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Abstract
A Black-Scholes market is considered in which asset prices are modelled

by a geometric Brownian motion with regime-switching volatility. The
regime-switching allows the volatility to jump randomly amongst a �nite
number of volatility states. Pricing equations of European options are
derived and the equations are solved numerically. The model is calibrated
for two, three and four volatility states to observed market prices of call
options on the OMXS30 index during the period August 2003 to August
2006. The �ndings show that two volatility states are su�cient to replicate
market prices with a high degree of accuracy. Mispricings are found to
be considerably smaller under a regime-switching model than under the
traditional Black-Scholes model.
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1 Introduction
In 1973, Black and Scholes (1973) [6] published a path-breaking work on the
pricing of options. To derive their famous option pricing formula Black and
Scholes assumed that the underlying security St followed a geometric Brownian
motion with a constant drift µ and volatility σ

dSt = µStdt + σStdWt.

It is widely recognized that the Black-Scholes model does not provide a realistic
description of real-world stock price dynamics and it is not consistent with how
options are priced in the market.1 In particular, asset returns are much more
heavy-tailed than suggested by the normal distribution and volatility tends to
vary quite a lot over time. To obtain more realistic descriptions of asset price
dynamics, emerging interest have focused on so called stochastic volatility mod-
els, i.e. models where the volatility of the risky asset changes from time to time
in a random fashion. In this report the volatility will be modelled by a regime-
switching model in which the volatility is allowed to jump randomly amongst a
�nite number of volatility states. The issue of pricing European options in this
framework will be studied in detail.

The purpose of this thesis is to calibrate a continuous time version of a regime-
switching volatility model to observed option prices. The �ndings will contribute
to previous research in two central aspects. First, I show how the pricing equa-
tions for European options can be solved by numerical means and prices ob-
tained quickly and accurately without any need for simulation. Second, I in-
tend to explore the issue of determining the appropriate number of states in the
regime-switching model by studying the pricing performance for an increasing
number of volatility states. To the best of my knowledge no previous studies
exist where this type of model is calibrated to observed option prices. Most
research on regime-switching volatility only considers two-state discrete time
models. By calibrating the model for an increasing number of volatility states
we can investigate whether two states are indeed su�cient to replicate market
prices or if more states are needed. Considering call options on the OMXS30 in-
dex, I will try to answer the following questions: Can a regime-switching model
replicate observed call option prices? How many regimes are needed to obtain
a good �t to data? The reason for focusing on call options on the OMXS30
index is beacuse these are liquid contracts traded for a large number of strikes
and time to maturities. Also, from a structured products desk operating in the
Swedish market it could be interesting to consider Swedish data.2 Potential
applications of the model could be in pricing of OTC-contracts or hedging.

This thesis is organized in the following way. Section 2 discusses the relevance
of using stochastic volatility models in option pricing. In section 3, the concept
of regime-switching volatility is de�ned. The equations for pricing options under
regime-switching volatility are derived in section 4. Section 5 discusses the
method employed and the empirical results are presented in section 6. Finally,
section 7 summarises the conclusions.

1See Alexander (2001) [1] and Hull (1999) [31].
2This assigment was given to me by Ola Hammarlid at Swedbank Markets.
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2 Motivation for stochastic volatility
As noted above, the assumption of constant volatility made in the Black-Scholes
model is inconsistent with the behaviour of real-world �nancial markets. Con-
trary to what is assumed in the Black-Scholes model, much empirical research
has shown that volatility in �nancial markets tends to vary quite a lot over
time.3 Convincing evidence that this is indeed the case can be found from stock
market crashes like the one in October 1987 or �nancial crises such as the Mex-
ican crisis in 1994, the Asian crisis in 1997 or the Russian crisis in 1998. The
top panel of Figure 1 displays the daily log returns of the OMXS304 index over
the period August 2003 to August 2006. The bottom panel shows the 30-day
historic standard deviation over the same period.5 During this three year period
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Figure 1: The top panel show the daily log returns of the OMXS30 over the
period August 2003 to August 2006. The bottom panel shows the annualized
30-day historic volatility of the log returns.

the historic annualized volatility has varied between 8% and 42%. This indicates
that there is indeed a substantial variation of volatility in the Swedish equity
market. Furthermore, periods of high and low volatility tend to occur together.
This phenomenon is commonly denoted volatility clustering.6 During periods of
high volatility, returns can be of a magnitude far greater than returns of more
normally volatile periods. One could think of several possible explanations to
what causes volatility to vary over time.

3See Alexander (2001) [1] for an overwiev of time-varying volatility.
4The OMXS30 index is a value weighted index of the thirty largest companies on the

Swedish stock exchange.
5The 30-day standard deviation has been scaled to yearly standard deviation by multipli-

cation with
√

12, since there are approximately 12 30-day periods in a year.
6See Alexander (2001) [1] or Tsay (2002) [34] for a discussion of volatility clustering.
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� Arrival of new information is not evenly distributed in time. New infor-
mation arrives to the market lumpwise at discrete points in time. If the
information is perceived as very important by the investor community
this could have a substantial impact on the level of market activity. Ex-
amples of things that might cause market sentiments to change abruptly
are corporate events such as mergers or bankruptcies, natural disasters or
wars.

� Fundamental factors of the underlying economy changes. Apart from ar-
rival of new information, fundamental factors of the underlying economy
can also change which in turn causes market activity to change. The most
obvious example of this is if we consider the transition from a �xed to
a �oating exchange rate regime. Under the �xed exchange rate policy
volatility in the foreign exchange market should be zero. However, when
the exchange rate is �oating the volatility is obviously greater since it
is allowed to change with supply and demand. Yet another example is
changes in the tax legislation making it easier or harder for investors to
trade, thereby a�ecting the volatility on the market.

� Herd behaviour of market participants. Sometimes there might be no fun-
damental causes to abrupt changes in volatility. Such �uctuations could
arise when investors try to imitate the behavior of others, thereby magni-
fying movements already observed on the market.7 In the literature this
goes under the term herd behaviour. One explanation to herd behaviour
proposed by Avery and Zemsky (1998) [2] is that in �nancial markets in
which information is asymmetrically distributed, some investors will try to
mimic the behaviour of other investors in the belief that those are better
informed.

Time-varying volatility and volatility clustering cause empirical asset returns
to be heavy-tailed. Table 1 shows some descriptive statistics and the Jarque-
bera statistic for the OMXS30 log returns for the period August 2003 to August
2006. One can see that the standard deviation of the log returns is more than
ten times greater than the mean. This is common in most equity markets and
makes it practically impossible to estimate the mean of the returns with any
reasonable accuracy. The kurtosis is more than twice as great as the kurtosis

Statistic Mean Variance Kurtosis Jarquebera
Value 0.0007 0.0103 7.5405 699.5519

Table 1: Statistics for OMXS30 log returns.

of a normal distribution and indicates that the empirical distribution of the log
returns is heavy-tailed.8 To test the assumption of normally distributed returns
more formally I have employed the Jarquebera test.9 The Jarquebera statistic
was computed to 699.55 which is much greater than the critical value of 9.21
at the 1% signi�cance level. Therefore, we can safely reject the hypothesis of

7See Bikhchandani and Sharma (2000) [4].
8The kurtosis of a normal distribution is 3.
9See Gujarati (2003) [22] for a description of the Jarquebera test.
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normally distributed returns at all reasonable signi�cance levels.
From this discussion it should be clear that the assumptions made in the Black-
Scholes model of constant volatility and normally distributed log returns are
inadequate to explain stock market dynamics. However, market participants
are well aware of these anomalies and they take this into account in their option
pricing. The market corrects for the heavy-taildness by over-pricing in- and
out-of-the-money put and calls and under-pricing at-the-money options relative
to the Black-Scholes. This corresponds to implied volatilities10 being high for
in- and out-of-the-money options and relatively lower for at-the-money options.
Therefore, a plot of implied volatilities as a function of strike price is often re-
ferred to as a volatility smile. The reason for the smile is that the market expects
large deviations to occur more frequently than predicted by the Black-Scholes
model.11 Figure 2 shows implied volatilities of a call option on the OMXS30
index on the 30th of November 2005 with maturity in December when the index
was at 912. To make prices consistent with a volatility smile and to obtain more
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Figure 2: Implied volatilities for a call on the OMXS30.

realistic models of asset price dynamics, the assumption of constant volatility
has to be dropped. The natural extension of the Black-Scholes model pursued
in the literature is to make the volatility stochastic.12 By allowing the volatility
to follow a stochastic process some of the discrepancies in the Black-Scholes
model can be e�ciently mitigated. However, option pricing under stochastic
volatility constitutes a particularly challenging problem for two reasons. First,
the volatility can not be directly observed which makes calibration di�cult.
Second, when volatility is stochastic the market is incomplete, implying that we
can not construct a replicating portfolio in terms of the underlying securities
and thus there is no unique arbitrage price of the option. Therefore, option
pricing and calibration in the context of a stochastic volatility model becomes
a very delicate task.

10Implied volatilities make theoretical Black-Scholes prices equal to market prices.
11For more on the causes of volatility smiles see Hull (1999) [31].
12See Foque, Papanicolaou and Sircar (2000) [21].
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3 The model
In section 3.1 the concept of regime-switching volatility is de�ned. Section 3.2
deepens the discussion and explains the mathematical framework of regime-
switching in more detail. Finally, section 3.3 discusses the economical content
and the bene�ts of the model.

3.1 Regime-switching volatility de�ned
The objective of a regime-switching model is to obtain a model that allows a
given variable to follow di�erent time series processes over di�erent subsam-
ples.13 The intuition of this model is that as conditions in the market change,
so does the data generating process of the variable of interest. As argued in
section 2, for pricing purposes, we would like to have a model where the volatil-
ity of the underlying security is allowed to change randomly in time. Thus, we
want to extend the classical Black-Scholes model for the underlying asset St as
follows

dSt = µStdt + σ(Xt)StdWt,

where µ is a constant drift term, σ(Xt) is the volatility and dWt is an increment
of a Brownian motion Wt

14. In this setup volatility depends on the state variable
Xt.15 The crucial assumption of a regime-switching model is that Xt follows
a so called markov chain. A markov chain is a stochastic process de�ned as
follows.
De�nition 1 A stochastic process Xt; t ≥ 0 follows a markov chain if the fol-
lowing two conditions are satis�ed.

� Xt satis�es the markov property.

� Xt takes values from amongst a �nite set of states.
Next, we state the de�nition of the markov property.16

De�nition 2 A stochastic process Xt : t ≥ 0 is said to ful�l the markov property
if at any time s > t > 0 the conditional distribution of Xs given the whole history
of the process up to and including time t, depends only on the state of the process
at time t.
Loosely speaking, the markov property implies that only the present is relevant
for determining the future. Due to this property a markov process is said to
lack memory. Thus, a regime-switching volatility model is a model where the
volatility jumps randomly amongst a �nite number of volatility states and past
states can not be used to predict future states. To see what this means in
practice we can consider a model with only two volatility states.

