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Abstract	
	

New	financial	regulations	have	constantly	forced	market	participants	to	adapt	to	changing	rules.	Recent	

regulatory	iterations	require	them	to	focus	on	tail	risk	in	portfolios	of	financial	assets.	One	metric	to	quantify	

tail	risk	in	portfolios	is	the	Conditional	Value-at-Risk	(cVaR).	While	academic	research	has	recently	enhanced	

the	importance	of	constructing	optimal	portfolios	from	a	risk	management	perspective	these	results	have	

not	been	 incorporated	 into	business	models	of	 firms	 in	 the	asset	management	 industry.	Therefore,	 this	

thesis	 focuses	 on	 the	 practical	 aspect	 of	 implementing	 a	 process	 to	 optimise	 portfolios	 from	 a	 risk	

perspective.	It	gives	step	by	step	instructions	to	the	optimal	risk	controlling	construction	of	a	portfolio	from	

different	asset	universes	 including	equity,	bonds	and	commodity	 indices.	Backtest	results	show	that	risk	

focussing	strategies	deliver	superior	risk-adjusted	returns	compared	to	traditional	strategies	like	buy	and	

hold	 and	 equal-weight.	 In	 particular,	 the	 cVaR	Deviation	 and	Minimum	Variance	 portfolios	 achieve	 the	

highest	 Sharpe	 Ratio.	 Additionally,	 a	 replication	 consisting	 of	 exchange	 traded	 funds	 validates	 the	

importance	of	 the	 results	 as	 it	 shows	 that	 retail	 investors	are	able	 to	 follow	 the	developed	 investment	

approaches.		
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1 Introduction	

	

The	asset	management	industry	has	gone	through	significant	structural	changes	over	last	

decades.	 Exchange	 traded	 funds	 (ETFs)	 and	 funds	 managed	 by	 quantitative	 asset	

managers	 generated	 massive	 inflows	 during	 recent	 years.	 Consequently,	 the	 share	 of	

funds	managed	by	traditional	money	managers	diminished.	This	process	has	also	lead	to	

changes	in	how	capital	is	invested	by	professionals.	A	larger	set	of	investment	strategies	

and	portfolio	analyses	is	in	place	as	a	consequence	of	the	‘quantification’	of	the	industry.	

Most	 noticeably,	 investment	 strategies	 that	 shift	 their	 focus	 away	 from	 a	 pure	 return	

perspective	towards	the	inclusion	of	embedded	risks	analysis	have	grown	attention	among	

investors.	

However,	the	industry	standard	for	measuring	risk	has	long	been	the	standard	deviation.	

Common	 portfolio	 metrics	 like	 the	 Sharpe	 Ratio	 or	 Tracking	 Error	 apply	 the	 simple	

standard	deviation	as	a	proxy	for	risk.	Despite	well-known	downsides	like	the	penalization	

of	returns	equally	to	losses	and	the	limited	application	to	normally	distributed	returns	has	

the	standard	deviation	remained	the	undisputed	standard	(Rockafellar	et	al.	(2002)).	

Nowadays,	new	risk	measures	rapidly	gain	popularity	among	investment	professionals	and	

investors	mainly	due	to	two	reasons.	First,	financial	regulation,	mostly	represented	by	the	

Basel	accords,	has	introduced	rules	that	require	financial	market	participants	to	adapt	to	

new	rules,	including	new	risk	metrics	that	focus	on	tail	events.	Furthermore,	the	Financial	

Crisis	has	reminded	investors	to	not	only	invest	based	on	a	pure	return	perspective	but	

also	to	embrace	the	potential	loss	in	exceptional	market	environments.	

As	a	consequence,	 the	Value-at-Risk	 (VaR)	and	 related	 risk	metrics	 like	 the	Conditional	

Value-at-Risk	(cVaR)	have	gained	tremendous	importance	in	the	industry	as	they	are	able	

to	 capture	 the	 portfolio	 risk	 in	 extreme	market	 scenarios.	 The	 portfolio	 management	

industry,	however,	has	yet	to	fully	recognize	the	potential	of	pure	risk	focussing	strategies.	

In	 active	 money	 management,	 risk	 objectives	 are,	 if	 at	 all,	 only	 constraints	 in	 the	

optimisation	process.	 For	passive	products,	minimum	volatility	 strategies	 for	downside	

protection	are	common.	The	lack	of	efficient	and	empirical	approaches	to	optimise	large	

sets	of	assets	might	be	an	explanation	 for	 the	 limited	applicability	of	academic	results.	

Thereby,	there	is	significant	potential	for	enhancements	to	the	process.		
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The	aim	of	this	work	is	to	provide	a	guide	to	the	implementation	of	a	portfolio	optimisation	

process	that	minimizes	the	cVaR.	The	focus	hereby	is	on	presenting	an	empirical	step	by	

step	execution	in	Matlab.	

The	 methodology	 of	 the	 thesis	 is	 mainly	 based	 on	 current	 research	 results	 and	 an	

optimisation	approach	by	Rockafellar	and	Uryasev	(2000).	However,	the	implementation	

itself	follows	a	less	academic	but	rather	practical	approach.	

Therefore,	 the	 paper	 is	 structured	 as	 follows:	 Section	 2	 gives	 an	 overview	 of	 relevant	

literature	on	cVaR	portfolio	optimisation	and	important	research	results	for	the	derivation	

of	required	inputs	into	the	process.	Section	3	describes	the	data	used	in	this	thesis.	Section	

4	introduces	the	methodology	applied	throughout	this	thesis	including	the	relevant	risk	

metrics,	variance	and	covariance	estimation	using	sample,	exponentially	weighted	moving	

average	 and	 generalized	 autoregressive	 conditional	 heteroscedasticity	 approaches,	

simulation	and	price	forecast	process,	calculation	of	portfolio	risk	measures	and	portfolio	

construction	and	optimisation.	Section	5	 reports	 the	 results	of	 the	proposed	strategies	

including	 a	 comparison	 of	 the	 impact	 of	 different	 (co)variance	 estimation	methods	 on	

portfolio	characteristics,	followed	by	a	robustness	review	in	section	6.	Section	7	shows	an	

ETF	 strategy	 to	 replicate	 the	 approach.	 Section	 8	 gives	 implications	 of	 the	 results.	 An	

outlook	for	further	research	is	provided	in	section	9.	Section	10	concludes.	

	

2 Related	Literature	

	

The	importance	of	the	concept	of	VaR	has	not	only	got	attention	within	academic	research	

but	 also	 the	 financial	 industry	 has	 increasingly	 focussed	 on	 analysing	 the	 tails	 of	

distributions	and	effects	of	extreme	market	scenarios	on	portfolios	of	assets.	Of	particular	

interest	 for	 the	 present	 thesis	 are	 research	 results	 on	 portfolio	 optimisation	 problems	

based	on	VaR	and	cVaR.	

Portfolio	 optimisation	 first	 gained	 traction	 with	 the	 introduction	 of	 the	 risk-return	

framework	by	Markowitz	 (1952)	 in	which	capital	was	allocated	according	to	the	mean-

variance	approach.		Simultaneously,	Roy	(1952)	pioneered	the	portfolio	selection	under	

shortfall	 constraints.	 In	 his	 “safety-first	 theory”,	 the	 construction	 of	 a	 portfolio	 is	
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conducted	such	that	only	with	a	specific	disaster	probability,	the	value	of	a	portfolio	falls	

below	a	certain	disaster	level.	

In	more	recent	years,	focus	has	shifted	towards	portfolio	optimisation	applying	certain	risk	

measures.	As	the	pioneers	in	this	field,	Rockafellar	and	Uryasev	(2000)	introduced	a	formal	

technique	for	portfolio	construction	and	later	extended	their	approach	to	a	linear	model.	

A	simultaneous	optimisation	of	a	portfolio	VaR	and	cVaR	is	their	main	finding.	In	addition,	

Rockafellar	and	Uryasev	(2002)	discuss	the	application	of	the	cVaR	to	continuous	as	well	

as	 discrete	 loss	 distributions.	 Furthermore,	 Rockafellar	 and	 Uryasev	 (2006)	 establish	 a	

cVaR	deviation	risk	measure	which	will	be	further	outlined	in	section	4.1.	

One	 major	 step	 in	 the	 research	 on	 risk	 measures	 including	 the	 VaR	 has	 been	 the	

introduction	 of	 a	 formal	 definition	 for	 coherent	 risk	 measures.	 Artzner	 et	 al.	 (1999)	

introduced	four	axioms	a	risk	metric	has	to	fulfil	in	order	to	be	a	coherent	risk	measures.	

The	 properties,	 which	 are	 outlined	 in	 detail	 in	 section	 4.1	 and	 desired	 for	 portfolio	

optimisation,	guarantee	that	the	respective	risk	metric	behaves	according	to	expectations.	

Artzner	et	al.	(1999)	demonstrate	how	the	VaR	fails	to	satisfy	all	axioms,	a	finding	that	is	

often	referred	to	in	other	papers	dealing	with	VaR	and	akin	risk	measures.	

Yamai	and	Yoshiba	(2002)	found	instable	results	in	cVaR	estimations	for	distributions	that	

are	 characterized	 by	 fat	 tails,	 typically	 a	 feature	 present	 in	 asset	 returns.	 A	 stable	

estimation	 of	 a	 portfolio	 cVaR	 is	 desired	 to	 ensure	 empirical	 applicability.	 Therefore,	

results	are	tested	for	stability	in	the	robustness	section	6.	

In	order	to	provide	the	reader	with	more	background	of	the	process	of	deriving	input	data	

needed	for	the	optimisation,	the	following	papers	are	of	particular	relevance.	

A	main	 aspect	 of	 the	 concept	 of	 VaR	 and	 cVaR	 are	methods	 for	 volatility	 estimation.	

Especially	relevant	for	this	thesis	are	the	exponentially	weighted	moving	averages	(EWMA)	

and	 generalized	 autoregressive	 conditional	 heteroscedasticity	 (GARCH)	models	 further	

described	in	section	4.2.	For	EWMA	models,	research	results	by	RiskMetrics	(1996)	are	of	

importance.	The	authors	are	the	leading	developer	of	the	methodology	and	are	famous	

for	their	decay	factor	estimation	utilizing	multiple	asset	classes.	The	results	are	of	high	

significance	 as	many	 practitioners	 apply	 the	 given	 values	 for	 their	 volatility	 estimation	

models	without	an	attempt	to	derive	more	precise	results.	This	master	thesis	offers	an	

empirical	 approach	 to	 optimise	 results	 for	 the	 EWMA	 models	 for	 each	 specific	 asset	

individually	and,	thereby,	extends	the	approach	taken	by	RiskMetrics.	
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The	 leading	 researcher	 on	 GARCH	 models	 is	 Bollerslev	 (1986),	 who	 generalized	

autoregressive	 conditional	 heteroskedastic	 models	 (ARCH).	 Bollerslev	 (1986)	 extended	

results	 by	 Engle	 to	 allow	 the	 conditional	 variance	 to	 dynamically	 vary	 over	 time	 as	 a	

function	of	past	errors	terms.	GARCH	(p,q)	processes	are	of	substantial	importance	in	the	

risk	management	 industry	and	are	utilized	 in	 its	simplest	 form,	 the	GARCH	(1,1)	 in	 this	

thesis.	Adding	the	sample	(co)variance,	the	three	estimation	approaches	are	an	integral	

part	of	this	thesis	and	will	be	compared	in	the	result	section.	

 

3 Data	description	

	

In	this	thesis	three	different	datasets	are	considered	to	cover	a	broad	range	of	asset	classes	

and	allow	comparisons	of	results.	The	first	dataset	consists	entirely	of	equity	 indices	of	

different	countries.	The	second	asset	universe	represents	a	multi	asset	opportunity	set	

consisting	 of	 equity,	 bond	 and	 commodity	 indices.	 Lastly,	 a	 pure	 US	 stock	 universe	 is	

constructed.	As	 this	 thesis	aims	 to	evaluate	 the	cVaR	portfolio	optimisation	concept,	a	

thorough	 look	 on	 its	 performance	 for	 different	 asset	 classes	 is	 essential.	 To	 evaluate	

investment	approaches	based	on	 financial	data,	a	 long	history	of	data	 for	a	backtest	 is	

crucial.	For	all	three	asset	universes,	the	longest	available	daily	data	history	was	gathered.	

The	trade-off	between	a	long	history	for	each	individual	asset	and	a	broad	coverage	within	

the	 universes	 led	 to	 the	 dataset	 compositions.	 All	 prices	 are	 total	 return	 prices	 to	

incorporate	dividend	 reinvestments.	 Furthermore,	all	 assets	are	converted	 into	USD	 to	

make	international	assets	comparable	in	terms	of	price	changes	and	losses.	This	excludes	

the	additional	impact	of	foreign	exchange	fluctuations	as	a	separate	asset	class	within	the	

optimisation.	

	

Table	1	shows	the	composition	of	the	first	dataset.	
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Table	1	Equity	Indices	Universe		

Table	1	shows	the	composition	of	the	equity	indices	universe.	

	

Name	 Bloomberg	Ticker	

DAX	Performance	Index	 DAX	Index	

Nikkei	250	Index	 NKY	Index	

S&P	500	Index	 SPX	Index	

FTSE	100	Index	 UKX	Index	

CAC	40	Index	 CAC	Index	

Hang	Seng	Index	 HSI	Index	

IBEX	35	Index	 IBEX	Index	

KOSPI	Index	 KOSPI	Index	

MSCI	Emerging	Market	Index	 MXEF	Index	

MSCI	Australia	Index	 MXAU	Index	

OMX	Stockholm	30	Index	 OMX	Index	

Data	source:	Bloomberg	

	

This	dataset	consists	of	prices	between	December	31
st

,	1987	and	December	30
th

,	2016.	

Table	2	shows	the	correlation	structure	between	all	equity	indices	over	this	period.	The	

lowest	correlation	between	two	indices	is	0.12	and	the	highest	is	0.82	which	will	be	further	

discussed	in	section	8.	
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Table	2	Correlation	Matrix	Equity	Indices	Universe	

Table	2	shows	the	correlation	structure	within	the	equity	indices	universe	

	

		 DAX		 NKY		 SPX		 UKX		 CAC		 HSI		 IBEX		 KOSPI		 MXEF		 MXAU		 OMX		

DAX		 1.00	 0.27	 0.51	 0.73	 0.82	 0.35	 0.73	 0.22	 0.51	 0.31	 0.71	

NKY		 0.27	 1.00	 0.12	 0.29	 0.28	 0.44	 0.27	 0.35	 0.46	 0.48	 0.28	

SPX		 0.51	 0.12	 1.00	 0.51	 0.50	 0.17	 0.46	 0.13	 0.40	 0.12	 0.44	

UKX		 0.73	 0.29	 0.51	 1.00	 0.81	 0.35	 0.71	 0.23	 0.53	 0.32	 0.70	

CAC		 0.82	 0.28	 0.50	 0.81	 1.00	 0.33	 0.80	 0.22	 0.52	 0.31	 0.74	

HSI		 0.35	 0.44	 0.17	 0.35	 0.33	 1.00	 0.32	 0.38	 0.61	 0.51	 0.33	

IBEX		 0.73	 0.27	 0.46	 0.71	 0.80	 0.32	 1.00	 0.21	 0.52	 0.31	 0.68	

KOSPI		 0.22	 0.35	 0.13	 0.23	 0.22	 0.38	 0.21	 1.00	 0.53	 0.35	 0.23	

MXEF		 0.51	 0.46	 0.40	 0.53	 0.52	 0.61	 0.52	 0.53	 1.00	 0.52	 0.50	

MXAU		 0.31	 0.48	 0.12	 0.32	 0.31	 0.51	 0.31	 0.35	 0.52	 1.00	 0.32	

OMX		 0.71	 0.28	 0.44	 0.70	 0.74	 0.33	 0.68	 0.23	 0.50	 0.32	 1.00	
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The	second	dataset,	shown	in	table	3	with	further	information	provided	in	appendix	II,	

consists	of	the	following	twenty	indices	with	correlations	reported	in	table	4.	

	

Table	3	Multi	Asset	Universe		

Table	3	shows	the	composition	of	the	multi	asset	universe.	

Name	

Bloomberg	Ticker/	

Datastream	

Barclays	Long	U.S.	Corporate	-	Investment	Grade	 LHCCORP(IN)+100	

Barclays	U.S.	Corporate	High	Yield	-	Speculative	Grade	 LHYIELD(IN)+100	

S&P	GSCI	Commodity	Total	Return	-	RETURN	IND.	(OFCL)	 GSCITOT	

US-DS	Real	Estate	-	TOT	RETURN	IND	 RLESTUS	

DAX	Performance	Index	 DAX	Index	

Nikkei	250	Index	 NKY	Index	

S&P	500	Index	 SPX	Index	

FTSE	100	Index	 UKX	Index	

CAC	40	Index	 CAC	Index	

Hang	Seng	Index	 HSI	Index	

IBEX	35	Index	 IBEX	Index	

KOSPI	Index	 KOSPI	Index	

FTSE	MIB	Index	 FTSEMIB	Index	

MSCI	Emerging	Market	Index	 MXEF	Index	

MSCI	Australia	Index	 MXAU	Index	

OMX	Stockholm	30	Index	 OMX	Index	

US	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUS10Y	

UK	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUK10Y	

BD	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMBD10Y	

JP	BENCHMARK	10	YEAR	DS	GOVT.	INDEX		 BMJP10Y	

Data	source:	Bloomberg	and	Datastream	

	

This	dataset	consists	of	prices	between	December	31
st

,	1998	and	December	30
th

,	2016.	

All	indices	possess	daily	prices	starting	December	31
st

,	1998.	Especially	for	high	yield	and	

Emerging	Market	indices,	availability	of	daily	prices	is	limited,	resulting	in	a	history	of	less	

than	20	years.		
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Table 4 Correlation Matrix Multi Asset Universe 

Table 4 shows the correlation structure within the multi asset universe. 
	

