slanting line touching the tops of the fluctuations as
well as an up-slanting line touching the bottoms. Together, the two lines
form a triangle. In the run of this price fluctuation, trading activity shows
a decreasing trend. The smaller the fluctuations get, the volume turns into
an abnormally low daily turnover. The sign whether to buy or sell comes
when the price breaks out of the triangle. This occurs in a notable pick up
in volume. If the price increases, it will likely continue doing so and it is
therefore a clear buy signal. The opposite goes for a decline. It is very rare
that the chart contains any information in which direction the price is going
to break out. The investor normally has to wait and see until the action
suddenly occurs.

Triangle bottoms are built up in the same way as the tops, with the only
difference that they start with a minimum. The buy or sell sign and decision
are the same as for the tops.

3.1.4 Rectangle Tops and Bottoms

A rectangle consists of a series of sideways price fluctuations which is called
the trading area. It has been given this name since it can be bounded both
at the top and at the bottom by horizontal lines. These lines are allowed to
slope in either direction if the departure from the horizontal line is trivial. In
the same way as for triangles, the rectangle tops starts with a maximum and
the bottoms starts with a minimum. The trading volume development within
the patterns follows the same rules as for triangles, i.e. the activity decreases
as the rectangle lengthens. Also in terms of break outs and indications of
directions the same rules as for triangles apply. If the price increases, it will
likely continue doing so and is therefore a clear buy signal. The opposite
goes for a decline.

3.1.5 Double Tops and Bottoms

The doubles normally occur very rarely and they are difficult to use in the
sense that they cannot be detected until prices have gone quite a long way
away from them. They can never be told in advance or identified as soon as
they occur.

The definition of the doubles is also slightly more involved. The double
tops is formed when a stock’s price increases to a certain level under heavy
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trading and then falls back during a decrease in activity. It should then
bounce back to approximately the same level as the first top during less
heavy trading as last increase. Then, finally, it turns down a second time.
The distance between the two tops must not be too small. Lo, Mamaysky
and Wang (2000) use a minimum of 23 trading days. The double tops give a
signal of selling the stock since the second down turn indicates a consequential
decline.

The double bottoms are of course the same pattern turned upside down
and it is a signal of buying the stock.
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3.2 Smoothing and Kernel Regression

3.2.1 Smoothing Estimators

The natural starting point for any regression, linear or nonlinear, is the re-
gression equation, which is assumed to mirror the behaviour of the underlying
variables. For a series of stock prices {Pt} the most fundamental equation
which captures the nonlinearity is:

Pt = m(Xt) + ǫt

where m(Xt) is an arbitrary fixed but unknown nonlinear function of a state
variable Xt and ǫt is white noise. When determining stock prices using time-
series data the state variable is usually set equal to time, i.e. Xt = t. How-
ever, we use the expression Xt = xt to keep our derivations more in line with
Lo, Mamaysky and Wang (2000).

Financial theorists have not yet been able to agree upon a parametrical
model for the movement of stock prices, i.e. they have not been able to de-
termine the shape of m(Xt) analytically. The function m(Xt) thus has to be
estimated non-parametrically from available data. Lo, Mamaysky and Wang
(2000) define pattern recognition as the method of constructing a smooth
function m̂(·) to approximate a time-series of prices {pt}. The dot indicates
that the form of the regression equation does not have to be specified in
advance. The fact that the regression equation does not have to be specified,
but can be drawn from any data, is an advantage since it does not limit the
spectrum of possible patterns which can be found in the data.

One method to estimate the nonlinear function m̂(·) is smoothing, which
can be described as a technique to reduce the regression errors by averaging
data in some sophisticated way. In a general parametrical regression the m(·)
is determined by repeated sampling. By repeating the sampling of Xt = x0

it is possible to determine an estimator of m(x0) such as:

m̂(x0) =
1

n

n
∑

i=1

pi =
1

n

n
∑

i=1

[m(x0) + ǫi
t] = m(x0) +

1

n

n
∑

i=1

ǫi
t = m(x0)

since 1
n

∑n
i=1 ǫi

t is negligible for large n. Unfortunately, when using time-
series we can not allow ourselves to repeat the sampling for a given time
t, since only one observation per time-period is available. However, Lo,
Mamaysky and Wang (2000) describe a method to avoid this problem. If
m(·) is assumed to be sufficiently smooth in a small interval around x0, then,
in a small neighbourhood around x0, m̂(x0) will be nearly constant and can
be estimated by averaging the Pt’s corresponding to those Xt’s around x0.
It is obvious that the Pt’s closest to x0 provides more information about
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m̂(x0) than the Pt’s further away. Weighting the observations according to
some weighting schedule depending on the distance between x0 and xt thus
improves the estimate. More formally the smoothing estimator of m(x) can
be described as:

m̂(x) =
1

T

T
∑

t=1

ωt(x)Pt

where the weights {wt(x)} are larger for observations closer to x. The per-
formance of the estimate is to a large extent dependent on the length of the
neighbourhood in which m(·) is assumed to be linear and the applied weights.
If the neighbourhood is too small and the weights declines too rapidly the
regression will be too volatile and too much noise will be captured. On the
other hand, if the neighbourhood is too large and the weights too constant,
valuable information will be lost. Thus, the weights have to be chosen to
balance these two considerations.

3.2.2 Kernel Regression and the Determination of the Estimation
Weights

Several methods to determine the regression weights have been proposed in
the literature. Härdle (1990) describes a conceptually simple approach called
kernel regression estimator. The kernel is defined as a continuous, bounded
and symmetrical real function K which integrates to one:

K(u) ≥ 0,
∫

K(u)du = 1

In order to provide flexibility in terms of the choice of weights so that the
above described trade-off between too small and too high weights can be
balanced, the kernel is scaled by a factor h so that:

Kh(u) =
1

h
K(u/h),

∫

Kh(u)du = 1

The regression weights are then given by:

ωt,h(x) = Kh(x − Xt)/gh(x)

gh(x) =
1

T

T
∑

t=1

Kh(x − Xt)

Substituting these weights into the smoothing estimator function yields a
kernel estimator m̂h(x) of m(x):

m̂h(x) =

∑T
t=1 Kh(x − Xt)Yt

∑T
t=1 Kh(x − Xt)
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Härdle (1990) shows that m̂h(x) asymptotically converge to m(x). This
converge holds for a wide range of kernels K such as Uniform, Biweight,
Triweight, Epanechnikov and Gaussian (Härdle, 1990). The perhaps most
commonly used kernel is the Gausian kernel where the kernel K is given by
the Gaussian distribution scaled by h (Lo, Mamaysky and Wang, 2000):

Kh(x) =
1

h
√

2π
e−

x
2

2h2

3.2.3 Cross-Validation and the Selection of Bandwidth

The scaling parameter is commonly known as the bandwidth of the regres-
sion. Too small a bandwidth yields too volatile an estimate while too large
a bandwidth conceals valuable information (Fan and Gijbels, 1996). The
choice of bandwidth is thus very crucial for the kernel regression.

