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Abstract 
 

This paper studies whether the popularity of VIX ETPs can be explained by their 

suitability as portfolio diversifiers for retail investors having access to a typical set of 

ETFs. We first carry out an analysis from the perspective of investors with a quadratic 

utility function by employing the mean-variance spanning test and the mean-variance 

criterion. We then include skewness and kurtosis in the portfolio selection problem by 

applying the Lai (1991) polynomial goal programming model. We find that 

mean-variance investors seeking the global minimum-variance portfolio would have 

benefitted from adding volatility exposure to their portfolio, while the results are less 

promising for investors maximising the Sharpe Ratio. Investor preferences for higher 

moments, especially for skewness, are found to drive substantial allocations to 

volatility. The findings apply to different market conditions and therefore offer an 

alternative explanation for the undiminished investor interest in VIX ETPs. They are 

also robust for different investment intervals. 
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1 Introduction 

During the global financial crisis ("GFC" hereafter), asset classes usually considered as 

portfolio diversifiers faced significant losses and correlations rose substantially. 

Thereafter, the increase in correlations was further fuelled by monetary policies (see 

for example Bahaji and Aberkane (2015)). This phenomenon intensified the quest for 

a robust diversifying asset class. During the course, volatility, long considered only a 

statistical metric for returns, emerged as a promising candidate. Potential 

diversification benefits of volatility-related assets stem from the well-documented fact 

that there exists a highly negative correlation with most other asset classes, especially 

equities. Further, this relationship is most pronounced during market downturns, and 

hence when needed the most (see for example Bekaert and Wu (2000)). 

The introduction of the CBOE's S&P 500 volatility index ("VIX" hereafter) in 1993 

played an important role in the rise of volatility as an asset class. After changes to its 

calculation method in 2003, futures and options on the VIX were introduced and 

quickly embraced by investors. The development peaked with the introduction of 

exchange-traded products ("ETPs" hereafter) in the form of exchange-traded notes 

("ETNs" hereafter) and exchange-traded funds ("ETFs" hereafter) based on VIX 

futures. What started out as a niche market became available to basically any investor, 

especially retail investors and institutional investors barred from trading in the 

derivatives market, as these products can be publicly accessed via the stock market. 

Eye-watering cumulative losses of 99.9% over less than eight years on some of these 

ETPs have not harmed investor interest, and new funds keep flowing into those 

products despite the massive amounts lost by investors.  

Motivated by the enormous amounts lost by investors, this study aims to provide 

an explanation for the continued popularity of VIX ETPs by examining whether the 

statistical properties of volatility make them suitable portfolio diversifiers. This would 

add to existing arguments, namely that investors either lack sophistication (Whaley 

(2013)) or engage in highly speculative trades (Alexander and Korovilas (2012)). 

Previous studies on the diversification benefits of VIX related assets yield mixed results. 

While on one hand, VIX related assets are found to be valuable portfolio diversifiers 

during the GFC, the results are less promising for the years after the GFC. However, 

these studies are all conducted in the mean-variance space, and neglect the "lottery-

like" feature of volatility which appeases to investors with preferences for skewness (see 

for example Bahaji and Aberkane (2015)). Researchers have long argued that higher 

moments should be included in financial applications, and portfolio selection in 

particular. Nevertheless, academics only recently started to acknowledge the unique 

statistical properties of volatility by using different risk measures or considering 

skewness in their analysis. Yet, no ex-post portfolio selection problem has been solved 
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to determine the suitability of VIX ETPs for investors with preferences for higher 

moments.  

Expanding the literature on VIX ETPs, we conduct a comprehensive ex-post 

analysis on the suitability of long volatility exposure for retail investors, the main target 

group of the ETPs, that have access to a typical set of ETFs. We first revisit and 

update the existing findings in the mean-variance space with (a) a longer sample 

through backtesting VIX ETP returns and including more recent observations and (b) 

a broader set of benchmark assets. Building on that, we then want to fill the gap in 

the existing literature by employing the Lai (1991) polynomial goal programming model 

to solve the multi-objective portfolio selection problem for investors with preferences 

for higher moments.  

This study is organised as follows: Section 2 introduces the VIX-related assets and 

their economics which motivates the research question at hand. Section 3 reviews the 

current literature on portfolio selection with VIX futures and VIX ETPs and the 

arguments in favour of considering higher moments. Section 4 provides an overview 

and analysis of the data and backtesting procedure used for the empirical approach, 

which is laid out in Section 5. Section 6 describes the results of the empirical analysis 

and Section 7 tests their robustness under different investment intervals. Section 8 

concludes. 

 

 

 

 



 

 3 

2 VIX, VIX Futures and VIX ETPs 

To motivate our empirical analysis and shed light on the underlying economics of 

VIX-related assets, we provide an introduction to the VIX, VIX futures and VIX ETPs.  

2.1 VIX 

The VIX, often called "The Investor Fear Gauge" (Whaley 2000), was first introduced 

by the Chicago Board Options Exchange (CBOE) in 1993. At the time, it was a 

measure of the market's expectation of the 30-day annualised volatility of the S&P 100 

quoted in percentage points and calculated based on the average of the Black-Scholes 

implied volatilities of eight near-the-money options on the S&P 100 with the two 

nearest maturities. Over time, the S&P 500 options market grew ever more popular 

and became the biggest and most actively traded options market overtaking the 

S&P 100. Moreover, while initially open interest for puts and calls was roughly equal, 

Whaley (2009) shows that puts in general, and out-of-the-money puts in particular, 

became increasingly popular due to portfolio insurance reasons. To account for these 

changes in the market and a bias introduced by the trading-day conversion used for 

the original VIX, the CBOE introduced a new method to calculate the VIX in 2003, 

while the original index continued as VXO. The new VIX is based on the market prices 

of options on the S&P 500, rather than implied volatilities of options on the S&P 100, 

and additionally includes out-of-the-money options using an appropriate day-counting 

convention. Carr and Wu (2006) show that the new VIX squared approximates the 

conditional risk-neutral expectation of the annualised return variance of the S&P 500 

over the next 30 calendar days and can in theory be replicated through a static position 

in European options and a dynamic position in futures. 

2.1.1 Statistical Properties of the VIX 

Data on the VIX reaches back to 1990. Its level averages roughly 19 over that period 

with a strong mean-reversion characteristic. The VIX peaked during the heights of the 

GFC on 20 November 2008 with a closing level of more than 80. From Figure 1 we can 

see that the VIX has a strongly negative correlation with the S&P 500. The "leverage 

effect", as proposed by Black (1976), and time-varying risk premia (see for example 

Campbell and Hentschel (1992)) are two of the most prominent theories explaining this 

asymmetric relationship. Further, the negative correlation is more pronounced during 

times of large negative stock returns (see for example Schwert (1989) and Bekaert and 

Wu (2000)). Another distinct characteristic of implied volatility is the significantly 

positive skewness of its variations as noted for example by Bahaji and Aberkane (2015), 

Carr and Wu (2009) and Egloff et al. (2010). The correlation and skewness features 

are two of the main reasons for the attractiveness of the VIX and its derivatives as 

potential portfolio diversifiers. 
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Figure 1. VIX and S&P 500 Performance & Correlation. The chart on the left shows the VIX level (left 
y-axis) and the S&P 500 Total Return Index level (right y-axis) from January 1990 to December 2016. 
The chart on the right shows the 22-trading-day rolling correlation between the returns of the VIX and 
the S&P 500. Data is sourced from Bloomberg. 

  

2.1.2 Implied Volatility and Realised Volatility 

Another important aspect of the VIX in the context of our research question is the 

well-established fact that the VIX typically overpredicts future realised volatility.  This 

means investors pay a premium on options to insure against upward movements in 

volatility. The premium has been coined the "volatility risk premium" and is considered 

an independent risk factor as the returns cannot be explained by classical risk factors 

(see for example Bakshi and Kapadia (2003), Bollerslev et al. (2011), Carr and Wu 

(2009), Drechsler and Yaron (2011), and Eraker (2004)).1  

Figure 2. Implied & realised Variance and Volatility Risk Premium. The chart on the left shows the 
realised variance of the S&P 500 over the past 30 calendar days multiplied by 104 and the 30 calendar 
days lagged squared VIX divided by 12 and quoted in percentage points as in Drechsler and Yaron 
(2011). The chart on the right shows the volatility risk premium as the difference between the two 
aforementioned. Realised variance is based on 5-minute subsamples obtained from the Oxford-Man 
Institute. The data ranges from April 2004 to December 2016. 

    
 

From Figure 2 we can see that during times of low volatility, the volatility risk 

premium is large and negative. At the time of jumps in volatility (most notably at the 

heights of the GFC, the flash crash in 2010, the peak of the European debt crisis in 

2011 and the Chinese stock market turbulences in 2015), the volatility risk premium 

                                      
1 This risk premium is subject to its own research area. Broadie et al. (2007), Eraker (2004) and Pan 

(2002) for example find that much of the risk premium stems from a jump risk premium rather than the 
volatility risk premium. For the sake of this paper, we make no further distinction and refer to the 
general risk premium as volatility risk premium. 
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turns positive and spikes briefly. Interestingly, the period leading up to the GFC 

displays a lower risk premium compared to the period following the GFC, indicating a 

change in the volatility regime. 

2.2 VIX Futures 

On 24 March 2004, not long after the new VIX methodology was introduced, the CBOE 

launched VIX futures on the CBOE Futures Exchange. VIX futures are contracts on 

forward 30-day implied volatilities as measured by the VIX. They are standard futures 

contracts settled in cash using a special opening quotation of the VIX based on opening 

prices of S&P 500 weekly options. It is important to note that, contrary to most other 

futures, there is no cost of carry relationship between the VIX and the VIX futures as 

the VIX itself is not an investable asset but a volatility forecast. Despite the changed 

calculation method, Asensio (2013) notes that it is costly and difficult to replicate the 

VIX due to the required volume of trades, the required trading frequency to rebalance 

and the high transaction costs for low-delta options. This results in VIX futures being 

the investors' principal way of achieving exposure to the VIX. 

2.2.1 Descriptive Statistics of VIX Futures 

Since introduction, open interest and daily volume of the VIX futures steadily increased 

until dropping during the heights of the GFC. Yet, Bahaji and Aberkane (2015) show 

that VIX futures proved to still be relatively liquid compared to for instance credit 

default swaps, at a time where investors arguable seek out hedging and diversification 

instruments the most. Shortly thereafter, the popularity of futures took off and open 

interest and volume rose significantly which is directly linked to the introduction of 

several VIX ETPs.  

We can see from Figure 3 that VIX futures prices note on average higher than the 

VIX and increase with maturity. This displays the typical term structure of VIX futures 

called "contango", which means futures trade above the spot price and the futures 

curve is upward sloping. During times of high volatility, the GFC being a prime 

example, the term structure turns into "backwardation", meaning futures trade below 

the spot price and the futures curve is downward sloping.  

Table 1 shows the VIX futures summary statistics. While the VIX lost an annualised 

1.6% during the observed period, it is interesting to see that VIX futures lost 

dramatically more with the front-month future losing an annualised 57.6%. The extent 

of the losses decreases with the maturity of the futures. This also holds for the standard 

deviation of VIX futures owing mainly to the mean-reverting characteristic of volatility 

and the speed thereof. Similar to the VIX, VIX futures also exhibit the important 

feature of positively skewed returns, together with a high kurtosis.2 However, both 

                                      
2 Note that with kurtosis we refer to excess-kurtosis in this paper. 
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skewness and kurtosis decrease with increasing maturity of the VIX futures. Moreover, 

the returns of VIX futures are highly correlated with the VIX as shown in Table 2, 

although the correlation is far from perfect. The correlation also decreases with 

increasing maturity of VIX futures. 

Figure 3. VIX Futures Volume, Open Interest and Term Structure. The chart on the left shows the 
development of open interest and volume of the first seven VIX futures from the launch date until 
December 2016. The chart on the right shows the average term structure of the VIX futures and the 
spot VIX as well as examples for two different dates with the business days until settlement shown on 
the x-axis. The term structure over time is shown in Appendix A.I. We omit the eighth and ninth future 
due to low liquidity. 