		 US	IG	 US	HY	 GSCITOT	 RLESTUS	 DAX		 NKY		 SPX		 UKX		 CAC		 HSI		 IBEX		 KOSPI		 FTSEMIB		 MXEF		 MXAU		 OMX		 BMUS10Y	 BMUK10Y	 BMBD10Y	 BMJP10Y	

US	IG	 1.00	 0.18	 -0.13	 -0.13	 -0.20	 0.05	 -0.23	 -0.16	 -0.18	 0.03	 -0.17	 0.01	 -0.17	 -0.04	 0.08	 -0.16	 0.89	 0.30	 0.29	 0.18	

US	HY	 0.18	 1.00	 0.20	 0.13	 0.34	 0.33	 0.22	 0.40	 0.37	 0.34	 0.37	 0.27	 0.38	 0.47	 0.36	 0.33	 -0.08	 0.08	 0.03	 -0.15	

GSCITOT	 -0.13	 0.20	 1.00	 0.16	 0.23	 0.12	 0.24	 0.29	 0.27	 0.16	 0.25	 0.13	 0.28	 0.32	 0.13	 0.23	 -0.18	 0.13	 0.10	 -0.06	

RLESTUS	 -0.13	 0.13	 0.16	 1.00	 0.35	 0.02	 0.69	 0.33	 0.34	 0.11	 0.32	 0.09	 0.32	 0.29	 0.06	 0.32	 -0.18	 0.03	 0.00	 -0.12	

DAX		 -0.20	 0.34	 0.23	 0.35	 1.00	 0.27	 0.61	 0.80	 0.89	 0.36	 0.79	 0.29	 0.82	 0.56	 0.28	 0.78	 -0.34	 -0.09	 -0.16	 -0.27	

NKY		 0.05	 0.33	 0.12	 0.02	 0.27	 1.00	 0.13	 0.30	 0.30	 0.55	 0.27	 0.52	 0.26	 0.55	 0.56	 0.28	 -0.09	 0.02	 -0.03	 -0.27	

SPX		 -0.23	 0.22	 0.24	 0.69	 0.61	 0.13	 1.00	 0.55	 0.57	 0.20	 0.52	 0.16	 0.54	 0.44	 0.13	 0.51	 -0.33	 -0.02	 -0.07	 -0.18	

UKX		 -0.16	 0.40	 0.29	 0.33	 0.80	 0.30	 0.55	 1.00	 0.88	 0.40	 0.78	 0.30	 0.78	 0.61	 0.34	 0.78	 -0.30	 -0.09	 -0.11	 -0.28	

CAC		 -0.18	 0.37	 0.27	 0.34	 0.89	 0.30	 0.57	 0.88	 1.00	 0.38	 0.87	 0.30	 0.88	 0.59	 0.33	 0.82	 -0.33	 -0.08	 -0.16	 -0.30	

HSI		 0.03	 0.34	 0.16	 0.11	 0.36	 0.55	 0.20	 0.40	 0.38	 1.00	 0.35	 0.57	 0.34	 0.75	 0.58	 0.36	 -0.11	 0.06	 -0.01	 -0.17	

IBEX		 -0.17	 0.37	 0.25	 0.32	 0.79	 0.27	 0.52	 0.78	 0.87	 0.35	 1.00	 0.28	 0.87	 0.56	 0.31	 0.74	 -0.31	 -0.04	 -0.11	 -0.27	

KOSPI		 0.01	 0.27	 0.13	 0.09	 0.29	 0.52	 0.16	 0.30	 0.30	 0.57	 0.28	 1.00	 0.27	 0.69	 0.50	 0.30	 -0.10	 0.00	 -0.03	 -0.16	

FTSEMIB		 -0.17	 0.38	 0.28	 0.32	 0.82	 0.26	 0.54	 0.78	 0.88	 0.34	 0.87	 0.27	 1.00	 0.55	 0.29	 0.74	 -0.32	 -0.05	 -0.12	 -0.28	

MXEF		 -0.04	 0.47	 0.32	 0.29	 0.56	 0.55	 0.44	 0.61	 0.59	 0.75	 0.56	 0.69	 0.55	 1.00	 0.60	 0.57	 -0.22	 0.11	 0.07	 -0.20	

MXAU		 0.08	 0.36	 0.13	 0.06	 0.28	 0.56	 0.13	 0.34	 0.33	 0.58	 0.31	 0.50	 0.29	 0.60	 1.00	 0.31	 -0.07	 0.06	 0.03	 -0.17	

OMX		 -0.16	 0.33	 0.23	 0.32	 0.78	 0.28	 0.51	 0.78	 0.82	 0.36	 0.74	 0.30	 0.74	 0.57	 0.31	 1.00	 -0.29	 -0.08	 -0.13	 -0.25	

BMUS10Y	 0.89	 -0.08	 -0.18	 -0.18	 -0.34	 -0.09	 -0.33	 -0.30	 -0.33	 -0.11	 -0.31	 -0.10	 -0.32	 -0.22	 -0.07	 -0.29	 1.00	 0.29	 0.30	 0.26	

BMUK10Y	 0.30	 0.08	 0.13	 0.03	 -0.09	 0.02	 -0.02	 -0.09	 -0.08	 0.06	 -0.04	 0.00	 -0.05	 0.11	 0.06	 -0.08	 0.29	 1.00	 0.69	 0.29	

BMBD10Y	 0.29	 0.03	 0.10	 0.00	 -0.16	 -0.03	 -0.07	 -0.11	 -0.16	 -0.01	 -0.11	 -0.03	 -0.12	 0.07	 0.03	 -0.13	 0.30	 0.69	 1.00	 0.39	

BMJP10Y	 0.18	 -0.15	 -0.06	 -0.12	 -0.27	 -0.27	 -0.18	 -0.28	 -0.30	 -0.17	 -0.27	 -0.16	 -0.28	 -0.20	 -0.17	 -0.25	 0.26	 0.29	 0.39	 1.00	



9 
 

The	third	dataset	consists	entirely	of	 individual	stocks.	 It	 is	constructed	by	applying	the	

following	selection	rules	to	US-stocks.	Each	stock	must	have	a	stock	price	history	of	at	least	

three	years	on	a	selection	day	to	become	eligible.	Its	country	of	risk2	must	be	the	United	

States	of	America	and	it	also	must	be	listed	on	an	exchange	in	the	US.	Furthermore,	only	

one	share	class	per	company	is	considered	for	the	selection	process.	On	each	selection	

day,	the	50	largest	companies	according	to	their	market	capitalization	are	chosen	from	the	

eligible	stock	universe.	The	selection	day	is	the	last	trading	day	in	December	of	each	year.	

Stocks	are	 selected	between	1995	and	2016.	The	entire	dataset	 consists	of	121	 stocks	

which	 fulfilled	 the	 selection	 criteria	 in	 at	 least	 one	 of	 the	 21	 selections.	 For	 all	 121	

companies,	stock	prices	and	market	capitalizations	 in	USD	are	compiled.	The	prices	are	

total	return	prices	to	account	for	reinvestments	of	dividends	into	the	respective	stock	and	

adjusted	for	stock	splits.		

Following	this	selection	methodology	helps	to	overcome	a	survivorship	bias	as	stocks	can	

enter	and	exit	the	eligible	universe	depending	on	their	market	capitalization	at	the	time	of	

the	selection	day.	This	includes	companies	that	fulfil	the	criteria	at	that	time	but	might	be	

delisted	over	the	analysed	period.		

	

4 Methodology	

4.1 Motivation	for	conditional	Value-at-Risk	approach		

	

Academic	research	has	long	focussed	on	the	choice	of	the	superior	risk	metric	considering	

the	 VaR	 and	 cVaR	 as	 relevant	 measures.	 The	 argumentation	 is	 based	 on	 different	

mathematical	properties,	robustness	of	statistical	estimation,	simplicity	in	the	process	of	

optimising	with	regard	to	the	relevant	metric	and	the	regulatory	environment	(Sarykalin	

(2008)).		

Following	the	argumentation	of	Quaranta	and	Zaffaroni	(2008),	a	quantile	based	measure	

of	risk	such	as	the	VaR	and	cVaR	allow	for	capturing	the	difference	between	positive	and	

                                                
2	The	country	of	risk	is	a	country	classification	set	by	Bloomberg.	Bloomberg	defines	this	country	assignment	in	
the	following	way:	Returns	the	International	Organization	for	Standardization	(ISO)	country	code	of	the	issuer's	
country	of	risk.	Methodology	consists	of	four	factors	listed	in	order	of	importance:	management	location,	
country	of	primary	listing,	country	of	revenue	and	reporting	currency	of	the	issuer.	Management	location	is	
defined	by	country	of	domicile	unless	location	of	such	key	players	as	Chief	Executive	Officer	(CEO),	Chief	
Financial	Officer	(CFO),	Chief	Operating	Officer	(COO),	and/or	General	Counsel	is	proven	to	be	otherwise.	
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negative	deviations	of	returns	from	their	means.	As	both	market	participants	as	well	as	

regulators	are	mainly	concerned	about	deviations	to	the	downside,	the	attention	towards	

quantile	based	measures	has	increased	recently.		

	

A	 motivation	 for	 the	 application	 of	 the	 cVaR	 rather	 than	 the	 VaR	 requires	 an	 exact	

definition	of	the	two	concepts	in	order	to	point	out	the	shortcomings	of	the	VaR	in	relation	

to	the	cVaR.	

	

Formally,	 let	 !	 be	 a	 random	 variable	 with	 cumulative	 distribution	 function	 "# $ =

& ! ≤ $ ,	the	VaR	is	defined	as	follows	

	

	 ()*+ ! = ,-. $|"# $ ≥ 	2 	 (1)	

	

with	2	 ∈ (0,1)	 representing	 the	 confidence	 level.	 In	 this	 case,	 X	 is	 representing	 asset	

losses,	 causing	 the	 relation	 in	 the	 formula	 to	 be	 ‘greater	 or	 equal	 to’	 (Sarykalin	 et	 al.	

(2008)).	

	

According	to	Inui	and	Kijima	(2005),	the	VaR	is	one	of	the	most	popular	risk	measures	used	

by	 financial	 institutions.	However,	 it	 has	 been	 criticized	 by	 several	 researchers	 for	 not	

being	 a	 coherent	 risk	 measure	 as	 it	 entails	 severe	 undesirable	 mathematical	

characteristics	(Inui	and	Kijima	(2005),	Quaranta	and	Zaffaroni	(2008)	and	Rockafellar	and	

Uryasev	(2002)).	Referring	to	Artzner	et	al.	(1999),	a	risk	measure	is	coherent	if	it	satisfies	

the	following	four	axioms	where	9 ! 	stands	for	a	certain	risk	measure	9	of	!,	a	random	

variable	denoting	the	final	net	worth	of	a	position	or	a	portfolio:	

	

Axiom	1:	Translation	invariance	

	

Let	!	be	defined	as	above,	:	the	set	of	all	risks	and	;	the	total	return	on	an	asset,	then	for	

all	! ∈ :	and	all	real	numbers	2,	the	following	holds:	

	

	 9 ! + 	2 ∗ ; = 9 ! − 	2	 (2)	

	



11 
 

The	term	2	can	be	interpreted	as	an	initial	amount	of	capital	2	that	has	a	certain	expected	

return.	 Axiom	 1	 implies	 that	 adding	 the	 safe	 asset	 (e.g.	 cash)	 to	 the	 existing	 position	

decreases	the	risk	measure	by	the	same	amount.	The	opposite	applies	for	decreasing	the	

position	by	2.	Axiom	1	is	also	often	referred	to	as	the	‘Risk	Free	Condition’.		

	

Axiom	2:	Subadditivity	

	

Let	!	and	:	be	defined	as	in	Axiom	1.	Then	for	all	!?and	!@ ∈ :,	the	following	holds:	

	

	 9 !? +	!@ ≤ 9 !? + 9(!@)	 (3)	

	

Subadditivity	implies	that	the	risk	measure	for	portfolios	consisting	of	multiple	positions	

is	bounded	from	above	by	the	sum	of	the	same	risk	measure	for	all	positions	individually.	

In	other	words,	combining	positions	in	a	portfolio	allows	for	diversification.	

	

Axiom	3:	Positive	homogeneity	

	

For	all	! ∈ :	and	all	A	 ≥ 0,		

	

	 9 A! = 	A9 ! 	 (4)	

	

Axiom	 3	 eliminates	 any	 non-linear	 effects	 of	 position	 sizes.	 Positive	 homogeneity	

guarantees	 that	 the	 relationship	 between	 the	 amount	 invested	 in	 a	 position	 and	 the	

associated	risk	is	linear.	

	

Axiom	4:	Monotonicity	

	

For	all	!	and	B ∈ :	with	! ≤ B,	the	following	holds:	

	

	 9 B ≤ 	9 ! 	 (5)	
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If	! ≤ B	and	!	and	B ∈ :,	then	in	all	instances	the	outcome	of	B	is	more	positive	than	(or	

equal	to)	!,	i.e.	the	expected	return	of	B	is	superior	to	the	one	of	!.	Consequently,	the	

risk	associated	with	the	more	positive	outcome	(B)	is	smaller	than	(or	equal	to)	the	risk	of	

the	less	positive	outcome.	

 

In	the	context	of	this	thesis	it	is	of	particular	interest	to	point	out	the	shortcoming	of	the	

VaR.	For	this	risk	measure,	the	most	cited	critique	is	the	lack	of	subadditivity,	which	implies	

that	a	higher	degree	of	diversification	of	a	portfolio	is	not	necessarily	associated	with	a	

reduced	VaR.	Only	in	the	case	of	normally	distributed	losses	for	a	portfolio	where	the	VaR	

is	simply	the	standard	deviation	of	the	 loss	distribution	scaled	up	by	the	z-score	of	the	

analysed	percentile,	the	VaR	conforms	to	the	axioms	and	is,	consequently,	a	coherent	risk	

measure.	However,	as	widely	accepted	in	financial	research,	empirically	observed	return	

distributions	 are	 rarely	 normal,	 leaving	 the	 VaR	 breaching	 the	 Subadditivity	 axiom	 as	

shown	in	Rockafellar	and	Uryasev	(2000)).	An	illustration	is	given	by	the	following	example	

adapted	from	Kisiala	(2015):	

	

Given	the	following	two	assets	A	and	B	with	three	different	scenarios	C?, C@	and	CG	and	

their	probabilities	p(CH),	the	table	below	shows	the	losses	for	each	asset	in	the	respective	

state	of	the	scenarios:	

	

	 p(C?)=	0.06	 p(C@)=	0.06	 p(CG)=	0.88	

A	 500	 0	 0	

B	 0	 500	 0	

A+B	 500	 500	 0	

	

The	()*I.KI L 	is	equal	to	the	()*I.KI M 	and	both	have	a	value	of	0	as	the	probability	

of	a	loss	greater	than	zero	for	A	and	B	is	lower	than	the	confidence	level	of	the	VaR	(with	

a	 probability	 of	 0.94	 there	 will	 be	 no	 losses	 for	 both	 assets).	 However,	 the	 portfolio	

consisting	of	A	and	B	has	a	()*I.KI L + M = 500	 and	 thereby	violates	axiom	2	–	 the	

subadditivity	criteria	as	()*I.KI L + M ≥ 	()*I.KI L 	+	()*I.KI M .	
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Furthermore,	 Krokhmal	 et	 al.	 (2001)	 point	 out	 that	 the	VaR	 is	 difficult	 to	 optimise	 for	

discrete	distributions	which	are	generated	using	a	simulation	as	multiple	extrema	impede	

the	construction	of	a	risk	optimal	portfolio.	This	thesis	tries	to	construct	a	portfolio	using	

a	risk	measure	from	simulated	non-normal	returns.	As	a	simulation	of	future	asset	returns	

results	 in	 a	 discrete	 distribution	 of	 portfolio	 losses,	 the	 VaR	 does	 not	 serve	 as	 an	

appropriate	measure	for	the	purpose	of	this	thesis.	

	

In	contrast	to	the	VaR,	the	cVaR	is	defined	by	Artzner	et	al.	(1999)	as	a	coherent	measure	

of	risk.	As	the	cVaR	is	the	weighted	average	of	the	VaR	and	losses	strictly	exceeding	the	

VaR,	this	methodology	combines	the	benefits	of	being	a	coherent	risk	measure	with	the	

quantile	based	approach.	Following	the	approach	by	Sarykalin	et	al.	(2008),	the	cVaR	is	

determined	as	the	following:	

	

	 O()*+(!) = 	P[!	|!	 ≥ ()*+ ! ]	 (6)	

	

In	addition,	constructing	the	cVaR	as	a	weighted	average	of	the	mass	points	in	the	tail,	it	

includes	the	entire	tail	of	the	loss	distribution	by	design.	Not	only	does	this	approach	result	

in	a	more	conservative	risk	measure	compared	to	the	VaR	(Sarykalin	et	al.	(2008)),	but	also	

incorporates	insight	into	the	distribution	within	the	tail	as	show	in	figure	1.	Especially	in	

extreme	scenario	testing,	the	cVaR	controls	for	losses	exceeding	the	VaR	and,	therefore,	

gives	a	more	adequate	picture	of	the	risk	embedded	in	the	portfolio	positioning.		

	

Following	the	introduction	of	the	cVaR,	it	is	worth	looking	at	the	aforementioned	example	

in	which	the	VaR	lacked	to	fulfil	the	second	axiom.	The	cVaR,	however,	is	able	to	overcome	

this	drawback	of	the	VaR	as	 it	 is	a	coherent	risk	measure.	For	each	individual	asset	the	

O()*I.KI L = O()*I.KI(M) =
I.IS

I.?
∗ 500 = 300	and	the	portfolio	consisting	of	A	and	B	

has	 a	 O()*I.K L + M = ()*I.K L + M = 500	 since	 there	 are	 no	 losses	 strictly	

exceeding	the	()*I.K(L + M).	Consequently,	the	cVaR	fulfils	the	subadditivity	axiom	as	

O()*I.K L + M ≤ O()*I.KI L + O()*I.KI(M).	

 



14 
 

Given	the	importance	of	overall	quantile	based	concepts	and	the	lack	of	coherence	of	the	

VaR,	the	cVaR	was	chosen	as	the	risk	measure	for	optimising	and	constructing	portfolios	

of	assets	described	in	section	3.		

 

More	 recently,	 Rockafellar	 et	 al.	 (2006)	 have	 brought	 an	 additional	 risk	metric	 to	 the	

researcher	‘s	and	practitioner	‘s	attention.	Of	the	multiple	deviation	metrics	in	risk	analysis	

raised	by	them,	the	cVaR	deviation	is	of	major	importance	for	this	thesis.		

Formally,	the	cVaR	deviation	for	all	2 ∈ (0,1)	is	defined	as	follows:	

	

	 O()*UVWHXYHZ[ = O()*+(! − P!)	 (7)	

	

with	O()*+ ! 	as	the	cVaR	calculated	following	formula	6,	!	denoting	the	simulated	asset	

losses	and	P!	representation	the	expected	simulated	asset	loss,	i.e.	the	mean	asset	loss.	

As	the	calculation	requires	the	same	inputs	as	the	usual	cVaR	and	only	adds	the	mean	of	

the	forecasted	losses,	no	further	computational	effort	is	required	in	order	to	determine	

the	cVaR	deviation	for	a	specific	asset.	

Following	the	superior	properties	of	the	cVaR	over	the	VaR,	Rockafellar	et	al.	(2006)	and	

Sarykalin	 et	 al.	 (2008)	 show	 that	 the	 cVaR	deviation	 does	 as	well	 fulfil	 all	 four	 axioms	

introduced	by	Artzner	et	al.	(1999)	in	order	to	be	classified	as	a	coherent	risk	metric.		

This	fairly	new	measure	is	also	included	in	figure	1	which	shows	the	differences	between	

the	aforementioned	risk	metrics	graphically.	

A	particularly	appealing	feature	of	the	cVaR	deviation	is	that	it	not	only	has	the	embedded	

information	about	the	shape	of	the	tail	but	also	incorporates	additional	insight	into	the	

distribution	of	all	losses	larger	than	the	mean.	In	other	words,	the	cVaR	deviation	measure	

gives	 a	more	 comprehensive	 picture	 about	 the	 loss	 distribution	 and	 allows	 for	 further	

inferences	in	terms	of	the	risks	involved.		

Furthermore,	common	portfolio	metrics	including	a	deviation	metric,	e.g.	the	Sharpe	Ratio	

with	 the	 standard	 deviation	 in	 its	 denominator,	 should	 be	 calculated	 with	 the	 cVaR	

deviation	metric	rather	than	the	cVaR	(Sarykalin	et	al.	(2008)).	It	is	worth	noting	that	the	

above-mentioned	risk	metrics	cannot	be	compared	in	absolute	terms	since	the	deviation	

measures	are	calculated	by	subtracting	the	mean.	
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Figure	1		VaR	and	cVaR		

Figure	1	shows	the	determination	of	VaR,	cVaR	and	cVaR	deviation.	

	
Source:	Sarykalin	et	al.	(2008)
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4.2 Variance	and	covariance	estimation		

	

In	this	master	thesis	three	different	volatility	and	covariance	estimation	procedures	are	

considered	and	compared	in	terms	of	robustness	and	accuracy	of	the	results.	First,	simple	

sample	 variances	 and	 covariances	 from	 the	 above	 described	 datasets	 are	 calculated.	

Second,	the	exponentially	weighted	moving	average	(EWMA)	following	the	approach	by	

RiskMetrics	 is	 constructed.	 Lastly,	 a	 generalized	 autoregressive	 conditional	

heteroscedasticity	(GARCH)	model,	a	model	which	is	widely	used	in	risk	management,	is	

estimated.	 The	 following	 sub-chapters	 give	 an	 overview	 of	 the	 motivation	 and	 the	

calculation	methodology	of	each	method.	

	

4.2.1 Sample	variance	and	covariance	

	

A	simple	sample	variance	and	covariance	estimation	is	by	far	the	easiest	method	to	

determine	 a	 measure	 for	 volatility	 and	 correlations.	 As	 it	 requires	 no	 further	

optimisation	and	can	simply	be	derived	 from	the	observed	data,	 it	offers	 the	 least	

computational	 power	 demanding	 method	 to	 base	 further	 risk	 analyses	 on.	

