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Abstract 
We investigate whether, and show support for that, quarterly dividend increases can be predicted 

using accounting data combined with smoothing behaviour and financial distress predictions. The 

empirical findings are achieved through the development of a probabilistic model for dividend 

increase prediction with data for U.S. manufacturers from year 2000 to year 2016. However, there 

is reason to doubt the general applicability of the model, as differences are shown both over time 

and across sub-industries. Despite positive initial results, the financial distress prediction variables 

are not clearly beneficial to the model. When using the proposed dividend increase prediction 

model with a suggested cut-off probability for our sample, a Naïve model is outperformed and the 

results improve further for our separate validation sample. A strategy to purchase the shares of the 

companies for which dividend increases are predicted achieve abnormal returns which are 

significant at the 0.10 level. 
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1. Introduction 

This thesis strengthens the case that accounting data, financial distress predictions and dividend 

smoothing can be used to accurately predict quarterly cash dividend increases. These dividend 

predictions could potentially be used to generate abnormal returns. By developing a probabilistic 

cash dividend increase prediction model, which is correct in 94.4 percent of its predictions, a Naïve 

model is outperformed. Using this model in a trading strategy yields abnormal returns of 151 

percent, which are statistically significant at the 0.10 level. 

Dividends are an integral part when investing in shares and are the focus of various valuation 

models. With the current environment in the financial markets with low, or even negative, interest 

rates, dividends could potentially act as an alternative for investors. While analysing short-term 

dividend increases might not revolutionize the valuation of companies, Miller and Modigliani 

(1961) presented a link between dividend increases and positive share price reactions. We consider 

this link to provide motivation for predicting cash dividend increases and for considering a trading 

strategy based on these predictions. 

The dividend increase prediction model is estimated through a logit regression. In this regression, 

a variable for a modified version of the dividend prediction model by Lintner (1956) is used in 

combination with a variable for historic accounting profits, in line with Fama and Babiak (1968), 

as well as variables for lagged dividends and variables to incorporate financial distress predictions. 

The model is developed in order to achieve the purpose of the thesis, namely to answer the research 

question: 

Can accounting data, financial distress predictions and smoothing behaviour be used to 

predict dividend changes, and in turn be used to earn abnormal returns? 

When developing the model, we have two considerations in mind. First, we believe that predictions 

of financial distress could provide important additions to the current usage of dividend prediction 

models as, intuitively, a company would decrease its dividends when facing the threat of 

bankruptcy. This intuition is supported by the findings of DeAngelo and DeAngelo (1990) that 

companies swiftly lowered their dividends considerably when facing financial distress. We include 

modified versions of financial distress prediction models with both short (Ohlson 1980) and long 

(Skogsvik 1987) prediction horizons, in an attempt to capture the effects of companies facing 
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imminent financial distress as well as those facing financial distress on the horizon. Second, we 

consider there to be a gap in the literature with regards to smoothing effects and their impact on 

the prediction of quarterly paid dividends. Supporting that dividend smoothing is relevant today, 

Brav, Graham, Harvey and Michaely (2005) found that companies, as in Lintner (1956), still “[…] 

smooth dividends from year to year” (Brav et al. 2005, p. 499). Whereas existing research has 

focused mainly on dividend smoothing on an annual basis, such as Lintner (1956) and Guttman, 

Kadan and Kandel (2010), we believe that dividend smoothing can be adapted for quarterly 

dividend prediction. 

The resulting probabilistic dividend increase prediction model provides an Index Value, which can 

be converted into the probability of a relative increase of the quarterly cash dividend greater than 

a certain threshold. The higher the Index Value, the higher the probability of this dividend increase 

according to the model. The threshold, calculated as the annual inflation rate plus three percent, 

enables the model to predict a real increase instead of a nominal increase and also helps to avoid 

the predictions of negligible increases. 

Our results support that the majority of companies perform dividend increases greater than the 

threshold only once per year, even though many companies in our sample pay cash dividends 

quarterly. These results are in line with the findings of Lintner (1956) that most companies change 

their dividends on an annual basis or less frequent. However, in almost 15 percent of the cases 

where at least one increase greater than the threshold occurred in the previous four quarters, at 

least one additional increase had occurred in the same period. We thus consider that existing 

dividend prediction models, such as Lintner (1956), could benefit by being extended to also 

consider quarterly dividends. 

Although the financial distress variables show promising initial results, their general applicability 

can be questioned in the context of a dividend prediction model – mainly with regards to different 

sub-industries, but also across different time periods. Therefore, including financial distress 

variables could potentially harm the general applicability of the presented model. Despite these 

negative subsequent findings, we consider financial distress predictions as part of dividend 

predictions a promising area for future research. However, some adaptation to consider the 

prevailing economic climate is likely to be necessary. 
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The sample used in this thesis consists of U.S. registered manufacturing companies. This is in line 

with Lintner (1956) and Ohlson (1980), but provides some limitations as we have not tested the 

validity of our model for other sectors or jurisdictions. 

Applying a trading strategy based on the dividend increase predictions we are able to generate 

abnormal returns of 151 percent which are significant at the 0.10 level. These positive abnormal 

returns could imply that information is communicated through dividends, in line with e.g. Miller and 

Modigliani (1961) and Nissim and Ziv (2001), although the latter focused on earnings and not share 

price. The results support that our model, with the use of accounting data, financial distress 

predictions and dividend smoothing, can predict increases conveying information. The significant 

abnormal returns are contradictory to the CAPM in that there should be no predictable deviations 

from the return predicted through it, as commented in the textbook by Bodie, Kane and Marcus 

(2011, p. 322). Furthermore, a strategy trading only on the correctly predicted dividend increases 

achieve 110 percent abnormal returns which are not significant. As these results are weaker than 

the results of the strategy using all dividend increase predictions, in regards both to significance 

and to abnormal returns, we are unable to justify any firm conclusions based on these findings. 

This is further strengthened by the low level of significance for the strategy using all dividend 

increase predictions. The results do, nevertheless, encourage future research within the combined 

area of dividend signalling and dividend prediction. 
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2. Previous Research and Theoretical Framework 

In this section, we present the previous research considered most relevant to our field of study. 

First, research on the topic of why dividends are relevant to predict is presented, focusing on the 

effects dividends can have on the share price and earnings outlooks for companies. Second, we 

present previous research within the area of dividend prediction, underlying the key considerations 

used in our dividend increase prediction model. Third, the area of dividend prediction is linked to 

the area of financial distress prediction. This cross-section between financial distress prediction 

and dividend prediction is, to our knowledge, not a previously researched area. Our focus for this 

section is mainly on the relevant research within the financial distress prediction as well as the 

overall linkage between financial distress and dividends. Fourth and last, the theories used for 

implementing our trading strategy are presented. 

2.1 Dividends – Why are they Relevant? 

In 1961, Miller and Modigliani stated that “[…] given a firm’s investment policy, the dividend 

payout policy it chooses to follow will affect neither the current price of its shares nor the total 

return to its shareholders.” (Miller and Modigliani 1961, p. 414). 

At first consideration, it could therefore seem unnecessary to predict dividends. However, Miller 

and Modigliani (1961) also commented on that there could actually be considerable price reactions 

as a response to dividend changes. The authors considered this to be due to information being 

conveyed in the dividend change and thus not to be contradictory to the above statement regarding 

share prices not being affected by payout policies. The concept of “informational content” (Miller 

and Modigliani 1961, p. 430) was described by the authors in the following way: 

“That is, where a firm has adopted a policy of dividend stabilization with a long-

established and generally appreciated ‘target payout ratio,’ investors are likely to 

(and have good reason to) interpret a change in the dividend rate as a change in 

management’s views of future profit prospects for the firm.”  

(Miller and Modigliani 1961, p. 430). 

 

Woolridge (1983) discussed how the variation in share prices followed dividend changes and how 

it was in line with the hypothesis of wealth transfer and thus not only signalling (or “informational 

content” as named by Miller and Modigliani (1961, p. 430)). The author found that signalling was 
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of largest importance, although he could not reject the possibility of wealth transfer affecting share 

prices as well (Woolridge 1983). 

Positively correlated movements in the share price in response to changes in dividends, as 

discussed by Miller and Modigliani (1961), was confirmed by the findings of Dhillon and Johnson 

(1994). However, even though information conveyed through dividends potentially could explain 

the results, the authors considered the results to rather strengthen the case of wealth redistribution 

between owners of debt and equity (Dhillon and Johnson 1994). 

Furthermore, a study in line with the “informational content” (Miller and Modigliani 1961, p. 430) 

was Nissim and Ziv (2001), which showed that earnings in the forthcoming years could be 

explained, to some extent, by the signals embedded in the decision of dividend levels. Mainly, if 

the company increased its dividends, the increase implied a positive change in earnings for the 

coming years (Nissim and Ziv 2001). 

A cut in dividends did however not provide explanatory value for earnings in the coming years 

(Nissim and Ziv 2001). This absence of explanatory value was argued to be an effect of 

conservative accounting, where expected losses are included in the reported earnings, but only 

realized profits (Ibid.). Therefore, with conservative accounting, the negative news leading to a cut 

in dividends would already have been incorporated into the reported earnings (Ibid.). Positive news 

would, however, be incorporated once realized and thus allowing positive dividend changes to 

communicate these news instead (Ibid.). 

In contrast to the results in Nissim and Ziv (2001), companies cancelling dividend payments were 

shown to have larger changes in share prices than companies initiating dividends in Michaely, 

Thaler and Womack (1995). This was the case both when the dividend initiation (cancellation) 

was communicated and for a longer period of time after the communication, as the authors were 

able to show a drift effect resulting from dividend initiations (cancellations) (Michaely, Thaler and 

Womack 1995). The results in Michaely, Thaler and Womack (1995) were though questioned in 

Boehme and Sorescu (2002), which was only able to reconstruct them in special circumstances. 

Finally, we consider that the prediction of dividend increases is relevant mainly in line with that 

information, in accordance to Miller and Modigliani (1961), is being conveyed in dividends. Even 

though future earnings changes are not the same as value changes, the suggestions from both Miller 
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and Modigliani (1961) and Nissim and Ziv (2001) that increased dividends implied positive 

changes in coming years’ earnings, we deem enough to justify the development of a model 

predicting dividend increases. 

2.2 Dividend Prediction 

Below follow the contributions within the area of dividend prediction used to arrive at our dividend 

increase prediction model. The area covers the model for dividend prediction as created by Lintner 

(1956), but also further extensions to his model and additional considerations regarding dividend 

smoothing behaviour. Not all of the articles explicitly mention cash dividends, which are the focus 

of this thesis, instead only dividends. Although we perceive that some of the authors, including 

Lintner (1956), refer to cash dividends when using the term, we have not been able to verify this. 

Nevertheless, at least it could be stated that the literature covering dividends in general likely also 

will be applicable to cash dividends, as a subset of dividends. 

Sixty years ago, Lintner (1956) developed a dividend prediction model which is still frequently 

referenced in the area of dividend prediction (e.g. Brav, Graham, Harvey and Michaely (2005), 

Guttman, Kadan and Kandel (2010) and Lambrecht and Myers (2012)). 

The dividend prediction model presented by Lintner (1956), was arrived at through interviews with 

representatives from 28 industrial companies which paid dividends either quarterly or less 

frequently. U.S. dividend-paying companies which pay less often than on a quarterly basis, 

however, seem uncommon in the 21st century according to the findings of Ferris, Noronha and 

Unlu (2010). By analysing U.S. dividend-paying companies, the authors found that 87 percent of 

them paid quarterly (Ibid.). 

Although most companies in Lintner (1956) changed their dividends on an annual basis, four of 

them rather did so every second or third year. From the interviews, Lintner (1956) introduced the 

concept of speed of adjustment, representing at what speed a company will modify their dividends 

when facing earnings changes. A company with a higher speed of adjustment will more quickly 

conform its dividend level with any earnings changes, thereby reaching its targeted payout ratio 

faster (Ibid.). It follows from the speed of adjustment that dividends are anticipated to continue to 

increase as long as the target payout ratio has not been reached (Ibid.).  
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The Lintner (1956) model: 

                                                Δ𝐷𝑖𝑡 = α𝑖 + c𝑖(𝐷𝑖𝑡
∗ − 𝐷𝑖(𝑡−1)) + 𝑢𝑖𝑡                                         (1) 

(Lintner 1956, p. 107) 

where: 

𝐷𝑖𝑡 = 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑓𝑜𝑟 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 

Δ𝐷𝑖𝑡 = 𝐷𝑖𝑡 − 𝐷𝑖(𝑡−1)

= (𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑓𝑜𝑟 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡, 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑓𝑜𝑟 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑡 − 1) 

𝐷𝑖𝑡
∗ = 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑖′𝑠 𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 𝑝𝑎𝑦𝑜𝑢𝑡 𝑟𝑎𝑡𝑖𝑜 ∗ 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑖′𝑠 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒 𝑦𝑒𝑎𝑟 𝑡 

α𝑖 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑜𝑟 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑖 

c𝑖 = 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑖 

𝑢𝑖𝑡 = 𝑇ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚  

Lintner (1956) found that the constant αi in most cases was positive, as managers strived to not 

end up in scenarios where they would have to decrease dividends. This led to conservatism, as 

managers were unwilling to raise the dividend payout rate to levels they were not certain would 

be sustainable going forward (Ibid.). Lintner (1956) further argued that this conservatism by the 

managers reflected their notion that the shareholders preferred steady dividends, which was mainly 

achieved with the use of the speed of adjustment. It has later been termed that dividends were “[…] 

smoothed from year to year.” (Brav et al. 2005, p. 484). 

Fama and Babiak (1968) applied the model by Lintner (1956) to individual industrial companies’ 

data and showed that it functioned in this setting. Furthermore, the authors managed to enhance 

Lintner’s (1956) model through implementing a variable for historic earnings in addition to the 

current earnings already included. 

The conservativeness of dividend policies, as found by Lintner (1956), was found to remain true 

in the more recent study of Brav et al. (2005). Using surveys and interviews, the study concluded 

that under normal conditions companies were disinclined to lower dividends even if that would 

include missing out on positive NPV opportunities (Brav et al. 2005). To a large extent, companies 

at the time still “[…] smooth dividends from year to year” (Brav et al. 2005, p. 499). The authors 
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also showed that 40 percent of the CFOs targeted dividend levels, while only 28 percent targeted 

a specific payout ratio (Ibid.). Furthermore, Guttman, Kadan and Kandel (2010) showed that 66 

percent of companies which did not adjust dividends in a certain year also left it unadjusted the 

following year, while 84 percent of companies which adjusted their dividends would do so in the 

following year as well. A connection between past and current dividend payments was also found 

in Skinner (2008), which showed that there was a positive relationship between the number of 

years a company had paid dividends and the probability of that company paying dividends in the 

future. 

Furthermore, that share repurchases was a serious alternative to dividends was concluded in Brav 

et al. (2005). This finding was confirmed a few years later in Skinner (2008), in which the results 

implied that share repurchases, rather than dividends, was the leading way companies distributed 

their earnings. 

Also in line with previous findings, the Lintner (1956) model should not predict only dividends – 

instead it should also include share repurchases according to Lambrecht and Myers (2012), in 

which a dynamic agency model was created based on theory to explain payout. 

Lambrecht and Myers (2012) argued that the reported earnings should not be used in predicting 

the payout. Instead, an income measure based on the value of all future earnings for the company 

should be used (Lambrecht and Myers 2012). 

Given the above, some doubt was cast over the focus on dividends as Brav et al. (2005), Skinner 

(2008) and Lambrecht and Myers (2012) all suggested that dividends were no longer as important 

as in Lintner (1956). Instead Lambrecht and Myers (2012) proposed that total payout should be 

predicted instead. The focus on dividends in this thesis will though remain, in line with the findings 

of Miller and Modigliani (1961) that information can be conveyed through dividends. 

