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Abstract 

We investigate the problem of portfolio allocation using an expected utility framework where investors’ 

preference for positive skewness of returns is introduced. We develop a three-parameter generalized utility 

function that can be used to capture the full spectrum of absolute and relative risk aversions from CARA to DRRA 

in comparable settings. We approximate the utility function with the use of a Taylor series expansion truncated at 

different points to include or exclude the preference for skewness. We then find different optimal mean-variance 

and mean-variance-skewness portfolios and compare them with each other by looking at their absolute distances 

in space and differences in certainty equivalent, across investors with different levels of risk aversion and different 

kinds of risk aversions. We find that the mean-variance and mean-variance-skewness solutions to the portfolio 

choice problem diverges more as the overall level of risk aversion increases, as well as when investors exhibits 

utility functions with decreasing relative risk aversion (DRRA) and decreasing absolute risk aversion (DARA). 

Differences in certainty equivalent between the mean-variance optimization and mean-variance-skewness 

optimizations can be economically significant for highly risk averse investors and DARA/DRRA investors. 
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2 Introduction 

The mean-variance analysis proposed by Markowitz (1952) can be unanimously 

considered to be the backbone of modern financial theory and it plays a central role in the 

investment management and wealth management practices. In his famed paper, Markowitz 

proposes a framework in which a rational investor chooses her portfolio by trading-off a high 

expected return for a low variance of return. Further, such portfolios are to be chosen from a 

set of different combinations which are “efficient” under a mean-variance framework, 

meaning that each portfolio belonging to this set exhibits the lowest variance for a given level 

of expected return, or equivalently, the highest level of expected return for a given variance. 

Markowitz’s theory is however severely limited by its assumptions that an investor 

making a portfolio decision is only concerned about mean and variance of their portfolio 

return, or, equivalently, by implicitly assuming that financial returns are normally distributed. 

As it is often the case when modelling real life choices of supposedly rational individuals, there 

is always an important trade-off between a model’s analytical simplicity and the full 

representativeness of all the variables that might come into play. 

Hence, while the mean-variance framework provides some remarkable intuition for a 

variety of theoretical and practical purposes, most notably when it comes to the importance 

of portfolio diversification, in the real world, neither of the two aforementioned assumption 

holds. It has been empirically shown that financial returns are not normally distributed, and 

that higher statistical moments come into play to describe how return distributions are 

shaped. Investors care about higher statistical moments of the distributions of their portfolio 

returns and they make investment choices based on higher moments as well, not just on 

mean and variance.  

Among these neglected moments, skewness seems to play a prominent role in financial 

decision making. Skewness is the third central moment that describes the shape of statistical 

distribution, mean being the first and variance the second. While the mean is a measure of 

central tendency and variance one of dispersion around the mean, skewness is a measure of 

asymmetry of a distribution. An asymmetrical, or “skewed” distribution is one whose two 

sides are not specular around the mean. In a “skewed” distribution, the majority of 

observations lay on one side of the mean, while the other side balances out with fewer 



5 
 

observations whose values are further away from the mean. The skewness of a distribution 

measures its degree of asymmetry, either leaning towards one side or the other.  

It is straightforward to say that a rational risk averse investor has a preference for high 

expected returns and an aversion to the variance of returns. When it comes to skewness, 

whose value could be either positive or negative, a risk averse investor will prefer positively 

skewed returns over negative ones, the more positive the better. It is intuitive to understand 

why: the more positively skewed the return distribution, the lower the probability of large 

losses to occur and the higher the probability of realization of extreme positive values. Hence, 

an asset whose return follows a positively skewed distribution would be preferable to an asset 

whose returns follow a negative one, as it would present the possibility of very high rewards, 

while the opposite would apply for the negatively skewed one. 

As it is the case in mean-variance analysis, where covariance needs to be taken into 

account when computing the total variance of portfolio return, co-skewness between 

different assets’ returns, as a measure of the tendency of the extremes of a distribution to be 

correlated with each other, also plays a fundamental role in mean-variance-skewness 

portfolio selection. 

While the mean-variance problem is a two dimensional one, incorporating skewness 

into the analysis expands the allocation problem into a third dimension, where the investor 

now faces to obtain two different competing objectives: maximizing expected return and 

positive skewness of a portfolio, while minimizing portfolio variance. 

The goal of this paper is to investigate, analytically and empirically, whether or not 

considering the skewness dimension is negligible when making portfolio allocation decisions, 

and to understand whether different utility maximizing investors chose to allocate their 

wealth differently when their preference for skewness is taken into account, compared to a 

simpler mean-variance framework. While this is not an innovative approach per se, as it has 

been done before, we give our contribution to the existing literature by providing a deeper 

investigation on the portfolio choice problem with skewness by analysing it from the 

perspective of different kinds of absolute and relative risk aversion.  

In our work, we develop an expected utility framework by deriving a parametric utility 

function of wealth, generalized to fit different absolute and relative kinds of risk aversion 

given different parameters. We then approximate the newly derived utility function by mean 

of a Taylor series expansion, to make it suitable for numerical optimization. We further use a 
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numerical optimizer to find the portfolio that maximizes the expected utility, both in a mean-

variance and a mean-variance-skewness framework using different sets of assets. Short 

selling is not allowed and a riskless asset is made available to the investor. We then compare 

the portfolios obtained under the MV and MVS numerical optimizations and see that the sets 

of weights in the two portfolios can be considerably different for some parameters of risk 

aversion, meaning that failing to consider skewness of return distributions and an investor 

preference for skewness, might lead to the formation of portfolios which do not yield the 

optimal level of expected utility for some investors. To further investigate the loss in utility, 

we also look at the difference in certainty equivalents, i.e. the hypothetical risk-free rate that 

would yield the same utility to the investor as the corresponding risky portfolio, to investigate 

economic significance and reasons for extending the framework. Further, we analyse whether 

and how the Sharpe-ratio yielded by each investor’s optimal portfolio changes when 

skewness is taken into account. 

Our analysis is fairly similar to the work of Jondeau and Rockinger (2006) but yet with 

some considerable differences, allowing us to add a contribution to the existing literature. 

Jondeau and Rockinger (2006) use the Taylor series expansion to approximate an exponential 

utility function, to include a preference up to the second, third, fourth moment of the 

distribution of portfolio returns and then they maximize expected utility as a function of 

portfolio weights. They see that, when the distribution of returns of the assets under consider 

shows a large departure from normality, the mean-variance-skewness approximation proves 

considerably better at maximizing the expected utility, compared to a mean-variance 

approach. In their paper, they emphasize how an investor would allocate her wealth 

differently by using a mean-variance-skewness approach instead of a mean-variance 

approximation, and find that such difference is not relevant when the return distribution of 

assets under consideration does not show a significant departure from normality, but the 

difference between the two increases when the departure from normality of the returns’ 

distribution becomes larger and the investor has a larger aversion to risk. Hence, they 

conclude that the same individual would invest differently when adopting a mean-variance-

skewness rather than a mean-variance approach to the portfolio problem, but only when the 

assets returns’ distribution show a large departure from normality.  

Our approach is slightly more comprehensive, in a sense that we do not only wish to 

see how the same optimization would behave across different sets of assets, but how the 
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optimization would change when different kinds of risk aversion are involved. To do so, we 

developed a parametric utility function that can fit different kinds of relative and absolute risk 

aversions, as a comparable common base for the different cases under investigation.  

We find that, everything else being equal, the greater the overall aversion to risk, the 

larger the difference between two portfolios optimized via MVS approach, compared to the 

MV approach, in line with the findings of Jondeau and Rockinger (2006). Additionally, we 

observe that, for equal levels of overall risk aversion, such difference is the lower for an 

investor displaying constant absolute risk aversion and the higher for an investor displaying 

decreasing relative risk aversion.  

The fundamental intuition behind our analysis is that the skewness dimension is rather 

relevant for an investor making a portfolio decision. This can have a considerable impact in 

financial theory and financial practice. A noticeable portion of financial economics finds its 

ground on the assumption that rational investors are mean-variance investors, who do not 

consider skewness when making their choices. It is common practice among wealth 

management professional to inquiry about clients’ personal attitudes to risk before making 

portfolio recommendations. We argue that neglecting to investigate about clients’ preference 

for skewness and failing to include such preference in their analyses, will yield a different and 

suboptimal portfolio allocation for an investor with defined preference over skewed returns. 

3 Previous literature 

Although a considerable portion of financial theory relies, either explicitly or implicitly, 

upon the assumption that financial returns follow a normal distribution, it has been 

demonstrated that this is not empirically the case. Mandelbrot (1963) proposes an alternative 

probability distribution to describe the behaviour of returns, after recognizing that their 

distributions are unlikely to fit under a Gaussian curve, mentioning a discovery from 

economist Wesley Clair Mitchell dating back as early as 1915. Fama (1965) confirms the 

inadequacy of the normality assumption questioned by Mandelbrot, rejecting it while finding 

evidence of thicker tails than those of the normal distribution. Kon (1984) finds empirical 

evidence of skewness and kurtosis in 30 stocks in the Dow Jones Industrial Average, as well 

as in market indexes, while, more recently, Peiró (1999) run empirical test for sample 

skewness under the assumption of normality on a sample of eight international stock markets 

and three foreign exchange markets, rejecting their symmetry in all but one case. 
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The general consensus is that investors prefer positive skewness, all else being equal. 

Within an expected utility theoretical framework, Scott and Horvath (1980) prove that for a 

risk averse investor, the 𝑚− 𝑡ℎ derivative of the utility function is positive if 𝑚 is odd, and 

negative if 𝑚 is even, irrespective to the level of wealth. Such property can be used to 

determine whether there is a preference or aversion to a certain moment of return, as in the 

application of Taylor’s expansion to expected utility. This is consistent with Arditti (1967) 

confirming that there should be a preference for skewness, at least intuitively. Scott and 

Horvath (1980) additionally state that mean-variance approach is sufficient if at least one of 

the following three conditions hold: either the distribution of return is symmetric, the 

investor’s utility function is quadratic or of lower order, or if the mean and the variance are 

sufficient to define the distribution of returns, as in the case of the normal.  

Empirically, skewness has received considerable attention in the field of asset pricing, 

where models have been developed to incorporate a preference for positively skewed assets 

within the Capital Asset Pricing Model (CAPM). Kraus and Litzenberger (1976) developed and 

tested a three-moment extension of the Sharpe-Lintner CAPM, finding evidence that 

systematic skewness is priced in the market, and that investors have a preference for positive 

skewness. Their paper is criticized by Friend and Westerfield (1980), who provide contrary 

evidence on the explanatory power of the three-moment CAPM, but yet agree on the fact 

that investors prefer positive skewness and that they are willing to pay a premium to be able 

to hold positively skewed assets. Further contribution is brought by Harvey and Siddique 

(2000), who study an asset pricing model incorporating conditional skewness and 

coskewness, with analogous results about investors preferences. Barberis and Huang (2008) 

put Cumulative Prospect Theory, developed in Tversky and Kahneman (1992), in an asset 

pricing perspective, showing that skewness of individual securities is priced, not just their 

systematic skewness, and that such feature is highly desirable for investor, who in turn are 

willing to pay a premium for positively skewed assets. Further, they provide an explanation 

to the observed phenomenon of under-diversification in investors’ individual portfolios, 

motivated by individuals’ appetite for skewed distributions of their portfolio returns.  

The above is in line with Mitton and Vorkink (2007), who find that investors are willing 

to trade off the benefits of a diversified portfolio to achieve a higher level of portfolio positive 

skewness, implying that investors with a preference for positive skewness would deliberately 

hold a suboptimal portfolio from a mean-variance perspective as described by Markowitz 
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(1952), Sharpe (1966), according to which the set of efficient portfolios will always exhibit the 

highest attainable Sharpe-ratio, if a riskless asset is available on the market, and by Tobin 

(1958) famed two-fund separation theorem. An investor with strong preference for positive 

skewness, might eventually deliberately choose to hold a portfolio that exhibits a smaller 

Sharpe-ratio than the best attainable one among the available set of assets. Further critique 

to the mean-variance approach can be found on Simkowitz and Beedles (1978), who point at 

the trade-off between diversification, with low risk, and high positive portfolio skewness, and 

to how the mean-variance criterion fails to consider its implications.  Samuelson (1970) 

provides a defence and a critique of the mean-variance approach at the same time, as he 

proves that the mean-variance becomes an adequate method when portfolio decisions are 

made continuously, but questions its adequacy in cases when portfolio decisions are made 

less frequently.  

Different attempts have been made to address the issue of portfolio choice with 

skewness. Chunhachinda et al. (1997) incorporate investor’s preference for skewness within 

a technique named Polynomial Goal Programming, to find the investor’s optimal portfolio 

between 14 international stock market indices. Their results are in line with previous theory, 

finding that investors with a high preference for skewness will hold relatively under-

diversified portfolios to attain a higher level of positive portfolio skewness, and that the same 

investor will hold a considerably different portfolio when the preference for skewness is 

introduced, as opposed to when it is not. Unfortunately, the PGP is not connected to a utility 

function, or the expectation of it. De Athayde and Flores (2004) generalize the three-moment 

allocation problem by introducing a methodology to find the mean-variance-skewness 

efficient frontier trying to minimize portfolio variance for given values of portfolio return and 

portfolio skewness, analogously to the well-known mean-variance efficient frontier to 

illustrate the set of optimal portfolios an investor can choose from, according to her personal 

preferences. Intuitively, while the set of portfolios belonging to the mean variance frontier 

can be represented graphically by a line in a mean-variance space, the three dimensional 

mean-variance-skewness frontier will be represented by a surface in a three dimensional 

plane. While these approaches address the issue of portfolio allocation with skewness, none 

of the two deals with an accurate description of an investor set of preference embedded in a 

utility function of wealth, or its approximation via a Taylor expansion. The issue is addressed 

under this light by Harvey et al. (2010) and Jondeau and Rockinger (2006). The former 
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addresses both the issue of portfolio selection with higher moments than mean and variance, 

together with the one of estimation error, by means of Bayesian techniques. The latter is the 

one that more closely relates to our research, as our methodologies are similar. Jondeau and 

Rockinger (2006) use of the truncated Taylor series expansion to approximate a utility 

function of wealth exhibiting the property of Constant Relative Risk Aversion (CARA) up to the 

second, third and fourth moment, to study how a portfolio composition changes with the 

different degree of approximation and various levels of risk aversion. They compare the 

different portfolio optimizations with a “direct optimization” technique developed by Simaan 

(1993) and they see how worse off an investor would be in terms of utility when the allocation 

is obtained by maximizing the Taylor approximation of the utility function of wealth, 

truncated at different points to include or exclude preferences for higher moments, 

compared to direct optimization. One of their conclusions is that, when the departure from 

normality in the multivariate distribution of the assets under consideration is particularly 

relevant, neglecting skewness from allocation criteria will lead to a very different portfolio 

composition, leaving the investor worse off, with a loss of expected utility. While Jondeau and 

Rockinger (2006) provide good intuition in the field of portfolio choice with utility 

maximization, their approach is limited by their use of the exponential utility function alone. 

A utility function exhibiting CARA, while very popular in the literature due to its mathematical 

tractability, fails to realistically and comprehensively describe investor preferences, and 

therefore limits the extent of their analysis. They chose to highlight how a mean-variance-

skewness approximation becomes increasingly relevant as skewness becomes more 

pronounced in the underlying multivariate distribution of return for the set of assets under 

consideration. That is, the more skewed the underlying assets’ returns are, the higher the 

difference between optimal portfolios when a mean-variance-skewness approximation of 

utility is in place, as compared to a mean-variance one. 

We are different in our approach, as we generalize the problem to study how the 

investor’s choice changes when different kinds of risk aversion are in place, rather than 

looking at the problem by using a CARA utility function alone. Additionally, we introduce a 

risk-free rate in the investment problem. To quantify differences, we will additionally make 

use of the certainty equivalent as a comparison tool, to quantify the differences in expected 

utility between MV and MVS investors in the different cases with a graspable economic 

measure.  
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This calls the need of a common framework that would allow us to compare between 

different kinds of preferences. We chose to develop such framework, by formulating a 

generalized utility function of wealth that can be easily adjusted in its parameters to fit 

different types of relative and absolute risk aversions. The ground for this approach is 

provided by Arrow (1965) and Pratt (1964), which developed independently the concepts of 

absolute and relative risk aversion (ARA and RRA) to describe the utility function, as well as 

quantitative measures for it, defining what are known as the Arrow-Pratt functions of 

absolute (A(W)) and relative (R(W)) risk aversion. Pratt (1964) also describes the constant 

relative risk aversion (CRRA) utility function with power utility, as well as the constant 

absolute risk aversion (CARA) utility function with exponential utility. Both of these functions 

find broad employment within financial literature. CARA implies that an investor would invest 

the same dollar amount into risky assets even as her wealth increases or decreases. This is in 

contrast to CRRA which implies that an investor would invest the same percentage out of 

wealth into risky assets for different level of wealth. Arrow (1965) further shows that a utility 

function is defined up to a positive affine transformation, meaning that the utility function 

remains the same if you multiply it by a positive constant or by adding some constant to it. It 

is also shown that the absolute risk aversion completely characterizes the utility function. 

Further, the concept of variable risk aversion is introduced, covering the spectrum from CARA 

to CRRA, when the utility function exhibits DARA and IRRA simultaneously. Kane (1982) 

extends the concepts of risk aversion, by presenting a measure for relative skewness 

preference, similar to RRA, as well as a skewness ratio, i.e. relative skewness preference over 

relative risk aversion (and applied it to power and exponential utility). Further, it is shown 

that there is no feasible solution to the allocation problem when skewness is too high. It is 

also mentioned that decreasing absolute risk aversion (DARA) is widely accepted but that the 

need for increasing relative risk aversion (IRRA) is debatable.  

As an example of generalized utility function in the literature, Merton (1971) makes 

uses the hyperbolic absolute risk aversion (HARA), a ductile utility function suited to model 

different kinds of risk aversion, made easily accessible by an adjustment of its parameters. 

The HARA utility function is a powerful tool, as it is very general and can include CARA and 

CRRA as well as other kinds of risk aversions, but presents however some important 

limitations that prevents us to use it directly in our analysis, as it cannot cover DRRA without 

violating Scott and Horvath (1980) criteria for a risk averse investor with strict consistent 
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preference for moments at all wealth levels. We will discuss such limitations more in detail in 

the following section.  

Finally, for the sake of completeness, let us outline a potential shortcoming of the 

approximation of utility by using a Taylor series expansion. Hassett et al. (1985) argue that 

the Taylor expansion does not always converge to the actual utility function, for example in 

the case of very large (or very negative) returns. They further show that truncations at mean-

variance or mean-variance-skewness might provide a poor approximation of the utility 

function, especially with highly skewed assets, which is in line with what is predicted by Kane 

(1982). Our analysis is however not shaken by such concerns. The values for skewness and 

returns that are used in our empirical analysis are far from those of the options used in that 

of Hassett et al. (1985) to argue on the limits of the Taylor approximation. Options can display 

extreme values of return and skewness: one example they use is that returns above 140% 

does not work in the Taylor series. Numbers of this magnitude are not displayed by the return 

distributions we consider to illustrate our intuition in the empirical section of this paper, but 

one should bear such limitation in mind in case of further experimentation with different sets 

of assets. 

4 Theoretical framework 

In the theoretical framework we will lay the foundation for our empirical studies. We will start 

with discussion of the investment decision that an investor faces and continue with the utility 

function we use to solve it. 

4.1 The investment problem 

To start our analysis, we go through the traditional investment problem with our 

assumptions, what the investor cares about and how one can solve the problem with a Taylor 

series expansion of the expected utility. 