The	sample	variance	and	covariance	are	calculated	in	the	following	way:	

	

	 !" =
1

% − 1 (() − ()"
+

),-

	 (8)	

	

	 ./0 (-,2, (",2 =
1

% − 1 (-,) − (- ((",) − (")
+

),-

	 (9)	

	

where	(	is	calculated	as	the	average	return	

	

	
( =

1
% ()

+

),-

	

	

(10)	
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Calculating	the	variance	and	covariance	as	described	above,	it	is	of	importance	to	bear	

in	mind	that	every	observation	is	weighted	equally	and	has	the	same	impact	on	the	

estimate.	This	feature	might	result	in	less	appropriate	results	if	one	assumes	general	

shifts	in	absolute	volatility	over	time.	

	

4.2.2 Exponentially	weighted	moving	average	variance	and	covariance	

	

In	contrast	to	the	sample	variance,	the	EWMA	variance	is	calculated	using	a	different	

weighting	scheme.	It	weights	every	observation	exponentially	using	a	decay	factor	l.	

This	 provides,	 in	 general,	 two	 advantages	 compared	 to	 the	 equally	 weighted	

estimation.	By	using	l	to	weight	observations,	the	EWMA	variance	reacts	faster	to	

current	 market	 shocks	 as	 recent	 data	 has	 a	 higher	 weight	 within	 the	 variance	

estimation.	Furthermore,	more	distant	observations	 that	potentially	 incorporate	a	

deviating	 volatility	 regime	 or	 lack	 significance	 on	 the	 current	 estimate	 have	 less	

impact	 on	 the	 result.	 The	 same	 logic	 applies	 to	 the	 covariance	 estimation	 (J.P.	

Morgan,	1996),	allowing	to	 incorporate	higher	weight	on	recent	co-movements	of	

assets’	returns.	

The	variance	and	the	covariance	are	calculated	in	the	following	way:	

	

	 4)5-|)" = 	74)|)8-" + 1 − 7 ()"	 (11)	

	

	 4-",)5-|) = 	74-",)|)8-" + 1 − 7 (-,)(",)	 (12)	

	

where	4)5-|)" 	and	4-",)5-|)	are	the	one	day	forecasts	based	on	information	in	time	:	

(J.P.	Morgan,	1996).	()"	 and	(-,)(",)	 are	 the	 lagged	squared	 returns	and	 lagged	co-

returns,	respectively.	

J.P.	Morgan	proposes	to	use	a	decay	factor	7 = 0.94	for	a	daily	data	set	and	7 = 0.97	

for	a	monthly	data.	J.P.	Morgan	performs	the	same	optimisation	described	below	to	

determine	 a	 decay	 factor	 for	 each	 asset	 individually.	 Consequently,	 lambda	 is	

calculated	as	a	weighted	average	of	the	individual	optimal	decay	factors.	These	decay	

factors	are	weighted	according	to	their	forecast	accuracy	measured	by	the	root	mean	
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squared	error.	Given	the	history	of	analysed	asset	returns,	J.P.	Morgan	derives	the	

optimal	decay	factors	of	0.94	and	0.97,	respectively.		

However,	this	approach	might	not	reflect	the	optimal	lambda	for	each	individual	data	

series	 and	 potentially	 does	 not	 capture	 differences	 between	 decay	 factors	 for	

variances	 and	 covariances.	 As	 J.P.	 Morgan	 determines	 the	 values	 using	 a	 wider	

universe	 of	 asset	 classes	 including	 foreign	 exchanges,	 5-year	 swaps,	 10-year	 zero	

prices,	1-year	money	market	rates	and	equity	indices,	the	values	might	substantially	

deviate	from	the	optimal	results	for	a	pure	equity	or	multi	asset	universe.	In	order	to	

find	the	optimal	 lambda	for	each	asset	within	the	analysed	universe,	a	root	mean	

squared	error	(RMSE)	minimization	is	performed	to	determine	the	optimal	lambda	

for	each	asset	(variance)	or	each	pair	of	two	assets	(covariance)	individually.	It	tries	

to	minimize	the	difference	between	the	squared	return	in	time	: + 1	and	the	variance	

forecast	for	: + 1	by	changing	the	decay	factor	lambda	(J.P.	Morgan	(1996)).	

	

	 @A!BC =
1
% (()5-" − 4)5-|)" 7 )"

+

),-

	 (13)	

	

	 @A!BD =
1
% ((-,)5-(",)5- − 4-",)5-|) 7 )"

+

),-

	 (14)	

	

 

4.2.3 GARCH	(1,1)	variance	and	covariance	

	

The	 GARCH	 approach	 is	 an	 extension	 of	 the	 autoregressive	 conditional	

heteroscedasticity	 (ARCH)	 process	 introduced	 by	 Engle	 (1982).	 The	 ARCH	 model	

allows	for	different	modelling	of	unconditional	and	conditional	variance	where	the	

conditional	variance	is	thereby	allowed	to	dynamically	change	over	time.		

Bollerslev	 (1986)	 extended	 the	 ARCH	 and	 developed	 the	 GARCH	 model	 which	

additionally	allowed	the	implementation	of	long-term	variance	terms	and	multiple	lag	
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terms	to	modify	the	impact	of	past	variance	realizations	on	current	forward	estimates.	

Formally,	Bollerslev	(1986)	defined	a	GARCH	(p,q)	process	as	

	

	 ℎ) = FG +	 F2

H

2,-

I)82" +	 J2ℎ)82

K

2,-

	 (15)	

	

where	FG	represents	a	long-term	variance,	I)82" 	denotes	the	a	real-valued	stochastic	

process	 in	 discrete	 time	 (for	 this	 application	 the	 squared	 return)	 and	 ℎ)82 	 the	

observed	variance	 in	: − L.	While	M	 stands	 for	 the	order	of	GARCH	terms,	N	 is	 the	

length	of	ARCH	lags.	FG,	F2,	J2,	N	and	M	are	all	non-negative.		

In	 order	 to	 illustrate	 the	 connections	 between	 an	 EWMA,	 an	 ARCH	 and	 a	 GARCH	

process,	it	is	worth	noting	that	in	case	of	M = 0,	the	GARCH	process	collapses	to	an	

ARCH	process,	 i.e.	a	GARCH	(0,q)	process	equals	an	ARCH	(q)	process.	Additionally,	

assuming	 FG	 to	 be	 equal	 to	 zero,	 the	 GARCH	 (1,1)	 and	 EWMA	 approaches	 are	

identical.		

	

In	an	initial	step,	the	GARCH	(p,q)	model	requires	the	determination	of	M,	the	length	

of	the	period	of	past	variance	realizations	that	influence	the	current	forward	estimate	

and	N,	 the	 length	of	 the	period	of	past	squared	return	with	 impact	on	the	current	

forward	estimate.	The	simplest	and	especially	least	computational	power	demanding	

specification	is	the	GARCH	(1,1)	model	which	has	been	used	for	this	thesis.	The	final	

model	for	variance	forecasting	was	specified	as	follows	

	

	 4)5-|)" = 	OP + F	4)|)8-" + J	()"	 (16)	

	

with	the	long-term	variance	OP,	lagged	variance	4)|)8-" 	and	lagged,	squared	return	()".	

The	 same	 approach	 was	 chosen	 for	 modelling	 the	 covariances	 over	 time.	 Worth	

noting	in	that	context	is	the	inclusion	of	a	long-term	covariance	variable.	The	formula	

can	be	expressed	in	the	following	way	

	

	 4-",)5-|) = 	./0P + F	4-",)|)8- + J	(-,)(",)	 (17)	
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with	the	long-term	covariance	./0P,	lagged	covariance	4-",)|)8-	and	lagged	co-return	

(-,)(",).	

The	 idea	 for	 optimising	 the	 GARCH	 (1,1)	 parameters	 is	 identical	 to	 the	 approach	

chosen	for	the	EWMA	model	where	the	objective	function	is	to	minimize	the	root	of	

the	mean	squared	errors	by	changing	the	GARCH	parameters	FG, F2, J2.	

	

	 @A!BC =
1
% (()5-" − 4)5-|)" FG, F2, J2 )"

+

),-

	 (18)	

	

	 @A!BD =
1
% ((-,)5- ∗ (",)5- − 4-",)5-|)" FG, F2, J2 )"

+

),-

	 (19)	

	

	

4.3 Cholesky	Decomposition	

	

For	the	asset	price	forecasts	resulting	from	a	Monte	Carlo	simulation	further	described	in	

section	4.5,	random	variables	are	required.		

Imposing	 a	 correlation	 structure	 in	 order	 to	 account	 for	 possible	 co-movement	 in	 the	

prices	 of	 the	 analysed	 assets	 proved	 to	 be	 necessary.	 A	 widely	 accepted	 method	 to	

generate	correlated	random	variables	both	in	the	industry	as	well	in	academic	research	is	

the	so-called	Cholesky	decomposition	(Higham	(1990)).	

Pointed	 out	 in	 the	 first	 step	 in	 Schmidt‘s	 (2007)	 algorithm,	 based	 on	 the	 Variance-

Covariance	matrix	obtained	from	the	variance	and	covariance	estimation	in	section	4.2,	

the	correlation	between	asset	L	and	R	is	calculated	according	to	formula	20:	

	

	 M2,S = 	
42,S
42 ∗ 4S

	 (20)	

	

with	the	covariance	between	asset	L	and	R	equal	to	42,S 	and	42 	representing	the	standard	

deviation	of	asset	L.	The	correlation	matrix	forms	the	basis	of	the	Cholesky	approach	and	
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is	manipulated	to	 incorporate	the	desired	correlation	structure	on	the	randomly	drawn	

variables.	Therefore,	the	correlation	matrix	./((	is	decomposed	into	an	upper	triangular	

matrix	@	with	positive	diagonal	elements	in	the	following	way	(Higham	(1990)):	

	

	 ./(( = 	@+@	 (21)	

	

As	outlined	in	the	second	step	of	the	approach	by	Schmidt	(2007),	the	resulting	matrix	@	

is	 consequently	 multiplied	 with	 a	 vector	 of	 standard-normally	 distributed	 random	

variables	to	obtain	correlated	random	variables.		

	

A	 severe	 limitation	 of	 the	 Cholesky	 decomposition	 is	 the	 applicability	 on	 only	 non-

negative-definite	correlation	matrices	(Brissette	et	al.	(2007)).	Rebonato	and	Jäckel	(2011)	

argue	that	outliers	and	noise	might	lead	to	truly	observed	correlation	matrices	not	being	

positive-definite.	 Brissette	 et	 al.	 (2007)	 find	 that	 computational	 problems	 in	 programs	

used	 to	 estimate	 correlations	 can	 also	 lead	 to	 results	 that	 do	 not	 allow	 to	 apply	 the	

Cholesky	decomposition.	

As	 the	data	 and	 the	program	used	 indeed	 resulted	 in	 non-positive-definite	 correlation	

results,	the	correction	method	by	Rebonato	and	Jäckel	(2011)	was	applied.	Their	approach	

transforms	 a	 formerly	 ill-defined	 correlation	 matrix	 into	 a	 positive-definite	 one	 and,	

therefore,	allows	to	apply	the	usual	Cholesky	manipulation.	In	order	to	do	so,	the	matrix	

is	diagonalized	and	 the	negative	Eigenvalues	 that	 cause	 the	matrix	 to	be	non-positive-

definite	 are	 replaced	 with	 epsilons,	 a	 small	 positive	 value	 close	 to	 zero.	 The	 new	

correlation	matrix	 is	 then	 calculated	 in	 two	 steps.	 First,	 the	 adjusted	 positive-definite	

matrix	is	calculated	as	follows:	

	

	 ./((TUS = B ∗ V ∗	B8-	 (22)	

	

where	B	 is	 the	matrix	of	column	eigenvectors	and	V	 represents	the	diagonal	matrix	of	

eigenvalues	of	the	unadjusted	matrix.	As	the	diagonal	elements	are	different	from	1,	the	

matrix	./((TUS 	needs	to	be	normalized	as	shown	in	formula	23:	
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	 ./((W2XTY = 	
./((TUS

ZL[\ ./((TUS ∗ 	ZL[\(./((TUS)+
	 (23)	

	

The	resulting	matrix	fulfils	the	requirement	of	being	positive-definite	and	can,	therefore,	

be	manipulated	following	the	steps	in	the	standard	Cholesky	decomposition	(Brissette	et	

al.	(2007)).	

	

4.4 Student	t-copula	

	

Two	copula	approaches	were	considered	in	this	thesis.	First,	the	Gaussian	copula	which	

constructs	 a	multivariate	 normal	 distribution	 and	 second,	 the	 t-copula	 which	 builds	 a	

multivariate	student	t-distribution.	However,	only	the	t-copula	was	used	as	it	incorporates	

beneficial	properties	compared	to	the	Gaussian	copula.	As	stated	by	Schmidt	(2007),	the	

t-copula	allows	for	much	more	probability	mass	in	the	extreme	cases.	Consequently,	it	is	

more	 likely	 that	 all	 random	 variables	 are	 either	 strongly	 negative	 or	 positive	which	 is	

oftentimes	a	suitable	feature	for	financial	assets.	Thereby,	the	t-copula	is	able	to	map	the	

true	relationship	between	the	used	financial	assets	more	closely.	This	is	especially	relevant	

if	the	examined	financial	data	does	not	follow	a	normal	distribution	but	rather	possesses	

excess	kurtosis	and	hence,	experiences	a	higher	probability	of	events	 in	the	tails	of	the	

distribution.	All	asset	universes	in	this	thesis	have	a	sample	kurtosis	of	greater	than	3	which	

is	defined	as	excess	kurtosis	(Madan	and	Seneta	(1990))	as	can	be	seen	in	appendix	I	and	

II.	Consequently,	 the	 t-copula	 is	 chosen	and	a	multivariate	 t-distribution	 is	 constructed	

using	 the	 correlated	 random	 variables	 (] = ]-,… , ]U)	 resulting	 from	 the	 Cholesky	

decomposition.	This	is	done	by	following	the	approach	by	Schmidt	(2007).	The	multivariate	

t-distribution	possesses	0	degrees	of	freedom	and	_	follows	a	`a"-distribution.	

	

	 (b-, … , bU) = (
]-
_
0

,… ,
]U
_
0

)	 (24)	
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The	 degrees	 of	 freedom	 0	 are	 estimated	 using	 the	 sample	 kurtosis	 of	 the	 respective	

financial	 asset	 at	 time	 t.	 Time	 t	 represents	 a	 yearly	 rebalancing	 of	 the	 portfolios.	 By	

calculating	the	sample	kurtosis	at	each	rebalancing	date,	an	inclusion	of	new	information	

regarding	 the	 kurtosis	 of	 the	 financial	 assets	 can	 be	 taken	 into	 consideration	 when	

constructing	the	multivariate	student	t-distribution.	The	approach	follows	the	 idea	of	a	

conditional	kurtosis	by	Brooks	et	al.	(2005):	

	

	 0 =
2(2d) − 3)
d) − 3

=
6

d) − 3
+ 4	 (25)	

	

The	conditional	kurtosis	 is	calculated	at	each	rebalancing	for	each	financial	asset	 in	the	

specified	universe.	 Furthermore,	 the	degrees	of	 freedom	of	 the	chi-square	distribution	

used	 in	the	t-copula	 is	determined	as	the	median	of	the	conditional	kurtosis’	across	all	

financial	assets	used	in	the	portfolio	construction	to	control	for	outliers.	

Finally,	 these	 correlated	 student	 t-distributed	 random	 variables	 are	 then	 used	 in	 the	

Monte	Carlo	simulation	to	forecast	asset	prices.	

	

4.5 Monte	Carlo	simulation	and	Geometric	Brownian	Motion	

	

There	is	a	wide	range	of	models	designated	for	forecasting	asset	prices	with	many	different	

methods	having	not	only	found	acceptance	in	research	but	also	in	the	financial	industry.	

Following	the	approach	of	Rockafellar	and	Uryasev	(2000),	a	Monte	Carlo	simulation	 in	

combination	of	a	Geometric	Brownian	Motion	is	used	to	forecast	future	asset	prices.	The	

Geometric	Brownian	Motion	is	defined	as:	

	

	 !- = !G ∗ g
h8i

j

" 5i∗k 	 (26)	

	

where	(	and	4	are	the	respective	daily	mean	and	standard	deviation	of	the	different	assets	

and	 I	 is	 one	 of	 the	 correlated	 random	 variables	which	was	 constructed	 in	 the	 copula	

approach.	
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The	 computation	 is	 conducted	 using	 one	 of	 the	 three	 volatilities	 methods	 defined	 in	

chapter	4.2	at	a	time.	The	daily	price	forecast	is	repeated	for	all	assets	between	the	current	

and	the	next	rebalancing.	A	sample	price	forecast	is	reported	below	in	figure	2	and	shows	

the	 forecast	 for	 the	 equity	 index	 universe.	 This	 process	 is	 run	 50000	 times	 for	 each	

rebalancing	of	the	portfolio	and	future	asset	losses	for	each	asset	are	calculated.	These	

losses	are	weighted	to	calculate	both	the	portfolio’s	VaR	and	cVaR.		

 

Figure	2		Monte	Carlo	simulation		

Figure	2	shows	one	run	out	of	the	50000	Monte	Carlo	simulations	for	the	equity	indices	
universe.	
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4.6 Conditional	Value-at-Risk	on	a	portfolio	level	

	

As	outlined	in	chapter	4.1,	the	VaR	is	defined	as	the	possible	maximum	loss	of	a	portfolio	

over	a	given	 risk	horizon	within	a	 fixed	confidence	 level.	 The	cVaR	 is	 calculated	as	 the	

average	 of	 all	 losses	 larger	 than	 or	 equal	 to	 the	 VaR.	 In	 addition,	 a	 cVaR	 deviation	 is	

calculated	 following	 the	 methodology	 outlined	 in	 chapter	 4.1.	 Besides	 having	 the	 full	

benefits	 of	 the	 cVaR	 compared	 to	 the	 VaR,	 the	 cVaR	 deviation	 incorporates	 more	

information	 about	 the	 distribution	 of	 losses	 into	 the	 optimisation	 process.	 In	 order	 to	

calculate	a	cVaR	and	cVaR	deviation	on	a	portfolio	level,	it	is	therefore	necessary	to	both	

determine	 the	 VaR	 and	 identify	 all	 the	 losses	 above	 this	 critical	 threshold.	 First,	 the	

forecasted	asset	 losses	derived	as	described	 in	chapter	4.5	are	weighted	with	an	asset	

weight	 vector,	 resulting	 in	 a	 single	 column	 vector	 with	 50000	 portfolio	 losses	 on	 an	

aggregated	portfolio	level.	

Further,	in	order	to	define	the	threshold	of	losses	to	calculate	the	desired	risk	metrics,	a	

confidence	level	must	be	defined.	The	current	Basel	Committee	on	Banking	Supervision	

(BCBS)	 recommends	 to	 estimate	 the	 VaR	 with	 99%	 confidence	 level	 (Campbell	 et	 al.	

(2001)).	

For	the	threshold	definition	in	this	thesis,	the	99th	percentile	was	set	as	the	confidence	

level	to	base	further	calculations	on.	Other	values	for	confidence	 levels	have	also	been	

tested	to	evaluate	how	the	composition	of	the	portfolio	changes	depending	on	the	chosen	

threshold	 for	 the	 loss	 distribution.	 As	 the	 resulting	 weights	 in	 the	 optimisation	 and,	

consequently,	performance	of	the	strategies	in	the	backtest	described	in	chapter	5	showed	

negligible	differences	to	the	99%	confidence	level,	results	are	only	reported	for	the	99th	

percentile.	

Depending	on	 the	chosen	confidence	 level,	 the	calculation	of	 the	cVaR	 risk	measure	 is	

adjusted	accordingly.	