The bandwidth can of course be set to some constant using a quick look
at the data or some rule of thumb. The drawback of this procedure is of
course that the choice is very arbitrary and does not necessarily reflect the
actual properties of the data. An automatic choice is clearly preferable. Sev-
eral methods to automatically determine the optimal bandwidth has been
suggested. Mittelhammer, Judge and Miller (2000) derive that the band-
width h∗ = 1.059σn−1, where σ is the standard deviation of the data, works
reasonable for the Gaussian kernel if the data is normally distributed. A
more robust method, known as the cross-validation or leave-one-out method,
is proposed by Green and Silverman (1994). The method is independent of
the distribution of the data and has better finite sample properties (Green
and Silverman, 1994).

The cross-validation method is a non-parametric version of the standard
method used for parametric regression. The general procedure for determin-
ing a regression equation is to train the equation in-sample and then evaluate
it out-of-sample. Since a non-parametric regression normally is used on a sin-
gle data set no new observations are available. Instead, the cross-validation
method creates an out-of-sample by omitting one observation at the time and
run a regression on the remaining observations (Campbell, Lo and MacKin-
lay, 1997). Formally, this can be described as minimizing the cross-validation
function:

CV (h) =
1

T

T
∑

t

(Pt − m̂h,t)
2

where

m̂h,t =
1

T

T
∑

x 6=t

ωx,hYx
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The estimator m̂h,t is the kernel estimator applied to the data set with the
t-th observation omitted (Green and Silverman, 1994). By selecting the band-
width h that minimizes the cross-validation function CV (h) the asymptotic
mean-squared error is minimized (Baltagi, 2001).

3.3 A Graphical Visualization of Kernel Smoothing
Regressions and Automatic Bandwidth Selection

For the reader to gain a deeper understanding of a kernel smoothing algo-
rithm’s ability to capture the true trend in noisy data we provide the following
clinical example of trend detection from generated data. More specifically,
we generate a noisy signal by applying random shocks to a sine-wave and
visualize how well the kernel regression can capture this trend. We also
demonstrate how different bandwidths affect the regression equation. The
equation used to generate the noisy data is:

Y = sin(
16πx

300
) +

x

50
+ 0.3ǫ , x = 1, ..., 150

where ǫ is a random i.i.d. shock. The upper leftmost figure on page 16 graphs
the noisy time-series and the underlying sine-trend. One can clearly see that
the data randomly fluctuates around the dashed trend-line. The upper right-
most figure on page 16 provides an example of the kernel method proposed in
the theory section together with the cross-validation method for automatic
bandwidth detection. We see that the kernel regression function to a large
extent mirrors the underlying sine-function, without any parameterisation of
the actual shape of the underlying form. This implies that the kernel method
finds any underlying trend without us specifying the shape of it. This can
be compared to a parametric regression where e.g. a quadratic regression
only can find linear and quadratic trends. The small deviation from the real
sine-function comes from the largest outliers in the noisy data.

The two lower figures on page 16 demonstrate the importance of having
an automatic algorithm for setting the bandwidth. The kernel regression is
rather sensitive to the choice of bandwidth and a naive method where the
bandwidth is set to a predetermined number might give arbitrary results. If
too high a bandwidth is set, too much weight is given to distance observa-
tions and the kernel equation gets too linear. This is visualised in the lower
leftmost figure where a kernel regression with bandwidth 25 is showed. In
the opposite way, too low a bandwidth gives too noisy kernel functions since
too little weight is given to distant observations. This is visualised in the
lower rightmost figure where a bandwidth of 0.7 is used.
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3.4 Statistical Distribution Tests

3.4.1 Goodness-of-Fit Test

A general distribution test, which tests for equality of two distributions inde-
pendent of distributional assumptions, is the goodness-of-fit test. The test is
performed by dividing an unconditional distribution into an arbitrary num-
ber of equally-length intervals. The cut-off points between the intervals are
used to split the observations in the conditional sample into corresponding
intervals. If the conditional and the unconditional samples are drawn from
the same distribution the relative frequency of observations in each interval
should be equal. More generally, if the unconditional sample is divided into
m intervals, the relative frequency of observations in each interval of the
conditional sample should be 1/m. How well the fraction of observations in
each interval of the conditional sample fits with fractions of the unconditional
sample can be tested both aggregated and on an individual interval level. On
an individual interval level, using m = 10 intervals, the relative frequency δj

of unconditional observations in interval j, j = 1, ..., 10, are asymptotically
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distributed: √
n(δ̂j − 0.10) ∼ N(0, 0.10(1 − 0.10))

which yields that the t-statistic can be given as:

tj =
δ̂j − 0.10

√

0.10(1−0.10)
n

∼ tn

where n is the total number of observations in the unconditional sample. On
an aggregated level the corresponding goodness-of-fit test statistic Q is given
by:

Q =
10
∑

j=1

(nj − 0.10n)2

0.10n
∼ χ2

9

where nj is the number of observations in each of the j = 1, ..., 10 intervals
and n is the total number of observations in the unconditional sample.

If the relative frequencies of observations in the unconditional sample are
close to 0.1, the conditional sample includes no incremental information and
the observed t and Q values should be small. If incremental information
exists, t and Q should deviate from zero (Lo, Mamaysky and Wang, 2000).

3.4.2 Kolmogorov-Smirnov Two Distributions Test

The Kolmogorov-Smirnov two distributions test is a test of whether two in-
dependent samples are drawn from the same distribution. The Kolmogorov-
Smirnov test does not require any assumptions about the underlying dis-
tribution and is sensible to any kind of difference between the two sam-
ples, be it centrality, dispersion of skewness etc. (Castellan Jr and Siegel,
1988). Let X1, X2, ..., Xn1 and Y1, Y2, ..., Yn2 be i.i.d. random variables drawn
from a continuously cumulative density function F and G respectively. The
Kolmogorov-Smirnov test tests the hypothesis that the two density functions
are identical:

H0: F (x) = G(x)

against the case that the distributions are different:

H1: F (x) 6= G(x)

If the samples have been drawn from the same distribution the cumulative
density functions of the both samples should be close to each other. If the
cumulative density functions, at any point, are too far from each other it
suggests that the samples are not drawn from the same distributions. For
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large samples (n1, n2 > 25) the test statistics is determined by the maximum
distance between the two cumulative distribution functions:

Dn1,n2 = (
n1n2

n1 + n2

)1/2 max
−∞<x<∞

| F (x) − G(x) |

which Smirnov (1939) has shown is asymptotically distributed as:

P (Dn1,n2 ≤ x) =
∞
∑

k=−∞

(−1)ke−2k2x2

If the test statistics is larger than the cut-off point the null hypothesis is
rejected. It is vital to note that the distribution of the test statistics is
discrete in terms of the number of intervals which should be used in the test.
If too few intervals are used, information about the cumulative distribution
will be lost.
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4 Methodology

4.1 Overview of Methodology

On an aggregated level, the Lo, Mamaysky and Wang (2000) methodology,
which serves as a base for our study, can be described in a number of distinct
steps:

1. A number of actively traded, listed stocks are defined and the price-
series for each stock is collected. The full time-series is split into a
number of sub-periods to control for potential non-stationarities in-
duced by changing market structure.

