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Abstract

In this thesis we investigate the volatility risk premium (VRP) on OMXS30 and
S&P 500 and the predictive capabilities of Gaussian Process for regression (GP)
on the volatility of those indices. The results are evaluated by comparison with
corresponding predictions of a few methods from the GARCH family as well as
a naive approach. Several volatility risk premia are constructed using the differ-
ent forecasting methods, and their explanatory power for stock market returns is
analyzed using linear regressions.

We found that the one day ahead volatility forecasts made with the GP were
not as similar to the realized volatility as those made with the naive approach,
and not as good at predicting the direction of change as the comparative GARCH
methods. There seems to exist a volatility risk premium on the Swedish market,
however not as large as the VRP on the US market, potentially indicating greater
risk aversion among investors on the US market. For both markets, the volatility
risk premium is found to predict future stock market excess returns, with the VRP
constructed from the regular GARCH(1, 1) giving the highest adjusted R2.
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1 Introduction

Uncertainty is an integral part of financial market dynamics. For some
market actors it is an unwanted source of risk which should optimally be
minimized without affecting asset returns, while for others it is central source
of producing asset returns. Nonetheless, it is an important consideration for
investors in stock markets, as equities tend to be volatile and have given
rise to numerical measures such as volatility. One indicator of volatility
is the so-called ”fear-index” of implied volatility (IV), derived from prices
of derivatives on financial markets. Implied volatility is, however, a biased
measure, as it is calculated in a theoretical, risk-neutral, world, and tends
therefore not to be the same as the actual volatility, commonly called realized
volatility (RV). This discrepancy has given rise to the concept of a volatility
risk premium (VRP), defined as the difference between the implied and
the realized volatility. The VRP could be regarded as an indicator of the
average investor’s risk aversion, as it quantifies to some extent, how much
investors are willing to pay to hedge against the ”volatility of volatility”.
While the implied and realized volatility measures themselves have not been
found to predict stock market returns, Bollerslev et. al. (2009) found that
the volatility risk premium provides explanatory power for returns on the
S&P 500 [BTZ09].

How to calculate the VRP is on the other hand not straightforward, as
the two volatility measures should optimally reflect the same period. Pre-
vious research has focused on the source of the VRP and its characteristics
and put less effort into the calculation of the variable itself, while in fact a
substantial part of the work lies in forecasting a realized volatility for the
following period. There is a vast amount of different volatility forecasting
methods, and as of lately, new methods from the field of machine learning in
computer science. In this thesis we investigate the predictive performance
of such a method, namely Gaussian process for regression (GP), and com-
pare it to standard methods from the GARCH1 family of models as well as
a naive approach on the OMXS30 and S&P 500 indexes. These volatility
forecasts are then used for constructing VRPs, that are examined in terms
of their explanatory power of stock market returns.

1General autoregressive conditional heteroskedasticity.
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1.1 Thesis Motivation and Aim

Given the central role of volatility and an increasing interest in the VRP,
an examination of the premium on other markets than the US is of interest.
The extent to which investors are willing to pay a premium for insurance
against the uncertainty of volatility, might be of interest for researchers in
many fields, for instance behavioral finance. The fact that the premium has
been found to predict stock market returns is of interest for academia as well
as professionals, as any input that could improve a stock market forecasting
is of interest for e.g. traders and investors. Finally, evaluating a new and
promising machine learning method against different volatility forecasting
methods is of interest, since more precise forecasts are constantly sought.

The aim of this thesis is therefore to examine the VRP and its explana-
tory power for future stock market returns on the Swedish and the American
stock markets, and to conduct a comparison of volatility forecasting between
the machine learning method of Gaussian processes for regression and other
benchmark methods. The choice of the Swedish market could produce some
new interesting results, while the American market is examined so that the
results can be compared to previous research in the field.

1.2 Research Questions

In line with the thesis aim, two research questions are be formulated:

• What are the characteristics of the volatility risk premium on OMXS30
and does it predict future index returns?

• Is Gaussian process for regression suitable for predicting stock market
volatility and the volatility risk premium (VRP)?

1.3 Previous Research

One of the first quantitative definitions of the volatility risk premium was
proposed by Carr and Wu [CW09], where they defined a variance risk pre-
mium as the difference between a variance swap rate, retrieved from option
prices on the market, and the realized variance. They found that for a ma-
jority of the assets they investigated, the historical variance swap rate was
larger than the ex post (after the event) realized variance, i.e. they focused
on an ex post VRP.

3
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Bollerslev et. al. [BTZ09] found that the variance risk premium explains
a non-trivial part of future excess returns on the S&P 500; that a high (low)
premium predicts higher (lower) future stock returns. Similar results have
been found for bonds [M+12] and the FX-market [DRS16]. Bollerslev et.
al. received this result for ex post variance risk premia, ex post volatility
risk premia and an expected variance risk premium, which essentially is
an ex ante risk premium. They stress the importance of an ex ante risk
premium, i.e. a VRP constructed using forecasted realized volatility (RV), as
it reduces the temporal effects on the results, since the ex post risk premium
is constructed using the RV of the past period, and not a forecasted one.
Their ex ante variance risk premium is constructed using the forecasts of
the realized volatility from the HAR-RV2 method. This thesis will extend
the analysis to the Swedish stock market and specifically extend the ex ante
version of the risk premium, comparing predictability using forecasts from
different forecasting methods.

Machine Learning (ML) is the field of developing software and algorithms
that can learn from data and be able to perform tasks without being explic-
itly programmed, for example by regressing on functional forms that have
not been specified in advance. Most ML-algorithms are not new, but they
have gained new interest as data has become more available and the capabil-
ity to perform demanding mathematical calculations on large data-sets has
increased. In this thesis we apply Gaussian process for regression (GP), orig-
inally developed for geological applications, on stock market volatility. GP
and similar methods have, however, been applied to financial data before.