4.1.1 Assumptions 

We consider a single-period investment problem for a utility maximizing individual. Assume a 

rational investor who wishes to invest her initial wealth 𝑊0 at the beginning of the period, in 

a way that maximizes her utility 𝑈(𝑊) for the end-of-period wealth, 𝑊. The investor can 

invest her wealth across 𝑁 risky assets, each with return 𝑟𝑖, collectively summarized by return 

vector 𝑟 =  (𝑟1, . . . , 𝑟𝑛)′ with joint cumulative distribution function 𝐹(𝑟). The investor 
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allocates a fraction of wealth 𝜃𝑖  into the 𝑖-th asset summarized in vector notation by the set 

of portfolio weights 𝜃 =  (𝜃1 , … , 𝜃𝑛 )′. There could be a risk-free asset and in such case 𝑟𝑓will 

be added to the return vector and 𝜃𝑓 to the portfolio weights vector. Her portfolio will 

therefore have stochastic portfolio return 𝑟𝑝 = 𝜃′𝑟 and the end-of-period wealth will then be 

𝑊 = 𝑊0 (1 + 𝑟𝑝). Whether there is a riskless asset available or not, the weights need to 

sum to one for initial wealth 𝑊0 to be fully invested in the risky assets and the potential risk-

free asset. Further, short-selling is not made available, hence no weight in any asset can be 

negative. The problem can therefore be formalized as: 

max
𝜃
𝑈(𝑊) 

𝑠. 𝑡 ∑𝜃

𝑁

𝑖=1

= 1, 𝜃𝑖 ≥ 0, ∀ 𝑖   

4.1.2 Expected utility 

The investor thus faces a choice under uncertainty, as end-of-period return is unknown at the 

moment of investment. The choice then becomes a maximization of the expected utility of 

end-of-period wealth 𝐸[𝑈(𝑊)]. The expected utility can therefore be defined as:  

𝐸[𝑈(𝑊)] = ∫ 𝑈(𝑊)𝑓(𝑊)𝑑𝑊 

where 𝑓(𝑊) is the probability distribution function of end-of-period wealth. The distribution 

𝑓(𝑊) depends on the underlying multivariate distribution of returns, as well as the set 

portfolio weights 𝜃. Hence, to solve this problem one would need to know the joint 

cumulative distribution function of assets returns or have an empirical joint cumulative 

distribution function of assets returns. As expressed in Jondeau and Rockinger (2006), the 

problem is easily solved with an empirical distribution, but generally does not have a closed-

form solution when dealing with a parametric joint distribution, and might become 

computationally expensive.  

4.1.3 Taylor expansion 

A feasible and popular way to overcome this issue is to make an approximation of utility by 

using a truncated Taylor series expansion. The infinite-order Taylor series expansion of a 

utility function around expected end-of-period wealth, as introduced by Hassett et al. (1985), 

is defined as: 

𝑈(𝑊) = ∑
𝑈(𝑚)(�̅�) (𝑊 − �̅�)𝑚

𝑚!

∞

𝑚=0
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�̅� = 𝐸[𝑊] = 𝑊0(1 + 𝜇𝑝) = 𝑊0(1 + 𝜃
′𝜇), 𝜇 = 𝐸[𝑟] 

Taking expectations on both sides gives: 

𝐸[𝑈(𝑊)] = 𝐸 [∑
𝑈(𝑚)(�̅�) (𝑊 − �̅�)𝑚

𝑚!

∞

𝑚=0

] = ∑
𝑈(𝑚)(�̅�)𝐸[ (𝑊 − �̅�)𝑚]

𝑚!

∞

𝑚=0

 

This means that the expected utility can be expressed in terms of central moments of the end-

of-period wealth probability distribution and the derivatives of the utility function. Hence, by 

arbitrarily truncating the expansion at different values of 𝑚, we can choose whether to 

include moments of increasingly higher order in the equation. A mean-variance investor, for 

instance, would disregard higher moments above variance, hence the Taylor approximation 

of her utility function will be truncated at 𝑚 =  2. Conversely, a mean-variance-skewness 

investor will exhibit a Taylor approximation truncated at 𝑚 =  3, displayed below:  

𝐸[𝑈(𝑊)] ≈ 𝑈(�̅�) + 𝑈′(�̅�)𝐸[𝑊 − �̅�] +
𝑈′′(�̅�)

2
𝐸[(𝑊 − �̅�)2] +

𝑈′′′(�̅�)

6
𝐸[(𝑊 − �̅�)3] 

4.1.4 Moments and central moments 

To better understand the benefits of using the Taylor series expansion to approximate utility, 

let us first take a step back and briefly explain the concept of moments and central moments. 

In statistics, a moment is a numerical measure that can be used to describe the shape 

of a probability distribution. The mean is the first moment of a distribution, and provides 

information about its central tendency.  

Central moments are a subset of statistical moments, defined around the mean. They 

are the expected value of the deviation of a variable from the mean, to the power of a 

specified integer. As an example, take end-of-period wealth 𝑊 as our variable under 

consideration and its mean �̅�. If we set the value of the specified integer to be equal to 2, 

we have the variance, if we set it to 3, we have the skewness. 

𝐸[(𝑊 − �̅�)2] = 𝜎𝑊
2  

𝐸[(𝑊 − �̅�)3] = 𝑠𝑊
3  

For the sake of completeness, we can also see that the first central moment equals zero. 

𝐸[𝑊 − �̅�] = 𝐸[𝑊] − �̅� = 0 

Worth mentioning is that while variance is the same as used in ordinary statistics, the measure 

for skewness we use throughout our analysis is different from the common standardized one. 

While standardized skewness is defined as 𝑠3/𝜎3 . Whenever we refer to skewness in the 

paper, we refer to 𝑠3 (or just 𝑠, in the tables and graphs of results).  



15 
 

4.1.5 Taylor approximation with portfolio moments  

Now that moments and central moments are clear, let us see how they relate to our portfolio 

choice problem.  

While the first central moment had been shown to be zero, the second and the third 

central moments of wealth can be simplified as the central moments of the distribution of 

portfolio returns: 

𝐸[(𝑊 − �̅�)2] = 𝑊0
2 𝐸 [((1 + 𝑟𝑝) − (1 + 𝜇𝑝))

2

] = 𝑊0
2 𝐸 [(𝑟𝑝 − 𝜇𝑝)

2
] = 𝑊0

2𝜎𝑝
2 

𝐸[(𝑊 − �̅�)3] = 𝑊0
3 𝐸 [(𝑟𝑝 − 𝜇𝑝)

3
] = 𝑊0

3𝑠𝑝
3 

Where 𝜎𝑝
2 is the variance of portfolio returns and 𝑠𝑝

3 is central skewness of the portfolio. This 

allows us to rewrite the approximation as:  

𝐸[𝑈(𝑤)] ≈ 𝑈(�̅�) +
𝑤0
2𝑈′′(�̅�)

2
𝜎𝑝
2 +

𝑤0
3𝑈′′′(�̅�)

6
𝑠𝑝
3 

To be able to calculate portfolio variance and portfolio skewness, one needs to know the 

covariance and coskewness structures of the underlying multivariate return distribution. Such 

structure is provided for by the covariance matrix Σ, defined as: 

Σ = 𝑀2 = 𝐸[(𝑟 − 𝜇)(𝑟 − 𝜇)′] = {𝜎𝑖𝑗} 

𝜎𝑖𝑗 = 𝐸[(𝑟𝑖 − 𝜇𝑖)(𝑟𝑗 − 𝜇𝑗)] 𝑖, 𝑗 = 1,… ,𝑁 

And by the coskewness matrix, 𝑆, defined as: 

𝑆 = 𝑀3 = 𝐸[(𝑟 − 𝜇)(𝑟 − 𝜇)′⨂(𝑟 − 𝜇)′] = {𝑠𝑖𝑗𝑘} 

𝑤ℎ𝑒𝑟𝑒 ⨂ 𝑖𝑠 𝑡ℎ𝑒 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

𝑠𝑖𝑗𝑘 = 𝐸[(𝑟𝑖 − 𝜇𝑖)(𝑟𝑗 − 𝜇𝑗)(𝑟𝑘 − 𝜇𝑘)] 𝑖, 𝑗, 𝑘 = 1,… ,𝑁 

The covariance matrix provides information about the dispersion of the assets’ returns 

around their mean, as well as their tendency to change together. In an analogous way, the 

coskewness matrix provides information about the skewness of the individual assets’ return, 

as well as their tendency to assume extreme values together. 𝑁 being the number of assets 

under consideration, the coskewness matrix has dimensions 𝑁 × 𝑁, while the coskewness 

matrix will have dimension 𝑁 × 𝑁2. Further, the covariance matrix is symmetrical and the 

coskewness is made up by 𝑁 symmetrical matrices. When a risk-free asset is introduced the 

dimensions of the matrices will proportionally increase just as if there were 𝑁 + 1 assets. The 

new cells will contain only zeros since a theoretical risk-free rate have no variance, no 

covariance with other assets, no skewness and no co-skewness with the risky assets. 
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Portfolio variance and the portfolio skewness can now be computed as: 

𝜎𝑝
2 = 𝜃′𝑀2𝜃 = 𝐸 [(𝑟𝑝 − 𝜇𝑝)

2
] 

𝑠𝑝
3 = 𝜃′𝑀3(𝜃⨂𝜃) = 𝐸 [(𝑟𝑝 − 𝜇𝑝)

3
] 

𝑤ℎ𝑒𝑟𝑒 ⨂ 𝑖𝑠 𝑡ℎ𝑒 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

4.1.6 Certainty equivalent 

Additionally, we introduce the certainty equivalent, a standard concept of utility theory and 

applied by several authors. It will be an important tool to our empirical analysis.  

For a utility maximizing investor, the certainty equivalent is the amount of certain return 

that would yield the same level of expected utility of the uncertain return of the risky 

portfolio. It is defined as: 

𝑈(1 + 𝐶𝐸) = 𝐸[𝑈(1 + 𝑟𝑝)] 

𝐶𝐸 = 𝑈−1(𝐸[𝑈(1 + 𝑟𝑝)]) − 1 

The certainty equivalent allows to economically quantify the level of expected utility of wealth 

of a given portfolio, as it is expressed in the same quantity as the return of the portfolio itself. 

When the investor tries to maximize expected utility, she is trying to maximize the certainty 

equivalent. 

Now the portfolio choice problem is clear. The investor needs to choose the appropriate 

combination of portfolio weights, in order to obtain the desired mixture of portfolio return, 

variance and skewness according to her preferences, specified in the utility function.  We 

should then discuss the investor’s utility function. 

4.2 The utility function 

In financial economics, the utility function provides information about an investor’s set of 

preferences in the trade-off between risk and return. Different aversion to risk can be 

captured by different utility functions. 

4.2.1 Risk Aversion  

Let us briefly review the different kinds of risk aversion first. Constant absolute risk aversion 

(CARA), which finds broad employment in financial literature, implies that an investor would 

invest the same dollar amount into risky assets for different levels of wealth. Constant relative 

risk aversion (CRRA) on the other hand, which also finds a variety of applications in the 

literature, implies that an investor invests the same proportion of wealth into risky assets, 

irrespective of the level of wealth. Extending absolute risk aversion, there is also increasing 
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ARA (IARA) which implies that an investor would invest less (in dollar amount) into risky assets 

when her wealth increases. In the other direction there is decreasing ARA (DARA) which 

analogously implies that an investor will invest more dollars in risky assets since she becomes 

less risk averse with wealth. DARA covers the region in between CARA and CRRA, and can 

further extend beyond CRRA.  

It is not just DARA that covers the area in between CARA and CRRA but also increasing 

RRA (IRRA) which implies that the proportion of wealth invested into risky assets decreases 

as wealth increases. Thus, IRRA includes IARA, CARA and a part of DARA. On the other side of 

CARA is decreasing RRA (DRRA) which, analogously, implies that the proportion invested into 

risky assets increases with wealth. 

The Arrow-Pratt absolute and relative risk aversions functions are defined as 

𝐴(𝑊) ≡ −
𝑈′′(𝑊)

𝑈′(𝑊)
, 𝑅(𝑊) ≡ 𝐴(𝑊)𝑊 = −

𝑊𝑈′′(𝑊)

𝑈′(𝑊)
 

And we find what type of risk aversion the investor has by taking the derivative of the risk 

aversion functions 

𝑑𝐴(𝑊)

𝑑𝑊
{
> 0 𝐼𝐴𝑅𝐴
= 0 𝐶𝐴𝑅𝐴
< 0 𝐷𝐴𝑅𝐴

 ,
𝑑𝑅(𝑊)

𝑑𝑊
{
> 0 𝐼𝑅𝑅𝐴
= 0 𝐶𝑅𝑅𝐴
< 0 𝐷𝑅𝑅𝐴

 

As we are interested in learning more about how the skewness dimension impacts the 

portfolio choice problem through the utility function, we will also define two other measures 

introduced by Kane (1982): relative skewness preference 𝑆(𝑊), notably similar to relative 

risk aversion, and skewness ratio 𝐾(𝑊) which is relative skewness preference over relative 

risk aversion. They are defined as: 

𝑆(𝑊) ≡ 𝑊2
𝑈′′′(𝑊)

𝑈′(𝑊)
, 𝐾(𝑊) ≡ −

𝑊𝑈′′′(𝑊)

𝑈′′(𝑊)
=
𝑆(𝑊)

𝑅(𝑊)
 

They will be an important tool for our analysis to understand how skewness preference 

increases or decreases in relevance for different investors.  

4.2.2 Limitations of HARA 

In order for us to have a comparable ground and look for portfolio similarities in a mean-

variance case compared to a mean-variance skewness case, we need to have a generalized 

utility function that could capture the whole spectrum of risk aversions with different 

parameters, and which would eventually allow for comparable results across different 

investors. Therefore, we need a utility function that can fit the full set of cases from CARA to 
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DRRA.  Several financial authors have suggested the use of the HARA family of utility 

functions, but because of the mathematical tractability of its special cases CARA and CRRA 

most have used only these. This has created a gap in the literature using something in 

between as well as outside these special cases.  

The HARA utility, as expressed in Merton (1971) is 

𝑈𝐻𝐴𝑅𝐴(𝑊) =
1 − 𝛾

𝛾
(
𝛽𝑊

1 − 𝛾
+ 𝜂)

𝛾

 

The utility function can exhibit DRRA when 𝜂 < 0 (−∞ < 𝛾 < 1) but then the first derivative 

𝑈𝐻𝐴𝑅𝐴
′ (𝑊) = 𝛽 (

𝛽𝑊

1 − 𝛾
+ 𝜂)

𝛾−1

 

will become infinite when the wealth 𝑊 is such that the term within the parenthesis equal 

zero. When the term inside the parenthesis is negative you get either negative or complex 

values depending on whether gamma is an integer or not. According to Scott and Horvath 

(1980), for a risk averse investor with strictly consistent preferences for moments, odd 

derivatives need to be positive, while even derivatives need to be negative, for all wealth 

levels. Thus HARA utility does not have a DRRA alternative that can be used in portfolio 

allocation since in the described cases the derivatives do not fulfil these criteria.  

 As the existing literature does not seem to provide a ready-to-use utility function that 

might be suitable to our purposes, we have chosen to tackle the problem by deriving our own. 

Since there are different utility functions that cover various types of risk aversion, but no one 

that covers them all, we merged two different existing utility functions in order to derive a 

generalized one, that could fit our purposes. By doing so, we would be able to cover the full 

spectrum of risk aversions that is necessary for our analysis.  

4.2.3 A utility function exhibiting DRRA 

The first utility function we take into consideration is a Bernoulli function of the generalized 

form: 

𝑈(𝑊) = −𝑒𝛽𝑊
−𝛾

 

This function is very interesting because it can exhibit DRRA without limitation, which was 

one of the shortcomings of HARA functions explained above. Let us look at it in more detail. 

The functions first and second derivative are: 

𝑈′(𝑊) = 𝛽𝛾𝑊−(𝛾+1)𝑒𝛽𝑊
−𝛾
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𝑈′′(𝑊) = −𝛽𝛾𝑊−2(𝛾+1)𝑒𝛽𝑊
−𝛾
(𝛽𝛾 + (𝛾 + 1)𝑊𝛾) 

Since the first derivative should be positive, we find that 𝛽 and  𝛾 must have the same sign 

and that none of them can be zero. From the second derivative, that needs to be negative for 

a risk averse investor, we find that 𝛾 ≥  −1. Higher derivatives do not give further limitations 

in parameters. Let us continue by looking at the Arrow-Pratt measures of risk-aversion: 

𝐴(𝑊) ≡ −
𝑈′′(𝑊)

𝑈′(𝑊)
= 𝑊−(𝛾+1)(𝛽𝛾 + (𝛾 + 1)𝑊𝛾) 

𝑅(𝑊) ≡ 𝐴(𝑊)𝑊 = 𝑊−𝛾(𝛽𝛾 + (𝛾 + 1)𝑊𝛾) = 𝛽𝛾𝑊−𝛾 + 𝛾 + 1 

Taking the derivative of the 𝐴(𝑊) and 𝑅(𝑊) and bearing in mind the parameter limitations 

described above, we can find when the function exhibits different types of risk aversion.  

𝑑𝐴(𝑊)

𝑑𝑊
= −𝑊−(𝛾+2)(𝛾 + 1)(𝛽𝛾 +𝑊𝛾) {

> 0 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
= 0 𝛾 = −1 → 𝛽 < 0
< 0 𝛾 > −1

 
𝐼𝐴𝑅𝐴
𝐶𝐴𝑅𝐴
𝐷𝐴𝑅𝐴

 

𝑑𝑅(𝑊)

𝑑𝑊
= −𝛽𝛾2𝑊−(𝛾+1) {

> 0 𝛽 < 0 → −1 ≤ 𝛾 ≤ 0
= 0 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
< 0 𝛽 > 0 → 𝛾 > 0

 
𝐼𝑅𝑅𝐴
𝐶𝑅𝑅𝐴
𝐷𝑅𝑅𝐴

 

We see that CRRA is not possible since it would suggest beta or gamma equals zero which is 

a violation of Scott and Horvath (1980) criteria, as would further yield a constant utility 

function. Thus, this function cannot exhibit CRRA. We therefore need to find a way to extend 

the function to incorporate this shortcoming. 

4.2.4 A utility function with variable risk aversion 

The second utility function under observation exhibits the property of variable risk 

aversion, meaning that we can therefore work with its parameters to obtain a function 

exhibiting CARA, CRRA, or something in between the two extremes, hence exhibiting different 

degrees of DARA and IRRA. It is defined by its relative risk aversion (recall that this is sufficient) 

as 

𝑅(𝑊) ≡ 𝐴(𝑊)𝑊 = 𝛼 + 𝛽𝑊 → 𝐴(𝑊) =
𝛼

𝑊
+ 𝛽 

For investor to be risk averse for all wealth levels, either alpha or beta needs to be 

positive or zero, but both cannot be simultaneously zero. Once again we can investigate the 

different types of risk aversion by taking the derivatives of 𝐴(𝑤) and 𝑅(𝑤). 

𝑑𝐴(𝑊)

𝑑𝑊
= −

𝛼

𝑊2
{
> 0 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
= 0 𝛼 = 0
< 0 𝛼 > 0

 
𝐼𝐴𝑅𝐴
𝐶𝐴𝑅𝐴
𝐷𝐴𝑅𝐴
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𝑑𝑅(𝑊)

𝑑𝑊
= 𝛽 {

> 0 𝛽 > 0
= 0 𝛽 = 0
< 0 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

 
𝐼𝑅𝑅𝐴
𝐶𝑅𝑅𝐴
𝐷𝑅𝑅𝐴

 

We thus find that this utility function does not exhibit DRRA, but we confirm that it is capable 

of exhibiting CRRA.  

