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Abstract 
The aim of this paper is to analyse the pricing of carbon emission allowance futures and 
futures options to see how they can help us understand the intuition behind spot prices 
of the underlying emission allowance. We use data from the third time period within the 
European Union Emissions Trading Scheme. There have been studies within this area 
before but only a few have incorporated the possibility of jumps in the spot price 
movement. We estimated risk-neutral parameters for the futures options using the 
Merton (1976) jump-diffusion model and the Duan (1995) GARCH-(1,1) model built on 
locally risk-neutral valuation relationship where consequently the model parameters can 
be estimated from the spot returns using maximum likelihood. Our results show that 
even though the estimates of the risk-neutral parameters are highly variable for the 
Merton model, it performs better than the GARCH-model and our chosen benchmark, 
Black’s model (1976). The GARCH-model is applied using Monte Carlo simulations and 
greatly underperforms all other models in our study, most likely due to errors in the 
estimation or model specification.    
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1. Introduction 
Global warming is becoming an increasing threat to the environment, the economy and 
even human health in the future. Society has more or less started to embrace the fact of 
human activity affecting the global climate change through pollution, resulting in an 
increasing concentration of greenhouse gases1 (GHG) in the atmosphere (Stern, 2007). 
An important step towards limiting the climate change was taken already in 1992 when 
the United Nations Framework Convention on Climate Change (UNFCCC) worked out 
the foundation for what would later be the Kyoto protocol. The core content of the Kyoto 
protocol was internationally binding emission targets and a framework for trading of 
emission allowances connected to man-made GHG emissions. All stated in effort to reach 
the goal of reducing emissions during the period of 2008-2012 with five percent, 
compared to emission level of year 1990. With the 2012 Doha amendment to the Kyoto 
protocol, higher goals were set for the 2013-2020 period with an 18 percent reduction of 
GHG emissions compared to 1990 levels. (UNFCCC 2012) 
 
The main message of the Kyoto protocol is for countries to reduce their GHG emissions 
and in support of that three main market mechanisms were stated – international 
emissions trading (IET), clean development mechanism (CDM) and joint implementation 
(JI) (UNFCCC 2007). When stating an economic value to emission reduction targets, a 
new commodity was created. In order to make the commodity tradable and to follow the 
intuitions behind the IET mechanism, the European Commission launched the 
European Union Emissions Trading Scheme (EU ETS) in 2005. The main tradable asset 
within EU ETS is the European Union Allowance (EUA). One EUA gives the holder the 
right to emit one tonne of carbon dioxide (CO2). (European Commission 2013) 
 
The Scheme is designed as a cap-and-trade system; a “cap” is set on the amount of 
emission rights released in the market for certain high-emitting industries each year, 
which are then allocated between companies through trading. The market of trading 
allowances then promotes companies with high emissions to choose the most cost-
efficient alternative, either invest in low-carbon technologies or buy more emission rights 
in the market. The EU ETS covers approximately 45 percent of the GHG emissions from 

                                                        
1 Carbon dioxide (CO2), Nitrous oxide (N2O), Perfluorocarbons (PFCs) 
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the EU member states 2  and concerns heavy energy-using industries as power 
generation, manufacturing and aviation. (European Commission 2013) 
 
Besides emissions trading with EUA there are the two other mechanisms of the Kyoto 
protocol, the projects under CDM and JI. The CDM is a program that offers 
industrialized countries with commitments under the Kyoto protocol to invest in 
emission-reduction projects in developing countries and through that earn certified 
emission reduction units (CER), which then can be traded and used to meet parts of 
emission targets. Finally, there is also the mechanism of JI that opens the possibility for 
countries, again with commitments under the protocol, to invest in emission-reduction 
projects in other industrialized countries and from that earn emission reduction units 
(ERU), which in turn can be used to meet emission targets.  With the 2004 passing of a 
legislation package called the “linking directive” the EU ETS opened up the possibility to 
convert credits obtained from CDM- and JI-projects into EUAs that can be used or 
traded under the EU ETS. Just like the EUA, one unit of ERU or CER gives the right to 
emit one tonne of CO2. (UNFCCC, 2007) 
 
Since the launch in 2005 the EU ETS has been divided into 4 different trading periods, 
often denoted “phases”, depending on the structure and goals of each time period. Phase 
1 started with the release of the system in 2005, spanned for two years, and was more or 
less a “learning by doing” period. When the EU ETS market was established it became, 
and still is, the biggest carbon market in the world. The number of allowances released 
in the market was based on an estimated need, which turned out to be too generous, 
resulting in prices of allowances in the end of the first phase to drop to zero. Phase 2 
spanned from 2008-2012 and important changes were the addition of new states 
(Iceland, Norway and Liechtenstein), a reduction of allowances and the inclusion of 
aviation (from 2012). Because of the economic crisis emissions went down and thus also 
the demand for emission allowances, creating again a surplus of allowances. The current 
period, Phase 3, covers 2013-2020 and added Croatia as a member but most significant 
for this period was the imposition of an EU-wide cap on emissions and a shift towards 
auctioning of allowances instead of distributing them for free as was previously done. 
Finally, Phase 4 is scheduled over 2021-2028. (European Commission 2016) 
 

                                                        
2 From 2008 (beginning of phase 2) EEA EFTA-states Iceland, Norway and Liechtenstein are 
included. 
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The main markets for trading emission allowance derivatives under the EU ETS are the 
Intercontinental Exchange (ICE), Nasdaq OMX Commodities and the European Energy 
Exchange (EEX). Both ICE, Nasdaq and EEX offer same day trading with daily futures 
contracts but for spot trading of EUA contracts EEX is the only current marketplace. 
Our paper studies the EUA spot prices from the third phase, 2013-2016. 
 