Wilson and Ghahramani [WG10] developed a Gaussian Copula process
Volatility model that performed on par with GARCH(1, 1) for predictions on
the exchange rate volatility between the Deutschmark and the Great Britain
Pound from 1984 to 1992. Titsias et. al. [TL11] applies a heteroscedastic
GP on the same data-set with slightly better results, especially on long-term
out-of-sample predictions. In [WHG14] Wu et. al. develops an on-line3 het-
eroscedastic GP algorithm that on average outperforms GARCH, EGARCH
and GJR-GARCH on one day volatility forecasts on twenty different cur-
rency exchange rates. In the draft [CD10] Chapados and Dorion apply GP
on SPY4 data over four years from 2002 with comparatively good results for

2Heterogenous autoregressive model of realized volatility. HAR-RV is a autoregressive
fractionally integrated moving average usually evaluated using daily, weekly and monthly
averaged historical RV.

3Continuously adding data new points when learning instead of evaluating batches.
4An exchange traded fund designed to track the S&P 500.
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long term predictions, they do, however, include an index of the one month
ahead implied volatility as a parameter.
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2 Preliminaries

2.1 Implied and Realized Volatility

For the purpose of this thesis it is important to distinguish between the im-
plied volatility, IV , and the realized volatility, RV — both are measures that
try to capture the variation of a given asset. Implied volatility is the stan-
dard deviation of the returns expected in the future implied from financial
derivatives on the market, which means it is the expected volatility under
the risk-neutral measure. A common way to retrieve the implied volatility
is to work it out backwards from the Black and Scholes model for different
put and call options with a corresponding time to maturity, as the prices of
the options and the other inputs into the model are readily available. There
are other ways to retrieve the implied volatility as well, for instance using a
model-free approach as in [BN00; CW09; JT05]. These methods are based
on a weighted summation of all available put and call options.

Realized volatility is an estimation of the true standard deviation of the
returns, and can be calculated ex post at time t for the period [t−τ, t] using

RVt,τ =

√√√√1

τ

τ∑
i=0

r2t−i. (1)

where ri is the deviation of the return from the expected return for day
i, defined as Ri − µ = ln(Pi/Pi−1) − µ. µ is the expected value of Ri for
all considered i and Pi is the closing price of the asset on day i. If µ = 0
for the modeled asset, then ri = Ri, which simplifies the calculations such
that RVt,τ is equal to the square root of the sum of τ past squared returns
divided by the number of observations τ .

In a task of evaluating forecasting methods, one would compare the
forecasted values with the realized volatility. The higher the frequency of
the returns, the more accurate the estimation of the ex post volatility will be,
but this also depends on the desired frequency of the volatility. Alternatively,
one could use the daily realized range, defined as the log difference between
the daily high and low of the asset, instead of daily returns. It has been
shown to be a better proxy for the actual volatility, than using daily returns,
with an accuracy equivalent to using intra-day returns between three and
six hours [AB98; BD03].
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2.2 Volatility Risk Premium

2.2.1 Definition

The volatility risk premium at time t for a future period of τ time periods is
defined as the difference between the expected value of the volatility under
the risk-neutral measure Q and the ”physical” measure P, i.e. what is usually
considered to be the regular expected value [BTZ09],

V RPt,τ = EQ
t [σt,τ ]−Et[σt,τ ]. (2)

In this thesis, only a period of one month in the future will be considered for
the VRP, as the data for implied volatility is limited to options of 30 days to
maturity, and therefore the variable τ will be suppressed in later equations.

As clarified in section 2.1, we have EQ
t [σt] = IVt, where IVt is the implied

volatility for the subsequent month. The expected value of the volatility un-
der the ”physical” measure is more involved, but it can be approximated by
Et[RVτ ] as in [BTZ09; DRS16], which can be predicted using many different
forecasting methods. In other words, the issue of constructing a volatility
risk premium is reduced to one of forecasting the realized volatility as accu-
rately as possible.

2.2.2 Economic interpretation

The existence of a variance, and volatility, risk premium is based upon
empirical findings, but has been theoretically argued for using the concept
of variance or volatility swap contracts [CW09]. A long position in such a
contract constitutes of paying a fixed variance swap rate, while receiving the
actual, floating, variance rate. The swap rate is calculated as the implied
variance from derivatives on the market using the risk-neutral measure and
the actual variance rate can be approximated ex ante using different variance
forecasting methods. The variance risk premium can then be defined as the
difference between the swap rate and the actual rate, which is the equivalent
of the profit or loss of taking a short position in the variance swap contract.
The volatility risk premium can be calculated in a similar way.

Bollerslev et. al. [BTZ09] argues for the VRP’s explanatory power of
stock market returns using a stylized self-contained equilibrium model of
stock market returns and volatility. The equity risk premium, an indicator
of how much the stock market return must outperform a risk-free asset to
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justify its price, that follows from their model consists of a variance factor,
which represents the classic risk-return relationship, and a factor for the
volatility-of-volatility, which they argue is the true premium of volatility
risk. The authors then continue by showing that the volatility-of-volatility
can be measured as the difference between the risk-neutral and the objective,
physical, expectation of the volatility of the next period, i.e. the volatility
risk premium. By doing so, they show that the VRP serves as an explana-
tory variable of stock market excess returns, as it constitutes the factor for
volatility risk in the equity premium of their model.

If the existence of a volatility risk premium was merely due to market
inefficiencies, it should have been a temporary phenomenon according to
the efficient market hypothesis, but as it has been known for over 10 years,
its existence should have another explanation [JT05]. The most prominent
economic interpretation and explanation of the VRP is that it serves as
a proxy for the average investor’s risk aversion [BH14; BGZ11]. This is
because it quantifies how much volatility the average investor is willing to
pay for, in excess of the predicted future volatility. A VRP of 5 for instance,
means that the spread between implied and realized volatility amount to
5 percentage points, and indicates that investors are willing to pay a 25%
premium if the annualized, realized, volatility is 20%. If the VRP quantifies
investors’ risk aversion to some extent, any potential explanatory power
of stock market excess returns might be expected, as these two concepts
are closely interconnected through the classic risk-return relationship of the
equity risk premium.