2. For each stock and in each sub-period, a series of rolling windows where
patterns can be searched for are defined.

3. For each window, a kernel estimator of Gaussian type is constructed
and all local extrema are determined. Based on predefined geometrical
properties of the local extrema for each pattern, the occurrence of a
pattern can be determined.

4. When a pattern is found a one-day continuously compounded return
following the pattern is calculated. This yields a sample of returns
conditional on the occurrence of patterns. All returns are normalized
to enhance comparability between stocks and time-periods.

5. A sample of unconditional one-day continuously compounded normal-
ized returns is created for comparison with the unconditional sample.

6. The information content in the technical patterns is determined by
comparing the distribution of the conditional returns with the uncon-
ditional distribution of returns using a standard goodness-of-fit test
and a Kolmogorov-Smirnov two distributions test. Both tests are test-
ing the null hypothesis that the two samples are drawn from the same
distribution. If the patterns include no incremental information the
conditional and the unconditional distribution will be similar and the
null hypothesis will hold. In contrast, if the patterns actually include
incremental information about future stock prices the null hypothesis
will be rejected.

4.2 Data

We have chosen to look at data for all stocks now listed on the OMX Swedish
Large Caps, giving us 70 different stocks. There are a number of reasons for
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us using Swedish data. First of all it is our home market and we think
it would be more interesting both for us and for our readers to study the
Swedish market. We also consider ourselves having general knowledge about
the market and the companies, something that can be helpful when con-
ducting the analysis. Further on, the Swedish stock exchange is among the
most liquid in the world (see, for example, Eun and Resnick (2007)). Also,
companies from many different industries are listed making our results more
general. Finally, and most relevant, as far as we are concerned no empirical
study of this type has been conducted on Swedish data, making our study
contributing to the research community.

We use daily closing prices from the period between January 1, 1982, and
December 31, 2006, if available, for the specific stock. If not, we use the first
trading date available. The reason for choosing this time-period is simply
that it was the longest time-series available with reliable data. Needless
to say, a longer time-horizon we believe would have made our results more
reliable, but we feel confident in saying that our sample is large enough. As
data provider we used the Six Trust database.

We are only analysing stocks currently listed on the OMX Swedish Large
Caps list. This means that we are ignoring stocks that have been delisted
during the sample period. This could have caused the issue of survivorship
bias but this is not a problem in our study. We are only interested in finding
the technical patterns for each stock, if it has performed relatively good or
bad over the period does not affect our results. There is no reason to believe
that delisted stocks have more, less or more informative patterns than stocks
which are still listed.

4.3 Preparation of Data

Before starting out the analysis, a number of adjustments to our data set has
been made in order to match it to the scope of the analysis. All observations
where the traded volume was zero were deleted. By definition, in these cases
the price does not fluctuate and the observation is therefore not relevant to
our study. Also, a control for liquidity was performed. As liquidity measure,
we require the price of a stock to change from one date to the other in more
than 75 percent of the observations. If there is low volatility, we believe the
patterns will be unreliable and the stock should therefore not be included in
our study. This correction leaves us with 65 stocks to analyze. By the same
token, for companies that have several classes of stocks listed we picked the
most liquid one. Finally, to reduce the effects of nonstationarities resulting
from changing market structure and institutions and in line with Lo, Ma-
maysky and Wang (2000), the sample was divided into five sub-periods of
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five years: 1982 to 1986, 1987 to 1991, 1992 to 1996, 1997 to 2001 and 2002
to 2006.

4.4 Discrepancies in the Data Sets

We have tried to keep the differences between our data set and that of Lo,
Mamaysky and Wang (2000) as irrelevant as possible within the scope of
our study. However, some discrepancies have been impossible to avoid. Lo,
Mamaysky and Wang (2000) use US stocks from both NYSE and Nasdaq for
the time-period between 1962-1996, we use Swedish stock data from OMX
Swedish Large Caps for the time-period between 1982-2006. Lo, Mamaysky
and Wang (2000) divide their data into 7 sub-periods, 1962-1966, 1967-1971
and so on, we divide our data into 5 sub-periods, 1982-1986, 1987-1991 and
so on. Lo, Mamaysky and Wang (2000) sample 50 out of 350 stocks for the 7
time-periods of 5 years, with all observations present at all periods. We use
all stocks listed on OMX Swedish Large Caps as of today, and use as long a
time-series as we can find in Six Trust. This makes our sample size different
for each of the five sub-periods we use. Lo, Mamaysky and Wang (2000)
extend their analysis and divide their full sample into five sub-samples based
on the size of the firm. We choose not to divide our sample in the similar
way, since we believe that the division by time-period is enough to enhance
comparability.

Lo, Mamaysky and Wang (2000) use a rule that 75 percent of the ob-
servations for a time-series must be non-missing. We use a rule stating that
the price has to change between two consecutive days for 75 percent of the
observations for the stock to be part of our sample. This deducts 5 stocks
from the data set, leaving us with 65 stocks. We believe that these rules are
comparable since Six Trust tables an old value instead of a missing one. The
differences stated above gives us a final sample of approximately half the size
of Lo, Mamaysky and Wang (2000), 207 192 for us versus 423 556 for NYSE
and 411 010 for Nasdaq.

Further on, Lo, Mamaysky and Wang (2000) perform one geometric brow-
nian motion and table the results. We feel that this makes the results rather
arbitrary, thus we perform five geometric brownian motions. Lo, Mamaysky
and Wang (2000) use a sample of 350 stocks for their unconditional sample
for the goodness-of-fit test. We do not have that many stocks so we use the
full sample as the unconditional sample for the goodness-of-fit test.

21



4.5 Defining Windows

Let each stock in our data set represent a series of prices {P1, ..., PT} where
T is the number length of the time-series corresponding to the given stock.
We divide each series of prices into windows of length l + d on a rolling basis
from time t = 1 to t = T − l− d+1. The parameter l represents the number
of historical data points used to detect a pattern while d is the number of
days between the completion of the pattern and the first day on which the
pattern can be acted on. Lo, Mamaysky and Wang (2000) set l = 35 to limit
themselves to short-term patterns and they assume it takes d = 3 days to
recognize a pattern after it has been completed. We used the same numbers
to enhance comparability, thus each window consists of 38 observations.

4.6 Kernel Regression

For each sub-window we estimate a kernel regression using the prices in that
window as:

m̂k(τ) =

∑t+l+d−1
s=t Kh(τ − s)Ps

∑t+l+d−1
s=t Kh(τ − s)

, t = 1, ..., T − l − d + 1

where τ represents each observation in the sub-window. The bandwidth is
set to the bandwidth which minimizes the cross-validation function CV (h)
with one observation at the time omitted:

CV (h) =
1

T

t+l+d−1
∑

s=t

(Ps − m̂h,t)
2 , t = 1, ..., T − l − d + 1

Lo, Mamaysky and Wang (2000) confront a number of professional technical
analysts with the kernel estimations produced with the optimal bandwidth
from the cross-validation function and conclude that the bandwidth is slightly
too high to capture the full information used by the technical analysts. They
therefore multiply the optimal bandwidth h∗ with 0.3. The derivation of the
bandwidth multiplier is done before the analysis and the derived bandwidth
is kept throughout the whole study to prevent data mining (Lo, Mamaysky
and Wang, 2000). This choice can be questioned as being slightly ad hoc from
an analytical point of view. However, it is out of the scope for this thesis
to question the tacit knowledge of these technical analysts and we therefore
use the same bandwidth multiplier in our study. Furthermore, this enhances
one of the purposes of our study; to conduct an out of sample test of the Lo,
Mamaysky and Wang (2000) methodology.