4.2.5 The generalized utility function 

By taking a look at the derivative of the last utility function under consideration (which you 

find by solving the differential equation above) we have:  

𝑈′(𝑊) = 𝑊−𝛼𝑒−𝛽𝑊 

We see that it is very similar to the first derivative of the first DRRA utility function under 

consideration, thus it might work to combine them. By combining these two derivatives we 

have:  

𝑈′(𝑊) = 𝑊−𝛼𝑒−𝛽𝑊
𝛾
 

This is a solution to the differential equation (solving for 𝑈’(𝑊))  

𝑅(𝑊) ≡ 𝐴(𝑊)𝑊 ≡ −
𝑈′′(𝑊)𝑊

𝑈′(𝑊)
= 𝛼 + 𝛽𝛾𝑊𝛾 

Finally, taking the integrating this derivative yields our final utility function: 

𝑈(𝑊) =

{
  
 

  
 
−
𝑊1−𝛼 (𝛽 𝑊𝛾)

𝛼−1
𝛾 Γ (

1 − 𝛼
𝛾

|𝛽 𝑊𝛾)

𝛾
𝛽 ≠ 0

𝑊1−𝛼

1 − 𝛼
𝛽 = 0, 𝛼 ≠ 1

log(𝑊) 𝛽 = 0, 𝛼 = 1

 

where Γ(𝑎|𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

The above is a parametric utility function of wealth, that can take different shapes for 

different values of the three parameters 𝛼, 𝛽and 𝛾.  

4.2.6 Properties and characteristics of the generalized utility function 

Let us explore its properties. The second to fourth derivatives are: 

𝑈′′(𝑊) = −𝑊−𝛼−1𝑒−𝛽𝑊
𝛾
(𝛼 + 𝛽𝛾𝑊𝛾) 

𝑈′′′(𝑊) = 𝑊−𝛼−2𝑒−𝛽𝑊
𝛾
((𝛼 + 𝛽𝛾𝑊𝛾)2 + 𝛼 + 𝛽𝛾𝑊𝛾(1 − 𝛾)) 

𝑈′′′′(𝑊) = −𝑊−𝛼−3𝑒−𝛽𝑊
𝛾
((𝛼 + 𝛽𝛾𝑊𝛾)3 + 3𝛼2 + 3(𝛽𝛾𝑊𝛾)2(1 − 𝛾) + 3𝛼𝛽𝛾𝑊𝛾(2 − 𝛾)

+ 2𝛼 + 𝛽𝛾𝑊𝛾(2 − 𝛾)(1 − 𝛾)) 

Again, every odd derivative needs to be positive for all wealth levels and every even derivative 

needs to be negative for all wealth levels. From how the derivatives are presented it can be 
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seen that 𝛼 ≥ 0 & 𝛽𝛾 ≥ 0 & 𝛾 ≤ 1 & 𝑤ℎ𝑒𝑛 𝛼 = 0 → 𝛽𝛾 ≠ 0. Further, it can be seen that it 

would make no sense to use 𝛾 = 0 since this would just create an affine transformation of 

the utility function with 𝛽 = 0.  

Investigating further for these possible parameter values, we find that the utility 

function (when 𝛽 ≠ 0) can be rewritten as: 

𝑈(𝑊) = −
 𝛽
𝛼−1
𝛾 Γ (

1 − 𝛼
𝛾 |𝛽 𝑊𝛾)

𝛾
 

Also, since 𝛽 can take negative values, numerical analysis further reveals that the utility 

function might take complex values. Even though this might seem as a problem, it is not. 

These complex values are constant for fixed parameters and can disappear by an affine 

transformation or adequately by adding an integration constant in the derivation of the utility 

function. 

We should further examine the properties of our utility function using Arrow-Pratt’s 

absolute and relative risk-aversion functions, 𝐴(𝑊) and 𝑅(𝑊), and Kane (1982) relative 

skewness preference 𝑆(𝑊), and skewness ratio, 𝐾(𝑊). We have 

𝐴(𝑊) ≡
−𝑈′′(𝑊)

𝑈′(𝑊)
=
𝛼 + 𝛽𝛾𝑊𝛾

𝑊
=
𝛼

𝑊
+ 𝛽𝛾𝑊𝛾−1 

𝑅(𝑊) ≡ 𝑊𝐴(𝑊) = 𝛼 + 𝛽𝛾𝑊𝛾 

𝑆(𝑊) ≡
𝑊2𝑈′′′(𝑊)

𝑈′(𝑊)
= (𝛼 + 𝛽𝛾𝑊𝛾)2 + 𝛼 + 𝛽𝛾𝑊𝛾(1 − 𝛾) 

𝐾(𝑊) ≡
𝑆(𝑊)

𝑅(𝑊)
= 𝛼 + 𝛽𝛾𝑊𝛾 −

𝛽𝛾2𝑊𝛾

𝛼 + 𝛽𝛾𝑊𝛾
+ 1 = 𝛼 + 𝛽𝛾𝑊𝛾 +

𝛼𝛾

𝛼 + 𝛽𝛾𝑊𝛾
− 𝛾 + 1 

By taking the derivative of 𝐴(𝑊) and 𝑅(𝑊) we can find which parameters corresponds to 

increasing, constant and decreasing absolute risk aversion (IARA, CARA, DARA) as well as 

increasing, constant and decreasing relative risk aversion (IRRA, CRRA, DRRA). If we include 

parameters limitations in the analysis, to comply with the criteria defined in Scott and Horvath 

(1980), we also find which risk aversion types that are possible.  

𝑑𝐴(𝑊)

𝑑𝑊
= −

𝛼

𝑊2
− 𝛽𝛾𝑊𝛾−2(1 − 𝛾) {

> 0 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
= 0 𝛼 = 0 & 𝛾 = 1
< 0 𝛼 > 0

 
𝐼𝐴𝑅𝐴
𝐶𝐴𝑅𝐴
𝐷𝐴𝑅𝐴

 

𝑑𝑅(𝑊)

𝑑𝑊
= 𝛽𝛾2𝑊𝛾−1 {

> 0 𝛽 > 0 → 𝛾 > 0
= 0 𝛽 = 0
< 0 𝛽 < 0 → 𝛾 < 0

 
𝐼𝑅𝑅𝐴
𝐶𝑅𝑅𝐴
𝐷𝑅𝑅𝐴
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For completeness, we should also show the derivative of 𝑆(𝑊)  

𝑑𝑆(𝑊)

𝑑𝑊
= 𝛽𝛾2𝑊𝛾−1(2𝛼 + 2𝛽𝛾𝑊𝛾 − 𝛾 + 1) 

Thus, the utility function can achieve all types of risk aversion that are considered 

realistic, including CARA and CRRA that have been heavily used so far in the literature. Our 

utility function is not universal, in a sense that the IARA case cannot be covered. It is 

straightforward to say however that IARA would not make any sense intuitively, as it implies 

that an investor would invest less wealth into risky assets in dollar amount as wealth 

increases. It does not seem likely, and thus we disregard this case from our analysis going 

forward. CARA also does not seem too realistic in real terms, although more plausible than 

the IARA case. We will hence look at CARA as one end of the spectrum of different types of 

risk aversion.  

4.2.7 Parameters choice 

To cover the different types of risk aversion one must choose the different parameters that 

will define our utility function in the different cases. We do so by looking at two measures, 

the first being the overall level of ARA and RRA captured by 𝐴(𝑊) and 𝑅(𝑊), and the sign of 

their first derivatives 𝑑𝐴/𝑑𝑊 and 𝑑𝑅/𝑑𝑊. For the sake of simplicity, we will assume the case 

𝑊 = 1, so that 𝐴(𝑊) = 𝑅(𝑊). 

By setting an arbitrary value for 𝐴(𝑊) and 𝑅(𝑊) and the desired combination of signs 

for the two derivatives 𝑑𝐴/𝑑𝑊 and 𝑑𝑅/𝑑𝑊 we can work our way backwards, to find a 

combination of parameters that defines our utility function for the desired type of risk 

aversion with the desired level of risk aversion. Let us explain this more clearly with a 

numerical example. Consider an individual with overall level of risk aversion 𝐴 = 𝑅 = 5 and 

DARA utility (𝑑𝐴/𝑑𝑊 = −1). We can find out which values of 𝛼, 𝛽and 𝛾 are needed to define 

its utility function by solving the system of equations 

{

𝐴(𝑊)|𝑊=1 = 𝑅(𝑊)|𝑊=1 = 𝛼 + 𝛽𝛾 = 5

𝑑𝐴(𝑊)

𝑑𝑊
|
𝑊=1

= −𝛼 − 𝛽𝛾(1 − 𝛾) = −1
 

For 𝛼, 𝛽and 𝛾. This would yield endless opportunities of parameters since we have two 

equations and three unknown, but if one includes the derivative of skewness preference a 

unique solution emerges. The explained methodology can be used both to define utility 

functions with different types of absolute and relative risk aversions with the same level of 
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overall risk aversion, as well as utility function with different levels of risk aversion for the 

same type of absolute and relative risk aversion. 

4.2.8 Further comments on parameters selection 

The choice of including three discrete parameters in our utility function allows us to control 

what kind of risk aversion (from CARA to DRRA) an investor will exhibit for given levels of risk 

aversion. One could argue that it should be possible to change the parameterization into just 

two parameters, which should be sufficient to define the whole spectrum of risk aversions 

from CARA to DRRA, and thus take away unnecessary complexity from the new utility 

function. The full set of combinations of the three parameters however allow us to have 

complete control not only on the first derivative of 𝐴(𝑊) and 𝑅(𝑊), defining the types of 

ARA and RRA, but also on the second derivative of 𝐴(𝑊) and 𝑅(𝑊) or adequately the 

derivative of 𝑆(𝑊). This means that, by adjusting the three parameters altogether, we could 

not only choose what kind of risk aversion the investor has, but also its slope. Let us say we 

want an investor in the DRRA case. We would then adjust the parameters to have the first 

derivative of 𝐴(𝑊) and 𝑅(𝑊) < 0. By playing with the parameter further though, we could 

also have control on the slope of those derivative, in this case defining how quickly the 

investor’s risk aversion would decrease as wealth increases. 

4.2.9 Utility function in portfolio allocation 

We have so far found a way to optimize the portfolio allocation by the use of a Taylor 

expansion around expected end-of-period wealth. Also, we have developed a utility function 

to be used in this Taylor expansion. Let us now put everything together and express the Taylor 

expansion with our utility function: 

 𝐸[𝑈(𝑊)] ≈ 𝑈(�̅�) +
𝑊0
2𝑈′′(�̅�)

2
𝜎𝑝
2 +

𝑊0
3𝑈′′′(�̅�)

6
𝑠𝑝
3 = 

−
 𝛽
𝛼−1
𝛾 Γ (

1 − 𝛼
𝛾 |𝛽 �̅�𝛾)

𝛾
−𝑊0

2�̅�−𝛼−1𝑒−𝛽�̅�
𝛾
(𝛼 + 𝛽𝛾�̅�𝛾)

𝜎𝑝
2

2

+𝑊0
3�̅�−𝛼−2𝑒−𝛽�̅�

𝛾
((𝛼 + 𝛽𝛾�̅�𝛾)2 + 𝛼 + 𝛽𝛾�̅�𝛾(1 − 𝛾))

𝑠𝑝
3

6
 

𝑤ℎ𝑒𝑛 𝛽 ≠ 0 

It would reduce the complexity if we, as many else, could simplify the initial wealth to one 

without loss of generality. We try to do this with 𝛽 = 𝑏/𝑊0
𝛾

 and find that the result is an 

affine transformation of the expected utility with a constant based on initial wealth and α. 
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This allows us to simplify initial wealth as equal to one without loss of generality. If someone 

would like to use a different level of initial wealth, it would be sufficient to adjust the beta 

parameter to find consistent results from an optimization or calculation. 

5 Empirical Analysis 

In the previous section, we have extensively explained the theory at the basis of our analysis. 

We will now advocate for the importance of skewness in asset allocation by doing a series of 

portfolio optimization for different investors, using empirical data.  

5.1 Setup for the optimization 

5.1.1 Data selection and input derivation 

We will now implement a series of sets of portfolio optimizations to analyse the choices of a 

diverse group of investors across a variety of assets. For each set of asset, we will look at 

different samples of historical prices to calculate the time series of their monthly returns 

which will then be used to derive the inputs to the portfolio optimization. As we are 

approximating the expected utility with a Taylor series expansion using the moments of the 

return distribution, in order for us to do the portfolio optimization it is sufficient to know the 

vector of expected returns 𝐸[𝑟], the variance covariance matrix Σ and the coskewness matrix 

𝑀3 𝑜𝑟 𝑆.  

We approximate the inputs from a sample of historical return of the assets under 

consideration. Note that portfolios that have been optimized with inputs derived using such 

method have been widely proven not to perform well out-of-sample. The aim of this thesis, 

however, is to provide a comparison between MV and MVS optimized portfolios in a static 

setting, while the out-of-sample performance of the portfolio is beyond the scope of our 

research and, as that, it would add unnecessary complexity to our analysis.  

We consider three broad sets of assets in four data sets, to ensure that our results are 

consistent across the analysis, and for each data set we optimize our portfolio with and 

without considering a riskless asset. 

The first data set includes 20 MSCI country indexes of developed markets, observed 

monthly between October 2011 to August 2016. MSCI indexes track the return of broadly 

diversified portfolios designed to capture 85% of the total market capitalization in a given 

region. As mentioned by Jondeau and Rockinger (2006), we expect such indexes to be well 
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diversified exhibiting a lower level of either positive or negative skewness and to behave more 

closely as a normal distribution. Further, as previous theory suggests, preference for positive 

skewness might encourage investors to hold less diversified portfolio to achieve a greater 

level of positive skewness. Hence having only well diversified portfolios as the only available 

assets might not give an opportunity to the investor to trade off a meaningful level of 

diversification with a riskier but more positively skewed portfolio, as even investing her entire 

wealth in one asset would still mean to hold a diversified fund. 

Hence, to see how investors would make different choices in cases where skewness is 

prevalent, we turn our attention to stocks. The first group of stocks under analysis are the 

constituents of the Swedish OMX30, the first 30 Swedish stocks by market capitalization. The 

choice of using Swedish large capitalization stocks is rather arbitrary, due to the larger 

availability of data and our desire to investigate the outcome of the portfolio choice problem 

using assets whose return exhibit a more idiosyncratic behaviour compared to well-diversified 

portfolios, as in the MSCI case. The choice of using a sample of 30 assets allows investors to 

reach a meaningful level of diversification and keeps the physical running time of our 

numerical optimization low. We derive the inputs by observing two different datasets of the 

same assets, the first one being made of monthly observations of stock prices between 

October 2011 and November 2016, the second made of monthly observation of stock prices 

between October 2003 and November 2016, to include stock prices behaviours during the 

2007-08 financial crisis in the input derivation1. Finally, to ensure that our findings are 

consistent, we also analyse portfolios optimized using a sample of monthly returns of large 

cap German stock prices, the 30 constituents of the German index DAX30, observed between 

October 2011 and November 2016.  

The same optimizations and subsequent analysis can be repeated by others, 

optimizing portfolios that take into consideration any desired set of assets, or input derivation 

methodology. For the purpose of this thesis, we felt that easy attainable data and an easy 

way to derive inputs were the most trivial way to analyse a possible empirical implication of 

our theoretical framework. 

                                                      
1 The longer time series is excluding Nokia, since it was marketed on OMX Stockholm some years into the 
sample. We do not have any concerns that this would affect results. 
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5.1.2 Data description 

We will now have a closer look to the sets of assets under consideration, by presenting some 

summary statistics and testing each asset’s sample distribution for normality using the 

popular Wilk-Shapiro test at the 5% level, analogously to Chunhachinda et al. (1997). The 

Wilk-Shapiro determines the W-statistics, which tests the hypothesis that a given distribution 

is normal. If the p-value associated with the statistics is below a given level, 0.05 in our case, 

the hypothesis of normality is rejected at the 5% level.  
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5.1.2.1 MSCI 2011-2016 

Table 1 – Summary statistics and normality testing for MSCI 2011 -16 monthly returns 

Table 1 provides annualized summary statistics for 20 MSCI indexes return time series, from a sample of monthly observations 
observed between October 2011 and August 2016, as well as the Wilk-Shapiro test statistic, each corresponding p-value, and 
the final decision on the null hypothesis for normality at the 5% level. The hypothesis of normality is rejected for level of p-
value < 0.05 

The table above summarizes the summary statistics for a sample of monthly return from 

October 2011 to August 2016 for 20 MSCI country indexes. It is immediately evident that none 

of the p-values in the table is lower than our confidence level of 0.05, hence the assumption 

of normality cannot be rejected for any asset. Because of that, we do not expect to see large 

differences between MV and MVS optimized portfolios using these assets, as skewness does 

not seem to be very prominent among these diversified portfolios. 

We now turn our attention to individual stocks, an asset class that we expect to exhibit a more 

interesting behaviour and provide us with a more interesting set of inputs for our portfolio 

optimizations.  