There are several other countries that have, like the European Union, developed carbon 
emission allowance trading platforms. The EU ETS, however, is by far the biggest 
emissions trading systems in the world, covering over 75% of the international trading 
volume in 2013 (European Commission, 2013). Emission allowance certificates is 
therefore an important tool to deal with global warming and it is thus of great 
importance to understand the mechanics of pricing allowances and derivatives written 
on them. With focus on the third phase of trading we will examine which pricing model 
that best captures the characteristics of emission allowances prices when trying to price 
allowance derivatives. We take the possibility of jumps into account when modelling the 
price by using Merton’s jump diffusion model and Duan’s (1995) GARCH (1,1) model. We 
compare the models by measuring the in-sample and out-of-sample pricing error of the 
respective model. As a further benchmark we will compare the models results with 
Black’s model from 1976 for pricing option futures.  
 
We conclude that even though the Merton model’s risk-neutral parameters are highly 
variable, it outperforms all other models in our study when compared to market data. 
The calibration procedure is quite time-consuming but the model provides a higher 
accuracy both in- and out-of-sample in almost all moneyness and maturity cases. The 
GARCH specification suffers greatly from approximation errors and or incorrect model 
specification and consequently performs very poorly compare to both the jump-diffusion 
model and Black’s model. 
 
The remainder of our paper is organized as follows; Section 2 presents a review of the 
current academic literature on the subject. Section 3 describes the data used in our study 
and outline the methodology for our empirical analysis. Further on in Section 4 we 
analyse the spot and futures prices for EUA and in Section 5 we specify the models used. 
In Section 6 we estimate our parameters and in Section 7 we present our results. Section 
8 concludes.  
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2. Literature review 
The academic literature on the EU ETS and trading of emission allowances has 
increased during recent years, from being a rather unexplored subject to gaining more 
attention as the societal importance of environmental issues have risen. On the basis of 
this trend, the major focus has been towards analysing whether the creation of emission 
allowance markets has led to actual reductions of GHG emissions (Vlachou, 2013) (Laing 
et al., 2013).  
 
We direct our focus more towards pricing of emission allowance futures and futures 
options for the European market. There are a number of studies that have had similar 
focus, early in the field of examining the pricing of emission allowances was Daskalakis 
et al. (2009) finding evidence of market participants using no-arbitrage theory for pricing 
and indications of a non-normal distribution with heavy tails for the logarithmic returns. 
Their study focuses on the relationship between futures and spot prices, adding the 
factor of inter- and intra-period trade between EU ETS phases. They find that the 
prohibition of banking allowances between different phases had an important effect on 
derivatives prices, thus that separation based on maturity makes sense since prices 
differ. Their empirical study shows that emission allowance spot prices are characterised 
by jumps and non-stationarity, best approximated with a two-factor equilibrium model 
based on jump diffusion. More specifically that, both in and out of sample, Merton’s 
(1976) jump-diffusion model delivers a better fit than Black’s (1976) model when pricing 
EUA futures options. Further in the same area Borovkov et al. (2011) investigate pricing 
of emission allowance futures with help of continuous time and jump-diffusion models.  
 
Seifert et al. (2008) investigate CO2 spot price dynamics and develop a tractable 
equilibrium model incorporating stylized characteristics of the EU ETS market. They 
show that volatility increased when approaching the end of the trading period, 
recommending the use of models with conditional variance in order to capture the 
uncertain fact of the market experiencing high or low volatility. Concerning prices, they 
conclude that spot prices must always be positive and bound by the penalty cost plus the 
cost for having to deliver potentially lacking certificates.  Further on, Benz and Trück 
(2009) analyse the short-term behaviour of spot prices for emission allowances and 
compare the performance of different pricing models and find GARCH or regime-
switching models to provide the best model for modelling returns of emission allowances.  
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Wagner and Uhrig-Homburg (2009) evaluate the relationship between spots and futures 
prices in the carbon market. Their analysis indicate a cost-of-carry approach for the 
relationship between spot and futures prices, similar results were found by Daskalakis 
et al. (2009) and Gorenflo (2013). More specifically, Gorenflo (2013) analyse the pricing 
and lead-lag relationship between spot and futures prices of emission allowances under 
the EU ETS and conclude that the cost-of-carry hypothesis holds for phase 1 of trading 
but not phase 2. A similar result, with a non-significant cost-of-carry relationship for 
phase 2, was found by Chevallier et al. (2009). 
 
Paolella and Taschini (2008) examine the heteroskedasdic dynamics and unconditional 
tail behaviour in the spot market returns of two emission permit markets, sulphur 
dioxide (SO2) in the US and carbon dioxide (CO2) in Europe. The results indicate that 
unconditional tails can fairly well be characterized by a Pareto distribution and for the 
conditional dynamics a GARCH-type structure provides a sound goodness-of-fit.  
 
The latest contribution in the field, which is also close to the focus of our paper, is Yang 
et al. (2015). They focus on the pricing of emission allowances under phase 2 of EU ETS 
and incorporate the possibility of price jumps. The log-returns on emission allowance 
prices indicate a positive autocorrelation and the volatility indicate variations from both 
time and jump effect. To incorporate these effects when modelling a framework for 
pricing emission allowance futures they use an ARMA-GARCH model and find a 
superior fit compared to regular pricing models that does not incorporate jumps.  
 