2.3 Volatility Forecasting Methods

2.3.1 Random walk

The most simple method for estimating future realized volatility is by as-
suming that the volatility follows a zero drift Wiener process, or a random
walk, such that Et[σt+1] = σt. In this case, the estimated future volatility
is equal to the value of the past RV, calculated as in equation (1) [PG03].
This is a model-free method of estimating the future volatility, and has been
used extensively by previous researchers when calculating an ex ante VRP
[BGZ11; DRS16; PS14].

8
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2.3.2 GARCH models

The return volatility is instantaneous and has to be approximated from
previous returns. One way of doing this is to calculate the average of the
residuals from the last fixed number of days. This method will, exactly as
the naive, assume the same volatility over the next period as the last, it is,
however, likely that the previous residuals have different explanatory power
depending on temporal distance. Engle proposed a method for weighing
previous residuals, the ARCH(q) model5 [Eng82]

σ2t = α0 +

q∑
i=1

αiε
2
t−i (3)

where α0 is the mean, εt are the residuals at time t and αi are the weights
of the corresponding residual. The weights are determined by the best fit
on the historic data.

A common generalization of this model is the GARCH(p,q) model, pro-
posed by Bollerslev [Bol86]. Instead of basing the estimate on only the q
nearest residuals, the GARCH(p,q) model recursively includes all previous
residuals through the dependence on the variance of p previous periods

σ2t = ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i (4)

where ω is the mean and αi, and βi are fitted weights. The most popular
model in this family of methods is the GARCH(1,1) method, perhaps due
to its performance and simplicity, as Hansen and Lunde for instance found
that it is not beaten by more sophisticated models in forecasting exchange
rate volatility [HL05].

One disadvantage of the most basic forecasting models, including the
original GARCH, is that it does not consider the asymmetric properties
of volatility, i.e. that volatility tends to be higher in downswings than in
upswings. This property is accounted for in the GJR-GARCH [GJR93]
that besides a few technical differences from the GARCH(1, 1) model also
includes a dummy for the sign of the last residual. The final model in
the GARCH family that is introduced in this brief review is the Realized
GARCH [HHS12]. Realized GARCH includes realized volatility calculated
with higher frequency data than previous GARCH derivatives utilize.

5Autoregressive conditional heteroskedasticity model.
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2.3.3 Gaussian process for regression

Gaussian process for regression (GP) is a fully probabilistic general purpose
regression method based on Bayesian inference, where a prior probability
distribution is updated with new information6 when available. Before any
information is taken into account by the GP, the prior encodes the current
belief of the distribution. Here, a concise introduction of GP is provided,
see for example [Bis06; RW05] for a more detailed reviews.

Given a set of N non-random real valued observations tn of some un-
derlying values yn, and corresponding input variables xn ∈ X, subject to
a mean zero additive Gaussian noise with constant variance εn ∼ N (0, σ2)
such that

tn = yn + εn, (5)

the probability of all observed data can be expressed

p(t|y) = N (t|0, σIN ) (6)

with t = (t1, ..., tN )T and y = (y1, ..., yN )T . σ is a hyperparameter that af-
fect the shape of the approximation without requiring it to have any specific
functional form, see section 2.3.4. Our goal is to assign the most probable
value to previously not seen input vectors. This can be achieved by defining
a marginal probability distribution p(t)

p(t) =

∫
p(t|y)p(y)dy (7)

where the condition on X has been omitted for clarity of notation. This
integral can be interpreted as removing the dependence on the specific form
of the underlying function by integrating over all possible functions weighted
by their prior probability encoded in p(y) and the the evidence p(t|y). The
evidence was defined in equation (6) and the prior can be expressed as

p(y) = N (y|0,K). (8)

with the covariance matrix K determined by a kernel function Km,n =
k(xm,xn), see section 2.3.4. Mean zero is not a necessity but it simplifies
notation without sacrificing generality. Given equation (8), the marginal
probability can be evaluated to

p(t) = N (t|0,C) (9)

6Usually called evidence.
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with the elements of C given by

Cm,n = k(xm,xn) + σδm,n (10)

where δm,n is the Kronecker delta7.

The estimated value for a new input vector xN+1 is implied by the by
the joint probability distribution over t1, ..., tN+1

p(tN+1) = N
([

t
tN+1

] ∣∣∣∣ [00
]
,

[
CN k(X,xN+1)

k(xN+1,X) k(xN+1,xN+1)

])
(11)

where k(X,xN+1) is a row vector of the kernel function applied at all previ-
ous data points and the new input vector and k(xN+1,X) = k(X,xN+1)

T

is the transpose. The conditional distribution p(tN+1) is a Gaussian distri-
bution with mean and covariance

m(xN+1) = k(xN+1,X)C−1N t (12)

σ(xN+1) = k(xN+1,xN+1)− k(xN+1,X)C−1N k(X,xN+1). (13)

2.3.4 Kernel functions

The only restriction on the kernel function based on equation (9) is that
the covariance matrix given by (10) has to be positive definite as this is
a requirement of the Gaussian distribution. Due to the second term in
equation (10), adding to the main diagonal of the kernel matrix, it is only
required to be positive semi definite since the eigenvalues of C will still be
strictly larger than zero.

The properties of the kernel function will affect the behaviour of the re-
sulting regression without necessarily requiring any specific functional form,
if, however, the kernel function is defined in terms of a finite set of ba-
sis functions, the functional form of the regression will be limited to linear
combinations of that set. The kernel function that we have used in this
thesis is the exponential kernel8

k(x,x′) = β2 exp


√√√√ d∑

i=1

(xi − x′i)
2

γ2i

 (14)

7The Kronecker delta takes the value one when the two indexes are the same and zero
otherwise.

8Also called Ornstein-Uhlenbeck or Matern 1/2.
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since it is universal [MXZ06] and closely related to stochastic volatility
[CD10]. β is a scale parameter that determines the average distance of
the function from its mean, that is it determines the precision of the pre-
dictions. The other hyper parameter γi is called the length parameter. The
length parameter determines the smoothness of the function as can be seen
in Figure 1, displaying randomly generated functions from GP regressions
using exponential kernels with different length parameters and zero mean.
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0
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2

3

0 100 200 300 400 500
1.0

0.5

0.0

0.5

1.0
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Figure 1: Randomly chosen functions from GP regressions with expo-
nential kernels with different length parameters.