	

4.7 Portfolio	construction	and	optimisation	

	

The	 following	 chapter	 covers	 the	 methodology	 of	 portfolio	 optimisations	 and	 gives	

theoretical	 background	 on	 the	 goal	 function	 determining	 the	 composition	 of	 an	 ideal	
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portfolio	 depending	 on	 the	 chosen	 risk	 measure.	 As	 stated	 in	 the	 introduction,	 the	

objective	of	this	thesis	is	a	comparison	between	optimised	portfolios	using	volatility	as	the	

risk	measure	and	portfolios	using	the	cVaR	measure	as	a	risk	proxy.		

 

4.7.1 Markowitz	mean-variance	portfolio	optimisation	

 

As	a	comparison	for	the	cVaR	strategies,	the	traditional	Markowitz	Mean-Variance	

portfolio	optimisation	is	applied	to	the	respective	asset	universes.	Under	Markowitz	

investors	face	a	trade-off	between	the	desirable	expected	return	and	the	undesirable	

variance	of	the	portfolio	(Markowitz	(1952)).	This	trade-off	becomes:	

	

	 max
{p}

	rs ∗ (B @ − @W) −
t
2r

s∑r	 (27)	

	

where	w	denotes	the	weight	vector,	R	the	expected	returns,	@Wthe	risk-free	return,	å	

the	 covariance	matrix	and	t	 the	 risk	aversion	 coefficient	of	 the	 respective	 investor	

(Campbell	and	Viceira	(2002)).		

	

Furthermore,	 the	risk-free	rate	 is	assumed	to	be	zero	and	the	portfolio	 is	 long-only	

which	 means	 that	 short	 sales	 of	 assets	 are	 prohibited.	 Thereby,	 the	 optimisation	

problem	reduces	to	the	following	form:	

	

	 max
{p}

	rs ∗ B @ −
t
2r

s∑r	 (28)	

	

such	that	

	 r2 ≥ 0	 (29)	

	

	 r2
X

2,-

= 1	 (30)	
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By	 varying	 the	 risk	 aversion	 coefficient,	 the	 frontier	 of	 efficient	 portfolios	 can	 be	

constructed.	However,	this	thesis	wants	to	examine	specifically	two	portfolios.	First	

the	Minimum	Variance	portfolio	which	 is	an	extreme	case	of	 the	above	mentioned	

equation.	If	t	approaches	infinity,	the	investor	only	cares	about	the	risk	of	the	portfolio	

and	hence,	tries	to	minimize	it.	Consequently,	she	will	choose	the	Minimum	Variance	

portfolio.	

It	is	constructed	by	varying	the	weights	of	the	assets	in	order	to	minimize	the	portfolio	

variance:	

	

	 	min
{p}

	r′∑r	 (31)	

	

Second,	the	maximum	Sharpe	Ratio	portfolio	which	is	the	portfolio	with	the	highest	

trade-off	between	return	and	risk	of	the	portfolio	is	determined.	The	Sharpe	Ratio	of	

a	portfolio	is	generally	defined	as	(Campbell	and	Viceira	(2002)):	

	

	 !@ = 	
rs ∗ B @ − @W

r′∑r
	 (32)	

	

The	maximum	Sharpe	Ratio	portfolio	is	as	well	constructed	by	changing	the	weights	

but	 it	 tries	 to	maximize	 the	 trade-off	 between	 the	 expected	 returns	 and	 standard	

deviation.	 Under	 the	 assumption	 that	 the	 risk	 free	 rate	 is	 equal	 to	 zero,	 the	

optimisation	problem	becomes:	

	

	 max
{p}

	
r′B(@)
r′∑r

	 (33)	

	

	

4.7.2 Conditional	Value-at-Risk	portfolio	optimisation	

	

Following	the	methodology	of	the	traditional	mean-variance	portfolio	construction	by	

Markowitz,	similar	portfolios	are	constructed	for	the	cVaR	optimisations.	The	main	

difference	is	the	substitution	of	the	volatility	by	the	cVaR	as	the	risk	measure.	More	
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precisely,	the	portfolio	cVaR	is	calculated	following	a	stepwise	approach.	First,	future	

asset	 prices	 are	 simulated	 using	 a	 Geometric	 Brownian	 Motion	 with	 correlated	

random	variables.	Second,	 individual	asset	 losses	are	calculated.	Third,	asset	 losses	

are	weighted	to	construct	a	portfolio	loss.	Fourth,	this	simulation	is	run	50000	times	

and,	hence,	50000	portfolios	are	generated	in	order	to	calculated	the	VaR	with	a	given	

confidence	 level.	 Fifth,	 as	 described	 in	 chapter	 4.1,	 the	 cVaR	 is	 calculated	 as	 the	

average	of	all	losses	greater	than	or	equal	to	the	VaR.	Lastly,	the	portfolio	is	optimised	

by	changing	 the	 individual	asset	weights	 to	create	a	Minimum	cVaR	portfolio.	This	

allows	a	comparison	with	the	Minimum	Variance	portfolio.	

	

	 min
{p}

zO[@∝(r)	 (34)	

	

A	 second	 portfolio	 which	 maximizes	 the	 mean-return	 over	 cVaR	 is	 created.	 This	

portfolio	 is	 compared	 to	 the	maximum	Sharpe	Ratio	portfolio	originating	 from	the	

Mean-Variance	portfolio	optimisation.		

	

	 max
{p}

r′B(@)
zO[@∝(r)

	 (35)	

	

	In	total	four	different	cVaR	portfolios	are	constructed.	The	above-mentioned	cVaR	

portfolios	are	also	replicated	for	the	cVaR	deviation	risk	measure.	The	methodology	

for	the	portfolio	construction	using	the	cVaR	deviation	as	the	risk	proxy	equals	the	

approach	chosen	for	the	cVaR	optimisation.	

 

4.7.3 Additional	Benchmarks	

	

In	addition	to	constructing	cVaR	and	Mean-Variance	efficient	portfolios,	a	buy	and	

hold	 portfolio	 and	 a	 yearly	 equal	 weighted	 portfolio	 are	 calculated	 for	 all	 asset	

universes.		

For	the	buy	and	hold	portfolio	one	invests	equally	weighted	into	all	eligible	assets	at	

the	first	rebalancing	and	does	not	rebalance	over	the	entire	investment	horizon.		
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The	yearly	equal	weighted	portfolio	invests	in	the	same	manner	as	the	buy	and	hold	

portfolio,	however	it	rebalances	once	a	year	to	equal	weights.	In	addition,	a	portfolio	

weighted	 according	 to	 the	 company’s	market	 capitalization	 is	 constructed	 for	 the	

third	 asset	 universe,	 the	 US	 stock	 dataset.	 This	 market	 capitalization	 weighted	

portfolio	is	as	well	constructed	once	a	year	using	the	50	largest	companies	determined	

by	the	selection	process	outlined	in	chapter	3.	

	

4.8 Backtest	procedure	

	

For	all	asset	universes,	a	backtest	is	calculated	to	evaluate	the	historical	performance	of	

the	 above-mentioned	 strategies.	 On	 each	 selection	 day,	 weights	 for	 all	 assets	 are	

calculated	following	the	optimisation	methodology	outlined	in	chapter	4.7.	A	maximum	

single	asset	weight	of	20%	for	the	first	two	universes	and	10%	for	the	third	universe	 is	

applied	in	order	to	avoid	too	concentrated	portfolios.	 Index	shares	are	calculated	using	

the	optimal	weight	and	closing	price	of	the	respective	asset	L	on	the	selection	day	and	

implemented	as	opening	shares	on	the	next	trading	day.		

	

	 !ℎ[(g|2 =
rgL\ℎ:2 ∗ L}Zg~	�g0g�

z�/|g	M(Lzg2
		 (36)	

	

In	the	event	of	a	potential	delisting	of	a	stock,	a	cash	dividend	amounting	to	the	stock	price	

is	assumed	to	be	paid	out	and	invested	across	the	portfolio	on	a	pro	rata	basis.	This	is	only	

relevant	for	the	US	stock	universe	as	delistings	are	not	applicable	to	the	analysed	indices.	

All	backtests	are	calculated	using	the	longest	available	daily	price	history	of	the	respective	

universe.	The	backtests	start	three	years	after	the	first	available	data	point	to	calibrate	the	

input	parameters	for	the	optimisation	process.	
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5 Results	

	

For	 all	 strategies	 returns,	 volatilities,	 Sharpe	 Ratio,	 sample	 kurtosis	 and	 maximum	

drawdown	are	calculated.	The	returns	and	volatilities	are	annualized	and	the	Sharpe	Ratio	

is	calculated	using	these	two	parameters	without	a	risk-free	asset	as	defined	in	chapter	

4.7.1.	The	maximum	drawdown	is	defined	as	the	maximum	loss	from	the	peak	of	the	index	

over	the	whole	investment	period:	

	

	 AV % = ÄL}ÅÇ G,+ (
É}Zg~(Ñ)

Ä[~)Ç(G,Å) L}Zg~(:)
− 1)	 (37)	

	 	 	

It	can	be	interpreted	as	the	maximum	loss	for	an	investor	who	has	invested	at	the	highest	

index	level	and	stayed	invested	until	the	minimum	index	level	is	reached.	In	the	following	

three	paragraphs,	strategies	are	compared	to	each	other	for	all	three	universes.		

 

5.1 Equity	Indices	Universe	

	

As	 described	 in	 the	 previous	 chapter,	 all	 strategies	 are	 calculated	 using	 either	 an	

exponentially	weighted	variance,	a	variance	calculated	by	the	GARCH	(1,1)	model	or	

the	 sample	 variance.	 Performance	 and	maximum	drawdown	 for	 each	 strategy	 are	

shown	in	appendices	XIII	and	XIV.	

For	the	equity	indices	universe	the	two	best	performing	variance	methods	in	terms	of	

Sharpe	Ratio	across	all	strategies	are	the	GARCH	(1,1)	model	and	the	sample	variance.	

However,	the	differences	in	performance	to	the	exponential	weighted	variance	are	

relatively	small.	All	portfolios	have	a	maximum	drawdown	of	between	50%	to	55%	

and	the	Sharpe	Ratio	varies	between	0.57	and	0.69	across	all	strategies	and	universes.	

Using	 the	exponential	weighted	variance,	 the	portfolios	which	 try	 to	maximize	 the	

Sharpe	 Ratio	 have	 not	 only	 the	 lowest	 maximum	 drawdown	 but	 also	 one	 of	 the	

highest	 annualized	 returns	 among	 the	 strategies.	 This	 is	 also	 persistent	 using	 the	

GARCH	(1,1)	model.	However,	the	yearly	equal	weighted	portfolio	has	a	slightly	lower	

maximum	drawdown	 in	 this	case.	Nevertheless,	 it	experiences	a	higher	annualized	
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volatility	and	lower	annualized	return	which	results	in	an	overall	lower	Sharpe	Ratio.	

Calculating	all	strategies	with	the	sample	variance,	the	results	are	similar	to	results	

when	the	GARCH	(1,1)	is	applied.	All	strategies	with	the	objective	to	minimize	their	

specific	risk	factor	experience	a	lower	annualized	volatility	compared	to	the	results	

using	GARCH	(1,1).	

Yearly	 allocations	 to	 the	 eleven	 equity	 indices	 for	 the	 optimised	 portfolios	 are	

reported	 in	 appendices	 V-VIII.	 The	 results	 indicate	 that	 the	 applied	 optimisation	

approach	 clearly	 prefers	 some	 assets.	 Depending	 on	 the	 goal	 function	 of	 the	

optimisation,	these	assets	typically	show	a	low	volatility	or	a	high	risk-adjusted	return.	

Nevertheless,	all	portfolios	are	invested	into	the	entire	opportunity	set,	resulting	in	

diversified	portfolios.	

	

Table	5	EWMA	Equity	Indices	Universe	-	Performance	Statistics		

Table	5	shows	the	performance	of	all	strategies	using	the	EWMA	variance	calculation.	

	
	
	
	
	
	
	
	
	
	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 7.88%	 13.54%	 0.58	 11.63	 -53.17%	

Sharpe	Ratio		 9.25%	 14.46%	 0.64	 10.77	 -50.93%	

Min	cVaR		 8.01%	 13.92%	 0.58	 12.38	 -54.02%	

Min	cVaR	Deviation		 7.72%	 13.31%	 0.58	 11.38	 -53.59%	

cVaR	Sharpe	Ratio		 9.48%	 14.68%	 0.65	 10.61	 -51.55%	

cVaR	Deviation	Sharpe	Ratio		 9.42%	 14.70%	 0.64	 10.61	 -51.47%	

Buy	and	Hold		 9.08%	 15.82%	 0.57	 9.72	 -54.92%	

Yearly	Equal	Weighted		 9.21%	 15.04%	 0.61	 10.19	 -53.24%	
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Table	6	GARCH	Equity	Indices	Universe	-	Performance	Statistics	

Table	6	shows	the	performance	of	all	strategies	using	the	GARCH	variance	calculation.	

	

Table	7	Sample	Variance	Equity	Indices	Universe	-	Performance	Statistics	

Table	7	shows	the	performance	of	all	strategies	using	the	sample	variance	calculation.	

	

	

	

	

	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 8.84%	 13.59%	 0.65	 11.60	 -53.91%	

Sharpe	Ratio		 9.83%	 14.23%	 0.69	 11.21	 -53.48%	

Min	cVaR		 9.47%	 13.90%	 0.68	 12.42	 -55.10%	

Min	cVaR	Deviation		 8.68%	 13.44%	 0.65	 12.06	 -53.85%	

cVaR	Sharpe	Ratio		 9.85%	 14.39%	 0.68	 11.08	 -53.99%	

cVaR	Deviation	Sharpe	Ratio		 9.90%	 14.41%	 0.69	 11.06	 -53.85%	

Buy	and	Hold		 9.08%	 15.82%	 0.57	 9.72	 -54.92%	

Yearly	Equal	Weighted		 9.21%	 15.04%	 0.61	 10.19	 -53.24%	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 9.03%	 13.47%	 0.67	 10.93	 -52.63%	

Sharpe	Ratio		 9.74%	 14.39%	 0.68	 10.27	 -53.74%	

Min	cVaR		 9.49%	 13.69%	 0.69	 11.26	 -53.44%	

Min	cVaR	Deviation		 8.58%	 13.34%	 0.64	 10.86	 -52.79%	

cVaR	Sharpe	Ratio		 9.95%	 14.77%	 0.67	 10.51	 -54.95%	

cVaR	Deviation	Sharpe	Ratio		 10.00%	 14.78%	 0.68	 10.53	 -54.98%	

Buy	and	Hold		 9.08%	 15.82%	 0.57	 9.72	 -54.92%	

Yearly	Equal	Weighted		 9.21%	 15.04%	 0.61	 10.19	 -53.24%	
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5.2 Multi	Asset	Universe	

	

In	this	section,	the	methodology	outlined	 in	chapter	4	 is	applied	to	the	multi	asset	

universe.	 Performance	 and	 maximum	 drawdown	 for	 each	 strategy	 are	 shown	 in	

appendices	XV	and	XVI.	In	table	8	the	results	for	the	exponentially	weighted	variance	

are	 shown.	 The	 return	 of	 the	 Yearly	 Equal	 Weighted	 Portfolio	 exceeds	 all	 other	

strategies	 but	 the	 portfolio	 has	 the	 highest	 volatility	 and	 maximum	 drawdown.	

Because	 of	 the	 elevated	 volatility,	 it	 has	 one	 of	 the	 lowest	 Sharpe	 Ratios	 of	 all	

strategies.	The	Minimum	cVaR	Deviation	Portfolio	has	the	highest	Sharpe	Ratio	and	

also	 the	 lowest	volatility.	Over	 the	whole	backtest	horizon	 it	 loses	at	most	22.93%	

compared	to	the	yearly	equal	weighted	portfolio	which	lost	almost	44%.		

	

When	 using	 the	 GARCH	 (1,1)	model,	 all	 portfolios	 besides	 the	Minimum	Variance	

portfolio	have	a	higher	Sharpe	Ratio.	This	stems	foremost	from	the	increased	return	

rather	 than	 the	 decreased	 volatility.	 The	 Minimum	 cVaR	 Deviation	 portfolio	 still	

achieves	the	highest	Sharpe	Ratio.	Interestingly,	using	the	GARCH	(1,1)	model	leads	

to	a	smaller	maximum	drawdown	for	every	portfolio	besides	the	Minimum	Variance	

portfolio.	The	Minimum	cVaR	Deviation	portfolio	has	the	highest	risk	adjusted	return	

and	the	lowest	maximum	drawdown	of	–22.67%.		

	

The	Sharpe	Ratios	of	all	portfolios	are	even	higher	for	all	portfolios	when	a	sample	

(co)variance	 is	 calculated.	 However,	 the	 return	 per	 annum	 across	 all	 portfolios	 is	

lower	compared	to	the	variance	calculation	using	the	GARCH	(1,1)	model.	Conversely,	

the	 annualized	 volatility	 overcompensates	 the	 loss	 in	performance,	 resulting	 in	 an	

increased	Sharpe	Ratio.	The	picture	is	less	clear	for	the	maximum	drawdown.	On	the	

one	 hand,	 it	 is	 even	 lower	 for	 the	 Minimum	 cVaR	 Deviation	 portfolio	 and	 the	

Minimum	 Variance	 portfolio,	 on	 the	 other	 hand	 all	 other	 portfolios	 experience	 a	

higher	maximum	drawdown.		

The	optimised	weights	for	the	Minimum	Variance,	Maximum	Sharpe	Ratio,	Minimum	

cVaR	Deviation	and	cVaR	Deviation	Sharpe	Ratio	portfolios	can	be	found	in	appendix	

IX-XII.	 When	 comparing	 the	 asset	 allocation	 of	 the	 Minimum	 Variance	 with	 the	

Minimum	cVaR	Deviation	portfolio,	a	noticeable	difference	is	the	more	concentrated	



34 
 

asset	 allocation	 of	 the	 latter.	 While	 the	 Minimum	 Variance	 portfolio	 invests	

approximately	 at	 least	 1%	 into	 every	 single	 asset,	 the	 Minimum	 cVaR	 Deviation	

portfolio	allocates	almost	no	weight	at	all	to	several	assets.	

	

Table	8	EWMA	Multi	Asset	Universe	-	Performance	Statistics	

Table	8	shows	the	performance	of	all	strategies	using	the	EWMA	variance	calculation.	

	

Table	9	GARCH	Multi	Asset	Universe	-	Performance	Statistics	

Table	9	shows	the	performance	of	all	strategies	using	the	GARCH	variance	calculation.	

	

	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 6.21%	 5.18%	 1.20	 7.72	 -21.98%	

Sharpe	Ratio		 5.30%	 5.52%	 0.96	 9.48	 -28.16%	

Min	cVaR		 6.41%	 5.40%	 1.19	 8.54	 -25.45%	

Min	cVaR	Deviation		 6.06%	 4.95%	 1.23	 10.24	 -22.93%	

cVaR	Sharpe	Ratio		 6.07%	 5.97%	 1.02	 8.55	 -29.35%	

cVaR	Deviation	Sharpe	Ratio		 6.12%	 6.04%	 1.01	 8.75	 -29.23%	

Buy	and	Hold		 6.20%	 10.20%	 0.61	 10.53	 -43.88%	

Yearly	Equal	Weighted		 6.80%	 10.21%	 0.67	 8.66	 -41.25%	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 6.30%	 6.02%	 1.05	 10.87	 -26.15%	

Sharpe	Ratio		 6.26%	 5.66%	 1.11	 9.52	 -24.20%	

Min	cVaR		 6.78%	 5.54%	 1.23	 8.18	 -24.19%	

Min	cVaR	Deviation		 6.72%	 5.29%	 1.27	 8.92	 -22.67%	

cVaR	Sharpe	Ratio		 6.91%	 5.72%	 1.21	 7.89	 -22.88%	

cVaR	Deviation	Sharpe	Ratio		 6.81%	 5.76%	 1.18	 7.90	 -24.16%	

Buy	and	Hold		 6.20%	 10.20%	 0.61	 10.53	 -43.88%	

Yearly	Equal	Weighted		 6.80%	 10.21%	 0.67	 8.66	 -41.25%	
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Table	10	Sample	Variance	Multi	Asset	Universe	-	Performance	Statistics	

Table	10	shows	the	performance	of	all	strategies	using	the	sample	variance	calculation.	