Considering the findings within the area of dividend prediction, we decide to include a version of 

the Lintner (1956) model in our dividend increase prediction model, as well as historic earnings in 

line with the contribution by Fama and Babiak (1968). We also decide to take into account 

dividend smoothing effects in line with e.g. Brav et al. (2005).  
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2.3 Financial Distress Predictions – Useful in Dividend Predictions? 

Somewhat surprisingly, to date there seems to be no research incorporating predictions of financial 

distress to dividend predictions. Intuitively, companies in financial distress would, at least to some 

extent, adjust their dividend levels as a response to this threat of existence. 

One article considering the cross-section between dividends and financial distress is DeAngelo 

and DeAngelo (1990), which analysed the impact that long-lasting financial distress had on 

dividends for companies listed in the United States. The authors found that companies generally 

raised their dividends in the years leading up to financial distress, but that a swift and considerable 

lowering of the dividends when facing financial distress was the common reaction by the 

companies in the study. The authors further showed that there is an apparent disinclination to 

completely cancel dividends, instead of just lowering them. This disinclination was partly 

explained by the amount of years the company had paid dividends previously: the more years a 

company had paid dividends, the more disinclined was it to cancel them completely (DeAngelo 

and DeAngelo 1990). 

We consider the results of DeAngelo and DeAngelo (1990) to support the intuition that predictions 

of financial distress could be useful in dividend predictions. More specifically, we consider the 

results of DeAngelo and DeAngelo (1990) to suggest that the probability of a dividend increase 

would be lower for companies in financial distress, ceteris paribus. With this knowledge, 

examining predictions of financial distress, aiming to include variables based on these predictions, 

seem rational in the development of our dividend increase prediction model. 

After confirming the existence of a link between dividends and financial distress, various models 

for predicting financial distress are considered, all with their respective benefits and shortfalls. The 

focus is on predictions of financial distress mainly based on accounting data, i.e. financial figures 

from the companies in question, as we in our research question want to investigate if accounting 

data can be useful in predicting dividend increases. 

Through the use of ratio analysis, Altman (1968) presented a model for predicting if a company 

will be surviving, failing or placed into limbo between the two. The model accurately predicted 

bankruptcy both for the first year (95 percent correct) and second year (72 percent correct) (Altman 

1968). However, for the third year the model only predicted 48 percent of the companies correctly, 

with even fewer correct predictions for the subsequent years (Altman 1968). 
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Further developing the area of financial distress prediction was Ohlson (1980). The author 

presented probabilistic models for predicting bankruptcy in industrial companies using data from 

the annual reports of 2,163 companies. The model predicting bankruptcy within two years was 

accurate in 92.84 percent of its predictions (Ohlson 1980). These numbers could be compared to 

the 91.15 percent accuracy achieved by a Naïve model predicting every company to survive (Ibid.). 

Furthermore, Ohlson (1980) stated that certain data used in other bankruptcy prediction models 

was available first after the company had already declared bankruptcy, leading to positively biased 

results. 

The model for predicting bankruptcy within two years, according to Ohlson (1980), is: 

𝑌 = 1.13 − 0.478𝑆𝐼𝑍𝐸 + 5.29𝑇𝐿𝑇𝐴 − 0.99𝑊𝐶𝑇𝐴 + 0.062𝐶𝐿𝐶𝐴 − 1.91𝑂𝐸𝑁𝐸𝐺 − 4.62𝑁𝐼𝑇𝐴

− 2.25𝐹𝑈𝑇𝐿 − 0.521𝐼𝑁𝑇𝑊𝑂 + 0.212𝐶𝐻𝐼𝑁 

where: 

The index value Y can be converted into the probability of bankruptcy within two years, where a 

higher value of Y indicates a higher probability of bankruptcy (Ohlson 1980), 

and: 

“1. SIZE = log(total assets/GNP price-level index). The index assumes a base value 

of 100 for 1968. Total assets are as reported in dollars. The index year is as of the 

year prior to the year of the balance sheet date. […] 

2. TLTA = Total liabilities divided by total assets. 

3. WCTA = Working capital divided by total assets. 

4. CLCA = Current liabilities divided by current assets. 

5. OENEG = One if total liabilities exceeds total assets, zero otherwise. 

6. NITA = Net income divided by total assets. 

7. FUTL = Funds provided by operations divided by total liabilities. 

8. INTWO = One if net income was negative for the last two years, zero otherwise. 

9.  CHIN = (NIt − NIt−1)/(|NIt| + |NIt−1|), where NIt is net income for the most recent 

period. […]” 

 (Ohlson 1980, pp. 118-119) 
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Probabilistic models for predicting financial distress were developed also by Skogsvik (1987), 

described more briefly in Skogsvik (1988). Skogsvik (1988) presented separate models predicting 

the probability of financial distress in 1-6 years into the future, respectively. The same models 

were first introduced in Skogsvik (1987). Each separate model provides the probability of financial 

distress in the specific year given survival up until that year (Skogsvik 1988). To achieve the 

findings, Skogsvik (1988) used data from annual reports of 379 industrial companies, whereof 51 

failed. Furthermore, all the companies used in the model by Skogsvik (1988) were Swedish-

registered. Using the model, 83.3 percent of the predictions were correct for the one-year model, 

decreasing to 73.3 percent six years in advance (Skogsvik 1988). Moreover, with the model for 

predictions six years in advance Skogsvik (1988) still predicted over 80 percent of the failing 

companies correctly. 

In the short-term, the Skogsvik (1988) model did not achieve better result than the above-

mentioned Altman (1968) and Ohlson (1980). However, when the prediction horizon was 

extended, the Skogsvik (1988) model outperformed these. 

The original Skogsvik (1987, p. 351) model for predicting business failure in 6 years is: 

𝑉 = −1.39 + 17.47𝑅(1)𝑆𝑘 + 1.00𝑇𝑉𝐿(1) − 0.41𝐿𝐼(3)𝐼 − 1.54𝑆𝐷(1) 

where, in accordance to Skogsvik (1987, p. 347): 

𝑅(1)𝑆𝑘 = (𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑒𝑥𝑝𝑒𝑛𝑠𝑒)/(𝐴𝑙𝑙 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑎𝑛𝑑 𝑑𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑡𝑎𝑥𝑒𝑠) 

𝑇𝑉𝐿(1) = (𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)/(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠) 

𝐿𝐼(3)𝐼 = (𝐶𝑎𝑠ℎ)/(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) 

𝑆𝐷(1) = (𝑂𝑤𝑛𝑒𝑟𝑠′ 𝑒𝑞𝑢𝑖𝑡𝑦)/(𝐴𝑙𝑙 𝑎𝑠𝑠𝑒𝑡𝑠) 

According to Skogsvik (1987, p. 177), average values for the balance sheet items should be used 

in the cases where a variable use data from the balance sheet and the income statement. 

The dependent variable V can subsequently be converted into the probability of failure for a 

company in the 6th year given survival years 1-5, where a higher value of V implies a higher 

probability of failure (Skogsvik 1988). 
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2.4 Trading Strategy 

To test whether our proposed trading strategy earns abnormal returns, we need to calculate what a 

normal return would be during the same time period. Equation 11.22 in the textbook by Berk and 

DeMarzo (2011) gives us the following formula for the expected return through the Capital Asset 

Pricing Model (CAPM): 

𝐸[𝑅𝑖] = 𝑟𝑖 = 𝑟𝑓 + 𝛽𝑖 ∗ (𝐸[𝑅𝑀𝑘𝑡] − 𝑟𝑓) 

(Berk and DeMarzo 2011, p. 359) 

where: 

 𝛽𝑖 ∗ (𝐸[𝑅𝑀𝑘𝑡] − 𝑟𝑓) is “Risk premium for security i” (Berk and DeMarzo 2011, p. 359).  

The authors further define the market portfolio as “[…] the portfolio of all stocks and securities in 

the market.”  (Berk and DeMarzo 2011, p. 357). 

Equation 11.23 in the same textbook provides a definition of the security’s beta: 

𝛽𝑖 =
𝑆𝐷(𝑅𝑖) ∗ 𝐶𝑜𝑟𝑟(𝑅𝑖, 𝑅𝑀𝑘𝑡)

𝑆𝐷(𝑅𝑀𝑘𝑡)
=

𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑀𝑘𝑡)

𝑉𝑎𝑟(𝑅𝑀𝑘𝑡)
 

(Berk and DeMarzo 2011, p. 360) 

Berk and DeMarzo (2011) also describes that the CAPM is based on three main assumptions: 

1. “Investors can buy and sell all securities at competitive market prices (without 

incurring taxes or transactions costs) and can borrow and lend at the risk-free 

interest rate.” (Berk and DeMarzo 2011, p. 357) 

2. “Investors hold only efficient portfolios of traded securities—portfolios that 

yield the maximum expected return for a given level of volatility.” (Berk and 

DeMarzo 2011, p. 357) 

3. “Investors have homogeneous expectations regarding the volatilities, 

correlations, and expected returns of securities.” (Berk and DeMarzo 2011, p. 

358) 

Furthermore, as commented in the textbook by Bodie, Kane and Marcus (2011, p. 322) there 

should be no forecastable deviations from the return forecasted by the CAPM, for any security. 
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The actual outcome may differ from this, yielding either a positive or negative excess return, 

however, such deviations are not possible to know beforehand (Bodie, Kane and Marcus 2011, p. 

322). 

Moreover, the findings of Bajaj and Vijh (1995) also need to be considered when evaluating the 

results from our trading strategy. The authors found that the abnormal returns for announcements 

of cash dividends had a negative correlation to the size of the companies (Ibid.).  
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3. Method 

In this thesis, a simplification necessary for the data gathering is to use the narrower cash dividend 

instead of dividend. Thus, the dividends referred to in relation to our variables and the developed 

dividend increase prediction model will all be cash dividends only. To facilitate the reading 

experience, we frequently refer to dividends in parts of the thesis related to our model. For other 

literature, the dividend commented on is not necessarily a cash dividend but uses the authors 

definition of dividends in the specific case. 

3.1 Dividend Increase Prediction Model 

3.1.1 Data Retrieved 

The majority of the data used for the dividend increase prediction model is retrieved through 

Wharton Research Data Services Compustat (2016a). The data retrieved is for North American 

companies with quarterly information available during at least one quarter in the period of 1990-

2016 on a consolidated level, although in the end only data for 2000-2016 is used for the estimation 

and validation of the model. We retrieve information for companies that are denominated in USD, 

companies that are included in the population source “Domestic” and companies that are not in 

the financial services industry. Both active and inactive companies are included to mitigate the 

survivorship bias. 

The focus on quarterly dividends in our model is somewhat different to the model by Lintner 

(1956) as that model mainly focused on annual dividends, although Lintner’s (1956) sample 

included both companies paying quarterly and annual dividends. 

The variables retrieved, as named by the Fundamentals Quarterly database in the Wharton 

Research Data Services Compustat (2016a), are shown in Appendix A, Table 1. 

In addition, a Gross National Product: Chain-type Price Index, henceforth referred to as GNP 

Index, is retrieved from Federal Reserve Bank of St. Louis (Federal Reserve Bank of St. Louis 

2016). 

3.1.2 Data Used in the Data Set 

We split the observations into one Estimation sample, used to estimate the model, and one 

Validation sample, used to validate the model. The split is performed by dividing the data set into 
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two time periods, the Estimation sample being based on the period 2004-2013 and the Validation 

sample on 2014, 2015 and the first half of 2016. 

For the GNP Index data, we use the index levels from the last day of the previous quarter as the 

level of the current quarter. 

We then prepare the dataset containing the quarterly fundamental variables retrieved from 

Wharton Research Data Services Compustat (2016a). Companies with SIC codes lower than 2000 

and equal to or higher than 4000 are excluded, leaving only companies in the manufacturing 

industry. Using only data for manufacturing companies we consider to be reasonably in line with 

e.g. Lintner (1956), Fama and Babiak (1968), Ohlson (1980) and Skogsvik (1987). The samples 

in these articles mainly consisted of either manufacturing or industrial companies, which 

manufacturing companies arguably is a subset within. For the Estimation sample, we then drop all 

observations for the years 2014-2016, as these are used only to validate the model. Next, all non-

US companies, all companies that do not report on a quarterly basis and all companies where the 

fiscal year is not matching the calendar year are removed from the sample, in order to increase the 

homogeneity and reduce data problems. 

To further increase the homogeneity of our sample, all observations where the total assets are less 

than USD 10 million two quarters prior for the specific company are excluded. The reason we do 

not look at the same quarter is because our model uses data from two previous quarters as its most 

recent source for assets. This is further discussed in Section 3.1.4. Furthermore, all observations 

which lack data in any of the four variables of Cash Dividends, Net Income, Assets or Liabilities 

are omitted, since Cash Dividends is used in several variables in our dividend increase prediction 

model and since we do not expect being able to use observations without data as fundamental as 

the latter three. 

To further avoid data quality issues, where duplicates exist we remove all but one of these duplicate 

observations. Also, we search the data set for occurrences where the same company has 

observations for more than four quarters within the same calendar year. All observations for this 

year are dropped. 

At this point, we remove any data that contain gaps in quarters, keeping the latest available data. 

Using the variable Cash Dividends (DVYi,t), a variable for Quarterly Cash Dividends (DVQi,t) is 
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created. This is done by setting DVQi,t to DVYi,t if the observation is in the first quarter and by 

setting  DVQi,t to DVYi,t subtracted by DVYi,t −1 if the observations are in any of the second, third 

or fourth quarter. As Quarterly Cash Dividends cannot be negative, we drop those which are 

negative according to our data, since they imply data quality issues. After this, we again need to 

remove any data that contain gaps in quarters, once again keeping the latest available data. 

Because of how we calculate the variable DVQi,t, we drop the first observations for every company 

until Q1 is the first observation. This is to minimize the risk of data quality issues in previous 

quarters incorrectly affecting the, for our model crucial, variable DVQi,t. We thereafter check for 

observations with negative numbers of Cash Dividends or of any of the balance sheet items used 

in the model, as this would be another sign of data quality issues. However, none of the checked 

items – ATQ, ACTQ, INVTQ, LTQ, LCTQ, DVY or DVQ – had any negative observations and 

therefore no observation had to be omitted due to this. 

The quarterly fundamentals dataset is then transformed into panel data with Ticker Symbol (TIC) 

being used as group and the combination of year and quarter as the time variable. 

Finally, if input to any of the variables used in our dividend increase prediction model is missing, 

the corresponding observation for the specific company is excluded. Therefore, since one of the 

variables used need at least sixteen historic observations, all companies for which we do not have 

continuous data for at least four years are excluded as well. 

At this point, we would like to point out the possibility that the companies we exclude are different 

from the ones included. For example, it could be that the companies which do not report on a 

quarterly basis are different in some way and that our exclusion of them leads to a failure of 

incorporating this diverseness. This means a limitation to our dividend increase prediction model, 

as it is only applicable to companies with the characteristics of our final sample. 

3.1.3 Statistical Model 

For the dividend increase prediction model, we use a logit model for binary response as described 

in the textbook by Wooldridge (2009, pp. 575-578). The logit model for binary response is chosen 

over a linear probability model due to the results being confined to probabilities varying from 0 to 

100 percent, as described by Wooldridge (2009, pp. 575-576). 
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The rationale behind using a probabilistic model in the first place is to enable the incorporation of 

the results from financial distress prediction models based on financial ratios. Both Lintner (1956) 

and Fama and Babiak (1968) presented models to predict the actual change in dividends in USD. 

However, due to the characteristics of financial ratios, as used in the financial distress prediction 

models of Altman (1968), Ohlson (1980) and Skogsvik (1987), we need to be able to adjust the 

dividends to a common size measure. Due to the inherent problem with using change in dividends 

as a percentage, as it in many cases has the value of 0, and the, to our knowledge, lack of market 

conventions of indexing the size of dividends, a probabilistic model is the preferred choice to us. 

A probabilistic model generating the actual probabilities for an increase greater than a certain 

threshold also has the benefit of being useful in a trading strategy. 