High volatility state: σ = 70%
Low volatility state: σ = 30%

13See Hamilton (1989) [25] for a description of regime-switching models.
14Recall that a Brownian motion is a stochastic process Wt such that dWt ∼ N(0, dt) and

dWs and dWt, for s 6= t, are independent. For more on the properties of the Brownian motion
see Öksendal (1985) [37].

15In principle we could let the drift term also depend on Xt. However, as the drift term
does not a�ect option prices it is more convenient to model this as a simple constant.

16See Enger and Grandell (2003) [19].

5



Depending on whether Xt is in the high volatility state or the low volatility
state, and for the moment assuming µ = 0 we have the two models as

High volatility state: dSt = 0.7StdWt

Low volatility state: dSt = 0.3StdWt

As Xt is stochastic and jumps randomly between the high and the low volatility
state, the model of asset price dynamics will also change randomly according
to the prevailing volatility state. Figure 3 displays a realization of a simulated
path from this model. We see that periods of high volatility occur when the
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Figure 3: The top panel displays a realization of St when the price process is
modelled by a geometric Brownian motion with zero drift and a volatility driven
by a two-state regime-switching model, shown in the bottom panel.

underlying markov chain makes a transition from the low-volatility regime to
the high-volatility regime. Regime-switching models was �rst introduced by
Hamilton (1989) [25] who applied the model to the US GDP growth. Since
then, regime-switching has been applied to a multitude of �nancial and economic
variables including stock prices in Hamilton and Susmel (1994) [26], exchange
rates in Engle and Hamilton (1990) [20] and interest rates in Wu and Zeng (2004)
[35]. Regime-switching volatility models in the context of option pricing was �rst
addressed in Guo (2001) [24] where option pricing in a discrete time framework
was considered. In this thesis we will draw upon the results of Bu�ngton and
Elliott (2002) [9] and Mamon and Rodrigo (2004) [33] where the volatility is
modelled by a continuous time regime-switching model.
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3.2 Continuous time regime-switching volatility
To begin the description of the regime-switching model we consider a model
with an arbitrary number of states K ≥ 2. As in Bu�ngton and Elliott (2002)
[9] and Mamon and Rodrigo (2004) [33] we take the state space of Xt as the set
of unit vectors e1, e2, ..., eN , where ei is a K × 1 column vector with a one at
the i:th position and zeros everywhere else

ei = (0, 0, ..., 0, 1︸ ︷︷ ︸
i

, 0, ..., 0︸ ︷︷ ︸
K−i

)′.

The interpretion is that if the state variable Xt is in volatility state i at time
t we have Xt = ei. Thus, a one at position i in the vector denotes that the
volatility is currently in state i. Conditioned on this information the volatility
is a known positive real constant

σ(Xt|Xt = ei) = σi.

Here, we consider a regime-switching model in continuous time where t ∈ [0,∞).
In empirical research, discrete time regime-switching is more frequently em-
ployed than continuous time regime-switching.17 When the regime-switching is
used in conjunction with time series data, a discrete time model is preferable
since it is more consistent with how real-world time series data are sampled, e.g.
hourly, daily, weekly etc. However, a continuous time model is more bene�cial
to the application considered here since it enables us to derive analytical option
pricing formulas. In addition, we need not sample any time series data since
the model will be calibrated directly to observed option prices at a given point
in time.

We begin by denoting distribution of the random time Tij the markov chain
stays in state i before it jumps to state j by Fij . This distribution has to be
consistent with the memory-less property of a markov process. The memory-less
property implies that conditioned on that Tij is greater than t, the probability
that the markov chain will stay in state i for a time t+h, for h ≥ 0, is the same
as that the markov chain will stay in that state for a time h

P (Tij > t + h|Tij > t) = P (Tij > h). (1)

As in Enger and Grandell (2003) [19] one can show that this property is satis�ed
if and only if Tij is exponentially distributed

Fij(t) = 1− e−λijt, for t ≥ 0,

where λij is the intensity with which the markov chain jumps from state i to
state j. To see that this choice of distribution indeed ful�ls the markov property
(1) we compute

P (Tij > t + h|Tij > t) =
P (Tij ≥ t + h ∩ Tij ≥ t)

P (Tij ≥ t)
=

1− P (Tij ≤ t + h)
1− P (Tij ≤ t)

=
1− Fij(t + h)

1− Fij(t)
=

1− (1− e−λij(t+h))
1− (1− e−λijt)

=
e−λij(t+h)

e−λijt

= e−λij(t+h)+λijt = e−λijh = 1− Fij(h) = P (Tij > h).
17See Enger Grandell (2003) [19].
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Now, considering a very short period of time h ≥ 0 and using the memory-less
property of the markov chain, the probability pij(h) that the process jumps
from state i to state j during this short period of time conditioned on that it
stays in state i for a time t ≥ 0, can be approximated as

pij(h) = P (Tij < t + h|Tij > t) = 1− P (Tij > t + h|Tij > t)
= {(1)} = 1− P (Tij > h) = P (Tij < h)

= Fij(h) = 1− e−λijh ≈ λijh. (2)

In the last step I have used that h is very small so the linearization around
h = 0 is a rather good approximation. It follows that the probability that the
markov chain stays in state i, i.e. does not jump to any of the other K − 1
states, during this short period of time is one minus the sum of the probabilities
that the process does jump to any other state

pii(h) ≈ 1−
K∑

i6=j

λijh. (3)

If we for the moment con�ne ourselves to two states and put the transition
probability pij(h) as the (i, j):th element18 in a matrix P(h) and use equation
(2) and (3) we get

P(h) =
(

p11(h) p12(h)
p21(h) p22(h)

)
=

(
1− λ12h λ12h

λ21h 1− λ21h

)
.

The matrix P(h) is known as the transition probability matrix. One can show
that the markov property implies that the transition probability matrix must
satisfy the so called Chapman-Kolmogorov equation

P(t + h) = P(t)P(h), (4)

for each t, h ≥ 0.19 Subtracting P(t) from both sides of equation (4) we get

P(t + h)−P(t) = P(h)P(t)−P(t) = (P(h)− I)P(t)

=
( −λ12 λ12

λ21 −λ21

)
P(t)h

=
( −λ11 λ12

λ21 −λ22

)

︸ ︷︷ ︸
Q

P(t)h

= QP(t)h,

where λ11 = λ12, λ22 = λ21 and I is the identity matrix20. Dividing by h on
both sides in this last expression and letting h → 0 we get

dP
dt

(t) = QP(t). (5)

18The (i, j):th element in a matrix refers to the element on the i:th row and the j:th column
in that matrix.

19See Enger and Grandell (2003) [19].
20I is a 3× 3 matrix with ones at the main diagonal and zeros every where else.
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This system is referred to as the Kolmogorow equations and can be solved ex-
plicitly using standard techniques.21 As we can see in equation (5) the dynamics
of the transition probabilities are controlled by the intensity matrix Q. In the
general K-state case this matrix has the following appearance

Q =




−λ11 λ12 · · · λ1K

λ21 −λ22 · · · λ2K

...
... . . . ...

λK1 λK2 · · · −λKK


 ,

where λii =
∑K

j 6=i λij . The parameter λii can be given the interpretation as the
total intensity with which the markov chain jumps out of state i and the expected
time the process stays in state i is 1/λii. Thus, as we measured time in number
of years, a λii of 12 can be interpreted as that the expected time the markov
chains stays in state i is one month. In a K-state model the matrix contains
K(K − 1) unknown parameters since the diagonal elements are given by the
o�-diagonal elements. For calibration purposes we therefore need to estimate
K(K − 1) intensities. Figure 4 gives a schematic illustration of the concepts
developed in this section for a two-state model. The transition intensities and
the arrows show which parameter controls which transition. The state with high
volatility represents turbulent periods with high market activity and the state
with low volatility represents more quiet periods with smaller price movements.

State 1: High volatility state.
X

t
 = (1,0). Turbulent periods.

Volatility σ
1
.

State 2: Low volatility state.
X

t
 = (0,1). Quiet periods.

Volatility σ
2
.

λ
21 λ

12

Figure 4: Illustration of a two-state regime-switching model.

21For techniques how to solve this problem see Boyce and DiPrima (2000) [8].
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3.3 Rationale for regime-switching volatility
Above, the mathematics behind the regime-switching volatility model have been
described in detail. However, so far not much have been said about the economi-
cal content of the states. The states were �rst given an economical interpretation
in Guo (2001) [24] where they represent di�erent degrees of asymmetric infor-
mation in the investor community. When the volatility is in the lower state,
price movements are moderate and people believe that they are well informed
in a seemingly complete market. When some investors have more information
than other investors, this could cause larger �uctuations on the market as the
better informed investors exploit the perceived mispricings by heavy trading.
Even though the trades of the better informed investors do not have any sub-
stantial in�uence on market prices, the market could become more volatile if
the less informed investors suspect that some groups or individuals have exclu-
sive information. This could give rise to herding behaviour as the less informed
investors react �ercely on small movements in the market.22 Thus, when infor-
mation is asymmetrically distributed among investors we are in a high volatility
state. Although the states could be given some economical content this will not
be crucial for pricing purposes. Rather, the choice of using a regime-switching
model for the volatility can be motivated on more pragmatic grounds. I consider
the regime-switching model to be very bene�cial of the following reasons.

� Generates volatility clustering. Once a transition has occurred, the volatil-
ity tends to stay in that state for some time. Thus, periods of high and
low volatility will be somewhat clustered.

� Generates heavy-tailed distributions. High volatility regimes can produce
returns of a magnitude that by far exceeds the returns of more quiet
periods and thereby increase the probability of extreme movements.

� Replicates various volatility structures. As noted in Section 2, implied
Black-Scholes volatilities often vary across strike and time to maturity.
As we will see, a regime-switching volatility model can generate prices
corresponding to various volatility structures and thus pricing will be fa-
cilitated.

� Simple and easy to understand. The concept of regime-switching volatility
is intuitively appealing and easy to understand. This enhances the value
of the model since it can readily be communicated to traders and sales
people.

� Consistent with modern �nancial theory. As described in section 3.1, a
regime switching-model satis�es the markov property so that the history
has no predicitve power on future outcomes. Thus, the model is consistent
with the E�cient Market Hypothesis as this implies that all information,
past or present, should already be incorporated into market prices.23

22This is in line with the arguments in Avery and Zemsky (1998) [2], see section 2.
23The argument behind the E�cient Market Hypothesis goes like this. If the past do

indeed has some predictive power on the future, rational investors will realize this and exploit
these dependences. Consequently, supply and demand will cause prices to adjust until all
information has been incorporated into market prices. If the market is e�cient this process of
sequential adjustments is instantaneous and past information has no relevance for determining
future prices. (Grinblatt and Titman, 2002)
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4 Option pricing
Section 4.1 gives brief introduction to option pricing and derives the general
pricing formula. Section 4.2 discusses some of the problems faced when pric-
ing options under stochastic volatility and the pricing equations for a regime-
switching model are derived.