The length parameter is sometimes moved outside of the summation.
When it is inside, as in equation (14), it is called automatic relevance de-
tection (ARD) since the parameter can be assigned different values for each
dimension, leading to an automatic determination of which input dimensions
are most relevant.

The hyper parameters are learned from the data by maximizing the
likelihood of the data given the parameter values, p(t|θ) where θ denotes the
set of all the hyper parameters in the model. This is generally an analytically
intractable problem that has to be solved using numerical methods. The log
likelihood function of a Gaussian is

ln p(t|θ) = −1

2
ln |C| − 1

2
tTC−1t− N

2
ln(2π) (15)

with the gradient

∂

∂θi
ln p(t|θ) = −1

2
Tr

(
C−1

∂C

∂θi

)
+

1

2
tTC−1

∂C

∂θi
C−1t. (16)

Equations (15) and (16) can be used for a gradient decent minimization of
the negative log likelihood. As equation (15) generally has multiple minima,
the optimization algorithm should be restarted with different starting values.
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2.4 Prediction performance evaluation

When comparing the accuracy of a predicted series to the actual data the
most basic approach is to use some kind of norm to compare the relative
distance at each data point. One group of vector norms are

Lnw =

[∑
i

wi|ri − di|n
] 1

n

(17)

where ri are the values from the left vector, in this case the forecasted RV,
and di are the values from the right vector, in this case the RV. wi are
weights corresponding to each data point.

In this thesis we will consider the the L1 and L2 norms which both
calculate the distance between two discrete data series, the difference is in
how they weigh the errors. The L1 norm sums the absolute distance between
the series, and therefore assigns the same importance to all errors, while the
L2 norm assign relatively more importance to larger errors. By including
a weight wi = 1/di, relative errors can be calculated. The standard error
measurements R2 and MAPE are relative adjustments of these L-norms.

13



Marcus (23111), Mally (23390) 3 Methodology

3 Methodology

3.1 Data

When constructing a volatility risk premium using forecasts of realized
volatility for the Swedish and the American stock markets, data for each
respective market is required. The reason for analyzing both markets is to
identify any potential differences, but also to be able to compare the results
to previous research, which mainly has focused on the American market. To
properly mirror the stock market of each country, the OMXS30 index was
chosen for the Swedish market while the S&P 500 index was chosen for the
American market. Another consideration in picking stock indices was that
there had to be sufficient option trading on the index, so that an implied
volatility could be retrieved for it.

The implied volatility for the S&P 500 was retrieved using the CBOE
VIX index, which is calculated using a model-free approach based on 30-day
put and call options on the S&P 500. Implied volatility data for OMXS30
was retrieved using a similar index, the SIX Volatility index, which on the
other hand is calculated using the Black-Scholes formula [Inf14]. Bollerslev
[BTZ09] found that model-free estimated implied volatility outperformed
those based on any specific model in constructing variance risk premia, but
there has yet to arrive a model-free index for the Swedish stock market and
calculating one is beyond the scope of this thesis.

Regarding data for the VRP regressions, consumer price index data was
collected from the website of the OECD [OEC17], while the 3-Month trea-
sury bill data and currency data for the US, along with default spread
data, was collected from the website of St. Louis Federal Reserve [FRE17a;
FRE17b]. Data for the Swedish 3-Month treasury bill9 and currency strength
was collected from the website of the Swedish Riksbank [Rik17a; Rik17b].

The data was collected from 5 May 2004 to 22 March 2017 as that
was as early as the SIX Volatility index stretched. The stock indices were
collected in daily and monthly price data, to calculate realized volatility and
to calculate monthly returns respectively, while the implied volatility indices
were daily data on 30-days ahead implied volatility. All data except for the
regression variables was collected from Thomson Reuters Datastream.

9Statsskuldväxel.
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3.2 Calculating ex post realized volatility

Calculating the underlying realized volatility of each stock market is essential
in evaluating the forecasting power of the various models and an important
input variable for some of the models. The daily realized range defined
as ln(Phigh/Plow), where Phigh and Plow are the daily high and low prices
respectively, has been shown to be a less biased estimate of the realized
volatility than the daily returns if multiplied with a factor (4 ∗ ln(2))−1

[MV07]. A rolling window estimation was done τ = 21 days as the length of
the rolling window, chosen since it was the average number of trading days
in a given 30-day period in the data set over the estimation period. This way
the monthly ex post realized volatilities were calculated. However, to make
them comparable to the implied volatilities that are reported in percentage
form and in annualized numbers, the calculated RV was multiplied by

√
1002

and by
√

252, the square root of the average number of trading days each
year. Ultimately, the formula used for calculating the realized volatility was

RVt,τ =

√√√√ 1002

4 ∗ ln(2)

252

τ

τ∑
i=0

ln(Pt−i,high/Pt−i,low)2. (18)

3.3 Forecasting volatility

Volatility was forecasted using Gaussian processes for regression (GP), GAR-
CH methods and a random-walk, naive, approach. The best case scenario
would be to accurately forecast 21 days ahead, as that is the equivalent
window as the implied volatility is supposed to reflect, but preliminary re-
sults indicated that most of the different methods did not perform well for
forecasting such long period ahead. As the goal with using a forecasted
volatility is to decrease the temporal difference between the risk-neutral and
the physical measure of expected future volatility, any forecast horizon could
prove useful in constructing ex ante VRPs. Therefore, 1 day ahead, rolling
window forecasts were carried out for the different methods.

3.3.1 GARCH methods

The GARCH methods were implemented in the R environment [R D08]
using the rugarch package [Gha15]. Learning and forecasts were made using
functions provided in the rugarch package. All of the GARCH methods
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were specified with a model for the mean following an ARMA10(0,0) and a
variance model of order (1,1) for GARCH and GJR-GARCH, whereas the
realized GARCH was defined by its default parameters, (2,1). The GARCH
methods had a learning period of approximately 3300 training days, which
was the maximum length that the available data allowed for. The choice
of including GARCH(1,1) as a volatility forecasting method is because it
is one of the standard methods in the finance field, whereas the choice of
including the GJR-GARCH was to try to capture the asymmetric properties
of volatility. The choice of including the realized GARCH model was to try
to include the past realized volatility as calculated using equation 18, as the
GARCH methods otherwise calculate the past volatility themselves.