  

MSCI Index
Expected 

Return

Standard 

Deviation
Skewness W-test p-value H0

Australia 0.0531 0.1289 -0.0649 0.9607 0.0578 Not-Rejected

Austria 0.0268 0.1949 -0.0424 0.9739 0.2089 Not-Rejected

Belgium 0.1814 0.1436 0.0555 0.9875 0.7239 Not-Rejected

Canada 0.0407 0.0865 -0.0436 0.9788 0.4038 Not-Rejected

Denmark 0.1977 0.1540 0.0757 0.9682 0.1322 Not-Rejected

Finland 0.0959 0.1681 -0.0626 0.9795 0.3650 Not-Rejected

France 0.0786 0.1372 -0.0423 0.9893 0.8891 Not-Rejected

Germany 0.0998 0.1586 -0.0476 0.9900 0.9144 Not-Rejected

Hong Kong 0.0955 0.2018 -0.0813 0.9809 0.4148 Not-Rejected

Italy 0.0209 0.1961 -0.0876 0.9839 0.6358 Not-Rejected

Japan 0.1294 0.1898 -0.0644 0.9829 0.5841 Not-Rejected

Netherlands 0.1233 0.1353 -0.0635 0.9766 0.3217 Not-Rejected

New Zealand 0.1151 0.1218 0.0421 0.9839 0.5444 Not-Rejected

Norway 0.0235 0.1325 -0.0718 0.9599 0.0515 Not-Rejected

Singapore -0.0021 0.1368 -0.0352 0.9851 0.6003 Not-Rejected

Spain 0.0224 0.2053 0.0719 0.9797 0.3718 Not-Rejected

Sweden 0.0860 0.1310 -0.0564 0.9784 0.3883 Not-Rejected

Switzerland 0.0824 0.1128 -0.0394 0.9815 0.4399 Not-Rejected

UK 0.0436 0.1059 -0.0526 0.9748 0.2287 Not-Rejected

US 0.1191 0.1047 -0.0448 0.9872 0.7095 Not-Rejected

Mean 0.0816 0.1473 -0.0328

Standard Deviation 0.0526 0.0344 0.0493
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5.1.2.2 OMX30 2011-2016  

Table 2 – Summary statistics and normality testing for OMX 2011 -16 monthly returns 

 
Table 2 provides annualized summary statistics for 30 large-capitalization Swedish stock return time series, from a sample of 
monthly observations observed between October 2011 and November 2016, as well as the Wilk-Shapiro test statistic, each 
corresponding p-value, and the final decision on the null hypothesis for normality at the 5% level. The hypothesis of normality 
is rejected for level of p-value < 0.05 

As it can be seen from the table, individual stocks exhibit a less moderate behaviour compared 

to country indexes, returns are slightly higher but with a larger standard deviation. Also, there 

is a much larger variability in skewness between the assets and normality is rejected for 9 

stocks out of 30 at the 5% level. Out of these nine stocks, some of them exhibit positive 

skewness and some are exhibiting negative skewness. This is close to ideal for our analysis 

OMX30
Expected 

Return

Standard 

Deviation
Skewness W-test p-value H0

ABB 0.0959 0.1715 0.0558 0.9852 0.6791 Not-Rejected

Alfa Laval 0.0306 0.1939 0.0786 0.9812 0.4809 Not-Rejected

Assa Abloy 0.2456 0.1886 -0.0578 0.9775 0.3329 Not-Rejected

AstraZeneca 0.1202 0.2092 0.1209 0.9569 0.0344 Rejected

Atlas Copco (Class A) 0.1432 0.1942 -0.1050 0.9528 0.0212 Rejected

Atlas Copco (Class B) 0.1420 0.1902 -0.0940 0.9587 0.0409 Rejected

Electrolux 0.1500 0.2760 0.1215 0.9668 0.0932 Not-Rejected

Ericsson -0.0535 0.2548 -0.1875 0.8987 0.0003 Rejected

Investor 0.2002 0.1747 -0.0820 0.9690 0.1308 Not-Rejected

Hennes & Mauritz 0.0496 0.1879 0.1014 0.9686 0.1248 Not-Rejected

Getinge 0.0044 0.2507 -0.0822 0.9557 0.0305 Rejected

Boliden 0.2095 0.3122 0.1530 0.9625 0.0596 Not-Rejected

Kinnevik 0.1360 0.2595 -0.0883 0.9844 0.6400 Not-Rejected

Lundin Petroleum 0.0373 0.2645 0.0881 0.9752 0.2605 Not-Rejected

Modern Times Group -0.0261 0.2908 -0.1735 0.9590 0.0420 Rejected

Nokia 0.0812 0.4640 0.3463 0.8505 0.0000 Rejected

Nordea 0.1175 0.2223 0.0469 0.9869 0.7656 Not-Rejected

Sandvik 0.0579 0.2536 -0.0701 0.9846 0.5599 Not-Rejected

SCA 0.2164 0.1912 0.1181 0.9516 0.0204 Rejected

SEB 0.1822 0.2148 0.0981 0.9774 0.3293 Not-Rejected

Securitas 0.1956 0.2250 0.0729 0.9844 0.5501 Not-Rejected

Skanska 0.1396 0.1911 0.0491 0.9875 0.7966 Not-Rejected

SSAB 0.0300 0.2034 0.1090 0.9738 0.1914 Not-Rejected

SKF -0.0610 0.4415 0.1920 0.9713 0.1488 Not-Rejected

Svenska Handelsbanken 0.1531 0.1878 0.0738 0.9643 0.0766 Not-Rejected

Swedbank 0.1863 0.1959 0.1137 0.9614 0.0535 Not-Rejected

Swedish Match 0.0874 0.2061 -0.0570 0.9871 0.7799 Not-Rejected

Tele2 -0.0882 0.2228 -0.1562 0.9216 0.0015 Rejected

TeliaSonera -0.0352 0.1480 0.0344 0.9865 0.7452 Not-Rejected

Volvo Group 0.0651 0.2499 0.0536 0.9846 0.6509 Not-Rejected

Mean 0.0938 0.2345 0.0291

Standard Deviation 0.0893 0.0694 0.1185
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since the investors will have the opportunity to choose between stocks exhibiting significant 

different levels of skewness.  

Please note, however, that stock prices of the current sample under analysis were 

observed in a period of bull markets across the developed world. As this might, ironically, 

skew our analysis, we have decided to enlarge the sample to include a broader period that 

would include stock prices behaviours during the 2007-08 financial crisis and report results 

for both. Unfortunately, Nokia hasn’t been traded on OMX for the full sample period and is 

therefore excluded without a replacement. We don’t see that this would have any significant 

impact on results since Nokia has the highest variance, if anything it would be bad for MVS-

investors since Nokia also had the highest positive skewness. 
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5.1.2.3 OMX30 2003-2016 

Table 3 – Summary statistics and normality testing for OMX 2003-16 monthly returns 

 
Table 3 provides annualized summary statistics for 29 large-capitalization Swedish stock return time series, from a sample of 
monthly observations observed between November 2003 and November 2016, as well as the Wilk-Shapiro test statistic, each 
corresponding p-value, and the final decision on the null hypothesis for normality at the 5% level. The hypothesis of normality 
is rejected for level of p-value < 0.05 

In this table we have a longer time series of returns than in the previous one. As it can be seen 

from the table, returns and standard deviation are higher than in the shorter time period, 

whereas skewness seems quite the same. Further, normality is rejected for 22 stocks out of 

29 at the 5% level, even though W-statistics are similar. This is mainly because we have a 

larger data sample which makes the observations of non-normality more certain. Just as the 

shorter sample, we observe both positive and negative skewness that will certainly have an 

impact on investors choices. However, the higher variance across assets within the sample 

OMX30
Expected 

Return

Standard 

Deviation
Skewness W-test p-value H0

ABB 0.1527 0.2414 -0.1195 0.9746 0.0069 Rejected

Alfa Laval 0.1578 0.2606 -0.1185 0.9883 0.1871 Not-Rejected

Assa Abloy 0.1697 0.2340 0.0532 0.9906 0.3286 Not-Rejected

AstraZeneca 0.0420 0.1969 0.0904 0.9860 0.1052 Not-Rejected

Atlas Copco (class A) 0.1835 0.2530 -0.1122 0.9779 0.0147 Rejected

Atlas Copco (class B) 0.1817 0.2571 -0.1188 0.9800 0.0242 Rejected

Electrolux 0.1384 0.3107 0.1802 0.9633 0.0007 Rejected

Ericsson 0.0147 0.3036 -0.0768 0.9622 0.0005 Rejected

Investor 0.1348 0.1993 -0.0948 0.9881 0.1808 Not-Rejected

Hennes & Mauritz 0.1055 0.1975 0.0712 0.9921 0.5493 Not-Rejected

Getinge 0.0901 0.2642 -0.0810 0.9815 0.0350 Rejected

Boliden 0.2734 0.4831 0.3367 0.9063 0.0000 Rejected

Kinnevik 0.1436 0.3049 -0.0897 0.9920 0.4536 Not-Rejected

Lundin Petroleum 0.2424 0.4068 0.2060 0.9676 0.0016 Rejected

Modern Times Group 0.0993 0.3549 0.1578 0.9244 0.0000 Rejected

Nordea 0.1021 0.2610 0.1030 0.9387 0.0000 Rejected

Sandvik 0.1043 0.2913 -0.1283 0.9825 0.0449 Rejected

SCA 0.0973 0.2214 0.0542 0.9822 0.0415 Rejected

SEB 0.0965 0.3052 -0.1407 0.8910 0.0000 Rejected

Securitas 0.0697 0.2424 -0.0785 0.9665 0.0013 Rejected

Skanska 0.1292 0.2619 0.1549 0.9385 0.0000 Rejected

SKF 0.1063 0.2640 0.1226 0.9799 0.0234 Rejected

SSAB 0.0667 0.3944 -0.1767 0.9836 0.0579 Not-Rejected

Svenska Handelsbanken 0.0968 0.2081 0.0523 0.9798 0.0231 Rejected

Swedbank 0.1091 0.3385 0.2360 0.8379 0.0000 Rejected

Swedish Match 0.1372 0.1733 -0.0824 0.9810 0.0308 Rejected

Tele2 -0.0037 0.2611 -0.1253 0.9777 0.0140 Rejected

TeliaSonera 0.0229 0.1981 -0.0567 0.9749 0.0075 Rejected

Volvo Group 0.1188 0.3213 -0.1388 0.9823 0.0423 Rejected

Mean 0.1166 0.2762 0.0028

Standard Deviation 0.0598 0.0692 0.1369
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might be large enough to offset the strongest preferences for skewness. Thus, we might see 

smaller differences between MV and MVS investors. 

5.1.2.4 DAX30 2011-2016 

Table 4 – Summary statistics and normality testing for DAX 2011 -16 monthly returns 

 
Table 4 provides annualized summary statistics for 30 large-capitalization German stock return time series, from a sample of 
monthly observations observed between October 2011 and November 2016, as well as the Wilk-Shapiro test statistic, each 
corresponding p-value, and the final decision on the null hypothesis for normality at the 5% level. The hypothesis of normality 
is rejected for level of p-value < 0.05 

This data sample, even though another country, is very similar to the Swedish data sample 

from the same period of time. It is perhaps worth noticing that expected returns are slightly 

lower and standard deviations slightly higher. Also, skewness is less prominent but with 

similar variability between assets as the OMX30 from 2011-2016. Also here there are nine 

DAX30
Expected 

Return

Standard 

Deviation
Skewness W-test p-value H0

Adidas 0.2439 0.2395 -0.1158 0.9810 0.4074 Not-Rejected

Allianz 0.1458 0.2044 -0.0905 0.9804 0.4558 Not-Rejected

BASF 0.1035 0.2147 -0.0683 0.9838 0.6206 Not-Rejected

Bayer  0.1468 0.2051 -0.1052 0.9739 0.2354 Not-Rejected

Beiersdorf 0.1433 0.1679 0.0775 0.9835 0.6029 Not-Rejected

BMW 0.1129 0.2932 0.1276 0.9769 0.2737 Not-Rejected

Commerzbank -0.0831 0.4104 0.2554 0.9241 0.0020 Rejected

Daimler 0.1761 0.2949 0.1473 0.9829 0.4892 Not-Rejected

Deutsche Bank -0.0967 0.3443 -0.1373 0.9833 0.5945 Not-Rejected

Deutsche Börse 0.1020 0.1984 -0.0781 0.9611 0.0547 Not-Rejected

Deutsche Post 0.2064 0.1861 -0.1006 0.9760 0.2505 Not-Rejected

Deutsche Telekom 0.1057 0.1911 0.0921 0.9791 0.4031 Not-Rejected

E.ON -0.1592 0.2951 -0.1354 0.9347 0.0048 Rejected

Fresenius  0.0913 0.3530 -0.3970 0.5194 0.0000 Rejected

Fresenius Medical Care 0.0894 0.1591 0.0795 0.9374 0.0061 Rejected

Heidelberg Cement 0.2139 0.1834 0.0283 0.9886 0.8561 Not-Rejected

Henkel 0.2163 0.1859 -0.0417 0.9733 0.1903 Not-Rejected

K+S -0.0915 0.3583 -0.1605 0.9602 0.0504 Not-Rejected

Linde 0.0748 0.1947 -0.0727 0.9375 0.0061 Rejected

Deutsche Lufthansa 0.0866 0.3113 0.0687 0.9894 0.8872 Not-Rejected

MAN 0.0901 0.1699 0.0587 0.8168 0.0000 Rejected

Merck 0.1137 0.3245 -0.2973 0.7736 0.0000 Rejected

Metro -0.0172 0.2904 -0.0922 0.9872 0.6987 Not-Rejected

Munich Re 0.1458 0.1810 -0.1000 0.9695 0.1451 Not-Rejected

RWE -0.0879 0.3579 0.0482 0.9767 0.2687 Not-Rejected

Salzgitter 0.0061 0.3390 0.0857 0.9758 0.2864 Not-Rejected

SAP 0.1421 0.2119 0.1445 0.9295 0.0031 Rejected

Siemens 0.0821 0.1845 0.0806 0.9839 0.6244 Not-Rejected

ThyssenKrupp 0.0782 0.3398 -0.1495 0.9860 0.6357 Not-Rejected

Volkswagen Group 0.0931 0.3204 -0.2049 0.9316 0.0037 Rejected

Mean 0.0825 0.2570 -0.0351

Standard Deviation 0.1002 0.0740 0.1397
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stocks that are significantly different from being normally distributed in their returns and they 

as well exhibits either positive or negative skewness. Thus, we can expect to see similar results 

as with the Swedish 2011-2016 sample, but maybe less differences between MV and MVS 

investors as variance is higher and lowering it through diversification might be more 

important than seeking a positively skewed portfolio. 

5.1.3 Risk-free rate 

An appropriate riskless asset for each sets of assets under analysis is introduced. For the sake 

of the analysis, the risk-free rate will be considered in its pure theoretical meaning: a 

guaranteed rate of return with zero variance, zero covariance with any of the risky assets, as 

well as zero skewness and zero coskewness with any other risky asset. Again, while this might 

be a bit of a stretch from a real-world standpoint, we felt that introducing a riskless asset in 

such form could be an optimal way to eliminate unnecessary complexity in our inputs 

derivation and subsequent analysis of results.  

For our MSCI dataset, we will use the 2015 risk-free rate provided for by professor 

Kenneth French’s online database, at 0.02%. We felt that this might be an adequate proxy for 

a generic riskless asset to the dataset under consideration.   

For our Swedish stocks databases, the risk-free rate will be set at 0.2394%, the 

available interest rate for the 10-years Swedish government bonds, as of November 2016, 

while for our German stocks database, the risk-free rate will be set at 0.27%, the available 

interest rate for 10-years German government bonds as of November 2016. We felt that such 

rates might be an adequate proxy for the risk-free rate available to a respectively a Swedish 

or German investor, as they would reflect internal market condition and present no exchange 

rate risk. Again, interest rates per se are not of importance for our analysis, it is rather a tool 

to introduce the existence of a risk-free asset, as this means that the investors can decrease 

risk by investing in the risk-free instead of investing in just a risky portfolio, that is either 

mean-variance or mean-variance-skewness efficient.  

For completeness, we will also run portfolio optimizations for all data samples without 

including a risk-free asset. However, because only the most risk-averse investors sometimes 

made use of the risk-free, the differences were small between the cases and most of these 

tables are put in the appendix instead.  
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5.1.4 General expectations 

Overall, we expect larger differences between MV and MVS-investors when dealing with 

individual stocks rather than indexes. Indexes are diversified by definition, while the point of 

having preference for skewness is to hold a portfolio that is more concentrated of positive 

skewness assets, hence dealing with diversified assets rather than stocks might limit this 

possibility. However, diversification is also important to an MVS-investor which complicates 

the investment problem. There will be more clarity around this after the next section where 

we analyse how the investors aversions and preferences changes with the parameters in the 

utility function. 

5.2 Parameter selection 

The last thing left to be done before proceeding with the portfolio optimizations is to select 

the different set of parameters 𝛼, 𝛽 and 𝛾 to define the utility function that we will try to 

maximize. The combinations between them will shape our utility function to fit comparable 

different levels and kinds of risk aversion.  

To derive discrete sets of values for 𝛼, 𝛽 and 𝛾, we start looking at the values of 𝐴(𝑊), 

𝑅(𝑊), defining the level of risk aversion, and their respective derivatives 𝑑𝐴/𝑑𝑊 and 

𝑑𝑅/𝑑𝑊 that define the type of risk aversion, assuming 𝑊 =  1. We start by creating a set of 

discrete values for 𝐴(𝑊) and 𝑅(𝑊), and we continue by choosing the signs of the derivatives 

to define different kinds of ARA and RRA. We then work backwards to find a combination of 

parameters 𝛼, 𝛽 and 𝛾 that fits our requirements.  

The set of feasible combinations can be endless. We chose to provide a handful of 

combinations that will provide us with a variety of different investors.  

As we compute 𝐴(𝑊) and 𝑅(𝑊) at initial wealth level 𝑊0 = 1, the two measures of 

risk aversion will have equal value, i.e. 𝐴(𝑊0) = 𝑅(𝑊0). As this is the case, from here onwards 

the notation 𝑅𝐴 will be used to describe the numerical value of both.   

We consider the values for 𝑅𝐴 in the interval 4 ≤ 𝑅𝐴 ≤ 16, 16 being the highest level 

of risk aversion under consideration and 4 the lowest. We do not consider cases where 𝑅𝐴 <

4 as we have noticed that investors might allocate their whole wealth to the asset with the 

highest expected return, since they are not allowed to short-sell. This makes the choice 

unrealistic, and useless to our purposes, since both MVS and MV-investors would have the 
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same allocation. On the other hand, investors with 𝑅𝐴 > 16 would increasingly display wildly 

negative levels of certainty equivalent for some samples in which there is no risk-free asset, 

this meaning that they would choose a certain loss over holding a portfolio of risky assets, as 

their aversion to risk is too high. We deemed levels of 𝑅𝐴 > 16 potentially unrealistic, and 

therefore we excluded them from the analysis. The tables below summarize the sets of 

parameters we choose to analyse for the three discrete values of 𝑅𝐴 of 4, 8 and 16.  

Table 5 – Selection of parameters 

 

Table 5 summarizes the set of parameters we chose to analyse for RA=4, exhibiting corresponding derivatives, risk aversion 
classifications and Kane measures of skewness preference 

Table 6 – Selection of parameters 

 

Table 6 summarizes the set of parameters we chose to analyse for RA=8, exhibiting corresponding derivatives, risk aversion 
classifications and Kane measures of skewness preference 

Table 6 – Selection of parameters 

α β γ RA dA/dW dR/dW ARA RRA S(W) K(W) dS/dW

0 4 1 4 0 4 CARA IRRA 16 4.00 32

1 3 1 4 -1 3 DARA IRRA 17 4.25 24

3 1 1 4 -3 1 DARA IRRA 19 4.75 8

2 4 0.5 4 -3 1 DARA IRRA 19 4.75 8.5

4 0 1 4 -4 0 DARA CRRA 20 5.00 0

3 -1 -1 4 -5 -1 DARA DRRA 21 5.25 -10

0 -4 -1 4 -8 -4 DARA DRRA 24 6.00 -40

2 -1 -2 4 -8 -4 DARA DRRA 24 6.00 -44

0 -2 -2 4 -12 -8 DARA DRRA 28 7.00 -88

0 -1 -4 4 -20 -16 DARA DRRA 36 9.00 -208

Parameters

Risk Aversion

Classification

Selection of parameters for RA=4

Arrow-Pratt measures Kane Measures

α β γ RA dA/dW dR/dW ARA RRA S(W) K(W) dS/dW

0 8 1 8 0 8 CARA IRRA 64 8.00 128

2 6 1 8 -2 6 DARA IRRA 66 8.25 96

6 2 1 8 -6 2 DARA IRRA 70 8.75 32

4 8 0.5 8 -6 2 DARA IRRA 70 8.75 33

8 0 1 8 -8 0 DARA CRRA 72 9.00 0

6 -2 -1 8 -10 -2 DARA DRRA 74 9.25 -36

0 -8 -1 8 -16 -8 DARA DRRA 80 10.00 -144

4 -2 -2 8 -16 -8 DARA DRRA 80 10.00 -152

0 -4 -2 8 -24 -16 DARA DRRA 88 11.00 -304

0 -2 -4 8 -40 -32 DARA DRRA 104 13.00 -672

Parameters

Risk Aversion

Classification

Selection of parameters for RA=8

Arrow-Pratt measures Kane Measures
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Table 7 summarizes the set of parameters we chose to analyse for RA=16, exhibiting corresponding derivatives, risk 
aversion classifications and Kane measures of skewness preference 

It is possible to see that two patterns already emerge. First, we can see that the higher the 

level of risk aversion RA, the higher the values of relative skewness preference S, and 

skewness ratio K. Second the more negative 𝑑𝑅/𝑑𝑊 , the higher the values of 𝑆 and 𝐾. 