4.1 Option pricing in general
The main problem in derivatives pricing is to �nd a price process

{
Π(t; Φ); t ∈ [0,∞)

}

for a contingent claim which pays o� the amount

Φ(ST )

on a future date T . Since the payo� is known at time T the value of the
contingent claim at time T is

Π(T ; Φ) = Φ(ST ).

However, since we are standing at time t < T , the value of the risky asset at
time T is not known and so is the value of the derivative. The starting point to
this problem is to formulate a model for the dynamics of the underlying asset St.
Once we have formulated a model for the stock price dynamics, the objective is
to price the derivative in a way that is consistent with the chosen price process.
More speci�cally, we want to price the derivative so that we do not introduce
arbitrage on the market. Harrison and Kreps (1979) [28] and Harrison and Pliska
(1983) [29] have shown that absence of arbitrage is equivalent to the existence
of a risk adjusted measure Q under which the discounted price processes of
all traded risky securities are martingales. Since this statement will be very
important for the derivation below we state it formally as a theorem.

Theorem 1 The market is free of arbitrage if and only if there exists a risk
adjusted measure Q such that the discounted price processes of the traded risky
assets S1(t), S2(t), ..., SN (t)

S1(t)
B(t)

,
S2(t)
B(t)

, ...,
SN (t)
B(t)

,

are martingales under Q.

As usual, Bt is the money-market account with dynamics given by

dBt = rBtdt, B0 = 1,

which implies that
Bt = ert.

That the discounted price process of all traded risky asset are martingales under
Q implies that

Si
t

B(t)
= EQ

t

[ Si
T

B(T )

]
, for i = 1, .., N , (6)
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where EQ
t [·] denotes that the expectation is taken underQ and conditioned on all

information generated until time t.24 Since equation (6) also holds for the price
process of the derivative, given that it is traded, and using that Π(T ; Φ) = Φ(ST )
we obtain the familiar pricing formula as

Π(t; Φ) = e−r(T−t)EQ
t

[
Φ(ST )

]
. (7)

Thus, the problem of pricing the derivative boils down to �nding a risk adjusted
measure Q under which the discounted price processes of all traded assets are
martingales. If we can �nd a unique risk adjusted measure that satis�es relation
(6) then our job is done and we can obtain unique prices of all derivatives.
However, if the risk adjusted measure is not unique then there exists a whole
set of prices which are all consistent with the no-arbitrage assumption. As
will be explained below, when volatility is stochastic the martingale measure
is not unique and prices can not be uniquely determined. Thus, we need to
make some additional assumptions to be able to price options under regime
switching-volatility.

4.2 Option pricing under regime-switching volatility
In section 4.2.1 various approaches to selecting the risk adjusted measure are dis-
cussed and in section 4.2.2 the mathematical derivation of the pricing equations
is outlined.

4.2.1 Selecting the risk adjusted measure
The problem of pricing options under stochastic volatility is that the risk ad-
justed measure Q can not be uniquely determined. So, why is the risk adjusted
measure not unique? One can show that the risk adjusted measure is unique
if and only if the market is complete. In general, a necessary condition for
completeness is that the number of traded securities are at least as great as the
number of random sources in the economy.25 In the model considered here, we
have e�ectively introduced 1 + K(K − 1) random sources in the market, one
random source corresponding to the Wiener process Wt and K(K − 1) random
sources corresponding to the transitions between the volatility states. Since
there is only one risky security St, the market is not complete and therefore the
price of the derivative is not unique. In more economical terms the incomplete-
ness means that we can not construct a replicating, self-�nancing portfolio in
terms of underlying securities which generates exactly the same payo� as the
derivative. Thus, to obtain unique prices we need to impose some additional
assumptions on the market model. Assumptions that might resolve the problem
are:

1. Assume a speci�c form of the utility function of the investors.

2. Assume how the market prices volatility risk.
24More formally we should write that the expectation is taken under the �ltration Ft gen-

erated by the σ-�eld σ{Su, Xu : u < t}, which can be interpreted as all the information
generated by S and X up until time t. See Öksendal (1985) [37] for a introduction to σ-�elds.

25See Björk (2004) [5] for a discussion of the relation between completeness of the market
and uniqueness of the martingale measure.
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3. Assume that the risk adjusted measure is chosen to be by some measure
as close as possible to the objective probability measure.

4. Assume that there exists so called change-of-state securities which payo�s
are linked to the change of volatility state.

5. Assume what the dynamics look like under the risk adjusted measure Q.

In the literature, all approaches have been considered.26 In Chourdakis (2002)
[11] and Duan (2002) [16] the �rst approach is used on a two-state discrete
time model and assumptions on the utility function of the investors are made.
Hardy (2001) [27] adopts the second approach and assumes that volatility risk
is not priced in the market.27 Another method is to assume that the market
chooses the risk adjusted measure which is by some measure as close as possible
to the objective probability measure P. One common technique is to choose
the Q that maximizes the information the two measures have in common.28
This approach has been pursued in Chan, Elliott and Siu (2005) [10] and Di
Masi, Kabanov and Runggaldier (1993) [14]. As argued by Guo (2001) [24] one
could also �nd unique option prices by to completing the market by introducing
so called change-of-state securities. These are securities which pay one unit of
account when the volatility changes states and then become worthless. Then, a
new change of-state security is issued that pays o� at the next change of state.
One can realise that this will indeed complete the market and we can obtain
prices in terms of the underlying and the change-of-state securities. The last
approach is considered in Bu�ngton and Elliott (2002) [9] and Mamon and Ro-
drigo (2004) [33] where the dynamics of Xt is modelled directly under the risk
adjusted measure Q. Thus, we do not care about what the dynamics look like
in the real-world since it is only the dynamics under the risk adjusted measure
that matters for pricing. The drawback of this method is that we do not know
any of the parameters in the model since the Q-dynamics is unobservable to us.
The only way to choose the appropriate parameters is to back them out from
observed prices so that the model produces the same prices as those observed on
the market. In bond option pricing, where the market is also incomplete, this
technique is commonly known as martingale modelling where it is the dynam-
ics for the short rate that is modelled directly under the risk adjusted measure.29

The standpoint taken here is that there is no convincing evidence why a speci�c
utility function should be preferred to another or how the market should price
the extra risk introduced by the regime-switching volatility. It is also very hard
to �nd any solid economical arguments why the market should choose the risk
adjusted measure to be as close as possible to the objective probability mea-
sure. Neither is pricing in terms of change-of-state securities feasible since such
instruments do not exist on the market. Therefore, I consider the last approach,

26Here, we will not go into details about how the di�erent approaches resolve the problem
in practice. For more information please refer to the cited articles.

27Bollen (1998) [7] relies on the same assumption.
28This means that the relative entropy between the two measures is minimized, see Chan,

Elliott and Siu (2005) [10].
29Models for the short-term interest rate under Q are known as no-arbitrage models and

the technique of backing the parameters out from observed bond prices is known as inverting
the yield curve. See Björk (2004) [5] and Hull (1999) [31].
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where the dynamics of Xt is modelled directly under Q, to be the most appeal-
ing as this does not require us to assume anything about the utility or the risk
preferences of the market. The issue of choosing the appropriate risk adjusted
measure is resolved since we intend to calibrate the model to observed market
prices which contain information about the speci�c risk adjusted measure used
by the market. In fact, parameters obtained in this manner will re�ect all infor-
mation available on the market including the degree of risk aversion and various
factors a�ecting supply and demand including liquidity constraints, among oth-
ers. Below we will show that the model is tractable and can be used to derive
equations which can be solved for the price of the derivative. In addition, the
model is guaranteed to be free of arbitrage.

4.2.2 Derivation of the pricing equations
To begin the derivation of the pricing equations we �rst apply Theorem 1 and
Itô's formula to St/Bt to obtain the Q-dynamics of St as

dSt = rStdt + σ(Xt)StdWt, (8)

where as before Xt follows a K-state continuous time markov chain and dWt is
a Wiener increment under Q.30 Equation (8) always holds regardless of choice
of models for the volatility or the risk-free interest rate. For the moment we
assume that the risky asset St does not pay any dividends. As in the standard
Black-Scholes model we consider a market which ful�ls the following set of
assumptions.

Assumption 1 All assets are in�nitely divisible31.

Assumption 2 The risk-free interest rate is a deterministic constant.

Assumption 3 Trades can be made continuously in time.

Assumption 4 The market is free of arbitrage.

Assumption 5 The price process for the derivative asset is of the form

Π(t; Φ) = F (t, St, Xt),

where Φ(ST ) is the �nal payo� and F is some smooth function.

In addition to these assumptions we also state the following crucial assumption.

Assumption 6 Xt follows a continuous regime-switching model under Q.

Now, from (7) the price of an option with �nal payo� Φ(ST ) is given by

Π(t; Φ) = e−r(T−t)EQ
t

[
Φ(ST )

]
.

According to assumption 5 we can price this derivative using the function F as

F (t, St, Xt) = Π(t; Φ).
30The derivation of the dynamics of St under Q can be found in Björk (2004) [5].
31This means that we can sell or buy any number or fraction of an asset
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Our task is to determine what the function F (t, s, x) might look like, or at least
to derive some relation which F must satisfy. To derive the pricing equation
satis�ed by F (t, s, x) we will use relation (6) which states that the discounted
price processes of all traded securities are martingales under Q. This implies
that the discounted price process

V (t, St, Xt) = e−rtF (t, St, Xt),

should be a martingale under Q. That V is a martingale means that the future
expected value of V is equal to today's value. How can we use this to price the
option? To illustrate the conceptual idea, let us consider a random variable Yt

with the stochastic di�erential

dYt = µtdt + σtdMt,

where Mt is a martingale. Then, modulo some technicalities, a necessary con-
dition for Yt to be a martingale is that the drift term is zero

µt = 0.

See Öksendal (1985) [37] for a more rigorous argument. From this example the
mechanics should be fairly clear. If we can derive a stochastic di�erential for
V , we can impose the condition that the drift term must equal zero to derive
some relation which V must satisfy. Consequently, we need to go through the
following steps.
Step 1. Derive the stochastic di�erential for V .
Step 2. Set the drift term of Vt to zero and derive the pricing equations.
Below we will carry out both steps in turn.