The procedure yields an estimate of mh(τ) which is a differentiable func-
tion of τ . Local extrema are then identified by finding τ such that Sgn(m′

h(τ)) =
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−Sgn(m′
h(τ +1)) (Lo, Mamaysky and Wang, 2000). Once such τ is detected

we look for the corresponding extrema in the interval [τ − 1, τ + 1] in the
original price-series {Pt}. Following the Lo, Mamaysky and Wang (2000)
methodology we use the next observation where m′

h(τ) 6= 0 as a base of com-
parison if we detect a τ where m′

h(τ) = 0, which occurs if the closing price
stays the same for several days.

4.7 Defining Patterns

Once we have detected all local extrema in a window we look in the price-
series {Pt} for the patterns predefined by Lo, Mamaysky and Wang (2000).

Definition 1: Head-and-shoulders (HS) and inverted head-and-shoulders
(IHS) patterns are characterized by a sequence of five consecutive local ex-
trema, E1, ..., E5, located such that:

HS =



















E1 a maximum
E3 > E1, E3 > E5

E1 and E5 within 1.5 percent of their average
E2 and E4 within 1.5 percent of their average

IHS =



















E1 a minimum
E3 < E1, E3 < E5

E1 and E5 within 1.5 percent of their average
E2 and E4 within 1.5 percent of their average

Definition 2: Broadening tops (BTOP) and bottoms (BBOT) are char-
acterized by a sequence of five consecutive local extrema E1, ..., E5 such that:

BTOP =











E1 a maximum
E1 < E3 < E5

E2 > E4

BBOT =











E1 a minimum
E1 > E3 > E5

E2 < E4

Definition 3: Triangle tops (TTOP) and bottoms (TBOT) are charac-
terized by a sequence of five consecutive local extrema E1, ..., E5 such that:
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TTOP =











E1 a maximum
E1 > E3 > E5

E2 < E4

TBOT =











E1 a minimum
E1 < E3 < E5

E2 > E4

Definition 4: Rectangle tops (RTOP) and bottoms (RBOT) are charac-
terized by a sequence of five consecutive local extrema E1, ..., E5 such that:

RTOP =



















E1 a maximum
Tops within 0.75 percent of their average
Bottoms within 0.75 percent of their average
Lowest top > Highest bottom

RBOT =



















E1 a minimum
Tops within 0.75 percent of their average
Bottoms within 0.75 percent of their average
Lowest top > Highest bottom

Definition 5: Double tops (DTOP) and bottoms (DBOT) are character-
ized by an initial local extremum E1 and a subsequent local extrema Ea and
Eb such that:

Ea = max{Pt∗
k

: t∗k > t∗1 , k = 2, ..., n}
Eb = min{Pt∗

k
: t∗k > t∗1 , k = 2, ..., n}

and

DTOP =











E1 a maximum
E1 and Ea within 1.5 percent of their average
t∗a − t∗1 > 22

DBOT =











E1 a minimum
E1 and Eb within 1.5 percent of their average
t∗b − t∗1 > 22

where t1, ta and tb are the times for the local extremas E1, Ea and Eb.
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4.8 Conditioning on Volume

As stated in the theory part, the trading volume plays an important role in
technical analysis. Lo, Mamaysky and Wang (2000) use a rather primitive
method when controlling for changing volume. To make our results compa-
rable we use the same method. For each stock in each window they calculate
the average trading volume during the first and the second halves of each
window. If we denote the average volume in the first period υ1 and in the
second period υ2 the following conditions are made. If υ1 > 1.2υ2 it is cat-
egorized as a decreasing volume event. In the same way, if υ2 > 1.2υ1 it is
categorized as an increasing volume event. If neither inequality holds, the
volume is said to be neutral.

4.9 Calculating Returns

If we find a pattern completed at time t + l + 1, using information from time
t to t + l + d − 1, we compute a one day continuously compounded return
R = ln(Pt + l + d + 1/Pt + l + d). Note that no forward looking information
is used and the return is completely out of sample and do not suffer from
look-ahead bias (Lo, Mamaysky and Wang, 2000). Since the different stocks
differs quite a lot in terms of expected return and standard deviation we
normalize the returns to make them more comparable between stocks:

Xit =
Rit − E[Rit]

σ[Rit]

where E[Rit] and σ[Rit] are the mean and the standard deviation of the return
of each stock in each five year sub-period respectively. As a consequence of
the normalization, each return has zero mean and unit standard deviation
(Lo, Mamaysky and Wang, 2000). This is a necessary condition when using
a goodness-of-fit test to compare the distributions.

4.10 Creating a Sample for Comparison

To compare with the conditional returns, we create a sample of uncondi-
tional returns following the procedure of Lo, Mamaysky and Wang (2000).
For each stock and for each of the five sub-periods, as well as for the whole
time-period, we compute one-day continuously compounded returns using
non-overlapping intervals. As for the conditional returns, the unconditional
returns are normalized by deducting the mean and dividing by the standard
deviation calculated for each stock in each sub-period. The returns from all
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stocks are then combined into a single sample for each sub-period. This pro-
cedure yields returns with zero mean and unit variance, which distributions
can be compared with the conditional returns.

4.11 Comparing the Distributions of the Returns

The conditional returns are compared to the unconditional returns using a
goodness-of-fit test and a Kolmogorov-Smirnov two distributions test. Ide-
ally, one would like to determine if these technical patterns provide infor-
mation which could be used to find profitable trades. However, to deter-
mine if the technical patterns more than compensate for the risk involved
in exploring them one has to compare the conditional returns with the fair
returns given both the syncratic and the idiosyncratic risk. Lo, Mamaysky
and Wang (2000) conclude that, in absence of a fully specified dynamic gen-
eral equilibrium asset-pricing model, such a comparison can not be made.
We believe that no convincing evidence that such model exists is currently
available. Trying to compare the conditional returns to any currently ex-
isting pricing model would only add yet another layer of uncertainty to the
validity of the results. We therefore follow the Lo, Mamaysky and Wang
(2000) method and limit ourselves to examine the information contents in
these patterns. If no incremental information exists in these patterns, the
conditional and the unconditional returns should be drawn from the same
distribution. Oppositely, if the distributions differ, the patterns can be said
to include incremental information. The similarity of the conditional and the
unconditional return distributions can be tested using a goodness-of-fit test
and a Kolmogorov-Smirnov two distributions test. If the null hypotheses,
as described in the theory section, can be rejected, incremental information
exists in these patterns.

4.12 Graphical Representation

The figure on page 27 showes a graphical illustration of our algorithm de-
tecting a broadening tops pattern for the Ericsson stock1.

