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Abstract

We evaluate how factor equity strategies are optimally combined, focusing on the role of
the value factor (HML) against the background of a recent academic discussion about its
potential redundancy, and the discovery of the investment (CMA) and profitability (RMW)
factors. The analysis is centered around a conditional joint return distribution from a dy-
namic copula model, which allows for simulation with a time-varying and non-normal de-
pendence structure. We study portfolios of six of the most common equity factors (market
(Mkt.RF), size (SMB), value (HML), investment (CMA), profitability (RMW) and momen-
tum (Mom)) on weekly US data 1963–2016, applying two different optimization strategies:
mean-variance and conditional diversification benefit, where the latter is based on expected
shortfall. Our results show that HML remains an important factor that increases the Sharpe
Ratio and also decreases the tail risk of portfolios. However, HML should only be combined
carefully with CMA, as they overlap to some extent. In parallel, we find that RMW is funda-
mentally different from HML and CMA, and that the factor is significantly more impactful
on the risk-reward profile of portfolios.
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1 Introduction

Fama and French (2015) find that the value factor (HML) is redundant in a five-factor model in-
cluding investment (CMA) and profitability (RMW), as it has no explanatory power on monthly
returns in a US 1963–2013 sample. This could mean that the classic value factor is an inferior
proxy for what truly comprises value, and the paper has sparked a debate on whether the HML
factor is a poor proxy for the value effect. In response to Fama and French (2015), Asness, Frazz-
ini, Israel, and Moskowitz (2015) resurrect the explanatory power and value of HML in a portfo-
lio context, by including momentum as a factor.

In this paper, we put ourselves in the shoes of an investor who optimizes factor exposures of a
portfolio and is curious about what the new factors bring to the table. We consider the six factors
most commonly discussed in the literature: market (Mkt.RF), size (SMB), value (HML), invest-
ment (CMA), profitability (RMW) and momentum (Mom), as available from Kenneth French’s
data library (French, 2016). Specifically, we focus on the role of value (HML) in factor investing,
and its apparent similarity to investment (CMA), against the background of Fama and French
(2015) and Asness et al. (2015). We also consider the impact on risk and reward of including the
other new factor, profitability (RMW).

While most factor pairs exhibit relatively low correlation, the HML–CMA pair stands out
with an unconditional correlation in our sample (weekly returns 1963–2016) of 0.63. Value firms
have been found to invest less, and growth firms to invest more, and there is a negative empirical
relation between past investment and current book-to-market ratios (Zhang, 2005; Anderson
& Garcia-Feijóo, 2006). Therefore, there is reason to expect a degree of overlap between the
portfolios that comprise HML and CMA.

The value premium has been explained both as a rational risk premium, that compensates
the bearer for taking on some risk that materializes in bad times, and as an anomaly, that exists
due to market frictions or investor irrationality. If the premia earned on these strategies are
compensations for risk, the source of risk in the HML and CMA factors might in fact be the
same. An investor who allocates to both these factors might unwillingly double up on exposure
to the same risk source. Similarly, if the premia earned are due to market frictions and irrational
investor behavior, the naïve investor would double up on exposure to the risk that the anomaly
goes away. We believe that, regardless of the interpretation of the value premium, there is reason
to place additional emphasis on the role of HML relative to CMA from a portfolio choice and
risk perspective.

Our main research question can thus be expressed as: What role should value (HML) play in
factor investing given the discovery of investment (CMA) and profitability (RMW)?

CMA was included in the five-factor model jointly with RMW. RMW is typically considered
an anomaly, as it has proven to be especially hard to rationalize as a risk premium (Wang & Yu,
2013). High profitability is generally indicative of a favorable market position, a strong brand
and a host of competitive advantages, which all contribute to lower risk. The reverse holds for
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the unprofitable firms. Furthermore, RMW has had high positive returns in times of crisis, in-
dicating that the factor shields against risk at times when protection is needed the most. There
seem to be strong benefits to including such a factor in a portfolio, and we believe that the RMW
factor deserves to be analyzed separately.

Our secondary research question therefore considers: What is the impact on the risk-reward
trade-off of including profitability (RMW) in factor portfolios?

To answer these questions, we optimize portfolios based on two different strategies and com-
pare the resulting risk-reward profiles of including HML, CMA and RMW respectively.

Before delving into optimization methods, we revisit the zero-cost regressions of Fama and
French (2015) and Asness et al. (2015). In these regressions, each factor is separately regressed
on all the remaining factors, to determine whether there is any additional abnormal return to the
left-hand side (LHS) factor after accounting for the variation explained by the right-hand side
(RHS) factors. In other words, such regressions examine whether the LHS factor is subsumed by
the RHS factors, in which case it has no significantly estimated intercept. In fact, the intercept
is also equivalent to the Jensen’s alpha of including the LHS variable to a portfolio of the RHS
factors (Jensen, 1968). Fama and French (2015) find zero alpha of adding HML to a four-factor
portfolio, and conjecture that this implies that a mean-variance (MV) investor would in fact
not improve the tangent portfolio’s Sharpe Ratio (SR) by including HML. Asness et al. (2015)
challenge the notion that HML factor is subsumed by the addition of CMA and RMW. In their
study, they resurrect the alpha of the value factor by adding amomentum factor to the regressions
and by modifying the HML factor.

We find similar regression results in our weekly data set of factor returns 1963–2016. How-
ever, while the regressions of zero-cost portfolios in Fama and French (2015) and Asness et al.
(2015) indicate which factors should be included in MV investing, neither paper actually car-
ries out MV optimization of portfolios including CMA and RMW. This thesis fills that gap by
optimizing weights of both five-factor (as in Fama and French (2015)) and six-factor portfolios
(including momentum as in Asness et al. (2015)).

Thus, the first optimization method is mean-variance (MV) analysis – a conventional risk-
reward perspective, where weights are chosen to maximize the Sharpe Ratio of the portfolio.
However, MV analysis only considers the expected returns and covariances of the return distri-
bution. Factor strategies have been shown to be inherently non-normal: they have high levels
of skewness and kurtosis and also exhibit tail dependence, i.e. the notion that there might be
significantly different dependence patterns when returns simultaneously realize in the lower or
upper tail, as opposed to close to the center of the joint distribution (Christoffersen & Langlois,
2013). Means and covariances provide an incomplete description of factor return distributions,
and therefore also of the risk in factor portfolios. Regardless of the result of MV analysis, the
non-normal features might constitute another reason altogether to include (or exclude) either
HML, CMA or RMW.

To analyze the lower tail of the distribution, the second optimization method is based on
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the conditional diversification benefit (CDB) statistic, a measure introduced in Christoffersen,
Errunza, Jacobs, and Langlois (2012). CDB is based on Expected Shortfall (ES) and measures
the diversification benefit in the lower tail of the distribution. The statistic studies how close a
portfolio’s ES is to the portfolio’s Value-at-Risk (VaR), and provides an additional dimension to
the risk-reward trade-off in the MV setting. In optimization, weights are chosen to maximize
tail diversification (i.e. maximize the CDB statistic).

While MV analysis could be carried out using static sample estimators of means and covari-
ances alone, CDB analysis is impossible without a model of returns, from which ES and VaR can
be derived. Furthermore, a conditional model allows us to study dynamic portfolio weights.

The choice of a return model is central. While the ARMA-GARCHmodel family is the norm
of univariate time-series modeling, multivariate modeling has proven harder as the multivariate
extensions of such models are often computationally infeasible and ridden with dimensionality
problems. Recently, however, copula models have attracted considerable attention in the risk
management field, as they offer a numerically stable and flexible way of estimating joint proba-
bility distributions.

Following closely themethod of Christoffersen and Langlois (2013), we build a copulamodel
of the joint factor returns. The specification we use is designed to recognize time-varying cor-
relation and tail dependence, which are two important features of factor returns (Christoffersen
& Langlois, 2013). We measure time-varying correlation with rolling one-year correlation and
tail dependence with threshold correlation (also known as exceedance correlation), i.e. the linear
correlationwhen factors simultaneously realize in the upper or lower tail (Ang&Chen, 2002). In
in-sample robustness tests, our copula model is shown to generate the time-varying correlation
patterns in the data. It can also, to a limited extent, reproduce the tail dependence.

Based on copula estimates of means and covariances, our MV optimization shows that HML
does indeed improve the tangency portfolio’s SharpeRatio, subject to a constraint of non-negative
weights. HML receives an average portfolio weight of 18% and improves the SR by 0.16 in the
five-factor model. We therefore agree with the conclusions of Asness et al. (2015), and suggest
that the discussion about HML’s redundancy is likely to be caused by omitting the momentum
factor from the zero-cost regressions in Fama and French (2015).

However, our MV analysis also highlights the risk of over-allocating to the value factor as
HML is highly similar to CMA. When HML is included, it mainly cannibalizes on the weight
that CMA had before, and vice versa, indicating that the variables proxy for each other to a high
extent. This is in line with the theoretical and empirical support for an overlap in the stocks that
comprise HML and CMA (Zhang, 2005; Anderson & Garcia-Feijóo, 2006). Investors who do
not consider this similarity, for example by equal-weighting the factors, risk over-allocating to
the same return premium.

We also find that RMW has a much greater impact on the tangency portfolio than do HML
and CMA. When RMW is excluded, the realized Sharpe Ratio falls 0.36, compared to a drop
of 0.16 and 0.10 for HML and CMA, respectively, in the five-factor model. This illustrates the
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unique diversifying nature of RMW, which is not captured or proxied well by the other factors.
We find that all of our MV results are qualitatively similar, albeit less pronounced, when full

sample estimators of means and covariances are used instead of model inputs.
Having considered only means and variances in theMV analysis, we shift the focus to the tail

of the distribution in the CDB analysis and investigate whether HML and CMA differ substan-
tially in terms of their contribution to tail risk. The CDB is alternately higher for the exclusion
of HML or CMA, but no pattern emerges.

Based on the CDB measure of tail risk, there is no reason to remove HML from factor in-
vesting. However, we find that excluding either one of HML or CMA has a very modest impact
on tail risk. We interpret this as another sign of the overlap between HML and CMA. As in
the mean-variance analysis, the factors proxy for each other, making an exclusion less dramatic.
Still, we see no reason for investors to choose either one or the other, as both provide valuable
diversification, and even better, they do so at different times.

Excluding RMW has much greater impact. The CDB drastically worsens, with substantially
greater and more frequent declines. We find that the RMW factor is very efficient in reducing
tail risk.

2 Literature review

We review previous literature on equity factor strategies and summarize the discussion of why
there are factor premia. We also discuss practical factor investing and the work on modeling
factors with copulas.

2.1 The five- and six-factor models

Fama and French (2015) introduce two additional factors to complement the Fama and French
(1993) three-factor asset pricing model. In what is referred to as the five-factor model, the tra-
ditional factors (market, size and value) are complemented by an investment factor and a prof-
itability factor. Both factors represent zero-cost portfolios: the investment factor, denoted CMA
(conservative-minus-aggressive), is long firms with low investment rate and short firms with
high investment rate, and the profitability factor, denoted RMW (robust-minus-weak), is long
firms with high operating profitability and short firms with low operating profitability.

The five-factor model is found to be a significant improvement (in terms of explaining cross-
sectional returns) to the three-factor model, and the two new factors appear to have made the
value factor (HML) redundant. More specifically, the authors show that there is no significant
intercept in regressions of HML on the remaining four factors, while each of the other factors
have significant intercepts in similar regressions. The returns of the HML factor appear to be
fully explained by the remaining four factors. In an investment context, this can be interpreted
as the HML factor adding no alpha to a portfolio holding the remaining four factors.
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Asness et al. (2015) challenge the notion that the value factor is subsumed by the addition of
investment and profitability. In their study, they add a momentum factor, as well as an enhanced
HML factor, and resurrect the alpha of the value factor in a six-factor model. This leads us to
believe that momentum could play an important role in recognizing the effect of HML. The mo-
mentum factor was originally studied by Jegadeesh and Titman (1993) and has since been shown
to be present in many financial return series (Asness, Moskowitz, & Pedersen, 2013).

The investment and profitability factors have only recently made their way into academic lit-
erature. Cooper, Gulen, and Schill (2008) investigate investment, measured as the percentage
change in total balance sheet assets, and show that a related zero-cost-portfolio provides signif-
icant abnormal returns. Investment also has incremental predictive ability in the cross-section
of stock returns, taking both value and size into account.

Novy-Marx (2013) studies the return differences between firms with high and low gross prof-
itability and shows significant abnormal returns to a profitability factor. Profitability is also
shown to have approximately the same power in predicting the cross-section of stock returns
as does value (HML). Furthermore, the profitability strategy is negatively correlated with value,
and can improve the investing performance of a value strategy.

While all other factor pairs exhibit correlations at or below zero, the value (HML) and invest-
ment (CMA) factors are highly positively correlated. Zhang (2005) predicts this positive relation
in a model setting, and Anderson and Garcia-Feijóo (2006) confirm it on empirical data. More
specifically, the empirical study shows that past investment has a significant negative relation
with the book-to-market ratio. In other words, value firms (with high book-to-market) might
be value firms precisely because they have invested little, and vice versa. Fama and French (2015)
consider it a fact that value firms invest less than growth firms.