	

	

5.3 	US	Stocks	Universe	

	

When	 looking	 at	 the	 results	 for	 the	 US	 stock	 universe,	 no	 model	 significantly	

outperforms	 any	 other	 strategy.	 Performance	 and	 maximum	 drawdown	 for	 each	

strategy	 are	 shown	 in	 appendices	 XVII	 and	 XVIII.	 However,	 the	 Minimum	 cVaR	

Deviation	 portfolio	 has	 the	 highest	 Sharpe	 Ratio	 in	 case	 of	 the	 variance	 being	

calculated	either	as	an	exponential	weighted	average	or	as	a	sample	variance	and	just	

a	slightly	lower	Sharpe	Ratio	compared	to	the	Minimum	Variance	portfolio	when	the	

GARCH	model	 is	 used.	 In	 addition,	 the	Minimum	cVaR	Deviation	portfolio	 has	 the	

lowest	maximum	drawdown	and	volatility	across	strategies	for	all	variance	calculation	

methods.	The	yearly	equal	weighted	portfolio	has	the	highest	annualized	return	but	

also	a	comparatively	high	annualized	volatility	and	a	maximum	drawdown	of	almost	

50%.	 Interestingly,	 the	 performance	 and	 volatility	 is	 worse	 for	 the	 yearly	 equal	

weighted	 portfolio	 which	 means	 that	 the	 portfolio	 does	 not	 benefit	 from	 being	

rebalanced	over	the	whole	horizon.	One	explanation	for	this	observation	could	be	the	

applied	selection	process.	As	only	the	50	largest	companies	in	the	US	are	selected	and	

then	equally	weighted,	there	is	some	overlap	between	the	buy	and	hold	portfolio	and	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 6.56%	 4.68%	 1.40	 7.36	 -21.52%	

Sharpe	Ratio		 6.12%	 5.08%	 1.21	 7.19	 -27.57%	

Min	cVaR		 6.90%	 4.80%	 1.44	 7.06	 -24.65%	

Min	cVaR	Deviation		 6.96%	 4.08%	 1.70	 7.24	 -16.77%	

cVaR	Sharpe	Ratio		 6.42%	 5.76%	 1.12	 8.08	 -32.06%	

cVaR	Deviation	Sharpe	Ratio		 6.43%	 5.77%	 1.11	 7.98	 -32.07%	

Buy	and	Hold		 6.20%	 10.20%	 0.61	 10.53	 -43.88%	

Yearly	Equal	Weighted		 6.80%	 10.21%	 0.67	 8.66	 -41.25%	
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the	yearly	equally	weighted	portfolio.	Thirteen	stocks	from	the	first	selection	stay	in	

the	yearly	equal	weighted	portfolio	over	the	entire	investment	horizon.	The	market	

capitalization	weighted	portfolio	has	the	highest	annualized	volatility	and	hence	one	

of	the	lowest	Sharpe	Ratios.		

The	maximum	drawdown	for	all	Sharpe	Ratio	maximizing	portfolios	increases	for	the	

sample	 variance	 compared	 to	 both	 the	 exponentially	 weighted	 and	 GARCH	 (1,1)	

variances.	

Similar	to	the	asset	allocation	patterns	of	the	other	two	universes,	optimisations	for	

the	US	stock	dataset	result	in	more	concentrated	portfolios	except	for	the	Minimum	

Variance	 portfolio.	 Due	 to	 the	 dimension	 of	 the	 universe,	 weight	 figures	 are	 not	

reported	in	this	thesis.	

	

Table	11	EWMA	US	Stocks	Universe	-	Performance	Statistics	

Table	11	shows	the	performance	of	all	strategies	using	the	EWMA	variance	calculation.	

	

	

	

	

	

	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 7.91%	 15.25%	 0.52	 10.20	 -42.11%	

Sharpe	Ratio		 6.45%	 16.88%	 0.38	 9.37	 -51.82%	

Min	cVaR		 6.22%	 15.81%	 0.39	 9.81	 -53.79%	

Min	cVaR	Deviation		 8.06%	 14.87%	 0.54	 9.90	 -38.11%	

cVaR	Sharpe	Ratio		 7.04%	 17.76%	 0.40	 8.95	 -57.93%	

cVaR	Deviation	Sharpe	Ratio		 7.12%	 17.29%	 0.41	 9.36	 -54.74%	

Buy	and	Hold		 9.50%	 18.17%	 0.52	 10.20	 -49.98%	

Yearly	Equal	Weighted		 8.09%	 18.89%	 0.43	 10.01	 -50.88%	

Market	Capitalization	

Weighted		 7.58%	 19.04%	 0.40	 9.88	 -54.77%	



37 
 

Table	12	GARCH	US	Stocks	Universe	-	Performance	Statistics		

Table	12	shows	the	performance	of	all	strategies	using	the	GARCH	variance	calculation.	

	
	

Table	13	Sample	Variance	US	Stocks	Universe	-	Performance	Statistics	

Table	13	shows	the	performance	of	all	strategies	using	the	sample	variance	calculation.	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 7.46%	 15.62%	 0.48	 10.23	 -47.34%	

Sharpe	Ratio		 6.95%	 16.72%	 0.42	 9.82	 -51.57%	

Min	cVaR		 6.14%	 16.42%	 0.37	 10.26	 -53.35%	

Min	cVaR	Deviation		 6.98%	 15.24%	 0.46	 10.59	 -44.73%	

cVaR	Sharpe	Ratio		 7.22%	 16.95%	 0.43	 9.84	 -53.03%	

cVaR	Deviation	Sharpe	Ratio		 6.57%	 16.80%	 0.39	 10.06	 -53.16%	

Buy	and	Hold		 9.50%	 18.17%	 0.52	 10.20	 -49.98%	

Yearly	Equal	Weighted		 8.09%	 18.89%	 0.43	 10.01	 -50.88%	

Market	Capitalization	

Weighted		 7.58%	 19.04%	 0.40	 9.88	 -54.77%	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 8.78%	 15.07%	 0.58	 10.95	 -40.73%	

Sharpe	Ratio		 7.13%	 17.96%	 0.40	 8.93	 -64.77%	

Min	cVaR		 7.96%	 15.54%	 0.51	 10.86	 -47.52%	

Min	cVaR	Deviation		 8.89%	 14.83%	 0.60	 10.44	 -39.86%	

cVaR	Sharpe	Ratio		 6.74%	 18.56%	 0.36	 8.97	 -67.23%	

cVaR	Deviation	Sharpe	Ratio		 7.47%	 18.27%	 0.41	 9.10	 -62.48%	

Buy	and	Hold		 9.50%	 18.17%	 0.52	 10.20	 -49.98%	

Yearly	Equal	Weighted		 8.09%	 18.89%	 0.43	 10.01	 -50.88%	

Market	Capitalization	

Weighted		 7.58%	 19.04%	 0.40	 9.88	 -54.77%	
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5.4 Minimum	Variance	and	Minimum	conditional	Value-at-Risk	Deviation	

	

Besides	comparing	different	variance	calculation	methods	and	strategies	in	general,	a	

more	 detailed	 comparison	 between	 the	 Minimum	 Variance	 and	 Minimum	 cVaR	

Deviation	 strategy	 is	 conducted.	 For	 both	 the	 US	 equity	 and	 the	 equity	 indices	

universe	 the	 differences	 in	 performance,	 volatility	 or	 maximum	 drawdown	 are	

marginal.	 However,	 within	 the	 multi	 asset	 universe	 with	 either	 a	 GARCH	 (1,1)	 or	

sample	variance	the	cVaR	has	some	appealing	properties.	As	already	mentioned	5.2,	

the	cVaR	deviation	portfolio	has	a	higher	Sharpe	Ratio	with	both	annualized	return	

and	 annualized	 volatility	 being	 superior	 to	 the	Minimum	 Variance	 portfolios.	 The	

maximum	drawdown	of	the	cVaR	deviation	portfolios	 is	 lower	 in	both	scenarios	as	

well.	When	looking	at	the	figure	below,	the	performance	over	the	whole	investment	

horizon	for	the	three	strategies	can	be	seen.	Before	the	financial	crisis	in	2008/2009,	

the	 Minimum	 cVaR	 portfolio	 was	 the	 best	 performing	 strategy	 followed	 by	 the	

Minimum	Variance	and	the	cVaR	Deviation.	However,	during	the	crisis	the	benefit	of	

the	Minimum	cVaR	Deviation	strategy	becomes	evident.	It	has	the	lowest	drawdown	

and	loses	only	16.77%	compared	to	21.52%	for	the	Minimum	Variance	portfolio	and	

even	 24.65%	 for	 the	 Minimum	 cVaR	 portfolio.	 One	 explanation	 for	 this	

outperformance	to	the	Minimum	cVaR	could	be	the	superior	properties	of	the	cVaR	

deviation	 measure	 outlined	 in	 chapter	 4.1.	 As	 the	 cVaR	 deviation	 takes	 the	

distribution	 of	 asset	 losses	 into	 account	 by	 subtracting	 the	 average	 loss	 from	 the	

calculated	cVaR,	it	might	help	to	incorporate	the	excessive	risk	taking	in	the	loom	of	

the	 financial	 crisis.	 If	 the	 loss	 distribution	 becomes	 less	 favourable,	 i.e.	 is	 shifted	

towards	higher	losses,	but	the	average	loss	that	exceed	the	99%	VaR	stays	relatively	

constant,	the	Minimum	cVaR	is	not	able	to	grasp	this	change	in	riskiness	whereas	the	

Minimum	cVaR	Deviation	can	account	 for	 the	higher	 risk.	The	 two	cVaR	strategies	

have	 an	 advantage	over	 the	Minimum	Variance	 strategy	 as	 the	 variance	does	 not	

differentiate	 between	 fluctuations	 resulting	 from	positive	 and	negative	 returns.	 In	

contrast,	the	cVaR	only		accounts	for	the	right	tail	of	the	loss	distribution	and	thereby	

clearly	 distinguishes	 between	 positive	 and	 negative	 losses.	 This	 might	 be	 an	

explanation	for	the	higher	return	following	the	financial	crisis.		
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Figure	3		Minimum	Variance	and	Minimum	cVaR	strategies	

Figure	3	shows	a	comparison	between	the	Minimum	Variance	and	Minimum	cVaR	portfolios	
using	sample	variance	in	the	multi	asset	universe.	
	

	
	

	

6 Robustness	of	empirical	results	

	

In	 order	 to	 examine	whether	 the	 results	 are	 sensitive	 to	model	 specifications,	 several	

iterations	were	run.	This	was	implemented	for	all	three	universes	and	all	three	variance	

and	covariance	calculation	methods	except	for	the	US	stock	universe	where	a	quarterly	

rebalancing	was	not	conducted	as	the	universe	itself	is	constructed	on	a	yearly	basis	due	

to	the	selection	process.	However,	only	the	results	for	the	multi	asset	universe	with	sample	

variance	 and	 covariances	 are	 discussed	 in	 length	 in	 the	 thesis.	 In	 table	 14,	 results	 for	

quarterly	rebalancings	instead	of	yearly	rebalancings	are	shown.		
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Table	14	Sample	Variance	Multi	Asset	Universe	-	Performance	Statistics	–	Robustness	I	

Table	14	shows	the	performance	of	all	strategies	using	quarterly	rebalancing	with	99%	
quantile	in	the	multi	asset	universe	applying	the	sample	variance.	

	

In	case	of	a	quarterly	rebalancing,	all	strategies	which	try	to	maximize	a	Sharpe	Ratio	have	

a	 slightly	higher	 risk	 adjusted	 return	 compared	 to	 the	 yearly	 rebalancing.	 This	 positive	

impact	is	also	present	in	lower	maximum	drawdowns	for	all	Sharpe	Ratio	strategies.	On	

the	contrary,	 the	 low	risk	strategies	have	a	 lower	Sharpe	Ratio	and	a	higher	maximum	

drawdown.	However,	all	results	are	similar	to	the	yearly	rebalancing.	The	average	Sharpe	

Ratio	across	all	strategies	 increases	by	only	0.02	and	the	average	absolute	difference	is	

0.06.	Both	measures	represent	only	a	small	influence	of	applying	a	quarterly	rebalancing.	

 

 

 

 

 

 

 

 

 

 

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 6.44%	 4.74%	 1.36	 8.17	 -22.10%	

Sharpe	Ratio		 6.33%	 4.92%	 1.29	 6.90	 -25.83%	

Min	cVaR		 6.70%	 4.40%	 1.52	 7.55	 -21.38%	

Min	cVaR	Deviation		 6.64%	 4.18%	 1.59	 8.06	 -19.74%	

cVaR	Sharpe	Ratio		 6.57%	 5.52%	 1.19	 8.32	 -30.26%	

cVaR	Deviation	Sharpe	Ratio		 6.57%	 5.53%	 1.19	 8.32	 -30.35%	

Buy	and	Hold		 6.20%	 10.20%	 0.61	 10.53	 -43.88%	

Quarterly	Equal	Weighted		 6.69%	 10.51%	 0.64	 9.86	 -41.89%	
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Table	15	Sample	Variance	Multi	Asset	Universe	-	Performance	Statistics	–	Robustness	II	

Table	15	shows	the	performance	of	all	strategies	using	yearly	rebalancing	with	90%	quantile	
in	the	multi	asset	universe	applying	the	sample	variance.	

	

In	the	second	robustness	test	the	strategies	are	rebalanced	yearly	but	the	quantile	for	the	

cVaR	was	changed	to	90%	to	assess	the	dependency	of	the	results	on	the	chosen	quantile.	

By	desing,	this	variation	only	affects	the	strategies	using	the	cVaR.	The	average	return	of	

all	cVaR	strategies	decreases	by	0.12%	and	the	average	Sharpe	Ratio	decreases	by	0.03.	

This	is	mainly	due	to	the	Minimum	cVaR	portfolio	which	loses	the	most	in	this	variation.	

The	Minimum	cVaR	Deviation	portfolios	are	almost	not	affected	at	all.	

	

	

	

	

	

	

	

	

	

	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 6.56%	 4.68%	 1.40	 7.36	 -21.52%	

Sharpe	Ratio		 6.12%	 5.08%	 1.21	 7.19	 -27.57%	

Min	cVaR		 6.59%	 5.21%	 1.26	 7.94	 -29.14%	

Min	cVaR	Deviation		 6.91%	 4.07%	 1.70	 7.26	 -16.95%	

cVaR	Sharpe	Ratio		 6.32%	 5.58%	 1.13	 8.03	 -31.17%	

cVaR	Deviation	Sharpe	Ratio		 6.42%	 5.59%	 1.15	 7.77	 -30.92%	

Buy	and	Hold		 6.20%	 10.20%	 0.61	 10.53	 -43.88%	

Yearly	Equal	Weighted		 6.80%	 10.21%	 0.67	 8.66	 -41.25%	
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Table	16	Sample	Variance	Multi	Asset	Universe	-	Performance	Statistics	–	Robustness	III	

Table	16	shows	the	performance	of	all	strategies	using	yearly	rebalancing	with	99%	quantile	
in	the	multi	asset	universe	applying	the	sample	variance	with	an	upper	bound	of	50%	per	
asset	within	the	optimisation.	

	

In	the	third	variation,	the	upper	bounds	within	the	portfolio	optimisation	are	set	to	50%	

instead	 of	 20%	 to	 allow	 for	 a	more	 extreme	 investment	 approach.	 All	 strategies	 with	

flexible	weights	have	a	lower	annualized	standard	deviation.	It	decreases	on	average	by	

0.7%.	Furthermore,	both	the	Minimum	cVaR	and	the	Minimum	cVaR	Deviation	portfolios	

have	a	higher	 return	whereas	all	other	portfolios	have	 lower	annual	 return.	Overall	 all	

portfolios	 benefit	 from	 an	 increased	 upper	 bound	 as	 the	 average	 Sharpe	 Ratio	 of	 all	

affected	portfolios	increases	by	0.2	and	is	positive	for	all	strategies.	The	average	maximum	

drawdown	decreases	on	average	as	well.	The	Minimum	cVaR	Deviation	portfolio	profits	

the	most	by	a	decrease	of	almost	8%.		

	

These	analyses	show	that	the	differences	for	the	multi	asset	universe	across	the	above-

mentioned	 variations	 are	 small.	 This	 yields	 a	 first	 insight	 in	 the	 robustness	 of	 the	

conducted	optimisation.	Similar	changes	are	also	observed	for	 the	other	 two	universes	

with	 one	 exception.	 In	 the	 case	 of	 the	 equity	 universe	 with	 sample	 variances	 and	

covariances	 and	 the	 50%	 upper	 bound,	 the	 cVaR	 and	 cVaR	 deviation	 Sharpe	 Ratio	

portfolios	experience	a	sharp	drop	in	their	Sharpe	Ratio	and	their	maximum	drawdown	

increases	to	almost	85%.	By	increasing	the	upper	bound	within	the	optimisation,	it	allows	

Name	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Min	Variance		 6.51%	 4.41%	 1.48	 8.14	 -22.16%	

Sharpe	Ratio		 5.64%	 4.32%	 1.31	 11.54	 -29.43%	

Min	cVaR		 7.07%	 4.08%	 1.73	 13.82	 -28.41%	

Min	cVaR	Deviation		 7.36%	 3.70%	 1.99	 16.20	 -24.57%	

cVaR	Sharpe	Ratio		 6.24%	 4.73%	 1.32	 11.04	 -31.23%	

cVaR	Deviation	Sharpe	Ratio		 6.33%	 4.73%	 1.34	 11.08	 -31.19%	

Buy	and	Hold		 6.20%	 10.20%	 0.61	 10.53	 -43.88%	

Yearly	Equal	Weighted		 6.80%	 10.21%	 0.67	 8.66	 -41.25%	
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for	extreme	results	which	is	especially	relevant	for	the	US	stock	universe	as	one	invest	not	

in	 country	 indices	 but	 instead	 in	 individual	 stocks.	 This	 bears	 a	 much	 higher	 risk	 and	

allowing	 for	 such	a	 concentrated	allocation	 in	 this	 setting	might	not	be	optimal	 for	 an	

investor.		

	

7 Exchange	traded	funds	replication	strategy	

	

Following	the	discussion	of	the	results	in	the	previous	chapters	and	the	potential	benefits	

of	a	Minimum	cVaR	Deviation	strategy,	a	practical	implementation	of	the	aforementioned	

strategies	is	shown	in	this	chapter.	As	one	cannot	invest	into	indices,	it	is	necessary	to	find	

products	 linked	 to	 these	 indices.	 However,	 as	 these	 products,	 in	 general,	 provide	 less	

historical	price	data	than	the	indices	themselves,	it	might	not	be	optimal	to	perform	the	

optimisation	procedure	outlined	in	chapter	4.	Hence,	the	weights	from	the	optimisation	

in	chapter	5.2	are	applied.	The	evaluation	of	a	practical	implementation	is	conducted	from	

the	perspective	of	a	retail	investor.	Only	one	exception	has	to	be	made	in	order	to	invest	

into	 a	 product	which	 at	 least	 to	 some	extend	 follows	 the	 Japanese	Government	 Bond	

index.	 As	 it	 was	 not	 possible	 to	 find	 any	 ETF	 that	 uses	 either	 the	 10-year	 Japanese	

Government	Bond	index	or	a	similar	benchmark	for	Japanese	Government	bonds	as	their	

benchmark,	a	passive	 index	 tracking	 fund	was	utilized.	However,	 this	 fund	possesses	a	

minimum	investment	of	USD	100,000.	Another	 issue	arises	as	not	every	ETF	replicating	

one	 of	 the	 desired	 benchmarks	 provides	 at	 least	 a	 few	 years	 of	 history	 to	 allow	 a	

meaningful	comparison.	Consequently,	ETFs	on	similar	indices	were	used	to	accommodate	

for	the	lack	of	investment	vehicles	which	track	the	used	indices	closely.	However,	a	second	

ETF	replication	portfolio	with	a	shorter	history	is	constructed	using	the	ETFs	in	table	20	

which	follows	the	optimised	indices	more	closely.	Both	ETF	portfolios	already	incorporate	

all	management	fees	(shown	in	appendix	III	and	IV)	that	have	to	be	paid	by	the	investor	

and,	therefore,	serve	as	a	realistic	proxy	of	the	true	performance	when	investing	in	the	

strategy.	However,	transaction	costs	arise	due	to	the	yearly	rebalancing	which	must	be	

deducted	from	the	performance	shown	in	tables	17	and	18.	