1For a graphical representation of each individual pattern determined by our detection

algorithm, see Appendix II, pages 43-47.
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The figure shows a kernel regression constructed with data from a 38-day
window. Nine local extrema can be found in the underlying trend. For
each extrema in the kernel estimate the corresponding extrema of the price
function is determined in the interval [-1,+1] days. Five of these price-series
extrema, marked with circles, form a broadening tops pattern. As the final
maxima in the price-series occurs at day 35 in the window, a one day con-
tinuously compounded return is calculated between the last observation in
the window and the first after the window. Thus, as described, no forward-
looking information is used.

4.13 Comparing with Simulated Geometric Brownian
Motions

It is crucial to understand whether the detected patterns seem to be causal
or if they are nothing but effects of a totally random process. For each stock,
we create a fictive price-series where the price function follows a stochastic
process. In particular, we let the price functions follow a geometric brownian
motion:

dPt = µPtdt + σPtdWt

where Wt is a standard brownian motion with the drift µ and the diffusion
σ estimated from the real price-series for each individual stock. To make the
data completely comparable we use the same length and starting value P0 for
each simulated geometric brownian motion as for the corresponding stock.
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When simulating stochastic processes each simulation is unique. A com-
parison with a single geometric brownian motion thus risks being fairly ar-
bitrary. We therefore simulate 5 individual processes for each stock and
compare the real price-series with the simulations. If the true patterns are
occurring for no particular reason we expect the results from the geometric
brownian motion to mirror the results from the real price-series.

28



5 Analysis and Results

5.1 Frequencies

In the table on page 37 the total number of observations, the number of the
different patterns discovered and the fraction of the observations included in
a pattern, across the whole sample and across each sub-period, are displayed.
The most common patterns in our sample are the head-and-shoulders and the
inverted head-and-shoulders, with 1 115 and 1 076 occurrences respectively.
The second most frequent patterns are the double tops and bottoms. The
rest of the patterns are distributed quite equally among themselves.

Across the sub-periods, the relative frequency of each pattern in each sub-
period corresponds rather closely to the total number of patterns for that sub-
period. The biggest discrepancies occur in the last two sub-periods where the
patterns occur more frequent. A hypothesis could be that these two periods
have been the most volatile giving a larger chance for these patterns to occur.
We also find slightly more patterns when conditioning on decreasing volume
than when conditioning on increasing volume. The distribution among the
patterns is fairly similar when conditioning on volume, though.

For the purpose of our study, we also compare our results to the findings
of Lo, Mamaysky and Wang (2000). In order to do that, we need to take into
consideration that we have approximately half the number of observations in
our sample, and that our observations are not equally distributed across the
sub-periods. The table on page 37 shows that the fraction of observations
where we can find a pattern is about the same, 3.0 percent in our results
and 3.4 percent for NYSE and 2.2 percent for Nasdaq in Lo, Mamaysky and
Wang (2000). This could be seen as a rough estimate that the occurrences
of patterns are as likely in both American as well as in Swedish stock data.
Also, we see that the distribution among the different patterns is slightly
reversed compared to our data. For NYSE, the most common patterns are
the double tops and bottoms followed by the head-and-shoulders and the
rectangles. For Nasdaq, the rectangles are the most common followed by
the doubles and the head-and-shoulders. One possible hypothesis could be
that our sample contains the volatile period between 1997 and 2006 which
is absent in the sample of Lo, Mamaysky and Wang (2000). The patterns
in Lo, Mamaysky and Wang (2000) are also relatively equally distributed
over the sub-periods, which implies a slight difference from our results. As
a conclusion, however, we would still argue that our results do not differ
significantly from Lo, Mamaysky and Wang (2000).
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5.2 Geometric Brownian Motions

For purpose of comparison, we have also simulated five individual runs of
geometric brownian motions for each stock in our study. For each geometric
brownian motion sample we have run the algorithm for pattern recognition.
The table on page 38 shows that the random walk models all generate simi-
lar results in terms of number of patterns. The fractions of patterns are 2.4
percent or 2.5 percent for the geometric brownian motion samples compared
to 3.0 percent for our original sample. Furthermore, we see that the dis-
tributions of the patterns are more even in the geometric brownian motion
samples, compared to high peaks for the head-and-shoulders, the inverted
head-and-shoulders and the doubles, for our original sample. These results
from the simulations indicate that there is a difference between our stock
data and independently and identically distributed lognormal returns. This
suggests that the occurrences of patterns are ”there for a reason” and not an
effect of a random process.

5.3 Descriptive Statistics

The table on pages 39-40 reports the descriptive statistics - mean, standard
deviation, skewness and kurtosis - of unconditional and conditional normal-
ized one-day returns for our sample. The column named raw provides data
for all the observations across our sample and the other columns provides
data for each pattern respectively. Our statistics, as well as Lo, Mamaysky
and Wang (2000), show quite significant differences in the normalized return
distributions. The first four moments of normalized raw returns are 0.000,
1.000, -0.1481 and 18.2433. The same statistics for e.g. inverted head-and-
shoulders are 0.039, 0.8266, -0.4686 and 7.0239. Most other patterns show
any other discrepancies2. All these statistics for the ten conditional patterns,
and the variances in the conditional and unconditional return populations,
suggest that identifying and using the ten technical patterns does have some
effect on the distribution of returns. Thus, this is a first sign that incremental
information might be present in these conditional samples.

2These numbers should, however, be interpreted with a bit of caution since some of

them are largely affected by outliers. The extremely high kurtosis for TTOP and DBOT

are explained by the drop of Alfa Laval from SEK 66.5 to SEK 45.3 on November 1, 2002,

and the drop of Axfood from SEK 220 to SEK 181.5 on January 27, 2005. Without these

observations, the kurtosis is more normal, 4.5560 and 7.6864 respectively. Fortunately, the

goodness-of-fit and the Kolmogorov-Smirnov tests are much less affected by single outliers.
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5.4 Goodness-of-Fit Test

The table on page 41 reports the diagnostics of the goodness-of-fit test for
our sample. The table is, conditioned on each pattern, divided into deciles
with each decile containing 10 percent of the observations of the uncondi-
tional return population and the last column showing the goodness-of-fit
test statistic Q and corresponding p-values. If conditioning on the pattern
provides no information, the expected percentage falling into each decile is
10 percent. The table shows that our sample has very low t-values over-
all. Furthermore, only three out of ten patterns - TTOP, IHS and RBOT
- have relative frequencies of the conditional returns that are significantly
different from those of the unconditional returns on the 5 percent level. On
the 10 percent level, three more patterns are added. The conclusion is that
these goodness-of-fit results show weak support for the informative content
of the technical patterns compared to the results of Lo, Mamaysky and Wang
(2000). In Lo, Mamaysky and Wang (2000), the NYSE sample gives seven
patterns showing statistically significant differences whereas for Nasdaq all
patterns are significantly different. One plausible explanation in defense of
technical analysis is that our sample includes too few observations to gener-
ate reliable results for a goodness-of-fit test. For example, when comparing
our results for BBOT with those of Lo, Mamaysky and Wang (2000), one
can see that the percentage of observations in each decile deviates quite a lot
from the expected 10 percent in our test. Unfortunately, the limited number
of conditional returns compared to Lo, Mamaysky and Wang (2000) makes
the significanses weak.