2.2 Factor premia – anomalies, risk premia, or both?

It is debated whether factor return premia constitute rational risk premia or whether they are the
consequences of market imperfections and irrational behavior. There are some appealing ratio-
nal stories for the return premiumofHML, which could also explain the premiumof CMA as the
factors overlap. Fama and French (1993) show that the HML factor is related to systematic pat-
terns of profitability and growth, and could proxy for a systematic risk source. This is supported
by Liew and Vassalou (2000), who show that the value factor can predict real GDP growth on
data in several markets. Zhang (2005) uses a neoclassical model with rational expectations and
competitive equilibrium to show that value firms have more tangible assets and are burdened by
industry over-capacity in downturns, leading to higher down-market betas. Petkova and Zhang
(2005) find that the conditional betas of value stocks covary positively with the expected market
risk premium. Despite there being a number of rational theories, they all predict effects that are
fairly small and cannot fullymotivate the value premium. So far, themost pervasive explanations
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of the value premium are based on market imperfections and irrational behavior.1

Lakonishok, Shleifer, and Vishny (1994) argue that the value factor is driven by investors’
overreaction to changes in earnings. They show that value firms have often experienced a de-
cline in earnings over the last three years, lowering their book-to-market ratios. When earnings
have gone down, investors as a group extrapolate the trend into the future and push prices away
from fundamentals, giving rise to higher average returns for value firms and vice versa. Sim-
ilar to Lakonishok et al. (1994), Barberis and Huang (2001) draw on the fact that value firms
have experienced decreasing earnings, but suggest that the premium is driven by investors’ loss
aversion bias. In this story, current value firms have had falling earnings, which has led to to
lower share prices and negative returns. Then, many investors are deterred from value firms by
the past performance of negative returns in itself, and are less willing to hold value stocks. This
unwillingness to hold value firms create a risk-reward upside for those who do.

For the profitability factor, RMW, risk based explanations are harder to come by (Novy-Marx,
2013). It is hard to pinpoint reasons for profitable firms to bemore risky than unprofitable. Wang
and Yu (2013) investigate the relationship between macro risks and the profitability factor and
find risk based stories to be implausible. Instead they suggest that the RMW factor is driven
mainly by systematic underreaction, causing a negative alpha in unprofitable stocks.

2.3 Factor strategy investing

Variations of the long-short factor strategies have become staple strategies of both quantitative
and qualitative hedge funds, often under the ”equity market neutral” or ”fundamental quan-
titative” labels. Factor equity strategies have also become increasingly accessible for retail in-
vestors, especially with the advent of smart beta exchange traded funds (ETFs).2 A number of
large money managers including AQR, BlackRock and Robeco today provide factor investing
based products, and MSCI provides indices on factor strategies. Generally, these managers ad-
vise against factor timing and use static strategies that are based on equal-weighting – a simple
heuristic that has proven hard to beat out-of-sample. The managers blend the equal-weights ap-
proach with optimization routines, including mean-variance and minimum-volatility, to arrive
at policy weights.3

The use of leverage in hedge funds can exacerbate the flow patterns in factor strategies, as
highlighted by the quant crash in July-August 2007. Khandani and Lo (2011) and Khandani and
Lo (2007) revisit the sudden and large losses of factor strategies (including value and size) during
this period, and provide evidence for the ”Unwind hypothesis”: The crash started with rapid
sell-offs of large blocks of factor strategy portfolios, for which there was not enough liquidity to
maintain prices. The price drops, in turn, led to further liquidations due to 1) margin calls in
other leveraged and long-short funds and 2) risk management policies, even in traditional long-

1See i.a. Ilmanen (2011) for a summary.
2See i.a. Pedersen (2015), AQR Capital Management, LLC (2015) and McKinsey & Company (2014).
3See i.a. AQR Capital Management, LLC (2016), BlackRock (2016), MSCI (2015) and Robeco (2014).
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only funds. This liquidity and margin spiral is very similar to that proposed by Brunnermeier
(2009) and Brunnermeier and Pedersen (2009), and provides reason to suspect systemic risks in
crowded factor strategies.

2.4 Modeling of factor returns

Recently, copula models have attracted much attention in the field of risk management, as they
provide a flexible way to infer a multivariate probability distribution. Furthermore, copulas are
flexible in the sense that they can capture tail dependence, i.e. when the dependence structure
changes in extreme times. Copula models are most often estimated taking popular univariate
models such as ARMA-GARCH models as a starting point, and use a copula function to explain
the multivariate dependence structure.

There are only a handful of papers that study factor strategies using copula methods. A work-
ing paper by Chollete and Ning (2012) examines dynamic correlations between a four factors
(market, size, value and momentum) and aggregate US consumption, and find evidence for tail
dependence across the five risk factors. Christoffersen and Langlois (2013) study the same four
factors on US data 1963-2010, and show significant and asymmetric tail dependence that cannot
be captured by standard linear correlationmeasures. A skewed t copulamodel is found to be able
to generate the data fairly well, and the authors proceed with 20 years of out-of-sample analysis
on investing based on conditional expectations from the copula model, leading to significant
improvements for investors with a CRRA utility function.

3 Data

In the data section, we describe the source of our data and how the factor strategies are con-
structed. We then present summary statistics including tests for autocorrelation and volatility
clustering, as well as quantile-quantile (QQ) plots. Finally, we discuss the unconditional corre-
lations of the factor strategies.

3.1 Data description

We use US data on factor strategies 1963–2016, which we download from Kenneth French’s data
library (French, 2016).4 We merge the daily Fama-French five-factor data set with the daily mo-
mentum data set. Both are available since 1963-07-01, making 1963-07-05 the first week of data.
In our sample, 2016-07-01 is the last data point.

While the related papers Fama and French (2015) and Asness et al. (2015) both use monthly
data, we choose the weekly frequency for two main reasons: (1) We take a portfolio perspective
rather than an asset pricing perspective, and believe that a more frequent horizon than monthly

4Data sets Fama/French 5 Factors (2x3) [Daily] and Momentum Factor (Mom) [Daily].
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data is relevant for both rebalancing and risk management objectives, and (2) Due to computa-
tional limitations, the copula methodology discourages us from going to the daily frequency, as
optimizations become significantly more time-consuming.

We proceed with descriptions of how factors are constructed, from French (2016). The
Mkt.RF factor is long the value-weighted return of CRSP firms on NYSE, AMEX or NASDAQ
with CRSP share codes 10 or 11 and short the one-month Treasury bill rate. The remaining
return series are based on zero-cost portfolios that are long certain equities and short other eq-
uities, according to a 2 x 3 sort: First, firms are sorted into one of two size groups, small and
big, depending on whether the market cap is above or below the median. In the small and big
firm groups, each factor then sorts into one of three groups depending on whether the variable
of interest falls below the 30th percentile, between the 30th and the 70th or above the 70th. For the
six-factor data set, the remaining five factors are:

• High-minus-low (HML), is long firms above the 70th percentile book-to-market and short
stocks below the 30th percentile, in the small and big firm group respectively.

• Conservative-minus-aggressive (CMA), is long firms above the 70th percentile total asset
growth and short firms below the 30th percentile.

• Robust-minus-weak (RMW), is long firms above the 70th percentile operating profitability
and short firms below the 30th percentile.

• Small-minus-big (SMB), is long firms below the 50th percentile market cap and short firms
above the 50th percentile, in each of the three groups HML, CMA and RMW.

• Momentum (Mom), is long firms above the 70th percentile prior 2-12 month return (i.e.
excluding the last month) and short stocks below the 30th percentile, in the small and big
firm group respectively.

The sort ensures that SMB includes firms small and big firms equally from the remaining factors,
and that the other factors include equal amounts of small and big firms. Note that momentum
originates from a different data set and does not affect the SMB composition. French’s financial
statement data originates from Compustat, stock return data is from CRSP and Treasury return
data is from Ibbotson Associates.

3.2 Summary statistics

For all factors, there are 2766 consecutive data points and no missing data. Mkt.RF is the most
volatile and extreme of the series, with weekly returns between -18.0% and 13.5% and a weekly
volatility of 2.2%. CMA and RMW seem to be less extreme than HML, with less negative min-
imums and smaller volatilities. The factor strategies have excess kurtosis, or fat tails, which is
typical for financial returns. The excess kurtoses of the Mom, HML and RMW factors are even
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Table 1: Summary statistics of weekly factor returns

Kurtosis is excess kurtosis. LB is the weighted Ljung-Box test up to 5 and 10 lags respectively, where the null
hypothesis is no serial correlation (Fisher & Gallagher, 2012). Based on weekly data 1963–2016.

Mkt.RF SMB HML CMA RMW Mom

Mean (%) 0.12 0.04 0.08 0.07 0.06 0.16
SD (%) 2.19 1.21 1.23 0.88 0.88 1.84
Maximum (%) 13.46 6.13 12.46 5.53 9.87 12.79
Minimum (%) −18.00 −9.34 −7.93 −4.28 −5.99 −16.04
Median (%) 0.27 0.06 0.05 0.04 0.05 0.23
Skewness −0.44 −0.38 0.50 0.37 0.92 −1.07
Kurtosis 5.27 4.50 7.95 3.24 14.18 10.19

p-values of Ljung-Box (LB) tests on returns and squared returns
Returns LB(5) 0.34 0.00 0.00 0.00 0.00 0.00
Returns LB(10) 0.01 0.00 0.00 0.00 0.00 0.00
Squared returns LB(5) 0.00 0.00 0.00 0.00 0.00 0.00
Squared returns LB(10) 0.00 0.00 0.00 0.00 0.00 0.00

Correlations Mkt.RF SMB HML CMA RMW Mom

Mkt.RF 1.00
SMB 0.08 1.00
HML −0.28 −0.03 1.00
CMA −0.42 −0.05 0.63 1.00
RMW −0.15 −0.34 −0.05 −0.06 1.00
Mom −0.12 −0.01 −0.22 0.07 0.08 1.00

higher than the kurtosis of the Mkt.RF factor, where RMW is exceptionally high at 14.8. How-
ever, while market returns are negatively skewed, HML, CMA and RMW instead exhibit positive
skewness. QQ-plots versus normal theoretical quantiles in Figure 1 graphically show the non-
normality.

We conduct Ljung-Box tests of the factor returns to control for weekly autocorrelation.5 The
p-values of these tests are given inTable 1 and are very low for all factors exceptMkt.RF, leading to
a strong rejection of the zero autocorrelation null hypothesis. ForMkt.RF, the p-value is not small
enough for a rejection of zero autocorrelation at the 5 week maximum lag length, but strongly
rejected at the 10 week maximum lag length. We also conduct Ljung-Box tests of the squared
factor returns to control for volatility clustering (ARCH effects). Here, the null hypothesis is that
there are no ARCH effects, and p-values given in Table 1 strongly reject the null for all factors,
both at max lag length of 5 and 10 weeks.6

We conclude that factor return series are non-normal and that returns are not independently
distributed over time – more specifically, past returns have predictive power on future returns,
and past volatility has predictive power on future volatility, i.e. the series exhibit both autocorrela-

5For a detailed description of the test, see Appendix C.
6The lag lengths were chosen after visual inspection of autocorrelation function plots.
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Figure 1: QQ-plots of return series

Data from a normal distribution should line up on the dashed line. Based on weekly returns 1963–2016.

tion aswell as autoregressive heteroscedasticity. These predictable phenomena in financial return
data are typically captured by models that incorporate autoregressive components for both the
conditional mean and variance equations, such as the family of ARMA-GARCH models, which
is further discussed in section 5.

A plot of cumulative gross returns (Figure 2) clearly show the high returns to themomentum
strategy throughout the sample period. Taking out momentum, Figure 3 shows that the Mkt.RF
factor has the second highest cumulative gross return, but also that it is the most volatile of the
remaining strategies. We normalize the series to 10% annual volatility in Figure 4, which gives
a more nuanced picture of risk-adjusted performance. Since 1963, each of the strategies except
for SMB has outperformed the market factor. Furthermore, factor strategies seem to crash at
different times and diversify each other (e.g. Mom performed well during the bubble of 1999–
2000 and RMW performed well during the recession of 2007–2009).

Looking at the correlation matrix of factor returns, the generally low or even negative corre-
lation coefficients indicate the diversification benefits of factor strategies. The HML–CMA pair
does stand out, however, with an unconditional correlation of 0.63, which could be related to a
partial overlap of the factor components, as discussed in section 2 – past investment is shown to
be negatively empirically related to the current book-to-market ratio. The substantially higher
correlation in this asset pair indicates smaller diversification benefits. We also note that the new
factor RMW has an interesting pattern of low of negative correlations to all other factors, which
indicates diversification benefits.

11



Figure 2: Cumulative returns to factor strategies

Cumulative returns to investing one dollar in each factor strategy, beginning 1963-07-05. Based on weekly returns
1963–2016.