    
 

Table 1. VIX & VIX Futures Descriptive Statistics. The table shows the descriptive statistics for the 
daily returns of the VIX and the first seven VIX futures. We omit the eighth and ninth future due to 
low liquidity. We also report the annual geometric mean. Skewness and kurtosis are calculated based on 
standardised moments. 

 VIX VX1 VX2 VX3 VX4 VX5 VX6 VX7 

Geo. Mean -0.016 -0.576 -0.408 -0.273 -0.212 -0.178 -0.159 -0.208 

Mean 0.002 -0.002 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 

Min -0.296 -0.255 -0.159 -0.131 -0.108 -0.101 -0.093 -0.133 

Max 0.642 0.358 0.255 0.195 0.159 0.139 0.121 0.114 

StdDev 0.073 0.048 0.033 0.026 0.023 0.020 0.019 0.019 

Skew 1.319 1.051 0.781 0.675 0.611 0.586 0.545 0.184 

Kurt 6.582 5.397 4.801 4.323 4.079 4.146 4.094 5.254 

 

Table 2. VIX & VIX Futures Correlation Matrix. The table shows the correlations of the daily returns 
of the VIX and the first seven VIX futures. We omit the eighth and ninth future due to low liquidity. 

 VIX VX1 VX2 VX3 VX4 VX5 VX6 VX7 

VIX 1.00 0.89 0.85 0.83 0.81 0.79 0.76 0.71 

VX1 0.89 1.00 0.94 0.91 0.89 0.86 0.83 0.78 

VX2 0.85 0.94 1.00 0.97 0.95 0.92 0.89 0.84 

VX3 0.83 0.91 0.97 1.00 0.98 0.96 0.93 0.87 

VX4 0.81 0.89 0.95 0.98 1.00 0.98 0.95 0.89 

VX5 0.79 0.86 0.92 0.96 0.98 1.00 0.97 0.91 

VX6 0.76 0.83 0.89 0.93 0.95 0.97 1.00 0.92 

VX7 0.71 0.78 0.84 0.87 0.89 0.91 0.92 1.00 
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2.2.2 Pricing of VIX Futures 

The pricing of VIX futures is subject of ongoing academic research. According to the 

CBOE, the price of a VIX future can either be above, below or equal to the VIX 

depending on the market's expectation about the volatility in the 30-day forward period 

covered by the future compared to the 30-day spot period covered by the VIX. Nossman 

and Wilhelmsson (2009) tested the expectation hypothesis on VIX futures and found 

that when not adjusting for the volatility risk premium, the expectation hypothesis is 

rejected at a 5% significance level. When including the volatility risk premium, the 

expectation hypothesis cannot be rejected anymore. Johnson (2016) comes to the same 

conclusion and finds that a slope component describes nearly all information about the 

volatility risk premium in the VIX futures term structure. Further, Eraker and Wu 

(2016) show that the returns of VIX futures cannot be explained by classical risk 

factors. They use an equilibrium model that produces a sizeable volatility risk premium 

and an upward sloping futures curve. Others (Zhang and Zhu (2006), Lin (2007) and 

Zhu and Lian (2012)) study the model fit based on the class of Heston (1993) and 

Duffie et al. (2000) with the conclusion that models with more complex volatility 

characteristics (e.g. jumps) perform best. 

Most importantly for this paper, Aıt-Sahalia et al. (2015), Dew-Becker et al. (2016), 

Eraker and Wu (2016) and Huskaj and Nossman (2013) find that volatility risk premia 

are downward sloping, meaning that the volatility risk premium is decreasing with the 

maturity of the volatility asset. Hence, volatility risk premia are largest for short-term 

VIX futures. To illustrate this further, we will look at the two most prominent VIX 

futures indices. 

2.3 S&P 500 VIX Short-Term and Mid-Term Futures Indices 

On 22 January 2009, Standard & Poor's introduced the two indices "S&P 500 VIX 

Short-Term Futures Index" ("Short-Term Index" hereafter) and "S&P 500 VIX Mid-

Term Futures Index" ("Mid-Term Index" hereafter). The Short-Term Index measures 

the performance of continuously rolling a long position in the first month VIX future 

into the second month VIX future, maintaining a constant 30-day maturity. The Mid-

Term Index measures the performance of continuously rolling a long position in the 

fourth month VIX future into the seventh month VIX future, while keeping constant 

positions in the fifth and sixth month futures, resulting in a constant 150-day maturity. 

The exact calculation for both indices are provided by Standard & Poor's and can be 

found in Appendix A.II. 

2.3.1 Performance of Indices 

The performance of the indices as displayed in Figure 4 is astonishing: The Short-Term 

Index has lost nearly all of its value with a cumulative loss of 99.9% since inception, 
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which translates into a negative annualised return of 47.6%. While the Mid-Term Index 

cumulatively lost 81.5% of its value since inception, it performed better with a negative 

annualised return of 15.5% further lending support to the theory of downward sloping 

risk premia. Given the high correlation of VIX futures with the VIX, the spikes of the 

two indices are in line with the event-driven spikes in the VIX, most notably during 

the GFC when both funds posted significant gains. The Short-Term Index however 

quickly eroded gains from the GFC, while the losses have been less severe for the Mid-

Term Index following the GFC. Both indices posted strong but short-lived gains 

following the flash crash in 2010 and the height of the European debt crisis in 2011. 

Afterwards, there have been periods of low volatility which resulted in significant 

deterioration in performance for both indices. On 24 June 2016, the day after the UK 

voted to leave the EU, both indices posted their biggest daily gain since inception with 

the Short-Term Index and the Medium-Term Index rising 32.7% and 13.4% 

respectively. Overall, both indices display a high volatility with an annualised daily 

standard deviation of 65.1% and 32.2% respectively. 

Figure 4. Short-Term and Mid-Term Index Performance. The charts below show the performance of the 
Short-Term Index (left) and Mid-Term Index (right) from the base date 20 December 2005 until 
December 2016. 

    

2.3.2 Return Decomposition 

The extraordinary losses of the indices deserve a closer examination. Figure 5 shows 

the biasedness of the two indices as a predictor of the future VIX level, similar to the 

biasedness of the VIX as a predictor of future realised variance. The resulting spread 

for the Short-Term Index is on average lower than for the Mid-Term Index, owing to 

the fact that the term structure typically finds itself in contango. We can see that in 

more than two thirds of the time both constant maturity future prices overpredict the 

VIX. To get a grasp of the price impact of the volatility risk premium inherent in the 

futures, we follow Johnson (2016) and Whaley (2013) and derive the slope of the futures 

curve at the 30-day and 150-day constant maturity. We divide the price difference of 

the two futures straddling the respective constant maturity with the difference in 

business days to settlement of these futures. In Table 3, we can see that the 30-day 

constant maturity futures price is expected to drop by an average 0.038 (equivalent to 

0.19%) per business day, while the 150-days constant maturity futures price is expected 

to drop by only 0.012 (equivalent to 0.06%) in comparison, explaining the significantly 
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worse performance of the Short-Term Index. During market downturns, the slope turns 

negative as the term structure turns into backwardation as shown in Figure 6. 

Figure 5. Constant-Maturity predicted VIX and realised VIX. The chart on the left (right) shows the 
realised VIX and 30 (150) calendar days lagged value of the 30 (150) day constant maturity VIX futures 
price ST (MT) from the base date 20 December 2005 until December 2016. 

    

Figure 6. Short-Term and Mid-Term Index Slope. The chart below shows the slope of the futures curve 
at the point of the 30 (150) day constant maturity VIX future ST (MT) for the Short-Term (Mid-Term) 
Index calculated by dividing the price difference of the two futures straddling the respective constant 
maturity with the difference in business days to settlement of these two futures. 

 

 

Table 3. Short-Term and Mid-Term Index Slope and Spread. The table shows the summary statistics 
for the slope as shown in Figure 6, and the spread calculated as the difference between the 30 (150) 
calendar days lagged value of the 30 (150) day constant-maturity VIX futures price and the realised 
VIX as shown in Figure 5. 

  Slope Spread 

  ST MT ST MT 

Mean 0.038 0.012 0.931 2.582 

Min -1.005 -0.136 -52.185 -57.451 

Max 0.273 0.108 18.768 18.411 

StdDev 0.084 0.024 5.723 8.841 

% positive 84.1% 82.1% 70.6% 77.0% 

 

We run OLS regressions to further shed light on the underlying factors of the 

performance of the two indices. Based on the CAPM and the Fama French 3-Factor 

Model, we find statistically significant negative alphas for the performance of the Short-
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downward sloping volatility risk premia that finds comparably little evidence for risk 

premia in far-dated derivatives. Moreover, we observe that the negative correlation of 

VIX futures with equities translates into a substantial negative market beta for the 

two indices. The two indices also respond differently to a change in the VIX. When the 

VIX rises by one percent, the Short-Term Index rises by slightly less than half a 

percent, while the Mid-Term Index responds with about a fifth of a percent. This shows 

that the indices are unable to replicate the performance of the VIX.  

Table 4. Short-Term and Mid-Term Index Regression Results. The table shows the OLS coefficients of 
regressing daily excess-returns of the Short-Term (ST) and Mid-Term (MT) Index on the market risk 
premium (CAPM) and the Fama-French size and value factors, as well as the results of regressing their 
daily total returns on the returns of the VIX and the slope as derived in Figure 6. Data has been sourced 
from the Kenneth French Library. ***, **, * denote statistical significance at the 1%, 5%, 10% level.  

 ST MT ST MT ST MT 

Market -2.449*** -1.204*** -2.501*** -1.226***   

Size   -0.215*** -0.057   

Value   0.413*** 0.152***   

VIX     0.475*** 0.211*** 

ST Slope     1.400***  

MT Slope      1.806*** 

Constant -0.001** -0.0002 -0.001** -0.0002 0.0005 0.0002 

Observations 3,231 3,231 3,231 3,231 3,231 3,231 

Adj. R2 0.577 0.560 0.582 0.563 0.788 0.626 

 

2.4 VIX ETPs 

On 29 January 2009, shortly after the introduction of the Short-Term Index and the 

Mid-Term Index, the first two VIX ETPs, namely the iPath S&P 500 VIX Short-Term 

Futures ETN (Ticker: VXX) and the iPath S&P 500 VIX Mid-Term Futures ETN 

(Ticker: VXZ), were launched by Barclays. They track the Short-Term Index and the 

Mid-Term Index respectively, and fill a gap that VIX futures themselves were not able 

to fill. Many institutional investors are restricted in their ability to buy futures and 

option contracts, while many retail investors are too small or lack the necessary 

sophistication to invest and trade in the derivatives market. The introduction of the 

ETPs finally allowed these investors to trade VIX related assets on the public stock 

market. Given the tremendous rise in popularity of the VXX and VXZ, additional VIX 

ETPs were launched within a short timeframe. 

2.4.1 VIX ETP Universe 

VIX ETPs usually come as either ETNs or ETFs. ETNs are notes that promise to pay 

the benchmark return over a certain maturity, which usually ranges between 10 and 

40 years, without paying a coupon. There are some considerable differences between 

VIX ETNs and the underlying VIX futures themselves, that investors should be aware 
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of. ETNs are callable at short notice at any time by the issuer and are not secured by 

the underlying assets themselves, bearing the credit risk of the issuer. ETFs on the 

other hand do not share the credit risk of the issuer as they represent claims on the 

underlying portfolio's assets. While the creation and redemption mechanism (a market 

maker delivers the shares of the underlying ETF basket and receives shares in the ETF 

from the issuer and vice versa) ensures efficient pricing for ETFs, it is a bit more 

complex for ETNs. The creation process requires an entirely new offering of notes. 

Further, notes can be redeemed by the holder of the ETN at the closing indicative 

value only one or more days after giving notice of the redemption. This could 

potentially give rise to mispricings. Moreover, ETN providers usually hedge their 

exposure to early redemption by trading VIX futures at the daily closing price. 

Alexander and Korovilas (2013) argue that this has led to large-scale front-running of 

issuers' hedging activity. 