5.5 Kolmogorov-Smirnov Two Distributions Test

In the table on page 42 we tabulate the p-values of the results of the Kolmogorov-
Smirnov two distributions test of the equality of the conditional and uncon-
ditional distributions. The results are shown for the full sample size and
the five sub-periods, divided into all observations, conditioned on increasing
volume, conditioned on decreasing volume and the difference between the
increasing and decreasing volume-trend distributions.

When looking at the result for all observations over the full sample period,
five of the ten patterns - BTOP, TTOP, HS, IHS and RBOT - are statistically
significant on the 5 percent level. On the 6 percent level, RTOP is also added.
These patterns show p-values from 0.0001 for TTOP to 0.0562 for RTOP.
On the other hand, the other patterns show p-values ranging from 0.2182 to
0.3689. These results indicate that there is some incremental information in
many of the technical indicators.
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When looking into the sub-periods, the results are more varying. The first
three periods, ranging from 1982 to 1996, are difficult to interpret because of
the small sample sizes. The Kolmogorov-Smirnov test requires quite a large
number of observations to be reliable. For the period between 1997 and 2001
five of the ten patterns are statistically significant, whereas between 2002
and 2006, only one is so. But yet again, the results might be arbitrary due
to a limited sample size.

5.6 Conditioning on Volume

When conditioning on volume, both increasing and decreasing, the table on
page 42 showes that the statistical significance increases overall for most of
the patterns. When looking at the full sample, seven out of ten patterns are
statistically significant for both increasing and decreasing volume. However,
it is not the same patterns in both cases. Surprisingly, when examining the
sub-periods, we see that the last period, between 2002 and 2006, now show
three and four statistically significant patterns for the increasing and decreas-
ing condition respectively. This is to be compared with only one for the full
sample. This indicates that there is some information in the volume. The
difference between the increasing and decreasing volume-trend conditional
distributions is statistically insignificant for all the patterns, though. This
can partly be explained by the fact that the sample size is fairly small reduc-
ing the power of the Kolmogorov-Smirnov test, but it is also an indication
of the fact that we cannot differentiate between increasing and decreasing
volume. Thus, volume seems to matter, but perhaps not necessarily in the
way defined by Lo, Mamaysky and Wang (2000).
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6 Concluding Remarks

We have performed an out-of-sample test of the Lo, Mamaysky and Wang
(2000) methodology for analysis of technical indicators and at the same time
evaluated the informative content of these indicators on Swedish stock data.

On the whole, our results are fairly similar to those of Lo, Mamaysky and
Wang (2000), even though a completely different data set is used. We find
just about as many patterns in comparison to the number of observations
as they do, and the distributions of the patterns are comparable. Neither
when conditioning on different time-periods nor on volume trends the re-
sults deviate substantially from those of Lo, Mamaysky and Wang (2000).
Furthermore, the geometric brownian motion simulations indicate that the
patterns found are at least not stochastic. These results indicate that the Lo,
Mamaysky and Wang (2000) model does a good job in finding the technical
indicators also on Swedish data. The model appears to be fairly general and
not over-fitted to their data set. Our study is a sign of the fact that the
algorithm might serve as an analytical tool also for other sets of data.

When assessing the question of informative content in technical indicators
in Swedish stock data, our study shows that these patterns might indeed con-
tain some incremental information. There are differences in all four moments
between the conditional and unconditional samples of normalized returns for
all time-periods, which might suggest that new information can be extracted
from those patterns. In addition, the signs of the means are analogue with the
conventional theory on the subject. Furthermore, the Kolmogorov-Smirnov
test yields significant results for six out of ten patterns at the 6 percent level.
The results get even more significant when conditioning on volume, also in
line with theory which emphasize the importance of trading activity. The
only discrepancy between our results and those of Lo, Mamaysky and Wang
(2000) is the goodness-of-fit test where Lo, Mamaysky and Wang (2000) get
slightly more significant results. However, the difference in statistical signif-
icance is most likely due to our smaller sample size.

It should be noted that our results only show that the technical indicators
provides incremental information, not that technical analysis by default can
generate excess trading profits. To test for this we need a general equilibrium
pricing model, which not only prices the idiosyncratic risk, but rather the
full risk an investor is exposed to when holding an undifferentiated portfolio.
As no such model is currently available we limit ourselves to conclude that
these patterns contain additional information which could be included in an
investment strategy. In any case, this incremental information is a contra-
diction of the weak form of the efficient market hypothesis, which states that
future returns can not be explained by past returns.
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A Appendix I - Tables

A.1 Frequencies

The table shows the total number of recognized patterns for each of our
ten defined technical indicators found in a sample of 65 stocks from OMX
Swedish Large Caps from 1982 to 2006. As a benchmark, the same kind
of dataset from Lo, Mamaysky and Wang (2000) is given (LMW NYSE and
LMW Nasdaq). The sample is divided into the full sample and 5 sub-periods.
The column named ”Sample” shows whether the frequency counts are uncon-
ditional on volume (Full Sample, 1982-1986 etc.), conditioned on decreasing
volume (Dec. Vol.) or conditioned on increasing volume (Inc. Vol.). The
fraction column (Frac.) indicates the percentage of all observations included
in a pattern across the whole sample and across each of the five sub-periods.

Sample Raw HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT Frac.

LMW NYSE 423 556 1294 1193 1611 1654 725 748 1482 1616 2076 2075 3.4%

LMW Nasdaq 411 010 919 817 414 508 850 789 1134 1320 1208 1147 2.2%

Full Sample 207 192 1115 1076 412 337 478 533 437 516 666 678 3.0%

Dec. Vol. 499 407 115 111 212 219 209 244 226 304

Inc. Vol. 259 295 153 132 122 142 113 113 218 172

1982-1986 16 082 68 78 19 20 29 35 27 52 53 59 2.7%

Dec. Vol. 33 42 7 11 12 14 17 38 23 29

Inc. Vol. 18 17 9 6 9 11 8 8 17 16

1987-1991 22 946 99 114 40 33 45 56 40 57 70 53 2.6%

Dec. Vol. 48 46 14 12 19 30 22 26 26 28

Inc. Vol. 22 40 12 14 13 14 11 14 29 16

1992-1996 36 622 180 159 74 46 82 93 60 61 116 102 2.7%

Dec. Vol. 87 73 26 10 41 42 32 31 43 43

Inc. Vol. 37 42 33 19 21 27 15 14 34 27

1997-2001 57 696 337 318 119 122 176 161 96 137 202 211 3.3%

Dec. Vol. 157 102 24 41 81 59 42 64 57 109

Inc. Vol. 70 94 35 51 40 37 26 34 76 40

2002-2006 73 846 431 407 160 116 146 188 214 209 225 253 3.2%

Dec. Vol. 174 144 44 37 59 74 96 85 77 95

Inc. Vol. 112 102 64 42 39 53 53 43 62 73
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A.2 Geometric Brownian Motions

The table shows five simulated geometric brownian motions (GBM1-GBM5),
all based on the sample of our study. For each stock, the starting value, the
mean and the standard deviation has been the input variables. Shown is
also a benchmark from our full sample from section A.1 (Full Sample) and
from Lo, Mamaysky and Wang (2000) (LMW NYSE and LMW Nasdaq).
Tabulated are the total numbers of recognized patterns for each technical
indicator. The fraction column (Frac.) indicates the number of all observa-
tions included in a pattern.