Figure 3: Cumulative returns to factor strategies, excl. momentum

Cumulative returns to investing one dollar in each factor strategy, beginning 1963-07-05. Based on weekly returns
1963–2016.
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Figure 4: Standardized cumulative returns to factor strategies

Cumulative returns to investing one dollar in each factor strategy, standardized to 10% annual volatility, beginning
1963-07-05. Based on weekly returns 1963–2016.

4 Zero-cost portfolio regressions

Fama and French (2015) and Asness et al. (2015) run factor regressions where both the LHS
variable and the RHS variables are zero-cost factor portfolios. The intercept in this type of re-
gression is to be interpreted as the abnormal return, or Jensen’s alpha, of adding the LHS factor
to a portfolio already consisting of the RHS factors (Jensen, 1968). In this section, we replicate
and discuss the regressions where HML, CMA and RMW are the LHS variables, and find that
previous results hold up in our weekly data set.

4.1 Model specification

As a specific example, we begin by considering the regression that has caused the discussion on
whether HML is a redundant factor. Fama and French (2015) run the regression

rHML
t = α + β1r

Mkt.RF
t + β2r

SMB
t + β3r

RMW
t + β4r

CMA
t + εt (4.1)

where rit denote monthly returns. The central finding is that HML is completely subsumed by the
four factors Mkt.RF, SMB, RMW and CMA – i.e. the alpha of the regression is very small and
not statistically significant. In other words, adding HML to a portfolio of the other four factors
should give no abnormal return.

Our regression analysis deviates from that in Fama and French (2015) as we consider weekly
return data and approximately two more years of recent data. However, the main regression
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specifications are the same. We also consider a six-factor model, as done by Asness et al. (2015),
who show that there is in fact added value ofHMLwhenmomentum is included. Weuse standard
errors that are adjusted for serial correlation found in the return data, following Newey and West
(1987).

4.2 Regression results

In Table 2, regressions for the five-factor (excluding momentum) and six-factor (including mo-
mentum) models are presented. Each column represents one unique regression, with one of the
factors as the LHS variable and with the remaining four (or five) factors as RHS variables (in
rows).

First, we examine regression (1) in a five-factor model where HML is the LHS variable. We
note that the alpha of HML is not significant, indicating that the factor is completely subsumed
by the remaining four factors and does not create additional value in a portfolio setting, in line
with Fama and French (2015). More specifically, the only factor that explains HML is CMA,
with a high coefficient of 0.85, with all other factor loadings insignificant and close to zero. Put
differently, this suggests that for a factor portfolio already loaded on Mkt.RF, SMB, CMA and
RMW, adding HML will load up additionally on CMA risk plus the idiosyncratic risk of HML,
without adding any additional return.

Second, we turn to regression (2) in a five-factor model where CMA is the LHS variable.
Here, the alpha is significant, indicating that the factor does provide an additional 0.06% weekly
beyond the existing four factors. While the CMA factor loads positively 0.39 on HML, this is
substantially lower than HML’s loading on CMA of 0.85. With CMA as the LHS variable, there is
a significant negative loading on Mkt.RF and a significant negative loading on RMW. The CMA
portfolio loads relatively less on the market and relatively more on unprofitable stocks than does
HML.

Third, we study regression (3) where RMW is the LHS variable. The alpha is significant,
indicating that the RMWfactor adds abnormal return of 0.09%weekly to the four existing factors.
In terms of factor loadings, profitability loads zero or negatively on all four remaining factors
in the five-factor model. This is evidence of the diversification that RMW provides. The low
explanatory power of the other factors is summarized by a low 15% R-squared.

Now, we move to the six-factor regression results, where we include the momentum factor
Mom. First, in regression (4) with HML as the LHS variable, we note that the addition of HML
makes the alpha of HML positive and significant – in line with Asness et al. (2015). As mo-
mentum is correlated with both the LHS and RHS factors, it constitutes an omitted variable bias
on the beta factor loadings in the five-factor model. HML has a substantial negative loading
on the Mom factor of -0.18, while the CMA regression instead has a positive Mom loading of
0.09, suggesting that the seemingly similar factors HML and CMA are quite different in terms of
momentum properties. The momentum factor explains an additional 8% of the variance in the
HML factor.
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Table 2: Zero-cost portfolio regressions (1963–2016)

Six regressions of zero-cost equity factor portfolios on 2766 weekly returns 1963–2016, following the analysis
of Fama and French (2015) and Asness, Frazzini, Israel, and Moskowitz (2015). Alpha and Beta (factor loadings) of
the column’s portfolio on other factors. Heteroskedacity and autocorrelation robust standard errors in parentheses,
following Newey and West (1987). Significance given by ∗p < 10%; ∗∗p < 5%; ∗∗∗p < 1%

Five factor universe Six factor universe

(1) (2) (3) (4) (5) (6)
HML CMA RMW HML CMA RMW

Alpha (%) 0.02 0.06∗∗∗ 0.09∗∗∗ 0.05∗∗ 0.04∗∗∗ 0.09∗∗∗

(0.02) (0.01) (0.02) (0.02) (0.01) (0.02)

Mkt.RF −0.02 −0.11∗∗∗ −0.08∗∗∗ −0.03 −0.10∗∗∗ −0.07∗∗∗

(0.03) (0.02) (0.01) (0.03) (0.01) (0.01)

SMB 0.00 −0.03 −0.24∗∗∗ 0.01 −0.03∗ −0.24∗∗∗

(0.03) (0.02) (0.04) (0.03) (0.02) (0.05)

HML 0.39∗∗∗ −0.01 0.42∗∗∗ 0.01
(0.04) (0.06) (0.03) (0.06)

CMA 0.85∗∗∗ −0.15∗∗ 0.87∗∗∗ −0.17∗∗∗

(0.04) (0.07) (0.04) (0.06)

RMW −0.02 −0.09∗∗ 0.01 −0.10∗∗

(0.09) (0.04) (0.07) (0.04)

Mom −0.18∗∗∗ 0.09∗∗∗ 0.03
(0.04) (0.02) (0.03)

R2 0.39 0.46 0.15 0.47 0.49 0.15
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CMA and RMW are to a lesser extent than HML correlated with Mom, and the factor load-
ings in regressions (5) and (6) therefore change less as we go to the six-factor model.

Although we employ weekly data, our results are qualitatively similar to the results in Fama
and French (2015) as well as in Asness et al. (2015). The alpha of HML is only recognized in
a model including momentum. This indicates that the insignificant alpha of HML in the five-
factor model might be due to the omission of an important control variable, momentum, that is
included in the six-factor-model.

5 Modeling of factor returns

This section presents ourmodel for the joint behavior of returns. Amultivariatemodel of returns
allows us to make conditional forecasts of the distribution of returns one week ahead, which
take into account the dependence between factors. In the mean-variance analysis, the model
is used to provide dynamic inputs that give us optimal weights over time. The model is also
used in the analysis of diversification benefits, where we shift the focus to the tail risk of factor
portfolios. First, we describe why we choose the copula model among different multivariate
models. Second, we define the model and interpret the parameterization. Third, we select and
estimate univariate models that are building blocks of the copula. Fourth, we analyze residuals
from univariate models, to determine what type of multivariate dependence the copula should
capture. Fifth, we estimate the copula and choose the best specification. Last, we conduct a
robustness check of whether the copula captures the dependence structure.

5.1 Choosing a multivariate model

The ARMA-GARCH family of models has become the norm of modeling univariate financial
return series, beginning with Bollerslev (1986). The straightforward extension of univariate
GARCH models to multiple return series has, however, proven difficult. Unrestricted multivari-
ate GARCH (MGARCH) models that directly model the conditional covariance matrix become
impossible to estimate, as the number of covariances grows exponentially with the number of
series. It thus becomes necessary to restrict the model’s parameter space, of which the BEKK
model is a common example (Engle & Kroner, 1995).

A more parsimonious solution to the dimensionality problem is to separate the modeling of
return and volatility dynamics from the modeling of conditional correlations. The separation
allows for consistent (albeit inefficient) two-step estimation, and makes large-scale estimation
feasible. One such approach is the dynamic conditional correlation (DCC) model, originally pro-
posed by (Engle, 2002). In the DCC model, univariate GARCH models are first estimated on
each series. Then, an autoregressive process for the correlation matrix is fitted to the standard-
ized residuals zt of those models.

DCC is a useful and tractable model for estimating time-varying correlations between return
series. However, it is a model of correlations only; it is not flexible enough to model the univari-
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ate components differently. More specifically, it is not constructed to generate tail dependence,
which is the notion that correlation dynamics can be very different in extreme realizations.

Copula models have recently attracted much attention in the field of risk management, as
they provide a flexible way to infer a multivariate probability distribution. Copula models are,
just like DCC models, based on two-step estimation and work well in large scale applications.
Furthermore, copulas are flexible enough to generate tail dependence, which is shown to be an
important feature of factor return data (Christoffersen & Langlois, 2013).

Copula models are most often constructed by estimating univariate models from the ARMA-
GARCH family in the first step. The residuals from the ARMA-GARCH models are then used
in the copula function, which explains the multivariate dependence, including dynamic correla-
tions and tail dependence.

Among copula models, there are three main routes of interest: (1) Archimedean copulas, (2)
multivariate normal and Student’s t copulas, and (3) vine copulas. While Archimedean copulas,
such as the Gumbel and Clayton specifications, are attractive in many settings, they fail to gener-
ate both high threshold correlations and simultaneously low unconditional correlations, and are
hard to generalize beyond the bivariate case – making them less attractive for factor return se-
ries (Christoffersen & Langlois, 2013). Vine copulas, or pairwise copula constructions, are made
up of a combination of bivariate copulas in a tree structure (hence the name vine copulas), and
pose an interesting alternative to multivariate normal and Student’s t copulas. However, the vine
method is far less parsimonious as both the number of bivariate combinations and the number of
different tree structures increases exponentially with the number of assets modeled (Aas, Czado,
Frigessi, & Bakken, 2009).

We choose to work with multivariate Student’s t copula models, as they can (1) estimate the
joint distribution function in large scale applications, (2) model different univariate models for
the different factors, and (3) incorporate both tail dependence and dynamic correlations. Next,
we define and describe the copula model.

5.2 Definition of copula model

Each week t, the conditional joint density of returns on N assets Rt+1 = {ri,t+1, . . . , rN,t+1} is
described by a joint density function ft(Rt+1). Following Christoffersen et al. (2012), who build
on Patton (2006) and Sklar (1959), we decompose the joint density function into the product of
a joint copula function ct(Ut+1) of uniformly distributed variables Ut+1 ∼ U(0, 1) and marginal
densities fi,t(ri,t+1):

ft(Rt+1) = ct(Ut+1)
N∏
i=1

fi,t(ri,t+1) (5.1)
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The elements of Ut+1 = {ui,t+1, . . . , uN,t+1} are related to the original returns by the probability
integral transform, i.e the cumulative distribution of ri,t+1:

ui,t+1 = Fi,t(ri,t+1) =

∫ ri,t+1

−∞
fi,t(r)dr (5.2)

The copula function ct(Ut+1) is a multivariate skewed t distribution. This distribution is param-
eterized by a single degrees of freedom parameter νc, controlling the degree of dependence, a
vector ofN skewness parameters γc, controlling the asymmetry in dependence, and a potentially
time-varying correlationmatrix Ψt.7 Theskewed t distribution nests the standard (hereafter sym-
metric) t distribution when all γi,c = 0 and the standard normal distribution when additionally
νc = ∞.

The log-likelihood of the model is constructed from Equation 5.1:

L =
T∑
t=1

log(ct(Ut+1))︸ ︷︷ ︸
Copula

+
T∑
t=1

N∑
i=1

log(fi,t(ri,t+1))︸ ︷︷ ︸
Marginals

(5.3)

At this point, it is worth noting that the joint density ct(Ut+1) need not be of the same family
as the marginal densities fi,t(ri,t+1) – nor are we restricted to modeling fi,t(ri,t+1) jointly for all
factors. In fact, we take advantage of this flexibility and choose to model the marginal densities
independently as ARMA-GARCH processes, which allows us to capture a number of predictable
features in the univariate series – serial correlation, volatility clustering and leverage effects. The
marginal models are estimated independently by maximizing the likelihood(s) of the second
term, and then the copula is estimated by maximizing the first term – using the residuals of the
marginal models as given.

This procedure is called multi-stage maximum log-likelihood or inference functions for mar-
gins and greatly simplifies the estimationprocedure, while yielding relatively efficient estimates (Pat-
ton, 2006; Joe, 1997). The modeling and estimation of our ARMA-GARCH models is detailed
in the upcoming subsection, whereas the remainder of this subsection describes how we make
the correlation matrix Ψt, and thus the dependence between factors, dynamic.