Furthermore, the logit model used is a panel data logit model for binary response with random 

effects. The choice of using a model for panel data is mainly based on the expectations that 

companies to some extent are heterogeneous which, in line with the textbook by Baltagi (2008, p. 

6), could lead to biased results if not accounted for. Moreover, using panel data can reduce 

collinearity, increase efficiency and allow to incorporate information regarding changes for 

separate companies between periods (Baltagi 2008, p. 7). 

The random effects model is chosen over a fixed effects model due to several reasons. To be able 

to calculate the actual probability of a dividend increase, we want to estimate the effects of 

variables that do not fluctuate as time passes, something the standard method for fixed effects 

cannot help us achieve according to a textbook by Paul D. Allison (2009, p. 3). 

Furthermore, while the fixed effects model solely benefits from the information in the variation 

for a specific company, the random effects model allows for information in the variation both 

between companies and for the specific company to be utilized (Allison 2009, p. 3). Therefore, a 

fixed effects estimate yield inaccurate results if the independent variables mainly vary between 

companies, rather than the variable varying in each company as time passes (Allison 2009, p.  3). 

The problems with inaccurate results due to low variance for the independent variables would be 

an issue for us since a large part of our sample consists of companies with low variance, both in 

some of the explanatory variables and in the independent variable. However, with the random 

effects model we could also use the changes that occurred between companies and thus make use 

of the model also for companies that e.g. have never paid dividends previously. This reasoning is 
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also confirmed in the textbook by Wooldridge (2009, p. 493) commenting that the effect of an 

explanatory variable, which does not change as time passes by, could not be estimated by fixed 

effects. 

Given the above reasons we consider us unable to perform a Hausman test to confirm whether or 

not random effects could be used. The Hausman test states the differences between the fixed effects 

model and the random effects model for the coefficients of the independent variables that vary 

over time and test if these differences are significant (Wooldridge 2009, p. 493). However, a fixed 

effects method would remove a considerable portion of our sample, e.g. when the dependent 

variable is constant for all observations for a company. Furthermore, as commented above, the 

fixed effects method would give inaccurate estimates when there is low variance in our 

independent variables for a specific company across time. Considering these issues with sample 

reduction and low variance for some of the independent variables, the Hausman test would 

inevitably lead to a rejection of the random effects model. This, we consider, would be an incorrect 

test as it is mainly due to issues related to variables having low or no variability. These observations 

could arguably be excluded, allowing the fixed effects model to be used. However, we deem these 

observations to be important for the general applicability of our model as they include information 

from the variability between companies used in the random effects model. The general 

applicability could also be questioned as the fixed effects model would not be applicable for 

companies which have never paid dividends. 

Despite the above reasoning with positive impacts of choosing the random effects model, some 

negative consequences with random effects models need to be considered. Mainly, the independent 

variables used in a random effects model should not be correlated with the unobserved effect, 

according to one of the underlying assumptions (Wooldridge 2009, p. 489). This assumption is 

probably not satisfied. The choice between random effects and fixed effects could thus partly be 

considered as a choice between efficiency and bias, in line with Allison (2009, p. 3). By using the 

random effects, we will be able to utilize the information in the variability between companies at 

the cost of introducing bias in the estimates (Allison 2009, p.3). Furthermore, the random effects 

estimate will also include an intercept (Wooldridge 2009, p. 489). The intercept we receive using 

the logit model for panel data with random effects, as found in the STATA Manual (StataCorp 
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n.d.b), is common for all the companies. A common intercept will make the model easier to use 

for new companies, since a new intercept would not need to be estimated for that specific company. 

When deciding which statistical method to use, the possibility of pooled OLS regressions is also 

considered. However, as noted by Wooldridge (2009, p. 493), a pooled OLS regression is typically 

less efficient than a random effects estimation. 

With all the above in mind, we decide to use the logit model for binary response using random 

effects and test the validity of the model in multiple ways to be able to confirm the achieved results. 

These tests are discussed in detail in Section 3.1.5. 

3.1.4 Course of Action: Estimating the Dividend Increase Prediction Model 

For our dividend increase prediction model, we would prefer to use as recent data as possible. 

However, if the model would use data from the most recent quarter for predicting the dividend in 

the current quarter, we expose ourselves to the risk that the dividend announcement would already 

have occurred by the time this data is released. The risk of predicting what is already known in a 

substantial part of the sample makes us unable to justify the use of data this recent. 

Instead, we use data for the quarter prior to the most recent one, as well as information from the 

dividend announcement for the dividend being paid in the most recent quarter. There are probably 

still occurrences where the dividend announcement is presented before the data is available, 

although we expect a large part of the issue to be mitigated by this approach. However, it is 

important to note that this will likely cause a bias in the prediction model. We perform some 

quantification of this issue of dividends being announced prior to all data being available and 

present it in Section 4.3. 

Below follows the course of action for estimating our dividend increase prediction model. It should 

once again be stressed that the model predicts only cash dividends and not total payout, thus share 

repurchases, stock dividends and other forms of payout are not considered. 

Below follows a description of the variables. Unless stated otherwise, the subscript t-1 indicates 

one quarter prior to the quarter which the model predicts the Index Value for. 
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3.1.4.1 Dependent Variable 

Index Value: The dependent variable in our model is an Index Value, which can be converted into 

the probability that the company will increase its cash dividend more than a threshold. This relation 

can be expressed as: 

𝐷𝑉𝑄𝑖,𝑡 − (𝐿𝑎𝑠𝑡 𝑐𝑎𝑠ℎ 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑝𝑎𝑖𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑓𝑜𝑢𝑟 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠)𝑖,𝑡

(𝐿𝑎𝑠𝑡 𝑐𝑎𝑠ℎ 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑝𝑎𝑖𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑓𝑜𝑢𝑟 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠)𝑖,𝑡
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡 

If the company paid no cash dividend within the previous four quarters, any positive DVQi,t  will 

be seen as a dividend increase greater than the threshold. 

For each quarter, the threshold is set to: 

                                                   𝐴𝑛𝑛𝑢𝑎𝑙 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑡  +  3%                                                       (2) 

where: 

                         𝐴𝑛𝑛𝑢𝑎𝑙 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑡 = (𝐺𝑁𝑃 𝐼𝑛𝑑𝑒𝑥𝑡−2 𝐺𝑁𝑃 𝐼𝑛𝑑𝑒𝑥𝑡−6⁄ ) − 1 

As Ohlson (1980) considered the GNP Index to be a good inflation adjustment for his sample of 

industrial companies, we use the same measure as our general inflation measure for manufacturing 

companies. As previously mentioned, the GNP Index is retrieved from Federal Reserve Bank of 

St. Louis (2016). 

Several factors need to be considered when choosing this threshold. First, we want it to cover the 

inflation so that the model implies a real increase and not only a nominal increase. Second, we 

further raise the threshold, in order to avoid predictions of negligible dividend increases. The 

additional, somewhat arbitrarily set, 3 percent avoids this risk. Throughout the thesis, when the 

threshold is mentioned, it refers to Equation 2. 

We create DivInci,t, the variable we want to predict with our model, which captures if a cash 

dividend increase greater than the threshold occurs. DivInci,t is binary, assuming the value of 1 if 

DVQi,t is increased more than the threshold in comparison to the last prior dividend paid (in the 

four quarters prior to DVQi,t). If there has been no cash dividend payment in the four quarters prior 

to DVQi,t, DivInci,t will assume the value of 1 if DVQi,t > 0. In all other scenarios, DivInci,t assumes 

the value of 0. 
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3.1.4.2 Lintner 

As we want to extend the Lintner (1956) model, a modified version of it is included as an 

independent variable in our model. As described in Section 2.2, Equation 1, the original Lintner 

(1956) model is: 

                                                   Δ𝐷𝑖𝑡 = α𝑖 + c𝑖(𝐷𝑖𝑡
∗ − 𝐷𝑖(𝑡−1)) + 𝑢𝑖𝑡                                         (1)  

(Lintner 1956, p. 107) 

Since we are considering quarterly data, all components used in the modified version of the Lintner 

(1956) model are adjusted to use quarterly figures instead. The term Di(t-1) is therefore replaced 

with our variable DVQi,t-1. D
*
it, however, is the product of the net income for the current period 

and the targeted payout ratio in Lintner (1956) and both of these factors pose problems. First, as 

we for all variables use data from two quarters previously, the profits of the current quarter must 

be estimated, by using previous quarters’ Net Income (Loss), NIQ: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒 (𝐿𝑜𝑠𝑠)𝑖,𝑡 = 𝑁𝐼𝑄𝑖,𝑡−4 + (𝑁𝐼𝑄𝑖,𝑡−1 − 𝑁𝐼𝑄𝑖,𝑡−5) 

With regards to the net income prediction, we also consider the income measure in Lambrecht and 

Myers (2012). However, including such an income measure for all observations would be 

unreasonable considering our time constraint. Furthermore, in the context of Lambrecht and 

Myers’ (2012) theoretical model, it is possible that the income measure presented is reasonable – 

however, no empiric evidence has, to our knowledge, shown that this would be more suitable to 

use in practice. Therefore, the above approach is chosen. 

Second, the target payout ratio is different for every company. Lintner (1956) found these ratios 

by interviewing representatives from all of his sample companies. For our thesis and data set, 

however, this method is not feasible due to time constraints, why the target payout ratio is instead 

estimated. The first step in this estimation is to calculate an actual payout ratio: 

𝑃𝑎𝑦𝑜𝑢𝑡 𝑟𝑎𝑡𝑖𝑜𝑖,𝑡 = 𝐷𝑉𝑄𝑖,𝑡 𝑁𝐼𝑄𝑖,𝑡−1⁄  

The previous quarter’s net income, NIQi,t-1, is used since DVQi,t is not likely to be a function of 

NIQi,t, but possibly of NIQi,t-1. The target payout ratio is then calculated as the average of all 

historic payout ratios for each company. Including negative historic payout ratios in this 

calculation, however, would be inadequate, as they would lower the target payout ratio. Since 
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dividends paid out cannot be negative, a negative payout ratio means that the company has paid 

dividends even though the previous quarter’s net income was negative, which rather is a positive 

indication of the company’s target payout ratio. The impact of a negative payout ratio, in 

comparison with a positive one, is not easily interpreted though. Our chosen solution to this 

problem is to assign negative payout ratios a value similar to that of the mean payout ratio for a 

comparable sample. According to FactSet financial data and analytics (2016), the S&P 500 

Dividend Payout Ratio – Trailing Twelve Months was approximately 0.4 for industrial companies 

in September 2016. The S&P 500 Industrial companies may not be entirely homogenous with the 

companies in our sample but it is deemed a reasonable proxy. 

After this adjustment, we calculate the average of every (at this point non-negative) payout ratio 

for each company and assign them this value as the targeted payout ratio. If this targeted payout 

ratio is above 3, however, it is set to 3, to mitigate the effect of outliers. 

In Lintner (1956), the companies’ targeted payout ratios were rarely altered. A targeted payout 

ratio of 3 may therefore seem unreasonably high, but is recalculated each quarter in our model, 

making it a short-term estimation. 

This targeted payout ratio times the expected earnings is then the expected cash dividend. All 

negative expected cash dividends are set to 0, since cash dividends cannot be negative. The 

expected cash dividend, we compare to the most recent cash dividend paid in the previous four 

quarters. This way, companies will have its most recent cash dividend included in the calculation, 

not dependent on whether they pay annually or more frequently. The comparison to a previous 

dividend is necessary for being able to include the variable in our dividend increase prediction 

model, although different from the Lintner (1956) model which predicts a dividend change in 

absolute values. 

Finally, the Lintner variable used in our model is calculated as: 

𝐿𝑖𝑛𝑡𝑛𝑒𝑟𝑖,𝑡 =
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠ℎ 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑖,𝑡

(𝐿𝑎𝑠𝑡 𝑐𝑎𝑠ℎ 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑝𝑎𝑖𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑓𝑜𝑢𝑟 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠)𝑖,𝑡
− 1 

For the cases where there has been no cash dividend payment in the previous four quarter’s, we 

set Lintner to 1 if Expected cash dividend > 0 and to 0 if Expected cash dividend= 0. One final 

adjustment is made for this variable: in the cases where Lintner is greater than 5, it is replaced with 
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the value of 5. Although somewhat arbitrarily, this is deemed a reasonable pragmatic approach to 

avoid extreme cases, where a minimal dividend in a previous period leads to an unreasonably high 

value of Lintner. With this adjustment, the Lintner variable can take on any value equal to or 

between -1 and 5. 

3.1.4.3 PE – Positive Earnings Last Year 

The contribution from Fama & Babiak (1968) to enhance the Lintner (1956) model through a 

lagged variable for earnings is also considered. However, due to earnings between quarters being 

volatile we do not compare the actual change in Net Income (Loss). Instead we calculate a variable 

assuming the value of the number of the previous four quarters in which positive earnings were 

reported. A variable as simple as this have shortfalls, such as being unable to account for 

differences between small and large earnings in every respective quarter as long as they have the 

same sign. We accept this shortfall, since we believe that the variable despite it could serve the 

model well. 

The PE variable can take on any integer value equal to or between 0 and 4. 

3.1.4.4 Lagged Dividend Variables 

To thoroughly take into effect the smoothing behavior of dividends, we include several different 

lagged dividend variables, capturing both changes in dividends and whether or not dividends have 

been paid. In line with the speed of adjustment in Lintner (1956), dividends could be anticipated 

to continue to increase as long as the targeted payout ratio has not been reached, implying that an 

increase in dividends is expected for the current quarter given no decrease in earnings. This would 

indicate that a positive change in dividends for previous periods would also imply a higher 

probability for an increase in the upcoming period. The relation between changes from previous 

periods and the upcoming period was also confirmed by Guttman, Kadan and Kandel (2010), 

showing that 84 percent of companies which adjusted their dividends in a certain year also would 

do so in the following year. However, none of these explicitly considered dividend changes in 

quarterly periods, which is why DivInc1-DivInc4 are included as separate variables, incorporating 

the possibility of dividends mainly being changed on a yearly basis. 

For capturing less recent changes, we include DivIncL1Y and DivIncL2Y. These variables are 

included mainly for the possibility that there are companies in our sample which – as in Lintner 

(1956) – change dividends every second or third year. 
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PaidL1Q-PaidL4Q are included to further take into account the pattern of when cash dividends 

are paid. In 87 percent of dividend-paying U.S. companies, dividends were paid on a quarterly 

basis according to Ferris, Noronha and Unlu (2010). This makes it probable that the majority of 

our sample do as well, but the inclusion of PaidL1Q-PaidL4Q enable the model to better predict 

dividends for companies not paying them quarterly. Finally, the variable HP is included as we not 

only believe it to be relevant whether a company has increased its cash dividend more than the 

threshold in the previous years, but also if it has ever paid a cash dividend or not. Mainly the HP 

variable is included to cover for companies which choose to use other forms of payout, deemed 

necessary as Skinner (2008) found that share repurchases was the leading way companies 

distributed their earnings. 

Again, the variable DVQ is the quarterly cash dividend. 

DivIncX= Cash Dividend Increase Lagged 1, 2, 3 or 4 Quarter(s): The variable DivInc1i,t is 

binary assuming the value of 1 if DVQi,t−1 is increased more than the threshold compared to the 

last prior cash dividend paid (in the four quarters prior to DVQi,t−1). If no cash dividend has been 

paid in the four quarters prior to DVQi,t−1, the variable assumes the value of 1 if DVQi,t−1 > 0. 