3.3.2 GP for regression

The GP for regression were implemented in the Python programming lan-
guage [Ros95] using the GPy package [GPy12].

One of the more significant differences between GP and GARCH regres-
sions in this context is that the GP can be trained with additional explana-
tory variables. In this project, however, we have only included the weekday
in addition to the historical realized volatility and return residuals. Macroe-
conomic variables are difficult to include since they are generally calculated
and released infrequently, and often delayed compared to daily data. Macro
variables therefore have higher potential as input variables for longer forecast
horizons.

Weekdays were included in the form of an array with five elements rep-
resenting each day. The current day was indicated with a one and the other
days with zeros. In order to provide a balance between the access to data and
the number of input parameters 16 days of return residuals were supplied
to the GP and two days of previous volatility. The GP was also supplied
future volatility as training data over the training window, ending the same
number of days before the prediction is made as the forecast horizon, as it
would otherwise be trained with future data compared to the day the fore-
cast is made. The GP was trained with 300 trading days of previous data, as
this seemed to give a good balance between performance and computational
complexity.

10Auto Regressive Moving Average. The (0,0) version is essentially white noise.
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3.4 VRP regression

To estimate a potential relationship between the constructed volatility risk
premia and the excess returns for the different stock markets, linear regres-
sions were run. As some data for the Swedish market was missing, such as
dividend yield and historical P/E-numbers, these variables were dropped in
the regressions for the American VRP as well. Instead, a set of macroeco-
nomic variables were included in the regression models; inflation, currency
strength and the credit default spread, as these variables were readily avail-
able for both countries over the entire considered period.

The change in consumer prices was included as a measure of inflation,
which theoretically should affect the stock market [DeF+91]. The percent-
age change of the respective currencies’ strength against a basket of foreign
currencies, denoted TCW for Total Competitiveness Weights, was included
since it theoretically might influence the S&P 500 and OMXS30, because
they are composed of the largest companies in each country, with consider-
able foreign operations. Finally, the default spread, defined as the spread
between the corporate bond yield of Moody’s BAA and AAA credit ratings,
was included as it could work as a leading indicator of the business cycle
[GL00].

Due to the macro variables only being available on a monthly basis, the
regressions were run using monthly data. This meant that the daily, rolling
window, data of monthly volatility estimates had to be aggregated using
monthly averages, and the daily excess log returns of the stock markets
were aggregated using summation.
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Figure 2: One day ahead forecast of S&P 500 volatility. The top panel
displays the whole period for which predictions were generated and the
bottom an interval including the 2008 financial crisis.

4 Results

4.1 Volatility Forecasts

One day forecast by the GP and GARCH methods are plotted together
with the actual RV in Figures 2-3 for the S&P 500 and the OMXS30 re-
spectively. The plots in the top panels span the entire term for which we
had complete data, from 13 April 2007 to 28 Juli 2015 for a total of 2 078
trading days. From the figures it is apparent that the GARCH methods
generally give higher estimates than the RV calculated with equation (18),
and that GARCH and GJR-GARCH react sharply at volatility jumps. The
realized GARCH does not have this tendency, instead it underestimates the
volatility after jumps, most notably in 2008.

The GP follows the RV closely and for the sake of visual clearness only
the GP without weekday dummies is included in the figures. As can be seen
from the lower panels, the GP predictions are often delayed one day after the
RV when there are volatility jumps. The addition of the weekday dummies
have little effect on the forecasted volatility as can be seen in Tables 1-2.
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Figure 3: One day ahead forecast of OMXS30 volatility. The top panel
displays the whole period for which predictions were generated and the
bottom an interval including the 2008 financial crisis.

The GP performed slightly better on OMXS30 with dummies than without,
but the opposite is true on S&P 500.

It can also be seen from Tables 1-2 that the GP is outperformed by
the naive predictions for all measurements included. Due to the vertical
dislocation of the GARCH predictions relative to the RV the L-norms are
not applicable for determining the prediction accuracy for these methods.

The relative smoothness of the GP and the naive predictions compared
to the different GARCH method predictions makes the Kendall correlation
higher between these series and the RV. Since the Kendall correlation is
calculated on the complete data-set we have also included the proportion of
predictions that have the right sign of change compared to the last volatility.
In this category all the GARCH methods outperform the naive method and
the GP, with the realized GARCH as the highest scoring method.

4.2 GP predictive accuracy

The uncertainty of GP easily available since the outputs consist of the mean
and standard deviation of a Gaussian distribution. This cannot, however,
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Table 1: S&P500 prediction fit

Naive GP GP weekday GARCH GJR-GARCH real-GARCH

L1 756 946 955 7 846 8 063 8 026
L2 904 1 338 1 396 42 999 54 318 54 318
L1

w 52 62 62 582 591 625
L2

w 45 60 60 2 466 2973 2 910
Corr 0.949 0.942 0.942 0.854 0.791 0.869
Sign 0.608 0.576 0.570 0.670 0.588 0.742

Table 2: OMXS30 prediction fit

Naive GP GP weekday GARCH GJR-GARCH real-GARCH

L1 817 994 986 9 964 10 509 10 150
L2 893 1 233 1 219 64 890 75 578 67 148
L1

w 47 56 56 720 756 764
L2

w 41 54 53 4 400 5 080 4 719
Corr 0.958 0.951 0.951 0.763 0.723 0.797
Sign 0.598 0.578 0.575 0.655 0.633 0.712
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Figure 4: Absolute errors (|RV−GPpred|) and standard deviation of the
GP forecasts on S&P 500. The first panel displays the daily values while
the second and third panels display five days trailing averages.
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be used to improve the predictive accuracy, but can potentially determine
how much confidence is put into the forecast at different times. Figure 4
displays the absolute value of the difference between the actual RV and the
GP predictions. The top panel displays the daily values while the middle
and bottom panels display five days trailing averages in order to make the
plots more accessible. The first two panels display the entire period and the
third is focused on a period covering the financial crisis in 2008 and the 2010
Flash Crash.