The copula is made dynamic by fitting a dynamic conditional correlation (DCC) process for
Ψt to copula residuals z∗t+1 (Engle, 2002). Using the notation from Christoffersen and Langlois
(2013):

Qt = (1 − α − β)Q+ βQt−1 + αz̄∗t−1z̄∗⊤t−1 (5.4)

7We describe the details of the skewed t distribution, including the expanded form of ct, in Appendix A.
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where Qt is normalized to the correlation matrix Ψt:

Ψt = Q− 1
2

t QtQ
− 1

2
t (5.5)

TheQt process is comprised of three components that are weighted according to α, β: (1) a time-
invariant component: Q, (2) an innovation component from copula shocks: z̄∗t−1z̄∗⊤t−1,

8 and (3)
an autoregressive component of order one: Qt−1. In order for the the correlation matrix Ψt to
be positive definite, Qt has to be positive definite, which is ascertained by requiring that α ≥ 0,
β ≥ 0 and (α + β) < 1. The model nests a constant copula when α = β = 0.

The model for ct(Ut+1) is comprised of 1+N distribution parameters {νc, γc} and 2+ N(N−1)
2

dynamics parameters {α, β,Q}, where the elements ofQ are estimated using moment matching,
and the remaining parameters {α, β, νc, γc} are estimated using maximum likelihood.9

ARMA-GARCH modeling allows us to filter time-varying effects, leaving independent stan-
dardized residuals zi,t, which are assumed to follow a constant distribution fi(zi,t). These residuals
are first transformed into uniform variables ui,t+1 by the probability integral transform of the den-
sities above, and then made to follow the copula distribution by the inverse probability integral
transform of the copula:

z∗i,t+1 = F−1
νc,γi,c(Fi(zi,t+1)) (5.6)

The interpretation of the copula parameterization is closely associated to the structure of
multivariate dependence. By different restrictions on the parameters in the DAC model, we are
able to activate or deactivate certain features of the copula: First, the degree of freedomparameter
νc is to be interpreted as themeasure of tail dependency. When ν ̸= 0, the lower and upper tails of
the joint distribution are fatter than in the normal case, which is coherent with earlier evidence
of threshold correlations (Christoffersen & Langlois, 2013). Second, the skewness parameters
γc,i are to be interpreted as the extent of asymmetry in the correlation structure. When γ ̸= 0,
there is asymmetry in correlations. Third, the α and β parameters determine whether the copula
generates time-varying correlations. If α ̸= 0 and β ̸= 0, the copula is dynamic. An overview of
the six copula models is given in Table 3.

5.3 Univariate modeling of returns

We proceed by estimating models of each factor’s return series, which attempt to capture pre-
dictable autocorrelation, volatility clustering and leverage effects. By fitting ARMA-GARCH
models, we can filter these effects and reduce the time-varying densities fi,t(ri,t+1) to constant
densities of standardized residuals fi(zi,t+1).

8Where z̄∗i,t+1 = z∗i,t+1
√qii,t is due to a correction by Aielli (2013), that improves the reliability of the estimation

procedure.
9A detailed description of the copula estimation procedure can be found in Appendix B.
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Table 3: Conceptual matrix of copula parameterizations

Normal Symmetric t Skewed t

νc = ∞ νc < ∞ νc < ∞
γi,c = 0 γi,c = 0 γi,c ̸= 0

Constant α = 0 Constant Constant Constant
β = 0 normal symmetric t skewed t

Dynamic α > 0 Dynamic Dynamic Dynamic
β > 0 normal symmetric t skewed t

5.3.1 General univariate model: ARMA-GJR-GARCH

The ARMA-GARCH is a broad model family designed to model predictable components of fi-
nancial return series, and was originally introduced by Bollerslev (1986). The models use autore-
gressive and moving average lags to capture serial correlation in return data (ARMA), as well
as autoregressive and moving average lags to capture ARCH effects in residuals from the mean
equation (GARCH). We evaluate the GJR-GARCH model of Glosten, Jagannathan, and Runkle
(1993), which is a parsimonious extension of the standard GARCH(1, 1). The GJR-GARCH is
designed to also capture leverage effects (Glosten et al., 1993), i.e. when positive and negative
return shocks have different impact on future volatility (Black, 1976).

We estimate conditional mean equations for each factor up to ARMA(3, 3):

ri,t = φi,0 +

p∑
φi,pri,t−p +

q∑
θi,qεi,t−q + εi,t (5.7)

where ri,t are weekly returns of each factor. The conditional volatility evolves according to the
GJR-GARCH specification:

εi,t = σi,tzi,t (5.8)

σ2i,t = ωi + (αi + ηiIεi,t−1≤0)ε
2
i,t−1 + βiσ

2
i,t−1 (5.9)

where I is an indicator function that is equal to one when εi,t−1 ≤ 0.
A positive ηi captures the leverage effect by increasing the current period’s volatility if the

previous period’s residual εi,t−1 was below zero. A significant ηi thus introduces asymmetric
volatility in the model. For the market factor, it is expected that ηi is positive, reflecting the
leverage effect in the market itself, and no impact from the short risk-free component. However,
for the other factors, which are constructed as all-equity zero-cost long-short portfolios, the di-
rection of ηi is less obvious (Christoffersen & Langlois, 2013). If there are leverage effects for
stocks in general, negative shocks will lead to more volatility than positive shocks in a portfolio
of stocks. But in a zero-cost portfolio, the leverage effects of the long positions in stocks could be
offset by the short positions in other firms. The level of the leverage effect in a zero-cost portfolio
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therefore depends on the relative strength of leverage effects in the long and short components.
The ARMA-GARCH models are estimated independently on each series using maximum

likelihood estimation, with assumed distributions of standardized residuals zi,t. Similar to the
multivariate copula, we evaluate models where the standardized residuals are assumed to follow
univariate skewed t distributions with νi degrees of freedom and skewness γi, nesting the sym-
metric t when γi = 0 and the standard normal when νi = ∞. A skewed t distribution allows for
additional asymmetry beyond the GJR-GARCH leverage effect (Christoffersen et al., 2012).

5.3.2 Factor specific model selection process

Our selection process is as follows.

(i) For each factor strategy, we estimate GJR-GARCH models on the full dataset (T = 2, 766)
up to ARMA(3, 3) and GARCH(1, 1) under normal, symmetric t and skewed t residuals,
with and without ηi fixed to zero (in which case we obtain the basic GARCH(1, 1) model).

(ii) We then compute the Bayesian Information Criterion (Schwarz, 1978, BIC) for each factor
strategy and specification and select the ARMA order with the lowest BIC as our primary
candidates.

For the candidate models

(i) We check for remaining serial correlation and ARCH effects using weighted portmanteau
tests.

(ii) We examine whether a sign bias test concludes that there are significant leverage effects that
warrant the use of a GJR-GARCH instead of a standard GARCH.

(iii) We use QQ-plots to control for misspecification in the residual process, and to find a suit-
able distribution for the standardized residuals zt.

In awell-specifiedmodel, we expect there to be no significant serial correlation, ARCHeffects
or leverage effects in the residuals. We employweighted Ljung-Box, ARCHLMand sign bias tests
that are detailed in Appendix C. Furthermore, the QQ-plots of the standardized residuals should
show that their empirical distribution is comparable to the assumed theoretical distribution (i.e.
be distributed around the 45 degree line).

5.3.3 Model selection and estimation results

The result of our selection and estimation procedure are presented in Table 4. The Mkt.RF factor
is the only model that requires a GJR-GARCH (ηi ̸= 0), while the remaining models are all
standard GARCH(1, 1). The minimization of BIC leads to ARMA(0, 0) for Mkt.RF, ARMA(1, 0)
for CMA and Mom, and ARMA(1, 1) for the remaining factors SMB, HML and RMW.
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Table 4: ARMA-GARCH parameter estimates (1963–2016)

Models from Equation 5.7 and Equation 5.9 on 2766 weekly returns 1963–2016, with skewed t innovations. Robust
standard errors in parentheses, following White (1982). ω is set using variance targeting, following Engle and
Mezrich (1995). Ljung-Box and ARCH-LM tests are the weighted portmanteau tests from Fisher and Gallagher
(2012) and the sign bias test is from Engle and Ng (1993) (see Appendix C). Significance given by ∗p < 10%;
∗∗p < 5%; ∗∗∗p < 1%

Mkt.RF SMB HML CMA RMW Mom

μ (%) 0.12∗∗∗ 0.03 0.06∗∗ 0.04∗∗∗ 0.05∗∗∗ 0.14∗∗∗

(0.03) (0.03) (0.03) (0.01) (0.02) (0.05)

φ1 0.77∗∗∗ 0.72∗∗∗ 0.11∗∗∗ 0.59∗∗∗ 0.13∗∗

(0.05) (0.08) (0.02) (0.19) (0.05)

θ1 −0.65∗∗∗ −0.61∗∗∗ −0.47∗∗

(0.06) (0.09) (0.21)

α 0.03∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.18∗∗∗

(0.01) (0.02) (0.00) (0.00) (0.00) (0.01)

β 0.85∗∗∗ 0.84∗∗∗ 0.87∗∗∗ 0.90∗∗∗ 0.92∗∗∗ 0.80∗∗∗

(0.01) (0.04) (0.00) (0.00) (0.00) (0.01)

η 0.19∗∗∗

(0.02)

ν 13.25∗∗∗ 11.56 10.20∗∗∗ 11.09∗∗∗ 10.95∗ 13.36
(3.51) (12.08) (2.67) (3.48) (5.65) (40.04)

γ −2.36∗∗∗ −0.65 0.63 0.48 0.25 −2.12
(0.84) (1.04) (0.41) (0.49) (0.42) (9.90)

ω (ppm) 15.52 6.25 2.67 0.99 0.61 6.94

Log-likelihood (LLH), unconditional volatility (UV) and variance persistence (VP)
LLH 7, 051 8, 567 8, 788 9, 574 9, 872 7, 941
UV (%) 2.19 1.20 1.22 0.88 0.87 1.83
VP (%) 96.75 95.66 98.20 98.71 99.18 97.93

p-values of Ljung-Box (LB), ARCH-LM (ARCH) and sign bias tests
LB(5) 0.15 0.27 1.00 0.18 1.00 0.83
LB(10) 0.10 0.72 0.98 0.07 0.06 0.72
ARCH(5) 0.81 0.63 0.12 0.84 0.72 0.05
ARCH(10) 0.93 0.88 0.39 0.95 0.91 0.13
Sign bias(-) 0.88 0.33 0.09 0.47 0.20 0.84
Sign bias(+) 0.16 0.09 0.40 0.07 0.65 0.38
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Based on these ARMA-GARCH specifications, the Ljung-Box and LM tests indicate no re-
maining serial correlation or ARCH effects at a 5% significance level.

The lack of significant sign bias in the GARCH specifications for all models except Mkt.RF
is interesting, and in line with the argument that any leverage effects could cancel out in a zero-
cost long-short equity portfolio; the Mkt.RF is the only factor that is net-long equities and also
exhibited leverage effects, with a negative sign bias as a GARCH model. We note that the sign
bias of Mkt.RF has been eliminated in the GJR-GARCH model.

The candidate specifications under normal and symmetric t distributed innovations all dis-
play misaligned QQ-plots (see Figure 5). The empirical distributions deviate from the 45 de-
gree theoretical lines, especially in the more extreme quantiles. This indicates asymmetry in the
residual series. In unreported results, we have controlled that the misspecification of normal
and symmetric t residuals is present even if GJR-GARCH models are fitted for all factors – i.e.
leverage effects cannot explain the misspecification. By comparison, the QQ-plots with skewed
t innovations seem to fit the data well. We proceed with skewed t residual distributions.

Many of the estimates of γi, the skewness of the skewed t GARCH innovation process, are
statistically insignificant. This is also the case for the degree of freedom estimates, ν for the SMB
and Mom models. Although these parameters are not significantly estimated, we believe that
including them is essential, as QQ-plots indicate misspecification for the models with normal
and symmetric t innovations.

5.4 Multivariate dependence

In this subsection, we demonstrate that the standardized residuals zi,t in our chosen ARMA-
GARCH models display both asymmetric and time-varying dependence, shown by threshold
and rolling correlations. ARMA-GARCH filtering has little effect on the (time-varying) corre-
lations between factors. However, the use of the skewed t distribution does remove a degree
of asymmetry in the dependence. These patterns in multivariate dependence are the motivat-
ing reasons for a copula model, as they suggest that factor returns are not independent of each
other after filtering for univariate effects, and that this dependence is not well-approximated by
a normal model.10

5.4.1 Threshold correlations

Threshold (or exceedance) correlations have previously been used to highlight the asymmetric
dependence structure of i.a. country equity indices (Longin & Solnik, 2001), portfolios by in-
dustry, size, value and momentum (Ang & Chen, 2002) and factor strategies (Christoffersen &
Langlois, 2013). The following analysis is still new as it adds the investment (CMA) and prof-
itability (RMW) factors. We follow Christoffersen and Langlois (2013) definition of threshold

10A visual comparison of dependence measures on returns compared to standardized residuals can be found
in Appendix E.
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(a) Normal

(b) Symmetric t

(c) Skewed t

Figure 5: QQ plots of standardized residuals

Standardized residuals from the best (lowest BIC) ARMA-GARCH model specifications, with normal, symmetric
t and skewed t innovations. Data from the theoretical distribution should line up on the dashed line. Based on
weekly data 1963–2016.
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correlation:

ThCorr(ri, rj) =

Corr
(
ri, rj | ri < F−1

i (p), rj < F−1
j (p)

)
for p < 0.5

Corr
(
ri, rj | ri ≥ F−1

i (p), rj ≥ F−1
j (p)

)
for p ≥ 0.5

(5.10)

where F−1
i (p) is the empirical quantile of ri at percentile p. Threshold correlations thus reflect how

series correlate when both are simultaneously realizing in their respective tails. This subsetting
of data is illustrated in Figure 6. In the left hand plots, we see the scatter of ARMA-GARCH
residuals of Mkt.RF and HML respectively, and how the threshold p, found on the x-axis of the
right hand plot, determines the subset of data that is included in the correlation calculation. We
note that the unconditional (standard) correlation, given by the dashed line in the right hand plot,
is clearly negative, while threshold correlations in the first and third quadrants are significantly
more positive, which shows that not taking threshold correlations into account provides a vaguer
picture of the dependence structure when both factor series realize in the tails.