With the information and views gathered from previous research we believe that there is 
a possibility to develop the field by analysing data from the most recent time period. We 
have not found any study covering emission allowance spot, futures and option prices 
from phase 3. The development in the financial markets and the trading platforms since 
the start of the EU ETS makes the current phase an interesting subject to evaluate.  
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3. Dataset and Methodology 

3.1 Dataset 
Daily EUA spot prices from phase 3 during the period 02/01/2013 to 29/01/2016 were 
retrieved from EEX, which is the only secondary market for EUA spot at present. EUA 
futures prices for the same time-period were obtained from EEX and ICE and our 
analysis will focus on contracts maturing in December, as they are the most actively 
traded contracts, during 2013-2016. The futures options where only available from ICE, 
and we will limit our study to call options maturing in December 2015. The data is 
obtained from the third phase of the EU ETS meaning that we will only analyse intra-
period3 futures and futures options. The studied EEX and ICE futures contracts are both 
written on one thousand EUAs. 
 
The Euro Overnight Index Average (EONIA) rates were obtained from Bloomberg. A 
total of 21 daily quoted rates, during 02/01/2013 to 29/01/2016, ranging from 1 day to 6 
years were used to construct a simple swap curve.   
 

3.2 Methodology 
In this paper we will start of by doing an analysis of the EUA spot and try to estimate 
the process based on fairly simple models. We then turn to the futures contract and try 
to establish that they follow the same process as the spot in order to price futures 
options correctly. 
 
We will price futures options using the jump-diffusion model by Merton (1976) and the 
GARCH(1,1) model from Duan (1995). As most other option models with multiple 
parameters, the jump-diffusion model is calibrated to option prices by minimizing the 
squared pricing error. The GARCH(1,1) model builds on the locally risk-neutral 
valuation relationship and can consequently be estimated using maximum likelihood on 
EUA spot data. 
 
When pricing futures option, we restrict ourselves to options with the December 2015 
futures contract as the underlying, trading in 2015. The reason for this is twofold. 
Firstly, we are using maximum likelihood estimation in one of the models using spot for 
                                                        
3 When the future and the underlying emission allowance are traded during the entire duration of 
the contract. 
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phase 3. This requires as many observations as possible, which is why we focus only on 
2015. Secondly, the futures options are not very liquid so we focus on the most liquid 
options with the most liquid underlying futures contract. 
 
We compare the models by measuring the in-sample and out-of-sample pricing error of 
the respective model, as well as Black’s model from 1976 for pricing option futures as our 
benchmark. Lastly, we conclude our paper by comparing the stability of the parameters 
across models and question the models’ underlying assumptions. 
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4. Analysis of Spot and Futures 
4.1 EUA Spot 
We use daily closing prices for the EUA spot prices, the movement in prices and log-
returns are shown in Figure 4.1 and Figure 4.2 below and summarized descriptive 
statistics for prices and returns are presented in Table 4.1. The period shows a decrease 
in the first 4 months of trading and then a stable increase, with a spike in January 2014, 
until the end of our sample where the price falls back to the entry level price for the 
period. We observe high volatility (around 58% annualized) when analysing the daily 
returns of emission allowances, presented in Figure 4.2. Over the sample period daily 
returns fluctuate more than three standard deviations, indicating the presence of jump-
risk in the emission allowance market. Moreover, the graphs suggests that there may be 
conditional heteroscedasticity 
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Figure 4.1 

EUA Spot Prices from EEX during 02/01/2013 to 29/01/16. 
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Table 4.1 

       Descriptive Statistics 
      EUA Spot Price (776 observations)         

Mean Max Median Min St. Dev. Skewness Kurtosis Jarque-Bera 
6.061 8.650 6.070 2.720 1.453 -0.021 -1.039 34.957** 

Logarithmic returns (775 observations) 
    Mean Max Median Min St. Dev. Skewness Kurtosis Jarque-Bera 

-0.010% 20.187% 0.000% -40.970% 3.683% -1.664 23.695 18487.319** 
 

 
 

       
         

Similarly to findings for phase 1 (Daskalakis et al., 2009) and phase 2 (Chevallier, 2009) 
there is negative skew and a high kurtosis in our sample, which indicates that the 
returns have a leptokurtic distribution. Moreover, the Jarque-Bera test rejects the null 
hypothesis that the returns are normally distributed. 
 
We continue our analysis of the spot by testing for stationarity. Contrary to Daskalakis 
et al. (2009), we reject the null hypothesis of a unit root using the Augmented Dickey-
Fuller Test (Dickey and Fuller 1979). 
 
 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Jan-13 Jul-13 Jan-14 Jul-14 Jan-15 Jul-15 Jan-16

EUA Spot Returns 

Figure 4.2 

EUA Spot log returns from EEX during 02/01/2013 to 29/01/16. 

Sample from 02/01/2013 to 29/01/16. 
*Significant at the 5% level. **Significant at the 1% level. 
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Table 4.2 
  Augmented Dickey-Fuller Test 

Model Statistic P-value 
Autoregressive -23.810 0.001 
Autoregressive with drift -23.794 0.001 
Trend stationary -23.779 0.001 
 

 
 

  
       

Now that we have established some characteristics of the EUA spot returns we turn to 
how one could model these. The most well-known stochastic process for returns is 
undoubtedly the Geometric Brownian Motion (in continuous time): 
 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑑 + 𝜎𝑆𝑡𝑑𝑧𝑡 (4.1) 
 
where St is the asset’s price at time t, µ is the expected return, zt is a standard Weiner 
process and σ is the time-invariant volatility. 
 