Step 1 - Derive the stochastic di�erential of V

To start the derivation of the stochastic di�erential of V we begin by setting
V (t, St, Xt) conditioned on that the markov chain is in state i as

Vi(t, St) = V (t, St, Xt|Xt = ei),

for i = 1, ...K. We now set

V(t, St) = (V1(t, St), ..., VK(t, St)) ,

so that V(t, St) a 1 × K row vector. Since Xt is a K × 1 column vector,
V (t, St, Xt) can be succinctly expressed as a matrix multiplication

V (t, St, Xt) = V(t, St)Xt =
K∑

i=1

Vi(t, St)Xi
t ,

where Xi
t is the i:th element of the vector Xt. Of course, as the state space of

Xt is the set of unit vectors, see section 3.2, only one of the terms in this sum
will be non-zero. Applying the multidimensional Itô rule32 to V (t, St, Xt) we

32See Öksendal (1985) [37].
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obtain the stochastic di�erential33 as

dVt =
∂V

∂t
dt +

∂V

∂s
dSt +

1
2

∂2V

∂s2
(dSt)2 + VdXt

=
∂V

∂t
dt +

∂V

∂s
(rStdt + σtStdWt) +

1
2

∂2V

∂s2
σ2

t S2
t dt + VdXt.

The stochastic di�erential of V involves the di�erential of Xt. As in Elliott,
Aggoun and Moore (1994) [18] one can show that the di�erential of Xt has a
representation of the form

dXt = QXtdt + dMt,

where Mt is a K-dimensional martingale and Q is a before the intensity matrix
of the markov chain. Inserting this into the Itô expansion and collecting terms
we obtain the stochastic di�erential of V as

dVt =
(∂V

∂t
+ rSt

∂V

∂s
+ VQXt +

1
2
σ2

t S2
t

∂2V

∂s2

)
dt (9)

+ Stσt
∂V

∂s
dWt + VdMt.

Step 2: Derive the pricing equations
By de�nition V is a martingale and thus the drift terms in (9) must sum to
zero. That is

∂V

∂t
+ rSt

∂V

∂s
+

1
2
σ2

t S2
t

∂2V

∂s2
+ VQXt = 0. (10)

Since Vi(t, St) = e−rtFi(t, St) and by setting

F(t, St) = (Fi(t, St), ..., FK(t, St))

equation (10) transforms into

−rF +
∂F

∂t
+ rSt

∂F

∂s
+

1
2
σ2

t S2
t

∂2F

∂s2
+ FQXt = 0.

Also, we must have that
Π(T ; Φ) = Φ(ST ).

These two equations have to hold with probability 1 for each �xed t.34 Under
some weak assumptions one can show that this holds for any St, so F (t, s, x)
must satisfy the completely deterministic equation

−rF +
∂F

∂t
+ rs

∂F

∂s
+

1
2
σ2

t s2 ∂2F

∂s2
+ FQXt = 0

with the boundary condition

F (T, s, x) = Φ(s).

33In the di�erential the notation σt is used to denote σ(Xt).
34See Björk (2004) [5].
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Since this holds for every choice of volatility state Xt we must have that

−rFi +
∂Fi

∂t
+ rs

∂Fi

∂s
+

1
2
σ2

i s2 ∂2Fi

∂s2
FQei = 0 (11)

with boundary condition
Fi(T, s) = Φ(s),

for i = 1, ...,K. Carrying out the matrix multiplication in the last term of
equation (11) we obtain K equations of the following kind

−rFi +
∂Fi

∂t
+ rs

∂Fi

∂s
+

1
2
σ2

i s2 ∂2Fi

∂s2
− λiiFi +

K∑

j 6=i

λjiFj = 0, (12)

for i = 1, ..., K. This completes the derivation of the pricing equations.

As an example we consider a call option and a model with only two volatil-
ity states. In this simple case the pricing equations become

− rF1 +
∂F1

∂t
+ rs

∂F1

∂s
+

1
2
σ2

1s2 ∂2F1

∂s2
− λ11F1 + λ21F2 = 0

− rF2 +
∂F2

∂t
+ rs

∂F2

∂s
+

1
2
σ2

2s2 ∂2F2

∂s2
− λ22F2 + λ12F1 = 0

and the boundary conditions

F1(T, s) = max(s−K, 0),
F2(T, s) = max(s−K, 0).

Solving these equations yield two prices F1(t, st) and F2(t, st), one for each
regime. Since the price of the option depends on the current regime, the in-
vestor has to decide which one of these prices is the true price. Since there is
no easy way to determine the true state one often has to rely on some form
of expert judgement. As discussed in Appendix II, the selection of the current
regime is not a severe problem since we determine this within the calibration.
In the above derivation we have assumed that the risky asset does not pay divi-
dends. If the underlying pays a continuous dividend stream d we can follow the
argument presented in Hull (1999) [31] and correct for this by replacing St with
Ste

−d(T−t).

Equation (12) resembles very much the standard Black-Scholes PDE. Indeed,
if all transition intensities are zero the two models are identical. In the case of
non-zero intensities, the price in each regime is coupled with the prices in all
the other regimes and we are therefore required to solve the system of equations
simultaneously. This makes pricing in a regime-switching model more computa-
tionally demanding than in the Black-Scholes model since no analytical methods
exist which enable us to derive a closed-form solution for the price of the option.
However, there are powerful techniques available that can be used to derive ap-
proximate solutions to these type of problems. A detailed discussion of such
techniques is outlined in Appendix I.
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5 Data and method
The pricing equations derived in section 4.2.2 can be solved by numerical meth-
ods. Once we know how to price options in this framework, our goal is to
calibrate the model to observed option prices. That is, we want to back out the
parameters from the model by making the theoretical prices as close as possible
to prices observed on the market. Here, I will not further discuss how the pricing
equations have been solved or how the model have been calibrated to observed
market prices. The interested reader may refer to Appendix I and Appendix II
for a detailed discussion of the techniques employed.

When calibrating the model it is important that the number of contracts used is
su�ciently large to ensure that the algorithm converges quickly to the optimal
solution. To avoid problems of instability and over-�tting we have to use at least
as many contracts in the estimation as there are unknown parameters. For a
K-state model we have K(K − 1) transition intensities and K volatilities so in
total we have K2 unknown parameters. Thus, for a two-state model we need
at least four contracts, for a three-state model we need nine contracts and so on.

Another important issue is that the options used for calibrating the model are
relatively liquid. Illiquid contracts are potential outliers which could distort
the calibration. To minimize the impact of such problems I have focused on
call options on the OMXS30 index.35 The OMXS30 index options are Euro-
pean call and put options on the OMXS30 index with maturities within the
next 36 calendar months. Expiration takes place at the fourth Friday in each
month. These options are very liquid and there exists a relatively large amount
of traded options of di�erent strikes and maturities. I have excluded put op-
tions since this would introduce a systematic error in the results corresponding
to the spread between put and call options. In addition, put and call options
are usually quoted for the same set of prices and therefore adding put options
would not increase the total number of contracts substantially. The price data
covering the period from August 2003 to August 2006 was obtained from the
newspaper Dagens Industri.36 During this period I have on the fourth Friday
in each month collected the prices at which the last trade took place of all call
options with expiration in the next two calendar months. This is the same
day as expiration took place and new options were introduced.37 The reason
for only considering options with expiration within two months is due to the
signi�cantly better liquidity on those contracts. To reduce the risk of having
illiquid contracts a�ecting the calibration I have excluded those contracts where
the bid-ask spread was greater than 20%. At the time this study was initiated,
August 2006 was the latest month available containing price data on the fourth
Friday. In the three year period preceding this month, the volatility has been
medium high during August 2003 to December 2004, low during January 2005
to April 2006, and high from May 2006, see Figure 1. Thus, this period enable
us to study how the parameters have varied under di�erent levels of market

35The OMXS30 index is a basket of the 30 largest companies on the Swedish stock exchange
weighted by their market capitalizations.

36The newspapers were obtained from the archive at the Stockholm School of Economics.
37The prices for speci�c date are quoted in the newspaper the following weekday.
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activity.38 As the risk-free interest rate I have taken the three month Swedish
government bond rate and the dividend yield has been approximated with the
average dividend yield of all companies included in the OMXS30 index. This
data was also obtained from Dagens Industri. Since there are 36 months in the
time period studied, a total number of 36 data sets were obtained. Given these
data sets I have proceeded as follows.

1. On each estimation date collect all call options with maturity within the
next two months and bid-ask spreads less than 20%.

2. Take out the at-the-money option with shortest time to maturity. We
denote this as the benchmark option.

3. Calibrate the model using all contracts, except the benchmark option.

4. Price the benchmark option with the calibrated model and compute the
percentage deviation.

The steps 1 to 4 were performed for models with two, three and four volatility
states. In this way both the in-sample and the out-of-sample pricing perfor-
mance for an increasing number of states can be studied. The reason for choos-
ing an at-the-money option with a short time to maturity as the benchmark
option on which to evalute the out-of-sample pricing performance, is that this is
usually the most liquid of all traded options. Thus, deviations of the theoretical
prices from the benchmark prices should not be to due to insu�cient liquidity.
Also, using an at-the-money option to evaluate pricing performance is interest-
ing from the viewpoint of a structured products desk since new OTC-contracts
are usually written at-the-money.39 Therefore, it is important that the model
performs well for at-the-money options.

I have considered a maximum of four states since �ve states or more require
a substantially larger number of quoted options. A �ve state model contains
25 unknown parameters and we therefore require at least 26 quoted options,
including the benchmark option. Since there rarely exists 26 liquid options in
the market this e�ectively rules out the �ve-state model. A four-state model
contains 16 unknown parameters and thus requires only 17 contracts, including
the benchmark option. Since almost all data sets contained 17 contracts I limited
the study to a maximum number of four states. However, after applying the
liquidity criteria some of the data sets had an insu�cient number of contracts.
Those dates were the 25th of February 2005, the 25th of March 2005, the 27th
of January 2006, the 24th of February 2006 and the 24th of June 2006. The
model was not calibrated on those dates. Thus, after removing the dates with
an insu�cient number of liquid contracts we got a total of 31 data sets.

38Considering the limited scope of this thesis and other time constraints, a three year period
was deemed su�cient.

39This was pointed out to me by Ola Hammarlid at Swedbank Markets.
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6 Empirical Results
In section 6.1 the parameters of the calibration are shown. The results of the
in-sample pricing performance are presented in section 6.2 and in section 6.3 the
out-of-sample pricing performance of the di�erent models is discussed. Stability
of the parameters is analysed in section 6.4.

6.1 Parameters
As described in section 5, I have on the last day in each month calibrated
the model for two, three and four states to observed option prices with matu-
rity within the next two months. The calibrated model is therefore �tted to a
volatility surface since we consider variation across both moneyness and remain-
ing time to maturity. In Table 2 the average values over the whole sample of
the estimated volatility parameters are shown.40 For the two-state model, the

Parameter Two states Three states Four states
¯̂σ1 19.9% 18.0% 30.2%
¯̂σ2 10.9% 13.7% 15.1%
¯̂σ3 - 9.7% 10.7%
¯̂σ4 - - 7.3%

Table 2: The average level of the estimated volatilities in each state.

average volatility in the high volatility state and the low volatility state were
bout 20% and 11%, respectively. This can be compared with the average his-
toric volatility during this time period of 16%. That the historic volatility lies
somewhere between the high and the low volatility states should be reasonable
since we do not expect the market to either underestimate or overestimate the
average volatility in the long-run. For all models there seems to be a relatively
large gap between the highest and the second highest volatility state whereas
the less volatile states are closer to each other. As states with similar volatilities
also generate similar prices, not much is gained by including more states in the
model. On the contrary, several states with similar volatilities could result in
unstable estimates since this makes the parameter surface �atter and thereby
harder for the calibration algorithm to �nd an optimal solution.