Table 5 shows an overview of the 10 largest VIX ETPs based on the Short-Term 

and Mid-Term indices, also including daily inverse levered ETPs. ETPs offering long 

exposure to the indices total to a combined market capitalisation of more than $2bn, 

while ETPs offering short exposure have a smaller combined market capitalisation of 

close to $1bn. The liquidity of some of the ETPs is noteworthy as the VXX and UVXY 

have for example been among the most actively traded securities in 2016.3 The turnover 

time suggests that the ETPs based on the Short-Term Index are mainly used as highly 

speculative vehicles by traders, rather than by buy-and-hold investors. On the other 

hand, ETPs based on the Mid-Term Index show significantly longer turnover times, 

which lends support to the theory that investors might use them as portfolio 

diversifiers. 

Table 5. VIX ETPs Overview. The table shows an overview of the ten largest ETPs on the Short-Term 
and Mid-Term Index. The sign of leverage shows the long or short-positioning on the underlying index 
of the ETP. Turnover time is the median of the daily market capitalisation divided by the daily dollar 
volume. Dynamic and strategy ETPs have been excluded from the scope of this paper. 

Ticker 
Inception 
Date 

ETN/ETF Index Leverage 
Expense 
Ratio 

Market Cap 
($m) 

Average 
Volume (k) 

Turnover 
Time (d) 

VXX 29-Jan-09 ETN ST 1x 0.89% 1,326.1 7,620.8 1.5 

UVXY 04-Oct-11 ETF ST 2x 0.95% 436.6 903.6 1.2 

TVIX 29-Nov-10 ETN ST 2x 1.65% 206.2 99.1 3.2 

VIXY 04-Jan-11 ETF ST 1x 0.85% 154.1 372.0 5.0 

VIXM 04-Jan-11 ETF MT 1x 0.85% 39.5 16.0 40.4 

VXZ 29-Jan-09 ETN MT 1x 0.89% 37.4 134.2 11.1 

VIIX 29-Nov-10 ETN ST 1x 0.89% 12.1 20.1 3.2 

         

XIV 29-Nov-10 ETN ST -1x 1.35% 536.1 11,682.8 1.6 

SVXY 04-Oct-11 ETF ST -1x 0.95% 336.9 1,753.8 1.7 

ZIV 29-Nov-10 ETN MT -1x 1.35% 83.1 41.8 39.9 

 

                                      
3 According to Burger (2017), the VXX was the fifth and the UVXY was the tenth most traded 

security on the U.S. stock market in 2016 by daily average volume. 



 

 12 

To further illustrate the popularity of VIX ETPs, we look at the development of 

market capitalisation, cumulative gains and losses, and cumulative capital inflows over 

time. Figure 7 shows the staggering amount of losses that the long-positioned VIX 

ETPs have accumulated totalling more than $15bn since their inception in 2009. 

Nevertheless, this has not harmed the popularity of the ETPs in any way, as capital 

was continuously contributed keeping the market capitalisation at a relatively stable 

level of around $2bn. Short-positioned VIX ETPs on the other hand show a 

significantly different picture. After initial losses, the funds started to rack up gains 

over time. Capital flows were much more volatile and jumped as soon as the ETPs 

suffered sudden and large losses.  

Figure 7. VIX ETPs Market Capitalisation and Capital Flows. The charts below show the market 
capitalisation, cumulative gains or losses and cumulative capital inflows of the long-positioned (left 
chart) and short-positioned (right chart) VIX ETPs as in Table 5 since inception of the VXX and VXZ. 
Gains or losses are calculated based on the closing market capitalisation of the previous day and the 
returns of the current day. Capital inflows are calculated as the difference between the closing market 
capitalisation of the current day and the sum of the gain or loss on the current day and the closing 
market capitalisation of the previous day. 

    
 

2.4.2 VXX and VXZ 

In this paper, we want to focus on the VXX and VXZ for our empirical analysis as 

they offer the longest historical available data and are arguably the most popular long-

positioned ETPs with respect to the Short-Term and Mid-Term Index. 

As mentioned, the structure of the creation and redemption mechanism of ETNs 

might lead to tracking errors. Hence, before we proceed further in our analysis, we 

regress the returns of the two ETNs on their respective underlying index to see whether 

earlier findings on the underlying indices can also be assumed to hold for the ETNs. 

From Table 6 we can see that the VXX tracks the ST Index basically perfectly. This 

can be attributed to the earlier mentioned extreme liquidity that the ETN showcases. 

The VXZ on the other hand trails the VXX in tracking performance, which could be a 

result of the comparably lower liquidity, paired with the execution costs and timing 

issues of the creation and redemption arbitrage as noted by Whaley (2013). There is a 

considerable amount of noise when looking at the mean absolute return deviation. 

However, the mean return deviations suggest that both ETNs closely track the indices. 
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The negative intercept for both ETNs can be explained by the 0.89% annual 

management fee collected by the ETN issuer. 

Table 6. VXX and VXZ Tracking Error Regression Results. The table shows the OLS coefficients of 
regressing the returns of the VXX and VXZ on the Short-Term and Mid-Term Index respectively 
following Whaley (2013). The mean deviation in returns as well as the mean of the absolute deviation 
in returns is also reported. ***, **, * denote statistical significance at the 1%, 5%, 10% level. 

 VXX VXZ 

ST Return 1.000***  

MT Return  0.897*** 

Constant -0.00004*** -0.0002 

Observations 2,016 2,016 

Adj. R2 1.000 0.872 

Mean Deviation 0.00016 0.00005 

Mean Absolute Deviation 0.00776 0.00494 

 

Figure 8 shows the performance of the two ETNs. In line with the earlier findings 

for the underlying indices, the VXX has rapidly lost enormous amounts after inception. 

The decline for the VXZ has been less pronounced. It is interesting to look at the 

development of dollar volume over time. While initially trading activity was rather 

subdued, it surged for both ETNs roughly a year after inception. Over time, the dollar 

volume traded steadily increased for the VXX with several significant spikes (e.g. on 

25 August 2015, the peak of the Chinese stock market turbulences, nearly $7bn in the 

VXX was traded which compares to a total market capitalisation of roughly $3bn for 

all long-positioned VIX ETPs at the time). Clearly, the VXX is one of the main 

benefactors of the popularity of the VIX ETPs. The VXZ showed similar tendencies in 

the beginning, albeit on a much smaller scale. However, the daily dollar volume reversed 

course and declined steadily since 2011. 

Figure 8. VXX and VXZ Performance and Volume. The charts below show the daily dollar volume (left 
y-axis) and price performance (right y-axis) since inception for the VXX on the left and the VXZ on the 
right. Dollar volume was chosen due to the large negative returns and hence limited information share 
volume conveys. 

    
 

These points are further substantiated when looking at Figure 9. The VXX has 

enjoyed a steady inflow of large amounts of capital over the years keeping the market 

capitalisation consistently hovering above $1bn, despite racking up staggering losses of 

more than $7bn since inception. The VXZ on the contrary, after enjoying large capital 
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inflows in 2010 and 2011, seems to have fallen out of favour with investors and traders 

in recent years. After significant gains in mid 2010, capital was withdrawn abruptly 

and re-contributed quickly only to see it being withdrawn stepwise from 2011 to 2012. 

Ever since, activity has been subdued with losses accumulating and the market 

capitalisation declining steadily with little movement in capital. 

Figure 9. VXX and VXZ Market Capitalisation and Capital Flows. The charts below show the market 
capitalization, cumulative gains or losses and cumulative capital inflows of the VXX (left chart) and 
VXZ (right chart) since inception. Gains or losses are calculated based on the closing market 
capitalisation of the previous day and the returns of the current day. Capital inflows are calculated as 
the difference between the closing market capitalisation of the current day and the sum of the gain or 
loss on the current day and the closing market capitalisation of the previous day. 

    
 

The popularity of the VXX in recent years has some important consequences.  

Bollen et al. (2016) for instance find that the VXX now leads VIX futures in intraday 

price discovery, which in turn also lead the VIX (and equivalently the S&P 500 options 

market). They conclude that VIX ETPs and VIX futures have now become the primary 

market for hedging volatility risk in a timely manner. Whaley (2013) suggests that the 

popularity of the VIX ETPs can be explained by the lack of sophistication of market 

participants. The VXX indeed has an institutional ownership of only around 40% while 

more than two thirds of the VXZ are owned by institutional investors.4 

                                      
4 Numbers are based on 13-F filings compiled by Nasdaq as of 29 March 2017. 
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3 Literature Review 

In the following section, we summarise the findings in the literature with regards to 

the suitability of VIX futures and VIX ETPs as portfolio diversifiers. Researchers have 

almost exclusively restricted their analysis to the mean-variance space. We therefore 

also review the literature on the inclusion of higher moments in finance applications 

and more specifically portfolio selection problems. 

3.1 Portfolio Selection with VIX Futures and VIX ETPs 

One of the first to examine VIX futures are Moran and Dash (2007), who consider 

whether a portfolio of the S&P 500, spot VIX and VIX futures could have outperformed 

the S&P 500 on a risk-adjusted basis from 2004 to 2007. The paper finds that a small 

allocation to the spot VIX and VIX futures could have improved the risk-adjusted 

performance as measured by the Sharpe Ratio. In a more comprehensive study, Chen 

et al. (2011) examine whether the spot VIX, VIX-squared portfolios and VIX futures 

can enlarge the investment opportunity set of an investor. The authors conduct a mean-

variance spanning test with VIX futures and several equity portfolios with data ranging 

from April 2004 to April 2008. They find that investors could have significantly 

expanded their efficient frontier. However, this stems mainly from the change in the 

global minimum-variance portfolio, while there are no significant improvements to the 

tangency portfolio. 

Szado (2009) studies the diversification effects of adding long volatility exposure 

through VIX futures to static portfolios consisting of equities, bonds and alternative 

asset classes during the GFC. The examined period ranges from March 2006 to 

December 2008. The paper compares the performance of different portfolios with a 

2.5% and a 10% allocation to near-month VIX futures, which is rolled over to the next 

month future whenever a future is about to expire. The author concludes that long 

volatility exposure might result in negative returns in the long term, but does provide 

considerable protection by increasing returns and decreasing standard deviation in 

times of significant market declines. In a similar setting, Warren (2012) concludes that 

monthly rolled third-month VIX futures would have improved the Sharpe Ratio of a 

typical pension fund portfolio consisting of equities, fixed income and real estate 

property over the period from May 2004 to March 2010. 

Gantenbein and Rehrauer (2013) find that volatility exposure trough the VXX and 

VXZ would have improved the Sharpe Ratio of an S&P 500 portfolio from 2006 to 2011 

using backtested returns. Post-crisis (2009-2011), they show that the positive effect 

only holds up for the VXZ. In a similar study, Bordonado et al. (2016) examine a 

portfolio of the S&P 500 as well as the VXX and the VXZ using backtested return 

series. During the sample period from June 2006 to April 2014, the authors find that a 

small allocation to the VXZ would have slightly increased the Sharpe Ratio of the 
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portfolio. However, the paper argues that the performance improvement is only caused 

by the historically unique GFC, and consequently finds that during the period from 

February 2009 to April 2014 neither the VXX nor the VXZ have a positive effect on 

the risk-adjusted performance of the portfolio, due to the presence of a large volatility 

risk premium that outweighs the diversification benefits.  

The first to depart from the mean-variance framework and to take into account the 

statistical properties of the VIX and its derivatives in a portfolio context are Briere et 

al. (2010), who employ a modified value-at-risk approach based on the Cornish-Fisher 

expansion. In the first ex-ante analysis with VIX futures, the study concludes that long 

VIX futures exposure in an S&P 500 portfolio significantly reduces the modified value-

at-risk, both in-sample (1990-1999) and out-of-sample (1999-2008). They backtest VIX 

futures returns using a linear relationship with the VIX, an approach criticised by other 

researchers. Based on actual return data ranging from 2004 to 2011, Alexander and 

Korovilas (2012) try to incorporate skewness into their ex-ante analysis by using an 

approximation of the generalised Sharpe Ratio as an optimisation and performance 

criterion. The authors find larger allocations to VIX futures when considering skewness, 

but also find that these portfolios rarely outperform equity-only portfolios out-of-

sample, even when measuring performance with the generalised Sharpe Ratio. In fact, 

outside of periods of high volatility, adding VIX futures is shown to be profitable only 

when investors have personal views based on precise VIX futures forecasts. This leads 

the authors to conclude that the success of volatility-diversified equity portfolios rests 

entirely on short-term speculation rather than long-term diversification. In contrast, 

Bahaji and Aberkane (2015) show that also uninformed investors with skewness 

preference can benefit from including VIX futures in a portfolio consisting of equities 

and bonds, although the optimal exposure entails majorly short-positions in VIX 

futures.  