Daskalakis et al. (2009) found that a Geometric Brownian motion augmented by jumps 
(Merton, 1976) had the best fit for the EUA spot price during the period 25/10/2005 to 
28/12/2007. The process in the real world is as follows: 
 

𝑑𝑆𝑡 = �𝜇 − 𝜆𝜇𝑗�𝑆𝑡𝑑𝑑 + 𝜎𝑆𝑡𝑑𝑧𝑡 + (𝑦 − 1)𝑆𝑡𝑑𝑞𝑡 (4.2) 

 
where λ is the jump intensity measured as the average number of jumps per annum and 
y, the jump size, is normally distributed as follows: 
 

f(y) = 1
�2𝜋𝜎𝑗

exp ��𝑦−𝜇𝑗�
2

2𝜎𝑗
2 � (4.3) 

 

where 𝜇𝑗 and 𝜎𝑗
2 are the mean and variance. The jump component qt is a Poisson 

process, independent of the Weiner process zt. λ is the arrival intensity of the Poisson 
process so that 𝑃𝑃{𝑑𝑞𝑡 = 1} = 𝜆𝜆𝜆 and 𝑃𝑃{𝑑𝑞𝑡 = 0} = 1 − 𝑑𝑑. 

 
The model helps to explain excess kurtosis and negative skew, which makes it a good fit 
in theory considering the characteristics of the EUA spot returns. Merton (1976) 
assumed that the jump-risk was diversifiable. However, looking at the sharp drops of the 

Number of lags is 1 in all cases, which was selected 
based on the Bayesian Information Criterion (BIC). 
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EUA spot makes one question that assumption in this case. Moreover, as in the case of 
the Black-Scholes framework and the Geometric Brownian motion, the volatility is 
assumed to be constant over time. These assumptions are of course questionable but 
they allow us to use a fairly simple model with jumps when pricing options. 
 
Models based on generalized autoregressive conditional heteroscedasticity (GARCH) are 
used in many areas of finance. In the EUA research, Benz and Trück (2009) had success 
with a GARCH framework. We will now present the model by Duan (1995) that we will 
use to price options. This model deals with heteroskedasticity of asset returns in a 
different way than most other models (such as the jump-diffusion model above): the price 
of an option depends on the risk premium of the underlying asset. Moreover, the model is 
non-Markovian. The lognormally distributed return of an asset under the real world 
probability measure P: 

ln 𝑆𝑡
𝑆𝑡−1

= 𝑟 + 𝛾�ℎ𝑡 − 1
2

ℎ𝑡 + 𝜀𝑡 (4.4) 

 
where r is the constant one-period risk-free rate, γ is the risk premium4 and εt follows a 
GARCH(1, 1) process of Bollerslev (1986), 
 

𝜀𝑡|𝜙𝑡−1 ~ 𝑁(0, ℎ𝑡) under measure P, 

ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛽1ℎ𝑡−1  (4.5) 

 
where ϕt is the information set of all information up to and including t; α0 > 0, α1 ≥ 0 and 
β1 ≥ 0. Moreover, α1 + β1 < 1 to ensure covariance stationarity.  
 
We estimate the three abovementioned models by using log-likelihood5  and present the 
results below in table 4.3. As indicated by the non-normality above, the Geometric 
Brownian Motion underperforms compared to the other models, while the winner in 
terms of log-likelihood is the GARCH(1,1) specification. Turning to the estimated real 
world parameters, we notice that volatility is high and fairly close to what Daskalakis et 
al. (2009) found in the Powernext market during phase 1 while the drift parameter, µ, is 
very off. By augmenting the Geometric Brownian Motion with jumps, we see that the 
diffusion coefficient more than halves, suggesting that a large part of the volatility can 

                                                        
4 The unit risk premium is more commonly known as λ in the literature but we use γ to not 
confuse with the jump intensity parameter in the jump-diffusion model. 
5 Please see Brigo et al. (2008) for maximum likelihood estimation of GBM and JGBM. 
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be explained by jumps. The higher log-likelihood indicates that it better captures the 
leptokurtic features and negative skew found in the data. The jump intensity parameter, 
λ, is quite extreme as it suggests almost 91 jumps per year. Furthermore, we see that 
the mean of the jump is positive, albeit close to zero, whereas Daskalakis et al. (2009) 
estimated a negative mean. For the GARCH model we see fairly odd parameters as the 
magnitude of α1 and β1 is reversed as what is usually seen in the literature. The large β1-

coefficient indicates that the conditional variance is highly dependent on past 
conditional variance, while a relatively small contribution is attributed to past squared 
disturbances (𝜀𝑡−1

2 ). Assuming the estimation is accurate, this suggests that there is very 
persistent volatility clustering in the EUA spot returns.  
 

Table 4.3 
   Maximum Likelihood Estimation (02/01/2013 - 29/01/2016) 

Parameters GBM JGBM GARCH(1,1) 
µ 0.0254 0.0254 

 σ 0.5840 0.2413 
 λ 

 
90.6291 

 µ j 
 

0.0033 
 σ j 

 
0.0522 

 α0 
  

5.806x106 
α1 

  
0.1053 

β1 
  

0.8947 
γ 

  
0.0843 

L 1459.345 1650.773 1756.116 
 

 
 

4.2 EUA Futures 
Before we can price options on futures, we need to make sure that the cost-of-carry 
relationship holds and that they follow the same process as the spot price, as we intend 
to apply models based on this process. 
 
The standard cost-of-carry relationship which says that a futures contract F at time t, 
maturing at T, can be calculated as follows:  

𝐹𝑡,𝑇 = 𝑆𝑡𝑒(𝑟+𝑠−𝑐)(𝑇−𝑡) (4.6) 

where S is the underlying asset, r is the risk-free rate, s is the storage cost and c is the 
convenience yield. As assumed by Daskalakis et al. (2009), the storage cost is zero, due to 
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the non-physical nature of EUA contracts, and the convenience yield is zero as there is 
no benefit of having the spot contract compared to a futures contract for intra-phase 
contracts. Following Daskalakis et al. (2009), we test the accuracy of this relationship by 
comparing the actual closing prices of futures contract on EEX and ICE, maturing in 
December 2013, 2014, 2015 and 2016, with theoretical futures prices. We use daily prices 
from 02/01/2013 up to expiry for contracts maturing in 2013-2015 and to 29/01/2016 for 
the contract maturing in December 2016. As the secondary EUA spot is only traded on 
the EEX, it will also be used when calculating the theoretical price for futures on ICE.  
 