In	 figures	4	and	5,	 the	performance	of	both	ETF	 replications	and	 the	 index	portfolio	 is	

shown.	The	weights	of	the	Minimum	cVaR	Deviation	optimisation	are	implemented	in	this	
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comparison.	 However,	 one	 could	 have	 taken	 weights	 of	 any	 of	 the	 aforementioned	

strategies.	

	

Figure	4		Comparison	between	ETF	and	index	portfolio	–	long	history	

Figure	4	shows	the	comparison	between	the	ETF	portfolio	and	the	underlying	index	portfolio	
starting	in	December	31st,	2007.	
	

	
	

Using	the	ETFs	of	table	19,	a	comparison	starting	December	31st,	2007	can	be	conducted.	

As	several	ETFs	are	distinct	to	the	indices	used	for	the	optimisation	and	implementation	

of	the	index	portfolio,	a	divergence	of	this	portfolio	was	expected.	This	divergence	can	be	

seen	in	the	performance	data	and	is	especially	captured	by	a	higher	Tracking	Error	in	table	

17	below.	 The	 Tracking	 Error	 is	 the	 annualized	 standard	deviation	of	 the	difference	 in	

returns	between	the	ETF	portfolio	and	the	index	portfolio	and	is	a	measure	of	how	closely	

the	ETF	portfolio	follows	the	index	portfolio.		
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Table	17	Comparison	between	ETF	and	index	portfolio	–	long	history	

Table	17	shows	the	comparison	between	the	ETF	portfolio	and	the	underlying	index	
portfolio	starting	in	December	31st,	2007.	
	
		 ETF	Portfolio	 Index	Portfolio	

Return	p.a.		 6.64%	 5.57%	

Volatility	p.a.	 6.50%	 4.41%	

Tracking	Error	p.a.	 4.30%	 		

	

Figure	5		Comparison	between	ETF	and	index	portfolio	–	short	history	

Figure	5	shows	the	comparison	between	the	ETF	portfolio	and	the	underlying	index	portfolio	
starting	in	December	30th,	2011.	
 

 
	

A	noticeable	reduction	in	divergence	of	the	two	portfolios	can	be	observed	if	the	second	

ETF	universe	 is	utilized.	This	dataset	 is	 tracking	the	underlying	 indices	more	closely	but	

only	allows	a	comparatively	short	backtest.	This	can	be	 inferred	by	 looking	at	portfolio	

levels	figure	5	but	also	from	the	performance	data	in	table	18	below.		
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Table	18	Comparison	between	ETF	and	index	portfolio	–	short	history	

Table	18	shows	the	comparison	between	the	ETF	portfolio	and	the	underlying	index	
portfolio	starting	in	December	30th,	2011.	
	
		 ETF	Portfolio	 Index	Portfolio	

Return	p.a.		 4.31%	 4.11%	

Volatility	p.a.	 4.43%	 3.45%	

Tracking	Error	p.a.	 2.00%	 		

	

Comparing	 the	 results	 for	 both	 ETF	universes,	 the	 second	universe	 clearly	manages	 to	

follow	the	index	portfolio	more	closely	than	the	first	universe.	This	is	also	observable	in	

the	 lower	 Tracking	 Error.	 The	 first	 universe	 experience	 a	 Tracking	 Error	 of	 4.3%	 p.a.	

whereas	the	Tracking	Error	for	the	second	universe	only	amounts	to	2%.	

	

8 Implications	of	results	

	

The	results	for	the	equity	indices	universe	are	in	contrast	to	how	the	respective	strategies	

perform	when	applied	to	the	multi	asset	and	the	US	equity	universe.	For	both	universes,	

the	portfolio	which	tries	to	maximize	the	Sharpe	Ratio	are	among	the	worst	performing	

assets.	 However,	 they	 belong	 to	 the	 best	 performing	 strategies	 in	 the	 equity	 indices	

universe.	 In	general,	these	strategies	 invest	 into	riskier	assets	and	pay	 less	attention	to	

lower	the	overall	risk	in	the	portfolio,	whereas	the	minimum	variance	or	minimum	cVaR	

strategies	 focus	 on	minimizing	 the	 risk	 in	 the	 portfolio.	 This	 proves	 to	 be	 superior	 to	

maximizing	a	Sharpe	Ratio	within	the	multi	asset	and	US	equity	universe.	One	explanation	

could	 be	 the	high	 correlation	 among	 all	 equity	 indices.	 As	 shown	 in	 table	 2,	 all	 equity	

indices	have	a	rather	high	and	always	positive	correlation	to	each	other.	This	impedes	the	

construction	of	a	well-diversified	portfolio	and	might	explain	why	a	risk-return	measure	is	

more	suitable	for	an	investment	objective.	However,	it	is	noteworthy	that	the	construction	

of	a	portfolio	using	either	of	the	above-mentioned	strategies	reduces	the	overall	risk	of	

investing	compared	to	an	investment	into	a	single	equity	index	significantly.	As	shown	in	

appendix	I,	the	two	equity	indices	with	the	highest	individual	Sharpe	Ratio	(S&P	500	and	

OMX	 Stockholm	 30	 Index)	 have	 annualized	 volatilities	 of	 17.84%	 and	 22.88%	 and	
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maximum	drawdowns	of	55.22%	and	even	71.18%,	respectively.	Using	the	Minimum	cVaR	

strategy	with	the	sample	variance	calculation,	the	annualized	volatility	can	be	reduced	to	

as	low	as	13.35%.	

This	structure	of	highly	correlated	assets	might	also	contribute	to	the	results	of	the	US	

equity	universe.	Despite	having	50	assets	in	the	eligible	universe	at	each	rebalancing	date	

and	hence	a	greater	number	of	investable	assets	compared	to	the	equity	indices	or	multi	

asset	universe,	all	stocks	in	the	universe	are	listed	in	the	US,	their	country	of	risk	is	in	the	

US	 and	 all	 are	 large	 caps	 by	 design	 of	 the	 selection	 process	 (50	 largest	 companies).	

Consequently,	they	all	have	a	positive	correlation	with	each	other	and	might	face	similar	

risk	factors.	This	again	limits	the	ability	to	construct	a	well-diversified	portfolio	but	not	to	

the	same	extent	as	 in	the	equity	 indices	universe	as	all	 indices	are	already	constructed	

using	 several	 individual	 stocks.	 Hence,	 it	might	 still	 be	 beneficial	 to	 construct	 low	 risk	

portfolios	rather	than	focusing	on	the	maximization	of	a	risk-return	objective.	

The	multi	asset	universe	clearly	benefits	 the	most	 from	applying	different	optimisation	

strategies	compared	to	the	other	universes.	The	two	assets	with	the	highest	risk-return	

payoff	(US	Corporate	Bonds	IG	and	US	Corporate	Bonds	HY)	have	a	Sharpe	Ratio	of	1.05	

and	1.29	and	a	maximum	drawdown	of	16.03%	and	35.34%.	The	Minimum	cVaR	Deviation	

portfolio	which	 is	 optimised	 using	 the	 sample	 variance	 has	 a	 higher	 annualized	 return	

(6.96%)	 and	 a	 lower	 annualized	 volatility	 (4.08%)	 than	 either	 of	 the	 above-mentioned	

indices	 and,	 hence,	 achieves	 a	 higher	 Sharpe	 Ratio.	 Besides	 having	 such	 a	 high	 risk-

adjusted	return,	its	maximum	drawdown	(16.77%)	is	almost	as	low	as	the	minimum	in	the	

whole	multi	asset	universe.	Another	benefit	of	the	Minimum	cVaR	Deviation	is	the	reduced	

kurtosis	compared	to	the	US	High	Yield	Bond	Index.	However,	this	effect	is	also	present	

across	all	strategies	and	all	variance	calculation	methods.	Following	the	discussion	of	the	

correlation	structure	 in	 the	previous	paragraphs,	 it	 is	worth	 looking	at	 the	correlations	

within	the	multi	asset	universe	in	table	4.	The	correlations	vary	substantially	across	assets,	

even	 showing	 negative	 relationships	 between	 several	 assets.	 This	 constitutes	 a	

remarkable	difference	compared	to	the	two	other	universes	and	might	be	an	explanation	

for	 the	 better	 results	 of	 the	 proposed	 optimisation	 methods.	 Assets	 with	 a	 negative	

correlation	allow	the	construction	of	diversified	portfolios	in	a	more	efficient	manner.	
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9 Outlook	for	further	research	

	

Following	the	promising	results	for	the	multi	asset	universe,	it	would	be	interesting	to	see	

how	the	proposed	strategy	of	a	cVaR	deviation	optimisation	performs	when	applied	to	a	

multi	 asset	 universe	 of	 individual	 stocks,	 bonds,	 commodities	 and	 across	 different	

currencies.	One	could	also	take	the	idea	behind	the	US	stock	universe	one	step	further	and	

use	a	global	 stock	universe	which	 includes	 large,	mid	and	small	 caps.	This	may	help	 to	

overcome	the	high	correlations	and	allow	a	construction	of	a	well-diversified	portfolio.	

Following	the	extensive	discussion	of	different	volatility	calculation	methods,	it	is	obvious	

that	further	estimation	procedures	could	be	applied	to	approximate	the	volatility	more	

precise.	For	 instance,	this	could	be	done	by	either	using	a	more	advanced	GARCH	(p,q)	

model	 or	 a	 downside	 volatility	 measure.	 Following	 the	 academic	 discussion	 of	 excess	

kurtosis	of	stock	market	returns,	a	t-distribution	with	adjusted	degrees	of	freedom	by	the	

sample	kurtosis	of	the	respective	asset	was	applied	when	forecasting	asset	returns	and	

imposing	a	correlation	structures.	This	could	be	 further	 improved	by	using	a	maximum	

likelihood	estimation	for	calibrating	the	degrees	of	freedom.	Furthermore,	it	would	also	

be	possible	to	take	the	skewness	of	the	respective	asset	returns	into	account.	This	would	

allow	a	more	precise	estimation	process	and	might	improve	the	performance	of	the	cVaR	

strategies	even	further.	

One	can	also	think	of	a	combination	of	the	minimum	risk	cVaR	strategy	with	other	types	

of	strategies.	This	could	be	for	example,	following	the	typical	minimum	volatility	and	high	

dividend	trend,	a	minimum	cVaR	and	high	dividend	approach.	This	could	be	an	alternative	

to	the	minimum	volatility	and	high	dividend	portfolios	currently	used	by	investors.	
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10 Conclusion	

	

In	general,	all	above-mentioned	results	shed	new	light	on	the	importance	of	constructing	

a	diversified	portfolio.	In	any	possible	setting	used	in	this	thesis,	a	superior	result	in	terms	

of	risk	adjusted	return	to	an	investment	into	a	single	asset	could	be	achieved.	Even	in	the	

case	of	the	equity	indices	where	none	of	the	proposed	strategies	yield	superior	returns	a	

higher	risk	adjusted	return	is	possible	by	combining	different	country	indices	together.	The	

simple	buy	and	hold	portfolio	already	provides	clear	benefits	by	having	a	lower	annualized	

volatility	 than	 all	 individual	 country	 indices.	When	 looking	 at	 the	US	 stock	 universe,	 a	

construction	of	a	diversified	portfolio	rather	than	 investing	 into	an	 individual	stock	and	

consequently	facing	idiosyncratic	risk	is	clearly	beneficial	for	an	investor.	In	contrast	to	the	

equity	 indices	universe,	however,	two	strategies	prove	to	be	slightly	outperforming	the	

other	construction	methodologies.	Both	the	Minimum	Variance	and	the	Minimum	cVaR	

Deviation	portfolios	have	the	highest	Sharpe	Ratios	for	the	exponentially	weighted	and	

sample	 variance	 calculation.	 Furthermore,	 by	 constructing	 these	 two	 portfolios	 lower	

annualized	volatilities	and	lower	maximum	drawdowns	can	be	achieved	across	all	variance	

methodologies.	However,	the	equity	indices	as	well	as	the	US	stock	universe	contain	only	

assets	of	the	same	asset	class.	In	addition,	all	assets	from	the	US	stock	universe	are	from	

one	country	as	mentioned	in	chapter	3.	Hence,	these	assets	show	a	positive	correlation	

structure.	 The	 capability	 of	 constructing	 a	 diversified	 portfolio	 increases	 with	 both	

quantity	and	diversity	of	asset	classes	that	are	eligible	for	investing.	This	is	observable	in	

the	results	for	the	multi	asset	universe	in	chapter	5.2.	Within	the	multi	asset	universe	there	

is	 a	 clearer	 contrast	 between	 investing	 into	 simple	 strategies	 like	 the	buy	 and	hold	 or	

yearly	 equal	 weighted	 portfolio	 and	 optimisations	 which	 utilize	 this	 diversity	 in	 asset	

classes.	 As	mentioned	 in	 chapter	 3,	 the	multi	 asset	 universe	 incorporates	 assets	 with	

negative	correlations	to	each	other.	Within	this	universe,	the	Minimum	cVaR	Deviation	

strategy	 can	outperform	all	 other	 strategies	 including	 the	Minimum	Variance	 strategy.	

One	explanation	for	the	outperformance	against	the	Minimum	Variance	strategy	might	be	

the	superior	properties	of	the	cVaR	deviation.	In	contrast	to	the	standard	deviation,	the	

cVaR	differentiates	between	positive	and	negative	returns	and	can	capture	risk	stemming	

from	fat	tails.	Additionally,	the	construction	of	a	portfolio	using	the	cVaR	deviation	and	
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thereby	including	a	more	detailed	picture	of	the	distribution	of	losses	into	the	optimisation	

leads	to	more	efficient	portfolios.	

Besides	finding	a	suitable	optimisation	strategy	for	constructing	a	portfolio	using	different	

assets,	an	analysis	is	provided	in	chapter	7	to	assess	the	possibility	of	investing	into	these	

strategies	from	the	perspective	of	a	retail	investor.	All	strategies	are	implementable	for	a	

retail	investor	using	ETFs	except	for	the	Japanese	government	bond	index	where	a	passive	

index	tracking	fund	is	used.	Using	these	replication	scheme,	it	is	possible	to	replicate	the	

index	strategy	with	a	Tracking	Error	of	2.0%.	
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Appendix	I	Equity	Indices	Universe	

Name	 Bloomberg	Ticker	

Return	

p.a.	

Annualized	

Volatility	

Sharpe	

Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

DAX	Performance	Index	 DAX	Index	 8.85%	 22.80%	 0.39	 8.77	 -72.68%	

Nikkei	250	Index	 NKY	Index	 0.47%	 23.36%	 0.02	 9.35	 -79.38%	

S&P	500	Index	 SPX	Index	 10.26%	 17.84%	 0.58	 11.83	 -55.22%	

FTSE	100	Index	 UKX	Index	 7.33%	 17.39%	 0.42	 9.17	 -48.26%	

CAC	40	Index	 CAC	Index	 7.79%	 21.99%	 0.35	 7.84	 -64.09%	

Hang	Seng	Index	 HSI	Index	 11.06%	 25.64%	 0.43	 18.39	 -64.10%	

IBEX	35	Index	 IBEX	Index	 8.11%	 22.04%	 0.37	 8.85	 -56.49%	

KOSPI	Index	 KOSPI	Index	 6.03%	 27.06%	 0.22	 8.85	 -74.98%	

MSCI	Emerging	Market	Index	 MXEF	Index	 9.61%	 18.46%	 0.52	 11.49	 -65.16%	

MSCI	Australia	Index	 MXAU	Index	 8.46%	 15.96%	 0.53	 9.22	 -49.20%	

OMX	Stockholm	30	Index	 OMX	Index	 13.19%	 22.88%	 0.58	 7.36	 -71.18%	
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Appendix	II	Multi	Asset	Universe	

Name	

Bloomberg	Ticker/	

Datastream	 Return	p.a.	

Annualized	

Volatility	 Sharpe	Ratio	

Sample	

Kurtosis	

Maximum	

Drawdown	

Barclays	Long	U.S.	Corporate	-	Investment	Grade	 LHCCORP(IN)+100	 5.40%	 5.16%	 1.05	 5.09	 -16.03%	

Barclays	U.S.	Corporate	High	Yield	-	Speculative	Grade	 LHYIELD(IN)+100	 6.21%	 4.82%	 1.29	 53.23	 -35.34%	

S&P	GSCI	Commodity	Total	Return	-	RETURN	IND.		 GSCITOT	 0.57%	 23.11%	 0.02	 5.67	 -80.51%	

US-DS	Real	Estate	-	TOT	RETURN	IND	 RLESTUS	 9.83%	 28.53%	 0.34	 23.63	 -73.69%	

DAX	Performance	Index	 DAX	Index	 4.44%	 24.18%	 0.18	 7.94	 -72.68%	

Nikkei	250	Index	 NKY	Index	 3.17%	 23.51%	 0.13	 9.90	 -62.90%	

S&P	500	Index	 SPX	Index	 4.81%	 19.62%	 0.25	 11.26	 -55.22%	

FTSE	100	Index	 UKX	Index	 3.67%	 18.98%	 0.19	 9.32	 -48.26%	

CAC	40	Index	 CAC	Index	 3.73%	 23.35%	 0.16	 8.23	 -64.09%	

Hang	Seng	Index	 HSI	Index	 7.89%	 24.02%	 0.33	 12.43	 -64.10%	

IBEX	35	Index	 IBEX	Index	 3.13%	 23.59%	 0.13	 8.64	 -56.49%	

KOSPI	Index	 KOSPI	Index	 9.15%	 25.92%	 0.35	 9.15	 -55.62%	

FTSE	MIB	Index	 FTSEMIB	Index	 -0.28%	 24.01%	 -0.01	 8.42	 -68.93%	

MSCI	Emerging	Market	Index	 MXEF	Index	 8.27%	 19.53%	 0.42	 12.14	 -65.16%	

MSCI	Australia	Index	 MXAU	Index	 7.88%	 16.45%	 0.48	 10.33	 -49.20%	

OMX	Stockholm	30	Index	 OMX	Index	 7.15%	 23.82%	 0.30	 6.66	 -71.18%	

US	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUS10Y	 4.76%	 7.62%	 0.62	 5.62	 -12.97%	

UK	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUK10Y	 4.67%	 10.38%	 0.45	 6.05	 -26.85%	

BD	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMBD10Y	 4.92%	 11.35%	 0.43	 6.40	 -32.16%	

JP	BENCHMARK	10	YEAR	DS	GOVT.	INDEX		 BMJP10Y	 2.44%	 11.14%	 0.22	 6.54	 -34.04%	
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Appendix	III		Replication	starting	December	31st	2007	

Index	Universe	 ETF	Replication	

Index	Name	 Bloomberg	Ticker/	Datastream	 ETF	Name	 Bloomberg	Ticker	 Management	Fee	

Barclays	Long	U.S.	Corporate	-	Investment	Grade	 LHCCORP(IN)+100	 ISHARES	IBOXX	INVESTMENT	GRADE	 LQD	US	Equity	 0.15%	

Barclays	U.S.	Corporate	High	Yield	-	Speculative	Grade	 LHYIELD(IN)+100	 ISHARES	IBOXX	USD	HIGH	YIELD	 HYG	US	Equity	 0.50%	

S&P	GSCI	Commodity	Total	Return	-	RETURN	IND.	(OFCL)	 GSCITOT	 PowerShares	DB	Commodity	Index	Tracking	Fund	 DBC	US	Equity	 0.89%	

US-DS	Real	Estate	-	TOT	RETURN	IND	 RLESTUS	 ISHARES	US	REAL	ESTATE	ETF	 IYR	US	Equity	 0.43%	

DAX	Performance	Index	 DAX	Index	 db	x-trackers	DAX	UCITS	ETF	 XDAX	GY	Equity	 0.09%	