From the figure it is apparent that the standard deviation of the predic-
tions did not rise at the same time as the predictive errors in June 2010.
In 2008, however, the standard deviation increased simultaneously with the
forecast error. The standard errors of the output could therefore potentially
be used as a measure of the uncertainty of the predictions, but the predic-
tions can be erroneous without it showing in the standard errors before the
event.

Another property that is apparent from the Figure is that the volatility
jumps in 2008, 2010 and 2011, have delayed effects on the outputted stan-
dard deviation on later days. This effect is due to a few days with different
properties get disproportionately big effects on the learning.

4.3 Summary statistics of VRP regressions

As can be seen in Tables 3-4, the different forecasting methods gave varying
estimates of the volatility risk premium, with the Gaussian processes and
the naive approach both being the largest in the US and in the Swedish
regressions, followed by the VRP calculated from the realized GARCH fore-
casts. Only the GP VRP that provided the highest explanatory power was
included in the regressions. While the performance of the two, in terms of
adjusted R2, was very similar, the VRP constructed from the GP without
weekday dummies, was slightly better.

The average risk premium across all forecasting methods is 5.0 for the
American market and 2.0 for the Swedish market, a difference of three per-
centage points. In other words, there is a larger spread between the realized
and implied volatility in the American market, perhaps indicating a larger
degree of risk aversion in this market than in the Swedish.

The volatility risk premia from the GARCH and the GJR-GARCH have
similar characteristics, and are on both markets approximately 4 percentage
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points lower than the GP-forecasted VRP and around 2 percentage points
lower than the realized GARCH VRP. As the realized GARCH and the
Gaussian processes models both take into account the past realized volatility
in the forecasts, whereas the other GARCH models are based on past returns
and volatility calculated only by the models themselves, this might serve as
an explanation since it seems like the estimates are on average lower, if the
past realized volatility is included in the model. For the Swedish market,
this difference, perhaps upward bias, in the GARCH-forecasts means that
the VRPs are negative on average, which is not in line with previous research
and puts to question these GARCH-forecasts.

Studying the correlation matrices for both countries, one can notice that
there is on average, higher correlation between stock market excess return
and the risk premia for the S&P 500 than for the OMXS30. In the American
market, the GARCH and the GJR-GARCH VRPs are more distinctly corre-
lated with returns compared to the other VRPs, than in the Swedish market.
Furthermore, the high correlation between the Gaussian processes calculated
VRP and the one derived from a naive approach, is to be expected as the
GP predicted volatility was quite similar to the previous period’s volatility.

The plots of the VRPs, see Figure 5, sheds light on the volatile nature
of the VRP. The VRPs for both markets look fairly similar, with a more
obvious spread between the GARCH-calculated VRP and the others in the
Swedish market than in the US. An interesting difference between the plots
is that the VRP on OMXS30 generally is smaller than that of the S&P500,
illustrating the previously mentioned difference in averages.

4.4 VRP Regression Results

As can be seen from the regression output in Tables 5-6, the results show
that there is a significant relationship between the VRP and stock market
excess returns. This means, in the case of the GARCH-VRP, that an increase
in the VRP, i.e. the percentage point spread between IV and RV, with 1
percentage point is, on average, followed by an increase in the following
month’s excess returns by 0.56 percentage points for the S&P 500, and 0.59
percentage points for OMXS30. If the VRP is an indicator of investor risk
aversion, the results show that an increase in risk aversion among stock
market investors is correlated with higher stock market excess return.

For the US market, the significance of the coefficient estimate for the
VRPs depends on which forecasting method that was used, as only the
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Table 3: Summary Statistics of Variables Used in US Regressions

Ret. VRPgp VRPgch VRPgjr VRPreal VRPnav Infl. TCW Def.Sp.

Nr. obs 100 100 100 100 100 100 100 100 100
Max 10.23 15.648 8.6 9.477 28.408 15.761 5.6 6.684 56.627
Mean 0.269 6.779 3.096 3.001 5.473 6.771 1.884 0.135 0.604
Min -18.595 1.009 -9.688 -9.8 -0.844 1.114 -2.097 -4.103 -25
Std.Dev. 4.711 2.456 2.745 3.174 5.576 2.484 1.549 1.828 10.703

Correlation matrix
Ret. 1 0.129 0.341 0.42 -0.047 0.15 -0.334 -0.129 -0.216
VRPgp 1 0.614 0.527 0.424 0.996 -0.148 -0.149 -0.263
VRPgch 1 0.863 -0.247 0.623 -0.064 -0.199 -0.414
VRPgjr 1 -0.277 0.55 -0.254 -0.355 -0.559
VRPreal 1 0.408 -0.091 0.128 0.315
VRPnav 1 -0.16 -0.17 -0.296
Infl. 1 0.155 0.359
TCW 1 0.495
Def.Sp. 1

Table 4: Summary Statistics of Variables Used in Swedish Regressions

Ret. VRPgp VRPgch VRPgjr VRPreal VRPnav Infl. TCW Def.Sp.

Nr. obs 99 99 99 99 99 99 99 99 99
Max 15.664 10.67 6.58 6.567 23.699 10.481 4.372 4.652 56.627
Mean 0.099 4.511 -0.116 -0.336 1.566 4.519 1.153 0.058 0.722
Min -18.563 -1.952 -6.081 -8.236 -4.438 -2.253 -1.872 -5.635 -25
Std.Dev. 5.159 2.14 2.577 2.72 5.064 2.142 1.525 1.583 10.691

Correlation matrix
Ret. 1 0.226 0.252 0.235 0.126 0.227 -0.395 -0.026 -0.091
VRPgp 1 0.565 0.404 0.388 0.998 0.019 0.103 -0.037
VRPgch 1 0.892 0.379 0.552 0.003 -0.27 -0.273
VRPgjr 1 0.336 0.399 -0.106 -0.349 -0.337
VRPreal 1 0.377 0.335 0.246 0.333
VRPnav 1 0.01 0.1 -0.045
Infl. 1 0.105 0.366
TCW 1 0.334
Def.Sp. 1
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Figure 5: Volatility risk premia predicted by the different forecasting
methods for S&P 500 and OMXS30 respectively.