Sample Raw HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT Frac.

LMW NYSE 423 556 1294 1193 1611 1654 725 748 1482 1616 2076 2076 3.4%

GBM NYSE 423 556 1049 1176 577 578 1227 1028 122 113 552 535 1.6%

LMW Nasdaq 411 010 919 817 414 508 850 789 1134 1320 1208 1147 2.2%

GBM Nasdaq 411 010 434 447 1297 1139 1169 1309 96 91 567 579 1.7%

Full Sample 207 192 1115 1076 412 337 478 533 437 516 666 678 3.0%

GBM1 207 192 822 886 463 400 398 449 183 231 560 527 2.4%

GBM2 207 192 790 804 512 419 403 391 211 210 572 600 2.4%

GBM3 207 192 849 814 494 400 423 459 202 244 559 595 2.4%

GBM4 207 192 847 829 480 417 441 484 182 205 623 573 2.5%

GBM5 207 192 860 810 472 377 415 428 218 204 584 572 2.4%
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A.3 Descriptive Statistics

The table shows descriptive statistics (mean, standard deviation, skewness
and kurtosis) for the 1-day normalised returns of the full unconditional sam-
ple (Raw) and conditioned on the ten defined patterns. The sample consists
of 65 stocks from OMX Swedish Large Caps from 1982 to 2006. The sample
is divided into the full sample and 5 sub-periods. In line with Lo, Mamaysky
and Wang (2000), conditional returns of the ten defined patterns are defined
as the daily return three days following the conclusion of an occurrence of
one of the ten technical patterns. The normalization process of the returns
is conducted by subtracting the means and divide by the standard deviations.

Sample Raw HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT

Full Sample

Mean 0.0000 -0.0709 0.0390 -0.0608 -0.0617 -0.1682 0.0048 -0.0430 0.0744 -0.0356 -0.0414

Std. Dev 1.0000 0.8831 0.8266 0.8692 1.1055 1.1719 0.9007 0.8391 0.7274 0.9252 1.0388

Skewness -0.1481 -0.2628 -0.4686 0.0133 -0.5789 -5.4760 -0.1288 0.0219 0.1675 -0.7241 -2.5188

Kurtosis 18.2433 6.9765 7.0239 4.5543 7.9793 77.5185 4.8845 7.1232 6.3053 7.8509 31.6402

1982-1986

Mean 0.0000 -0.0511 0.1009 -0.1447 -0.2835 0.0151 0.0219 0.0486 0.3016 0.0294 -0.2137

Std. Dev 1.0000 0.8523 0.8774 1.2608 0.9787 0.8539 1.1057 0.6478 0.7111 1.0321 1.0839

Skewness -0.0801 -0.4083 0.0059 1.5095 -0.9269 -0.6090 -0.5421 -0.8383 0.2355 -1.6248 -1.0319

Kurtosis 6.5063 4.8393 3.3729 5.9189 3.6789 5.3972 3.9733 5.1825 3.0233 10.3204 5.0960

1987-1992

Mean -0.0000 -0.0937 0.1319 0.1231 0.0598 -0.1814 0.0978 0.1077 -0.1660 -0.1855 -0.0171

Std. Dev 1.0000 0.8559 0.7756 0.7603 1.1504 1.2739 0.7933 0.8220 0.7350 1.0825 0.6646

Skewness -0.3484 -0.6218 -0.5333 0.0212 0.0468 -0.6232 -0.6436 0.5665 0.2755 -0.4522 -0.2720

Kurtosis 10.5984 4.5684 6.1924 3.7926 3.4262 6.8661 3.9835 3.2622 4.2360 6.4858 3.5456

1992-1996

Mean -0.0000 -0.0928 0.0564 0.1838 -0.4380 -0.1179 -0.1157 -0.0014 0.0822 0.0075 0.0109

Std. Dev 1.0000 0.7801 0.7490 0.9481 1.5235 0.7823 0.9730 0.9072 0.7309 0.9583 0.8773

Skewness -0.0646 -0.1728 -0.4935 -0.3353 -1.6385 0.7991 -0.3291 1.6773 -0.1223 -1.4748 -0.6390

Kurtosis 15.6000 9.9730 7.4702 4.4081 6.7315 7.5539 4.7650 7.2986 2.8255 14.5331 8.2792
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Descriptive Statistics, Continued

Sample Raw HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT

1997-2001

Mean 0.0000 -0.1358 0.0153 -0.2330 -0.0387 -0.2055 0.0845 -0.1608 0.0604 0.0950 -0.1140

Std. Dev 1.0000 0.8872 0.9164 0.8333 0.9168 0.9264 0.8765 0.8128 0.7169 0.8801 1.0720

Skewness 0.1166 -0.0374 -0.4081 -0.4115 0.4899 -0.0850 0.2080 -1.1512 0.4966 -0.0680 -3.1671

Kurtosis 9.4805 6.2305 7.5454 4.0511 4.4678 4.7735 3.4881 8.2002 3.9204 4.4594 36.9127

2002-2006

Mean 0.0000 -0.0089 0.0129 -0.0818 0.0671 -0.1838 -0.0347 -0.0416 0.0903 -0.1438 0.0333

Std. Dev 1.0000 0.9298 0.7858 0.8021 1.0794 1.5801 0.8722 0.8554 0.7220 0.8547 1.1194

Skewness -0.4334 -0.3817 -0.6136 -0.0780 0.1531 -7.2523 0.0379 -0.1128 0.0294 -0.6295 -2.7384

Kurtosis 15.4911 7.4148 6.8158 3.8370 8.0048 75.3422 6.3424 6.8618 10.6193 5.3476 34.9282

40



A.4 Goodness-of-Fit Test

The table shows the results of the goodness-of-fit test for the 1-day condi-
tional normalized returns of our ten defined technical patterns. The sample
consists of 65 stocks from OMX Swedish Large Caps from 1982 to 2006.
For each pattern, the percentage of conditional returns that fall within each
of the ten unconditional-return deciles is tabulated. We should expect the
percentage falling into each decile being 10 percent if the pattern condition
provides no added value. Asymptotic t-statistics for this null hypothesis are
reported in parentheses, and the goodness-of-fit test statistic Q is reported
in the last column with the p-value in parenthesis below the statistic. Two
asterisks indicates significance on the 5 percent level whereas one asterisk
indicates significance on the 10 percent level.