For the first four observations available for each company, the variable DivInc1i,t is considered a 

missing value as we do not have the full set of four historic cash dividends to compare to. In all 

other scenarios, DivInc1i,t assumes the value of 0. The variables DivInc2i,t, DivInc3i,t and DivInc4i,t 

are defined as follows: 

𝐷𝑖𝑣𝐼𝑛𝑐2𝑖,𝑡 = 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−1 

𝐷𝑖𝑣𝐼𝑛𝑐3𝑖,𝑡 = 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−2 

𝐷𝑖𝑣𝐼𝑛𝑐4𝑖,𝑡 = 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−3 

DivIncL1Y= Cash Dividend Increases Lagged 1 Year: This variable considers if the company 

has a history of making increases in cash dividends greater than the threshold in a recent, although 

not the most recent, time period. The variable can take on integer values between 0 and 4, 

increasing with 1 for each of the four variables DivInc1i,t-4 to DivInc1i,t-7 being positive, thus 

calculated as: 

 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−4 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−5 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−6 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−7 
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DivIncL2Y= Cash Dividend Increases Lagged 2 Years: This variable is similar to DivIncL1Y, 

but look four additional quarters back in time. Hence, the variable can take on integer values 

between 0 and 4, increasing with 1 for each of the four variables DivInc1i,t-8 to DivInc1i,t-11 being 

positive, thus calculated as: 

𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−8 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−9 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−10 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−11 

DivIncL0Y= Cash Dividend Increases Lagged 0 Years: We also create the variable DivIncL0Y, 

which is not part of our dividend increase prediction model but enables us to draw conclusions 

from the sample. The variable is similar to DivIncL1Y, but looks at the most recent four quarters. 

Hence, the variable can take on integer values between 0 and 4, increasing with 1 for each of the 

four variables DivInc1i,t to DivInc1i,t-3 being positive, thus calculated as: 

𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−1 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−2 + 𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡−3 

PaidLXQ = Paid Lagged 1, 2, 3 or 4 Quarter(s): The variable PaidL1Qi,t is binary assuming the 

value of 1 if DVQt-1 > 0 and 0 otherwise. The variables PaidL2Qi,t, PaidL3Qi,t and PaidL4Qi,t are 

defined as follows: 

𝑃𝑎𝑖𝑑𝐿2𝑄𝑖,𝑡 = 𝑃𝑎𝑖𝑑𝐿1𝑄𝑖,𝑡−1 

𝑃𝑎𝑖𝑑𝐿3𝑄𝑖,𝑡 = 𝑃𝑎𝑖𝑑𝐿1𝑄𝑖,𝑡−2 

𝑃𝑎𝑖𝑑𝐿4𝑄𝑖,𝑡 = 𝑃𝑎𝑖𝑑𝐿1𝑄𝑖,𝑡−3 

HP= Has Paid: This variable is binary, assuming the value of 1 if the company, according to our 

data, at least once has paid cash dividends previously, or 0 if it has not. 

3.1.4.5 Financial Distress 

Predictors for financial distress are included in two separate variables: in a version of the model 

by Ohlson (1980) for near-term financial distress and in a version of the model by Skogsvik (1987) 

for financial distress on the horizon. 

When choosing which of the financial distress prediction models to apply, other models were 

considered as well. The main option was the model by Altman (1968) which, although superior 

prediction results compared to Ohlson (1980), was deemed to be of less use in our probabilistic 

model. The index value in Altman (1968) is not fit to be used as a continuous variable, as there is 
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no clear conclusion that a high value means less risk of bankruptcy than a value just above the cut-

off.  The Ohlson (1980) model and other probabilistic models will thus likely provide better input, 

as we believe that in general, the higher the risk of bankruptcy, the higher the probability that the 

company faces financial distress. Therefore, in line with the findings of DeAngelo and DeAngelo 

(1990), which showed that companies lowered their dividends when facing financial distress, we 

believe that a higher risk of bankruptcy will reduce the probability of a dividend increase. As we 

for a company going bankrupt within two years expect evident signs of financial distress, we 

choose Ohlson’s (1980) model for this prediction horizon. 

A version of Skogsvik (1987) is included as well, to complement the imminent financial distress 

predicted in Ohlson (1980) with a model for predicting financial distress in six years, given 

survival in the previous five years. The six-year prediction horizon in Skogsvik (1987) is chosen 

as this is the longest horizon included and we aim to catch the earliest perceptible signs of financial 

distress. The long-term financial distress prediction could be beneficial both in the same way as 

described for Ohlson (1980) above but also if, as in DeAngelo and DeAngelo (1990), companies 

raise their dividends in the years leading up to financial distress. The Skogsvik (1987) models 

predicting financial distress in years 3, 4 and 5 could have been included as well, but would 

increase the number of variables potentially without benefitting the dividend increase prediction 

accuracy. Therefore, the choice is made to use only the model for financial distress in the 6th year 

by Skogsvik (1987). 

Both financial distress variables can take on any value equal to or between 0 and 1. 

Ohlson: Our data set consists of quarterly data, compared to data from annual reports in Ohlson 

(1980). It follows that in our data set, some variables are calculated by summing its respective 

numbers from the previous four quarters, thus all quarters do not necessarily belong to the same 

calendar year. We believe this makes a good proxy to the original model, but most often does not 

equal the annual figures. Furthermore, not all of the variables used in the original Ohlson (1980) 

model exist in our data set and therefore the model requires additional modification. 
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The Ohlson variable, used in our model to predict the Index Value, is calculated as: 

𝑂ℎ𝑙𝑠𝑜𝑛𝑖,𝑡 = 𝑒^(O-scorei,t)/(1+𝑒^(O-scorei,t)) 

where: 

O-scorei,t= 1.13 − 0.478𝑂𝑆𝐼𝑍𝐸,𝑖,𝑡 + 5.29𝑂𝑇𝐿𝑇𝐴,𝑖,𝑡 − 0.99𝑂𝑊𝐶𝑇𝐴,𝑖,𝑡 + 0.062𝑂𝐶𝐿𝐶𝐴,𝑖,𝑡 −

1.91𝑂𝑂𝐸𝑁𝐸𝐺,𝑖,𝑡 − 4.62𝑂𝑁𝐼𝑇𝐴,𝑖,𝑡 − 2.25𝑂𝐹𝑈𝑇𝐿,𝑖,𝑡 − 0.521𝑂𝐼𝑁𝑇𝑊𝑂,𝑖,𝑡 + 0.212𝑂𝐶𝐻𝐼𝑁,𝑖,𝑡 

and: 

𝑂𝑆𝐼𝑍𝐸,𝑖,𝑡 = ln((𝐴𝑇𝑄𝑖,𝑡−2 ∗ 1,000,000) 𝐺𝑁𝑃 𝐼𝑛𝑑𝑒𝑥𝑖,𝑡−2⁄ ) 

This GNP Index is calculated as described by Ohlson (1980) and as presented in Section 2.3, 

although we use quarterly data and thus our index quarter will be the quarter Qt-6. 

𝑂𝑇𝐿𝑇𝐴,𝑖,𝑡 = 𝐿𝑇𝑄𝑖,𝑡−2 𝐴𝑇𝑄𝑖,𝑡−2⁄  

𝑂𝑊𝐶𝑇𝐴,𝑖,𝑡 = 𝑊𝐶𝐴𝑃𝑄𝑖,𝑡−2 𝐴𝑇𝑄𝑖,𝑡−2⁄  

𝑂𝐶𝐿𝐶𝐴,𝑖,𝑡 = 𝐿𝐶𝑇𝑄𝑖,𝑡−2 𝐴𝐶𝑇𝑄𝑖,𝑡−2⁄  

𝑂𝑂𝐸𝑁𝐸𝐺,𝑖,𝑡 = 1 𝑖𝑓 𝐿𝑇𝑄𝑖,𝑡−2 > 𝐴𝑇𝑄𝑖,𝑡−2. 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑂𝑂𝐸𝑁𝐸𝐺,𝑖,𝑡 = 0 

𝑂𝑁𝐼𝑇𝐴,𝑖,𝑡 = (𝑁𝐼𝑄𝑖,𝑡−2 + 𝑁𝐼𝑄𝑖,𝑡−3 + 𝑁𝐼𝑄𝑖,𝑡−4 + 𝑁𝐼𝑄𝑖,𝑡−5) 𝐴𝑇𝑄𝑖,𝑡−2⁄  

𝑂𝐹𝑈𝑇𝐿,𝑖,𝑡 = (OANCFQ𝑖,𝑡−2 + OANCFQ𝑖,𝑡−3 + OANCFQ𝑖,𝑡−4 + OANCFQ𝑖,𝑡−5) 𝐿𝑇𝑄𝑖,𝑡−2⁄  

𝑂𝐼𝑁𝑇𝑊𝑂,𝑖,𝑡 = 1 𝑖𝑓 𝑁𝐼𝑄𝑖,𝑡−2 < 0 & 𝑁𝐼𝑄𝑖,𝑡−6 < 0. 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑂𝐼𝑁𝑇𝑊𝑂,𝑖,𝑡 = 0 

𝑂𝐶𝐻𝐼𝑁,𝑖,𝑡

=
(𝑁𝐼𝑄𝑖,𝑡−2 + 𝑁𝐼𝑄𝑖,𝑡−3 + 𝑁𝐼𝑄𝑖,𝑡−4 + 𝑁𝐼𝑄𝑖,𝑡−5) − (𝑁𝐼𝑄𝑖,𝑡−6 + 𝑁𝐼𝑄𝑖,𝑡−7 + 𝑁𝐼𝑄𝑖,𝑡−8 + 𝑁𝐼𝑄𝑖,𝑡−9)

|𝑁𝐼𝑄𝑖,𝑡−2 + 𝑁𝐼𝑄𝑖,𝑡−3 + 𝑁𝐼𝑄𝑖,𝑡−4 + 𝑁𝐼𝑄𝑖,𝑡−5|  + |𝑁𝐼𝑄𝑖,𝑡−6 + 𝑁𝐼𝑄𝑖,𝑡−7 + 𝑁𝐼𝑄𝑖,𝑡−8 + 𝑁𝐼𝑄𝑖,𝑡−9|
 

As shown in Appendix A, Table 1, ATQ= Total Assets, LTQ= Total Liabilities, WCAPQ= 

Working Capital, LCTQ= Current Liabilities, ACTQ= Current Assets, NIQ= Net Income (Loss) 

and OANCFQ= Net Cash Flow from Operating Activities. All variables refer to quarterly numbers. 

The resulting probability of bankruptcy is the independent variable Ohlson used in our model. 
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Skogsvik: A slightly modified version of the Skogsvik (1987) model is used, where the variable 

included in our model is the resulting probability of the company failing in the sixth year, given 

survival in the five prior years. The modifications are performed to enable the use of the model for 

quarterly data, considering the data available, and described below. 

In our data set, we have quarterly data, compared to annual data in Skogsvik (1987). Some 

variables are therefore calculated by summing its respective numbers from the previous four 

quarters, which, similar to the discussion above, makes a good proxy but most often does not equal 

the annual figures. Furthermore, not all of the variables above were to be found in our data set, 

why the model requires additional modification. Therefore, our version of the Skogsvik (1987) 

model, the Skogsvik variable, is calculated as follows: 

𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑖,𝑡 = 𝑁𝑜𝑟𝑚𝑎𝑙(−1.39 + 17.47𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑅𝑆,𝑖,𝑡 + 1.00𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑇𝑉𝐿,𝑖,𝑡

− 0.41𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝐿𝐼,𝑖,𝑡 − 1.54𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑆𝐷,𝑖,𝑡) 

where: 

𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑅𝑆,𝑖,𝑡 =
XINTQ𝑖,𝑡−2 + 𝑋𝐼𝑁𝑇𝑄𝑖,𝑡−3 + 𝑋𝐼𝑁𝑇𝑄𝑖,𝑡−4 + 𝑋𝐼𝑁𝑇𝑄𝑖,𝑡−5

(𝐿𝑇𝑄𝑖,𝑡−2 + 𝐿𝑇𝑄𝑖,𝑡−3 + 𝐿𝑇𝑄𝑖,𝑡−4 + 𝐿𝑇𝑄𝑖,𝑡−5 + 𝐿𝑇𝑄𝑖,𝑡−6)/5
 

𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑇𝑉𝐿,𝑖,𝑡 =
(𝐼𝑁𝑉𝑇𝑄𝑖,𝑡−2 + 𝐼𝑁𝑉𝑇𝑄𝑖,𝑡−3 + 𝐼𝑁𝑉𝑇𝑄𝑖,𝑡−4 + 𝐼𝑁𝑉𝑇𝑄𝑖,𝑡−5 + 𝐼𝑁𝑉𝑇𝑄𝑖,𝑡−6)/5

𝑆𝐴𝐿𝐸𝑄𝑖,𝑡−2 + 𝑆𝐴𝐿𝐸𝑄𝑖,𝑡−3 + 𝑆𝐴𝐿𝐸𝑄𝑖,𝑡−4 + 𝑆𝐴𝐿𝐸𝑄𝑖,𝑡−5
 

𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝐿𝐼,𝑖,𝑡 = 𝐶𝐻𝐸𝑄𝑖,𝑡−2 𝐿𝐶𝑇𝑄𝑖,𝑡−2⁄  

𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑆𝐷,𝑖,𝑡 = SEQQ𝑖,𝑡−2 𝐴𝑇𝑄𝑖,𝑡−2⁄  

As shown in Appendix A, Table 1, XINTQ= Interest and Related Expense, LTQ= Total Liabilities, 

INVTQ= Total Inventories, SALEQ= Sales/Turnover (Net), CHEQ= Cash and Short-Term 

Investments, LCTQ= Current Liabilities and SEQQ= Stockholders Equity. All variables refer to 

quarterly numbers. 

We would prefer to make an unbiased estimate when calculating the probability of financial 

distress. To do this, we would however need to know the fraction of companies facing financial 

distress within our sample. This fraction is unfortunately unknown to us, why we cannot perform 

this adjustment. In the regression, the coefficients of the financial distress variables will be 

automatically adjusted which will mitigate this effect. 



   

 

 29  

 

3.1.4.6 Expected Coefficients of the Independent Variables 

For each of the variables specified above, the expected sign of the coefficients and the rationale 

underlying these expectations are presented below. 

Lintner: We expect the Lintner variable to have a positive coefficient, as the higher the variable, 

the higher expected cash dividend increase is predicted by our modified version of the Lintner 

(1956) model. 

PE: We expect PE to have a positive coefficient. This would be in line with the findings of Fama 

and Babiak (1968), although our variable is structured differently, focusing on whether the 

earnings have been positive or not, instead of the actual earnings in USD. 

DivInc1-DivInc4: These variables are more complicated to predict the coefficients of, as the 

literature, to our knowledge, has not touched upon the effect of dividend smoothing for individual 

quarters. The rationale underlying the expectancy of positive signs is mainly connected to the 

speed of adjustment as presented in Lintner (1956). In relation to the speed of adjustment, Lintner 

(1956) argued that dividends are expected to continue to increase as long as the targeted payout 

ratio has not been reached. Therefore, an increase greater than the threshold in the previous period 

could arguably be expected to be followed up with further increases of the same kind. Furthermore, 

the results in Guttman, Kadan and Kandel (2010) showed that 84 percent of the companies which 

adjusted their dividends in a certain year would do so in the following year as well. These results 

could, according to us, also imply that changes should be expected given increases in previous 

quarters. 

The possible expectancy of negative signs we argue would be in line with the findings of Brav et 

al. (2005). The authors showed that 40 percent of the CFOs targeted dividend levels, while only 

28 percent targeted a specific payout ratio (Brav et al. 2005). 

Weighing the different findings, our main expectation is that the coefficients will be positive, as 

supported by Lintner (1956) and Guttman, Kadan and Kandel (2010). However, as both Lintner 

(1956) and Guttman, Kadan and Kandel (2010) mainly focused on annual data it would not be 

surprising to see other signs for DivInc1-DivInc3. DivInc4 is more likely to be positive, as we 

believe it is probable that a company increasing its dividend once a year will do it in the same 

quarter every year. 



   

 

 30  

 

DivIncL1Y and DivIncL2Y: We expect both of these variables to have positive coefficients. This 

is likely the case if many companies in our sample increase their dividends every second or third 

year, as part of Lintner’s (1956) sample did. Companies which continuously increase their 

dividends more frequently than this are also likely to positively affect the coefficient. 