GARCH and GJR-GARCH gave significant estimates, while the Swedish
market shows a significant correlation between the VRPs and equity excess
returns no matter the forecasting method. All of the estimates for the
coefficients of the risk premia in the regression equations are positive, and
even if some of them are insignificant, the results indicate that stock market
excess return and the VRP are positively correlated.

Regarding the explanatory power of the VRP regressions for next month’s
stock market excess return, the GARCH forecasted VRP performs best, fol-
lowed by the one from the GJR-GARCH. The adjusted R2s for the US mar-
ket GARCH and GJR-GARCH VRP regressions are 0.24 for both, while
for the OMXS30 the same values are 0.19 and 0.17 respectively. The fact
that the adjusted R2s are lower for the Swedish market regressions, is a
trend holds for all different VRPs except the one using a realized volatility
calculated using the realized-GARCH method.

Regarding the macro-variables included in the regressions, only inflation
has a significant correlation with the following month’s excess return, while
the currency strength and default spread are insignificant. In line with what
would be expected, an increase in consumer prices, i.e. higher inflation, leads
to lower excess return the following month. The addition of the macro-
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variables, increased the explanatory power of the models, and did not have
any effect on the significance of the VRP coefficient estimates.

The regression results are in line with previous research, as Bollerslev et.
al. (2009) found that the coefficient for the VRP in regressions on S&P 500
monthly excess return is 0.39 [BTZ09].

4.5 Robustness of regressions

The regressions that were carried out to identify and quantify a potential
relationship between the VRP and the following month’s stock market ex-
cess return were thoroughly checked for common errors that arise in linear
regressions. The regression diagnostics were quite similar for the models
including VRPs from GP, naive and realized GARCH, whereas they differed
a bit for the GARCH and GJR-GARCH VRP regression models. Therefore,
plot diagnostics for the GP and the GJR-GARCH are attached in appendix,
see section 5.

First, as the regression models are constructed in a linear fashion, if the
relationship between the explanatory variables and the dependent variable is
non-linear this might show up in the residuals of the regression. Therefore,
plots of the residuals against the fitted values of the dependent variable were
examined, see Figure 6. A linear relationship would show up as the dots
evenly spread out around a horizontal line, without any obvious pattern
[Kab15]. As can be seen from the red trend lines, no obvious pattern is
observed and the linearity assumption of the regressions are fulfilled.

Second, another assumption of the linear regression models is that the
residuals have an expected value of zero, with finite variance [Han17]. An
easy way to check this assumption is if the residuals lie on a linear line when
plotted against e.g. an N (0, 1) distribution. As can be seen in QQ-plots
in Figure 7, this seems to be the case, with the exception of some outliers,
notably observation 18 and 22 in the US data and observation 18 and 14 in
the Swedish data. Removal of these observations to enhance the regression
models would however create a bias, as these observations are related to the
high volatility jumps of the 2008 financial crisis. Therefore they are kept in
the model.

Furthermore, to examine if the residuals are identical or not, an impor-
tant consideration since robust standard errors were used in the regressions,
scale-location plots were analyzed, see Figure 8. If the points in the plots are
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Table 5: Results from monthly regressions, US

Dependent variable:

Market excess return
GP GARCH gjrGARCH rGARCH Naive

(1) (2) (3) (4) (5)

VRPgp 0.239
(0.172)

VRPgch 0.562∗∗∗

(0.164)

VRPgjr 0.550∗∗∗

(0.161)

VRPreal 0.033
(0.081)

VRPnav 0.270
(0.172)

Infl. −0.850∗∗∗ −1.026∗∗∗ −0.801∗∗∗ −0.840∗∗∗ −0.854∗∗∗

(0.281) (0.283) (0.291) (0.297) (0.283)

TCW −0.028 −0.005 0.117 −0.077 −0.022
(0.256) (0.257) (0.266) (0.263) (0.257)

Def.Sp. −0.046 0.008 0.019 −0.061 −0.042
(0.047) (0.050) (0.053) (0.051) (0.048)

Constant 0.632 0.709 0.374 2.012∗∗ 0.438
(1.370) (0.810) (0.871) (0.882) (1.378)

Adj. R Sq. 0.153 0.237 0.235 0.131 0.157
Observations 100 100 100 100 100
Residual Std. 3.474 3.707 3.655 3.734 3.525
Error (df = 95)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Results from monthly regressions, SWE

Dependent variable:

Market excess return
GP GARCH gjrGARCH rGARCH Naive

(1) (2) (3) (4) (5)

VRPgp 0.483∗∗

(0.206)

VRPgch 0.591∗∗∗

(0.172)

VRPgjr 0.526∗∗∗

(0.170)

VRPreal 0.231∗∗

(0.092)

VRPnav 0.479∗∗

(0.205)

Infl. −1.046∗∗∗ −1.203∗∗∗ −1.087∗∗∗ −1.204∗∗∗ −1.045∗∗∗

(0.308) (0.294) (0.296) (0.306) (0.307)

TCW −0.034 0.258 0.391 0.061 −0.035
(0.295) (0.284) (0.292) (0.286) (0.294)

Def.Sp. 0.033 0.056 0.054 −0.005 0.034
(0.046) (0.045) (0.046) (0.045) (0.046)

Constant −0.644 1.772∗∗∗ 1.816∗∗∗ 1.478∗∗∗ −0.628
(1.070) (0.529) (0.537) (0.536) (1.070)

Adj. R Sq. 0.134 0.189 0.173 0.148 0.133
Observations 99 99 99 99 99
Residual Std. 3.752 3.784 3.886 3.332 3.825
Error (df = 94)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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randomly scattered across a horizontal line, this would indicate homoscedas-
ticity [Kab15]. This seems not to be the case in our regressions, supporting
the assumption of heteroscedasticity and robust standard errors.