Figure 6: Illustration of threshold correlations

ARMA-GARCH residuals from the Mkt.RF–HML asset pair. 95% shaded confidence bounds. The unconditional
correlation is given by the dashed line. Based on weekly data 1963–2016.

We now plot threshold correlations without the adjacent scatter graph. Figure 7 displays
threshold correlations for HML, CMA and RMW against each other as well as against the the
other factorsMkt.RF, SMB andMom. We note that formost asset pairs, the threshold correlation
is significantly different from the unconditional correlation coefficient given by the dashed line.

We also note that there is asymmetry around the median for some factor pairs, including the
Mom–CMA, RMW–HML, RMW–CMA, and to a lesser extent Mkt.RF–RMW, asset pairs. For
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example, in the Mom-CMA asset pair, the threshold correlation jumps up for the first percentile
below the median, indicating that the correlation is higher when both realize below the median
than when both realize above the median. This type of asymmetric property, where downside
(below the median) correlation is higher than upside correlation is unwanted, as it reflects a
poorer diversification in bad times. The opposite type of asymmetry can be seen for the HML–
RMWandCMA–RMWasset pairs; When these factors simultaneously realize above themedian,
they are significantly more correlated. This pattern presents no diversification problem.

Although estimated with substantial uncertainty, the threshold correlations do not seem to
be constant as the threshold p approaches either zero or one. For example, the Mkt.RF–HML
asset pair seems to have a downward pattern, where correlations are the most positive in the
lowest percentiles of residuals and the most negative in the highest percentiles of residuals. In
fact, this pattern is unwanted from a diversification perspective, as series tend to coincide more
in extreme negative events.

The CMA–HML pair stands out from the other factors. The pair exhibits an unusually high
correlation in excess of 0.60 with a virtually flat threshold pattern. HML and CMA are also gen-
erally similar to each other in their respective threshold patterns to other factors – most notably
in the HML/CMA–RMW pairs. They differ in the presence of a break around the median in
Mom–CMA not present in Mom–HML.

RMW is the only factor to be virtually uncorrelated withMkt.RF in the lower tails, suggesting
that it is a good diversifier in market downturns. This is very different from the pattern of higher
threshold correlations as p approaches zero for e.g. Mkt.RF–HML. ForMkt.RF–HML, the higher
lower tail correlation could be related to the industry over-capacity hypothesis discussed in sec-
tion 2, i.e. that value firms are particularly sensitive to market downturns due to unproductive
capital.

While the patterns in threshold correlations are interesting, we are careful not to draw con-
clusions regarding diversification benefit based on solitary threshold correlation graphs – what
is interesting is the total pattern, and our key point is that there seems to be tail dependence that
should not be ignored in the copula specification.

5.4.2 Rolling correlations

We compute rolling 52-week correlations between the factors on standardized residuals of our
ARMA-GARCH models, according to the formula:

RCorr(ri,t, rj,t)52t =

∑t
t−51(ri,t − r̄i)(rj,t − r̄j)√∑t

t−51(ri,t − r̄i)2
√∑t

t−51(rj,t − r̄j)2
(5.11)

where ri, rj are the different pairs of the factor strategies’ ARMA-GARCH residuals.11 Results are
presented in Figure 8. First, we note that for most factor pairs, the rolling 52-week correlations

11Rolling correlations for the returns themselves are available in Figure 17 (Appendix E).
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Figure 7: Threshold correlations of ARMA-GARCH standardized residuals

The formula for threshold correlations for a threshold p is given in Equation 5.10. 95% shaded confidence bounds,
taking the model as given. The unconditional correlation is given by the dashed line. Based on weekly data
1963–2016.
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Figure 7: Threshold correlations of ARMA-GARCH standardized residuals (cont.)
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Figure 8: Rolling correlations of ARMA-GARCH standardized residuals

95% shaded confidence bounds, taking the model as given. The unconditional correlation is given by the dashed
line. Based on weekly data 1963–2016.
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Figure 8: Rolling correlations of ARMA-GARCH standardized residuals (cont.)
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are time-varying, and indeed appear to swing wildly. The unconditional correlation of Mkt–
HML is negative in the studied time period, but rolling correlations range between -0.75 and 0.75.
Also of note is the momentum factor’s rapid shifts between positive and negative correlations to
the other factors.

Second, by visual inspection, we see no obvious trend in the correlations between factor pairs.
There are, however, notable patterns around the 2000–2001 bubble period – here, the correlations
of HML–RMW, CMA–RMW and Mkt–CMA appear to jump. Another interesting pattern is
that the correlations of Mkt–RMW went down sharply around this period – in line with the idea
that profitable firms are stronger and better at weathering crises than the average firm (Novy-
Marx, 2013). The 2000–2001 periodmay represent a structural break in the dependency patterns
between factors, with the appearance of persistent differences before and after – however, there
is not enough post-2000 data to support such a conclusion, yet.

Third, the HML–CMA factor pair again stands out as different from other factor pairs. The
unconditional correlation is much closer to the rolling estimates than for other factor pairs, with
a dip in the 2000–2010 period that appears to have gone away. Clearly, the HML–CMA pair is
the most strongly correlated factor pair, even when considering subperiods of the data.

Our key takeaway from the rolling correlations is that there seems to be persistence in the
time-variation in correlations. This could be incorporated in the copula specification, which then
needs to have a time-varying correlation matrix, Ψt.

5.5 Copula specification and estimation results

Given the results of the dependence structure of residuals, we now discuss the best choice of
copula model and present estimation results of the six competing copula specifications.

We have estimated constant and dynamic normal, symmetric t and skewed t copula models
on the full dataset of uniform GARCH residuals. Results are presented in Table 5.

First, we examine the choice between a normal, symmetric t or skewed t copula. We note
that νc is clearly significant and suggests one of the Student’s t models with tail dependence over
the normal model. Second, we examine the asymmetric specification and find that few of the γc
estimates appear significant. This indicates that the asymmetry is hard to capture, or that it is not
well represented by this type of model. This is supported by the relatively small improvement in
log-likelihood in going from a symmetric t to skewed t copula, and also by the fact that the BIC
criterion prefers the symmetric t model in the dynamic case.

Second, we examine the choice between a constant and dynamic copula correlation matrix.
There is a significant improvement in log-likelihood and BIC when moving from a constant to
a dynamic copula, which suggests that time-varying dependence shown by rolling correlation is
captured and improves the model’s fit. We also find a high persistence of the correlation process,
as α + β, is close to a unit root.

In summary, we find that the dynamic symmetric t copula is the best specification, as it has
the lowest BIC, well defined parameters, and is strongly supported by the dependence pattern
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showcased by threshold and rolling correlation analyses. While the skewed t copula is an inter-
estingmodel, we believe that the asymmetry patterns in data are too irregular to be well captured
by a copula model with only one asymmetry parameter for each series (this is further discussed
in the subsequent robustness discussion, see subsection 5.6).

5.6 Copula robustness check

This subsection provides an in-sample robustness check of how well the copula models can re-
produce the threshold correlations and rolling correlations found in the dependence analysis of
ARMA-GARCH residuals. By comparing simulated data from the copulas to ARMA-GARCH
residual data, we find that the main features are captured. However, we highlight that tail depen-
dence is only reproduced to a certain extent.

5.6.1 Threshold correlations in constant copulas

By simulating 250,000 weeks of shocks in the copula, and then transforming these shocks into
standardized residuals for each of the factors, we can test the constant t copulas’ abilities to gen-
erate the threshold correlations in the ARMA-GARCH residuals.12 If a Student’s t copula speci-
fication reasonably well captures tail dependence, the threshold correlations from the empirical
and the copula specification should align. The results are presented in Figure 9.

First, we note that for most factors, the normal copula is the far away from generating thresh-
old correlations that correspond to the ARMA-GARCH residuals around the median. This is
highly expected, as the normal copula does not generate tail dependence, and hence the need for
the Student’s t based copula models. The symmetric t and skewed t copulas better capture the
threshold correlations, as the fatter tails of the Student’s t distribution allows for tail dependence.
For example, note how the normal copula generates negative threshold correlations for both the
Mom–HML and RMW–HML asset pairs, while the Student’s t based copulas are much closer to
the higher values in the data. On the other hand, the Student’s t based copulas sometimes seem
to overshoot the empirical threshold correlation, as in the Mkt.RF–RMW asset pair.

Second, we find that the skewed t generates some asymmetry around the median, which can
be seenmost clearly for theMom–RMWand RMW–HML asset pairs. The generated asymmetry
does, however, appear to be too small to capture the features of the data.

In conclusion, comparing threshold correlations from ARMA-GARCH residual data and
simulated data shows that the constant copula specifications capture some of the tail depen-
dence.13 Although the symmetric t and skewed t results do not align perfectly with the data,
they constitute clear improvements to the normal copula in modeling tail dependence.

12This robustness check is inspired by Christoffersen and Langlois (2013).
13Note that, in order to make the threshold correlation comparison valid, we use the constant copula specifica-

tions. The dynamic version is still the workhorse for all continued analysis in the mean-variance and diversification
benefit sections.
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Table 5: Copula parameter estimates (1963–2016)

Models from Equation 5.4 on 2766 weekly standardized residuals from the ARMA-GARCH models in Table 4.
Stationary bootstrap standard errors in parentheses, following (Politis & Romano, 1994) (see Appendix D). nuc
is the degree of freedom parameter and gammai are the copula skewness parameters. α, β control the correlation
dynamics, and Persistence is α + β. Elements of Q̂ are estimated using moment matching (see Appendix B). The
constant copula is achieved by forcing α = β = 0. For each model, there are 15 parameters in the Q time-invariant
correlation matrix, which are not reported in the table. Significance given by ∗p < 10%; ∗∗p < 5%; ∗∗∗p < 1%

Constant Copula Dymamic Copula

Normal Symmetric t Skewed t Normal Symmetric t Skewed t

νc 6.61∗∗∗ 6.64∗∗∗ 11.77∗∗∗ 11.63∗∗∗

(0.89) (0.10) (0.89) (1.00)

γMkt −0.06 −0.05
(0.05) (0.05)

γSMB −0.11∗ −0.14∗∗

(0.06) (0.06)

γMom −0.20∗∗ −0.12
(0.07) (0.07)

γHML 0.10 −0.02
(0.06) (0.06)

γCMA 0.08 −0.05
(0.06) (0.07)

γRMW 0.02 0.18∗∗

(0.07) (0.07)

α 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗

(0.01) (0.01) (0.01)

β 0.91∗∗∗ 0.91∗∗∗ 0.91∗∗∗

(0.01) (0.01) (0.01)

Log-likelihood (LLH), Number of parameters (# params.), BIC and Correlation Persistence (CP)
LLH 1, 169 1, 555 1, 573 2, 790 2, 983 2, 995
# params. 15 16 22 17 18 24
BIC −2, 337 −3, 103 −3, 090 −5, 564 −5, 943 −5, 919
CP (%) 97.73 98.01 97.98
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Figure 9: Threshold correlations of standardized residuals from the constant copulas

Threshold correlations of simulated constant copulas, compared to ARMA-GARCH standardized residuals (95%
confidence bounds taking the ARMA-GARCH models as given). The simulated threshold correlations are based
on 250,000 simulated returns each. ARMA-GARCH models based on empirical weekly data 1963–2016.
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Figure 9: Threshold correlations of standardized residuals from the constant copulas (cont.)
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We observe that the copula seems to lack flexibility to simultaneously generate all the asym-
metries in tail dependence. This is quite expected, as the symmetric t copula only has one degree
of freedom parameter that controls the fatness of tails, and the skewed t copula only has one
skewness parameter for each series. This imposes limits on how strongly the model can express
fat tails or asymmetries between factors A and B and simultaneously express other fat tails or
asymmetries (or lack thereof) between factors A and C. For a collection of six factors with het-
erogeneous dependence, this is even harder. This is a clear limitation of our quite parsimonious
multivariate distribution copula approach. In this regard, vine copulas that allow for unique
bivariate copula specifications, as discussed in subsection 5.1, could be the solution.