3.2 Portfolio Selection with Higher Moments 

In the finance literature, there is a controversy regarding the role of higher moments 

in financial applications, and portfolio selection in particular. Many researchers (see for 

example Arditti (1967, 1971), Samuelson (1970), Rubinstein (1973) and Tobin (1958)) 

argue that higher moments can only be disregarded if asset returns are normally 

distributed, or if the utility function of investors is quadratic, which is equivalent to 

the notion that higher moments do not influence investors' preferences. 

There is a large literature that provides strong evidence that individual asset and 

portfolio returns are not normally distributed (see for example Fama (1965), Ibbotson 

(1975), Arditti (1971), Simkowitz and Beedles (1978), and Singleton and Wingender 

(1968)). Further, the works of Arditti and Levy (1975), Kraus and Litzenberger (1976), 

and Jondeau and Rockinger (2003) have established that higher moments are an 

important factor in explaining security returns. 
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While Tsiang (1972, 1974) is supportive of using the quadratic approximation for 

the utility function under the assumption that the risk taken by the investors is small 

relative to their wealth, others (for example Bierwag (1974), Borch (1974) and Levy 

(1974)) remain sceptical. Hanoch and Levy (1970) note that the quadratic utility 

function implies increasing absolute risk aversion, which stands in conflict with the 

generally accepted assumption of decreasing absolute risk aversion. Levy and Sarnat 

(1972) also demonstrate that the quadratic utility function is only appropriate in case 

of relatively low returns. In a defence of quadratic utility, Levy and Markowitz (1979) 

and Markowitz (1991) suggest that at least for relatively small deviations in rates of 

return, the mean-variance approach approximately maximises expected utility even if 

distributions are not normal.  

In the works of Samuelson (1970), Kraus and Litzenberger (1976), Stephens and 

Proffitt (1991), and Harvey and Siddique (1999, 2000) it is shown that higher moments 

are relevant to the investor's portfolio selection decision. Scott and Horvath (1980) 

show that investors exhibit a positive preference for odd moments and a negative 

preference for even moments, which is consistent with the notion of decreasing absolute 

risk aversion. Prakash et al. (2003) interpret the positive preference for skewness as a 

preference for decreasing the probability of large negative returns. Dittmar (2002) 

provides the intuition behind investors' negative preference for kurtosis, by noting that 

investors are averse to extreme outcomes. More specifically, Fang and Lai (1997) and 

Harvey and Siddique (1999, 2000) show that investors forego returns in pursuit of 

higher systematic skewness, while they receive higher returns in exchange for bearing 

systematic variance and kurtosis risk. 

Even though it was demonstrated early on in the literature that portfolio selection 

should take into account higher moments, only few approaches were developed to 

construct portfolios accordingly. These attempts suffered from a number of defects as 

discussed in Chunhachinda et al. (1997), and an appropriate solution was not 

established until Lai (1991). He applied polynomial goal programming ("PGP" 

hereafter) as introduced by Tayi and Leonard (1988) to solve the multi-objective 

portfolio selection with skewness. Chunhachinda et al. (1997), Prakash et al. (2003), 

Sun and Yan (2003) and Davies et al. (2006) have subsequently applied and augmented 

the PGP approach, and show that incorporating investor preferences for skewness and 

kurtosis significantly changes the optimal portfolio allocation. 
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4 Data 

In this section, we introduce the assets used in our empirical analyses. Further, the 

backtesting procedure and descriptive statistics are presented and discussed with a 

particular focus on the VIX ETNs. 

4.1 Asset Overview and Sources 

For our empirical work on the incorporation of VXX and VXZ in portfolios, we 

introduce a set of ETFs that represents a range of the most common and liquid assets, 

easily accessible to retail investors via the public stock market. Therefore, asset classes 

such as hedge funds and private equity are excluded from our analysis.  

Based on the global multi-asset market portfolio as determined by Doeswijk et al. 

(2014), we introduce the asset classes of equities, bonds and real estate. Equities are 

represented by the iShares Core S&P 500 ETF ("S&P 500" hereafter), tracking the 

S&P 500 Index, and the Vanguard FTSE All-World ex-US ETF ("AW"), tracking the 

FTSE All-World ex US Index. Bonds are further split into treasuries, investment grade 

corporate bonds and high yield corporate bonds, represented by the iShares 1-3 Year 

Treasury Bond ETF ("UST") tracking the ICE U.S. Treasury 1-3 Year Bond Index, 

the iShares Global Corp Bond UCITS ETF ("IGCB") tracking the Bloomberg Barclays 

Global Aggregate Corporate Index and the S&P 500 High Yield Corporate Bond Total 

Return Index ("HYCB"), adjusted for an industry standard ETF expense fee. Real 

estate exposure is incorporated by the SPDR Dow Jones Global Real Estate ETF 

("RE"), tracking the Dow Jones Global Select Real Estate Securities Index. Further, 

following the arguments made in the literature about diversification benefits of 

commodities (see for example Gorton (2006) and Jensen et al. (2000)), we incorporate 

commodity exposure through the iShares S&P GSCI Commodity-Indexed Trust ETF 

("GSCI"), tracking the S&P GSCI Index. As precious metals constitute only around 

2% of the GSCI, we include the SPDR Gold Shares ("GLD"), a physically-backed gold 

ETF, to capture the safe haven characteristics of gold as evidenced in the literature 

(see for example Baur and Dermott (2010)).  

We source our data for VIX futures, which we need to backtest return series for the 

VXX and VXZ as explained in Section 4.2, from the CBOE. Data for the Gold Fixing 

Price is retrieved from the Federal Reserve Bank of St. Louis, while we use Bloomberg 

for all other indices and ETPs. To insure the quality and correctness of our data, we 

crosscheck it whenever possible with DataStream as well as the respective ETP 

provider. The observation period ranges from 1 April 2004, the first full month after 

the introduction of the VIX futures, to 31 December 2016. All returns are total returns 

in order to insure comparability among different asset classes. Furthermore, all return 

data is quoted in US Dollar. 
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4.2 VXX and VXZ Backtesting 

The VXX and VXZ were launched in 2009 while the base date of the underlying Short-

Term Index and Mid-Term Index goes back to 2005. VIX futures were already 

introduced in 2004. Therefore, in order to be able to carry out our empirical analysis 

over the full observation period, we have to backtest VXX and VXZ return series using 

VIX futures and indices data.  

For the period from 1 April 2004 to 20 December 2005, we manually calculate the 

Short-Term and Mid-Term Index based on the index formulas provided by Standard 

& Poor's (see Appendix A.II). As some VIX futures did not exist or are not priced due 

to low liquidity during the first years, we interpolate missing VIX futures prices 

following the method described in Appendix A.III. Using the obtained indices data, we 

calculate the VXX and VXZ return series by subtracting the daily accrued annual 

investor fee using the method provided by Barclays (see Appendix A.IV).5  

In order to separate actual return data from backtested return data in our empirical 

analysis, we introduce two different periods, namely the "main period" and the 

"backtested period". Consequently, the main period ranges from 29 January 2009 to 

31 December 2016, and the backtested period ranges from 1 April 2004 to 28 January 

2009. We also examine a third period, the "full period", which is a combination of the 

main period and backtested period and therefore spans the entire observation period. 

4.3 Descriptive Statistics 

For our main analyses, we use quarterly returns to reflect an investment interval that 

we deem appropriate for retail investors with a buy-and-hold ETF portfolio. Any larger 

investment interval would result in an insufficient number of observations to carry out 

a meaningful empirical analysis. As we test our results of the main analyses for 

robustness using different investment intervals, we follow Prakash et al. (2003) and 

scale the returns to a simple annual rate 

 

𝑅𝑡 =
𝑝𝑟𝑖𝑐𝑒 𝑖𝑛𝑑𝑒𝑥𝑡 − 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛𝑑𝑒𝑥𝑡−1

𝑝𝑟𝑖𝑐𝑒 𝑖𝑛𝑑𝑒𝑥𝑡−1
 × 

365

𝑑𝑎𝑦𝑠 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 (1) 

 

to ensure comparability.  

In Table 7 we can see the descriptive statistics for the main period, which includes 

the last months of the GFC. Nevertheless, returns are overall shaped by a strong bull 

market. During the main period, the VXX and the VXZ lost on average 66.6% and 

27.1% respectively. We also observe that not only do the VXX and the VXZ exhibit 

more extreme means, but they also have a substantially higher standard deviation than 

all other assets. In the equities space, the S&P 500 outperformed the AW with respect 

                                      
5 We employ the same investor fee calculation method to the set of ETFs representing non-volatility 

assets in case the respective ETF was launched after 1 April 2004. 
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to both mean and standard deviation. The rates of return of the bond ETFs, namely 

the UST, the IGCB and the HYCB are in line with their economic risk profile. The 

highest average return is achieved by the RE, which however also showcases a high 

level of standard deviation. The GSCI was the only non-volatility asset, which has a 

negative mean during the main period. In terms of risk-adjusted performance as 

measured by the Sharpe Ratio, the HYCB, the UST and the S&P 500 perform best, 

while the two volatility ETNs, due to the highly negative means and significantly higher 

standard deviation, perform worst. 

The VXX and the VXZ together with the bond ETFs represent the assets with the 

highest values for skewness. The VXX has the highest skewness of all assets with a 

value of 1.445, while the VXZ trails the UST and IGCB with a skewness of 0.596. It is 

important to note that the volatility assets have a high skewness in particular when 

compared to equities. The S&P 500 has the lowest skewness value, while the AW has, 

at least for equities, a relatively high skewness during the main period.6 

The VXX has one of the higher kurtoses, while the VXZ has a relatively low 

kurtosis, similar to the equities' kurtoses. The bond ETFs are among the assets with a 

higher kurtosis. In general, it is observable that most assets have positive or only 

slightly negative kurtosis, with the exception of the RE and the GLD. 

We can further see that the VXX and the VXZ as well as the bond ETFs are not 

normally distributed according to the Anderson-Darling Test, while the null hypothesis 

of normal distribution cannot be rejected for the remaining assets at any significance 

level. However, we have to note that the statistical power of normality tests is generally 

low for small sample sizes, with the Anderson-Darling Test requiring at least 100 

observations according to Razali and Wah (2011). Hence, we refer to the results for 

monthly investment intervals over the full period using 150 observations (see Appendix 

A.V), with the conclusion that with the exception of the GSCI and the GLD, all assets 

are not normally distributed. 

Table 7. Descriptive Statistics Quarterly Return Main Period. The table shows descriptive statistics for 
quarterly asset returns scaled by a factor of four over the main period. Skewness and kurtosis are 
calculated based on standardised moments. SR depicts the Sharpe Ratio (negative values omitted). AD 
reflects the test-statistic for the Anderson-Darling normality test (see Stephens (1974) for a comparison 
of selected normality tests). ***, **, * denote statistical significance at the 1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 31 31 31 31 31 31 31 31 31 31 

Mean -0.666 -0.271 0.147 0.098 0.009 0.064 0.116 0.149 -0.052 0.050 

StdDev 0.917 0.445 0.194 0.295 0.012 0.130 0.143 0.276 0.433 0.295 

Skew 1.355 0.596 -0.486 0.446 1.224 1.186 0.593 0.043 -0.476 0.149 

Kurt 1.445 0.041 -0.018 0.067 1.593 1.693 0.427 -0.766 -0.064 -0.784 

SR n.a. n.a. 0.756 0.332 0.781 0.493 0.813 0.539 n.a. 0.171 

AD 1.285*** 0.702* 0.382 0.416 0.979** 0.924** 0.834** 0.159 0.335 0.245 

                                      
6 For more details on usually negatively skewed equity returns, we refer the reader to Christie (1982) 

and Campbell and Hentschel (1992). 
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Table 8 shows the descriptive statistics for the backtested period, which includes 

the majority of the GFC. As a consequence, we notice that most assets have a much 

lower mean, or in case of the S&P 500 even a negative one, when compared to the main 

period. On the other hand, the volatility ETNs have significantly higher rates of return, 

as volatility spikes during the crisis as shown in Section 2.1.1. However, the mean 

return of the VXX is still negative, while the VXZ produced the second largest average 

rate of return of all assets amounting to 9.4%. Moreover, the UST and the GLD have 

a considerably higher rate of return, as they are considered safe havens during crises. 