Finally, as the power of a regression model can be weakened by mul-
ticollinearity, i.e. high correlation between the explanatory variables, an
analysis of the interdependence between the independent variables in the
regressions were carried out. As can be seen in the correlation matrices in
Tables 3-4, the largest correlation between variables in the US regressions
is between the VRP constructed from the GJR-GARCH and the default
spread variable, amounting to -0.55. For the Swedish market, the largest
correlation is between inflation and the default spread, amounting 0.366.
These correlations should not give rise to any significant multicollinearity
issues [Han17].
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5 Summary

The GP regression did not produce one day ahead predictions as similar to
the next day realized volatility as the naive approach, or as good at predict-
ing of the direction of change as the GARCH methods. The best predictor
of the direction of change to the next day was the realized GARCH, which
is also the newest addition of the GARCH methods included in this thesis.
The predictions by the realized GARCH did, however, often underestimate
the effect of volatility jumps, making GARCH(1, 1) the best performer of
the GARCH methods when looking at closeness of fit to the ex post RV.

The mean of the VRPs on the American market indicates that the av-
erage investor is willing to pay a premium of 5 percentage points volatility
to hedge themselves against its uncertain nature. This is the equivalent of
paying a premium of more than a third of the annualized volatility on the
S&P 500, which amounted to 14.85% over the considered period. For the
Swedish market, investors were willing to pay a premium of 2 percentage
points volatility to hedge themselves, the equivalent of paying a premium
of approximately 11% of the annualized volatility on the OMXS30, which
amounted to 17.6% over the considered period. In other words, the existence
of a volatility risk premium on the Swedish market is verified, giving some
potential insight into investor risk aversion.

Considering the volatile nature of the risk premium illustrated in Fig-
ure 5, this thesis suggests that the VRP is not constant over time. The
biggest differences arise in times of large volatility jumps, where the VRP
decreases, and sometimes even reach values below zero, as the event takes
place, illustrating the unexpected nature of volatility shocks as the realized
volatility increases considerably relative to the implied volatility. These de-
creases in the VRP are followed by the largest observed values during the
considered period, effectively illustrating how investors irrationally miss-
price volatility following a jump such as the 2008 financial crisis, as the
actual volatility decreased quicker than investors believed. To rationally
explain these characteristics, one could consider the concept of black swan
events from the field of behavioral finance [Tal07]. Such an event is extremely
difficult to foresee and results in outcomes that deviates significantly from
previous trends. The events that give rise volatility jumps in stock markets
could be seen as black swans, and investors willingness to pay a premium for
volatility, a hedge against these unpredictable events, as they tend to lead
to negative stock returns.
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There are similarities between the VRP of the Swedish market and the
US market, as both were positive on average, however with the American
VRP being larger in most cases. The results indicate that the average in-
vestor on the US market is more risk averse than the average investor on the
Swedish market. The comparison of magnitudes is merely an indication and
one must take into consideration that the two different countries’ implied
volatility data are constructed using different methods. This could poten-
tially mean that there is a bias in one of the countries’ implied volatility
data, weakening the comparison of magnitudes to some extent.

The VRP predicts stock market returns in both the Swedish and the US
market. Previous research has found that using a model-free approach was
essential in constructing a VRP that provides explanatory power for stock
market returns [BTZ09]. This thesis suggests the opposite, as significant re-
sults were received for both markets, the reliance on a model-free approach
is not essential for predicting stock market returns. Regarding the fit of
the regression models for the different volatility forecasting methods, the
GARCH-based model gave the best adjusted R2, which is a bit surprising
considering its negative mean for the OMXS30. The GP-based model was
not the best volatility forecasting method for constructing a VRP with high
explanatory power for stock market excess return, further putting to ques-
tion its volatility forecasting power. An interesting note is that the GP-VRP
without weekday dummies slightly outperformed the model with dummies
included.

The conclusions regarding the performance of the GP as a volatility
forecast method and its usefulness in constructing a VRP relies heavily on
the calculation of ex post realized volatility, as this is the main input data
for the algorithm. If equation 18 created a biased estimate of RV, it will have
translated into the forecasts of the Gaussian process method. However, when
comparing the realized volatility calculated to data of realized volatility from
the Oxford-Man Institute of Quantitative Finance, the two time series are
similar [GS09]. The Oxford-calculated RV is on average 0.22 percentage
points annualized volatility higher than the one used in this thesis, showing
a small downward bias in the RV used in this thesis, that is slightly more
prominent during the highly volatile period of the 2008 financial crisis.

We did not see any benefit on the GP predictions when including the
weekday as an input variable, this can be an effect of the weekday not
adding any explanatory value, but it can also be dependent on how the
information is encoded. An alternative encoding method that we did not
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test is to include a variable with the number of trading, or non-trading,
days before the prediction date. Another possibility is that the GP requires
more specialized kernel functions for evaluating potential periodicity in the
volatility. One important direction of future research is to look at more
specialized kernel functions for stock market volatility predictions.

Another possible deficiency with the GP implementations used for this
examination is that they have been homoscedastic. Heteroscedastic GP,
does, however, require significantly more processing time for training and
evaluation. One way of mitigating this is by developing a specialized on-
line11 GP that is suitable for stock market volatility data.

For future research, one could try to construct VRPs based on volatil-
ity forecasts with a longer horizon, to further reduce the temporal difference
between the implied and the realized volatility. Another suggestion is for fu-
ture research to investigate the strength of GP volatility forecast using an ex
post realized constructed from intraday returns, as opposed to a daily real-
ized range, which could potentially give a better estimate of future volatility.

11Continuously adding data new points when learning instead of evaluating batches.
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Figure 6: Diagnostic plots of the regression residuals vs the fitted values
of the dependent variables, including red trend lines, for the GP and GJR-
GARCH in the US and Swedish market respectively.
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Figure 7: Diagnostic plots of the regression residuals vs an N (0, 1) dis-
tribution for the GP and GJR-GARCH in the US and Swedish market
respectively. A clear linear trend line would indicate that the residuals
follow a normal distribution.
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Figure 8: Scale-Location plots for the GP and GJR-GARCH in the US
and Swedish market respectively. Homoscedasticity would appear as a
random scattering around a horizontal line.
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