In Table 3 the averages of the intensity parameters for each of the models
are shown. For a two-state model the volatility jumps on average 6.1 times per
year from the high volatility state to the low volatility state and jump 6.6 times
per year from the low volatility state to the high volatility state. On average,
the expected time the volatility stays in either state is about 2 months.41 The
transition intensities could also be interpreted as a measure of speed of mean
reversion of the volatility process (Foque, Papanicolaou and Sircar, 2000). To
explain this concept more clearly we can think of the two-state volatility process
as switching between a high and a low state with the expected volatility level
lying somewhere in between.42 The intensities are a measure of how fast the

40Averages are denoted by hats on the estimated parameters.
41Recall that the expected time the volatility stays in regime i is 1/λii.
42In fact, we can �nd the expected value explicitly by solving equation (5) and letting
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Parameter Two-states Three-states Four-states
¯̂
λ12 6.1 4.4 5.4
¯̂
λ13 - 7.2 4.2
¯̂
λ14 - - 4.3
¯̂
λ21 6.6 10.5 4.7
¯̂
λ23 - 8.8 4.8
¯̂
λ24 - - 5.1
¯̂
λ31 - 7.3 5.0
¯̂
λ32 - 9.0 4.7
¯̂
λ34 - - 4.8
¯̂
λ41 - - 4.6
¯̂
λ42 - - 5.0
¯̂
λ43 - - 4.2

Table 3: The average level of the estimated volatilities in each state .

volatility mean-reverts to this expected level since a very high intensity will
make the volatility jump from the high volatility state to the low volatility state
more often and vice versa. Foque, Papanicolau and Sircar (2000) [21] develop a
framework for estimating a stochastic volatility model based on the idea that the
speed of mean reversion of the volatility in the market is very high. They argue
that if the volatility runs very fast, i.e. the volatility returns to the mean-value
in a few days, then the market would behave almost as in a constant volatility
Black-Scholes model, as the volatility on average will be more or less equal to
the expected value. Thus, one should be able to treat the market as a small
perturbation from a Black-Scholes world. The �ndings in this study question
this reasoning since the average λ of the two-state model was about 6, which can
not be considered a very high speed of mean-reversion. What we have found is
instead that a slowly varying volatility process is more consistent with observed
market prices. As the volatility varies slowly we also suspect that there will be
a substantial di�erence in prices between the low and the high volatility state.
This is because the volatility tends to stay some time in that state before switch-
ing to another state. Thus, the level of the volatility in the current state will
have a larger impact on the price compared to a situation where the volatility
jumps more frequently back and forth. To see what the di�erence in volatilities
means in terms of prices for the two-state model I have computed the price of a
two month call option on an underlying that is currently worth 100 SEK with a
strike of 100, a volatility of 20% in the high volatility state and 11 % in the low
volatility state. The risk-free interest rate has been set to zero and the transi-
tion intensities have been set to 6 in each state. The price in the high volatility
and the low volatility state becomes 2.9 and 2.3, respectively, a di�erence of 26%.

As noted in section 3.2, the total intensity for leaving a state is the sum
t → ∞ to obtain the time-invariant distribution which can then be used to compute the
expected value.
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of all intensities for jumping between that state and all other states. The in-
tensity for leaving state one is 11.6 (4.4+7.2) in the three-state model and 13.9
(5.4+4.2+4.3) in the four-state model. Thus, in a model with more states, tran-
sitions tend to occur a lot more frequently than in a model with fewer states.
This is expected as a model with two states can only discern whether the volatil-
ity is high or low, not if it is medium-high or medium-low. Transitions between
e.g. a low and a medium-low volatility state will therefore go undetected in the
two-state model. As a consequence, transitions intensities in a model with fewer
states will be lower.

In this report I have calibrated the model under the assumption that the volatil-
ity follows a regime-switching volatility model under the risk adjusted measure
Q. It is important to stress that parameters obtained in this way are not equal
to the parameters under the actual probability measure P, which describes real-
world asset price dynamics. The estimates obtained here also re�ect the degree
of risk aversion in the investor community, liquidity constraints and various
supply and demand factors. Therefore, we can not directly compare the model
developed above with a model calibrated directly to historic asset returns. It
is most likely that a model calibrated on historic asset returns will yield quite
di�erent estimates of the parameters compared to a model estimated from ob-
served option prices. As previously noted, one reason to this is that parameters
calibrated to observed option prices take into account the degree of risk aver-
sion of the market. Furthermore, parameters that have been implied out from
observed option prices re�ect the markets future expectation on the volatility
process whilst a model calibrated on historic data will provide a description
of the volatility model that has prevailed in the past. Since the models di�er
substantially with respect to underlying assumptions I argue that it is not a
meaningful exercise to use one model to validate or invalidate the other. A
more relevant criterion on which to value a model should be to study its perfor-
mance in the actual context it will be used. Since the main application of the
model will be pricing, this should also be the relevant operational performance
criterion.

6.2 In-sample �t
To evaluate the in-sample pricing performance I have calculated one R2 for
the options with approximately one month to maturity and another R2 for the
options with approximately two months to maturity. The mean R2 values for
di�erent number of regimes are displayed in Table 4. From Table 4 we make

Number of states R̄2
1 month R̄2

2 months
Two states 0.9941 (0.8738) 0.9935 (0.9190)
Three states 0.9970 (0.9621) 0.9956 (0.9566)
Four states 0.9981 (0.9941) 0.9968 (0.9837)

Table 4: Mean R2 values for di�erent number of states and minimum and
maximum R2 values. Minimum values in parentheses.

the following observations. First, the overall in-sample �t is very good since the
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mean R2 values are very close to one for all states and maturities. Even if the
models did provide a perfect description of the data, a slightly smaller value
seems natural since all traded options are to some extent a�ected by liquidity
factors causing prices to deviate somewhat from the true model. Second, the in-
sample-�t to options with one month to maturity is higher than for options with
two months to maturity. This is probably due to the fact that a larger number
of options with one month to maturity have been used in the calibration thus
giving larger weight on obtaining a good �t for those contracts. It is reasonable
to assume that a larger number of liquid contracts with two months to maturity
would improve the R2 value for longer maturities. Third, the in-sample �t
is higher the more states are included in the model. This is expected since
the degrees of freedom increase with the number of states, thereby enabling a
better �t to the data. However, I argue that this increase in the R2 has to be
weighted against the larger number of parameters used. It is harder to obtain
good estimates if the number of parameters is large and the time it takes for
estimating the model is substantially longer. Since the two-state model provides
a very good �t to data and not much is gained by increasing the number of
parameters, I argue that a two-state model is su�cient. In Figure 5 I have
plotted the observed prices (stars) and the theoretical prices (rings) for a two-
state model at the 27th of December 2005. As discussed above, the stars in
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Figure 5: Theoretical prices from a two-state model (rings) and observed market
prices (stars) for call options on OMXS30 index on the 27th of December 2005.
The top panel show the prices for the contracts with maturity in one month
and the bottom panels show the prices for the contracts with maturity in two
months.
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Figure 5 represents the prices of the contracts used for calibrating the model
at this date. We see that the calibrated model seems to replicate the observed
market prices with a high degree of accuracy. Plots of the other estimated
models display similar appearances. From the results obtained here I conclude
that the in-sample pricing performance of all models seems to be very good and
taking into account the number of parameters used, the two-state model should
be favoured.

6.3 Out-of-sample performance
The out-of-sample pricing performance has been evaluated as follows. For each
calibrated model the theoretical price of the selected benchmark at-the-money
option with one month to maturity have been computed. In the next step,
the percentage deviation of the theoretical price from the observed option price
has been calculated and recorded. This procedure has been repeated for all
estimation dates.43 As a comparison we have also computed a Black-Scholes
price of the benchmark option. This was done similarly to the regime-switching
model by backing out the implied volatility from the prices of the in-sample
options.44 However, in the Black-Scholes case we only have to back out a single
volatility parameter. More formally we have solved

{σ̂∗t } = arg min
σ∗t

Nt∑

i=1

(
Πi

B&S(t, st|σ∗t )−Πi∗(t)
)2

,

where Nt denotes the total number of contracts used for estimating the model
at day t, Πi

B&S(t, st) is the standard Black-Scholes call price of option i and
Πi∗(t) is the observed market price of option i at date t. Thus, the value σ̂∗t
is the constant volatility which should make the theoretical Black-Scholes price
of all contracts as close as possible to observed prices. Using this volatility as
input in the Black-Scholes formula I have then computed the theoretical Black-
Scholes price of the benchmark option and recorded the percentage deviation
from the actual price. If we believe that we live in a Black-Scholes world where
the volatility is constant across moneyness and time to maturity this approach
should price the benchmark option correctly.

In Figure 6 the average absolute percentage deviations from the price of the
benchmark option are shown for each model: Black-Scholes denotes the Black-
Scholes model, 2S denotes the two state model, 3S denotes the three state model
and 4S denotes the four state model. From this Figure we can distinguish two
important observations. First, the Black-Scholes model produces considerably
larger mispricings than any of the regime-switching models. This indicates that
the regime-switching volatility is indeed more consistent with observed market
prices than a constant volatility. Second, the pricing performances of the regime-
switching models are more or less equal. Thus, adding more states will not
increase the pricing performance of the model. On the contrary, we see that the
average deviation of theoretical prices from observed prices is slightly larger in
the four-state model than in the three-state model or the two-state model. This

43See Section 5 for a more detailed description of the out-of-sample evaluation of the pricing
performance.

44See Appendix II.
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prices of the benchmark options.

is most likely due to instability and numerical inaccuracies in the calibration
algorithm caused by the relatively larger number of parameters in this model.
As discussed above, a large number of parameters makes the parameter surface45
�atter and therefore it is much more di�cult for the calibration algorithm to
�nd an optimal solution. Often, when calibrating the four-state models, the
calibration did not end until the maximum number of iteration was reached,
indicating that an optimal solution could not be found.

6.4 Stability
In this study we have calibrated the model to observed option prices by solv-
ing a nonlinear quadratic optimization problem.46 This approach of calibrating
the parameters di�ers from other estimation techniques such as regression or
maximum-likelihood methods in the respect that the underlying data, the op-
tion prices, are not considered to be a realization of some random data generat-
ing process. Instead, at a given point in time option prices are deterministically
determined by the current interest rate, the stock price and other contract para-
meters. Consequently, we can not say anything about the statistical signi�cance
of the parameters in the usual probabilistic sense. Rather, in this setup the rele-
vant question is whether the parameters are stable or not. Two types of stability
are of particular interest.