PaidL1Q-PaidL4Q: The signs of these variables’ coefficients will depend much on the fraction 

of companies that pay quarterly dividends. As 87 percent of the dividend-paying U.S. companies 

paid quarterly dividends in Ferris, Noronha and Unlu (2010), it is reasonable to believe a majority 

in our sample do so as well. Skinner (2008) showed a positive relationship between the number of 

years a company had paid dividends and the likelihood of that company paying dividends in the 

future. In line with this finding, a payment in either of the four prior quarters should increase the 

probability of a payment in the predicted quarter. As being expected to pay dividends is a 

prerequisite for being expected to pay cash dividends greater than the previously paid cash 

dividend, we believe that these four variables all will have positive coefficients. 

If many companies in our sample would pay annual dividends, however, it is possible that only 

PaidL4Q will have a positive coefficient. For a company paying only once a year, a payment in 

either of the three previous quarters would imply that there will be no payment in the predicted 

quarter. 

HP: We expect the HP variable to have a positive coefficient. Similar to the argument above, a 

positive coefficient for HP would be in line with Skinner (2008), as being expected to pay 

dividends is a prerequisite for being expected to pay cash dividends greater than the previously 

paid cash dividend. 

Ohlson: We expect the Ohlson variable to have a negative coefficient, as we expect the probability 

of bankruptcy to increase with higher values for the variable incorporating the Ohlson (1980) 

model. A negative coefficient would according to us then be in line with DeAngelo and DeAngelo 

(1990), which showed that companies lowered their dividends swiftly and considerably when 

facing financial distress. 

Skogsvik: We expect the Skogsvik variable to have a negative coefficient, although DeAngelo and 

DeAngelo (1990) showed that companies generally increased their dividends in the years leading 

up to financial distress. The expectancy of a negative coefficient is due to the modified Skogsvik 
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(1987) model used aims to provide a measure of the likelihood of financial distress in the sixth 

year given survival in the first five years and does not consider the likelihood of financial distress 

in the first five years. The Skogsvik variable is therefore rather expected to predict if the company 

is facing long-lasting financial distress. A negative coefficient would consequently, as for the 

Ohlson variable, be in line with that DeAngelo and DeAngelo (1990) found that companies 

lowered their dividends swiftly and considerably when facing financial distress. 

3.1.4.7 The Dividend Increase Prediction Model 

Our proposed cash dividend increase prediction model, given the above defined variables, is: 

𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒𝑖,𝑡

= 𝛽0 + 𝛽1𝐿𝑖𝑛𝑡𝑛𝑒𝑟𝑖,𝑡 + 𝛽2𝑃𝐸𝑖,𝑡 + 𝛽3𝐷𝑖𝑣𝐼𝑛𝑐1𝑖,𝑡 + 𝛽4𝐷𝑖𝑣𝐼𝑛𝑐2𝑖,𝑡 + 𝛽5𝐷𝑖𝑣𝐼𝑛𝑐3𝑖,𝑡

+ 𝛽6𝐷𝑖𝑣𝐼𝑛𝑐4𝑖,𝑡 + 𝛽7𝐷𝑖𝑣𝐼𝑛𝑐𝐿1𝑌𝑖,𝑡 + 𝛽8𝐷𝑖𝑣𝐼𝑛𝑐𝐿2𝑌𝑖,𝑡 + 𝛽9𝑃𝑎𝑖𝑑𝐿1𝑄𝑖,𝑡

+ 𝛽10𝑃𝑎𝑖𝑑𝐿2𝑄𝑖,𝑡 + 𝛽11𝑃𝑎𝑖𝑑𝐿3𝑄𝑖,𝑡 + 𝛽12𝑃𝑎𝑖𝑑𝐿4𝑄𝑖,𝑡 + 𝛽13𝐻𝑃𝑖,𝑡 + 𝛽14𝑂ℎ𝑙𝑠𝑜𝑛𝑖,𝑡

+ 𝛽15𝑆𝑘𝑜𝑔𝑠𝑣𝑖𝑘𝑖,𝑡 + ε𝑖,𝑡 

where the probability of a cash dividend increase greater than the threshold in the current quarter, 

as compared to the last cash dividend paid in the previous four quarters, can be calculated 

according to this formula: 

𝑒𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒

1 + 𝑒𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒
 

It follows that the higher the Index Value, the higher the probability, according to the model.  
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3.1.5 Course of Action: Validating the Dividend Increase Prediction Model 

To validate the result of the dividend increase prediction model, we use multiple ways including 

statistical tests of the estimated model and separate validation samples, as described below. 

3.1.5.1 Statistical Test for the Estimated Dividend Increase Prediction Model 

Multiple statistical tests are performed to test the validity of our dividend increase prediction 

model. First, to see if the model has explanatory value, we calculate a pseudo R-squared measure 

based on McKelvey & Zavoina’s R-squared, as in Enzmann (n.d.). 

Moreover, a quadrature check is performed to test the model. The estimations from the model are 

deemed dependable if the coefficients do not have relative differences above 0.01 percent when 

altering the number of quadrature points, in accordance with the STATA Manual (StataCorp. 

n.d.a). 

Wald tests are also performed, to test that the coefficients for the variables in the estimated model 

are not all equal to zero at the same time, in accordance with the STATA Manual (StataCorp. 

n.d.c). 

Furthermore, we perform a likelihood-ratio test for rho= 0 testing if the variance at the panel-level 

relative to the total variance can significantly be shown to not be equal to zero, in accordance with 

the STATA Manual (StataCorp. n.d.b).  

3.1.5.2 Test of Prediction Accuracy on Estimation Sample 

When the model is estimated, we perform a test of the prediction accuracy on our Estimation 

sample. This methodology is similar to what in the textbook by Wooldridge is called “percent 

correctly predicted” (Wooldridge 2009, p. 581). First, we calculate the total prediction accuracy 

by dividing the number of correctly predicted observations with the total number of predictions. 

Second, we group every prediction into four categories: Correctly predicted increases greater than 

the threshold (Correct positives), Incorrectly predicted increases greater than the threshold (False 

positives), Correctly predicted non-increases greater than the threshold (Correct negatives) and 

Incorrectly predicted non-increases greater than the threshold (False negatives). These categories 

are used to calculate a measure of correctly predicted increases greater than the threshold, defined 

as Correct positives divided by (the sum of Correct positives and False positives). Using this 

sample, we are able to adjust a cut-off value for the prediction, i.e. for which probability of a cash 
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dividend increase greater than the threshold we will maximize the performance of our model. The 

desirable outcome is considered to be the cut-off value maximizing the ratio of Correct positives 

to False positives. This implies that the optimal cut-off value is likely going to be different from 

the most intuitive cut-off of 0.5. 

As discussed in Section 2.1, in Nissim and Ziv (2001) a cut in dividends did not provide 

explanatory value for earnings in the coming years, although an increase did. With that in mind, a 

possible trading strategy could be to only maximize the number of Correct positives, as trading on 

False positives presumably would not result in negative returns. One problem with this strategy is 

that if we trade on many False positives, we increase the risk of including cancellations of 

dividends, which were linked to adverse changes in share prices in Michaely, Thaler and Womack 

(1995). 

It also follows that with the mindset that we are OK with trading on False positives as well, we 

could trade in every single company. In order to test the usefulness of the model, by examining 

whether it is possible to reach abnormal returns through trading on dividend increasing shares, we 

deem it reasonable to maximize the ratio of Correct positives to False positives. 

However, one additional constraint for the cut-off is set regarding the least required number of 

observations to trade on. In order to remove a considerable part of the idiosyncratic risk (Berk and 

DeMarzo 2011, pp. 311-312), we strive to achieve at least 100 observations for our trading 

strategy. As the cut-off is set when maximizing the above-mentioned ratio in the Estimation 

sample, we need to approximate which number of observations that is probable to result in at least 

100 observations in the Validation sample. As the Estimation sample consists of 10 years of data 

and the Validation sample of 2.5 years of data, a reasonable estimate is that there are four times as 

many observations in the Estimation sample. Because of the uncertainty in the estimation, we also 

include a 10 percent margin, thus setting the constraint of least required number of observations 

in the Estimation sample to 440. 

The optimized cut-off is achieved by looping through all the possible probabilities between 0 and 

1 with 0.0002 increments, finding the maximum ratio subject to the constraint of least required 

number of observations. 



   

 

 34  

 

The prediction accuracy test on our Estimation sample is compared to the prediction accuracy test 

of the Naïve model, to give us an estimate on how good our model is. The Naïve model is defined 

as the variable DivInc1, assuming the value of 1 and thus predicting a cash dividend increase 

greater than the threshold if the company performed an increase greater than the threshold in the 

previous quarter. If the company did not perform this increase in the previous quarter, the Naïve 

model assumes the value of 0 and thus no increase greater than the threshold is predicted. As the 

Naïve model is included as an independent variable in our dividend increase prediction model in 

the form of DivInc1, it is crucial that our model outperforms the Naïve model considerably. 

Otherwise, it would imply that the other independent variables do not add much, or possibly even 

destroy, information value. For further evaluation of the model, we also compare its results to those 

received by a model predicting that no increase greater than the threshold will occur. 

3.1.5.3 Validation Sample – Prediction Accuracy and Re-estimated Model 

The final and most important test is to test the model on our Validation sample, which is 

constructed in the same way as the Estimation sample, described in Section 3.1.2. However, the 

prediction results in the Validation sample are modelled for the years 2014-2016. This means that 

the two samples will mainly consist of the same companies, although there will be some 

differences, for example because of newly listed companies. As for the Estimation sample, a 

comparison with the Naïve model is included. The Naïve model is here designed in the same way 

as for the Estimation sample. Also similar to the Estimation sample, we include a comparison with 

a model predicting that no increase greater than the threshold will occur. Furthermore, the cut-off 

value used for the Validation sample is the optimal cut-off as calculated for the Estimation sample. 

In addition to the prediction accuracy test, we also re-estimate the full model for our Validation 

sample. If the model is generally applicable, the result for different time-periods should be in line 

with the estimated model from our Estimation sample. 

3.1.5.4 Separate Estimation for Sub-samples 

The model is also tested on different sub-samples to determine whether or not it is generally 

applicable. More specifically, we re-estimate the model for three sub-samples of industries as well 

as two sub-samples which differ in time and state of the economy. 

The three sub-samples of industries, based on SIC code groups, allow us to put the general 

applicability of the model to the test. In our sample of manufacturing companies, we have twenty 
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different SIC code groups with regards to the first two digits (20-39). Out of these twenty, the three 

SIC code groups with most observations are chosen for comparison. 

Furthermore, there is the possibility of different economic situations affecting the model. In an 

attempt to test the applicability of the model regarding different time periods, we test the model 

both for the period 2004-2007, representing positive economic climate, and for the period 2008-

2012, representing negative economic climate. These results are described in Section 4.1.5. 
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3.2 Trading Strategy 

3.2.1 Data Retrieved 

For the trading strategy, the individual share price data and dividend declaration data is retrieved 

through Wharton Research Data Services Compustat (2016b). Data is only downloaded for 

companies which the dividend increase prediction model suggests us to trade in. The variables 

retrieved, as named by the Security Daily database in the Wharton Research Data Services 

Compustat (2016b), are found in Appendix A, Table 2. 

The Ticker Symbol is used to match this data with our data set for the dividend increase prediction 

model, which is necessary to know which companies to trade in and when. The dates in the 

downloaded data range from January 1, 2010 to September 30, 2016. 

Furthermore, we retrieve the mid-rate for United States Treasury Constant Maturity 10 Years 

(Daily) (Thompson Reuters Datastream 2016b) and the FTSE All World United States Dollar 

index (AWWRLD$) (Thompson Reuters Datastream 2016a), both for the period January 1, 2010 

to September 30, 2016. 

3.2.2 Data Used in the Data Set 

The threshold used in the dividend increase prediction model is beneficial also for our trading 

strategy, as it helps us avoid to invest on predictions of negligible dividend increases. These types 

of increases would presumably convey less information affecting the market price. 

The mid-rate of the United States Treasury Constant Maturity 10 Years (Daily) (FRTCM10) 

(Thompson Reuters Datastream 2016b) functions as a proxy for the risk-free rate. For the risk-free 

rate for each of the periods, the accrued interest rf,t is used, calculated as follows: 

                                         𝑟𝑓,𝑡 = FRTCM10𝑡−1 ∗ (
𝐷𝑎𝑡𝑒𝑡−𝐷𝑎𝑡𝑒𝑡−1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑦𝑒𝑎𝑟
)                          (3) 

In Equations 3 and 4, the subscript t-1 refers to the previous day. 

The FTSE All World United States Dollar index (AWWRLD$) (Thompson Reuters Datastream 

2016a) is used in the following way as a proxy for the market return for each period t, rm,t: 

                                                             𝑟𝑚,𝑡 =
AWWRLD$𝑡

AWWRLD$𝑡−1
− 1                                                    (4) 
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The FTSE All-World index only captures a limited amount of shares and not any other types of 

marketable securities and is therefore not ideal, however, it is deemed to be the best proxy for the 

market return available to us. 

For each of the companies where an increase greater than the threshold is predicted and data is 

available, we estimate a weekly beta, βi. The weekly beta is estimated by regressing the weekly 

stock return against the weekly market return, using a period of 52 weeks prior to the day of the 

purchase of the share of the company. The regression used for this procedure is a standard linear 

OLS regression. The close of the last trading day of the week is used both for the respective 

company’s return and the market return, with the market return calculated as above. The choice of 

using weekly data for estimating the beta and an estimation period of 52 weeks is in line with the 

methodology in Penman, Richardson and Tuna (2007). 

For each of the companies, the daily returns are calculated using the following formula: 

                                  𝑟𝑖,𝑡 = (PRCCD𝑖,𝑡 ∗ 𝑇𝑅𝐹𝐷𝑖,𝑡)/(PRCCD𝑖,𝑡−1 ∗ 𝑇𝑅𝐹𝐷𝑖,𝑡−1) − 1                         (5) 

In Equation 5, the subscript t-1 refers to the previous day. The same methodology applies for the 

weekly returns used for the beta estimation, although the subscript t-1 in this case refers to the 

previous week. 

Next, the daily abnormal return ARi,t for share i and day t are estimated through the use of the 

expected normal return, as achieved through the CAPM: 

𝐴𝑅𝑖,𝑡 = 𝑟𝑖,𝑡 − (𝑟𝑓,𝑡 + 𝛽𝑖(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡))  

Finally, the cumulative abnormal return (CAR) for each of the companies is calculated as the sum 

of the daily abnormal return for the full trading period. This way of calculating the cumulative 

abnormal return is in line with the textbook by Bodie, Kane and Marcus (2011, p. 382). 

3.2.3 Course of Action: Trading Strategy 

For the trading strategy, we focus on Miller and Modigliani’s (1961) finding that information is 

conveyed in dividend changes, rather than the possible effects of wealth transfer. This focus is in 

line with Woolridge (1983), finding that the signalling effect was of larger importance than any 

impact from wealth transfer. 
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In the cases where we predict a cash dividend increase greater than the threshold, our strategy will 

be to purchase the share at the close of the day after we receive the data necessary. This is to reduce 

the amount of noise coming from price reactions linked to the release of the data. To do this we 

want to have at least a full day of trading after the data has been announced before we purchase 

the share. Preferably, we would wait until the day before the dividend announcement, however, 

the problem with this methodology is that announcements could occur any day, without the market 

knowing it in advance. By waiting additional days before purchasing the share we would risk 

losing investment opportunities. This is the rationale behind us investing the day after the 

accounting data is released, despite the associated shortfalls, including noise and drift effects. 

Although Michaely, Thaler and Womack (1995) was able to show a drift effect as a result of 

dividend initiations and cancellations, these results were questioned by Boehme and Sorescu 

(2002), which was only able to reconstruct them in special circumstances. With this in mind, we 

decide to not take any further consideration for drift effects for the trading strategy. 