Looking at 𝑑𝑅/𝑑𝑊 = −16 (a DRRA investor) for the different levels of RA we see that 𝑆 

increases by a factor of about 3 while looking at 𝑑𝑅/𝑑𝑊 =  -16, -32 and -64 for the highest 

RA 𝑆 increases only by some percent. Thus, more negative values in 𝑑𝑅/𝑑𝑊 (DRRA) seems to 

impact changes in 𝑆 and 𝐾 to a lesser extent than increases in the overall RA level. This means 

that investors with DRRA will have higher skewness preference than investors with CRRA or 

IRRA, everything else being equal, but a CARA investor who is more risk averse will probably 

have higher skewness preference and skewness ratio. However, there is an exception in our 

selection and that is that skewness ratio 𝐾 decreases when moving from DRRA 𝑅𝐴 = 4 

investor to a IRRA 𝑅𝐴 = 8 investor, but skewness preference increases. 

In general, this is a predictor of our empirical results. As values of relative skewness 

preference and skewness ratio increase with the overall level of risk aversion, we expect a 

divergence of expected utility between the mean-variance and mean-variance-skewness 

optimized portfolios. Likewise, we expect such divergence to increase inversely with the value 

of 𝑑𝑅/𝑑𝑊.  It is unclear what happens when skewness preference and ratio moves in 

different directions. 

  

α β γ RA dA/dW dR/dW ARA RRA S(W) K(W) dS/dW

0 16 1 16 0 16 CARA IRRA 256 16.00 512

4 12 1 16 -4 12 DARA IRRA 260 16.25 384

12 4 1 16 -12 4 DARA IRRA 268 16.75 128

8 16 0.5 16 -12 4 DARA IRRA 268 16.75 130

16 0 1 16 -16 0 DARA CRRA 272 17.00 0

12 -4 -1 16 -20 -4 DARA DRRA 276 17.25 -136

0 -16 -1 16 -32 -16 DARA DRRA 288 18.00 -544

8 -4 -2 16 -32 -16 DARA DRRA 288 18.00 -560

0 -8 -2 16 -48 -32 DARA DRRA 304 19.00 -1120

0 -4 -4 16 -80 -64 DARA DRRA 336 21.00 -2368

Parameters

Risk Aversion

Classification

Selection of parameters for RA=16

Arrow-Pratt measures Kane Measures
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5.3 Portfolio optimization 

As now we have the full set of inputs necessary to our numerical analysis, we can finally 

optimize our MV and MVS portfolios that would solve the investor’s allocation problem. 

To find the optimal sets of weights for each optimization we use a numerical algorithm from 

a standard optimization toolbox. While a global optimum exists by definition, Athayde and 

Flores (2004) mention that in the MVS case, several local optimums might exist. When 

programming the optimization algorithm, one needs to make sure to search for a global 

optimum without settling for a local one. As such families of algorithms make use of the 

gradient of the function under optimization, the solution can be found considerably quicker 

if one is able to provide its analytical gradient.  

To find the mean-variance optimal portfolio, we program the algorithm to find the set 

of weights that maximizes the Taylor series expansion of the expected utility, truncated after 

𝑚 = 2: 

𝐸[𝑈(𝑤)] ≈ 𝑈(�̅�) − �̅�−𝛼−1𝑒−𝛽�̅�
𝛾
(𝛼 + 𝛽𝛾�̅�𝛾)

𝜎𝑝
2

2
 

Also, to find the mean-variance-skewness optimal portfolio, we program the algorithm to 

find the set of weights that maximizes the Taylor series approximation truncated at 𝑚 = 3: 

𝐸[𝑈(𝑤)] ≈ 𝑈(�̅�)

− �̅�−𝛼−1𝑒−𝛽�̅�
𝛾
((𝛼 + 𝛽𝛾�̅�𝛾)

𝜎𝑝
2

2

− �̅�−1((𝛼 + 𝛽𝛾�̅�𝛾)2 + 𝛼 + 𝛽𝛾�̅�𝛾(1 − 𝛾))
𝑠𝑝
3

6
) 

We will then maximize both functions for each set of parameters, for each of the four datasets 

under analysis while constraining the weight to be greater or equal than zero, as short selling 

is not allowed. We will repeat the optimizations both with and without considering a riskless 

asset. Hence, for each dataset, we will then have one MV optimized portfolio and one MVS 

optimized portfolio for each set of parameter, from which we can extract the portfolio’s 

expected return, standard deviation of return, skewness of return, Sharpe ratio and the 

investor’s certainty equivalent.  

5.4 Display and analysis of selected results 

We will now display the results of the optimizations for each of the four datasets under 

analysis. As we realized that most results do not differ among cases in which the riskless asset 
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is present or not, we have decided to focus our written analysis on the optimizations where 

a riskless asset is considered, as that would also allow us to observe each portfolio’s Sharpe 

ratio. We will however comment on both cases for the OMX 2003-2016 sample, as we 

discovered a considerable difference between the two. Result tables for the remaining three 

samples in which the riskless asset is not considered will be shown in the appendix. All 

expected returns, standard deviations, skewnesses, certainty equivalents and Sharpe ratios 

are expressed on an annual basis.  

5.4.1 MSCI 2011-2016 

Figure 1 – Optimal portfolios in the MVS space for CARA/IRRA investor  with RA=4  

Figure 1 shows the results for a CARA/IRRA with RA=4 from the optimization of portfolio allocation using 20 MSCI indexes, from a sample of monthly observations between October 2011 
and August 2016, plus a risk-free asset of 0.02% interest as the asset base. MV represents the mean-variance-optimized portfolio and MVS the mean-variance-skewness-optimized portfolio. 
Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective and an expected return-skewness perspective. 
For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 
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Figure 2 - Optimal portfolios in the MVS space for DARA/DRRA investor with RA=16  

 

Figure 2 shows the results for a DARA/DRRA with RA=16 from the optimization of portfolio allocation using 20 MSCI indexes, from a sample of monthly observations between October 2011 
and August 2016, plus a risk-free asset of 0.02% interest as the asset base. MV represents the mean-variance-optimized portfolio and MVS the mean-variance-skewness-optimized portfolio. 
Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective and an expected return-skewness perspective. 
For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 

Table 8 summarizes the resulting different optimal portfolio moments for each investor 

whose preferences are reflected in their utility function, shaped by each different set of 

parameters, together with their corresponding certainty equivalents, the Euclidean distance 

between each portfolio, the Euclidean distance between each portfolio and the equally 

weighted portfolio EW, as well as the simple difference in certainty equivalent for each MVS 

and MV pair of portfolio for the same set of parameters. Figure 1 and Figure 2 illustrate the 

two extreme cases, the CARA/IRRA investor with RA=4 and the DARA/DRRA investor with 

RA=16. From each graph it is easy to see the efficient mean-variance frontier from two 

different angles, the classic view with the expected return on the Y-axis and the standard 

deviation on the X-axis, as well as an additional view that highlights the three-dimensionality 

of the space under consideration, showing the expected return on the Y-axis and skewness 

on the X-axis.  Positions of the two different MV and MVS portfolios are shown for both cases 

and from both points of view, as well as the positions of the various assets under 

consideration and the position of the EW portfolio as a frame of reference.  

The first pattern that we can see is that portfolio expected returns and standard 

deviations are increasing as we move from IRRA investors towards DRRA investors, for both 
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MV and MVS-investors. Naturally, those measures decreases when investors become more 

risk averse. Also, skewness increases for both MV and MVS-investors, but more for the MVS-

investors. The reason for skewness to increase for MV-investors can be found in how the MV-

efficient frontier happened to be for these assets, that is moving towards positive skewness 

when moving towards higher returns. 

As we expected, we do not observe large differences, especially when looking at 

differences in certainty equivalents between MV and MVS investors. All investors under 

consideration seem to invest only in risky assets2, as can be seen from the graphs that MVS 

and MV portfolios place towards the upper-right end of the mean-variance space. This is 

explained by the fact that only well diversified assets are available, which makes possible for 

even a risk averse individual to target a high return portfolio with low standard deviation. 

Further, the set of assets under analysis makes differences in skewness too small to exploit in 

any larger extent. It is worth noting, however, that the two assets with the highest return are 

also those assets with the most positive skewness which increases the observed differences.  

As predicted from section 5.2, we observe a straightforward pattern of higher 

difference in CE with parameters that generate higher skewness preference and ratio3, the 

highest difference being in the DARA/DRRA case, with RA=16, and the lowest being the 

CARA/IRRA at the other end of the spectrum, with RA=4. The only discrepancy is when 

skewness preference and ratio is moving in different directions when moving from an investor 

with DRRA and RA=4 to an investor with IRRA and RA=8.  

Further, there are six pairs of investors who only have differences, within the pairs, in 

the derivative of skewness preference. For all of these pairs there is a small increase in the 

difference in CE for the investor with less negative or more positive derivative. The increase 

is true for both difference in percentage points as well as in percentages, but, as said, this 

difference is small and is nothing compared to the other differences. 

When shifting focus to relative distances among portfolio weights as measured by the 

Euclidean norm, we observe that the pattern is very similar to that of the difference in CE.  

                                                      
2 This makes Sharpe ratio and a case without a riskless asset redundant. 
3 See section 5.2 – Parameter selection 



40 
 

Table 8 – MSCI optimal portfolios with a riskless asset (MSCI 2011-16) 

Table 8 provides the result from the optimization of portfolio allocation using 20 MSCI indexes, from a sample of monthly observations between October 2011 and August 2016, plus a risk-free 
asset of 0.02% interest as the asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk 
aversion (dR/dW), skewness preference, skewness ratio, and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk 
aversion and RRA meaning relative risk aversion. These can be either increasing, constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers 
mean, variance and skewness, and one when the investor only consider mean and variance. The portfolio moments and certainty equivalent are annualized. Euclidean distances are computed 
on the difference in the weights in assets between the MVS-optimized portfolio, the MV-optimized portfolio and the equally weighted portfolio. Difference in certainty equivalent (CE) is calculated 
as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor. 

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio MVS-MV MVS-EW MV-EW

Difference in 

CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.1676 0.1065 0.0416 0.0903 1.5713 0.1610 0.1010 0.0266 0.0890 1.5924 0.1542 0.5369 0.4724 0.001348

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.1667 0.1059 0.0413 0.0881 1.5729 0.1599 0.1002 0.0248 0.0870 1.5942 0.1681 0.5357 0.4683 0.001111

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.1663 0.1056 0.0412 0.0870 1.5735 0.1594 0.0998 0.0239 0.0860 1.5949 0.1749 0.5353 0.4665 0.000974

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.1663 0.1056 0.0412 0.0870 1.5735 0.1594 0.0998 0.0239 0.0860 1.5949 0.1750 0.5353 0.4665 0.000972

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.1659 0.1053 0.0409 0.0862 1.5743 0.1591 0.0996 0.0232 0.0853 1.5954 0.1780 0.5340 0.4652 0.000863

16 -16 0 DARA CRRA 272 17.00 0.0 0.1656 0.1050 0.0403 0.0859 1.5756 0.1589 0.0995 0.0230 0.0850 1.5956 0.1726 0.5303 0.4648 0.000827

16 -12 4 DARA IRRA 268 16.75 128.0 0.1652 0.1046 0.0398 0.0856 1.5769 0.1588 0.0994 0.0228 0.0848 1.5957 0.1674 0.5268 0.4644 0.000792

16 -12 4 DARA IRRA 268 16.75 130.0 0.1652 0.1046 0.0398 0.0856 1.5769 0.1588 0.0994 0.0228 0.0848 1.5957 0.1675 0.5268 0.4644 0.000793

16 -4 12 DARA IRRA 260 16.25 384.0 0.1645 0.1040 0.0387 0.0851 1.5793 0.1586 0.0992 0.0223 0.0843 1.5960 0.1577 0.5203 0.4637 0.000728

16 0 16 CARA IRRA 256 16.00 512.0 0.1642 0.1037 0.0382 0.0848 1.5804 0.1584 0.0991 0.0221 0.0841 1.5962 0.1532 0.5173 0.4633 0.000698

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.1850 0.1246 0.0528 0.1307 1.4837 0.1817 0.1204 0.0494 0.1305 1.5067 0.0681 0.6294 0.6008 0.000170

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.1830 0.1220 0.0510 0.1288 1.4977 0.1805 0.1190 0.0485 0.1287 1.5145 0.0519 0.6121 0.5920 0.000107

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.1821 0.1209 0.0502 0.1279 1.5040 0.1799 0.1183 0.0481 0.1278 1.5182 0.0450 0.6047 0.5880 0.000084

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.1820 0.1209 0.0502 0.1279 1.5040 0.1799 0.1183 0.0481 0.1278 1.5182 0.0449 0.6046 0.5879 0.000083

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.1814 0.1201 0.0496 0.1272 1.5084 0.1794 0.1178 0.0478 0.1271 1.5209 0.0402 0.5996 0.5851 0.000069

8 -8 0 DARA CRRA 72 9.00 0.0 0.1812 0.1199 0.0495 0.1269 1.5098 0.1793 0.1177 0.0477 0.1269 1.5217 0.0387 0.5980 0.5841 0.000064

8 -6 2 DARA IRRA 70 8.75 32.0 0.1810 0.1196 0.0493 0.1267 1.5112 0.1791 0.1175 0.0476 0.1266 1.5226 0.0372 0.5964 0.5832 0.000060

8 -6 2 DARA IRRA 70 8.75 33.0 0.1810 0.1196 0.0493 0.1267 1.5111 0.1791 0.1175 0.0476 0.1266 1.5226 0.0372 0.5964 0.5832 0.000060

8 -2 6 DARA IRRA 66 8.25 96.0 0.1805 0.1191 0.0489 0.1263 1.5138 0.1789 0.1172 0.0474 0.1262 1.5243 0.0344 0.5933 0.5814 0.000052

8 0 8 CARA IRRA 64 8.00 128.0 0.1803 0.1189 0.0488 0.1260 1.5151 0.1787 0.1171 0.0473 0.1260 1.5251 0.0330 0.5918 0.5805 0.000049

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.1927 0.1358 0.0628 0.1601 1.4175 0.1919 0.1341 0.0604 0.1600 1.4297 0.0641 0.7251 0.7037 0.000067

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.1923 0.1350 0.0618 0.1588 1.4231 0.1918 0.1338 0.0600 0.1587 1.4315 0.0477 0.7153 0.7005 0.000039

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.1922 0.1347 0.0613 0.1581 1.4255 0.1917 0.1337 0.0598 0.1581 1.4324 0.0402 0.7109 0.6990 0.000029

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.1922 0.1347 0.0613 0.1581 1.4256 0.1917 0.1337 0.0598 0.1581 1.4324 0.0400 0.7109 0.6989 0.000029

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.1921 0.1344 0.0609 0.1576 1.4273 0.1917 0.1336 0.0597 0.1576 1.4330 0.0347 0.7079 0.6979 0.000022

4 -4 0 DARA CRRA 20 5.00 0.0 0.1921 0.1344 0.0608 0.1574 1.4278 0.1917 0.1336 0.0596 0.1574 1.4332 0.0330 0.7070 0.6975 0.000020

4 -3 1 DARA IRRA 19 4.75 8.0 0.1920 0.1343 0.0607 0.1573 1.4283 0.1917 0.1336 0.0596 0.1572 1.4334 0.0312 0.7060 0.6971 0.000018

4 -3 1 DARA IRRA 19 4.75 8.5 0.1920 0.1343 0.0607 0.1573 1.4283 0.1917 0.1336 0.0596 0.1572 1.4334 0.0312 0.7060 0.6971 0.000018

4 -1 3 DARA IRRA 17 4.25 24.0 0.1919 0.1341 0.0605 0.1569 1.4294 0.1916 0.1335 0.0595 0.1569 1.4338 0.0278 0.7042 0.6965 0.000015

4 0 4 CARA IRRA 16 4.00 32.0 0.1919 0.1341 0.0604 0.1568 1.4299 0.1916 0.1335 0.0594 0.1567 1.4340 0.0261 0.7033 0.6961 0.000013

MV-Optimized Portfolios Euclidean DistancesRisk TypeArrow-Pratt Measures Kane Measures MVS-Optimized Portfolios
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5.4.2 OMX30 2011-2016 

Figure 3 - Optimal portfolios in the MVS space for CARA/IRRA investor with RA=4  

 
Figure 3 shows the results for a CARA/IRRA with RA=4 from the optimization of portfolio allocation using OMXS30 (large-capitalization Swedish stocks), from a sample of monthly 
observations between October 2011 and November 2016, plus a risk-free asset of 0.24% interest as the asset base. MV represents the mean-variance-optimized portfolio and MVS the 
mean-variance-skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective 
and an expected return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 

Figure 4 - Optimal portfolios in the MVS space for DARA/DRRA investor with RA=16  

 
Figure 4 shows the results for a DARA/DRRA with RA=16 from the optimization of portfolio allocation using OMXS30 (large-capitalization Swedish stocks), from a sample of monthly 
observations between October 2011 and November 2016, plus a risk-free asset of 0.24% interest as the asset base. MV represents the mean-variance-optimized portfolio and MVS the 
mean-variance-skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective 
and an expected return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 



42 
 

From Table 9, figure 3 and figure 4 we can see that the overall difference in certainty 

equivalents and distance among MV and MVS portfolios is much higher than in the previously 

analysed sample. As stocks are more spread out in terms of skewness, MVS investors with a 

strong preference for skewness will choose a very different portfolio compared to MV 

investors, and we can see a notable peak of difference in CE of 0.73% per year in the 

DARA/DRRA case with RA=16, graphically visualized in figure 4.  

When comparing differences in CE and distance, we observe a similar pattern to that 

previously analysed MSCI results. Since the variance is higher than in the MSCI case, the most 

risk averse investors will have some weight in the riskless asset and we can therefore compare 

Sharpe ratios. It is thus possible to conclude that the MVS investors are clearly deviating from 

the theorem that says that efficient portfolios should have maximum Sharpe ratio and MVS-

portfolios are thus suboptimal in a MV framework. The MVS-portfolios also breaks the two 

fund separation theorem, since different SR means a different tangency portfolio. It is 

important to note that the Sharpe ratio decreases when we have MV-investors with lower 𝑅𝐴 

because they don’t invest anything in the riskless asset, because of the no-short constraint. 

Additionally, when looking at expected portfolio return and standard deviation we 

again observe that those measures increases when moving from IRRA to DRRA investors. 

However, skewness increases for MVS-investors but decreases for MV-investors when RA=4. 

This behaviour of MV-investors is once again due to the shape of the MV-efficient frontier, 

whereas it is not as asset dependent for MVS-investors.  
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Table 9 - Swedish large cap optimal portfolios with a riskless asset (OMX 2011 -16) 

 
Table 9 provides the result from the optimization of portfolio allocation using OMX30 (large-capitalization Swedish stocks), from a sample of monthly observations between October 2011 and November 2016, plus a 
risk-free asset of 0.24% interest as the asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk aversion (dR/dW), 
skewness preference, skewness ratio, and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk aversion and RRA meaning relative risk aversion. 
These can be either increasing, constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers mean, variance and skewness, and one when the investor only consider mean 
and variance. The portfolio moments and certainty equivalent are annualized. Euclidean distances are computed on the difference in the weights in assets between the MVS-optimized portfolio, the MV-optimized 
portfolio and the equally weighted portfolio. Difference in certainty equivalent (CE) is calculated as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor.    