45The parameter surface for a K-state model is the K-dimensional hyper-surface showing
how the value of the objective function depends on the choice of the input parameters. Here,
the objective function is the sum of squared deviations of theoretical prices from observed
prices and the input parameters are the volatilities and the intensities, see Appendix II.

46See Appendix II.
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1. Stability of the parameters over time.

2. Stability of the optimal parameters at a given point in time.

The �rst point focuses on how much the parameters �uctuate over time. If
the parameters vary quite a lot over time, this indicates that the model does
not provide a true description of the Q-dynamics since the model relies on the
assumption that the parameters are constant in time. Since a two-state model
was found to be su�cient to replicate market prices in- and out-of-the sample,
I have choosed to focus on the two-state model only. Plots of the parameters
of the two-state model are shown in Figure 7. We see that the parameters

Jan04 Jan05 Jan06

10

20

30

40

V
ol

at
ili

ty
 (

%
)

Estimated volatilities

σ
1

σ
2

Jan04 Jan05 Jan06

5

10

15

20

25

30

In
te

ns
ity

Estimated transition intensities

λ
12

λ
21

Figure 7: The upper panel shows the volatilities in the two states for the two-
state model over the time period studied. The bottom panel shows the corre-
sponding plot for the transition intensities.

have varied quite a lot over time. This indicates that the model is not true in
the more fundamental sense. However, the model might still be used to price
non-traded contracts as that price would be consistent with the prices of other
contracts traded on the market at a given point in time.

The second point focuses on whether the obtained parameters are the only
choices of parameter values which attain a reasonable in-sample �t. It could
be the case that there exist several choices of parameter values, all providing
a reasonable �t to data. In other words, since the calibrated parameters are
obtained by solving a nonlinear optimization problem we are not guaranteed
that the obtained solution is indeed a unique and global solution. This issue
can be investigated by varying the start values of the parameters used to ini-
tialize the calibration algorithm.47 If the optimal parameters are sensitive to

47See Appendix II.
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changes in the start values this indicates that there are several local optima and
thus the optimal parameters will be unstable. I have con�ned the analysis for
the two-state model to a single date, the 27th of December 2005, which was
selected randomly amongst the total number of calibration dates. Since the
models at di�erent dates are conceptually the same they should not di�er from
each other in terms of their stability characteristics. A single date should be
enough to analyse the stability of the solution. At the 27th of December 2005
the start values of the volatilities were set to 17% and 10% in the high volatility
regime and the low volatility regime respectively, and the start values of the
intensities were set to 12, in accordance with the method described in Section 7.
The optimal parameters with these start values were obtained as σ̂1 = 15.5%,
σ̂2 = 10.4%, λ̂12 = 4.7 and λ̂21 = 4.2. To analyse the stability for various choices
of start values I have increased and decreased the volatilities and the intensities
by �ve units in each direction as indicated in Figure 8 below.
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Figure 8: Figure 12a shows the start values for the volatilities and Figure 12b
shows the start values for the intensities.

To analyse the e�ect of changing the start values for the volatilities and the in-
tensities separately, I kept the intensities unchanged while changing the volatil-
ities and vice versa. Calibrating the model for these start values generated 8
additional solutions corresponding to the 8 branches in Figure 12a and 12b.
These were all found to be equal to the solution for the original start values.
Thus, the results indicate that the optimal parameters at a given point in time
is rather robust to moderate changes in the start values.
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7 Conclusions
The objective of this thesis was to show how options can be priced under regime-
switching volatility and examine the issue of calibrating this model to observed
option prices. A numerical solution to the pricing equations for European op-
tions was derived and the calibration algorithm was formulated in terms of an
optimization problem. The model was calibrated for two, three and four states
to call options on the OMXS30 index with maturity within two months during
the period August 2003 to August 2006. The �ndings show that a regime-
switching model can replicate observed market prices with a high degree of ac-
curacy. The model produces smaller mispricings than the Black-Scholes model.
This indicates that regime-switching volatility is indeed more consistent with
observed option prices than a constant volatility. Furthermore, the pricing per-
formance does not seem to improve as the number of regimes is increased. In
particular, a two-state model generates almost identical prices as a model with
three or four states. Since the two-state model is more parsimonious than the
other models, stable estimates are more easily obtained. Therefore, I argue
that the two-state model is more advantageous. The parameters in this model
were also found to be stable for moderate changes in the start values. However,
the parameters vary substantially over time thus violating the assumption of
constant parameters. This indicates that the model does not provide a true
description of the Q-dynamics for the volatility process.

The framework for calibrating the regime-switching model proposed in this
thesis should be considered as a reference for further research. In particular,
one could explore the stability of the estimates in the two-state model in more
detail. Moreover, the pricing performance to other types of payo�s, e.g. digital
options, or underlyings could be studied in more depth. Yet another interesting
aspect is to compare the parameters implied out of market prices to parameters
estimated from asset return data using some maximum-likelihood technique. If
the two models yield similar parameters this should indicate that the market
base future expectations on the volatility process on past behaviour. Overall,
more back testing and validation of the model should be carried out before
implementation. However, once this has been done the model can run quickly
and e�ciently on a daily basis.

28



References
[1] Alexander, C. (2001) Market Models: A guide to �nancial Data Analysis.

West Sussex: Wiley & Sons.

[2] Avery, C. and Zemsky, P. (1998) Multidimensional Uncertainty and Herd
Behavior in Financial Markets. American Economic Review, Vol 88, pp.
724-748.

[3] Bakshi, G., Cao, C. and Chen, Z. (1997) Empirical performance of alter-
native option pricing models. Journal of Finance, Vol 53, pp. 499-547.

[4] Bikhchandani, S. and Sharma, S. (2000) Herd Behavior in Financial Mar-
kets: A Review. IMF Working paper. IMF Institute.

[5] Björk, T. (2004) Arbitrage Theory in Continuous Time. 2nd Ed. Oxford:
Oxford University Press.

[6] Black, F. and Scholes, M. (1973) The pricing of options and corporate
liabilities. Journal of Political Economy, Vol 81, pp. 637-654.

[7] Bollen, N. (1998) American options with regime switching. Journal of
Derivatives, Vol 5, pp. 497-514.

[8] Boyce, W. & DiPrima, R. (2000) Elemantary Di�erentail Equations and
Boundary Value Problems. 7th Ed. New York: Wiley& Sons.

[9] Bu�ngton, J. and Elliott J. (2002) American options with regime switch-
ing. International Journal of Theoretical and Applied Finance, Vol 5, pp.
497-514.

[10] Chan, L., Elliott, R. & Siu T. (2005) Option pricing and Esscher transform
under regime switching. Annals of Finance, Vol 1, pp. 423-432.

[11] Chourdakis, K. (2002) Continuous time regime switching models and ap-
plications in estimating processes with stochastic volatility and jumps.
Working Paper. University of London.

[12] Coleman, T.F. and Li, Y. (1996) An Interior Trust Region Approach for
Nonlinear Minimization Subject to Bounds. SIAM Journal of Optimiza-
tion, Vol 6, pp. 418-445.

[13] Courtadon, G. (1982) A More Accurate Finite Di�erence Approximation
for the Valuation of Options. The Journal of Financial and Quantitative
Analysis, Vol. 17, pp. 697-703.

[14] Di Masi, G., Kabanov, Y. and Runggaldier, W. (1993) Mean-variance
hedging of options on stocks with markov volatilities. Working Paper.
Univesity of Padova.

[15] Dibda, B. and Grossman, H. (1988) The Theory of Rational Bubbles in
Stock Prices. The Economic Journal, Vol 98, pp. 746-754.

[16] Duan, J., Popova, I. and Ritchken, P. (2002) Option pricing under regime
switching. Quantitative Finance, Vol 2, pp. 116-132.

29



[17] Dumas, B., Fleming, J. and Whaley, B. (1998) Implied Volatility Func-
tions: Empirical Tests. Journal of Finance, Vol 111, pp. 2059-2106.

[18] Elliott, R., Aggoun, L. and Moore, J. (1994) Hidden Markov Models -
Estimation and Control. Berlin: Springer Verlag.

[19] Enger, J. and Grandell, J. (2003) Markovprocesser och köteori. Lecture
notes. Royal Institute of Technology, Stockholm.

[20] Engle, C. and Hamilton, J. (1990) Long svings in the dollar: are they in
the data and do the market know it? American Economic Review, vol.
80, 689-713.

[21] Foque. J-P., Papanicolaou, G. and Sircar, K. (2000) Derivatives in Finan-
cial Markets with Stochastic Volatility. New York: Cambridge University
Press.

[22] Gujarati, D. (2003) Basic Econometrics, 4th Ed. New York: McGraw-Hill.

[23] Grinblatt, M. and Titman, S. (2002) Financial Markets and Corporate
Strategy, 2nd Ed. New-York: McGraw-Hill.

[24] Guo, X. (2001) Information and option pricing. Quantitative Finance, Vol
1, pp. 38-44.

[25] Hamilton, J. (1989) A new approach to the economic analysis of non-
stationary time series and the business cycle. Econometrica, Vol 57, pp.
357-384.

[26] Hamilton, J. and Susmel, R. (1994) Autoregressive conditional het-
eroscedasticity and changes in regime. Journal of Empirical Finance, Vol
11, pp. 279-289.

[27] Hardy, M. (2001) A regime-switching model of long-term stock returns,
North American Actuarial Journal, Vol 5, pp. 41-53.

[28] Harrison, J. and Kreps, M. (1979) Martingales and arbitrage in multi-
period securities markets. Journal of Economic Theory, Vol. 20, pp. 381-
408.

[29] Harrison, J. and Pliska, R. (1983) A stochastic calculus model of continu-
ous trading: complete markets. Stochastic Processes and Their Appplica-
tions, Vol 15, pp. 313-316.

[30] Heath, M. (2002) Scienti�c Computing - An Introductory Survey. New
York: McGraw-Hill.

[31] Hull, J. (1999) Options, Futures & Other Derivatives. 4th Ed. New York:
Prenctice-Hall.

[32] Iserles, A. (2003) A First Course in the Numerical Analysis of Di�erential
Equations, Cambridge: Cambrige University Press.

[33] Mamon, R. and Rodrigo, R. (2004) Explicit solutions to European options
in a regime-switching economy. Operation Research Letter 00/06, Vol 33,
pp. 581-586.

30



[34] Tsay, R. (2002) Analysis of Financial Time Series. New York: Wiley&
Sons.

[35] Wu, S. and Zeng, Y. (2004) A�ne regime-switching models for interest
rate term structure. Mathematics of Finance, Vol 351, pp. 375-386.

[36] Wilmott, P. (1995) The Mathematics of Financial Derivatives - A Student
Introduction. Cambridge: Cambridge University Press.