One day after the dividend announcement, at the close, we sell the investment, thus not exposing 

us to more noise than deemed necessary. It is however possible that we predict a dividend increase 

greater than the threshold in quarters when there will be no dividend payment. Unfortunately, our 

data set do not include the announcement date for these and thus we do not know when it is 

communicated that there will be no dividend payment. For these cases, we wait until the last day 

of the quarter before selling the shares – the investment in a company for which we predicted a 

dividend increase greater than the threshold in a certain quarter is, therefore, at latest sold in the 

last day of the quarter in which the dividend would be paid. It follows that a position cannot be 

held longer than two quarters –  not even in the extreme case, when data for quarter Qt is available 

to us in the first day of quarter Qt+1 and no dividend is announced for quarter Qt+2. The relatively 

short holding period reduces the risk of us incorrectly proclaiming abnormal returns, as Kothari 

and Warner (1997) found to be a common mistake in studies with holding periods over several 

years. 

There could also be companies which we want to trade in, which already will have announced 

their dividends before we receive the data necessary to predict it. We are not able to trade in these 

companies and they will not be included in the trading strategy. 
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We further realize that there are occasions when companies announce dividends more than once 

for a specific quarter. One possible way to handle this could be to sell our investment at the end of 

the quarter, instead of the day after the (first) dividend announcement. However, we consider the 

extra noise which would follow from this method to overweigh the benefits of it. 

To be able to draw further conclusions about the nature of this trading strategy, we also check the 

returns for the Correct positives separately. 

3.2.4 Statistical Test for the Trading Strategy 

To validate the result of the trading strategy, the statistical test of a one-sample t test is used and 

tests the null hypothesis that the mean of the cumulative abnormal returns is equal to zero, in 

accordance with the STATA Manual (StataCorp, n.d.d). 
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4. Results & Analysis 

The results and analysis are divided into three sections. First, we present and analyse the results 

for the developed dividend increase prediction model and the related robustness tests in Section 

4.1. Second, in Section 4.2 we comment on the results related to the trading strategy which is 

performed using the predictions from our dividend increase prediction model. Third, further 

limitations for the study are presented in Section 4.3. 

4.1 Dividend Increase Prediction 

4.1.1 Estimated Model 

The estimated model for dividend increase predictions is summarized in Table 3 below. All of the 

variables have significant coefficients and most have signs in line with our expectations. 

Table 3: Estimated Cash Dividend Increase Prediction Model – Estimation Sample 

Variable Coefficient 

Sign: 

Act/(Exp) Description 

Index Value   

The dependent variable. The Index Value can be 

converted into the probability of a cash dividend 

increase greater than a threshold 

Lintner 0.114*** + / (+) Modified version of the Lintner (1956) model 

PE 0.197*** + / (+) 
Increases with 1 for each positive Net Income in the 

previous four quarters 

DivInc1 −1.041*** − / (+) Binary variables capturing whether the company 

increased its cash dividend more than a threshold in the 

previous 1-4 quarters, each compared to the last cash 

dividend paid in the previous four quarters 

DivInc2 −0.310*** − / (+) 

DivInc3 −0.206** − / (+) 

DivInc4 2.146*** + / (+) 

DivIncL1Y 0.531*** + / (+) Constructed as lagged versions of DivInc1-DivInc4, 

being the sum of DivInc1-DivInc4 as seen one and two 

years previously, respectively 
DivIncL2Y 0.122*** + / (+) 

PaidL1Q 0.837*** + / (+) 

Binary variables capturing whether the company paid 

cash dividends in the previous 1-4 quarters 

PaidL2Q 0.591*** + / (+) 

PaidL3Q −0.283** − / (+) 

PaidL4Q −0.306** − / (+) 

HP 1.213*** + / (+) Binary variable capturing if the company at least once 

has paid cash dividends in the data period 

Ohlson −1.890*** − / (−) Modified version of the Ohlson (1980) model, predicting 

financial distress within two years 

Skogsvik 0.793** + / (−) Modified version of the Skogsvik (1987) model, 

predicting financial distress in six years 

Constant −5.326*** − / (N/A) The intercept 

 Observations 33,312 || Number of companies 1,479 || *** p<0.01, ** p<0.05, * p<0.10  
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The variables which do not have coefficients significant at the 0.01 level are DivInc3, PaidL3Q, 

PaidL4Q and Skogsvik which all have coefficients that are significant at the 0.05 level, as shown 

in Table 3. The pseudo R-squared using McKelvey & Zavoina’s R-squared model, calculated as 

per Enzmann (n.d.), is 46.44 percent. 

The dividend increase prediction model using the coefficients as stated in Table 3 will hereinafter 

be referred to as the Main Model. The estimation results using the Estimation sample are in line 

with our expectations for the Lintner and the PE variables, both having a positive effect on the 

probability for a dividend increase greater than the threshold. 

With regards to the dividend increase variables, we note that DivInc1-DivInc3 all have negative 

coefficients, which differs from our expectations. However, these are the variables which we were 

the least certain of what to expect of, since the previous literature did not provide any strong 

indications, as discussed in Section 3.1.4.6. That DivInc4 is significant and positive is in line both 

with our expectations and with the finding, that an adjustment in a certain year would often be 

followed with an adjustment in the following year as well, by Guttman, Kadan and Kandel (2010). 

We consider the combination of the coefficients for DivInc1-DivInc4 to support our reasoning 

from Section 3.1.4.6, that if a company increases its dividend levels on an annual basis it is likely 

to do so in the same quarter as it did in the previous year. The remaining lagged dividend increase 

variables, DivIncL1Y and DivIncL2Y, both have significant positive coefficients, with the 

coefficient of DivIncL1Y being more than four times larger than the coefficient of DivIncL2Y. The 

positive coefficients are in line with our expectations and with the findings of Lintner (1956) that 

some companies change their dividends less frequently than on an annual basis. These coefficients 

imply that the more often a company increased its dividends in quarters Qt-8-Qt-12 and, even more 

important, in quarters Qt-4-Qt-7, the more likely is it to do so in the future. 

The effects from the variables capturing whether a company has paid cash dividends previously 

are not all in line with expectations, with PaidL1Q and PaidL2Q having positive coefficients, 

whereas PaidL3Q and PaidL4Q have negative coefficients. We cannot find any support in the 

literature confirming why having paid dividends three or four quarters previously would actually 

reduce the probability of a dividend increase greater than the threshold going forward. Neither can 

we attribute it to companies in our sample paying annual dividends, as this would rather have 

positive implications on PaidL4Q in comparison with the other three variables. It is possible that 
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a dividend payment in quarter Qt-3 or quarter Qt-4 increases the probability of a dividend payment 

in quarter Qt, but that this dividend is rarely an increase greater than the threshold. However, this 

is something we can only speculate about. Finally, the HP variable has a positive coefficient, in 

line with our expectations. 

Regarding the financial distress variables, Ohlson has a negative coefficient as expected, implying 

that the more likely a company is to go bankrupt within the coming two years, the less probable is 

it to increase its dividend more than the threshold. The second financial distress variable, Skogsvik, 

surprisingly has a positive coefficient, implying that the larger the probability of financial distress 

six years from now, given survival up to that point, the larger the probability of a dividend increase 

greater than the threshold. Although unexpected, this is in line with DeAngelo and DeAngelo 

(1990), finding that companies generally raised their dividends in the years leading up to financial 

distress. Furthermore, it could be an indication of managements draining money from their 

companies and benefitting the equity owners. This draining could thus provide a link to the area 

of wealth transfers related to dividends, which is discussed in Woolridge (1983) and in Dhillon 

and Johnson (1994). However, we do not have data to draw such a conclusion, which is why we 

merely conclude that researching this further could be interesting. 

4.1.2 Prediction Accuracy Test on Estimation Sample 

For the prediction accuracy test on the estimation sample, the optimal cut-off probability is shown 

in Graph 1 below. Given the constraint of at least 440 predicted increases, the graph shows the 

probability maximizing the ratio of correctly predicted dividend increases greater than the 

threshold (Correct positives) to incorrectly predicted dividend increases greater than the threshold 

(False positives), by the Main Model for the Estimation sample. The optimal cut-off probability is 

58.92 percent, which results in a ratio of 2.54 and a total number of predicted dividend increases 

greater than the threshold (the sum of Correct positives and False positives) of 485. 
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Graph 1: The Ratio of Correct Positives to False Positives and Number of Predicted 

Increases for Different Cut-Off Probabilities 

 

 

With the 58.92 percent probability cut-off, the Naïve model is outperformed by the Main Model 

in the prediction accuracy results for the Estimation sample, as shown in Table 4. Both the number 

of Correct positives and the total number of correct predictions (the sum of Correct positives and 

Correct negatives) are higher for the Main Model than for the Naïve model. Out of the 485 

observations where increases greater than the threshold are predicted, the Main Model is correct 

348 times, an accuracy of 71.8 percent. Considering the total amount of predictions, the Main 

Model is correct in 94.4 percent of its predictions, compared to a total of 93.8 percent which would 

be achieved by simply assuming that no company would increase its cash dividends more than the 

threshold, or 88.6 percent achieved by the Naïve model. 

Table 4: Prediction Accuracy for the Estimation Sample 

  Correct positives Correct negatives False positives False negatives Obs 

Main Model: 348 31,106 137 1,721 33,312 

Naïve Model: 161 29,353 1,890 1,908 33,312 

 

That the Main Model performs well in a prediction accuracy test in the Estimation sample is not 

unexpected due both to the high R-squared received in the model estimation and to the model 

being optimized for this sample. The Naïve Model, defined as the independent variable DivInc1, 

being outperformed indicates that the independent variables besides DivInc1 do add information 

value to the Main Model. 
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4.1.3 Prediction Accuracy Test on Validation Sample 

The prediction accuracy results for the Main Model applied on the Validation sample, using the 

same cut-off of 58.92 percent, is in Table 5 shown to outperform the Naïve model. Furthermore, 

the achieved results are better than those for the Estimation sample. Out of the 161 observations 

in the Validation sample where increases greater than the threshold are predicted, the Main Model 

is correct 123 times – an accuracy of 76.4 percent, or a ratio of 3.24. Considering the total amount 

of predictions, the Main Model is correct in 92.7 percent of its predictions, compared to a total of 

91.5 percent which would be achieved by simply assuming that no company would increase its 

cash dividends more than the threshold, or 84.5 percent achieved by the Naïve model. 

Table 5: Prediction Accuracy for the Validation Sample 

  Correct positives Correct negatives False positives False negatives Obs 

Main Model: 123 6,425 38 475 7,061 

Naïve Model: 43 5,926 537 555 7,061 

 

That the Main Model has better results for the Validation sample than for the Estimation sample 

is interesting, considering it is optimized for the Estimation sample. Since the Naïve model is 

outperformed the results are promising, however, the improvement for the Validation sample is 

not only positive as this also indicates that the model is not generally applicable. A model which 

is generally applicable should instead deliver the same results across different samples. The 

improved results could potentially depend on the changed time period or on the, to some extent, 

different sample of companies. 

4.1.4 Descriptive Statistics 

To describe the sample used in the estimation of the Main Model we first show in Table 6 how the 

99,530 observations of U.S. manufacturers are scaled down to the 33,312 observations used. The 

respective steps are described in more detail in Section 3.1.2. 

More than 53,000 observations are removed as we clean the sample from data quality issues and 

make it more homogenous. Furthermore, as historical data is used when estimating the Main 

Model, almost 13,000 observations required as background information cannot be used in the 

model estimation. More than 33,000 observations remain, which is considered a sufficiently large 
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sample. However, due to potential characteristics in the omitted observations, the model might not 

be generally applicable to all U.S. manufacturers. 

Table 6: Narrowing Down All U.S. Manufacturers to Final Sample 

Description Obs 

All observations of U.S. manufacturers 2004-2013 99,530 

Not reporting on quarterly basis -15 

Split fiscal year -29,443 

Assets below USD 10 million -10,184 

Cash Dividends, Net Income, Assets and/or Liabilities missing -6,329 

Duplicate observations 0 

More than four quarters within the same calendar year -26 

Gaps in data -4,514 

Negative values of Cash Dividends -84 

Gaps in data -769 

First company-observation not first quarter -1,925 

Observations after cleaning of the data 46,241 

Observations required as background data -12,929 

Observations used for estimating the Main Model 33,312 

 

Further descriptive statistics for these 33,312 observations are shown in Table 7. First, DivInc 

shows that in 6.2 percent of the observations, cash dividend increases greater than the threshold 

occur. Since many of the observations are the same in DivInc and DivInc1-DivInc4, it is no surprise 

that these variables have mean values similar to DivInc. By the same reasoning, DivIncL1Y and 

DivIncL2Y should have approximately four times higher mean values, which they have. That both 

these variables have mean values under 0.23, with a maximum possible value of 4, is interesting. 

In Section 4.1.2, we discussed how the positive coefficient of the variables implied that frequent 

historical increases make future increases more probable. The mean value being this low could, 

however, rather strengthen the case that dividends are usually increased once per year. 
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Table 7: Descriptive Statistics for the Estimation Sample 

Variable Obs Mean Median Std. Dev. Min Max 

DivInc 33,312 0.062 0.000 0.241 0.000 1.000 

Lintner 33,312 0.364 0.000 1.086 -1.000 5.000 

PE 33,312 2.653 3.000 1.557 0.000 4.000 

DivInc1 33,312 0.062 0.000 0.240 0.000 1.000 

DivInc2 33,312 0.061 0.000 0.240 0.000 1.000 

DivInc3 33,312 0.060 0.000 0.238 0.000 1.000 

DivInc4 33,312 0.060 0.000 0.237 0.000 1.000 

DivIncL1Y 33,312 0.223 0.000 0.487 0.000 4.000 

DivIncL2Y 33,312 0.212 0.000 0.477 0.000 4.000 

PaidL1Q 33,312 0.331 0.000 0.471 0.000 1.000 

PaidL2Q 33,312 0.329 0.000 0.470 0.000 1.000 

PaidL3Q 33,312 0.327 0.000 0.469 0.000 1.000 

PaidL4Q 33,312 0.326 0.000 0.469 0.000 1.000 

HP 33,312 0.504 1.000 0.500 0.000 1.000 

Ohlson 33,312 0.132 0.022 0.255 0.000 1.000 

Skogsvik 33,312 0.080 0.025 0.153 0.000 1.000 
 

The definition of DivIncL0Y is found in Section 3.1.4.4. Descriptive statistics of this variable, of 

DivIncL1Y and of DivIncL2Y are shown in Table 8. Analysing these statistics, we find that in 15.0 

percent of the cases when DivIncL0Y is larger than 0, DivIncL0Y is also larger than 1. The 

corresponding numbers for DivIncL1Y and DivIncL2Y are 13.7 and 13.8 percent, respectively. 

There is thus a considerable part of the sample for which multiple cash dividend increases greater 

than the threshold occur during a period of four quarters, indicating that the prediction of quarterly 

dividends is relevant. 

Table 8: Descriptive Statistics for the Variables DivIncL0Y, DivIncL1Y and DivIncL2Y 

DivIncL0Y Freq. Percent DivIncL1Y Freq. Percent DivIncL2Y Freq. Percent 

0 26,379 79.19 0 26,855 80.62 0 27,169 81.56 

1 5,898 17.71 1 5,571 16.72 1 5,294 15.89 

2 918 2.76 2 808 2.43 2 782 2.35 

3 105 0.32 3 71 0.21 3 61 0.18 

4 12 0.04 4 7 0.02 4 6 0.02 

Total 33,312 100.00 Total 33,312 100.00 Total 33,312 100.00 

 

In Table 7, we also notice that the mean value of Lintner seems high in comparison to DivInc and 

that a cash dividend increase of on average 36.4 percent are expected for the observations, 
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according to our modified version of the Lintner (1956) model. Furthermore, the binary HP 

variable has a mean value of just above 50 percent, meaning that almost 50 percent of the 

companies used to estimate our Main Model have never paid cash dividends during the period 

covered by our data set. Compared to companies which have paid dividends in the past these 

companies are, in line with Skinner (2008), less probable to use dividends as the means of 

distribution going forward. 