Nikkei	250	Index	 NKY	Index	 Daiwa	ETF	-	Nikkei	225	 1320	JT	Equity	 0.16%	

S&P	500	Index	 SPX	Index	 ISHARES	CORE	S&P	500	ETF	 IVV	US	Equity	 0.04%	

FTSE	100	Index	 UKX	Index	 ISHARES	CORE	FTSE	100	 ISF	LN	Equity	 0.07%	

CAC	40	Index	 CAC	Index	 BNP	Paribas	Easy	CAC	40	UCITS	ETF	 E40	FP	Equity	 0.25%	

Hang	Seng	Index	 HSI	Index	 HANG	SENG	H-SHARE	IND	ETF-HK	 2828	HK	Equity	 0.64%	

IBEX	35	Index	 IBEX	Index	 LYXOR	IBEX35	(DR)	UCITS	ETF	 LYXIB	SM	Equity	 0.30%	

KOSPI	Index	 KOSPI	Index	 ISHARES	MSCI	KOREA	UCITS	ETF	 IKOR	LN	Equity	 0.74%	

FTSE	MIB	Index	 FTSEMIB	Index	 LYXOR	FTSE	MIB	UCITS	ETF	 ETFMIB	IM	Equity	 0.35%	

MSCI	Emerging	Market	Index	 MXEF	Index	 iShares	MSCI	Emerging	Markets	ETF	 EEM	US	Equity	 0.72%	

MSCI	Australia	Index	 MXAU	Index	 ISHARES	MSCI	AUSTRALIA	ETF	 EWA	US	Equity	 0.48%	

OMX	Stockholm	30	Index	 OMX	Index	 iShares	MSCI	Sweden	Capped	ETF	 EWD	US	Equity	 0.48%	

US	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUS10Y	 iShares	7-10	Year	Treasury	Bond	ETF	 IEF	US	Equity	 0.15%	

UK	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUK10Y	 iShares	Core	UK	Gilts	UCITS	ETF	 IGLT	LN	Equity	 0.20%	

BD	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMBD10Y	 iShares	eb.rexx	Government	Germany	10.5+yr	UCITS	ETF	 RXPXEX	GY	Equity	 0.16%	

JP	BENCHMARK	10	YEAR	DS	GOVT.	INDEX		 BMJP10Y	 VANGUARD	JAP	GV	BD	IDX-	INV	 VANJGBY	ID	Equity	 0.25%	
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Appendix	IV		Replication	starting	December	30th	2011	

Index	Universe	 ETF	Replication	

Index	Name	 Bloomberg	Ticker/	Datastream	 ETF	Name	 Bloomberg	Ticker	 Management	Fee	

Barclays	Long	U.S.	Corporate	-	Investment	Grade	 LHCCORP(IN)+100	 SPDR	Bloomberg	Barclays	Long	Term	Corporate	Bond	ETF	 LWC	US	Equity	 0.12%	

Barclays	U.S.	Corporate	High	Yield	-	Speculative	Grade	 LHYIELD(IN)+100	 SPDR	Bloomberg	Barclays	High	Yield	Bond	ETF	 JNK	US	Equity	 0.40%	

S&P	GSCI	Commodity	Total	Return	-	RETURN	IND.	(OFCL)	 GSCITOT	 iShares	S&P	GSCI	Commodity-Indexed	Trust	 GSG	US	Equity	 0.89%	

US-DS	Real	Estate	-	TOT	RETURN	IND	 RLESTUS	 ISHARES	US	REAL	ESTATE	ETF	 IYR	US	Equity	 0.43%	

DAX	Performance	Index	 DAX	Index	 db	x-trackers	DAX	UCITS	ETF	 XDAX	GY	Equity	 0.09%	

Nikkei	250	Index	 NKY	Index	 Daiwa	ETF	-	Nikkei	225	 1320	JT	Equity	 0.16%	

S&P	500	Index	 SPX	Index	 ISHARES	CORE	S&P	500	ETF	 IVV	US	Equity	 0.04%	

FTSE	100	Index	 UKX	Index	 ISHARES	CORE	FTSE	100	 ISF	LN	Equity	 0.07%	

CAC	40	Index	 CAC	Index	 BNP	Paribas	Easy	CAC	40	UCITS	ETF	 E40	FP	Equity	 0.25%	

Hang	Seng	Index	 HSI	Index	 HANG	SENG	H-SHARE	IND	ETF-HK	 2828	HK	Equity	 0.64%	

IBEX	35	Index	 IBEX	Index	 LYXOR	IBEX35	(DR)	UCITS	ETF	 LYXIB	SM	Equity	 0.30%	

KOSPI	Index	 KOSPI	Index	 MIRAE	AS	HORI	KOSPI	200	ETF	 2835	HK	Equity	 0.74%	

FTSE	MIB	Index	 FTSEMIB	Index	 LYXOR	FTSE	MIB	UCITS	ETF	 ETFMIB	IM	Equity	 0.35%	

MSCI	Emerging	Market	Index	 MXEF	Index	 iShares	MSCI	Emerging	Markets	ETF	 EEM	US	Equity	 0.72%	

MSCI	Australia	Index	 MXAU	Index	 ISHARES	MSCI	AUSTRALIA	ETF	 EWA	US	Equity	 0.48%	

OMX	Stockholm	30	Index	 OMX	Index	 iShares	MSCI	Sweden	Capped	ETF	 EWD	US	Equity	 0.48%	

US	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUS10Y	 iShares	10-20	Year	Treasury	Bond	ETF	 TLH	US	Equity	 0.15%	

UK	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMUK10Y	 iShares	Core	UK	Gilts	UCITS	ETF	 IGLT	LN	Equity	 0.20%	

BD	BENCHMARK	10	YEAR	DS	GOVT.	INDEX	 BMBD10Y	 iShares	€	Govt	Bond	10-15yr	UCITS	ETF	 EUN8	GR	Equity	 0.20%	

JP	BENCHMARK	10	YEAR	DS	GOVT.	INDEX		 BMJP10Y	 VANGUARD	JAP	GV	BD	IDX-	INV	 VANJGBY	ID	Equity	 0.25%	
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Appendix	V	Weights	(in	%)	for	the	equity	indices	universe	resulting	from	the	Minimum	cVaR	Deviation	optimisation	

		 DAX	Index	 NKY	Index	 SPX	Index	 UKX	Index	 CAC	Index	 HSI	Index	 IBEX	Index	 KOSPI	Index	 MXEF	Index	 MXAU	Index	 OMX	Index	

31/12/1990	 0.06	 12.43	 19.98	 8.34	 0.20	 3.43	 19.98	 11.05	 3.62	 19.98	 0.92	

31/12/1991	 0.30	 15.56	 19.99	 5.88	 0.15	 3.05	 19.95	 11.87	 1.27	 19.96	 2.02	

31/12/1992	 1.55	 9.50	 19.98	 13.25	 0.02	 3.86	 14.74	 10.71	 6.35	 19.97	 0.06	

31/12/1993	 3.61	 9.14	 19.99	 19.22	 0.03	 1.36	 10.49	 9.44	 6.74	 19.95	 0.04	

30/12/1994	 3.72	 11.31	 19.99	 16.76	 0.02	 1.77	 9.78	 9.64	 7.46	 19.50	 0.03	

29/12/1995	 5.73	 9.28	 19.99	 17.07	 0.03	 0.67	 7.63	 11.10	 8.68	 19.80	 0.03	

31/12/1996	 0.58	 9.92	 19.99	 19.11	 0.02	 0.04	 6.37	 11.67	 12.47	 19.81	 0.03	

31/12/1997	 1.91	 11.28	 20.00	 17.25	 0.01	 0.01	 3.15	 12.16	 14.24	 19.99	 0.00	

31/12/1998	 0.47	 15.76	 20.00	 18.71	 0.01	 0.00	 0.06	 9.44	 15.55	 20.00	 0.00	

31/12/1999	 0.47	 16.52	 20.00	 17.04	 0.01	 0.01	 2.62	 6.99	 16.35	 20.00	 0.01	

29/12/2000	 0.57	 19.10	 20.00	 13.81	 0.00	 0.00	 4.71	 6.79	 15.02	 20.00	 0.00	

31/12/2001	 0.65	 17.86	 20.00	 15.39	 0.01	 0.00	 1.81	 5.52	 18.76	 20.00	 0.00	

31/12/2002	 0.01	 18.51	 20.00	 17.90	 0.00	 0.01	 0.02	 3.60	 19.97	 20.00	 0.00	

31/12/2003	 0.00	 18.44	 20.00	 18.45	 0.00	 0.01	 0.00	 3.10	 20.00	 20.00	 0.00	

31/12/2004	 0.00	 17.62	 20.00	 19.99	 0.00	 0.00	 0.01	 2.39	 19.98	 20.00	 0.00	

30/12/2005	 0.00	 16.81	 20.00	 19.96	 0.00	 0.75	 0.03	 2.68	 19.76	 20.00	 0.00	

29/12/2006	 0.01	 16.39	 20.00	 19.99	 0.00	 3.14	 0.12	 4.18	 16.16	 20.00	 0.00	

31/12/2007	 0.02	 19.93	 20.00	 19.99	 0.01	 0.09	 1.40	 4.19	 14.37	 20.00	 0.00	

31/12/2008	 0.01	 19.99	 20.00	 20.00	 0.00	 0.00	 3.15	 3.19	 13.65	 20.00	 0.00	

31/12/2009	 0.40	 19.99	 20.00	 20.00	 0.02	 0.01	 4.17	 5.46	 9.95	 20.00	 0.00	

31/12/2010	 0.01	 19.99	 20.00	 20.00	 0.01	 1.35	 5.37	 5.85	 7.42	 20.00	 0.00	

30/12/2011	 0.01	 19.99	 20.00	 20.00	 0.01	 0.30	 3.41	 6.39	 9.91	 20.00	 0.00	

31/12/2012	 0.01	 19.99	 20.00	 20.00	 0.01	 0.01	 3.17	 5.66	 11.15	 20.00	 0.00	

31/12/2013	 0.01	 19.31	 20.00	 20.00	 0.01	 1.62	 2.90	 6.98	 9.17	 20.00	 0.00	

31/12/2014	 0.10	 19.87	 19.99	 19.98	 0.07	 0.35	 3.65	 6.11	 9.86	 19.99	 0.02	

31/12/2015	 0.04	 19.42	 20.00	 20.00	 0.01	 0.73	 3.38	 7.23	 9.21	 20.00	 0.00	
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Appendix	VI	Weights	(in	%)	for	the	equity	indices	universe	resulting	from	the	Minimum	Variance	optimisation	

		 DAX	Index	 NKY	Index	 SPX	Index	 UKX	Index	 CAC	Index	 HSI	Index	 IBEX	Index	 KOSPI	Index	 MXEF	Index	 MXAU	Index	 OMX	Index	

31/12/1990	 1.87	 5.27	 17.67	 16.96	 4.79	 2.95	 7.54	 12.78	 11.18	 15.30	 3.69	

31/12/1991	 2.25	 4.90	 18.15	 17.49	 3.70	 3.84	 6.20	 12.04	 11.14	 16.19	 4.11	

31/12/1992	 2.98	 3.67	 18.40	 16.54	 3.97	 5.10	 6.30	 10.98	 12.83	 16.61	 2.62	

31/12/1993	 3.24	 4.21	 18.31	 16.35	 3.99	 4.76	 6.10	 11.05	 13.15	 16.03	 2.82	

30/12/1994	 3.66	 5.28	 18.40	 16.04	 3.86	 3.61	 5.22	 11.83	 13.21	 15.90	 3.00	

29/12/1995	 3.83	 5.26	 18.39	 15.91	 3.77	 3.67	 5.31	 11.88	 12.78	 16.01	 3.21	

31/12/1996	 3.80	 5.67	 18.24	 15.81	 3.90	 3.62	 5.56	 11.71	 13.10	 15.40	 3.21	

31/12/1997	 3.47	 6.50	 18.44	 16.55	 3.90	 2.55	 5.56	 9.79	 13.66	 16.61	 2.96	

31/12/1998	 3.09	 7.92	 18.67	 17.11	 4.17	 1.91	 4.78	 8.67	 12.68	 18.15	 2.84	

31/12/1999	 2.95	 8.66	 18.70	 16.97	 4.10	 1.95	 4.85	 7.63	 12.75	 18.29	 3.15	

29/12/2000	 3.04	 9.81	 18.76	 17.15	 4.05	 1.90	 4.98	 6.03	 12.99	 18.56	 2.73	

31/12/2001	 2.67	 10.30	 18.81	 17.56	 3.73	 1.97	 4.76	 5.31	 13.71	 18.80	 2.38	

31/12/2002	 1.88	 10.85	 18.79	 17.22	 2.63	 2.45	 4.37	 5.47	 15.32	 19.01	 2.01	

31/12/2003	 1.65	 11.06	 18.82	 16.99	 2.28	 2.76	 4.37	 5.06	 15.88	 19.06	 2.06	

31/12/2004	 1.69	 10.98	 18.82	 17.13	 2.37	 2.95	 4.56	 4.81	 15.49	 19.08	 2.12	

30/12/2005	 1.76	 10.84	 18.80	 17.12	 2.42	 3.15	 4.71	 4.79	 15.16	 19.04	 2.20	

29/12/2006	 1.82	 10.72	 18.85	 17.19	 2.50	 3.43	 5.05	 4.92	 14.34	 19.02	 2.16	

31/12/2007	 1.95	 11.19	 18.90	 17.06	 2.62	 3.25	 5.63	 4.98	 13.27	 19.00	 2.15	

31/12/2008	 2.26	 11.26	 19.11	 17.29	 2.52	 2.81	 6.16	 6.37	 10.57	 19.16	 2.50	

31/12/2009	 2.17	 11.87	 19.10	 17.46	 2.59	 2.72	 6.20	 7.18	 8.87	 19.20	 2.63	

31/12/2010	 2.37	 12.08	 19.10	 17.50	 2.49	 2.98	 5.17	 7.62	 8.58	 19.20	 2.93	

30/12/2011	 2.20	 12.68	 19.10	 17.60	 2.31	 3.12	 5.10	 7.73	 8.12	 19.19	 2.85	

31/12/2012	 2.20	 12.84	 19.10	 17.64	 2.31	 3.23	 4.78	 7.84	 8.00	 19.19	 2.88	

31/12/2013	 2.27	 12.33	 19.09	 17.61	 2.35	 3.33	 4.72	 8.09	 8.07	 19.17	 2.97	

31/12/2014	 2.28	 12.12	 19.07	 17.56	 2.38	 3.37	 4.58	 8.27	 8.16	 19.15	 3.05	

31/12/2015	 2.26	 12.04	 19.07	 17.48	 2.30	 3.45	 4.41	 8.67	 8.11	 19.13	 3.07	



IX 
 

	

Appendix	VII	Weights	(in	%)	for	the	equity	indices	universe	resulting	from	the	maximum	cVaR	Sharpe	Ratio	optimisation	

		 DAX	Index	 NKY	Index	 SPX	Index	 UKX	Index	 CAC	Index	 HSI	Index	 IBEX	Index	 KOSPI	Index	 MXEF	Index	 MXAU	Index	 OMX	Index	

31/12/1990	 1.54	 0.00	 20.00	 0.22	 19.99	 4.79	 0.00	 13.49	 20.00	 0.00	 19.97	

31/12/1991	 0.01	 0.00	 20.00	 0.58	 19.99	 19.99	 0.00	 1.88	 20.00	 12.02	 5.53	

31/12/1992	 0.00	 0.00	 20.00	 18.20	 9.97	 20.00	 0.00	 4.83	 20.00	 2.07	 4.93	

31/12/1993	 3.17	 0.00	 20.00	 14.96	 0.92	 20.00	 0.00	 4.07	 20.00	 7.97	 8.91	

30/12/1994	 5.12	 0.00	 20.00	 8.70	 0.00	 19.99	 0.00	 9.42	 20.00	 0.02	 16.73	

29/12/1995	 0.01	 0.00	 20.00	 12.56	 0.00	 19.99	 0.00	 5.27	 20.00	 2.60	 19.57	

31/12/1996	 2.84	 0.00	 20.00	 12.15	 0.00	 20.00	 2.06	 0.01	 20.00	 2.95	 20.00	

31/12/1997	 9.43	 0.00	 20.00	 13.70	 0.01	 10.98	 3.62	 0.00	 19.99	 2.28	 19.99	

31/12/1998	 7.30	 0.00	 20.00	 13.90	 0.00	 7.01	 10.65	 0.00	 11.44	 9.71	 20.00	

31/12/1999	 8.65	 0.00	 20.00	 6.49	 0.08	 11.79	 6.88	 0.83	 19.90	 5.40	 19.99	

29/12/2000	 11.60	 0.00	 20.00	 2.24	 4.36	 13.58	 0.14	 0.00	 10.70	 17.39	 20.00	

31/12/2001	 6.70	 0.00	 20.00	 0.47	 2.64	 11.50	 2.98	 0.00	 15.73	 20.00	 20.00	

31/12/2002	 0.00	 0.00	 20.00	 4.96	 0.01	 15.04	 0.01	 0.00	 19.99	 20.00	 20.00	

31/12/2003	 0.00	 0.00	 20.00	 0.00	 0.00	 19.99	 0.01	 0.00	 20.00	 20.00	 20.00	

31/12/2004	 0.00	 0.00	 20.00	 0.01	 0.00	 18.40	 1.59	 0.00	 20.00	 20.00	 20.00	

30/12/2005	 0.00	 0.00	 20.00	 3.41	 0.00	 16.50	 0.09	 0.00	 20.00	 20.00	 20.00	

29/12/2006	 0.00	 0.00	 20.00	 0.01	 0.00	 17.10	 2.89	 0.00	 20.00	 20.00	 20.00	

31/12/2007	 0.00	 0.00	 20.00	 0.01	 0.00	 19.97	 2.93	 0.00	 20.00	 20.00	 17.08	

31/12/2008	 0.00	 0.00	 20.00	 0.00	 0.00	 16.44	 3.56	 0.00	 20.00	 20.00	 20.00	

31/12/2009	 0.00	 0.00	 20.00	 0.00	 0.00	 19.54	 0.46	 0.00	 20.00	 20.00	 20.00	

31/12/2010	 0.00	 0.00	 20.00	 0.01	 0.00	 19.99	 0.00	 0.00	 20.00	 20.00	 20.00	

30/12/2011	 0.00	 0.00	 20.00	 0.03	 0.00	 19.97	 0.00	 0.00	 20.00	 20.00	 20.00	

31/12/2012	 0.00	 0.00	 20.00	 0.11	 0.00	 19.89	 0.00	 0.00	 20.00	 20.00	 20.00	

31/12/2013	 0.00	 0.00	 20.00	 0.03	 0.00	 19.97	 0.00	 0.00	 20.00	 20.00	 20.00	

31/12/2014	 0.00	 0.00	 20.00	 2.20	 0.00	 17.80	 0.00	 0.00	 20.00	 20.00	 20.00	

31/12/2015	 0.00	 0.00	 20.00	 1.44	 0.00	 18.57	 0.00	 0.00	 19.99	 20.00	 20.00	
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Appendix	VIII	Weights	(in	%)	for	the	equity	indices	universe	resulting	from	the	maximum	Sharpe	Ratio	optimisation	

		 DAX	Index	 NKY	Index	 SPX	Index	 UKX	Index	 CAC	Index	 HSI	Index	 IBEX	Index	 KOSPI	Index	 MXEF	Index	 MXAU	Index	 OMX	Index	

31/12/1990	 0.00	 0.00	 20.00	 13.94	 19.20	 1.95	 0.00	 14.12	 20.00	 0.00	 10.79	

31/12/1991	 0.00	 0.00	 20.00	 19.99	 12.81	 10.45	 0.00	 3.47	 20.00	 10.34	 2.94	

31/12/1992	 0.00	 0.00	 20.00	 20.00	 11.08	 17.36	 0.00	 5.58	 20.00	 4.06	 1.91	