Although imperfect, the multivariate copula modeling of tail dependence could constitute a
significant improvement to alternatives, especially in the field of risk management, where under-
standing of tail events is paramount.

5.6.2 Rolling correlations in the dynamic copula

In-sample, we simulate 10,000 standardized residuals for each week from the estimated dynamic
symmetric t copula model, and compute the rolling 52-week correlations. This is done to as-
certain ourselves that the chosen copula specification does in fact capture the time-variation in
correlations. The comparison is made between standardized residuals from the simulated copula
model and standardized residuals from the ARMA-GARCH models of univariate series. If satis-
factory, the rolling correlations of the simulated copula model and the ARMA-GARCH models
will be roughly the same.

While we do not get a perfect overlap, the copula model generates similar time-varying cor-
relations. When there are large swings, however, the model does not always have enough ampli-
tude. We conclude that the model captures the dynamic features well.

6 Optimizing factor allocation

We now turn to the issue of optimizing factor allocations using our estimated copula model. We
optimize portfolio weights according to two techniques: optimalMean-Variance (MV) investing
and optimal Conditional Diversification Benefit (CDB) investing, where the latter is a measure
introduced by Christoffersen et al. (2012). In both optimizations, we experiment with the inclu-
sion and exclusion of the HML, CMA and RMW factors, to discuss their marginal impact on
portfolio performance measures.

The goal of the first optimization exercise is to determine the conventional risk-reward profile
of includingHML, CMA and RMWrespectively. MV results will also test the conjecture in Fama
and French (2015), postulating that the inclusion of HML does not improve the Sharpe Ratio of
the tangency portfolio.

The goal of the second optimization is to consider risk beyond variance, by examining the im-
pact on tail risk of including HML, CMA and RMW respectively. CDB analysis studies whether
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Figure 10: Rolling correlations of standardized residuals from the dynamic copula

Rolling correlations of the simulated dynamic symmetric t copula compared to rolling correlations on ARMA-
GARCH residuals. 95% confidence bounds taking the ARMA-GARCH models as given. The simulated rolling
correlations are based on 10,000 simulations each week. ARMA-GARCH models based on empirical weekly data
1963–2016.

37



Figure 10: Rolling correlations of standardized residuals from the dynamic copula (cont.)
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the non-normal features in the data (i.e. tail dependence) give any additional reason, beyond the
MV results, to include or exclude the factors HML, CMA and RMW, respectively.

CDB is based on the portfolio expected shortfall (ES), i.e. the expected loss in case the return
realizes below its Value-at-Risk (VaR), and therefore concerns the properties of the lower tail of
the portfolio distribution. Naturally, such features are not captured by means and covariances in
MV analysis.

The remainder of this section presents the construction of the CDB measure and the general
optimization problem forMV and CDB. Results of the optimizations are given in the subsequent
sections.

6.1 Conditional diversification benefit (CDB)

This description of CDB follows Christoffersen et al. (2012). Define ES as the expected loss in
some bottom percentile q:

ESqi,t(ri,t) = −E[ri,t|ri,t ≤ F−1
i,t (q)] (6.1)

where F−1
i,t (q) is the inverse CDF of simple returns ri,t at q (equivalent to the q% Value-at-Risk).

The Expected Shortfall represents the expected loss when returns realize below the Value-at-
Risk of the portfolio. Depending on the shape of the distribution at hand, the ES can be closer
to or further away from the Value-at-Risk. Intuitively, if assets offer little diversification, then no
combination of assets will reduce total portfolio risk; and ES will be higher.

For a portfolio of assets with weightswt, the portfolio ES, ESqt (wt), has an upper bound equal
to theweighted average of each asset’s ES, corresponding to the case of no diversification (Artzner,
Delbaen, Eber, & Heath, 1999):

ESqt (wt) =
N∑
i=1

wi,tESqi,t(ri,t) (6.2)

A lower bound on portfolio ES is given by the portfolio’s Value-at-Risk (−F−1
t (wt, q)), corre-

sponding to the case of perfect diversification:

ESqt (wt) = −F−1
t (wt, q) (6.3)

CDB is defined as the portfolio’s ES scaled by its lower and upper bounds:

CDBq
t (wt) =

ESqt (wt)− ESqt (wt)

ESqt (wt)− ESqt (wt)
(6.4)

CDB is a number between 0 and 1, which we report scaled to 0–100. Note that the level of
expected return does not enter into the measure – CDB only measures how powerful a group of
assets are at achieving low tail risk.
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6.2 Optimization problem

Each week, we choose portfolio weights tomaximize the Sharpe Ratio in themean-variance case,
and CDB in the CDB case. We impose two restrictions on the optimization problem. First, all
factor weights must be positive. This reduces the problem with extreme weights, as seen in the
unconstrained optimization problem, and reflects a view that an investor will not bet against
factors that have generated a history of positive premia. Second, factor weights must sum to
unity, i.e. the portfolio is fully invested across factors. In light of Asness et al. (2015), we consider
portfolios with and without momentum (five- and six-factor portfolios, respectively).

Together, these restrictions make the maximized Sharpe Ratio reflect tangency portfolio
weights subject to a constraint of no negative weights. Due to the restrictions, the standard an-
alytical solution to the mean-variance problem is not equal to our optimal tangency portfolio.
Similarly, no analytical solution exists for optimizing CDB. Hence, for a portfolio with N factors
we perform a numerical optimization where we choose the vector of weights wt to maximize the
objective function Ωt(wt), subject to the restrictions above:

max
wt

Ωt(wt) (6.5)

s.t.
N∑
i=1

wi,t = 1

wi,t ≥ 0 ∀i ∈ N

For the MV case, the objective function is the one-week Sharpe Ratio (SR):

Ωt(wt) =
w⊤

t Et[rt+1]√
w⊤

t Et[Σt+1]wt
(6.6)

Et[rt+1] is the conditional one-step-ahead expected factor return and Et[Σt+1] is the conditional
one-step-ahead variance-covariance matrix.

For the CDB case, the objective function is the one-week CDB:

Ωt(wt) = CDBq
t (wt) (6.7)

We perform MV and CDB optimization using in-sample simulated distributions from our dy-
namic copula model. Each week, we simulate 10,000 returns from the estimated copula model
and use those outcomes as the conditional distribution of factor returns. We also perform MV
optimization based on sample means and covariances, in which case Et[rt+1] and Et[Σt+1] are
constant and equal to the full sample estimators.
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7 Results frommean-variance optimization

In Figure 11, we present the optimized weights over time in the five-factor universe (four-factor
when one factor is excluded). The left hand column presents weights of factors when we con-
sider the inclusion and exclusion of HML, while the right hand column presents weights of fac-
tors when CMA is included and excluded. The dynamic weights are based on one-week-ahead
forecasts from the copula model, while the static lines represent the weights based on sample
estimators of the mean-variance inputs.

Accompanying the graph, Table 6 presents average MV optimal weights based on dynamic
inputs of expected returns and covariances from the copula model. This table also gives average
weight differences between models, as well as a number of performance measures that are based
on the realized returns. The CDB statistic is based on MV optimal weights and uses the copula
model as the distribution of returns. Please note that all performance measures are calculated in-
sample and are not indicative of out-of-sample investing based on a copula model; they should
be interpreted only in relative terms, in order to determine how much a portfolio is impacted by
the exclusion of a factor.14

We begin by examining the left column of plots in Figure 11 that includes and excludes HML
in the five-factor universe. First, we note that the weight of HML is clearly not zero when in-
troduced in the investible universe. This appears to be the case for both the sample estimate of
means and covariances, as well as the dynamic estimates from the copula model. Both inputs
suggest that HML does in fact improve the tangency portfolio, as the optimal portfolio has a pos-
itive weight on the factor. The inclusion of HML leads to an increase in realized SR, which goes
from 1.48 to 1.64. Furthermore, including HML leads to a less risky portfolio, with slightly lower
average VaR and average ES and a higher degree of tail diversification, as measured by CDB (see
Table 6).

Although we impose the additional restriction of no negative weights, this finding does stand
in contrast to the conjecture in Fama and French (2015) that HML should not improve the tan-
gency portfolio. While the unconstrained tangency portfolio may or may not include HML, the
simple restriction of no negative weights makes HML an important part of the optimal portfolio.
However, we notice that this is less clear if we do not use dynamic inputs. For the full five-factor
model, static sample estimators result in a lower allocation to HML (6.2%) than the dynamic in-
puts from the copula (average 18.2%), and a much smaller difference in realized SR, which goes
from 1.25 to 1.27 (see Table 8 (Appendix E) for sample results).

Second, from the left panel of Figure 11, we note that the dynamic weight of HML seems to
be highly similar to the decrease in weight in CMA, while all the remaining factors seem to stay
very close to their original weights whenmoving to the full five-factormodel. In other words, the
weight that is attributed toHML is drawn nearly directly from theweight of CMA, in each period.

14A similar table of performance measures and average weight differences using in-sample sample estimators of
expected returns and covariances is found in Table 8 (Appendix E).
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(a) Excluding HML (b) Excluding CMA

Figure 11: Mean-variance optimal weights with five factors

Smoothed as 1-year moving averages for better legibility. Optimization constrained to fully invested portfolios
with non-negative weights. Left hand panel including and excluding HML, right hand including and excluding
CMA. Based on one-week-ahead forecasts from the dynamic symmetric t copula model 1963–2016.
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(c) Excluding RMW

Figure 11: Mean-variance optimal weights with five factors (cont.)
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Our interpretation is that in a five-factor model excluding HML (effectively a four-factor model),
CMA proxies for HML, which is why CMA absorbs nearly all the weight. HML also seems to
proxy for CMA to a lesser extent, as shown by the right hand column of plots in Figure 11, which
include and exclude CMA. When CMA is included, the weight of HML is lowered, but so are the
weights of SMB and RMW. The proxying behavior of HML and CMA is expected, as the factors
are highly correlated and zero-cost portfolio regressions in this thesis (Table 2), as well as in Fama
and French (2015) and Asness et al. (2015), indicate that the main explanatory variable for HML
is CMA, and vice versa.

Third, from the third panel of Figure 11, presented on a separate page, we find that among the
two newly introduced factors CMA and RMW, the latter seems to have a much more substantial
impact on the mean-variance portfolio. RMW receives weights of approx. 35% in the five-factor
model, which is nearly twice the allocation of any other factor. Furthermore, the inclusion of
RMW leads to a large improvement of portfolio performance measures. For dynamic weights
in the five-factor model, RMW makes the realized SR go from 1.28 to 1.64. At the same time,
RMW leads to large decreases in the averageVaR and average ES riskmeasures, both of which are
nearly halved when RMW is included. This highlights the large benefits of including the RMW
strategy in a factor portfolio, which are expected due to RMW’s low or negative factor loadings
in the zero-cost portfolio regressions (see section 4).

We now move on to the six-factor model universe (effectively five-factor models when one
factor is excluded), with weights in Figure 12 and figures in the right hand panel of Table 6. As
the optimal weights and performance results are in general qualitatively similar to the five-factor
model, we will only comment on key changes.

In the expanded universe, Sharpe Ratios are generally very high, regardless of whether a
factor is excluded. Surprisingly, the highest SR is realized when CMA is excluded. However, the
difference is small. Another notable change is that the allocation to HML based on static sample
inputs is now higher (13.2% compared to 6.2%), which could be due to the clearer recognition
of momentum differences between HML and CMA firms as Mom is included (cf. the discussion
on zero-cost regressions in section 4).

In summary, we examine weights and portfolio performance measures for optimal MV port-
folios and find no reason to believe that mean-variance investing in the HML factor is dead or
fully subsumed by the remaining factors, as the optimal portfolios include HML and have higher
realized Sharpe Ratios, as well as lower realized risk measures. We also find that the inclusion of
RMW is substantially more important, and leads to a large weight allocation to the factor as well
as a substantial improvement on all performance measures.
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(a) Excluding HML (b) Excluding CMA

Figure 12: Mean-variance optimal weights with six factors

Smoothed as 1-year moving averages for better legibility. Optimization constrained to fully invested portfolios
with non-negative weights. Left hand panel including and excluding HML, right hand including and excluding
CMA. Based on one-week-ahead forecasts from the dynamic symmetric t copula model 1963–2016.
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(c) Excluding RMW

Figure 12: Mean-variance optimal weights with six factors (cont.)
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Table 6: Mean-variance optimization with dynamic copula model (1963–2016)

Average weights are averages of dynamic MV optimal weights based on means and covariances from the dynamic
symmetric t copula model. Differences in average weights are expressed relative to the full five- and six-factor
models. Performance measures are based on realized returns. SR is the annualized Sharpe Ratio. VaR, ES and
CDB are all based on the one-week-ahead 5% lower tail of the return distribution, which is given by simulations
from the copula model. Differences in CDB are to be read as column model minus row model and its associated
standard errors (in parentheses) are computed taking the copula model as given.