                 

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio MVS-MV MVS-EW MV-EW

Difference in 

CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.2142 0.1469 0.0831 0.0932 1.4423 0.1742 0.1160 0.0516 0.0859 1.4815 0.3242 0.5371 0.4294 0.007298

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.2130 0.1455 0.0815 0.0878 1.4479 0.1657 0.1102 0.0491 0.0826 1.4815 0.3421 0.5239 0.4291 0.005202

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.2074 0.1411 0.0781 0.0851 1.4527 0.1619 0.1077 0.0479 0.0811 1.4815 0.3201 0.5023 0.4306 0.004005

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.2071 0.1409 0.0779 0.0850 1.4529 0.1619 0.1076 0.0479 0.0810 1.4815 0.3182 0.5013 0.4306 0.003987

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.1960 0.1327 0.0721 0.0833 1.4590 0.1592 0.1059 0.0471 0.0800 1.4815 0.2608 0.4717 0.4321 0.003295

16 -16 0 DARA CRRA 272 17.00 0.0 0.1930 0.1305 0.0706 0.0827 1.4605 0.1584 0.1053 0.0469 0.0796 1.4815 0.2461 0.4651 0.4327 0.003102

16 -12 4 DARA IRRA 268 16.75 128.0 0.1902 0.1285 0.0692 0.0822 1.4619 0.1576 0.1047 0.0466 0.0793 1.4815 0.2326 0.4596 0.4333 0.002920

16 -12 4 DARA IRRA 268 16.75 130.0 0.1902 0.1285 0.0692 0.0822 1.4618 0.1576 0.1047 0.0466 0.0793 1.4815 0.2327 0.4596 0.4333 0.002921

16 -4 12 DARA IRRA 260 16.25 384.0 0.1852 0.1248 0.0666 0.0812 1.4642 0.1559 0.1036 0.0461 0.0786 1.4815 0.2095 0.4513 0.4347 0.002600

16 0 16 CARA IRRA 256 16.00 512.0 0.1829 0.1232 0.0655 0.0808 1.4652 0.1551 0.1031 0.0459 0.0783 1.4815 0.1996 0.4482 0.4354 0.002458

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.2262 0.1532 0.0774 0.1494 1.4613 0.2261 0.1521 0.0684 0.1484 1.4710 0.1248 0.5905 0.5881 0.000989

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.2256 0.1523 0.0761 0.1458 1.4657 0.2254 0.1514 0.0683 0.1450 1.4728 0.1037 0.5812 0.5786 0.000776

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.2253 0.1519 0.0754 0.1439 1.4675 0.2251 0.1511 0.0682 0.1432 1.4736 0.0939 0.5770 0.5741 0.000678

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.2253 0.1519 0.0754 0.1439 1.4676 0.2251 0.1511 0.0682 0.1432 1.4736 0.0937 0.5769 0.5740 0.000676

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.2250 0.1516 0.0749 0.1425 1.4688 0.2248 0.1509 0.0681 0.1419 1.4742 0.0869 0.5739 0.5707 0.000607

8 -8 0 DARA CRRA 72 9.00 0.0 0.2250 0.1515 0.0748 0.1420 1.4692 0.2247 0.1508 0.0681 0.1414 1.4744 0.0846 0.5730 0.5696 0.000585

8 -6 2 DARA IRRA 70 8.75 32.0 0.2249 0.1514 0.0746 0.1415 1.4696 0.2247 0.1507 0.0681 0.1410 1.4745 0.0824 0.5720 0.5686 0.000563

8 -6 2 DARA IRRA 70 8.75 33.0 0.2249 0.1514 0.0746 0.1415 1.4696 0.2247 0.1507 0.0681 0.1410 1.4745 0.0824 0.5720 0.5686 0.000563

8 -2 6 DARA IRRA 66 8.25 96.0 0.2248 0.1512 0.0743 0.1406 1.4704 0.2245 0.1506 0.0680 0.1400 1.4749 0.0780 0.5701 0.5664 0.000519

8 0 8 CARA IRRA 64 8.00 128.0 0.2247 0.1511 0.0742 0.1401 1.4707 0.2244 0.1505 0.0680 0.1396 1.4750 0.0759 0.5691 0.5654 0.000498

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.2359 0.1651 0.0734 0.1888 1.4140 0.2368 0.1664 0.0664 0.1885 1.4093 0.0883 0.7242 0.7451 0.000265

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.2356 0.1646 0.0726 0.1865 1.4170 0.2360 0.1649 0.0668 0.1863 1.4167 0.0737 0.7203 0.7312 0.000169

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.2352 0.1639 0.0718 0.1853 1.4206 0.2355 0.1642 0.0669 0.1852 1.4201 0.0626 0.7149 0.7246 0.000126

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.2352 0.1639 0.0718 0.1853 1.4206 0.2355 0.1642 0.0669 0.1852 1.4202 0.0624 0.7148 0.7245 0.000125

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.2350 0.1634 0.0713 0.1845 1.4231 0.2352 0.1637 0.0670 0.1844 1.4226 0.0546 0.7111 0.7198 0.000098

4 -4 0 DARA CRRA 20 5.00 0.0 0.2349 0.1633 0.0711 0.1842 1.4240 0.2351 0.1635 0.0671 0.1841 1.4234 0.0520 0.7098 0.7182 0.000089

4 -3 1 DARA IRRA 19 4.75 8.0 0.2348 0.1631 0.0710 0.1839 1.4248 0.2350 0.1633 0.0671 0.1838 1.4242 0.0494 0.7086 0.7166 0.000081

4 -3 1 DARA IRRA 19 4.75 8.5 0.2348 0.1631 0.0710 0.1839 1.4248 0.2350 0.1633 0.0671 0.1838 1.4242 0.0494 0.7086 0.7166 0.000081

4 -1 3 DARA IRRA 17 4.25 24.0 0.2346 0.1628 0.0706 0.1833 1.4264 0.2348 0.1630 0.0672 0.1832 1.4257 0.0442 0.7062 0.7136 0.000066

4 0 4 CARA IRRA 16 4.00 32.0 0.2345 0.1627 0.0705 0.1830 1.4271 0.2347 0.1629 0.0672 0.1829 1.4265 0.0417 0.7051 0.7121 0.000059

Arrow-Pratt Measures Kane Measures MVS-Optimized Portfolios MV-Optimized Portfolios Euclidean DistancesRisk Type
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5.4.3 OMX30 2003-2016 

5.4.3.1 With risk-free 

Figure 5 - Optimal portfolios in the MVS space for CARA/IRRA investor with RA=4  

 
Figure 5 shows the results for a CARA/IRRA with RA=4 from the optimization of portfolio allocation using OMXS30 (large-capitalization Swedish stocks) excluding Nokia, from a sample of 
monthly observations between October 2003 and November 2016, plus a risk-free asset of 0.24% interest as the asset base. MV represents the mean-variance-optimized portfolio and MVS 
the mean-variance-skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation 
perspective and an expected return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 

Figure 6 - Optimal portfolios in the MVS space for DARA/DRRA investor with RA=16  

 
Figure 6 shows the results for a DARA/DRRA with RA=16 from the optimization of portfolio allocation using OMXS30 (large-capitalization Swedish stocks) excluding Nokia, from a sample 
of monthly observations between October 2003 and November 2016, plus a risk-free asset of 0.24% interest as the asset base. MV represents the mean-variance-optimized portfolio and 
MVS the mean-variance-skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation 
perspective and an expected return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 
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To add some robustness to the bull market case of OMX30 we also looked at a longer sample 

period to include stock returns behaviours during the financial crisis. This sample exhibits 

higher average returns and standard deviation compared to the previous shorter sample, 

whereas skewness levels look similar. After the optimizations however, expected portfolio 

returns turn out to be generally lower and the portfolios with the highest standard deviation 

are in the same ballpark as those that emerged using inputs from the 2011-2016 sample. This 

means that investors have needed to trade-off a potential higher expected return to contrast 

a more prominent standard deviation through diversification. The additional need for 

diversification has also lead to more negative overall portfolio skewness across our results 

and a smaller distance between MV and MVS portfolios according to Euclidean norm. 

Because the expected return is low compared to standard deviation the investors put 

quite some weight in the risk-free asset which makes the differences between MV and MVS-

investors even smaller, in line with the comments by Jondeau and Rockinger (2006). The 

differences are further diminished because the MV-frontier is moving towards positive 

skewness when decreasing variance, which means that two of the preferences are fulfilled 

simultaneously. Moreover, since MVS-investors are not moving further away from the MV 

efficient frontier, there is not a viable opportunity to gain portfolio positive skewness by 

holding a less-diversified portfolio. 

Further, when comparing differences in CE and distances the pattern of differences 

across the spectrum of risk aversion is very similar to the what we observed using the previous 

OMX30 sample. There are however some exceptions. When we move from a DRRA investor 

with RA=8 to an IRRA investor with RA=16 both the differences in certain equivalent and 

portfolios distances are dropping, even though both skewness preferences and skewness 

ratios are increasing. This is potentially explained by investors’ tendency to allocate more 

wealth in the risk-free asset, which decreases overall differences between MV and MVS. This 

is somewhat supported because the drop is less pronounced and less persistent if we look at 

percentage differences in CE. This is because CE decreases a lot for both MV and MVS-

investors when moving from RA=8 to RA=16 investors. The other alternatives are that this is 

asset base specific or that skewness preference and ratio is missing some information about 

MVS-investors. 
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Although overall differences have decreased, it is worth noticing that Sharpe ratios of 

the very risk averse MVS-investors are inferior to those of MV-investors meaning that those 

investors’ optimal portfolio is suboptimal from a MV perspective, in line with the findings of 

Mitton and Vorkink (2007). Further, different MVS investors hold portfolios which are 

exhibiting different Sharpe ratios, in clear contrast with the prediction of two fund separation 

theorem. 

Moreover, here we do have a case in the upper part of the table when skewness is 

getting more negative for MVS-investors when moving from IRRA-investors to DRRA-

investors. This shows that the general MVS choice is strongly dependent on the underlying 

characteristics of specific asset available in the investment universe, whether it is worth 

moving towards positive skewness since the opportunities to increase expected return might 

be better. Although not positive, skewness in MVS optimal portfolios is still less negative than 

in the MV optimized portfolios.  
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Table 10 - Swedish large cap optimal portfolios with a riskless asset  (OMX 2003-16) 

 
Table 10 provides the result from the optimization of portfolio allocation using OMX30 (large-capitalization Swedish stocks) excluding Nokia, from a sample of monthly observations between October 2003 and November 
2016, plus a risk-free asset of 0.24% interest as the asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk 
aversion (dR/dW), skewness preference, skewness ratio, and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk aversion and RRA meaning 
relative risk aversion. These can be either increasing, constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers mean, variance and skewness, and one when the 
investor only consider mean and variance. The portfolio moments and certainty equivalent are annualized. Euclidean distances are computed on the difference in the weights in assets between the MVS-optimized 
portfolio, the MV-optimized portfolio and the equally weighted portfolio. Difference in certainty equivalent (CE) is calculated as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio MVS-MV MVS-EW MV-EW

Difference in 

CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.0828 0.0724 -0.0321 0.0417 1.1105 0.0895 0.0781 -0.0390 0.0409 1.1153 0.0617 0.5180 0.4867 0.000726

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.0815 0.0712 -0.0320 0.0413 1.1114 0.0875 0.0763 -0.0381 0.0407 1.1153 0.0546 0.5229 0.4946 0.000573

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.0809 0.0706 -0.0319 0.0411 1.1118 0.0865 0.0754 -0.0376 0.0406 1.1153 0.0512 0.5253 0.4985 0.000506

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.0809 0.0706 -0.0319 0.0411 1.1118 0.0865 0.0754 -0.0376 0.0406 1.1153 0.0511 0.5253 0.4985 0.000506

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.0805 0.0702 -0.0319 0.0410 1.1121 0.0858 0.0748 -0.0373 0.0405 1.1153 0.0487 0.5271 0.5014 0.000460

16 -16 0 DARA CRRA 272 17.00 0.0 0.0803 0.0701 -0.0319 0.0409 1.1122 0.0856 0.0746 -0.0372 0.0405 1.1153 0.0479 0.5277 0.5023 0.000446

16 -12 4 DARA IRRA 268 16.75 128.0 0.0802 0.0699 -0.0318 0.0409 1.1123 0.0853 0.0744 -0.0371 0.0404 1.1153 0.0471 0.5282 0.5033 0.000432

16 -12 4 DARA IRRA 268 16.75 130.0 0.0802 0.0699 -0.0318 0.0409 1.1123 0.0853 0.0744 -0.0371 0.0404 1.1153 0.0471 0.5282 0.5033 0.000432

16 -4 12 DARA IRRA 260 16.25 384.0 0.0799 0.0697 -0.0318 0.0408 1.1124 0.0849 0.0740 -0.0369 0.0404 1.1153 0.0455 0.5294 0.5052 0.000404

16 0 16 CARA IRRA 256 16.00 512.0 0.0798 0.0695 -0.0318 0.0407 1.1125 0.0847 0.0738 -0.0368 0.0403 1.1153 0.0447 0.5300 0.5061 0.000391

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.1597 0.1421 -0.0606 0.0826 1.1073 0.1593 0.1409 -0.0692 0.0818 1.1137 0.0757 0.4995 0.4814 0.000837

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.1584 0.1406 -0.0619 0.0811 1.1099 0.1585 0.1401 -0.0691 0.0805 1.1144 0.0639 0.4945 0.4809 0.000622

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.1577 0.1398 -0.0624 0.0804 1.1109 0.1581 0.1397 -0.0691 0.0799 1.1147 0.0582 0.4913 0.4807 0.000530

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.1577 0.1398 -0.0624 0.0804 1.1109 0.1581 0.1397 -0.0691 0.0799 1.1147 0.0581 0.4913 0.4807 0.000528

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.1572 0.1392 -0.0627 0.0799 1.1116 0.1578 0.1394 -0.0691 0.0794 1.1148 0.0541 0.4890 0.4805 0.000467

8 -8 0 DARA CRRA 72 9.00 0.0 0.1570 0.1390 -0.0628 0.0797 1.1118 0.1577 0.1393 -0.0691 0.0793 1.1149 0.0528 0.4882 0.4805 0.000448

8 -6 2 DARA IRRA 70 8.75 32.0 0.1568 0.1389 -0.0630 0.0796 1.1120 0.1576 0.1392 -0.0691 0.0791 1.1149 0.0515 0.4875 0.4805 0.000429

8 -6 2 DARA IRRA 70 8.75 33.0 0.1568 0.1389 -0.0630 0.0796 1.1120 0.1576 0.1392 -0.0691 0.0791 1.1149 0.0515 0.4875 0.4805 0.000429

8 -2 6 DARA IRRA 66 8.25 96.0 0.1565 0.1385 -0.0632 0.0792 1.1124 0.1574 0.1390 -0.0690 0.0788 1.1150 0.0490 0.4860 0.4804 0.000394

8 0 8 CARA IRRA 64 8.00 128.0 0.1563 0.1383 -0.0633 0.0791 1.1125 0.1573 0.1390 -0.0690 0.0787 1.1151 0.0478 0.4853 0.4804 0.000377

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.1801 0.1694 -0.0590 0.1262 1.0492 0.1790 0.1671 -0.0676 0.1259 1.0568 0.0625 0.4741 0.4646 0.000300

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.1785 0.1665 -0.0615 0.1249 1.0575 0.1777 0.1650 -0.0685 0.1247 1.0625 0.0463 0.4764 0.4664 0.000224

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.1778 0.1653 -0.0625 0.1243 1.0610 0.1771 0.1640 -0.0689 0.1241 1.0653 0.0401 0.4778 0.4673 0.000185

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.1778 0.1653 -0.0625 0.1242 1.0610 0.1771 0.1640 -0.0689 0.1241 1.0653 0.0400 0.4778 0.4673 0.000185

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.1773 0.1645 -0.0632 0.1238 1.0634 0.1766 0.1633 -0.0692 0.1236 1.0672 0.0364 0.4790 0.4681 0.000155

4 -4 0 DARA CRRA 20 5.00 0.0 0.1771 0.1642 -0.0634 0.1236 1.0641 0.1765 0.1630 -0.0693 0.1235 1.0679 0.0354 0.4794 0.4683 0.000145

4 -3 1 DARA IRRA 19 4.75 8.0 0.1770 0.1639 -0.0636 0.1235 1.0648 0.1763 0.1628 -0.0693 0.1233 1.0685 0.0345 0.4798 0.4686 0.000134

4 -3 1 DARA IRRA 19 4.75 8.5 0.1770 0.1639 -0.0636 0.1235 1.0648 0.1763 0.1628 -0.0693 0.1233 1.0685 0.0345 0.4798 0.4686 0.000135

4 -1 3 DARA IRRA 17 4.25 24.0 0.1767 0.1634 -0.0640 0.1232 1.0662 0.1760 0.1623 -0.0695 0.1231 1.0698 0.0331 0.4807 0.4691 0.000113

4 0 4 CARA IRRA 16 4.00 32.0 0.1765 0.1632 -0.0642 0.1230 1.0669 0.1759 0.1621 -0.0696 0.1229 1.0704 0.0326 0.4811 0.4694 0.000103

Arrow-Pratt Measures Kane Measures MVS-Optimized Portfolios MV-Optimized Portfolios Euclidean DistancesRisk Type
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5.4.3.2 Without risk-free 

Figure 7 - Optimal portfolios in the MVS space for CARA/IRRA investor with RA=4  

Figure 7 shows the results for a CARA/IRRA with RA=4 from the optimization of portfolio allocation using OMXS30 (large-capitalization Swedish stocks) excluding Nokia, from a sample of 
monthly observations between October 2003 and November 2016, not including a risk-free asset, as the asset base. MV represents the mean-variance-optimized portfolio and MVS the 
mean-variance-skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective 
and an expected return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 

Figure 8 - Optimal portfolios in the MVS space for DARA/DRRA investor with RA=16  

 

Figure 8 shows the results for a DARA/DRRA with RA=16 from the optimization of portfolio allocation using OMXS30 (large-capitalization Swedish stocks) excluding Nokia, from a sample 
of monthly observations between October 2003 and November 2016, not including a risk-free asset, as the asset base. MV represents the mean-variance-optimized portfolio and MVS the 
mean-variance-skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective 
and an expected return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 
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Compared to the result with a risk-free asset, for the same assets and period of time, there is 

no decrease in CE differences and distances when we look at an RA=16 investor rather than 

an RA=8 investor. That also means that difference in CE is constantly increasing with skewness 

preference in this case. This provides some evidence that faults in skewness preference and 

ratio might not be the reason for the drop in the risk-free asset case, however not definitive 

evidence. Results are overall consistent with previous outcomes. 
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Table 8 - Swedish large cap optimal portfolios without a riskless asset (OMX 2003 -16) 

 
The table provides the result from the optimization of portfolio allocation using OMX30 (large-capitalization Swedish stocks) excluding Nokia, from a sample of monthly observations between October 2003 and 
November 2016, not including a risk-free asset, as the asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk 
aversion (dR/dW), skewness preference, skewness ratio, and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk aversion and RRA meaning 
relative risk aversion. These can be either increasing, constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers mean, variance and skewness, and one when the 
investor only consider mean and variance. The portfolio moments and certainty equivalent are annualized. Euclidean distances are computed on the difference in the weights in assets between the MVS-optimized 
portfolio, the MV-optimized portfolio and the equally weighted portfolio. Difference in certainty equivalent (CE) is calculated as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor.