We deviate from their methodology by using a daily quoted interest rate when pricing 
the futures. The 3 month (e.g. Yang et al., 2016) or 6 month (e.g. Daskalakis et al., 2009) 
EURIBOR rate is often times used as a proxy for the risk-free rate. However, Hull and 
White (2012) argues that overnight indexed swap rates should be used as the risk-free 
rate. When calculating the theoretical futures prices we got considerably more accurate 
prices when we used an interpolated swap curve using the Euro Overnight Index 
Average (EONIA), rather than using the 3 month or 6 month EURIBOR. 
 
Daskalakis et al. (2009) calculate the mean squared pricing error, MSE (%), which we 
also present for comparability: 

𝑀𝑀𝑀 (%) =
100

𝑁
� �

𝐹𝑡
𝑇 − 𝐹𝑡

𝐴

𝐹𝑡
𝐴 �

2𝑁

𝑡=1

 

 

where Ft
T denotes a theoretical futures price and Ft

A is the actual futures closing price. 

We prefer the root mean squared error, RMSE (%), as it is easier to interpret. It is 
calculated as follows: 

𝑅𝑅𝑅𝑅 (%) = 100�
1
𝑁

� �
𝐹𝑡

𝑇 − 𝐹𝑡
𝐴

𝐹𝑡
𝐴 �

2𝑁

𝑡=1

 

 
Moreover, the mean transaction cost (MTC) was calculated as the mean of fixed fees6 per 
EUA as a fraction of the actual futures price. Our results are presented in table 4.2. 
Looking at MSE, it is quite comparable to what Daskalakis et al. (2009) found for intra-
phase contracts in phase 1 and suggests that the cost-of-carry relationship holds. The 

                                                        
6  The exchange and clearing fees for ICE is €0.0035 per contract for member’s proprietary 
business. For EEX it was €0.0018 during 2013 and 2014, while it was €0.002 in 2015 and 2016.  
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RMSE is quite large at 6.1% for the ICE December 2016 futures. However, this can at 
least partially be explained by the discrepancy of using spot prices from another 
exchange and the fact that a larger weight is put on observations further away from 
maturity as it started trading in January 2013 which compounds any error of our proxy 
of the risk-free rate.  
 
Table 4.4 

         Pricing Accuracy of EUA futures 
        ICE   EEX 

  Dec-13 Dec-14 Dec-15 Dec-16 
 

Dec-13 Dec-14 Dec-15 Dec-16 
MSE (%) 0.0046 0.0386 0.1379 0.3781 

 
0.0936 0.1550 0.0591 0.1377 

RMSE (%) 0.6758 1.9642 3.7137 6.1490 
 

3.0587 3.9372 2.4315 3.7110 
MTC (%) 0.0741 0.0633 0.0457 0.0540   0.0401 0.0325 0.0312 0.0256 
 

 
 

         
          
          
          To further test if the cost-of-carry relationship holds, we also conduct an Engle-Granger 

test. This is done by OLS regression to find a stationary linear combination of two 
processes with minimum variance. As can be seen in table 4.3, we clearly reject the null 
of no co-integration between the series. This leads us to believe that the EUA spot and 
the futures contract follow the same trend and that the cost-of-carry relationship holds 
in the long run. 

Table 4.5 
  Engle-Granger Test     

  Statistic P-value 
Price levels -3.993 0.001 
Returns -44.560 0.001 
 

 
 

  
   Although there is some conflicting evidence in previous research regarding the existence 

of a convenience yield, at least some of it could be subscribed to the choice of the risk-free 
rate. In the present paper, we simplify and assume it being non-stochastic. Hence it will 
have no real impact on our option pricing as we focus on European options expiring three 
business days before the expiry of the futures contract and there is no price difference 
between the spot and the futures contract at expiry of the option. 

  

Futures are calculated using the cost-of-carry relationship in Eq. (4.6), where cost of carry and convenience 
yield have been assumed to be zero. MSE (%) is the mean squared pricing error in percentage while RMSE (%) 
is the squared root of the mean squared pricing error in percentage. MTC (%) refers to the transaction cost as 
a fraction of the actual futures price. 

The Engle-Granger test is done on EUA spot 
and the 2015 December futures. 
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5. Theory and Model Specification 
5.1. Risk-Neutral Valuation 
An essential concept in derivatives pricing is risk-neutral valuation. In the risk-neutral 
world, investors do not care about risk. While in the real world, or so called physical 
world, investors demands a premium to compensate for systematic risks. As derivatives 
such as options depend on the price of the underlying asset in a relative sense, they 
themselves do not depend on risk aversion. Rather, the underlying asset’s value may 
change due to shifts in investors risk appetite. 
 
An asset can be valued by discounting with the risk-free rate, given that expected cash 
flows are calculated using risk-neutral probabilities. In this setting, all fairly priced 
assets earn the risk-free rate. If an asset wasn’t fairly priced, an arbitrageur would 
exploit this by either selling the overpriced asset or buying the underpriced asset and 
hedging the exposure.  
 
In a no arbitrage setting, a market is complete if and only if there is only one risk-
neutral probability measure (Donaldson & Danthine, 2014). In the case of the jump-
diffusion model, however, the underlying process is discontinuous which leads to an 
incomplete market as it’s not possible to perfectly hedge ones exposure. This will cause 
some issues, not the least when estimating the risk-neutral parameters for this model as 
there is more than one probability measure and consequently different option prices 
(Cheang and Chiarella, 2011). 
 