Five (four) factor models Six (five) factor models

All Excl. Excl. Excl. All Excl. Excl. Excl.
HML CMA RMW HML CMA RMW

Average weights
Mkt.RF 12.4 13.2 14.2 26.4 9.9 9.9 10.4 15.5
SMB 15.0 17.4 18.3 21.8 13.4 15.3 15.6 16.8
HML 18.2 26.3 27.2 17.6 24.1 23.1
CMA 17.6 31.4 24.6 14.6 27.5 17.8
RMW 36.8 38.0 41.2 30.6 31.4 33.3
Mom 13.9 15.9 16.6 26.8

Difference weights (column minus All)
Mkt.RF 0.8 1.8 14.0 0.1 0.6 5.7
SMB 2.4 3.3 6.8 1.9 2.2 3.4
HML −18.2 8.1 9.0 −17.6 6.5 5.5
CMA 13.8 −17.6 7.0 12.9 −14.6 3.2
RMW 1.2 4.4 −36.8 0.8 2.7 −30.6
Mom 2.0 2.7 12.8

Performance
Mean (%) 6.48 6.42 7.28 8.88 7.18 7.34 8.12 9.94
SD (%) 3.95 4.34 4.72 6.93 4.05 4.39 4.49 5.83
SR 1.64 1.48 1.54 1.28 1.77 1.67 1.81 1.70
Avg. VaR (%) 0.59 0.68 0.73 1.14 0.56 0.64 0.66 0.93
Avg. ES (%) 0.83 0.94 1.02 1.58 0.79 0.90 0.93 1.31
Avg. CDB 82.78 79.38 77.98 68.03 84.66 81.44 81.68 74.75

Difference CDB (column model minus row model)
All −3.40 −4.81 −14.75 −3.22 −2.98 −9.91

(0.17) (0.22) (0.37) (0.14) (0.15) (0.28)

Excl. HML −1.41 −11.35 0.24 −6.69
(0.29) (0.41) (0.22) (0.32)

Excl. CMA −9.95 −6.93
(0.43) (0.31)
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8 Results from CDB optimization

We begin by comparing the optimal CDB weights to the optimal MV weights in Figure 13.15

The difference between weights under CDB and MV optimization are found to be fairly small –
especially for Mkt.RF, and to a lesser extent for HML and CMA. It rather seems that the CDB
optimal weights are less erratic in their pattern, which is likely to be due to the fact that MV
optimization takes into consideration the conditional expected return, while CDB optimization
only concerns tail risk. The most notable difference between CDB and MV weights is that CDB
seems to allocate less intoMom. Again, this is coherent, as theCDBoptimization does not reward
the factor for its high expected return.

Next, we study the CDB over time with CDB optimized weights, where we experiment with
excluding one of the factor HML, CMA and RMW at a time. The results are given in Figure 14,
and are based on aValue-at-Risk cut-off of 5%.16 Weproceedwith a number of interesting results
that emerge from this picture:

First, we note that regardless of whether momentum is included or not, factor strategies ap-
pear to offer high levels of diversification. In absolute terms, all strategies fluctuate in the 80–95
range for the majority of the studied time period. This means that ES is relatively close to VaR,
i.e. there is limited tail risk.

Second, there are notable dips in the diversification benefitmeasure. The dips represent times
when diversification is relatively hard to come by, and roughly coincide in the five- and six-factor
models. Interestingly, the periods of low diversification do not seembe stockmarket crises, as the
CDB measure remains relatively high during the bubble of 1999–2000 bubble and the recession
of 2007–2009.

Third, the level decreases in diversification benefit of removing HML or CMA seem quite
small. Furthermore, this decrease is highly similar; at certain times, portfolios including HML
are more diversified and vice versa, but no pattern emerges. However, we note that the exclusion
of RMW is dramatically different. Without RMW, the level decrease in CDB is substantial and
the dips become much more pronounced and frequent.

For comparison, we also report the CDB over time with MV optimized weights in Figure 15.
This allows us to study how well tail diversified an MV portfolio is. In comparison to the optimal
CDB in Figure 14, we note that the MV optimization leads to considerably lower tail diversifi-
cation. Changing to MV optimization leads to a level shift as well as more frequent and deeper
dips. Interestingly, the change to MV weights makes diversification benefits worse especially
for the model where RMW is excluded. We find it interesting for MV oriented factor investors
that including RMW significantly limits the tail risk in MV portfolios. In a number of periods,
incl. 1972–1974, 1976–1978, 1980–1982, and 1990–1993, a number of severe declines in tail
diversification are avoided almost entirely if RMW is included.

15The weight graphs for CDB optimal weights, excluding one factor at a time, are also reported, but have been
relegated to Figure 18 and Figure 19 (Appendix E).

16In unreported results, the lower cut-off value of 1% is found to give qualitatively similar results.
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(a) Five-factor universe (b) Six-factor universe

Figure 13: Comparison of CDB optimal weights and MV optimal weights

Smoothed as 1-year moving averages for better legibility. Optimization constrained to fully invested portfolios with
non-negative weights. Based on one-week-ahead forecasts from the dynamic symmetric t copulamodel 1963–2016.
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Figure 14: 5% Conditional Diversification Benefit (CDB) for CDB optimal weights

Five- (without Momentum) and six-factor universes. CDB lines have been smoothed as quarterly moving averages
for better legibility. See subsection 6.1 for computational details.
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Figure 15: 5% Conditional Diversification Benefit (CDB) for MV optimal weights

Five- (without Momentum) and six-factor universes. CDB lines have been smoothed as quarterly moving averages
for better legibility. See subsection 6.1 for computational details.
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Table 7: CDB optimization with dynamic copula model (1963–2016)

Average weights are averages of dynamic CDB optimal weights based on simulations of the return distribution
from the dynamic symmetric t copula model. Differences in average weights are expressed relative to the full five-
and six-factor models. Performance measures are based on realized returns. SR is the annualized Sharpe Ratio.
VaR, ES and CDB are all based on the one-week-ahead 5% lower tail of the return distribution. Differences in CDB
are to be read as column model minus row model and its associated standard errors (in parentheses) are computed
taking the copula model as given.

Five (four) factor models Six (five) factor models

All Excl. Excl. Excl. All Excl. Excl. Excl.
HML CMA RMW HML CMA RMW

Average weights
Mkt.RF 11.1 10.5 11.5 19.2 10.5 10.1 10.6 15.5
SMB 16.6 18.3 19.1 22.6 15.8 17.9 18.1 19.2
HML 17.4 30.1 26.7 18.1 28.7 24.9
CMA 21.2 35.0 31.6 18.7 32.2 24.1
RMW 33.8 36.2 39.3 28.1 31.8 32.6
Mom 8.8 8.1 10.0 16.2

Difference weights (column minus All)
Mkt.RF −0.6 0.4 8.1 −0.4 0.2 5.1
SMB 1.7 2.5 6.0 2.1 2.3 3.4
HML −17.4 12.7 9.3 −18.1 10.6 6.8
CMA 13.9 −21.2 10.4 13.5 −18.7 5.4
RMW 2.4 5.5 −33.8 3.7 4.4 −28.1
Mom −0.7 1.3 7.5

Performance
Mean (%) 2.77 2.94 2.85 3.37 3.37 3.39 3.41 3.90
SD (%) 2.42 2.49 2.69 3.89 2.37 2.52 2.56 3.49
SR 1.14 1.18 1.06 0.87 1.42 1.34 1.33 1.12
Avg. VaR (%) 0.46 0.48 0.52 0.78 0.45 0.47 0.49 0.69
Avg. ES (%) 0.61 0.64 0.69 1.04 0.60 0.64 0.66 0.92
Avg. CDB 90.42 89.29 89.19 83.42 91.33 90.24 90.51 86.62

Difference CDB (column model minus row model)
All −1.13 −1.23 −7.01 −1.09 −0.82 −4.71

(0.02) (0.03) (0.11) (0.02) (0.03) (0.10)

Excl. HML −0.10 −5.88 0.27 −3.62
(0.04) (0.11) (0.04) (0.10)

Excl. CMA −5.78 −3.89
(0.11) (0.10)
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In summary, we find that the high similarity of HML and CMA indicates that tail diversifica-
tion benefits are not dramatically improved by including both of the factors, which is coherent
with the fact that they are closely related and overlap. However, this does not mean that both
factors should not be considered jointly, as doing so could still could improve the conventional
risk-return trade-off in a mean-variance setting. The RMW factor, on the other hand, is shown
to be very important for tail diversification purposes and should be considered by all factor in-
vestors concerned with tail risk.

9 Discussion and conclusion

The first key finding of this thesis is that the classic value factor, HML, is still highly relevant for
factor investors. Zero-cost regressions in the five-factor model suggest that HML may be fully
explained by the remaining four factors, we find evidence to the contrary when accounting for
the momentum factor in a weekly dataset. We believe that the reason why zero-cost regressions
indicate that HML does not add value is that the regressions are misspecified. The omission of
an important sixth factor strategy, momentum, creates a bias on the factor loadings, and leads
to not recognizing the added value of HML. While the role of HML as a unique addition was
already defended by Asness et al. (2015), we have pursued the argument and can conclude that
optimizations lead to positive allocations to the HML strategy.

We run the mean-variance optimization using dynamic inputs from a copula model, which
can generate a conditional distribution of returns that captures the time-variation in dependence.
The actual implementation of mean-variance optimizations under the only constraint of non-
negative weights gives a significant positive allocation to the HML factor, which improves the
realized risk-return trade-off. These results are present, but less pronounced for static sample
estimators of means and covariances.

Although variance is the staple measure of risk, we also investigate whether risk beyond the
first two moments can provide reasons against the HML factor. The copula model has allowed
us to infer the full distribution of returns, and we shift our focus to the tail of the distribution.
Here, we find that the diversification benefit of HML is similar to that of CMA. HML can by no
means be considered a worse diversifier against tail risk, as measured by expected shortfall of a
factor portfolio, than CMA.

Our second key finding is that HML is highly similar, but not quite the same as CMA. On a
closer look, differences emerge, and we believe that factor investors should combine both factors
with consideration. There is important theoretical and empirical support for an overlap in the
stock positions that comprise HML and CMA, which results in a substantially higher correlation
for this factor pair than for any other factor pair. The dependence between the two factors is also
more stable, and does not exhibit the same pattern of tail dependence as do other factor pairs.

Still, one factor cannot replace the other. HMLandCMAexhibit different properties, asHML
firms are more profitable and exhibit less momentum, and generate return premia that mean-
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variance optimization suggests useful. Beyond the risk-reward of the first twomoments, analysis
of the full return distribution from the copula model shows that the diversification benefit of
adding either HML or CMA to a portfolio is not constant over time. Sometimes HML is the
better diversifier, sometimes CMA is better, but no pattern emerges as to which factor is better
than the other. We see no reason for investors to choose either one or the other, as both provide
valuable diversification, and even better, they do so at different times.

We believe that investors should consider the two factors jointly when building portfolios.
When one of the two factors is included in a factor portfolio already containing the second, the
first factor almost exclusively cannibalizes on the weight from the second. Our findings therefore
support the existing theoretical and empirical evidence of an overlap in the firms that comprise
the two strategies. All in all, we are wary of factor weighting schemes that suggest pure equal-
weights for HML and CMA. While such schemes are valuable for factor investing in general, as
they avoid the pitfall of factor (mis)timing, they should be designed in a manner that takes the
close link between HML and CMA into account. This pair has a very different dependence from
all other pairs – and so the allocation policy to these factors should be different.

A third finding of this thesis is the strength of the profitability factor, RMW. This new factor
co-varies negatively with most factors and receives zero or negative factor loadings in zero-cost
regressions. The exclusion of RMW in our diversification benefit analysis completely pulls the
plug on diversification,making periods of lowdiversification bothmore frequent andmuchmore
severe. Furthermore, the factor receives high allocations and contributes large improvements
to all portfolio performance measures. The fact that there are no strong explanations of the
profitability factor as a risk premium makes these findings even more puzzling. Our takeaway is
that all funds and investors in the factor space should seriously consider adding this new factor.

During the writing of this thesis, we also considered studying additional emerging factors, in
particular the low volatility and betting-against-beta factors. At a first glance, we found highly
diversifying characteristics of these factors, which remind us of RMW. It would be especially
interesting to study their impact on tail risk, following the CDB analysis. In the end, we did not
include them as we hone in on the discussion regarding HML’s role in the five- and six-factor
models.

A substantial part of this thesis is built upon a rather involved copula model. While we are
generally comfortable with the estimation procedure and robustness of the model, we acknowl-
edge that it does lack the power to properly explain asymmetries in tail dependence. A natural
route for an extension to a more flexible methodology would be to consider vine copulas in place
of the multivariate copula we use. We also believe that the advances of regime switching models
could prove fruitful in the factor setting, as such models can more rapidly adjust to shocks.

In unreported results, we have also studied out-of-sample investing with factor timing based
on the copula model, but find results to be lackluster without frequent re-estimation. While
the copula model can ex post shed light on the roles of different factors, it is not useful for a
priori portfolio allocation. This is consistent with the preference of moneymanagers to use static
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weights, but stands in contrast to the work of Christoffersen and Langlois (2013), upon whose
work this thesis is largely based.17 Out-of-sample factor timing is hard, and please note that we
do not purport to create a model for investment uses – our contribution is only possible ex post.
While MV and CDB analysis based on dynamic weights may seem counter-intuitive at first, as
investors use static weights, we argue that the dynamic analysis is a powerful tool for evaluation
purposes.