Comparing the descriptive statistics for the Validation sample to the descriptive statistics for the 

Estimation sample, some notable differences are shown in Table 9. The mean of the variable 

DivInc, the actual outcome of cash dividend increases greater than the threshold, is 36 percent 

higher in the Validation sample and could potentially be part in explaining the increased 

performance of the model. Given the increased mean value of DivInc, we are not surprised that the 

HP variable has also increased, with a mean value of 56 percent in the Validation sample. 

Whereas Skogsvik shows an unchanged mean value, Ohlson has a higher mean value than in the 

Estimation sample. We will return to the financial distress variables when comparing the Main 

Model with the re-estimated model for the Validation sample, as well as estimated models for sub-

samples over time and across industries. 

Table 9: Descriptive Statistics for the Validation Sample 

Variable Obs Mean Median Std. Dev. Min Max 

DivInc 7,061 0.085 0.000 0.278 0.000 1.000 

Lintner 7,061 0.311 0.000 1.066 -1.000 5.000 

PE 7,061 2.613 3.000 1.593 0.000 4.000 

DivInc1 7,061 0.082 0.000 0.275 0.000 1.000 

DivInc2 7,061 0.082 0.000 0.274 0.000 1.000 

DivInc3 7,061 0.086 0.000 0.280 0.000 1.000 

DivInc4 7,061 0.084 0.000 0.278 0.000 1.000 

DivIncL1Y 7,061 0.356 0.000 0.609 0.000 4.000 

DivIncL2Y 7,061 0.330 0.000 0.597 0.000 4.000 

PaidL1Q 7,061 0.391 0.000 0.488 0.000 1.000 

PaidL2Q 7,061 0.387 0.000 0.487 0.000 1.000 

PaidL3Q 7,061 0.385 0.000 0.487 0.000 1.000 

PaidL4Q 7,061 0.378 0.000 0.485 0.000 1.000 

HP 7,061 0.564 1.000 0.496 0.000 1.000 

Ohlson 7,061 0.141 0.021 0.274 0.000 1.000 

Skogsvik 7,061 0.080 0.024 0.161 0.000 1.000 
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4.1.5 Robustness Test 

Despite the positive results in the prediction accuracy tests and the significance levels in the panel 

estimation, we find that the general applicability of the model can be questioned. 

We first present the comparison of the results reached using a panel estimation and those reached 

using a pooled estimation. Regarding the use of panel estimation, the likelihood-ratio test for rho=0 

for the estimation of the Main Model shows that we cannot reject the null hypothesis that the 

variance at the panel-level, as a part of the total variance, is equal to zero even at the 0.10 level, in 

accordance with the STATA Manual (StataCorp. n.d.b). Therefore, the outcome would not have 

differed considerably if performing a pooled estimation rather than a panel estimation (Ibid.). The 

output using a pooled estimation confirms that the differences are small, as they are visible only 

in the fifth decimal places and onwards. The pooled estimation results are shown in Appendix B, 

Table 10. 

The Wald test performed on the Main Model estimation results, shown in Appendix B, Table 11, 

confirms that the null hypothesis of all coefficients being equal to zero at the same time can be 

rejected at less than the 0.01 level. Further Wald tests performed for the financial distress variables 

together (Appendix B, Table 12) and the dividend smoothing variables (Appendix B, Table 13) 

both confirm that the null hypothesis can be rejected at less than the 0.01 level. To a certain extent, 

this confirms the validity both for the full model and for the two separate areas of financial distress 

and dividend smoothing. The results from the quadrature check (Appendix B, Table 14) show that 

the relative differences for some of the coefficients are above 0.01 percent and thus do not satisfy 

the general guidelines on quadrature checks as per the STATA Manual (StataCorp. n.d.a). 

However, given the small magnitude of the relative differences exceeding 0.01 percent, in 

combination with the promising result from the comparison between the panel estimation and the 

pooled estimation, we consider the results using the fitted model to be reliable. 

The estimation results for the re-estimated model using the Validation sample achieves a 

McKelvey & Zavoina’s pseudo R-squared (Enzmann n.d.) of 46.39 percent. This re-estimated 

model is, together with comparisons to the Main Model, shown in Table 15. 
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Table 15: Comparison between Estimation and Validation Sample Regressions 

  Estimation Validation Actual Difference Relative Difference Same Sign 

Lintner 0.114*** 0.094*** 0.020 -0.173 Yes 

PE 0.197*** 0.277*** -0.080 0.406 Yes 

DivInc1 −1.041*** -1.474*** 0.433 0.416 Yes 

DivInc2 −0.310*** -0.828*** 0.518 1.671 Yes 

DivInc3 −0.206** -0.348** 0.142 0.689 Yes 

DivInc4 2.146*** 2.402*** -0.256 0.119 Yes 

DivIncL1Y 0.531*** 0.566*** -0.035 0.066 Yes 

DivIncL2Y 0.122*** 0.246*** -0.124 1.016 Yes 

PaidL1Q 0.837*** 0.917*** -0.080 0.096 Yes 

PaidL2Q 0.591*** 1.001*** -0.410 0.694 Yes 

PaidL3Q −0.283** -0.885** 0.602 2.127 Yes 

PaidL4Q −0.306** -0.058 -0.248 -0.810 Yes 

HP 1.213*** 0.682*** 0.531 -0.438 Yes 

Ohlson −1.890*** -0.949 -0.941 -0.498 Yes 

Skogsvik 0.793** 1.245* -0.452 0.570 Yes 

Constant −5.326*** -5.267*** -0.059 -0.011 Yes 

      

Observations in Estimation sample: 33,312. Number of companies in Estimation sample: 1,479 

Observations in Validation sample: 7,061. Number of companies in Validation sample: 892 

*** p<0.01, ** p<0.05, * p<0.10 

 

The relative differences shown in Table 15 are considerable for some of the coefficients, the largest 

being 213 percent for PaidL3Q. All of the coefficients do, however, have the same sign and thus 

impact the probability of an increase in the same direction, although with a different magnitude. 

That the Estimation sample and the Validation sample are consistent with regards to the sign of 

the variables provides some indication of general applicability, however, the magnitude of the 

changes does not speak for this general applicability. 

Furthermore, not all of the variables are significant in the estimation results for the re-estimated 

model on the Validation sample, with Ohlson and PaidL4Q not being significant at the 0.10 level. 

We therefore test the importance of the financial distress variables also for this re-estimated model. 

As is shown in Appendix B, Table 16, we cannot reject the null hypothesis that the coefficients for 

both Skogsvik and Ohlson are equal to zero, even at the 0.10 level. That this null hypothesis cannot 

be rejected, in combination with the Ohlson variable not being significant, could indicate that 

financial distress predictions after all do not contribute to the field of dividend predictions, as was 

indicated by the Main Model. If any of the coefficients for Skogsvik and Ohlson would have been 
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considerably smaller in the Validation sample, arguments could potentially be made that the non-

significance is due to a positive economic climate in the validation period 2014-2016, leading to 

the coefficient(s) being small and non-significant. 

The Ohlson coefficient in the re-estimated model on the Validation sample is about half compared 

to in the Main Model, while Skogsvik’s coefficient is increased by 57 percent.  It is not necessarily 

conflicting that the variables diverge, as they have different prediction horizons. It does, however, 

open up for the possibility that the changes in the Ohlson variable could be due to the economic 

climate. However, as noted in Section 4.1.4, the mean value of the Ohlson variable actually 

increases in the Validation sample. Therefore, even if the economic climate can explain the 

decreased significance level of the coefficient, including the Ohlson variable might harm the 

general applicability of the model across time, as the values of the variable did not decrease 

simultaneously. An additional important consideration will be the other re-estimations of the 

model, performed for separate sub-samples of industries. 

The results when re-estimating the model for different sub-samples further support that the model 

is not generally applicable, mainly with relation to sub-industries. The number of observations for 

each sub-industry in our sample is shown in Appendix B, Table 17. Chosen for comparison are the 

three largest subindustries, with SIC code 28, SIC code 36 and SIC code 38. 

In the comparison to the three sub-industries in Table 18, it is shown that several of our 

independent variables are not significant even at the 0.10 level. The coefficients do not only vary 

in magnitude but also with regards to the sign, the most extreme example being the Skogsvik 

variable which’s coefficient varies between 1.13 to -5.62, with the latter being significant at the 

0.05 level. These variations in sign and magnitude provide clear reasons to believe that the model, 

and the financial distress variables in particular, is not consistent over the different sub-industries. 

Such inconsistencies in turn imply that there could be good reason to consider a narrower definition 

of industries when estimating a dividend increase prediction model. 
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Table 18: Comparison between the Estimation of the Main Model and the Re-Estimations 

for the Sub-Samples of Industries 

Variable Main SIC 28 SIC 36 SIC 38 

     

Lintner 0.114*** 0.085** 0.041 0.047 

PE 0.197*** 0.183*** 0.156* 0.039 

DivInc1 -1.041*** -1.139*** -0.778*** -1.343*** 

DivInc2 -0.310*** -0.332* 0.004 -0.653** 

DivInc3 -0.206** -0.495** -0.895*** -0.501* 

DivInc4 2.146*** 2.072*** 1.982*** 2.511*** 

DivIncL1Y 0.531*** 0.696*** 0.301** 0.362** 

DivIncL2Y 0.122*** 0.250** 0.227* 0.280* 

PaidL1Q 0.837*** 0.264 2.122*** 1.710*** 

PaidL2Q 0.591*** 1.197*** -0.116 -0.360 

PaidL3Q -0.283** -0.142 0.700 0.116 

PaidL4Q -0.306** -0.707** -1.071** -0.272 

HP 1.213*** 1.887*** 0.746** 2.017*** 

Ohlson -1.890*** -1.756** -0.818 -5.784* 

Skogsvik 0.793** 0.677 1.134 -5.618** 

Constant -5.326*** -5.752*** -5.280*** -5.520*** 

     

Observations 33,312 7,537 5,369 4,573 

Number of companies 1,479 378 238 197 

*** p<0.01, ** p<0.05, * p<0.10 

 

A comparison with different time periods is shown in Table 19. This comparison shows that the 

estimated model also changes over time, with the Ohlson coefficient being smaller and both 

Ohlson and Skogsvik being less significant in the positive economic period of 2004-2007. This is 

in line with the previous finding for the re-estimated model for the Validation sample and could 

imply that the financial distress variables only are applicable in times of economic downturn. For 

the majority of our variables though, the differences between sub-industries are of larger 

magnitude than the differences between time periods. The differences between time periods are 

also smaller than those seen when comparing the Main Model and the re-estimated model for the 

Validation sample. 
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Table 19: Comparison between the Estimation of the Main Model and the Re-Estimations 

for the Sub-Samples of Different Time Periods 

Variable Main 2004-2007 2008-2013  

     

Lintner 0.114*** 0.126*** 0.110***  

PE 0.197*** 0.207*** 0.198***  

DivInc1 -1.041*** -1.180*** -0.971***  

DivInc2 -0.310*** -0.389*** -0.279***  

DivInc3 -0.206** -0.260* -0.187*  

DivInc4 2.146*** 2.329*** 2.032***  

DivIncL1Y 0.531*** 0.563*** 0.515***  

DivIncL2Y 0.122*** 0.094 0.139**  

PaidL1Q 0.837*** 0.509** 1.029***  

PaidL2Q 0.591*** 1.085*** 0.346*  

PaidL3Q -0.283** -0.485** -0.200  

PaidL4Q -0.306** -0.215 -0.348**  

HP 1.213*** 1.257*** 1.163***  

Ohlson -1.890*** -1.313* -2.207***  

Skogsvik 0.793** 0.799 0.818*  

Constant -5.326*** -5.595*** -5.192***  

     

Observations 33,312 13,420 19,892  

Number of companies 1,479 1,116 1,195  

*** p<0.01, ** p<0.05, * p<0.10 

 

Last, as shown in Table 18 and Table 19, PaidL3Q and PaidL4Q are non-significant in four and 

two of the five sub-samples, respectively. This could indicate that the significant results in the 

estimation of the Main Model are coincidental, but considering the size of the sample such a 

conclusion seems far-fetched. Another possibility is that multicollinearity makes the 

interpretations of separate coefficients difficult. We are, however, forced to conclude that we 

cannot satisfactorily explain the coefficients of PaidL3Q and PaidL4Q, neither regarding their 

non-significance nor their sign. 
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4.2 Trading Strategy 

4.2.1 Achieved Cumulative Abnormal Returns 

The trading strategy is performed for a total of 142 observations. As shown in Table 20, together 

these observations generate a cumulative abnormal return of 150.9 percent over the full period of 

two and a half year in the Validation sample. Furthermore, the performed one-sample t-test in 

Table 21 shows that we can successfully reject the hypothesis that the mean of the cumulative 

abnormal returns for the 142 observations does not differ from 0, on the 0.10 level. 

Table 20:  Summary Statistics of the Cumulative Abnormal Returns 

 Obs Mean Max Min p5 p50 p95 Total 

CAR 142 0.01062 0.23342 -0.39036 -0.15162 0.01359 0.16432 1.50858 

 

Table 21: One-Sample T-test of the Cumulative Abnormal Returns 

  Obs Mean Std. Err.  Std. Dev. [95% Conf. Interval] 

CAR 142 0.01062 0.00821 0.09783 -0.00561 0.02685 

mean = mean(CAR)   t = 1.2941 

Ho: mean = 0   degrees of freedom = 141 

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0 

Pr(T < t) = 0.9011 Pr(T > t) = 0.1977 Pr(T > t) = 0.0989 

 

Out of the 161 observations where a cash dividend increase greater than the threshold is predicted, 

7 observations are removed due to data quality issues such as missing announcement dates data or 

missing price data. An additional 12 observations are removed due to the dividends already having 

been announced when the data used to trade on is available to us. This leaves us 142 observations 

to trade on. 

The positive abnormal returns are in line with that information, in accordance to Miller and 

Modigliani (1961), is being conveyed in dividends. However, from a CAPM standpoint, as 

commented in the textbook by Bodie, Kane and Marcus (2011, p. 322), there should be no 

predicable deviations from the return predicted by the CAPM, for any security. The abnormal 

returns of 150.9 percent achieved could indicate that deviations can be forecasted, but as it is only 

statistically significant at the 0.10 level, we cannot make such a claim. Although no strong claim 

can be made, the results do encourage future research within this area. 
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Considering only the Correct positives, 106 tradeable observations remain. These observations 

generate a cumulative abnormal return of 110.4 percent, shown in Table 22. It is surprising that 

the abnormal returns are lower for the Correct positives on a standalone basis than when we are 

trading on the Correct positives as well as the False positives. Furthermore, for the sample of only 

Correct positives, the hypothesis that the mean of the cumulative abnormal returns does not differ 

from 0 cannot be rejected even at the 0.10 level as shown in Table 23. 

Table 22: Summary Statistics of the Cumulative Abnormal Returns – Only Correct Positives  

  Obs Mean Max Min p5 p50 p95 Total 

CAR 106 0.01041 0.23342 -0.39036 -0.14929 0.01462 0.15497 1.10356 

 

Table 23: One-Sample T-test of the Cumulative Abnormal Returns – Only Correct Positives  

  Obs Mean Std. Err.  Std. Dev. [95% Conf. Interval] 

CAR 106 0.01041 0.00909 0.09357 -0.00761 0.02843 

mean = mean(CAR)   t = 1.1455 

Ho: mean = 0   degrees of freedom = 105 

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0 

Pr(T < t) = 0.8727 Pr(T > t) = 0.2546 Pr(T > t) = 0.1273 

 

That the 36 observations of False positives yield positive cumulative abnormal returns could justify 

future research within the area. These observations are either cash dividend omissions, decreases, 

increases smaller than the threshold or unchanged cash dividends. The sample is unfortunately too 

small to draw any real conclusions from. However, since the abnormal returns actually decrease 

when excluding the False positives, an alternative strategy relating to dividend announcements 

could be to choose a lower probability cut-off. 