The GSCI, despite the large drop in oil prices in 2008, has a higher average return as 

well, given that the period captures much of the commodities super cycle of the 21st 

century. Overall, the UST displays by far the best risk-adjusted performance as 

measured by the Sharpe Ratio, with the GLD and VXZ trailing. 

During the backtested period, we observe a very different skewness pattern. The 

returns of the VXZ are more positively skewed in the backtested period than in the 

main period, while the VXX's returns are less positively skewed. The returns of the 

remaining assets display large negative skewnesses, a direct consequence of the large 

negative returns during the crisis. Simultaneously, the returns of the UST remain 

positively skewed, given its safe haven nature. Interestingly, during the backtested 

period, no clear pattern of change for the kurtosis emerges when compared to the main 

period. Given the low number of observations, the normality tests mostly fail to reject 

the null-hypotheses, as they lack any statistical power as mentioned earlier. 

Table 8. Descriptive Statistics Quarterly Return Backtested Period. The table shows descriptive 
statistics for quarterly asset returns scaled by a factor of four over the backtested period. Skewness and 
kurtosis are calculated based on standardised moments. SR depicts the Sharpe Ratio (negative values 
omitted). AD reflects the test-statistic for the Anderson-Darling normality test. ***, **, * denote 
statistical significance at the 1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 19 19 19 19 19 19 19 19 19 19 

Mean -0.159 0.094 -0.015 0.051 0.039 0.019 0.015 0.033 0.043 0.160 

StdDev 1.112 0.650 0.248 0.373 0.043 0.136 0.149 0.487 0.729 0.297 

Skew 1.232 0.974 -0.898 -0.831 0.276 -1.233 -0.939 -1.100 -0.716 -0.105 

Kurt 1.190 0.308 -0.038 0.207 -1.193 2.525 0.306 0.964 -0.243 -0.666 

SR n.a. 0.144 n.a. 0.136 0.918 0.143 0.102 0.067 0.059 0.539 

AD 0.734** 0.566 0.561 0.451 0.370 0.640* 0.733** 0.485 0.421 0.250 

 

Over the full period, the mean and standard deviation of the assets not surprisingly 

resemble a combination of the main and the backtested period. It is interesting to note 

that the volatility ETNs show a significantly higher skewness, especially when 

compared to the other assets. The kurtosis is also showing more extreme values for the 

VXX and to a lesser extent for the VXZ. This behaviour results from the relatively 

constant negative returns during calm market periods, whereas outliers appear on the 

right tail of the distribution when volatility spikes. As a consequence of a higher number 

of observations, we also note a higher number of non-normally distributed assets. 
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Table 9. Descriptive Statistics Quarterly Return Full Period. The table shows descriptive statistics for 
quarterly asset returns scaled by a factor of four over the full period. Skewness and kurtosis are calculated 
based on standardised moments. SR depicts the Sharpe Ratio (negative values omitted). AD reflects the 
test-statistic for the Anderson-Darling normality test. ***, **, * denote statistical significance at the 
1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 50 50 50 50 50 50 50 50 50 50 

Mean -0.387 -0.108 0.083 0.074 0.020 0.047 0.083 0.100 -0.022 0.095 

Min -0.493 -0.252 -0.174 -0.247 -0.007 -0.101 -0.082 -0.336 -0.399 -0.215 

Max 1.859 0.553 0.168 0.173 0.029 0.128 0.166 0.245 0.280 0.190 

StdDev 1.508 0.716 0.286 0.368 0.032 0.143 0.165 0.434 0.559 0.297 

Skew 3.020 1.482 -0.681 -0.713 1.325 0.352 0.443 -0.834 -0.669 -0.494 

Kurt 12.274 2.107 0.598 0.488 1.241 2.374 2.366 1.282 0.556 0.598 

SR n.a. n.a. 0.289 0.200 0.638 0.331 0.505 0.231 n.a. 0.319 

AD 3.196*** 1.959*** 0.906** 0.449 2.532*** 0.925** 0.723* 0.741* 0.573 0.315 

 

Table 10 shows the correlations during the main period. The strong negative 

correlation with most other assets is certainly one of the most notable features of the 

volatility ETNs. As expected, it is most pronounced with the equity ETFs, and 

surprisingly the GSCI, which has been classified as a portfolio diversifier itself in the 

literature. The positive correlation of volatility ETNs with the UST comes at no 

surprise, given the flight to treasuries during turbulent times. However, the volatility 

ETNs have nearly no correlation with the GLD, argued by many to be another safe 

haven. Given the lack of prolonged market turbulences, the lack of correlation can be 

attributed to the different return behaviour during quiet market times. 

Table 10. Correlation Matrix Main Period. The table shows the correlation matrix for quarterly asset 
returns scaled by a factor of four over the main period. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.838 -0.690 -0.620 0.180 -0.320 -0.467 -0.480 -0.588 -0.041 

VXZ 0.838 1.000 -0.590 -0.522 0.453 -0.269 -0.254 -0.325 -0.507 0.081 

S&P500 -0.690 -0.590 1.000 0.771 -0.358 0.413 0.563 0.702 0.706 0.223 

AW -0.620 -0.522 0.771 1.000 -0.196 0.685 0.762 0.670 0.696 0.339 

UST 0.180 0.453 -0.358 -0.196 1.000 0.203 0.186 0.146 -0.306 0.344 

IGCB -0.320 -0.269 0.413 0.685 0.203 1.000 0.771 0.697 0.453 0.584 

HYCB -0.467 -0.254 0.563 0.762 0.186 0.771 1.000 0.703 0.503 0.427 

RE -0.480 -0.325 0.702 0.670 0.146 0.697 0.703 1.000 0.364 0.531 

GSCI -0.588 -0.507 0.706 0.696 -0.306 0.453 0.503 0.364 1.000 0.299 

GLD -0.041 0.081 0.223 0.339 0.344 0.584 0.427 0.531 0.299 1.000 

 

Table A - 7 in Appendix A.VI shows the correlations during the backtested period. 

It is notable that the negative correlation of the volatility ETNs with the S&P 500, 

AW, HYCB and RE is stronger compared to the main period. This is in line with 

Bekaert and Wu (2000), who find that the negative correlation of volatility and equities 

is stronger in market declines. The positive correlation between the volatility ETNs 

and the UST is stronger as well. It is also noticeable that the correlation between the 
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S&P 500 and the AW, as well as between the S&P 500 and corporate bonds is higher 

during the backtested period. This portrays the phenomenon of increasing correlations, 

sometimes called "contagion", among assets during market downturns (see for example 

Bae et al. (2003) and Chiang et al. (2007)). 

Table A - 8 shows the correlations between the different asset classes during the full 

period. Generally, the correlations are more similar to the backtested period than to 

the main period. Correlations between the volatility ETNs and equities interestingly 

are even more negative in the full period than in the backtested period. On the other 

hand, the correlations between the volatility ETNs and the non-equity assets are less 

pronounced than during the backtested period. 
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5 Methodology 

In this section, we explain the empirical methods we use to determine whether adding 

volatility exposure can be beneficial for a retail investor. We introduce methods 

applicable to both the mean-variance and higher moments space. 

5.1 Mean-Variance Analysis 

5.1.1 Mean-Variance Spanning 

In a first step, we want to empirically determine whether the VXX and the VXZ can 

significantly enlarge the investment opportunity set of a mean-variance investor 

holding a set of benchmark assets as introduced in Section 4. While Chen et al. (2011) 

found significant diversification benefits from adding VIX futures to equity portfolios 

during the period from April 2004 to April 2008, it remains to be seen whether we can 

reach a similar conclusion for the backtested period, given our broader set of benchmark 

assets. Further, we examine whether the benefits of adding the VXX and the VXZ to 

a portfolio hold up in the main period, as the beneficial negative correlations of the two 

ETNs are less pronounced than during the backtested period. 

As we take a more practical approach applicable to retail investors, we assume for 

all our analyses that investors do not have access to the risk-free lending or borrowing 

rate. This implies that we only consider raw returns, and no excess-returns. No access 

to the risk-free rate also means that investors are not only interested in the tangency 

portfolio, but in the entire mean-variance efficient frontier. Thus, we analyse whether 

the frontier of the portfolio consisting of benchmark assets and the VXX and VXZ is 

identical with the frontier of the benchmark assets. 

This will be examined via the mean-variance spanning test as first introduced by 

Huberman and Kandel (1987). The approach statistically tests the effects of adding a 

set of N new assets to an existing set of K benchmark assets. If the new frontier of the 

combined portfolio of N and K assets overlaps with the frontier of the portfolio of K 

assets, the outcome is known as "spanning", meaning that investors gain no benefit 

from adding the N assets to their portfolio. If the frontier of the combined portfolio is 

larger than the frontier of the portfolio of K assets, investors gain diversification 

benefits from adding the N assets. Further, to assess the economic magnitude of the 

diversification benefits, we will look at the change in Sharpe Ratio of the tangency 

portfolio and the change in standard deviation of the global minimum-variance portfolio 

as suggested by Bekaert and Urias (1996). 



 

 25 

Let 𝑅2𝑡 be the N-vector of raw returns on the N assets, whereas 𝑅1𝑡 denotes the 

K-vector of raw returns on the K benchmark assets. We then estimate the following 

model  

 

 𝑅2𝑡 =  𝛼 + 𝛽𝑅1𝑡 + 𝜖𝑡,    𝑡 = 1,2, … . , 𝑇. (2) 

 

As in Huberman and Kandel (1987), the null hypothesis of spanning is then 

 

 𝐻0: 𝛼 = 0𝑁 , 𝛿 = 1𝑁 −  𝛽1𝐾 = 0𝑁. (3) 

 

We further denote the expected returns and the covariance matrix of the combined 

N and K assets as  

 𝜇 = 𝐸(𝑅𝑡) = [ 
𝜇1

𝜇2
 ], (4) 

 𝑉 = 𝑉𝑎𝑟(𝑅𝑡) = [ 
𝑉11 𝑉12

𝑉21 𝑉22
 ]. (5) 

 

Following Kan and Zhou (2012), we then calculate the statistics of the Wald, 

Likelihood Ratio and Lagrange Multiplier tests as  

 𝑊 = 𝑇 (𝜆1 + 𝜆2) ~𝜒2
2, (6) 

 𝐿𝑅 = 𝑇 ((ln (1 + 𝜆1) + ln (1 + 𝜆2)) ~𝜒2
2, (7) 

 𝐿𝑀 = 𝑇 (
𝜆1

1+𝜆1
+ 𝜆2

1+ 𝜆2
) ~𝜒2

2, (8) 

  

that follow an asymptotic chi-squared distribution with two degrees of freedom, and 

where 𝜆1 and 𝜆2 are the eigenvalues of the matrix 𝐻̂𝐺̂−1 with  

 𝐻̂ = [ 𝛼̂
′ Σ̂−1 𝛼̂ 𝛼̂′ Σ̂−1 𝛿̂

𝛼̂′ Σ̂−1 𝛿 𝛿′ Σ̂−1 𝛿
 ], (9) 

 𝐺̂ = [ 
1 + 𝜇̂1

′𝑉̂11
−1𝜇̂1 𝜇̂1

′𝑉̂11
−11𝐾

𝜇̂1
′𝑉̂11

−11𝐾 1𝐾
′ 𝑉̂11

−11𝐾

 ], (10) 

 

where Σ̂ stands for residual variance. For further details we refer to Kan and Zhou 

(2012).  