[37] Öksendal, B., (1985) Stochastic di�erential equations: an introduction
with applications. New York: Springer-Verlag.

31



Appendix I - Solving the pricing equations
Below we show how the pricing equations can be solved by numerical means. The
general concept underlying numerical solution techniques are discussed and the
method employed is described in some detail. The quintessence of this Appendix
is that the pricing equations can be solved using numerical approximations
and the solution technique employed is called the fully-implicit method. I will
primarily focus on solving the pricing equations for European call options on
the underlying.

Discretization of the pricing equations
To price the derivative in a K-state model we have to solve the coupled system
of partial di�erential equations

−rFk +
∂Fk

∂t
+ rs

∂Fk

∂s
+

1
2
σ2

i s2 ∂2Fk

∂s2
− λkkFk +

∑

m 6=k

λmkFm = 0, k = 1, ...,K.

(13)
Since this system can not be solved analytically, as in the Black-Scholes case,
we have to solve the equations numerically. To solve the equations numerically
means that we convert the partial di�erential equations into a set of di�erence
equations and then solve the di�erence equations iteratively. By working with
di�erence equations instead of di�erential equations we only compute the solu-
tion of the equations at a �nite number of nodes in time and space. However,
if the number of nodes are su�ciently large the accuracy of the solution will be
very good.48 Before attempting to solve the system of equations (12) we �rst
transform them into a more computationally e�cient form by setting x = ln(s)
and uk(t, x) = Fk(t, s). Taking partial derivatives of uk(t, x) we get

∂Fk

∂t
=

∂uk

∂t
,

∂Fk

∂s
=

∂uk

∂x

1
s
,

∂2Fk

∂s2
=

∂2uk

∂x2

1
s2
− ∂uk

∂x

1
s2

.

Inserting this into equation (13) we get

−ruk +
∂uk

∂t
+ rs

∂uk

∂x

1
s

+
1
2
σ2

ks2
(∂2uk

∂x2

1
s2
− ∂uk

∂x

1
s2

)
−λkkuk +

∑

m6=k

λmkum = 0.

Rearranging and cancelling terms the transformed equation becomes

−ruk +
∂uk

∂t
+

(
r − 1

2
σ2

k

)∂uk

∂x
+

1
2
σ2

k

∂2uk

∂x2
− λkkuk +

∑

m 6=k

λmkum = 0, (14)

48For an introduction to numerical solutions to partial di�erential equations see Heath
(2002) [30] and Iserles (2003) [32] and for applications to �nancial problems see e.g Wilmott
(1995) [36], Courtadon (1982) [13] or Hull (1999) [31].
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for k = 1, ..., K. The �rst step in a �nite-di�erence approximation is to de�ne a
mesh of points in time and space where the equations are to be evaluated. We
begin by denoting the time to maturity of the derivative in fraction of years by
T . The time to maturity is divided into N equally spaced intervals of length
δt = T/N so we obtain a partition in time as 0, δt, 2δt, ..., T . Next, suppose
that we can take a su�ciently large stock price Smax that when the stock price
reaches this level we are more or less certain that the call option will expire
in-the-money and the value of the option equals that of a forward49

u(Xmax, t) = Smax −Ke−r(T−t),

where Xmax = ln(Smax). The lowest possible price that the stock price can take
is denoted Smin where the value of the call option is zero

u(Xmin, t) = 0,

where Xmin = ln(Smin). Of convenience I let Xmin = 0 so the lowest possible
stock price is 1.50 We divide the range [0, Xmax] into M equally spaced intervals
by setting δx = Xmax/M and the partition in space becomes 0, δx, 2δx, ...,Xmax.
Consequently, the stock is only allowed to take on values from the set of prices
{e0, eδx, e2δx, ..., eXmax}. This highlights the bene�t of the transformation car-
ried out above since the attainable prices are closer together when the price is
low and more sparsely distributed for higher prices. This is a desirable feature
since real world stock price movements tend to be a lot smaller in absolute
terms when the price of the underlying is low as compared to when the price of
the underlying is high. To sum up, the partition in time and space divides the
(x, t) plane into a mesh, where the mesh points have the form (iδt, jδx). We
concern ourselves only with the values of u(x, t) at the mesh points (iδt, jδx),
for i = 0, 1, ..., N and j = 0, 1, ...,M . The value at node (iδt, jδx) is denoted

uk
i,j = uk(iδt, jδx).

Figure 9 displays a schematic picture of the mesh and the node (i, j).

49We can think of this as that the value of choice of the option is e�ectively zero. (Hull,
2000) [31].

50In principle, the price of the option could of course be zero but this choice of lower
boundary on X has no in�uence on the results presented in this thesis since we consider
options on the OMXS30 index where the underlying is about 1000.
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Figure 9: The mesh for a �nite-di�erence approximation.

Numerical methods
The idea underlying �nite-di�erence methods is to replace the partial deriv-
atives occurring in the partial di�erential equations by approximations of the
function uk(t, x) near the point of interest. For example one can take the partial
derivative ∂u/∂x to be

∂u

∂x
(t, x) ≈ u(t, x + δx)− u(t, x)

δx
,

which is called a forward-di�erence since we take a small step δx forward. An-
other choice is

∂u

∂x
(t, x) ≈ u(t, x)− u(t, x− δx)

δx
,

which is called a backward-di�erence. We can also de�ne central-di�erences by
noting that

∂u

∂x
(t, x) ≈ u(t, x + δx)− u(t, x− δx)

2δx
.

Figure 10 shows a geometric interpretation of these approximations. The two
most common �nite-di�erence approximations are the explicit method and the
fully implicit method. Both the explicit and the fully implicit method uses
central-di�erences for ∂u/∂x and ∂2u/∂x2. However, the methods di�er regard-
ing the di�erence of ∂u/∂t where the explicit method uses the forward-di�erence
and the fully implicit method uses the backward-di�erence. The bene�t of the
explicit method is that one can compute the value of the function at time t ex-
plicitly by using values at time t + δt. Since we know the value of the option at
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Figure 10: Forward-, backward- and central-di�erence approximations.

expiration we can work our way back in time by successively computing values
at the previous time points. As a consequence, the explicit method is very fast.
However, the drawback is that the method is unstable if51

δt

δx2
<

1
2

This puts a severe constraint on the size of the time-steps. The fully implicit
method has the advantage that it is always stable for any choices of δx and
δt. In the implicit method the value at the node (i, j) is de�ned in terms of the
values at the neighbouring points (i, j+1), (i, j−1) and (i+1, j). As we will see
below this will require us to solve a large system of linear equations to obtain
the solution at each time point. Thus, the drawback of the fully implicit method
is that it requires more computations in each step which slows up the solution
algorithm. However, the implicit method allows us to take larger time-steps than
we can when using the explicit method and the need for fewer time-steps in the
implicit method more than compensates for the larger number of computations
that has to be performed in each step. In addition, when calibrating a model
to observed prices, stability as well as numerical accuracy should be two very
important criteria on which to evaluate a solution algorithm.52 Thus, we argue
that the fully implicit method should be the proper choice for the application
considered here.53

51See Heath (2002) [30] or Wilmott (1995) [36].
52This is because the calibration will require us to minimize some distance measure between

computed and observed prices and when the number of parameters that are to be estimated
are large, the optimization may not converge properly if the objective function is not accurate
enough.

53There exists higher order methods, e.g. Crank-Nicolson, which converge faster than the
fully implicit method. However, when comparing the Crank-Nicolson method with the fully
implicit method signi�cant di�erence in accuracy of the methods could be discerned. I argue
that the simplicity of the fully implicit method makes it more advantageous.
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The fully implicit method
In the fully implicit method the ∂u/∂t-term is approximated with a backward-
di�erence and ∂u/∂x and ∂2u/∂x2 are discretized with central-di�erences 54

∂uk

∂t
=

uk
i+1,j − uk

i,j

δt
,

∂uk

∂x
=

uk
i,j+1 − uk

i,j−1

2δx
,

∂2uk

∂x2
=

uk
i,j+1 + uk

i,j−1 − 2ui,j

δx2
.

Inserting these approximations into the partial di�erential equation we obtain
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Rearranging yields
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Solving for uk
i+1,j gives

uk
i+1,j = αkuk

i,j−1 + βkuk
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m 6=k

γmkum
i,j + δkuk

i,j+1, (15)

for i = 1, ..., N − 1 and j = 1, ..,M − 1, where

αk = δt
(r − σ2

k/2
2δx

− 1
2

σ2
k

δx2

)
,

βk =
(
1 +

δt

δx2
σ2

k + (r + λkk)δt
)
,

γmk = −λmkδt,

δk = δt
(
− (r − σ2

k)
2δx

− 1
2

σ2
k

δx2

)
.

The interior points of the mesh are computed with equation (15). The values
at the boundary points x = Mδx, x = 0 and T = Nδt are computed using the
appropriate values of the option on these points. For a call option we have

uk
i,M = Smax −Ke−r(T−iδt), i = 1, ..., N and k = 1, ...,K,
uk

i,0 = 0, i = 1, ..., N and k = 1, ...,K,
uk

N,j = max(ejδx −K, 0), j = 1, ...,M and k = 1, ...,K.
54The central di�erence-method for the ∂2u/∂x2 term implies taking central di�erences of

the ∂u/∂x term.
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From equation (15) one can see that the values at the nodes ui,j−1, ui,j , ui,j+1

and ui+1,j are implicitly de�ned in terms of each other, thereby the name of the
method. To solve for the values at time i we have to reformulate equation (15)
into a system of linear equations. To make the exposition easier to follow we
con�ne ourselves for the moment to two states only and de�ne a vector ui by

ui = (u1
i,M−1, u

2
i,M−1, u

1
i,M−2, u

2
i,M−2, ..., u

1
i,1, u

2
i,1)

′.

The vector contains the value of the option in the di�erent regimes at time
i ordered by regime number and in descending order of spatial nodes. For a
general K-state model, the �rst K positions in the vector contain the values of
the option in the K regimes corresponding to a stock price of e(M−1)δx. The
�nal M positions contain the prices in the second bottom node corresponding
to a stock price of eδx. Going back to the two-state case we can now write the
system of equations in (15) as




β1 γ21 α1 0 0 0 0 0 0 . . .
γ12 β2 0 α2 0 0 0 0 0 . . .
δ1 0 β1 γ21 α1 0 0 0 0 . . .
0 δ2 γ12 β2 0 α2 0 0 0 . . .
0 0 δ1 0 β1 γ21 α1 0 0 . . .
0 0 0 δ2 γ12 β2 0 α2 0 . . .
...

...
... . . . . . . . . . . . . . . . . . . ...