As it is costless to enter a futures contract, the risk-neutral expected return is zero. For a 
futures contract in the risk-neutral world, price F is often assumed to follow the below 
process (Hull, 2012): 

𝑑𝑑 = 𝜎𝜎𝜎𝜎 (5.1) 
where the volatility σ is constant. The process behaves just like a stock with the dividend 
yield equal to the risk free rate. 
 

5.3. Futures Options 
A European call option gives the holder the right, but not the obligation, to buy the 
underlying asset at a predetermined price, the strike price. A European futures call 
option instead gives the holder the right to enter a long position in a futures contract. As 
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in the case with many other commodity markets, the EUA spot is not as actively traded 
as the futures and hence it is more convenient to have futures contract as the underlying 
asset. At the expiry of the option, the payoff is as follows: 

max [𝐹 − 𝑋, 0] 
where F is the futures price at expiry of the option and X is the strike price. If the option 
is in the money at expiry (i.e. F>X), the option holder will enter the underlying futures 
contract, with a price equal to the strike price, while otherwise the option expires 
worthless. In the EUA options market, there are futures trading with a quarterly expiry 
(March, June, September and December) up to 16 contract months. The underlying 
futures contract, however, is always the December contract for the particular year of 
expiry. 

 

5.4. Black’s Model 
In 1976, Fischer Black showed how to value futures options in a simple formula: 
 

𝐶 = 𝑒−𝑟𝑟[𝐹0𝑁(𝑑1) − 𝑋𝑋(𝑑2)] (5.2) 

𝑑1 = ln(𝐹0/𝑋)+𝜎2𝑇/2
𝜎√𝑇

𝑑2 = 𝑑1 − 𝜎√𝑇  (5.3) 

 
It is based on the Black-Scholes framework and assumes that the futures price follows a 
log normal distribution and where volatility is constant. This is a very standard model 
when pricing futures option and consequently we will use it as our benchmark. 
 

5. 5. Option Pricing Under Jump-Diffusion 
Option models based on a simple diffusion process often undervalues short-term out of 
the money options. These models require very high volatilities to match the market’s 
expectation of a large price movement in a short time-period. By allowing for 
discontinuous jumps in returns, the jump-diffusion model helps to explain these 
differences between market and model prices. The equivalent process for equation 4.2 
under the risk neutral measure Q is given by: 
 

𝑑𝑆𝑡 = �𝑟 − 𝑞 − 𝜆∗𝜇𝑗
∗�𝑆𝑡𝑑𝑑 + 𝜎𝑆𝑡𝑑𝑧𝑡 + (𝑦∗ − 1)𝑆𝑡𝑑𝑞𝑡 (5.4) 

Where * indicates the equivalent risk adjusted parameters. When calibrating the model, 
we will however estimate all parameters from option’s data to see if the option prices 
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contain useful information and to see if the model is correctly specified. For convenience, 
the superscript * is dropped from here on. 
 
The value of a European call option using the jump-diffusion model by Merton (1976) can 
be expressed as an infinite sum of weighted Black-Scholes prices. The weights are the 
Poisson probability that the underlying will jump n times during the time to maturity. 
Following Murphy and Ronn (2015), we present a version for European calls on futures, 
using the assumptions that futures price behaves like the underlying asset with a 
dividend yield q equal to r: 

𝐶 =  ∑ 𝑒−𝜆′𝑇(𝜆′𝑇)𝑛

𝑛!
𝐶𝑛(𝐹𝑇 , 𝑋, 𝑇, 𝑟𝑛, 𝑞, 𝜎𝑛)∞

𝑛=0   (5.5) 

 
where 𝐶𝑛(𝐹𝑇 , 𝑋, 𝑇, 𝑟𝑛, 𝑞, 𝜎𝑛) is the Black-Scholes European call option value and 
𝜆′ = 𝜆(1 + 𝜇𝑗) 

𝜎𝑛
2 = 𝜎2 +

𝑛𝜎𝑗
2

𝑇
 

𝑟𝑛 = 𝑟 − 𝜆𝜇𝑗 +
𝑛 ln�1 + 𝜇𝑗�

𝑇
 

𝑞 = 𝑟 
Although the sum is infinite, it can be well approximated by a truncated sum. Gilli and 
Schumann (2010) recommended including about 20 jumps. We still had some noticeable 
price differences up to around 50 jumps, but we include 150 jumps in the sum for good 
measure. 
 

5.6. GARCH Option Pricing 
Duan’s GARCH option pricing model uses the locally risk-neutral valuation relationship 
which in practise means that one can estimate parameters, to be used when pricing 
options, using the underlying returns. Duan uses some assumptions with regards to the 
utility function and shows that the conditional variances under Q and P are equal. 
Under the pricing measure Q with normally distributed conditional returns, the model 
looks as follows: 

ln 𝑆𝑡
𝑆𝑡−1

= 𝑟 − 1
2

ℎ𝑡 + 𝜉𝑡 (5.6) 

𝜉𝑡|𝜙𝑡−1~𝑁(0, ℎ𝑡) (5.7) 

ℎ𝑡 = 𝛼0 + 𝛼1(𝜉𝑡−1 − 𝛾�ℎ𝑡−1)2 + 𝛽1ℎ𝑡−1 (5.8) 
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The European call option price at time t and maturing at time T is given by: 
 

𝐶 = 𝑒−(𝑇−𝑡)𝑟𝐸𝑄[max(𝑆𝑇 − 𝑋, 0) | 𝜙𝑡] 
 
As no closed form expression really exists for this particular model, we will approximate 
the price using Monte Carlo simulations. A large number of paths of the process will be 
generated and the average payoff of the call option is then discounted back to time t 
using the risk-free rate. In our case, we will use 10,000 simulations per day. Monte Carlo 
simulations can of course be a bit time-consuming to use in practice, but it is not 
something we will consider notably in this paper as our primary goal is to compare 
models that are fairly easy to apply. 
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6. Parameter Estimation 

6.1. Calibrating the Jump-Diffusion Model 
In order to price options using the jump-diffusion model, we need to find four risk-
neutral parameters: This is often done by calibrating the model to real option prices by 
using maximum likelihood estimation or by minimum least squares estimation. We use 
the latter and follow a methodology similar to Bakshi et al. (1997) and minimize the 
squared difference between market and model prices in order to find the parameter 
vector, θ.  