 

 26 

To facilitate the discussion of the results, we also look at the tangency portfolio and 

global minimum-variance portfolio given by 

 𝑤𝑇  = 
𝑉−1𝜇

1𝑁+𝐾
′ 𝑉−1𝜇

 , (11) 

 𝑤𝐺𝑀𝑉  = 
𝑉−1𝜇

1𝑁+𝐾
′ 𝑉−11𝑁+𝐾

. (12) 

 

5.1.2 Constrained Mean-Variance Efficient Frontier  

The preceding mean-variance spanning analysis applies to unconstrained cases, and 

therefore allows short-selling by investors. However, as a big part of the investors in 

the VXX and VXZ are retail investors, who may lack sophistication or the required 

means, we impose a common short-selling constraint. As mentioned in the previous 

section, we assume that retail investors do not have access to the risk-free rate. 

Therefore, we construct the constrained mean-variance efficient frontier, determine 

whether the VXX and the VXZ are part of its composition, and derive the tangency 

portfolio as well as the global minimum-variance portfolio. 

As summarised earlier, the empirical literature has so far not considered a portfolio 

optimisation that includes VIX related assets and a broader set of benchmark assets. 

Previous analyses were mostly restricted to equities represented by the S&P 500, with 

the conclusion that long positions in VIX futures provide increases in the risk-adjusted 

performance when looking at periods that include the GFC. However, the effect does 

not uphold since inception of the VXX and the VXZ in 2009. We expect to confirm 

the latter finding, and challenge the first by using a broader set of assets for the 

portfolio selection problem. Further, compared to the mean-variance spanning outcome, 

we would expect relatively lower utilisation of volatility overall given that short-selling 

could account for a large part of volatility exposure, as the highly negative return 

performance can outweigh diversification benefits. 

To ensure portfolio diversity and avoid excessive exposure to a single asset, we 

further introduce an upper bound constraint on the individual portfolio weights of 35% 

for our analyses.7 The constrained efficient frontier as in Markowitz (1952) can therefore 

be determined by 

 min𝑤  w′ 𝑉 w − 𝑞 𝜇′ 𝑤, (13) 

 𝑠. 𝑡. ∑ 𝑤𝑖𝑖 = 1, (14) 

  𝑤𝑖 ≥ 0, (15) 

  𝑤𝑖 ≤ 0.35, (16) 

  𝑞 ≥ 0, (17) 

 

                                      
7 For further discussion on portfolio constraints, we refer the reader to Jagannathan and Ma (2003). 
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where 𝑤 denotes the portfolio weights of the individual assets 𝑖, and 𝑞 denotes a risk 

tolerance factor, which we vary to move along the efficient frontier, with 𝑞 = 0 

representing the global minimum-variance portfolio. 

5.2 Polynomial Goal Programming 

Given the non-normality of the underlying asset returns and the arguments made in 

the literature for including higher moments in portfolio selection decisions, we want to 

expand the portfolio optimisation approach to the higher moments space. As seen in 

Section 4.3, the VXZ and especially the VXX show highly positive skewness and in the 

case of the VXZ moderate kurtosis. Hence, we would expect that investors with a 

preference for (predominantly) higher moments embrace the VXX and VXZ to a 

greater extent than investors allocating assets under a quadratic utility function. As in 

our previous analyses, we assume that investors do not have access to the risk-free rate. 

To test whether higher moments can explain the popularity of the VIX ETNs and 

justify their inclusion in portfolios, we introduce the Lai (1991) multi-objective portfolio 

selection model, which has subsequently been employed and augmented by 

Chunhachinda et al. (1997), Prakash et al. (2003), Sun and Yan (2003) and Davies et 

al. (2006).  

Keeping our previous notations and following Jondeau and Rockinger (2006), we 

denote the first four portfolio moments as 

 𝑚1 = w′ 𝜇, (18) 

 𝑚2 = w′ 𝑉 w, (19) 

 𝑚3 = w′ 𝑀3 (w ⊗ w), (20) 

 𝑚4 = w′ 𝑀4 (w ⊗ w ⊗ w), (21) 

 

where 𝑀3 is the (𝑛, 𝑛2) co-skewness matrix, 𝑀4 is the (𝑛, 𝑛3) co-kurtosis matrix and ⊗ 

is the Kronecker product.  

We then compute the portfolio skewness and kurtosis based on standardised 

moments as 

 𝑆 = 
𝑚3

𝑚2
3/2 = 

w′ 𝑀3 (w ⊗ w)

(w′ 𝑉 w)3/2 , (22) 

 𝐾 = 
𝑚4

𝑚2
2 −3 = 

w′ 𝑀4 (w ⊗ w ⊗ w)

(w′ 𝑉 w)2  −3. (23) 
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Recalling investors' positive preference for odd moments and negative preference for 

even moments, the constrained multi-objective problem can then be formulated as  

 max𝑤   𝑍1 = w′ 𝜇, (24) 

 min𝑤 𝑍2 = w′ 𝑉 w, (25) 

 max𝑤 𝑍3 = 
w′ 𝑀3 (w ⊗ w)

(w′ 𝑉 w)3/2 , (26) 

 min𝑤 𝑍4 = 
w′ 𝑀4 (w ⊗ w ⊗ w)

(w′ 𝑉 w)2  −3, (27) 

 𝑠. 𝑡. ∑ 𝑤𝑖𝑖 = 1, (28) 

  𝑤𝑖 ≥ 0, (29) 

  𝑤𝑖 ≤ 0.35. (30) 

 

As it is unlikely that any single solution of (24) to (27) satisfies all four objectives 

(𝑍1, 𝑍2, 𝑍3 and 𝑍4) simultaneously, Lai (1991) proposes a two-step procedure. In a first 

step, a set of optimal solutions for each individual optimisation problem (24) to (27) is 

derived independent of investor preferences. As the portfolio selection only depends on 

the relative percentage invested in the assets, we can rescale and restrict the weights 

to the unit variance space. The first step then solves the following problem 

 

 max𝑤   𝑍1 = w′ 𝜇, (31) 

 max𝑤 𝑍3 = w′ 𝑀3 (w ⊗  w), (32) 

 min𝑤 𝑍4 = w′ 𝑀4 (w ⊗  w ⊗  w) − 3, (33) 

 𝑠. 𝑡. w′ 𝑉 w = 1, (34) 

  𝑤𝑖 ≥ 0, (35) 

  𝑤𝑖 ≤ 0.35 ∑ 𝑤𝑖𝑖 . (36) 

 

Based on the obtained set of results, investors then select the most suitable solution 

according to their own set of preferences for objectives. Lai (1991) incorporates these 

preferences in a PGP model, where the objective function does not contain choice 

variables, but rather minimises the sum of deviational variables.  
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The resulting PGP model is given by 
 

 min𝑤  𝑍 = (1 + 𝑑1)𝑝1 + (1 + 𝑑3)𝑝3 + (1 + 𝑑4)𝑝4, (37) 

 𝑠. 𝑡. w′ 𝜇 + 𝑑1 =  𝑍1
∗, (38) 

  w′ 𝑀3 (w ⊗  w) + 𝑑3 =  𝑍3
∗, (39) 

  w′ 𝑀4 (w ⊗  w ⊗  w) − 3 − 𝑑4 = 𝑍4
∗, (40) 

  w′ 𝑉 w = 1, (41) 

  𝑤𝑖 ≥ 0, (42) 

  𝑤𝑖 ≤ 0.35 ∑ 𝑤𝑖𝑖 , (43) 

  𝑑1, 𝑑3, 𝑑4 ≥ 0, (44) 

 

where 𝑝1,  𝑝3 and 𝑝4 denote the investors' preference values for mean, skewness and 

kurtosis. 𝑍1
∗ is the expected return of the mean-variance efficient portfolio obtained 

from solving (31), 𝑍3
∗ is the skewness value of the variance-skewness efficient portfolio 

obtained from solving (32) and 𝑍4
∗ is the kurtosis value of the variance-kurtosis efficient 

portfolio obtained from solving (33). Consequently, 𝑑1, 𝑑3 and 𝑑4 are the values of 

deviation of the current solution from 𝑍1
∗, 𝑍3

∗ and 𝑍4
∗ respectively. The specification of 

the objective function (37) follows Davies et al. (2006) and ensures that it is 

monotonically increasing in 𝑑1, 𝑑3 and 𝑑4.  

In order to derive meaningful results, the choice of preference values is crucial, 

especially with regards to the kurtosis preference as shown by Davies et al. (2006). 

Accordingly, we employ the values 0 (no preference), 1 (medium preference) and 2 

(high preference) for both expected return preference 𝑝1 and skewness preference 𝑝3, 

while we use the values 0, 0.5 and 0.75 for kurtosis preference 𝑝4. The 

(𝑝1 = 1, 𝑝3 = 0, 𝑝4 = 0) portfolio represents the mean-variance efficient portfolio, and 

should hence match the tangency portfolio from our mean-variance analysis. The 

(0, 1, 0) and (0, 0, 0.5) portfolios depict the variance-skewness and variance-kurtosis 

efficient portfolios respectively. Additional combinations of preference values will be 

looked at to determine the trade-offs between the different moments for investors with 

more balanced preferences. 

We employ the evolutionary algorithm for non-linearly constrained global 

optimisation problems developed by Runarsson and Yao (2005). Although the 

algorithm has escape heuristics for local optima, no convergence proof exists yet. 

Therefore, we create one million random portfolios and sort them according to the 

respective objective function to be optimised. The best portfolios for each objective are 

then rescaled to the unit variance space, and fed to the algorithm alongside an equal-

weighted portfolio. Finally, the obtained solution is rescaled back to a fully invested 

portfolio. 
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6 Results 

This section lays out the results of our empirical approach as introduced in Section 5 

and discusses them critically. 

6.1 Mean-Variance Analysis 

6.1.1 Mean-Variance Spanning 

Table 11 reports the results of the main-variance spanning test for the three examined 

periods. The asymptotic tests reject the null hypothesis of spanning at a 1% significance 

level for the Likelihood Ratio and Wald test, and a 5% significance level for the 

Lagrange Multiplier test in the main period. In the backtested period, all three tests 

reject the null hypothesis at a 1% significance level. For the full period, the Wald test 

is statistically significant at a 1% level, while the Lagrange Multiplier and Likelihood 

Ratio tests are significant at a 5% level.8 Hence, we can conclude that the VXX and 

VXZ expand the investors' mean-variance efficient frontier, and therefore their 

investment opportunity set. This confirms the results of Chen et al. (2011) on VIX 

futures, despite the addition of several more assets and the examination of periods of 

low volatility with less pronounced negative correlations. 

Table 11. Mean-Variance Spanning Test Results. The table shows the results for the mean-variance 
spanning test of N-assets (VXX, VXZ) with K-assets (S&P500, AW, UST, IGCB, HYCB, RE, GSCI, 
GLD) for all three periods. ***, **, * denote statistical significance at the 1%, 5%, 10% level. 

 Main Period  Backtested Period  Full Period 

  Value P-Value   Value P-Value   Value P-Value 

Lagrange Multiplier 12.778 0.012**  17.267 0.002***  12.279 0.015** 

Likelihood Ratio 14.720 0.005***  25.404 0.000***  13.306 0.010** 

Wald  17.136 0.002***   40.950 0.000***   14.468 0.006*** 

 

In Table 12, we can see that the VXX and the VXZ help to improve the Sharpe 

Ratio of the tangency portfolio and reduce the standard deviation of the global 

minimum-variance portfolio in the main period. The VXX and the VXZ are represented 

through a small long position and a comparably larger short position respectively. The 

results look similar for the full period. During the backtested period, the size of the 

positions grows given the performance of the VIX ETNs during the GFC, which results 

in significant Sharpe Ratio improvements. Moreover, the allocation to the VXZ is 

bigger than the allocation to the VXX for any given scenario. This could be explained 

by the magnitude of the latter's negative mean and standard deviation. A very 

interesting observation is that in most periods, for both the tangency portfolios as well 

as for the global minimum-variance portfolios, it would have been optimal to go long 

the VXX and to short the VXZ. This holds up for all periods and portfolios, except for 

                                      
8 For further details on the ranking of the three test statistics we refer the reader to Kan and Zhou 

(2012). 
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the tangency portfolio during the backtested period, where the positive returns of the 

VXZ result in a long position while simultaneously shorting the VXX. This dynamic 

suggests that the diversification benefits of the VXX outweigh the prospects of shorting 

the significantly more negative returns, when compared to the VXZ. 