0 0 0 0 . . . 0 δ1 0 β1 γ21

0 0 0 0 . . . 0 0 δ2 γ12 β2




︸ ︷︷ ︸
=A




u1
i,M−1

u2
i,M−1

u1
i,M−2

u2
i,M−2

u1
i,M−3

u2
i,M−3
...

u1
i,1

u2
i,1




︸ ︷︷ ︸
=ui

=




u1
i+1,M−1

u2
i+1,M−1

u1
i+1,M−2

u2
i+1,M−2

u1
i+1,M−3

u2
i+1,M−3

...
u1

i+1,1

u2
i+1,2




︸ ︷︷ ︸
=ui+1

+




−δ1u1
i+1,M

−δ2u2
i+1,M

0
0
0
0
...

−α1u1
i+1,0

−α2u2
i+1,0




︸ ︷︷ ︸
=b

The vector b is a constant vector that depends on value of the option at the
upper and lower boundary points. The values of the option at all spatial nodes
at speci�c time i can be obtained if we know the values at time i + 1 by solving
the system of equations

Aui = ui+1 + b.

The solution to this one-step-ahead problem is

ui = A−1(ui+1 + b). (16)

Thus, the values at time i are de�ned in terms of the values at time i+1. Since
we know that the value of the option is equal to the payo� function at expiration
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i = N , we can use equation (16) to obtain the values of the option at time i−1.
Then, applying equation (16) once more we can obtain the solution at time i−2
and so on. In this way we can work backwards in time until we get the value of
the option at time i = 0 as

u0 = A−NuN +
N∑

i=1

A−ib. (17)

To pick out the right price of the vector u0 we �rst sort the prices according to
regime number in two di�erent vectors u1

0 and u2
0, corresponding to regime 1

and 2 respectively,

u1
0 = (u1

0,M−1, u
1
0,M−2, ..., u

1
0,1),

u2
0 = (u2

0,M−1, u
2
0,M−2, ..., u

2
0,1).

If the current price of the underlying is S0 we can compute the position in each
vector corresponding to this price as M0 = ln(S0)/δx. Thus if the volatility is
in state k we get the price of the option as

Fk(t, st) = uk
0,M−M0

.

The solution for an arbitrary number of K states is very much similar to the
two-state case.

To determine the appropriate values for δx and δt to use when calibrating
the model, I have priced a standard call option with zero intensities for di�erent
values of δx and δt and compared the price with the price obtained from the
standard Black-Scholes formula. Since the intensities have been set to zero the
model is equivalent with the Black-Scholes model and therefore the numerically
computed prices should be equal to the prices computed with the Black-Scholes
formula. If the algorithm is accurate then the deviation from the Black-Scholes
price should be small. To examine the convergence of the numerically computed
prices to the Black-Scholes price I have considered a call option on an underlying
with a current price of S0 = 100, a strike of K = 95, time to expiration of
T = 0.5 years, a risk-free interest rate of r = 10% and a volatility of σ = 50%.
The Black-Scholes price of this option is 18.71. The maximum price in the
numerical solution was set to Smax = 5S0. Figure 11 displays the absolute
deviations between the numerically computed prices with the implicit method
Callimpl and the value computed with the Black-Scholes formula Callbs for
di�erent values of δx and δt. The top panel show the convergence to the Black-
Scholes price when δt is decreased. The di�erent lines in this graph represents
the price deviations for di�erent choices of δx when varied between 0.0031 and
0.031. We can see that for each value of δx in this intervall is the pricing error
with the implicit method less than 0.015 SEK. The bottom panel shows the
convergence to the Black-Scholes price when δx is decreased. The di�erent lines
in this graph represents the price deviations for di�erent choices of δt when
varied between 0.0005 and 0.01. We see that for each value of δt in this intervall
is the price the pricing error less than 0.015 SEK. Furthermore, for δx less than
0.02 and δt less than 0.005, the error is smaller than 0.005 SEK and we have
accuracy in the second decimal. Since prices are not quoted in more than two
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Figure 11: The top panel show convergence of the fully implicit method to the
Black-Scholes price as function of δt when δx ∈ [0.0031, 0.031]. The bottom
panel show the convergence of the fully implicit method to the Black-Scholes
price as function of δx when δt ∈ [0.0005, 0.01].

decimals there is no reason to consider smaller values of δx and δt. Thus, we
argue that choosing δt = 0.005 and δx = 0.01 should be su�cient to obtain
accurate results.
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Appendix II - Calibration
The objective of the calibration is to determine the volatilities and the transition
intensities so that the theoretical prices are, by some measure, as close as possible
to observed market prices. The criterion adopted here was to minimize the
sum of squared errors between actual and theoretical prices. This criterion has
been employed in several studies to calibrate various option pricing models.55
To facilitate the exposition we express the parameters for a K-state model in
matrix notation as

σ = (σ1, ..., σK),

Q =




−λ11 λ12 . . . λ1K

λ21 −λ22 . . . λ2K

...
... . . . ...

λK1 λK2 . . . −λKK


 .

To calibrate the model at a given day t we collect a number of option prices
Πi∗, ..., ΠN∗ with strikes Ki, ..., KN and maturities T1, ..., Tn. Given the prices
of the market contracts, the value of the underlying st and the current regime ec,
the solution to the following problem gives the optimal values of the parameters.

{σ̂, Q̂} = arg min
σ,Q

S∑

i=1

(
Πi

c(t, st|σ,Q)−Πi∗
)2

,

where Πi
c(t, st) is the theoretical price of option i, and subject to the restrictions

λii =
K∑

j 6=i

λij for i = 1, ...,K,

λij ≥ 0 for i 6= j, i, j = 1, ..., K,

σi > 0 for i = 1, ...,K.

In other words, we try to �nd the transition intensities and the volatility levels
by making the in-sample �t as large as possible. The positivity constraints on
the intensities and the volatilities are however necessary since the volatilities is
not allowed to be negative and the exponential distribution is not de�ned for
intensities smaller or equal to zero. To avoid imposing these constraints directly
on the parameters we make the following transformations

σi = eσ∗i for i = 1, ..., K

λij = eλ∗ij for i 6= j, i, j = 1, ..., K.

Instead of maximizing directly over the volatilities σi and the intensities λij

which are only allowed to be greater or equal to zero we maximize over the trans-
formed parameters σ∗i and λ∗ij which are de�ned everywhere on the real axis.
Since the exponential function will ensure that the values of the true parame-
ters are kept above zero no additional constraints are needed. The transformed

55See for example Duan (2002) [16], Bakshi (1997) [3] and Dumas (1998) [17].
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problem becomes

{σ̂∗, Q̂∗} = arg min
σ∗,Q∗

S∑

i=1

(
Πi

c(t, st|σ∗,Q∗)−Πi∗
)2

,

where the elements in the matrices Q∗ and σ∗ have been replaced with λ∗ij
and σ∗i , respectively. This makes implementation a lot easier since we e�ciently
avoid imposing any constraints on the optimization algorithm. The optimization
problem was implemented and solved in Matlab which is a program specially
devised for handling large vectors and performing matrix computations. I used
the built-in function fminunc to solve the problem. The fminunc function take
start values of the parameters as inputs and then solves the problem iteratively
by updating the parameters in the direction where the decline in the target
function is the greatest.56 The calibration algorithm can be summarised as
follows.

1. Set the current state of the regime to ec = e1 and guess the start values
σ∗ and Q∗.

2. Compute the theoretical prices Πi
1(t, st|σ∗,Q∗) using the fully implicit

method, for i = 1, ..., N .

3. Compute
∑N

i=1

(
Πi

1(t, st|σ∗,Q∗)−Πi∗
)2

.

4. Use the fminunc function to �nd a new set of values σ∗, Q∗.

5. Repeat step 2 - 4 until the decrease in the sum of squared deviations fall
below a given cut-o� value and take the �nal values of σ∗ and Q∗ as the
optimal estimates.57

The current regime is set equal to the �rst regime e1 in step one. It is important
to stress that this does not mean that the current volatility state will always be
equal to the state with the highest volatility. Since we have not imposed any
restrictions on how the volatilities in the di�erent regimes are related to each
other (i.e. bigger or smaller) these parameters are allowed to change freely. It
could be the case that the current regime of the calibrated model is equal to the
regime with the lowest volatility, i.e. that the state e1 has the lowest volatility.
By reordering the states in descending order of volatility levels we get the model
on its standard form where the �rst regime corresponds to the highest volatility,
the second regime corresponds to the second highest volatility and so on. By
not imposing any constraints on how the volatilities are related to each other
we e�ciently avoid the problem of setting the correct current volatility state
since this is determined within the calibration. Figure 12 gives a schematic
illustration of the calibration algorithm.
To initialize the algorithm, we have to guess the start values of σ∗ and Q∗. I
have set the start value of the volatility in the most volatile regime equal to the
maximum of all the Black-Scholes implied volatilities for the contracts used for
calibrating the model and the start value of the volatility in the least volatile

56The fminunc function uses a subspace trust region method and is based on the interior-
re�ective Newton method described in Coleman and Li (1996) [12].

57I have chosen the cut-o� value to 10−6 and the maximum number of iterations to 500.
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1. Take start
values of σ

i
 and

λ
ij
 and

determine
the current state
of the markov
chain.

2. Solve the pricing
equations
numerically using
the fully implicit
method with σ

i
 and

λ
ij
.

3. Compute the sum of
squared differences
between computed
prices and observed
market prices. If the sum is
sufficiently small we have obtained
a solution and we stop the
algorithm, otherwise go to step 4.

4. Use a numerical solver to find
a new set of values of σ

i
and λ

ij
 and go to step 3.

Figure 12: A schematic picture of the calibration method.

regime equal to the minimum value of the implied volatilities for the same set
of contracts. The start values of the volatility in the intermediate regimes are
placed equidistantly between the volatility in the highest and the lowest regime.
More formally, I have chosen the start values σ1, ..., σK as

σ1 = max(σimp
1 , .., σimp

N )

σK = min(σimp
1 , .., σimp

N ))

σi = (σimp
1 − σimp

K )/(K − 1), for i = 2, ..., K − 1,

where σimp
1 , .., σimp

N denote the Black-Scholes implied volatilities corresponding
to the observed market prices Π1∗, ..., ΠN∗. This choice of start values should
be reasonable since the volatilities in the regime-switching model and the Black-
Scholes implied volatilities should be of the same magnitude.58 Thus, one might
expect that this choice of start values should result in small or moderate devi-
ations of theoretical prices from observed prices and the calibration algorithm
is therefore likely to converge quickly to the optimal solution. Of course, the
speed of convergence also depends on the start values of the intensity parame-
ters. Since we have no apriori good reason to prefer a particular choice of start
values for the intensities parameters to another, I chose to set the value of all
transition intensities equal. This approach can be considered to be unbiased
as jumps between any two states are considered to be equally likely. The start
value of the intensities have been set to 12. In Section 6.4 the stability of the
calibrate parameters is investigated for moderate perturbations in the start val-
ues. If the parameters are found to be stable, picking the right start values is
less of an issue.

58In Section 4.2 we saw that the prices in the regime-switching model and the Black-Scholes
model are equal if the transition intensities are all zero.
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