𝜃 = arg min �[𝐶𝑛
𝑜𝑜𝑜(𝑡, 𝑋𝑛) − 𝐶𝑛

𝑚𝑚𝑚𝑚𝑚(𝑡, 𝑋𝑛)]2
𝑁

𝑛=1

 

 
Instead of having the objective function as the sum of squared euro pricing errors as in 
the case above, one could also minimize the squared percentage pricing errors such as 
suggested by Cont & Tankov (2002). Naturally, this would put more weight to cheaper 
options (such as options out-of-the-money). However, to generate more comparable 
results to Daskalakis et al. (2009) and to follow what seems to be consensus, we will use 
the sum of squared euro pricing errors throughout when calibrating the jump-diffusion 
model. 
 
In our case the observed market price will be the daily settlement price, which is the 
trade weighted average price during the settlement period (which is the last 10 minutes 
of a trading day). Should there be no executed price at this time it will be the last 
executed price within the closing bid and ask prices or if that is not possible; the mid-
point of the closing quote. Due to liquidity reasons, we restrict our analysis to call 
options and five strike prices. These are options struck at the money as well as the four 
closest strike prices (two out-of-the-money and two in-the-money strike prices). 
Moreover, we focus on options expiring in December each year as these options, as well 
as the underlying futures contracts expiring the same month, are generally the most 
liquid. 
 
The calibration was carried out using the abovementioned options over samples of 25 
observations (i.e. 5 days with five option prices each) during 2015. The sample size was 
selected by considering the stability of the parameters and convergence of the 
optimization. 
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This was done in MATLAB using two local optimizers: lsqnonlin and fmincon. Lsqnonlin 
is especially suitable for nonlinear least-squares problems and was used with the default 
trust-region-reflective algorithm. Fmincon was used with the sequential quadratic 
programming (SQP) algorithm to look for any other smaller minima. These optimizers 
can find quite different points depending on the starting values of the parameters. Gilli 
and Schumann (2010) found that a best-of-N-restarts strategy with random starting 
points gave about the same or better results than picking “good starting values” (from 
economic or mathematic intuition) when calibrating a yield curve model.  In the spirit of 
their findings, we tried to mitigate the problem with local minima by rerunning each 
minimization with random starting values 100 times using both optimizers. In order 
double-check whether there was a more optimal minimum which the other two methods 
did not find, we also used simulannealbnd which searches for a global minimum using 
simulated annealing. 
 
The optimization routines took about three days to run on an Intel i5-4670K (five cores) 
at 3.40 GHz with 8 GB RAM. In practice, one might speed up the process by 
implementing the option valuation technique using fast Fourier transform by Carr and 
Madan (1999).  
 

6.2. GARCH Maximum Likelihood Estimation 
For the GARCH(1,1) model by Duan (1995), will use maximum likelihood when 
estimating the parameters for the GARCH model. Following Christoffersen and Jacobs 
(2004), we maximize the log-likelihood function conditional on the first observation: 

 

ln L =  −(𝑇 − 1) ln(2𝜋) /2 − � ln(ℎ𝑡) /2
𝑇

𝑡=2

− ��𝑅𝑡 − 𝑟𝑓 − 𝛾�ℎ𝑡 + 0.5ℎ𝑡�
2

/(2ℎ𝑡)
𝑇

𝑡=2

 

 
This is done on daily historical spot returns from 02/01/2013 up to and including the 
sample period of options we are pricing in-sample. In the out-of-sample case, we only 
include historical data preceding the sample period. Given the assumptions made on the 
model, we are able to estimate the parameters α0, α1, β1 and λ that can be used to price 
options. As there is no analytical solution to this function, we optimize in Matlab using 
fmincon which allows us to optimize the negative log-likelihood with the correct bounds 
on the parameters. Since it’s quite difficult to appropriately estimate GARCH models 
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using returns (Christoffersen and Jacobs, 2004), we focus our efforts estimating the 
model in 2015 which ensures us at least two years of daily data from phase 3. 
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7. Option Pricing Results 
 
We test our models accuracy in pricing EUA futures options by using a sample of 1125 
European futures call option prices. The measure of accuracy in this case will be the 
mean absolute pricing error (MAPE) : 
 

𝑀𝐴𝑃𝑀 =  
1
𝑁

�
�𝐶𝑛

𝑜𝑜𝑠 − 𝐶𝑛
𝑚𝑜𝑚𝑒𝑚�

𝐶𝑛
𝑜𝑜𝑠

𝑁

𝑛=1

 

 
This is calculated on a maturity and moneyness basis and we present the in-sample 
pricing errors below in table 7.1. We use 45 samples with 25 trading days and 125 option 
prices each. The GARCH model performs extremely poorly which can be cause by errors 
in the approximation, perhaps due to the short sample used in the maximum likelihood 
estimation, and or model specification errors. This can partially be caused by the 
previously noted reversed magnitude of α1 and β1 which causes rather low but very 
persistence volatility. Merton’s model outperforms Black’s model in all cases. As 
previously mentioned, the jump-diffusion model is often more accurate in pricing out-of-
the-money options, especially when they the time to maturity is short. This is also the 
case in our data, where we see that Merton’s model halves the short maturity OTM 
pricing error by Black’s model. 
 