4.2.2 Discussion of the Abnormal Returns 

The abnormal returns reached could be dependent on an increased risk, which we have not been 

able to take into consideration. For example, as discussed in Section 2.4, Bajaj and Vijh (1995) 

found that abnormal returns for announcements of cash dividends had a negative correlation to the 

size of the companies. It is possible that we have taken on the higher risk associated with smaller 

companies and as a result achieve these abnormal returns. 

Parts of the abnormal returns achieved could possibly also be explained by the assumption of no 

transaction costs, used in line with the CAPM, as in Berk and DeMarzo (2011, p. 357).  
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4.3 Further Limitations 

In addition to the above-mentioned limitations in the Section 4.1.5 and Section 4.2.2, more general 

limitations to this paper are presented below. 

A considerable limitation of this study is that it only considers cash dividend increases greater than 

a threshold. It thus ignores all other kinds of payout, including smaller increases of cash dividends. 

Although a large sample is used in the thesis, one limitation is that we due to data quality issues, 

requirement of sixteen consecutive quarters of data and other considerations are not able to include 

all observations for the target industry of U.S. manufacturers. This could inevitably cause biased 

results, if the observations removed have certain characteristics. A further limitation is the 

selection of U.S. manufacturers as the model is only tested for this industry and jurisdiction. 

In relation to the trading strategy, no information of the expected dividends has been included, 

which could have affected the results. Also, the dividends predicted are the total cash dividends 

paid by the company, which is a limitation since the relative increase for total cash dividends is 

not necessarily the same as the relative increase for the cash dividend per share. 

In the dividend increase prediction model we use the most recent dividend announcement and data 

reported for the quarter prior to the most recent quarter to mitigate the risk of predicting cash 

dividends which have already been announced. However, as can be seen from the results in Section 

4.2.1, a considerable part of all observations in the trading sample had to be omitted because 

dividends had already been announced. After excluding seven observations due to data quality 

issues, 154 observations we wanted to trade on remained. In 12 of these 154 observations, almost 

8 percent, the dividend had already been announced when the data needed was available to us. If 

this fraction is applicable for the full sample it can imply that our results seem better than they 

actually are. If we would instead have used the data reported in the most recent quarter, the 

dividend would have been announced before the data was available in 99 of the observations, or 

64 percent. We therefore seem to have mitigated a large part of the issue, although not to the degree 

we had initially hoped for. 

We are also unable to ensure the quality of all the observations in the data set given its size, 

therefore it is possible that data quality issues affect the results of this paper. This is partly 

mitigated as the data used is from a well-known and trusted vendor.  
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5. Conclusions 

This thesis shows that quarterly dividend increases can be predicted accurately with the use of 

accounting data, financial distress predictions and smoothing considerations. It also indicates that 

abnormal returns can be achieved using dividend predictions. These conclusions are reached 

through the development of a dividend increase prediction model. However, the general 

applicability of such a model could be questioned, mainly with regards to different sub-industries. 

The thesis contributes to the dividend prediction area in general and to dividend prediction based 

on accounting data, financial distress predictions and smoothing in particular. 

We conclude that existing dividend prediction models, such as Lintner (1956), could benefit from 

including differentiated smoothing variables for quarterly and yearly smoothing effects if used to 

predict quarterly dividends. The importance of including smoothing behaviour overall is shown, 

which is in line with Brav, Graham, Harvey and Michaely (2005), but we also show the importance 

of accounting for both smoothing between years and separately between quarters. The smoothing 

between quarters tends to be focused on maintaining a stable dividend, however, 15 percent of the 

companies in our sample which increase cash dividends more than the threshold at least once in a 

period of four quarters does so at least one additional time in the same period. 

Although initially promising, the results for the financial distress variables in the context of our 

dividend increase prediction model are inconsistent over time and, to an even larger extent, across 

sub-samples of industries. Including financial distress variables could therefore harm the general 

applicability of the model. In light of the positive initial results, we consider the area of financial 

distress predictions as part of dividend prediction a topic for further research, although some 

adaption to consider the prevailing economic climate is likely to be necessary. 

The significant abnormal returns achieved using a trading strategy for the dividend increase 

predictions could imply that, in line with Miller and Modigliani (1961), information is conveyed 

in dividend changes. These results are contradictory to that there should be no predictable 

deviations from the return predicted by the CAPM, as commented by Bodie, Kane and Marcus 

(2011, p. 322). The low level of significance together with the positive abnormal returns for the 

False positives on a stand-alone basis would, however, make any conclusions based on these 

findings far-fetched. The results do, nevertheless, justify future research within the combined area 

of dividend signalling and dividend prediction.  
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5.1 Future Research 

In line with the limitations found in this study, future research focusing on dividend prediction for 

smaller sections of industries would be beneficial, as our results indicate that the model is not 

generally applicable across sub-industries. For future considerations of financial distress 

predictions as a part of dividend predictions, some adaption of the approach presented in this thesis 

is necessary, mainly to include considerations for the state of the economy. 

As noted for our trading strategy, seemingly our approach for maximizing the ratio of Correct 

positives to False positives is not optimal, given that False positives generated positive abnormal 

returns. With this in mind, an interesting area to conduct further studies into would be to adjust the 

cut-off, allowing for a larger number of both Correct positives and False positives. 

The positive coefficient of the variable Skogsvik, based on the model for financial distress 

prediction in Skogsvik (1987), could have implications for managements of companies trying to 

drain money from their companies, however the data for such a conclusion is not available in this 

thesis. This potential draining could be connected to the area of wealth transfer as discussed by 

Woolridge (1983) as well as Dhillon and Johnson (1994) and be an interesting topic for future 

research. 

Furthermore, this study has been conducted on U.S. manufacturing companies, which is only a 

small subset of all the dividend paying companies available. Considering other jurisdictions as 

well as other industry groups could be beneficial for future research. 

The trading model included in this thesis is relatively simple. Future research could benefit by 

extending it to also incorporate the area of drift effects e.g. in line with the findings of Michaely, 

Thaler and Womack (1995) which showed a drift effect resulting from dividend initiations 

(cancellations). 
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Appendix A 

Table 1: Data Retrieved from Wharton Research Data Services Compustat Fundamentals 

Quarterly 

The table shows the retrieved variables from Wharton Research Data Services Compustat (2016a), 

retrieved October 31, 2016, available at: Compustat - Capital IQ/ Compustat Monthly Updates/ 

North America/ Fundamentals Quarterly. 

The code and the name are both as termed by the Fundamentals Quarterly database. The variables 

ACTQ and below in the table all refer to quarterly numbers. 

Code Name 

TIC Ticker Symbol 

SIC Standard Industry Classification Code 

DATACQTR Calendar Data Year and Quarter  

DATAFQTR Fiscal Data Year and Quarter  

FQTR Fiscal Quarter 

FYEARQ Fiscal Year  

RP Reporting Periodicity  

ACTQ Current Assets – Total 

ATQ Assets – Total  

CHEQ Cash and Short-Term Investments  

DVY Cash Dividends  

INVTQ Inventories – Total  

LCTQ Current Liabilities – Total  

LTQ Liabilities – Total  

NIQ Net Income (Loss) 

OANCFY Operating Activities – Net Cash Flow  

SALEQ Sales/Turnover (Net) 

SEQQ Stockholders Equity > Parent > Index Fundamental > Quarterly  

WCAPQ Working Capital (Balance Sheet)  

XINTQ Interest and Related Expense – Total  
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Table 2: Data Retrieved from Wharton Research Data Services Compustat Security Daily 

The table shows the retrieved variables from Wharton Research Data Services Compustat (2016b), 

retrieved November 14, 2016, available at: Compustat - Capital IQ/ Compustat Monthly Updates/ 

North America/ Security Daily. 

The code and the name are both as termed by the Security Daily database. 

Code Name 

TIC Ticker Symbol 

ANNCDATE Dividend Declaration Date  

CSHOC Shares Outstanding  

DIVD Cash Dividends – Daily 

DIVDPAYDATE Cash Dividends – Daily Payment Date  

PAYDATE Dividend Payment Date  

PRCCD Price – Close – Daily 

RECORDDATE Dividend Record Date 

TRFD Daily Total Return Factor  
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Appendix B 

Table 10: Regression Output using Pooled Estimator 

The table shows the regression output for the Estimation sample using pooled estimator rather than 

panel estimator. The coefficients are to a large extent similar, although variations in the fifth 

decimal point and onwards do exist, compared to the regression output using panel estimator. As 

the table includes three decimal points the only difference visible is for PaidL3Q, due to rounding. 

PaidL3Q to the fifth decimal point using the panel estimation was -2.83495 compared to -2.83502 

in the pooled estimation.  

VARIABLE DivInc 

Lintner 0.114*** 

PE 0.197*** 

DivInc1 -1.041*** 

DivInc2 -0.310*** 

DivInc3 -0.206** 

DivInc4 2.146*** 

DivIncL1Y 0.531*** 

DivIncL2Y 0.122*** 

PaidL1Q 0.837*** 

PaidL2Q 0.591*** 

PaidL3Q -0.284** 

PaidL4Q -0.306** 

HP 1.213*** 

Ohlson -1.890*** 

Skogsvik 0.793** 

Constant -5.326*** 

  

Observations 33,312 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.10  
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Table 11: Wald Test – Estimation Sample 

The table shows the result from the Wald test performed on the estimation of our dividend increase 

prediction model for the Estimation sample, testing the null hypothesis that all the coefficients at 

the same time are equal to zero, in accordance with the STATA Manual (StataCorp. n.d.c). The 

null hypotheses can be rejected at less than the 0.01 level. 

Wald Test: 

(1) [DivInc]Lintner = 0 

(2) [DivInc]PE = 0 

(3) [DivInc]DivInc1 = 0 

(4) [DivInc]DivInc2 = 0 

(5) [DivInc]DivInc3 = 0 

(6) [DivInc]DivInc4 = 0 

(7) [DivInc]DivIncL1Y = 0 

(8) [DivInc]DivIncL2Y = 0 

(9) [DivInc]PaidL1Q = 0 

(10) [DivInc]PaidL2Q = 0 

(11) [DivInc]PaidL3Q = 0 

(12) [DivInc]PaidL4Q = 0 

(13) [DivInc]HP = 0 

(14) [DivInc]Ohlson = 0 

(15) [DivInc]Skogsvik = 0 

chi2( 15) = 3287.81 

Prob > chi2 = 0.0000 

 

 

Table 12: Wald Test – Estimation Sample, Financial Distress 

The table shows the result from the Wald test performed on the estimation of our dividend increase 

prediction model for the Estimation sample for the two financial distress variables, testing the null 

hypothesis that both the coefficients at the same time are equal to zero, in accordance with the 

STATA Manual (StataCorp. n.d.c). The null hypotheses can be rejected at less than the 0.01 level. 

Wald Test: 

(1) [DivInc]Ohlson = 0 

(2) [DivInc]Skogsvik = 0 

chi2(2) = 18.27 

Prob > chi2 = 0.0001 
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Table 13: Wald Test – Estimation Sample, Dividend Smoothing Variables 

The table shows the result from the Wald test performed on the estimation of our dividend increase 

prediction model for the Estimation sample for the dividend smoothing variables, testing the null 

hypothesis that all of the coefficients at the same time are equal to zero, in accordance with the 

STATA Manual (StataCorp. n.d.c). The null hypotheses can be rejected at less than the 0.01 level. 

Wald Test: 

(1) [DivInc]DivInc1 = 0 

(2) [DivInc]DivInc2 = 0 

(3) [DivInc]DivInc3 = 0 

(4) [DivInc]DivInc4 = 0 

(5) [DivInc]DivIncL1Y = 0 

(6) [DivInc]DivIncL2Y = 0 

(7) [DivInc]PaidL1Q = 0 

(8) [DivInc]PaidL2Q = 0 

(9) [DivInc]PaidL3Q = 0 

(10) [DivInc]PaidL4Q = 0 

chi2( 10) = 1975.57 

Prob > chi2 = 0.0000 
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Table 14: Quadrature Check of the Estimation of the Main Model 

The table shows the outcome of the log likelihood, the coefficients of the independent variables 

and the constant from our main regression model given different number of quadrature points. The 

estimations are deemed dependable if the coefficients do not have relative differences above 0.01 

percent when altering the number of quadrature points, in accordance with the STATA Manual 

(StataCorp. n.d.a). Although marginally, the coefficients of the variables DivInc2, DivInc3, 

DivIncL2Y and PaidL3Q have relative differences larger than this. 

  Fitted Comparison Comparison   

  12 points 8 points 16 points   

Log likelihood -5367.727 -5367.7264 -5367.7264   

    1.14E-07 -1.14E-07 Relative difference 

Lintner 0.11418094 0.11416985 0.11417352   

    9.71E-05 -6.50E-05 Relative difference 

PE 0.19686021 0.19685332 0.1968556   

    3.50E-05 -2.34E-05 Relative difference 

DivInc1 -1.0407437 -1.0406609 -1.0406883   

    7.96E-05 -5.32E-05 Relative difference 

DivInc2 -0.3102496 -0.31016389 -0.31019224   

    2.76E-04 -1.85E-04 Relative difference 

DivInc3 -0.2062034 -0.20612177 -0.20614878   

    3.96E-04 -2.65E-04 Relative difference 

DivInc4 2.1455306 2.1455814 2.1455646   

    2.37E-05 1.58E-05 Relative difference 

DivIncL1Y 0.530641 0.53068566 0.53067088   

    8.42E-05 5.63E-05 Relative difference 

DivIncL2Y 0.12196778 0.12200186 0.12199058   

    2.79E-04 1.87E-04 Relative difference 

PaidL1Q 0.83717874 0.83716914 0.83717232   

    1.15E-05 -7.67E-06 Relative difference 

PaidL2Q 0.59068473 0.59068013 0.59068165   

    7.79E-06 -5.21E-06 Relative difference 

PaidL3Q -0.2834953 -0.28352433 -0.28351473   

    1.02E-04 6.85E-05 Relative difference 

PaidL4Q -0.3057002 -0.30571486 -0.30571002   

    4.79E-05 3.20E-05 Relative difference 

HP 1.2125238 1.2125039 1.2125104   

    1.64E-05 -1.10E-05 Relative difference 

Ohlson -1.8898441 -1.8898604 -1.889855   

    8.59E-06 5.75E-06 Relative difference 

Skogsvik 0.79330776 0.79330424 0.79330541   

    4.43E-06 -2.96E-06 Relative difference 

Constant -5.3258404 -5.3257842 -5.3258028   

    1.05E-05 -7.05E-06 Relative difference  
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Table 16: Wald Test – Validation Sample, Financial Distress 

The table shows the result from the Wald test performed on the estimation of our dividend increase 

prediction model for the Validation sample for the financial distress variables, testing the null 

hypothesis that all of the coefficients at the same time are equal to zero, in accordance with the 

STATA Manual (StataCorp. n.d.c). The null hypotheses cannot be rejected at the 0.10 level. 

Wald Test: 

(1) [DivInc]Ohlson = 0 

(2) [DivInc]Skogsvik = 0 

chi2(2) = 3.74 

Prob > chi2 = 0.1540 
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Table 17: The Number of Observations within Each Sub-industry in Our Estimation 

Sample 

In our sample of manufacturing companies, we have twenty different SIC code groups with regards 

to the first two digits (20-39). Out of these twenty, the three SIC code groups with most 

observations are chosen for comparison. As shown in Table 17, these are the groups with SIC code 

28, SIC code 36 and SIC code 38. 

SIC Obs 

SIC 20 1,218 

SIC 21 170 

SIC 22 293 

SIC 23 734 

SIC 24 387 

SIC 25 480 

SIC 26 954 

SIC 27 544 

SIC 28 7,537 

SIC 29 572 

SIC 30 904 

SIC 31 436 

SIC 32 434 

SIC 33 1,023 

SIC 34 1,210 

SIC 35 4,082 

SIC 36 5,369 

SIC 37 1,695 

SIC 38 4,573 

SIC 39 697 

  33,312 

 