Briefly looking at the other assets, we can see that all portfolios show excessive 

loadings on the UST, emphasising the importance of the weight constraints introduced 

for all following analyses. Curiously, the Sharpe Ratio of the tangency portfolio in the 

full period is lower than the Sharpe Ratio in the main and backtested periods. A 

potential explanation could be that asset returns show a relatively monotonic behaviour 

during the main and backtested period, as the periods are shaped either by a bull or a 

bear market respectively, while they show a dispersed behaviour during the full period, 

which covers a full market cycle.  

Table 12. Mean-Variance Spanning Portfolios. The table shows the tangency (T) and global minimum-
variance (GMV) portfolios for the mean-variance spanning test of N-assets (VXX, VXZ) with K-
benchmark-assets (S&P500, AW, UST, IGCB, HYCB, RE, GSCI, GLD) for all three periods. SR depicts 
the Sharpe Ratio. ¢ denotes the change of the respective metric of the N+K portfolio with regards to 
the respective metric of the K benchmark portfolio. 

 Main Period  Backtested Period  Full Period 

  T GMV   T GMV   T GMV 

VXX 0.6% 1.0%  -11.6% 0.7%  0.2% 1.2% 

VXZ -2.2% -1.9%  15.4% -9.9%  -3.3% -3.7% 

S&P500 12.0% 4.4%  -112.9% 13.6%  10.3% 5.5% 

AW -1.7% 1.0%  76.3% 0.0%  -5.5% -1.4% 

UST 92.1% 99.9%  180.1% 112.8%  92.8% 98.5% 

IGCB 3.0% -1.0%  -35.1% 12.2%  -6.9% -2.9% 

HYCB 4.1% -1.3%  -3.9% -14.9%  16.9% 7.7% 

RE -6.0% -1.8%  10.7% -9.9%  -5.6% -3.2% 

GSCI -2.6% 0.2%  0.9% 0.1%  -1.6% 0.3% 

GLD 0.6% -0.6%  -19.8% -4.7%  2.7% -2.1% 

Mean 0.026 0.010  0.124 0.021  0.034 0.023 

StdDev 0.011 0.007  0.058 0.024  0.029 0.023 

SR 2.388 1.467  2.131 0.880  1.195 0.970 

¢ StdDev  -15.4%   -8.9%   -24.5% 

¢ SR 9.0%     30.7%     7.8%   

 

6.1.2 Constrained Mean-Variance Efficient Frontier 

Figure 10 shows the optimal portfolio weight allocations along the constrained efficient 

frontier for all three periods, starting with the global minimum-variance portfolio on 

the very left. We can clearly see that volatility is part of the global minimum-variance 

portfolio during all three periods. This confirms the economic impact of the volatility 

assets as seen in the mean-variance spanning test results, even after the introduction 

of constraints. Hence, we can note that fully invested highly risk-averse investors with 

a quadratic utility function can use volatility during all market times to decrease the 

standard deviation of their portfolio. However, volatility exposure quickly decreases 

and vanishes with the level of risk, as we move along the efficient frontier during the 
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main and full period. For the backtested period, we note the opposite effect, as the 

exposure in the VXZ slightly increases with the level of risk. This is a direct 

consequence of the VXZ's mean, which is second only to the GLD during the period 

and outweighs the high standard deviation of the ETN.  

Figure 10. Efficient Frontier Portfolio Allocation. The figure shows the portfolio weights along the 
constrained efficient frontier for the main period, backtested period and full period using quarterly asset 
returns scaled by a factor of four. 

     Main Period       Backtested Period     Full Period 

 
 

Table 13 shows the tangency and global minimum-variance portfolios of the three 

periods. As expected, the tangency portfolio of the main period does not include any 

volatility exposure given the abysmal performance and high standard deviation of the 

VXX and VXZ, which outweigh any diversification benefits. Hence, investors seeking 

the maximised risk-adjusted return would have not benefitted from adding volatility 

to their portfolio. This confirms the findings of Bordonado et al. (2016) in a broader 

portfolio context. As shown earlier, the global minimum-variance portfolio has relevant 

volatility exposure, with an allocation of 4.1% to the VXX and 4.4% to the VXZ. It is 

interesting to see that neither of the two VIX ETNs dominates the other, which can 

be attributed to the VXZ offering higher and less volatile returns, while not offering 

the same degree of diversification as the VXX. Looking at the other asset classes, we 

note that both portfolios exclusively utilise equities and bonds. Further, we observe 

that as a consequence of the bull market during the main period the Sharpe Ratio of 

the tangency portfolio is the highest among the three periods. 

Contrary to the main period, the tangency portfolio of the backtested period 

includes volatility exposure by allocating a sizeable 14.0% to the VXZ, which is in line 

with the findings of Gantenbein and Rehrauer (2013). This allocation can be explained 

by the return performance of the VXZ during the backtested period. The global 

minimum-variance portfolio allocates 4.7% to the VXX and only 2.2% to the VXZ, 

emphasising the diversification characteristics of the VXX. Assets outside the equities 

and bond space now receive significant allocations, notably the GLD and the RE in the 

tangency portfolio. While allocations to the first are not surprising given the GLD's 

safe haven characteristics, the allocations to the RE are somewhat unexpected, given 

the housing crisis during the GFC and the therefore relatively low mean return. 
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Further, the Sharpe Ratio of the tangency portfolio is considerably lower than during 

the main period, given the relatively poor performance of most assets during the GFC. 

The optimal tangency portfolio for the full period shows allocations that could be 

interpreted as a trade-off between the respective portfolios for the main period and the 

backtested period. In the tangency portfolio, we find a volatility exposure of 5.1% 

through the VXZ, but no allocation to the VXX. The global minimum-variance 

portfolio on the other hand exhibits higher exposure to both VIX ETNs, highlighting 

the diversification benefits that come at the cost of expected returns. As in the case of 

the mean-variance spanning results, the Sharpe Ratio of the tangency portfolio during 

the full period ranks lowest when compared to the other two periods.  

Table 13. Tangency and Minimum-Variance Portfolios. The table shows the tangency (T) and global 
minimum-variance (GMV) portfolios for the constrained mean-variance optimisation using quarterly 
asset returns scaled by a factor of four. 

 Main Period  Backtested Period  Full Period 

  T GMV  T GMV  T GMV 

VXX 0.0% 4.1%  0.0% 4.7%  0.0% 1.8% 

VXZ 0.0% 4.4%  14.0% 2.2%  5.1% 7.3% 

S&P500 30.0% 25.8%  0.0% 11.6%  15.7% 21.0% 

AW 0.0% 0.0%  0.0% 0.0%  0.0% 0.0% 

UST 35.0% 35.0%  35.0% 35.0%  35.0% 35.0% 

IGCB 0.0% 25.6%  0.0% 9.3%  0.0% 12.8% 

HYCB 35.0% 5.1%  0.4% 35.0%  35.0% 20.5% 

RE 0.0% 0.0%  17.3% 0.0%  0.0% 0.0% 

GSCI 0.0% 0.0%  2.4% 2.1%  0.0% 1.6% 

GLD 0.0% 0.0%  30.8% 0.0%  9.3% 0.0% 

Mean 0.088 0.024  0.083 0.015  0.052 0.032 

StdDev 0.095 0.061  0.125 0.070  0.085 0.071 

SR 0.922 0.398  0.663 0.207  0.621 0.455 

 

Given the consistent exposure to the VXX and VXZ in all global minimum-variance 

portfolios, we have shown that there are indeed justifiable arguments that the two 

ETNs are beneficial to a certain set of constrained investors with high risk-aversion. 

However, the results look less promising when the investors' objective is to maximize 

the risk-adjusted performance as measured by the Sharpe Ratio.  

6.2 Polynomial Goal Programming 

Table 14 shows the results of applying the polynomial goal programming model to the 

multi-objective problem for ten different combinations of preference values during the 

main period. At first glance, we note that optimal portfolio allocations that take into 

account investors' preferences for higher moments differ significantly from the 

mean-variance portfolio allocations, in line with previous literature (see for example 

Prakash et al. (2003)). 
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Portfolio A is the mean-variance portfolio, matching the tangency portfolio from 

the results obtained for the constrained mean-variance optimisation in Section 6.1.2. 9 

It is the portfolio that has by definition the highest Sharpe Ratio (0.922) of all 

portfolios. As observed earlier, investors with a quadratic utility function do not 

allocate any assets to the VXX and VXZ. We can also see that portfolio A has only a 

slightly positive skewness (0.092) and a moderately positive kurtosis (0.320), implying 

that the portfolio is not efficient in a higher moment space. This is in line with the 

results of Amin and Kat (2003), who find that mean-variance efficient portfolios tend 

to have a very low skewness. 

Looking at the variance-skewness portfolio B, we find a much higher volatility 

exposure with a 30.0% weight in the VXX, but no allocation to the VXZ. When 

considering the skewness of the single assets, this result does not come as a surprise as 

the VXX has the highest skewness among all assets. The large positive portfolio 

skewness of 1.784 however comes at the cost of the other moments. The mean of the 

portfolio is with -15.3% highly negative, which is not unexpected given the high 

allocation to the VXX.10 Further, the standard deviation is with 21.2% more than twice 

as high as it is in the optimal mean-variance portfolio, and the kurtosis is with 4.501 

the highest of all portfolios. This indicates that maximising skewness is a relatively 

costly trade-off, in line with the literature.  

The variance-kurtosis portfolio C has high volatility exposure as well, through an 

allocation of 29.8% to the VXZ and 1.1% to the VXX. Even though the two volatility 

ETNs have a relatively high kurtosis themselves, their desirable co-kurtosis features 

make them a valuable instrument to reduce the kurtosis on the portfolio level. The 

allocations to the RE and the GLD do not come as a surprise, as these are the two 

assets with the lowest kurtosis. The portfolio exhibits a negative mean of -2.7%, a 

comparably high standard deviation of 17.6% and a slightly positive skewness. It is 

interesting to see, that optimising kurtosis does not substantially decrease skewness 

compared to portfolio A, while it considerably worsens the mean return and standard 

deviation. Furthermore, the decrease in return and increase in standard deviation when 

optimising for kurtosis is less pronounced, than when optimising for skewness. 

The mean-variance-skewness portfolio D has allocations of only 2.0% to the VXX 

and none to the VXZ. The low volatility exposure is a bit surprising, as volatility has 

very favourable skewness characteristics. Yet, the investor preference for returns is the 

limiting factor. Compared to the mean-variance portfolio, it obviously has a much 

higher skewness of 1.201, at the cost of a moderately lower Sharpe Ratio of 0.704, while 

                                      
9 Note that we terminate the algorithm after two million iterations which can result in minor 

deviations from the results in Section 6.1.2. 
10 Note that while skewness and kurtosis of the portfolios are comparable given that they are scale-

invariant due to the standardisation, returns cannot be compared between portfolios directly but have 
to be compared using the Sharpe Ratio. Return and standard deviations will only be discussed in case 
of negative Sharpe Ratios. 
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at the same time exhibiting a much higher kurtosis. The results confirm again that 

skewness is generally traded for a lower risk-adjusted return and a higher kurtosis. 

The mean-variance-kurtosis portfolio E has no volatility exposure at all, which can 

again be explained by the return preference. The portfolio is somewhat similar to the 

mean-variance portfolio, but it has a considerably more negative kurtosis of -0.645 and 

a somewhat lower Sharpe Ratio of 0.739. The skewness of the portfolio is surprisingly 

a bit higher than the skewness of the mean-variance portfolio, even though we did not 

optimise for skewness. 

The variance-skewness-kurtosis portfolio F has the highest volatility exposure with 

allocations of 35.0% in the VXX and 12.2% in the VXZ. This also means that it is the 

portfolio with the lowest mean (-25.1%) and highest standard deviation (35.9%). The 

high allocation towards the VIX ETNs is not surprising, given the results for portfolios 

B and C that indicate that skewness and kurtosis seem to be the main drivers of 

volatility exposure. However, we can also see that kurtosis is relatively high, compared 

to the variance-kurtosis portfolio, while the skewness of portfolio F is close to the 

skewness of portfolio B. This shows that the preference for skewness dominates the 

preference for kurtosis to a certain extent. 