Table 7.1 
In-Sample Pricing Errors 

  
Strike Black Merton GARCH 

Long Maturity Total 1.942% 1.315% 56.511% 

  
ATM 1.443% 1.285% 55.636% 

  
ITM 1.654% 0.999% 40.952% 

  
OTM 2.480% 1.645% 72.507% 

Medium Maturity Total 1.978% 1.139% 123.943% 

  
ATM 1.125% 1.048% 107.270% 

  
ITM 1.331% 0.821% 77.976% 

  
OTM 3.052% 1.504% 178.247% 

Short Maturity Total 3.137% 1.842% 124.059% 

  
ATM 2.070% 1.705% 108.297% 

  
ITM 1.203% 0.932% 48.643% 

    OTM 5.605% 2.821% 207.356% 
 

 
 

     
      

In-Sample Option Pricing using MAPE as the measure of error. The sample is 
2 January to 13 November. 
Long Maturity: 341 to 236 calender days. 
Medium Maturity: 233 to 131 calender days. 
Short Maturity: 128 to 26 calender days. 
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In table 7.2 we present the out-of-sample pricing errors, where the parameters from the 
previous sample have been applied to the next 25 trading days. As in the in-of-sample 
case, the Merton Jump-Diffusion model is generally the most accurate. As mentioned 
before, it is more accurate in pricing options out-of-the money. However, it falls short to 
Black’s model in two cases: long maturity at-the-money calls and short maturity in-the-
money calls. 
 

Table 7.2 
    Out-of-Sample Pricing Errors 

  
  

Strike Black Merton GARCH 
Long Maturity Total 3.348% 3.090% 55.009% 

  
ATM 2.986% 3.088% 54.758% 

  
ITM 2.702% 2.244% 39.873% 

  
OTM 4.175% 3.937% 70.269% 

Medium Maturity Total 2.856% 2.524% 121.938% 

  
ATM 2.258% 2.019% 104.715% 

  
ITM 2.394% 1.764% 74.354% 

  
OTM 3.616% 3.537% 178.135% 

Short Maturity Total 4.041% 3.860% 122.967% 

  
ATM 3.913% 3.130% 107.910% 

  
ITM 1.407% 1.616% 45.807% 

    OTM 6.740% 6.468% 207.656% 
 

 
 

     
      
      
      
      
      Although the Merton model is much more tedious to work with due to the complex 

calibration procedure, there is still some gain in most cases compared to the standard 
futures option pricing model of Black. As can be seen in the Appendix in figures A.1 and 
A.2 the calibrated risk-neutral parameters are highly variable. Moreover, they are not 
really reflecting what we see in our maximum likelihood estimation of the parameters 
under the physical measures, where for example the jump intensity λ where over 90. 
Either the options do not contain very precise information or we need more options in 
our calibration to more accurately estimate the risk-neutral parameters. In the figure 
A.3 in the Appendix we also show the implied volatilities of Black’s model, which shows 
a decreasing trend. This highlights the fact that a constant volatility is not present in 
the EUA market.  

Out-of-Sample Option Pricing using MAPE as the measure of error. 
The sample is 9 January to 13 November. 
Long Maturity: 334 to 229 calender days. 
Medium Maturity: 226 to 117 calender days 
Short Maturity: 114 to 26 calender days 
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8. Conclusions 
We first looked at the EUA spot returns characteristics and found that they follow a non-
normal distribution with high kurtosis and negative skew. We applied maximum 
likelihood to estimate three models: the Geometric Brownian Motion, Merton’s Jump-
Diffusion model and the GARCH specification of Duan (1995). In the spot returns data, 
we noted that the GARCH model had the best fit in terms of log-likelihood, followed by 
the jump-diffusion model. After describing the spot return distribution we looked at the 
futures and found that they are co-integrated with the EUA spot. We then estimated 
parameters by calibrating the Merton model to options data and by using maximum 
likelihood on spot returns for the GARCH model. The pricing accuracy was measured 
using mean absolute percentage error in- and out-of-sample on futures options maturing 
in December 2015.   
  
Our study of phase 3 confirms the findings of Daskalakis et al. (2009): that options are 
more accurately priced using jump-diffusion as they most likely better capture the high 
kurtosis and negative skew observed in the EUA spot returns. The GARCH model 
performed very poorly, most likely due to estimation errors or an incorrect model 
specification. 
  
We acknowledge that our approach has limitations. Firstly, we assume that the 
convenience yield is zero while both our own futures pricing and prior research produce 
ambiguous evidence. Secondly we use non-constant risk-free rates in all our models. 
Moreover, we use Merton’s jump-diffusion model which assumes constant risk-neutral 
parameters, which we estimate using 25 call settlement prices for each sample. As there 
is low liquidity in these options, many of the settlement prices are based on quotes 
rather than actual closes on the exchange which might bias the study. As for our 
GARCH specification, we apply Duan’s (1995) locally risk-neutral relationship to the 
spot while pricing futures option. Unfortunately, we cannot really disentangle the effect 
of this misspecification from any potential estimation errors on the underperformance of 
the model. 
  
As previously mentioned, there are still not many published papers on EUA derivatives. 
For future research on this topic, it would be highly interesting to apply models that use 
stochastic volatility as well as jumps, such as Bates (1996) to see if they price EUA 
option futures more accurately. 
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Figure A.1 
Calibrated Estimates over 47 Samples for σ, μ j and σj 

    

 
 

        
         
         
         
         
         
         
         
         
         
         
         
         
         
         
 

         

 
 

        
         Figure A.2 
Calibrated Estimates over 47 Samples for λ 
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         Figure A.3 

      Implied volatilities in Black's model in 47 samples 
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