31/12/1993	 0.01	 0.00	 20.00	 19.91	 2.34	 19.93	 0.00	 6.04	 20.00	 5.89	 5.88	

30/12/1994	 1.05	 0.00	 20.00	 18.07	 0.01	 13.23	 0.00	 11.37	 20.00	 4.14	 12.14	

29/12/1995	 0.00	 0.00	 20.00	 19.98	 0.00	 12.64	 0.00	 6.64	 20.00	 6.24	 14.49	

31/12/1996	 0.01	 0.00	 20.00	 19.99	 0.00	 15.14	 0.01	 1.07	 20.00	 3.80	 19.99	

31/12/1997	 2.95	 0.00	 20.00	 20.00	 0.00	 6.47	 4.08	 0.00	 20.00	 6.52	 20.00	

31/12/1998	 0.85	 0.00	 20.00	 20.00	 0.01	 2.77	 8.44	 0.00	 11.68	 16.27	 20.00	

31/12/1999	 0.30	 0.00	 20.00	 19.93	 1.74	 5.06	 1.53	 0.02	 19.97	 11.46	 20.00	

29/12/2000	 0.11	 0.00	 20.00	 18.26	 6.82	 6.58	 0.01	 0.00	 8.25	 19.97	 20.00	

31/12/2001	 0.01	 0.00	 20.00	 18.88	 2.14	 5.68	 0.03	 0.00	 13.27	 20.00	 20.00	

31/12/2002	 0.00	 0.00	 20.00	 10.94	 0.01	 9.07	 0.01	 0.00	 19.98	 20.00	 19.99	

31/12/2003	 0.00	 0.00	 20.00	 8.96	 0.00	 11.03	 0.02	 0.00	 20.00	 20.00	 19.99	

31/12/2004	 0.00	 0.00	 20.00	 9.06	 0.00	 10.71	 0.25	 0.00	 20.00	 20.00	 19.98	

30/12/2005	 0.00	 0.00	 20.00	 11.11	 0.00	 8.77	 0.12	 0.01	 20.00	 20.00	 19.98	

29/12/2006	 0.00	 0.00	 20.00	 7.32	 0.00	 10.03	 3.92	 0.00	 20.00	 20.00	 18.72	

31/12/2007	 0.00	 0.00	 20.00	 6.41	 0.00	 12.37	 6.39	 0.01	 20.00	 20.00	 14.82	

31/12/2008	 0.00	 0.00	 20.00	 0.10	 0.00	 12.51	 7.40	 0.00	 19.99	 20.00	 19.99	

31/12/2009	 0.00	 0.00	 20.00	 0.04	 0.00	 13.10	 6.87	 0.01	 20.00	 20.00	 19.99	

31/12/2010	 0.00	 0.00	 20.00	 6.11	 0.00	 13.84	 0.02	 0.04	 20.00	 20.00	 20.00	

30/12/2011	 0.00	 0.00	 20.00	 6.84	 0.00	 13.14	 0.01	 0.02	 20.00	 20.00	 19.99	

31/12/2012	 0.00	 0.00	 20.00	 5.62	 0.00	 14.37	 0.01	 0.01	 20.00	 20.00	 19.99	

31/12/2013	 0.01	 0.00	 20.00	 7.57	 0.00	 12.43	 0.01	 0.01	 19.99	 20.00	 19.99	

31/12/2014	 0.01	 0.00	 20.00	 7.23	 0.00	 12.76	 0.01	 0.01	 19.99	 20.00	 20.00	

31/12/2015	 0.01	 0.00	 20.00	 7.16	 0.00	 12.85	 0.01	 0.01	 19.97	 20.00	 20.00	
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Appendix	IX	Weights	(in	%)	for	the	multi	asset	universe	resulting	from	the	Minimum	cVaR	Deviation	optimisation	

		 US	CB	IG	 US	CB	HY	 GSCITOT	 RLESTUS	 DAX	 NKY	 SPX	 UKX	 CAC	 HSI	 IBEX	 KOSPI	 FTSEMIB	 MXEF	 MXAU	 OMX	 BMUS10Y	 BMUK10Y	 BMBD10Y	 BMJP10Y	

31/12/2001	 19.87	 19.99	 3.75	 10.51	 0.09	 1.09	 1.47	 0.02	 0.02	 0.01	 0.04	 0.01	 2.21	 0.04	 9.09	 0.02	 9.36	 2.96	 3.65	 15.82	

31/12/2002	 10.67	 19.99	 3.21	 9.25	 0.49	 0.87	 2.06	 1.16	 0.02	 0.02	 0.04	 0.01	 3.18	 0.04	 10.78	 0.02	 16.18	 4.68	 2.44	 14.87	

31/12/2003	 19.92	 19.99	 2.11	 10.06	 0.68	 0.31	 2.07	 1.36	 0.02	 0.02	 0.04	 0.01	 2.29	 0.04	 12.05	 0.02	 8.35	 4.36	 0.62	 15.70	

31/12/2004	 19.96	 19.99	 2.13	 6.24	 0.62	 0.09	 3.40	 1.38	 0.02	 0.01	 0.03	 0.01	 2.55	 0.02	 14.44	 0.02	 12.70	 2.30	 0.05	 14.03	

30/12/2005	 19.97	 19.99	 1.86	 4.21	 0.13	 0.66	 4.26	 3.88	 0.02	 0.02	 0.03	 0.01	 1.70	 0.02	 12.60	 0.02	 13.76	 1.61	 0.09	 15.17	

29/12/2006	 19.99	 20.00	 1.45	 2.95	 0.06	 1.00	 5.52	 2.70	 0.00	 0.01	 0.01	 0.00	 1.84	 0.00	 11.54	 0.00	 17.95	 0.32	 0.18	 14.48	

31/12/2007	 19.97	 19.99	 1.89	 2.31	 0.40	 0.58	 5.72	 3.45	 0.03	 0.01	 0.03	 0.01	 1.56	 0.01	 9.77	 0.02	 18.57	 0.26	 0.39	 15.02	

31/12/2008	 19.98	 19.99	 0.98	 1.92	 0.19	 0.79	 6.07	 2.84	 0.03	 0.01	 0.03	 0.02	 2.36	 0.01	 5.12	 0.09	 19.53	 3.99	 0.07	 15.97	

31/12/2009	 19.98	 19.99	 0.81	 1.10	 0.15	 1.74	 6.20	 3.77	 0.06	 0.02	 0.04	 0.06	 0.60	 0.01	 3.37	 0.05	 19.96	 6.78	 0.08	 15.22	

31/12/2010	 19.98	 19.99	 1.32	 1.25	 0.89	 1.53	 5.74	 3.98	 0.04	 0.01	 0.06	 0.04	 0.18	 0.01	 2.96	 0.02	 19.93	 5.02	 0.20	 16.86	

30/12/2011	 19.98	 19.99	 0.63	 0.25	 0.09	 1.80	 6.56	 4.33	 0.04	 0.02	 0.12	 0.03	 1.08	 0.01	 3.06	 0.04	 19.94	 5.23	 0.10	 16.70	

31/12/2012	 19.98	 19.99	 0.91	 0.73	 0.77	 1.51	 6.37	 4.78	 0.05	 0.02	 0.10	 0.08	 0.06	 0.01	 3.08	 0.03	 19.94	 5.37	 0.47	 15.76	

31/12/2013	 19.98	 19.99	 1.06	 0.65	 0.10	 1.87	 6.01	 4.93	 0.07	 0.02	 0.38	 0.03	 0.20	 0.01	 2.54	 0.02	 19.93	 5.12	 0.10	 16.98	

31/12/2014	 19.97	 19.99	 1.53	 0.60	 0.05	 2.05	 6.62	 3.48	 0.03	 0.02	 0.13	 0.05	 1.19	 0.01	 2.44	 0.02	 19.89	 4.84	 0.12	 16.96	

31/12/2015	 19.98	 19.99	 1.74	 0.14	 0.05	 1.85	 6.88	 3.66	 0.05	 0.03	 0.71	 0.12	 0.38	 0.01	 2.66	 0.02	 19.95	 3.50	 1.33	 16.93	
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Appendix	X	Weights	(in	%)	for	the	multi	asset	universe	resulting	from	the	Minimum	Variance	optimisation	

		 US	CB	IG	 US	CB	HY	 GSCITOT	 RLESTUS	 DAX	 NKY	 SPX	 UKX	 CAC	 HSI	 IBEX	 KOSPI	 FTSEMIB	 MXEF	 MXAU	 OMX	 BMUS10Y	 BMUK10Y	 BMBD10Y	 BMJP10Y	

31/12/2001	 13.89	 15.47	 4.56	 5.25	 1.28	 2.02	 2.49	 1.83	 1.27	 1.25	 1.28	 0.95	 1.34	 1.54	 3.62	 1.33	 12.53	 9.41	 6.93	 11.76	

31/12/2002	 13.86	 15.09	 4.66	 4.91	 1.24	 1.90	 2.49	 1.72	 1.21	 1.41	 1.33	 1.03	 1.37	 1.60	 3.75	 1.22	 13.62	 9.74	 7.09	 10.76	

31/12/2003	 13.74	 15.08	 4.29	 5.34	 1.31	 1.96	 2.64	 1.82	 1.29	 1.55	 1.43	 1.09	 1.45	 1.69	 4.03	 1.33	 13.30	 9.47	 6.76	 10.45	

31/12/2004	 14.19	 15.50	 4.23	 4.57	 1.37	 2.05	 2.91	 2.00	 1.38	 1.58	 1.50	 1.12	 1.59	 1.65	 4.50	 1.42	 13.50	 8.45	 6.42	 10.06	

30/12/2005	 14.24	 15.42	 4.03	 4.26	 1.43	 2.20	 3.02	 2.10	 1.45	 1.68	 1.57	 1.18	 1.66	 1.69	 4.62	 1.52	 13.51	 8.18	 6.42	 9.84	

29/12/2006	 14.43	 15.54	 3.92	 4.08	 1.43	 2.18	 3.20	 2.10	 1.50	 1.86	 1.57	 1.23	 1.69	 1.56	 4.49	 1.55	 13.77	 7.92	 6.40	 9.57	

31/12/2007	 14.39	 15.38	 3.82	 3.72	 1.51	 2.26	 3.30	 2.13	 1.51	 1.68	 1.65	 1.28	 1.80	 1.51	 4.05	 1.53	 13.72	 7.74	 6.33	 10.71	

31/12/2008	 15.85	 15.52	 2.78	 2.58	 1.45	 1.70	 2.73	 1.79	 1.39	 1.30	 1.50	 1.31	 1.53	 1.17	 2.98	 1.40	 15.40	 7.06	 6.13	 14.43	

31/12/2009	 16.22	 15.92	 2.65	 1.99	 1.44	 1.81	 2.62	 1.78	 1.38	 1.23	 1.49	 1.39	 1.45	 1.15	 2.79	 1.39	 15.77	 6.65	 6.10	 14.78	

31/12/2010	 16.23	 15.95	 2.61	 1.99	 1.45	 1.84	 2.66	 1.79	 1.35	 1.26	 1.41	 1.43	 1.42	 1.16	 2.77	 1.42	 15.82	 6.56	 6.00	 14.89	

30/12/2011	 16.40	 15.86	 2.52	 1.94	 1.40	 1.89	 2.65	 1.78	 1.32	 1.26	 1.41	 1.43	 1.37	 1.16	 2.67	 1.39	 15.94	 6.78	 5.91	 14.90	

31/12/2012	 16.32	 15.74	 2.54	 1.99	 1.41	 1.94	 2.67	 1.80	 1.33	 1.30	 1.40	 1.48	 1.34	 1.17	 2.69	 1.40	 15.90	 6.87	 5.90	 14.81	

31/12/2013	 16.21	 15.77	 2.60	 1.98	 1.44	 2.06	 2.68	 1.87	 1.34	 1.30	 1.44	 1.53	 1.38	 1.19	 2.79	 1.40	 15.87	 6.69	 5.94	 14.52	

31/12/2014	 16.13	 15.54	 2.56	 2.00	 1.46	 2.09	 2.74	 1.90	 1.38	 1.36	 1.43	 1.52	 1.39	 1.22	 2.92	 1.45	 15.77	 6.66	 6.00	 14.46	

31/12/2015	 16.03	 15.52	 2.57	 2.00	 1.47	 2.13	 2.77	 1.90	 1.40	 1.39	 1.44	 1.57	 1.40	 1.24	 2.87	 1.47	 15.66	 6.56	 6.12	 14.49	
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Appendix	XI	Weights	(in	%)	for	the	multi	asset	universe	resulting	from	the	cVaR	deviation	Sharpe	Ratio	optimisation	

		 US	CB	IG	 US	CB	HY	 GSCITOT	 RLESTUS	 DAX	 NKY	 SPX	 UKX	 CAC	 HSI	 IBEX	 KOSPI	 FTSEMIB	 MXEF	 MXAU	 OMX	 BMUS10Y	 BMUK10Y	 BMBD10Y	 BMJP10Y	

31/12/2001	 20.00	 19.99	 13.56	 20.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 20.00	 0.00	 4.83	 0.00	 0.00	 1.61	

31/12/2002	 19.99	 0.48	 19.75	 19.97	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 11.03	 0.00	 16.46	 2.75	 0.01	 9.55	

31/12/2003	 19.98	 19.99	 8.76	 19.97	 0.01	 0.00	 0.01	 0.01	 0.01	 0.02	 0.01	 0.01	 0.01	 5.97	 8.21	 0.01	 3.73	 3.64	 0.43	 9.24	

31/12/2004	 19.97	 19.99	 6.56	 19.93	 0.01	 0.01	 0.01	 0.01	 0.01	 0.02	 0.01	 0.01	 0.01	 4.28	 15.65	 0.01	 3.50	 2.82	 0.28	 6.95	

30/12/2005	 19.99	 20.00	 6.13	 17.70	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 8.79	 17.98	 0.00	 3.73	 1.91	 0.34	 3.41	

29/12/2006	 19.99	 20.00	 3.74	 18.66	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 7.49	 19.87	 0.00	 4.28	 2.24	 0.10	 3.61	

31/12/2007	 19.95	 19.98	 5.05	 10.92	 0.02	 0.01	 0.02	 0.02	 0.02	 0.02	 0.03	 0.01	 0.01	 11.08	 16.12	 0.01	 7.95	 1.53	 1.35	 5.90	

31/12/2008	 19.74	 19.75	 2.68	 5.54	 0.03	 0.01	 0.02	 0.03	 0.02	 0.04	 0.04	 0.22	 0.01	 5.49	 7.07	 0.05	 19.89	 0.04	 4.59	 14.75	

31/12/2009	 19.99	 20.00	 1.24	 3.86	 0.00	 0.00	 0.00	 0.01	 0.00	 0.01	 0.01	 0.01	 0.00	 11.81	 5.65	 0.01	 19.92	 0.03	 3.81	 13.64	

31/12/2010	 19.99	 20.00	 1.14	 4.44	 0.01	 0.00	 0.01	 0.01	 0.00	 0.01	 0.01	 0.16	 0.00	 11.54	 4.27	 0.34	 19.87	 0.02	 0.58	 17.60	

30/12/2011	 19.97	 19.99	 1.13	 4.53	 0.02	 0.01	 0.04	 0.09	 0.02	 0.03	 0.03	 0.61	 0.01	 7.60	 3.73	 0.75	 19.93	 1.95	 1.66	 17.91	

31/12/2012	 19.97	 19.99	 1.16	 4.82	 0.38	 0.01	 0.09	 0.14	 0.03	 0.04	 0.02	 0.74	 0.01	 7.54	 4.20	 0.74	 19.93	 2.73	 3.11	 14.36	

31/12/2013	 19.99	 20.00	 1.28	 5.16	 0.05	 0.00	 1.54	 0.05	 0.01	 0.01	 0.01	 0.27	 0.00	 4.34	 8.56	 1.25	 19.53	 1.15	 5.89	 10.89	

31/12/2014	 19.99	 20.00	 0.35	 5.82	 0.01	 0.00	 2.55	 0.02	 0.00	 0.01	 0.01	 1.12	 0.00	 1.56	 8.76	 1.97	 19.97	 3.55	 6.34	 7.96	

31/12/2015	 19.99	 20.00	 0.01	 5.94	 0.03	 0.00	 3.31	 0.03	 0.01	 0.05	 0.01	 1.94	 0.00	 0.03	 10.67	 1.74	 19.98	 1.48	 5.05	 9.74	
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Appendix	XII	Weights	(in	%)	for	the	multi	asset	universe	resulting	from	the	cVaR	deviation	Sharpe	Ratio	optimisation	

		 US	CB	IG	 US	CB	HY	 GSCITOT	 RLESTUS	 DAX	 NKY	 SPX	 UKX	 CAC	 HSI	 IBEX	 KOSPI	 FTSEMIB	 MXEF	 MXAU	 OMX	 BMUS10Y	 BMUK10Y	 BMBD10Y	 BMJP10Y	

31/12/2001	 20.00	 14.29	 11.69	 19.99	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 15.15	 0.46	 18.26	 0.00	 0.00	 0.15	

31/12/2002	 20.00	 9.65	 12.22	 15.33	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 7.02	 0.00	 20.00	 6.43	 0.00	 9.35	

31/12/2003	 20.00	 20.00	 7.96	 17.56	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 2.55	 5.27	 0.00	 10.80	 7.89	 0.27	 7.69	

31/12/2004	 20.00	 20.00	 7.58	 16.85	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 2.03	 10.27	 0.00	 7.79	 7.19	 1.71	 6.56	

30/12/2005	 20.00	 20.00	 7.98	 15.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 4.36	 12.76	 0.00	 9.29	 7.40	 0.02	 2.98	

29/12/2006	 20.00	 20.00	 5.83	 16.62	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 4.16	 13.84	 0.00	 7.66	 10.35	 0.01	 1.52	

31/12/2007	 20.00	 20.00	 6.32	 9.86	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 6.58	 11.16	 0.00	 12.47	 8.32	 0.04	 5.23	

31/12/2008	 20.00	 19.99	 3.55	 4.64	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.92	 0.00	 2.63	 6.18	 0.02	 20.00	 0.00	 6.25	 15.81	

31/12/2009	 20.00	 20.00	 2.89	 3.14	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.01	 0.12	 0.00	 6.90	 5.51	 0.61	 20.00	 0.00	 5.20	 15.61	

31/12/2010	 20.00	 20.00	 2.84	 3.48	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.88	 0.00	 6.27	 3.98	 1.52	 20.00	 0.02	 2.36	 18.65	

30/12/2011	 20.00	 20.00	 2.83	 3.79	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 1.71	 0.00	 2.98	 3.28	 1.85	 20.00	 3.86	 1.77	 17.93	

31/12/2012	 20.00	 20.00	 2.47	 4.01	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.00	 1.45	 0.00	 2.54	 4.46	 2.11	 20.00	 4.44	 3.18	 15.33	

31/12/2013	 20.00	 20.00	 2.49	 3.03	 0.00	 0.00	 2.47	 0.00	 0.00	 0.00	 0.00	 1.72	 0.00	 0.01	 6.92	 2.73	 20.00	 1.99	 7.15	 11.48	

31/12/2014	 20.00	 20.00	 0.59	 3.34	 0.00	 0.00	 3.04	 0.00	 0.00	 0.00	 0.00	 1.38	 0.00	 0.00	 7.19	 3.23	 20.00	 4.85	 6.53	 9.85	

31/12/2015	 20.00	 20.00	 0.00	 3.48	 0.00	 0.00	 3.19	 0.00	 0.00	 0.00	 0.00	 1.79	 0.00	 0.00	 7.15	 3.45	 20.00	 5.09	 4.66	 11.18	
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Appendix	XIII	–	Performance	Equity	Indices	Universe	
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Appendix	XIV	–	Maximum	Drawdown	Equity	Indices	Universe	
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Appendix	XV	–	Performance	Multi	Asset	Universe	
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Appendix	XVI	–Maximum	Drawdown	Multi	Asset	Universe	
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Appendix	XVII	–	Performance	US	Stock	Universe	
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Appendix	XVIII	–	Maximum	Drawdown	US	Stock	Universe	
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