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent MVS-MV MVS-EW MV-EW

Difference 

in CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.1339 0.1229 -0.0491 0.0220 0.1400 0.1254 -0.0622 0.0191 0.0954 0.4414 0.4405 0.002859

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.1331 0.1224 -0.0489 0.0202 0.1391 0.1248 -0.0618 0.0177 0.0947 0.4405 0.4393 0.002523

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.1327 0.1222 -0.0489 0.0193 0.1386 0.1245 -0.0616 0.0170 0.0944 0.4402 0.4388 0.002358

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.1327 0.1222 -0.0489 0.0193 0.1386 0.1245 -0.0616 0.0170 0.0944 0.4402 0.4388 0.002355

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.1324 0.1220 -0.0488 0.0187 0.1383 0.1243 -0.0615 0.0164 0.0942 0.4399 0.4384 0.002234

16 -16 0 DARA CRRA 272 17.00 0.0 0.1323 0.1220 -0.0488 0.0185 0.1382 0.1242 -0.0614 0.0163 0.0941 0.4398 0.4383 0.002194

16 -12 4 DARA IRRA 268 16.75 128.0 0.1322 0.1219 -0.0488 0.0182 0.1380 0.1241 -0.0614 0.0161 0.0941 0.4398 0.4382 0.002152

16 -12 4 DARA IRRA 268 16.75 130.0 0.1322 0.1219 -0.0488 0.0182 0.1380 0.1241 -0.0614 0.0161 0.0941 0.4398 0.4382 0.002153

16 -4 12 DARA IRRA 260 16.25 384.0 0.1321 0.1218 -0.0487 0.0178 0.1378 0.1240 -0.0613 0.0157 0.0940 0.4396 0.4380 0.002071

16 0 16 CARA IRRA 256 16.00 512.0 0.1320 0.1218 -0.0487 0.0176 0.1377 0.1239 -0.0612 0.0156 0.0939 0.4395 0.4379 0.002031

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.1597 0.1421 -0.0606 0.0826 0.1593 0.1409 -0.0692 0.0818 0.0757 0.4984 0.4802 0.000837

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.1584 0.1406 -0.0619 0.0811 0.1585 0.1401 -0.0691 0.0805 0.0639 0.4934 0.4797 0.000622

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.1577 0.1398 -0.0624 0.0804 0.1581 0.1397 -0.0691 0.0799 0.0582 0.4901 0.4795 0.000530

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.1577 0.1398 -0.0624 0.0804 0.1581 0.1397 -0.0691 0.0799 0.0581 0.4901 0.4795 0.000528

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.1572 0.1392 -0.0627 0.0799 0.1578 0.1394 -0.0691 0.0794 0.0541 0.4878 0.4793 0.000467

8 -8 0 DARA CRRA 72 9.00 0.0 0.1570 0.1390 -0.0628 0.0797 0.1577 0.1393 -0.0691 0.0793 0.0528 0.4871 0.4793 0.000448

8 -6 2 DARA IRRA 70 8.75 32.0 0.1568 0.1389 -0.0630 0.0796 0.1576 0.1392 -0.0691 0.0791 0.0515 0.4863 0.4793 0.000429

8 -6 2 DARA IRRA 70 8.75 33.0 0.1568 0.1389 -0.0630 0.0796 0.1576 0.1392 -0.0691 0.0791 0.0515 0.4863 0.4793 0.000429

8 -2 6 DARA IRRA 66 8.25 96.0 0.1565 0.1385 -0.0632 0.0792 0.1574 0.1390 -0.0690 0.0788 0.0490 0.4848 0.4792 0.000394

8 0 8 CARA IRRA 64 8.00 128.0 0.1563 0.1383 -0.0633 0.0791 0.1573 0.1390 -0.0690 0.0787 0.0478 0.4841 0.4792 0.000377

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.1801 0.1694 -0.0590 0.1262 0.1790 0.1671 -0.0676 0.1259 0.0625 0.4729 0.4634 0.000300

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.1785 0.1665 -0.0615 0.1249 0.1777 0.1650 -0.0685 0.1247 0.0463 0.4752 0.4651 0.000224

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.1778 0.1653 -0.0625 0.1243 0.1771 0.1640 -0.0689 0.1241 0.0401 0.4766 0.4661 0.000185

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.1778 0.1653 -0.0625 0.1242 0.1771 0.1640 -0.0689 0.1241 0.0400 0.4766 0.4661 0.000185

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.1773 0.1645 -0.0632 0.1238 0.1766 0.1633 -0.0692 0.1236 0.0364 0.4778 0.4668 0.000155

4 -4 0 DARA CRRA 20 5.00 0.0 0.1771 0.1642 -0.0634 0.1236 0.1765 0.1630 -0.0693 0.1235 0.0354 0.4782 0.4671 0.000145

4 -3 1 DARA IRRA 19 4.75 8.0 0.1770 0.1639 -0.0636 0.1235 0.1763 0.1628 -0.0693 0.1233 0.0345 0.4786 0.4673 0.000134

4 -3 1 DARA IRRA 19 4.75 8.5 0.1770 0.1639 -0.0636 0.1235 0.1763 0.1628 -0.0693 0.1233 0.0345 0.4786 0.4673 0.000135

4 -1 3 DARA IRRA 17 4.25 24.0 0.1767 0.1634 -0.0640 0.1232 0.1760 0.1623 -0.0695 0.1231 0.0331 0.4795 0.4679 0.000113

4 0 4 CARA IRRA 16 4.00 32.0 0.1765 0.1632 -0.0642 0.1230 0.1759 0.1621 -0.0696 0.1229 0.0326 0.4799 0.4681 0.000103

Arrow-Pratt Measures Risk Type Kane Measures MVS-Optimized Portfolios MV-Optimized Portfolios Euclidean Distances
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5.4.4 DAX30 2011-2016 

Figure 9 - Optimal portfolios in the MVS space for CARA/IRRA investor with RA=4  

Figure 9 shows the results for a CARA/IRRA with RA=4 from the optimization of portfolio allocation using DAX30 (large-capitalization German stocks), from a sample of monthly observations 
between October 2011 and November 2016, plus a risk-free asset of 0.27% interest as the asset base. MV represents the mean-variance-optimized portfolio and MVS the mean-variance-
skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective and an expected 

return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 

Figure 10 - Optimal portfolios in the MVS space for DARA/DRRA investor with RA=16  

Figure 10 shows the results for a DARA/DRRA with RA=16 from the optimization of portfolio allocation using DAX30 (large-capitalization German stocks), from a sample of monthly 
observations between October 2011 and November 2016, plus a risk-free asset of 0.27% interest as the asset base. MV represents the mean-variance-optimized portfolio and MVS the 
mean-variance-skewness-optimized portfolio. Each graph in the figure is presenting the same 3D-graph from two different perspectives, an expected return-standard deviation perspective 
and an expected return-skewness perspective. For comparison there is also the equally-weighted (EW) portfolio, the individual assets and the mean-variance efficient frontier. 



52 
 

There are barely any differences in these results as compared to OMX30 from the same period 

of time. The expected return, standard deviation, CE and difference in CE are all slightly lower. 

The skewness is mostly negative here, except for the MVS-investors with RA=16. One 

interesting difference is that skewness becomes more negative for MVS-investors with RA=8 

when moving from IRRA to DRRA investors even though MV-investors behave the opposite. 

Our best guess is that this is asset specific but we don’t have any specific evidence that 

contradicts or support it. However, skewness is moving “correctly” when investors have 

RA=16. Overall these results just add some robustness to the previous tables. 
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Table 8 - German large cap optimal portfolios with a riskless asset (DAX 2011 -16) 

 
The table provides the result from the optimization of portfolio allocation using DAX30 (large-capitalization German stocks), from a sample of monthly observations between October 2011 and November 2016, plus a 
risk-free asset of 0.27% interest as the asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk aversion (dR/dW), 
skewness preference, skewness ratio, and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk aversion and RRA meaning relative risk aversion. 
These can be either increasing, constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers mean, variance and skewness, and one when the investor only consider mean 
and variance. The portfolio moments and certainty equivalent are annualized. Euclidean distances are computed on the difference in the weights in assets between the MVS-optimized portfolio, the MV-optimized 
portfolio and the equally weighted portfolio. Difference in certainty equivalent (CE) is calculated as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor.    

              

 

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Sharpe 

Ratio MVS-MV MVS-EW MV-EW

Difference in 

CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.1794 0.1276 0.0695 0.0812 1.3847 0.1646 0.1119 -0.0354 0.0743 1.4477 0.3165 0.4950 0.3910 0.006929

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.1790 0.1271 0.0688 0.0775 1.3870 0.1571 0.1067 -0.0338 0.0726 1.4477 0.3416 0.4920 0.3932 0.004902

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.1739 0.1230 0.0654 0.0756 1.3923 0.1538 0.1044 -0.0330 0.0718 1.4477 0.3177 0.4718 0.3956 0.003854

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.1738 0.1229 0.0653 0.0756 1.3924 0.1538 0.1043 -0.0330 0.0717 1.4477 0.3168 0.4713 0.3957 0.003841

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.1670 0.1174 0.0607 0.0744 1.3989 0.1514 0.1027 -0.0325 0.0712 1.4477 0.2770 0.4493 0.3979 0.003209

16 -16 0 DARA CRRA 272 17.00 0.0 0.1650 0.1159 0.0594 0.0740 1.4007 0.1506 0.1022 -0.0323 0.0710 1.4477 0.2661 0.4440 0.3987 0.003023

16 -12 4 DARA IRRA 268 16.75 128.0 0.1631 0.1144 0.0582 0.0736 1.4025 0.1499 0.1017 -0.0322 0.0708 1.4477 0.2558 0.4394 0.3995 0.002845

16 -12 4 DARA IRRA 268 16.75 130.0 0.1631 0.1144 0.0582 0.0736 1.4025 0.1499 0.1017 -0.0322 0.0708 1.4477 0.2559 0.4395 0.3995 0.002846

16 -4 12 DARA IRRA 260 16.25 384.0 0.1594 0.1114 0.0552 0.0729 1.4073 0.1484 0.1007 -0.0319 0.0704 1.4477 0.2313 0.4291 0.4013 0.002523

16 0 16 CARA IRRA 256 16.00 512.0 0.1576 0.1099 0.0535 0.0726 1.4102 0.1477 0.1002 -0.0317 0.0702 1.4477 0.2177 0.4238 0.4022 0.002381

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.2174 0.1505 -0.0500 0.1349 1.4269 0.2196 0.1514 -0.0645 0.1340 1.4319 0.1049 0.5156 0.4955 0.000826

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.2155 0.1487 -0.0498 0.1323 1.4315 0.2194 0.1513 -0.0647 0.1316 1.4323 0.0901 0.5022 0.4951 0.000729

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.2147 0.1479 -0.0498 0.1310 1.4335 0.2193 0.1512 -0.0648 0.1303 1.4325 0.0846 0.4963 0.4950 0.000701

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.2147 0.1479 -0.0498 0.1310 1.4336 0.2193 0.1512 -0.0648 0.1303 1.4325 0.0845 0.4962 0.4950 0.000699

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.2141 0.1473 -0.0498 0.1301 1.4349 0.2192 0.1511 -0.0648 0.1294 1.4326 0.0814 0.4921 0.4949 0.000688

8 -8 0 DARA CRRA 72 9.00 0.0 0.2139 0.1471 -0.0498 0.1297 1.4354 0.2192 0.1511 -0.0649 0.1291 1.4327 0.0805 0.4907 0.4948 0.000685

8 -6 2 DARA IRRA 70 8.75 32.0 0.2137 0.1469 -0.0499 0.1294 1.4358 0.2192 0.1511 -0.0649 0.1287 1.4327 0.0797 0.4894 0.4948 0.000683

8 -6 2 DARA IRRA 70 8.75 33.0 0.2137 0.1469 -0.0499 0.1294 1.4358 0.2192 0.1511 -0.0649 0.1287 1.4327 0.0797 0.4894 0.4948 0.000684

8 -2 6 DARA IRRA 66 8.25 96.0 0.2133 0.1466 -0.0499 0.1288 1.4367 0.2191 0.1511 -0.0649 0.1281 1.4328 0.0783 0.4868 0.4948 0.000682

8 0 8 CARA IRRA 64 8.00 128.0 0.2131 0.1464 -0.0499 0.1285 1.4371 0.2191 0.1511 -0.0649 0.1278 1.4328 0.0778 0.4856 0.4947 0.000683

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.2234 0.1573 -0.0531 0.1778 1.4026 0.2232 0.1565 -0.0626 0.1775 1.4087 0.0878 0.5478 0.5210 0.000249

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.2230 0.1565 -0.0556 0.1763 1.4077 0.2228 0.1559 -0.0626 0.1761 1.4118 0.0688 0.5369 0.5174 0.000157

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.2228 0.1561 -0.0567 0.1755 1.4100 0.2227 0.1557 -0.0627 0.1754 1.4132 0.0594 0.5319 0.5158 0.000119

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.2228 0.1561 -0.0568 0.1755 1.4101 0.2227 0.1557 -0.0627 0.1754 1.4132 0.0592 0.5319 0.5157 0.000118

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.2227 0.1559 -0.0576 0.1750 1.4116 0.2226 0.1555 -0.0627 0.1749 1.4142 0.0524 0.5284 0.5146 0.000093

4 -4 0 DARA CRRA 20 5.00 0.0 0.2227 0.1558 -0.0578 0.1748 1.4121 0.2225 0.1554 -0.0627 0.1747 1.4145 0.0500 0.5273 0.5142 0.000085

4 -3 1 DARA IRRA 19 4.75 8.0 0.2226 0.1557 -0.0581 0.1746 1.4127 0.2225 0.1554 -0.0627 0.1745 1.4149 0.0477 0.5261 0.5138 0.000078

4 -3 1 DARA IRRA 19 4.75 8.5 0.2226 0.1557 -0.0581 0.1746 1.4127 0.2225 0.1554 -0.0627 0.1745 1.4149 0.0477 0.5261 0.5138 0.000078

4 -1 3 DARA IRRA 17 4.25 24.0 0.2225 0.1555 -0.0586 0.1742 1.4136 0.2224 0.1552 -0.0628 0.1741 1.4155 0.0430 0.5239 0.5131 0.000064

4 0 4 CARA IRRA 16 4.00 32.0 0.2225 0.1554 -0.0589 0.1740 1.4141 0.2224 0.1552 -0.0628 0.1740 1.4158 0.0407 0.5229 0.5127 0.000057

Risk TypeArrow-Pratt Measures Kane Measures MVS-Optimized Portfolios MV-Optimized Portfolios Euclidean Distances



 

5.5 General patterns and considerations 

In general, the difference in certain equivalent is increasing with skewness preference and 

ratio, when investors become more risk averse, and when moving from the IRRA to the DRRA 

end of the spectrum. However, since the pattern is not perfect between the samples, it seems 

like skewness preference and skewness ratio is missing some information about how the 

pattern of differences in CE will be moving, but there is some possibility that it could be 

because of the assets. On the other hand, the pattern of distance between MV and MVS 

portfolios measured by the Euclidean norm appears to be more asset specific and its pattern 

is not the same as for the difference in CE. Additionally, we noticed that the results for 

differences in CE and distance are not only asset specific but also can vary a lot dependent on 

the time period that is being used as input. Anyhow, we found economically significant 

differences for some investors and they should consider skewness when investing. To 

determine whether or not an investor should consider skewness one can look into her 

skewness preference and skewness ratio, the higher, the more likely the investor will get 

significant differences in their portfolio allocation when adding skewness. 

Further, for the pairwise investors, as far as we saw, the difference in CE and distance 

was always higher for the investor with more positive or less negative derivative of skewness 

preference but these differences in differences was very small and don’t seem to be of any 

importance. However, if you would have a long one-period investment this derivative might 

have some effect since wealth would change substantial and thus the skewness preference, 

even though not very likely. 

Expected return and variance is naturally decreasing with risk aversion but increasing 

when moving from IRRA to DRRA investors. Skewness is mostly moving towards positive 

numbers for MVS-investors when being more risk averse, but it is somewhat asset specific 

since there is one case where this is not true and since MV-investors often move in the same 

direction. Also, skewness is mostly increasing when moving from IRRA to DRRA-investors, 

although there are cases as we have seen that shows that also this is somewhat asset specific. 

However, skewness is always more positive or less negative for MVS-investors and when 

skewness is getting more positive for MV-investors it is generally getting even more positive 

for MVS-investors. 
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Moreover, the difference in Sharpe ratio between MV and MVS-investors, when 

applicable, shows that MVS-investors are investing in a suboptimal way according to a mean-

variance framework. The differences that we noticed also means that the separation theorem 

doesn’t hold in a MVS framework and that there are different tangency portfolios dependent 

on the investors preference and not just one, contradicting fundamental financial theory. 

Lastly, we might have found a reason why someone rationally would be under diversified 

by holding single stocks in too high proportion. This is because diversified asset such as 

indexes or diversified mutual funds seems to exhibit less possibilities to increase positive 

skewness than individual assets, as supported from previous research. 

6 Conclusion 

The mean-variance analysis proposed by Markowitz can be considered the backbone of 

modern financial theory and plays a central role both in literature and in practice. There has 

however been a lot of scepticism over the accuracy of the mean-variance method, due to its 

strong, over simplistic assumption of normality of returns or quadratic utility. Several authors 

have provided evidence against these assumptions and incorporated skewness in the picture. 

The question whether to include skewness and higher order moments in portfolio allocation 

however, has got diverse answers. In this paper we have shed some light to some of the 

previous findings as well as investigated whether the type of risk aversion the investor has 

matters when considering to include skewness into the portfolio allocation problem. We did 

this by using a Taylor series of a general utility function, that we developed ourselves. Using 

this we optimize the portfolio allocation for different investors using both a mean-variance 

framework and a mean-variance-skewness framework. Our findings are in line with previous 

literature, variation in underlying investable assets seem to matter for the result. Also in line 

with previous research, we find that more risk averse investors care more about skewness 

and thus are worse off when the skewness dimension is not incorporated in the portfolio 

allocation decision. Further, we also find that investors with larger decreasing absolute risk 

aversion (DARA) care more about skewness compared to other investors in the other side of 

the risk aversion spectrum. The differences are for some investors economically significant 

and it is important that these investors consider skewness when doing their portfolio 

allocation. We found that one way to tell if investors should include skewness is to investigate 
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their skewness preference and skewness ratio, the higher, the more likely skewness makes a 

difference for the investor. 

The work by Sharpe, efficient portfolios having maximum Sharpe ratio, and Tobin’s 

separation theorem between one common risky portfolio and cash, are challenged by our 

framework. We found that neither of these holds when skewness is included in the picture. 

In the results, we saw that Sharpe ratio is inferior for investors who consider skewness and 

that Sharpe ratio varies between those investors, which means that in the MVS case there is 

no common tangency portfolio. In line with this we also find rational reason why investors 

might invest relatively large part of their wealth in individual stocks. This is because that most 

of the opportunity to increase positive skewness is diversified away in well diversified assets 

such as indexes, which also other authors have claimed. 

It is however important to remember that several authors have raised concerns about 

the use of a Taylor series since it might not converge, as well as badly approximate the true 

utility if truncated to early, for example when the distribution of returns have a too high 

skewness. We do not think it is a problem with the results that we have reported.  

As an additional remark, we should outline that since some investors seem to care 

about skewness, it is possible that they also display specific preferences about kurtosis, which 

could be looked into in future research. Additionally, it is also possible to extend our utility 

function with extra parameters to observe behaviours from a wider set of different investors. 

Finally, even if widely used in theory, there are some doubts whether expected utility is a 

good approximation of reality. Some have already researched the area of portfolio allocation 

within cumulative prospect theory and some of our work could be extended into this specific 

area.  
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Appendix 1 

MSCI optimal portfolios without a riskless asset  

Appendix 1 provides the result from the optimization of portfolio allocation using 20 MSCI indexes, from a sample of monthly observations between October 2011 and August 2016, not including a risk-free asset, as the 
asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk aversion (dR/dW), skewness preference, skewness ratio, 
and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk aversion and RRA meaning relative risk aversion. These can be either increasing, 
constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers mean, variance and skewness, and one when the investor only consider mean and variance. The portfolio 
moments and certainty equivalent are annualized. Euclidean distances are computed on the difference in the weights in assets between the MVS-optimized portfolio, the MV-optimized portfolio and the equally weighted 
portfolio. Difference in certainty equivalent (CE) is calculated as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor. 