A final thought regarding factor strategies is that we should be careful in interpreting the
factors as long-only strategies. While it is highly likely that some of the factors generate alpha
both in the long and short positions, Wang and Yu (2013) shows that the profitability factor is
mainly due to alpha on the short positions. Therefore, we emphasize that our findings on factors
are applicable only directly to the long-short version of the factors.

17See i.a. AQR Capital Management, LLC (2016), BlackRock (2016), MSCI (2015) and Robeco (2014).
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Appendix A Skewed Student’s t distribution and copula density

We use the skewed Student’s t distribution in modeling both univariate series as well as for the
joint distribution under the copula. We use the definition of Hansen (1994) and the following
description is based on Christoffersen and Langlois (2013). A random vector X that follows a
multivariate skewed t distribution has the stochastic description

X =
√
WZ+ γW (A.1)

where γ is a vector of asymmetry parameters, Z follows a standard multivariate normal distri-
bution with correlation matrix Ψ, W follows an inverse gamma distribution IG(

ν
2
,
ν
2
). Thus,

the parameters of the multivariate distribution are degrees of freedom ν, asymmetries γ and an
underlying correlation matrix Ψ.

The distribution has expectation and covariance matrix:

E[X] = ν
ν − 2

γ (A.2)

Cov(X) = ν
ν − 2

Ψ +
2ν2γγ⊤

(ν − 2)(ν − 4)
(A.3)

i.e. ν ≥ 4 for these to be well-defined. Note that if γ = 0 (element-wise), X follows amultivariate
symmetric t distribution, and additionally if ν = ∞, X follows a multivariate standard normal
distribution. Hypotheses γ = 0 and 1/ν = 0 can therefore be used to test for symmetry and
normality, respectively.

The copula joint density function ct always takes the form of the ratio between a joint density
function fct(zt+1) (i.e. the multivariate normal, symmetric t or skewed t PDF, respectively) of cop-
ula shocks z∗t+1 and the product of the univariate density functions fci,t(zi,t+1) (i.e. the univariate
normal, symmetric t or skewed t PDF, respectively) of the individual shocks z∗i,t+1:

ct(Ut+1) =
fct(z∗t+1)∏N

i=1 fci,t(z∗i,t+1)
(A.4)

where the relationship between z∗i,t+1 and ui,t+1 is governed by the inverse cumulative distribu-
tion function, as detailed in the subsequent appendix. Note that if the copula distribution and
marginal distributions are the same, the denominator cancels in Equation 5.1 and the copula is
directly the joint distribution of the marginal densities.

Appendix B Copula Estimation Procedure

This is a step-by-step description of the procedure used to estimate the copula model, given the
set of standardized residuals {zt} from each GARCH model. It is adapted from Christoffersen
et al. (2012) and uses the cDCC model of Aielli (2013) (where cDCC stands for corrected DCC).
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Each week, compute uniform residuals by applying the probability integral transform to stan-
dardized residuals from each GARCH model:

ui,t+1 =

∫ zi,t+1

−∞
fi(z)dz =

∫ ri,t+1

−∞
fi,t(r)dr (B.1)

Note that while the distributions of returns is time-varying due to GARCH dynamics, the distri-
bution of standardized residuals is assumed constant, and in the case of skewed t is parameterized
by the shape νi and skewness parameter γi (estimated as part of the GARCH models).

Transform the uniform residuals into copula residuals z∗i,t+1 by applying the inverse cumula-
tive distribution function of the copula to them:

z∗i,t+1 = F−1
νc,γi(ui,t+1) (B.2)

Only under the normal copula will these residuals have expectation zero and unit variance –
hence, they are standardized by subtracting the expectation and dividing by the standard devia-
tion of the distribution from Appendix A.

These shocks are now used to fit the corrected DCC process of Aielli (2013). The correction
involves the transformation z̄∗i,t+1 = z∗i,t+1

√qii,t, where qii,t are the diagonal elements of Qt and
are found by a scalar version of Equation 5.4:

qii,t = (1 − α − β) + α(z̄∗i,t−1)
2 + βqii,t−1 (B.3)

The corrected shocks are used to estimate the time-invariant component Q:

Q̂ =
1
T

T∑
t=1

z̄∗t z̄∗⊤t (B.4)

Now, the full estimates of Q̂t are computed using the sample estimate Q̂ and the corrected shocks:

Q̂t = (1 − α − β)Q̂+ βQ̂t−1 + αz̄∗t−1z̄∗⊤t−1 (B.5)

The estimated Q̂t matrices are standardized to estimates Ψ̂t of the conditional correlation ma-
trices of the copula using Equation 5.5. When fitting the model, we thus choose parameters
νc, γc, α, β to generate Ψ̂t which maximize the log-likelihood of observing copula shocks z∗t in
each period.
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Appendix C Univariate diagnostic tests

Autocorrelation test

The autocorrelation test is a weighted Ljung-Box test, following Fisher and Gallagher (2012)
and Ljung and Box (1978). Under the null of a correctly specified model with no serial corre-
lation, the weighted Ljung-Box test has been shown to generate results closer to its asymptotic
distribution than the standard Ljung-Box test. The test statistic is given by

QW = T(T+ 2)
m∑
k=1

m− k+ 1
m

r̂2k(ε̂t/σ̂t)
T− k

(C.1)

where T is the number of observations, r̂2k(ε̂t/σ̂t) is the squared sample autocorrelation of stan-
dardized residuals with lag order k and max lag order m. Under the null, the test statistic is

asymptotically distributed
m∑
k=1

χ2kγk, where {χ2k} are independent chi-squared random variables

with one degree of freedom and {γk} are eigenvalues of a weighting matrix. We consider two
maximum lag orders, 5 and 10 weeks. The maximum lag length was chosen by visual inspection
of the autocorrelation functions for standardized residuals.

Volatility clustering test

For ARCH effects, we use the weighted LM test, following Fisher and Gallagher (2012) and Li
and Mak (1994). The test has the null of no autocorrelation in standardized squared residuals
from the model, and the test statistic is given by:

LMW = T
m∑

k=b+1

m− k+ (b+ 1)
m

r̂2k(ε̂
2
t/σ̂t) (C.2)

where T is the number of observations, b the number of autoregressive lags in the GARCH
(b = 1), r̂2k(ε̂

2
t/σ̂t) is the squared sample autocorrelation of standardized squared residuals with

lag order k and max lag order m. Under the null, the test statistic is asymptotically distributed
m∑
k=1

χ2kwk, where {χ2k} are independent chi-squared random variables with one degree of freedom

and {wk} are the weighting parameters (w = (m−k+(b+1))/m). Themaximum lag length was
chosen by visual inspection of the autocorrelation functions for standardized squared residuals.

Leverage effect test

We use the sign bias test of Engle and Ng (1993) to determine whether there are significant lever-
age effects in the factor returns. Run the regression

ẑ2t = c0 + c1Iε̂t−1<0 + c2Iε̂t−1<0 · ε̂t−1 + c3Iε̂t−1≥0 · ε̂t−1 + ut (C.3)
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where ẑ2t are the standardized squared residuals of the ARMA-GARCH model, I· are indicator
functions that are equal to one when the subscript conditions are true, and ε̂t−1 are the lagged
ARMA-GARCH residuals. For the test of negative sign bias (i.e. leverage effect), the null hy-
pothesis is H0 : c2 = 0, and for the test of positive sign bias (i.e. reverse leverage effect), the
null hypothesis isH0 : c3 = 3. The Wald test statistics are asymptotically distributed χ2 with one
degree of freedom.

Appendix D Stationary bootstrap of copula parameter standard errors

We rely on the multi-step maximum likelihood estimation of the copula model, which takes the
standardized residuals of marginal distributions as given in the second step. The first estimation
step introduces parameter uncertainty that is not taken into account by the conventional standard
errors of the second estimation.18 We use the stationary block bootstrap method of Politis and
Romano (1994) with a block length of 104 weeks (2 years of data) to find reliable standard errors
for copula parameters. The procedure is theoretically supported by Gonçalves and White (2004)
and implemented as follows (as described in Patton (2012)):

(i) Generate a stationary block bootstrap of the original weekly return data with an expected
block length of 104 weeks (note that individual block lengths are random).

(ii) Estimate the copula model of interest and collect the parameter set θi.

(iii) Repeat (i)-(ii) S times (we use S = 100).

(iv) Use the standard deviation of the distribution of {θi}Si=1 as the standard error for the pa-
rameters.

18Here, our model deviates from Christoffersen and Langlois (2013), who use a semi-parametric model that uses
the empirical density function, and find standard errors using the analytical approach in Chen and Fan (2006).
However, those errors are not valid in a time-varying copula context, as the estimation of means and variances
impact the asymptotic distributions of copula parameters (Rémillard, 2010).
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Appendix E Additional Figures and Tables

Figure 16: Threshold correlations of returns and ARMA-GARCH standardized residuals

The formula for threshold correlations for a threshold p is given in Equation 5.10. 95% shaded confidence bounds,
taking the model as given. The unconditional correlation is given by the dashed line. Based on weekly data
1963–2016.
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Figure 16: Threshold correlations of returns and ARMA-GARCH standardized residuals
(cont.)
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Figure 17: Rolling correlations of returns and ARMA-GARCH standardized residuals

95% shaded confidence bounds, taking the model as given. The unconditional correlation is given by the dashed
line. Based on weekly data 1963–2016.
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Figure 17: Rolling correlations of returns and ARMA-GARCH standardized residuals (cont.)
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Table 8: Mean-Variance optimization with static sample inputs (1963–2016)

Static weights are the MV optimal weights based on in-sample sample estimators of means and covariances. Dif-
ferences in average weights are expressed relative to the full five- and six-factor models. Performance measures are
based on realized returns. SR is the annualized Sharpe Ratio. VaR, ES and CDB are all based on the one-week-ahead
5% lower tail of the return distribution, which is given by simulations from the copula model. Differences in CDB
are to be read as column model minus row model and its associated standard errors (in parentheses) are computed
taking the copula model as given.

Five (four) factor models Six (five) factor models

All Excl. Excl. Excl. All Excl. Excl. Excl.
HML CMA RMW HML CMA RMW

Static weights
Mkt.RF 13.6 13.7 13.8 21.5 13.2 13.4 13.2 18.5
SMB 14.0 14.1 18.0 12.0 12.0 12.7 13.4 9.1
HML 6.2 26.7 11.2 13.2 27.0 22.3
CMA 33.2 39.0 55.3 22.2 35.2 29.2
RMW 33.0 33.2 41.5 27.7 29.0 30.2
Mom 11.7 9.7 16.2 21.0

Difference weights (column minus All)
Mkt.RF 0.1 0.2 7.9 0.2 0.0 5.3
SMB 0.2 4.0 −2.0 0.7 1.4 −2.9
HML −6.2 20.5 5.0 −13.2 13.7 9.1
CMA 5.8 −33.2 22.1 13.0 −22.2 7.0
RMW 0.3 8.5 −33.0 1.4 2.6 −27.7
Mom −2.0 4.5 9.3

Performance
Mean (%) 3.71 3.68 3.72 4.14 4.32 4.14 4.56 5.10
SD (%) 2.93 2.94 3.46 4.32 2.99 2.99 3.35 4.19
SR 1.27 1.25 1.07 0.96 1.44 1.38 1.36 1.22
Avg. VaR (%) 0.56 0.57 0.63 0.89 0.57 0.59 0.64 0.84
Avg. ES (%) 0.76 0.78 0.86 1.20 0.79 0.81 0.88 1.16
Avg. CDB 87.34 86.68 86.45 79.15 87.87 87.02 86.77 82.63

Difference CDB (column model minus row model)
All −0.66 −0.89 −8.19 −0.85 −1.10 −5.24

(0.01) (0.05) (0.13) (0.03) (0.04) (0.10)

Excl. HML −0.22 −7.53 −0.22 −4.40
(0.06) (0.13) (0.06) (0.11)

Excl. CMA −7.31 −4.14
(0.14) (0.10)
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(a) Excluding HML (b) Excluding CMA

Figure 18: CDB optimal weights with five factors

Smoothed as 1-year moving averages for better legibility. Optimization constrained to fully invested portfolios
with non-negative weights. Left hand panel including and excluding HML, right hand including and excluding
CMA. Based on one-week-ahead forecasts from the dynamic symmetric t copula model 1963–2016.
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(c) Excluding RMW

Figure 18: CDB optimal weights with five factors (cont.)
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(a) Excluding HML (b) Excluding CMA

Figure 19: CDB optimal weights with six factors

Smoothed as 1-year moving averages for better legibility. Optimization constrained to fully invested portfolios
with non-negative weights. Left hand panel including and excluding HML, right hand including and excluding
CMA. Based on one-week-ahead forecasts from the dynamic symmetric t copula model 1963–2016.
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(c) Excluding RMW

Figure 19: CDB optimal weights with six factors (cont.)
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