Quantile 1 2 3 4 5 6 7 8 9 10 Q/(p)

HS 10.22 10.49 11.21 10.04 10.40 11.39 10.13 9.96 7.80 8.34 12.78

(0.247) (0.538) (1.281) (0.050) (0.441) (1.461) (0.149) (-0.050) (-2.736) (-2.004) (0.173)

IHS 6.78 8.74 10.22 11.80 11.52 8.74 11.06 10.87 11.15 9.11 24.93

(-4.194) (-1.468) (0.242) (1.833) (1.566) (-1.468) (1.108) (0.921) (1.201) (-1.017) (0.003)**

BTOP 11.89 10.68 11.41 11.17 7.52 7.77 10.68 9.47 10.92 8.50 9.21

(1.187) (0.447) (0.899) (0.751) (-1.905) (-1.693) (0.447) (-0.370) (0.600) (-1.096) (0.420)

BBOT 13.35 10.09 6.82 8.61 8.01 12.76 12.46 8.01 10.68 9.20 15.49

(1.810) (0.054) (-2.311) (-0.913) (-1.344) (1.518) (1.369) (-1.344) (0.406) (-0.509) (0.078)*

TTOP 13.39 10.88 10.88 10.04 11.92 10.25 6.28 8.79 10.88 6.69 20.95

(2.176) (0.617) (0.617) (0.030) (1.298) (0.181) (-3.357) (-0.937) (0.617) (-2.892) (0.013)**

TBOT 9.76 10.51 9.76 10.51 9.94 9.94 9.38 9.57 8.63 12.01 3.79

(-0.190) (0.381) (-0.190) (0.381) (-0.043) (-0.043) (-0.490) (-0.339) (-1.126) (1.426) (0.925 )

RTOP 9.38 9.38 10.07 11.21 12.13 11.44 9.61 12.59 6.18 8.01 14.97

(-0.443) (-0.443) (0.047) (0.804) (1.363) (0.947) (-0.276) (1.630) (-3.318) (-1.533) (0.092)*

RBOT 4.07 9.30 11.05 10.85 13.57 9.11 12.21 10.27 12.02 7.56 34.04

(-6.818) (-0.546) (0.758) (0.623) (2.366) (-0.704) (1.533) (0.203) (1.408) (-2.099) (0.000)**

DTOP 9.91 11.26 7.21 9.76 10.36 9.01 12.76 11.86 9.76 8.11 16.85

(-0.078) (1.030) (-2.787) (-0.209) (0.305) (-0.893) (2.137) (1.486) (-0.209) (-1.789) (0.051)*

DBOT 8.70 11.06 9.88 10.62 10.91 11.65 9.29 9.59 9.88 8.41 6.78

(-1.199) (0.882) (-0.103) (0.524) (0.764) (1.341) (-0.635) (-0.365) (-0.103) (-1.495) (0.660)
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A.5 Kolmogorov-Smirnov Two Distributions Test

The table shows the Kolmogorov-Smirnov two distributions test of the equal-
ity of conditional and unconditional normlized 1-day return distributions for
a sample of 65 stocks from OMX Swedish Large Caps from 1982 to 2006.
The sample is divided into the full sample and 5 sub-periods. Conditional
returns are defined as the daily return three days following the conclusion of
an occurrence of one of ten technical patterns. P-values are with respect to
the asymptotic distribution of the Kolmogorov-Smirnov test statistic. Added
is also the condition of decreasing (Dec. Vol.) and increasing (Inc. Vol.) vol-
ume in our sample, as well as the difference (Diff.) between the two. Two
asterisks indicates significance on the 5 percent level whereas one asterisk
indicates significance on the 10 percent level.

Sample HS IHS BTOP BBOT TTOP TBOT RTOP RBOT DTOP DBOT

Full Sample 0.0026** 0.0070** 0.0127** 0.2182 0.0001** 0.2450 0.0562* 0.0142** 0.2943 0.3689

Dec. Vol. 0.0015** 0.0002** 0.0082** 0.2490 0.0114** 0.0172** 0.2079 0.1737 0.0238** 0.0018**

Inc. Vol. 0.0161** 0.0139** 0.0162** 0.0003** 0.1025 0.0042** 0.4178 0.0071** 0.0003** 0.0805*

Diff. 0.8069 0.3455 0.2709 0.1227 0.6893 0.4383 0.6947 0.6961 0.1255 0.4163

1982-1986 0.7774 0.6373 0.0770* 0.7017 0.6182 0.8487 0.3792 0.0040** 0.1941 0.5063

Dec. Vol. 0.1339 0.5936 0.0052** 0.2450 0.1804 0.8227 0.2743 0.8016 0.2132 0.7391

Inc. Vol. 0.1522 0.3641 0.6704 0.2399 0.0150** 0.3061 0.7436 0.0764* 0.2914 0.0577*

Diff. 0.7974 0.9988 0.0511* 0.1877 0.0581* 0.3005 0.2606 0.4536 0.9239 0.4232

1987-1991 0.7304 0.0926** 0.0889* 0.4564 0.4858 0.3607 0.9442 0.0032** 0.4372 0.7565

Dec. Vol. 0.3805 0.0120** 0.5053 0.4937 0.1105 0.8530 0.3100 0.2489 0.6697 0.2857

Inc. Vol. 0.0166** 0.5269 0.2860 0.2777 0.2764 0.4767 0.9314 0.3621 0.1375 0.9532

Diff. 0.6836 0.0481** 0.6317 0.4487 0.5741 0.9929 0.5305 0.5655 0.9379 0.7180

1992-1996 0.0502* 0.0077** 0.0923* 0.3071 0.1481 0.3643 0.3971 0.2389 0.5760 0.5387

Dec. Vol. 0.1098 0.4838 0.0533* 0.2391 0.0634* 0.0437** 0.1185 0.0807* 0.0879* 0.0673*

Inc. Vol. 0.0946* 0.2400 0.3064 0.0812* 0.0807* 0.0674* 0.2090 0.0401** 0.0758* 0.1345

Diff. 0.5383 0.9948 0.6740 0.9312 0.4498 0.0801* 0.6595 0.5246 0.0459** 0.2171

1997-2001 0.0010** 0.1458 0.0328** 0.2670 0.0481** 0.3199 0.1265 0.3094 0.0509** 0.0581**

Dec. Vol. 0.1325 0.3970 0.1023 0.3584 0.6856 0.0965* 0.3266 0.9010 0.5307 0.3296

Inc. Vol. 0.2408 0.3077 0.1493 0.5080 0.4519 0.3322 0.5488 0.1215 0.0240** 0.0180**

Diff. 0.9671 0.6684 0.0822* 0.6479 0.8241 0.9290 0.6253 0.3375 0.1018 0.1610

2002-2006 0.4042 0.1641 0.5125 0.1644 0.1703 0.1815 0.4255 0.0084** 0.1481 0.5527

Dec. Vol. 0.1972 0.0956* 0.0750** 0.0772* 0.0063** 0.0503* 0.6495 0.5441 0.0232** 0.0089**

Inc. Vol. 0.2129 0.0293** 0.5564 0.0999* 0.1101 0.0700* 0.5835 0.0179** 0.0452** 0.0628*

Diff. 0.8374 0.5644 0.9451 0.3236 0.1833 0.2694 0.9043 0.5793 0.5312 0.9576
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B Appendix II - Graphical Representation

B.1 Head-and-Shoulders
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B.2 Broadening Tops and Bottoms
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B.3 Triangle Tops and Bottoms
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B.4 Rectangle Tops and Bottoms
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B.5 Double Tops and Bottoms
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