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent MVS-MV MVS-EW MV-EW

Difference 

in CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.1676 0.1065 0.0416 0.0903 0.1610 0.1010 0.0266 0.0890 0.1542 0.5347 0.4699 0.001348

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.1667 0.1059 0.0413 0.0881 0.1599 0.1002 0.0248 0.0870 0.1681 0.5335 0.4657 0.001111

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.1663 0.1056 0.0412 0.0870 0.1594 0.0998 0.0239 0.0860 0.1749 0.5331 0.4639 0.000974

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.1663 0.1056 0.0412 0.0870 0.1594 0.0998 0.0239 0.0860 0.1750 0.5331 0.4639 0.000972

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.1659 0.1053 0.0409 0.0862 0.1591 0.0996 0.0232 0.0853 0.1780 0.5318 0.4626 0.000863

16 -16 0 DARA CRRA 272 17.00 0.0 0.1656 0.1050 0.0403 0.0859 0.1589 0.0995 0.0230 0.0850 0.1726 0.5281 0.4622 0.000827

16 -12 4 DARA IRRA 268 16.75 128.0 0.1652 0.1046 0.0398 0.0856 0.1588 0.0994 0.0228 0.0848 0.1674 0.5245 0.4618 0.000792

16 -12 4 DARA IRRA 268 16.75 130.0 0.1652 0.1046 0.0398 0.0856 0.1588 0.0994 0.0228 0.0848 0.1675 0.5245 0.4618 0.000793

16 -4 12 DARA IRRA 260 16.25 384.0 0.1645 0.1040 0.0387 0.0851 0.1586 0.0992 0.0223 0.0843 0.1577 0.5180 0.4611 0.000728

16 0 16 CARA IRRA 256 16.00 512.0 0.1642 0.1037 0.0382 0.0848 0.1584 0.0991 0.0221 0.0841 0.1532 0.5150 0.4607 0.000698

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.1850 0.1246 0.0528 0.1307 0.1817 0.1204 0.0494 0.1305 0.0681 0.6275 0.5988 0.000170

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.1830 0.1220 0.0510 0.1288 0.1805 0.1190 0.0485 0.1287 0.0519 0.6102 0.5900 0.000107

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.1821 0.1209 0.0502 0.1279 0.1799 0.1183 0.0481 0.1278 0.0450 0.6028 0.5859 0.000084

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.1820 0.1209 0.0502 0.1279 0.1799 0.1183 0.0481 0.1278 0.0449 0.6027 0.5859 0.000083

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.1814 0.1201 0.0496 0.1272 0.1794 0.1178 0.0478 0.1271 0.0402 0.5976 0.5830 0.000069

8 -8 0 DARA CRRA 72 9.00 0.0 0.1812 0.1199 0.0495 0.1269 0.1793 0.1177 0.0477 0.1269 0.0387 0.5960 0.5821 0.000064

8 -6 2 DARA IRRA 70 8.75 32.0 0.1810 0.1196 0.0493 0.1267 0.1791 0.1175 0.0476 0.1266 0.0372 0.5944 0.5811 0.000060

8 -6 2 DARA IRRA 70 8.75 33.0 0.1810 0.1196 0.0493 0.1267 0.1791 0.1175 0.0476 0.1266 0.0372 0.5944 0.5811 0.000060

8 -2 6 DARA IRRA 66 8.25 96.0 0.1805 0.1191 0.0489 0.1263 0.1789 0.1172 0.0474 0.1262 0.0344 0.5913 0.5793 0.000052

8 0 8 CARA IRRA 64 8.00 128.0 0.1803 0.1189 0.0488 0.1260 0.1787 0.1171 0.0473 0.1260 0.0330 0.5898 0.5784 0.000049

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.1927 0.1358 0.0628 0.1601 0.1919 0.1341 0.0604 0.1600 0.0641 0.7235 0.7020 0.000067

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.1923 0.1350 0.0618 0.1588 0.1918 0.1338 0.0600 0.1587 0.0477 0.7136 0.6988 0.000039

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.1922 0.1347 0.0613 0.1581 0.1917 0.1337 0.0598 0.1581 0.0402 0.7093 0.6972 0.000029

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.1922 0.1347 0.0613 0.1581 0.1917 0.1337 0.0598 0.1581 0.0400 0.7092 0.6972 0.000029

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.1921 0.1344 0.0609 0.1576 0.1917 0.1336 0.0597 0.1576 0.0347 0.7062 0.6961 0.000022

4 -4 0 DARA CRRA 20 5.00 0.0 0.1921 0.1344 0.0608 0.1574 0.1917 0.1336 0.0596 0.1574 0.0330 0.7053 0.6958 0.000020

4 -3 1 DARA IRRA 19 4.75 8.0 0.1920 0.1343 0.0607 0.1573 0.1917 0.1336 0.0596 0.1572 0.0312 0.7043 0.6954 0.000018

4 -3 1 DARA IRRA 19 4.75 8.5 0.1920 0.1343 0.0607 0.1573 0.1917 0.1336 0.0596 0.1572 0.0312 0.7043 0.6954 0.000018

4 -1 3 DARA IRRA 17 4.25 24.0 0.1919 0.1341 0.0605 0.1569 0.1916 0.1335 0.0595 0.1569 0.0278 0.7025 0.6947 0.000015

4 0 4 CARA IRRA 16 4.00 32.0 0.1919 0.1341 0.0604 0.1568 0.1916 0.1335 0.0594 0.1567 0.0261 0.7016 0.6944 0.000013

Euclidean DistancesArrow-Pratt Measures Risk Type Kane Measures MVS-Optimized Portfolios MV-Optimized Portfolios
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Appendix 2 

Swedish large cap optimal portfolios without a riskless  asset 

The table provides the result from the optimization of portfolio allocation using OMXS30 (large-capitalization Swedish stocks), from a sample of monthly observations between October 2011 and November 2016, not 
including a risk-free asset, as the asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk aversion (dR/dW), 
skewness preference, skewness ratio, and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk aversion and RRA meaning relative risk aversion. 
These can be either increasing, constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers mean, variance and skewness, and one when the investor only consider mean 
and variance. The portfolio moments and certainty equivalent are annualized. Euclidean distances are computed on the difference in the weights in assets between the MVS-optimized portfolio, the MV-optimized 
portfolio and the equally weighted portfolio. Difference in certainty equivalent (CE) is calculated as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor.   

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent MVS-MV MVS-EW MV-EW

Difference 

in CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.2142 0.1469 0.0831 0.0932 0.2091 0.1398 0.0606 0.0862 0.2369 0.5361 0.4622 0.006994

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.2130 0.1455 0.0815 0.0878 0.2066 0.1383 0.0592 0.0813 0.2178 0.5228 0.4540 0.006430

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.2125 0.1448 0.0806 0.0850 0.2055 0.1377 0.0586 0.0789 0.2089 0.5166 0.4502 0.006110

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.2124 0.1448 0.0806 0.0850 0.2054 0.1377 0.0586 0.0789 0.2087 0.5165 0.4501 0.006101

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.2120 0.1444 0.0800 0.0830 0.2045 0.1371 0.0581 0.0771 0.2025 0.5121 0.4469 0.005859

16 -16 0 DARA CRRA 272 17.00 0.0 0.2118 0.1442 0.0798 0.0823 0.2042 0.1369 0.0579 0.0765 0.2005 0.5106 0.4457 0.005775

16 -12 4 DARA IRRA 268 16.75 128.0 0.2117 0.1441 0.0796 0.0816 0.2038 0.1367 0.0578 0.0759 0.1985 0.5092 0.4445 0.005686

16 -12 4 DARA IRRA 268 16.75 130.0 0.2117 0.1441 0.0796 0.0816 0.2038 0.1367 0.0578 0.0759 0.1985 0.5092 0.4445 0.005687

16 -4 12 DARA IRRA 260 16.25 384.0 0.2114 0.1438 0.0792 0.0802 0.2031 0.1363 0.0574 0.0747 0.1945 0.5063 0.4418 0.005528

16 0 16 CARA IRRA 256 16.00 512.0 0.2112 0.1436 0.0790 0.0796 0.2027 0.1361 0.0572 0.0741 0.1927 0.5049 0.4403 0.005454

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.2262 0.1532 0.0774 0.1494 0.2261 0.1521 0.0684 0.1484 0.1248 0.5896 0.5872 0.000989

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.2256 0.1523 0.0761 0.1458 0.2254 0.1514 0.0683 0.1450 0.1037 0.5803 0.5777 0.000776

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.2253 0.1519 0.0754 0.1439 0.2251 0.1511 0.0682 0.1432 0.0939 0.5761 0.5731 0.000678

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.2253 0.1519 0.0754 0.1439 0.2251 0.1511 0.0682 0.1432 0.0937 0.5760 0.5731 0.000676

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.2250 0.1516 0.0749 0.1425 0.2248 0.1509 0.0681 0.1419 0.0869 0.5730 0.5698 0.000607

8 -8 0 DARA CRRA 72 9.00 0.0 0.2250 0.1515 0.0748 0.1420 0.2247 0.1508 0.0681 0.1414 0.0846 0.5720 0.5687 0.000585

8 -6 2 DARA IRRA 70 8.75 32.0 0.2249 0.1514 0.0746 0.1415 0.2247 0.1507 0.0681 0.1410 0.0824 0.5710 0.5676 0.000563

8 -6 2 DARA IRRA 70 8.75 33.0 0.2249 0.1514 0.0746 0.1415 0.2247 0.1507 0.0681 0.1410 0.0824 0.5710 0.5676 0.000563

8 -2 6 DARA IRRA 66 8.25 96.0 0.2248 0.1512 0.0743 0.1406 0.2245 0.1506 0.0680 0.1400 0.0780 0.5691 0.5655 0.000519

8 0 8 CARA IRRA 64 8.00 128.0 0.2247 0.1511 0.0742 0.1401 0.2244 0.1505 0.0680 0.1396 0.0759 0.5682 0.5644 0.000498

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.2359 0.1651 0.0734 0.1888 0.2368 0.1664 0.0664 0.1885 0.0883 0.7235 0.7443 0.000265

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.2356 0.1646 0.0726 0.1865 0.2360 0.1649 0.0668 0.1863 0.0737 0.7195 0.7304 0.000169

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.2352 0.1639 0.0718 0.1853 0.2355 0.1642 0.0669 0.1852 0.0626 0.7141 0.7238 0.000126

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.2352 0.1639 0.0718 0.1853 0.2355 0.1642 0.0669 0.1852 0.0624 0.7141 0.7238 0.000125

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.2350 0.1634 0.0713 0.1845 0.2352 0.1637 0.0670 0.1844 0.0546 0.7103 0.7190 0.000098

4 -4 0 DARA CRRA 20 5.00 0.0 0.2349 0.1633 0.0711 0.1842 0.2351 0.1635 0.0671 0.1841 0.0520 0.7091 0.7175 0.000089

4 -3 1 DARA IRRA 19 4.75 8.0 0.2348 0.1631 0.0710 0.1839 0.2350 0.1633 0.0671 0.1838 0.0494 0.7079 0.7159 0.000081

4 -3 1 DARA IRRA 19 4.75 8.5 0.2348 0.1631 0.0710 0.1839 0.2350 0.1633 0.0671 0.1838 0.0494 0.7079 0.7159 0.000081

4 -1 3 DARA IRRA 17 4.25 24.0 0.2346 0.1628 0.0706 0.1833 0.2348 0.1630 0.0672 0.1832 0.0442 0.7055 0.7128 0.000066

4 0 4 CARA IRRA 16 4.00 32.0 0.2345 0.1627 0.0705 0.1830 0.2347 0.1629 0.0672 0.1829 0.0417 0.7043 0.7113 0.000059

Arrow-Pratt Measures Risk Type Kane Measures MVS-Optimized Portfolios MV-Optimized Portfolios Euclidean Distances
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Appendix 3 

German large cap portfolios without a riskless asset  

The table provides the result from the optimization of portfolio allocation using DAX30 (large-capitalization German stocks), from a sample of monthly observations between October 2011 and November 2016, not 
including a risk-free asset, as the asset base. Each row corresponds to one specific investor defined by its risk aversion (RA), derivative of absolute risk aversion (dA/dW), derivative of relative risk aversion (dR/dW), 
skewness preference, skewness ratio, and derivative of skewness preference (dS/dW). For simplicity the type of risk aversion is included, with ARA meaning absolute risk aversion and RRA meaning relative risk aversion. 
These can be either increasing, constant or decreasing. For each investor there are two resulting portfolios, one when the investor considers mean, variance and skewness, and one when the investor only consider mean 
and variance. The portfolio moments and certainty equivalent are annualized. Euclidean distances are computed on the difference in the weights in assets between the MVS-optimized portfolio, the MV-optimized 
portfolio and the equally weighted portfolio. Difference in certainty equivalent (CE) is calculated as the CE of the MVS-portfolio less the CE of the MV-portfolio for each investor. 

RA dA/dW dR/dW ARA RRA

Skewness 

Preference

Skewness 

Ratio dS/dW

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent

Expected 

Return

Standard 

Deviation Skewness

Certainty 

Equivalent MVS-MV MVS-EW MV-EW

Difference 

in CE

16 -80 -64 DARA DRRA 336 21.00 -2368.0 0.1794 0.1276 0.0695 0.0812 0.1935 0.1321 -0.0272 0.0732 0.2124 0.4939 0.4254 0.008037

16 -48 -32 DARA DRRA 304 19.00 -1120.0 0.1790 0.1271 0.0688 0.0775 0.1907 0.1304 -0.0168 0.0705 0.1998 0.4909 0.4186 0.006946

16 -32 -16 DARA DRRA 288 18.00 -544.0 0.1788 0.1269 0.0685 0.0756 0.1893 0.1296 0.0134 0.0692 0.1942 0.4895 0.4157 0.006411

16 -32 -16 DARA DRRA 288 18.00 -560.0 0.1788 0.1269 0.0684 0.0755 0.1893 0.1295 0.0136 0.0691 0.1941 0.4895 0.4157 0.006402

16 -20 -4 DARA DRRA 276 17.25 -136.0 0.1787 0.1267 0.0682 0.0741 0.1883 0.1290 0.0196 0.0681 0.1903 0.4886 0.4137 0.006013

16 -16 0 DARA CRRA 272 17.00 0.0 0.1786 0.1266 0.0681 0.0737 0.1880 0.1288 0.0209 0.0678 0.1891 0.4883 0.4130 0.005883

16 -12 4 DARA IRRA 268 16.75 128.0 0.1786 0.1266 0.0680 0.0732 0.1876 0.1286 0.0221 0.0674 0.1879 0.4880 0.4124 0.005750

16 -12 4 DARA IRRA 268 16.75 130.0 0.1786 0.1266 0.0680 0.0732 0.1876 0.1286 0.0221 0.0674 0.1879 0.4880 0.4124 0.005751

16 -4 12 DARA IRRA 260 16.25 384.0 0.1785 0.1265 0.0678 0.0722 0.1870 0.1282 0.0241 0.0667 0.1855 0.4875 0.4112 0.005489

16 0 16 CARA IRRA 256 16.00 512.0 0.1784 0.1264 0.0677 0.0718 0.1867 0.1280 0.0250 0.0664 0.1844 0.4872 0.4106 0.005361

8 -40 -32 DARA DRRA 104 13.00 -672.0 0.2174 0.1505 -0.0500 0.1349 0.2196 0.1514 -0.0645 0.1340 0.1049 0.5145 0.4944 0.000826

8 -24 -16 DARA DRRA 88 11.00 -304.0 0.2155 0.1487 -0.0498 0.1323 0.2194 0.1513 -0.0647 0.1316 0.0901 0.5012 0.4940 0.000729

8 -16 -8 DARA DRRA 80 10.00 -144.0 0.2147 0.1479 -0.0498 0.1310 0.2193 0.1512 -0.0648 0.1303 0.0846 0.4952 0.4939 0.000701

8 -16 -8 DARA DRRA 80 10.00 -152.0 0.2147 0.1479 -0.0498 0.1310 0.2193 0.1512 -0.0648 0.1303 0.0845 0.4951 0.4939 0.000699

8 -10 -2 DARA DRRA 74 9.25 -36.0 0.2141 0.1473 -0.0498 0.1301 0.2192 0.1511 -0.0648 0.1294 0.0814 0.4910 0.4938 0.000688

8 -8 0 DARA CRRA 72 9.00 0.0 0.2139 0.1471 -0.0498 0.1297 0.2192 0.1511 -0.0649 0.1291 0.0805 0.4896 0.4937 0.000685

8 -6 2 DARA IRRA 70 8.75 32.0 0.2137 0.1469 -0.0499 0.1294 0.2192 0.1511 -0.0649 0.1287 0.0797 0.4883 0.4937 0.000683

8 -6 2 DARA IRRA 70 8.75 33.0 0.2137 0.1469 -0.0499 0.1294 0.2192 0.1511 -0.0649 0.1287 0.0797 0.4883 0.4937 0.000684

8 -2 6 DARA IRRA 66 8.25 96.0 0.2133 0.1466 -0.0499 0.1288 0.2191 0.1511 -0.0649 0.1281 0.0783 0.4857 0.4937 0.000682

8 0 8 CARA IRRA 64 8.00 128.0 0.2131 0.1464 -0.0499 0.1285 0.2191 0.1511 -0.0649 0.1278 0.0778 0.4845 0.4936 0.000683

4 -20 -16 DARA DRRA 36 9.00 -208.0 0.2234 0.1573 -0.0531 0.1778 0.2232 0.1565 -0.0626 0.1775 0.0878 0.5468 0.5200 0.000249

4 -12 -8 DARA DRRA 28 7.00 -88.0 0.2230 0.1565 -0.0556 0.1763 0.2228 0.1559 -0.0626 0.1761 0.0688 0.5359 0.5164 0.000157

4 -8 -4 DARA DRRA 24 6.00 -40.0 0.2228 0.1561 -0.0567 0.1755 0.2227 0.1557 -0.0627 0.1754 0.0594 0.5309 0.5147 0.000119

4 -8 -4 DARA DRRA 24 6.00 -44.0 0.2228 0.1561 -0.0568 0.1755 0.2227 0.1557 -0.0627 0.1754 0.0592 0.5308 0.5147 0.000118

4 -5 -1 DARA DRRA 21 5.25 -10.0 0.2227 0.1559 -0.0576 0.1750 0.2226 0.1555 -0.0627 0.1749 0.0524 0.5274 0.5135 0.000093

4 -4 0 DARA CRRA 20 5.00 0.0 0.2227 0.1558 -0.0578 0.1748 0.2225 0.1554 -0.0627 0.1747 0.0500 0.5262 0.5132 0.000085

4 -3 1 DARA IRRA 19 4.75 8.0 0.2226 0.1557 -0.0581 0.1746 0.2225 0.1554 -0.0627 0.1745 0.0477 0.5251 0.5128 0.000078

4 -3 1 DARA IRRA 19 4.75 8.5 0.2226 0.1557 -0.0581 0.1746 0.2225 0.1554 -0.0627 0.1745 0.0477 0.5251 0.5128 0.000078

4 -1 3 DARA IRRA 17 4.25 24.0 0.2225 0.1555 -0.0586 0.1742 0.2224 0.1552 -0.0628 0.1741 0.0430 0.5229 0.5120 0.000064

4 0 4 CARA IRRA 16 4.00 32.0 0.2225 0.1554 -0.0589 0.1740 0.2224 0.1552 -0.0628 0.1740 0.0407 0.5218 0.5117 0.000057

Arrow-Pratt Measures Risk Type Kane Measures MVS-Optimized Portfolios MV-Optimized Portfolios Euclidean Distances