The mean-variance-skewness-kurtosis portfolio G is probably the most balanced of 

all portfolios. It has a relatively high Sharpe Ratio, while its skewness is considerably 

higher and its kurtosis moderately lower. Interestingly, we do not find any volatility 

exposure, while we would have expected to find some due to the skewness and kurtosis 

properties of the VXX and VXZ. It seems that as long as the portfolio optimisation is 

sufficiently return-driven, volatility allocation is limited. 

Portfolio H has an emphasised preference for returns and a relatively similar asset 

allocation compared to the mean-variance-skewness-kurtosis portfolio G. Strikingly, we 

find an allocation of 3.1% to the VXZ, despite an increased preference for returns, 

which has shown to be counterproductive to exposure to volatility. This follows as the 

portfolio does not include the GLD, an asset with a highly negative kurtosis. The VXZ 

potentially offers higher diversification benefits in the mean-variance space than the 

GLD, as we can see from the results in Section 6.1.2, where the GLD is not part of the 

global minimum-variance portfolios. Hence, with a stronger focus on the Sharpe Ratio, 

the GLD gets "traded" for the VXZ. When looking at the other statistical properties 

of the portfolio, we can see that the increased preference for returns has come at the 

cost of higher kurtosis, while skewness has remained relatively stable.  

Portfolio I is a more skewness dominated version of portfolio G. Consequently, it 

comprises an allocation of 2.6% to the VXX, while not allocating any weight to the 

VXZ. The size of allocation to the VXX reflects the relation between the preferences 

for return and skewness as witnessed in portfolio D. Thus, we can see a lower, yet very 

positive Sharpe Ratio and a significantly higher kurtosis, a trade-off for the increase in 

skewness. 
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Portfolio J corresponds to a portfolio optimal for an investor with elevated kurtosis 

preferences. We do not find any volatility exposure in that setting, suggesting that 

kurtosis is not favouring volatility assets to the extent skewness does. We can observe 

a significantly lower, yet positive skewness and a Sharpe Ratio that is fairly close to 

portfolio I. This shows again that the trade-off between the higher moments is not 

asymmetric, in a sense that trading from one direction to the other demands similar 

return sacrifices. 

Overall, we observe that all portfolios, which exhibit skewness preferences without 

a preference for mean, include a relatively high VXX exposure. Further, all portfolios 

which include kurtosis preferences without a preference for mean, include a relatively 

high VXZ exposure. Preferences for returns lower the exposure to the VXX and VXZ 

considerably, although investors with elevated preferences for skewness still find it 

optimal to invest in the VXX. 

Table 14. Polynomial Goal Programming Results Main Period. The table shows the portfolios optimised 
with the polynomial goal programming model for the main period using quarterly asset returns scaled 

by a factor of four. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, skewness and kurtosis 
respectively. SR depicts the Sharpe Ratio (negative values omitted). 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 30.0% 1.1% 2.0% 0.0% 35.0% 0.0% 0.0% 2.6% 0.0% 

VXZ 0.0% 0.0% 29.8% 0.0% 0.0% 12.2% 0.0% 3.1% 0.0% 0.0% 

S&P500 30.0% 35.0% 0.0% 17.5% 26.1% 0.0% 19.4% 14.4% 15.8% 24.6% 

AW 0.0% 0.0% 28.2% 0.0% 0.0% 0.0% 0.0% 0.0% 4.2% 0.0% 

UST 35.0% 14.2% 0.6% 35.0% 35.0% 0.0% 35.0% 35.0% 35.0% 35.0% 

IGCB 0.0% 0.0% 1.2% 35.0% 0.0% 6.0% 35.0% 12.5% 35.0% 19.2% 

HYCB 35.0% 0.0% 0.0% 10.5% 20.0% 0.0% 0.6% 35.0% 7.3% 0.6% 

RE 0.0% 0.0% 13.2% 0.0% 2.9% 35.0% 0.0% 0.0% 0.0% 0.0% 

GSCI 0.0% 15.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

GLD 0.0% 5.3% 25.9% 0.0% 16.1% 11.8% 10.0% 0.0% 0.0% 20.5% 

Mean 0.088 -0.153 -0.027 0.050 0.077 -0.251 0.060 0.065 0.044 0.063 

StdDev 0.095 0.212 0.176 0.071 0.104 0.359 0.090 0.078 0.073 0.104 

Skew 0.092 1.784 0.059 1.201 0.364 1.382 0.797 0.731 1.266 0.553 

Kurt 0.320 4.501 -1.624 1.951 -0.645 1.494 -0.029 0.557 2.184 -0.740 

SR 0.922 n.a. n.a. 0.704 0.739 n.a. 0.669 0.828 0.600 0.603 

 

Table 15 reports the PGP results for the backtested period. We find considerably 

different results compared to the main period. As expected, volatility exposure is 

significantly higher. In the case of the VXX, return preferences are not as punishing as 

in the main period, given its less negative returns and the worse performance of the 

other assets. In the case of the VXZ, return preferences are actually beneficial as shown 

by the mean-variance portfolio A, due to the positive performance during the GFC. 

Moreover, most remaining assets show significantly lower or even negative skewness 
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compared to the main period, caused by the large negative returns during the GFC. 

This benefits the volatility assets, as they exhibit similar or higher skewness values. 

Exposure to the VXX is almost exclusively driven by single preferences for either 

skewness or kurtosis, while volatility exposure is achieved via the VXZ in all other 

cases. The total exposure to volatility does not breach 20% only in portfolios A and E. 

Hence, we find that during the backtested period investors would have benefitted from 

adding volatility to their portfolio regardless of their preferences. Preferences for higher 

moments amplify volatility exposure, when compared to the mean-variance portfolio.  

We refrain from describing the individual portfolios in more detail, as the direction 

and extent of the trade-offs between the different moments remain largely unchanged 

when compared to the main period. 

Table 15. Polynomial Goal Programming Results Backtested Period. This table shows the portfolios 
optimised with the polynomial goal programming model for the backtested period using quarterly asset 

returns scaled by a factor of four. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, skewness and 
kurtosis respectively. SR depicts the Sharpe Ratio (negative values omitted). 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 25.6% 22.7% 0.0% 0.0% 1.2% 0.0% 0.0% 0.0% 0.0% 

VXZ 13.8% 22.8% 0.4% 24.3% 7.0% 34.4% 21.9% 23.1% 25.2% 20.3% 

S&P500 0.0% 0.0% 2.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

AW 0.0% 0.0% 3.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.8% 

UST 35.0% 0.0% 28.1% 35.0% 35.0% 0.0% 35.0% 35.0% 35.0% 35.0% 

IGCB 0.0% 35.0% 6.5% 0.0% 0.0% 17.7% 0.0% 0.0% 0.0% 3.2% 

HYCB 1.4% 1.0% 5.6% 0.0% 0.0% 19.0% 19.3% 0.0% 0.0% 35.0% 

RE 16.8% 0.0% 0.4% 18.4% 22.9% 0.0% 0.0% 18.7% 19.0% 0.0% 

GSCI 2.3% 0.0% 29.6% 10.8% 0.1% 5.9% 3.9% 9.9% 11.5% 1.7% 

GLD 30.7% 15.6% 0.9% 11.5% 35.0% 21.8% 19.9% 13.4% 9.4% 0.0% 

Mean 0.083 0.013 -0.007 0.066 0.084 0.074 0.071 0.067 0.063 0.042 

StdDev 0.124 0.428 0.242 0.120 0.142 0.230 0.151 0.117 0.120 0.109 

Skew 0.146 1.246 0.201 1.158 -0.410 1.116 1.131 1.114 1.167 0.824 

Kurt -0.543 1.037 -1.456 0.506 -1.443 -0.137 0.047 0.501 0.481 -0.783 

SR 0.663 0.030 n.a. 0.548 0.590 0.323 0.468 0.574 0.530 0.382 

 
 

Table 16 shows the PGP results for the full period. In line with the results from 

Section 6.1.2, we find volatility exposure in portfolio A with an allocation of 5.0% to 

the VXZ. Compared to the main period, we find that each portfolio has an allocation 

to at least one of the VIX ETNs and that the size thereof is considerably higher, a 

consequence of the effects observed during the backtested period. We can see that the 

VXX is to be found in portfolios driven by skewness preference, while VXZ exposure 

tends to be found in portfolios, which include both skewness and kurtosis preferences. 

To a certain extent, we have already observed this pattern in the main period. Overall, 
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the findings resemble those for the backtested period in that volatility exposure proved 

beneficial for investors with different types of utility functions. 

An interesting technical observation can be made with regards to portfolios B, D 

and I. All three portfolios differ only slightly, and show nearly identical statistical 

properties, with skewness maximised, a negative Sharpe Ratio and a substantially 

positive kurtosis. It seems that other moments are completely ignored, despite 

preferences for one or two additional moments other than skewness (portfolio D and I 

respectively). The extent of dominance of the skewness preference has not surfaced for 

the other two periods and will be further discussed in Section 6.3.2. 

Table 16. Polynomial Goal Programming Results Full Period. This table shows the portfolios optimised 
with the polynomial goal programming model for the full period using quarterly asset returns scaled by 

a factor of four. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, skewness and kurtosis respectively. 
SR depicts the Sharpe Ratio (negative values omitted). 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 26.8% 5.7% 24.4% 0.0% 0.7% 0.1% 0.0% 25.0% 0.0% 

VXZ 5.0% 0.0% 0.0% 0.0% 1.2% 18.8% 12.7% 11.9% 0.0% 12.3% 

S&P500 15.5% 33.9% 0.0% 33.2% 33.8% 14.8% 8.3% 11.0% 34.0% 8.5% 

AW 0.0% 0.0% 0.0% 0.0% 0.0% 5.5% 0.0% 0.0% 0.0% 0.0% 

UST 35.0% 0.0% 35.0% 0.0% 35.0% 35.0% 35.0% 35.0% 0.0% 35.0% 

IGCB 0.0% 0.0% 0.0% 0.0% 0.0% 23.4% 6.1% 3.0% 0.0% 3.8% 

HYCB 35.0% 17.0% 0.0% 25.6% 0.0% 0.0% 35.0% 35.0% 24.8% 35.0% 

RE 0.0% 10.6% 17.1% 7.4% 0.7% 0.0% 0.0% 0.0% 6.4% 0.0% 

GSCI 0.0% 11.7% 17.1% 9.4% 0.0% 1.8% 0.4% 0.0% 9.7% 0.0% 

GLD 9.5% 0.0% 25.1% 0.0% 29.3% 0.0% 2.4% 4.1% 0.0% 5.4% 

Mean 0.053 -0.053 0.022 -0.040 0.062 0.011 0.034 0.038 -0.044 0.037 

StdDev 0.085 0.282 0.151 0.256 0.128 0.111 0.086 0.081 0.264 0.087 

Skew 0.139 3.866 -0.167 3.850 -0.162 1.156 0.792 0.656 3.855 0.701 

Kurt 0.382 19.534 -0.841 19.434 -0.784 0.490 -0.343 -0.410 19.435 -0.458 

SR 0.621 n.a. 0.149 n.a. 0.485 0.098 0.394 0.463 n.a. 0.424 

 

6.3 Critical Discussion of Results 

6.3.1 Backtested Data 

In the presentation of our results, we extensively analyse the main period, the 

backtested period and the full period. However, an important point to note is that the 

backtested period is purely based on hypothetical return data for the VXX and VXZ, 

as we backcalculated all volatility ETN returns before January 2009. We relied on data 

on either the respective underlying indices or the VIX futures themselves for the period 

until availability of index data. This can lead to some of the below listed issues. 
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Not all first seven month contracts were quoted every day during the first two years 

after the launch of the VIX futures in 2004. Hence, missing data was interpolated using 

the methodology suggested by S&P. The interpolation using straddling futures might 

not perfectly approximate the term structure, and is therefore a potential source of 

imprecision. 

Another drawback of backcalculating return series is that in the first years after 

introduction the liquidity of VIX futures was relatively low. This could have led to 

significant price changes caused by very few transactions, and thus deviations in the 

price from a perceived fair market price. 

Further, an important aspect is whether the introduction of the VIX ETPs 

themselves had a significant influence on VIX futures pricing, and thus the pricing of 

the VIX ETPs themselves. The descriptive statistics on VIX futures in Section 2.2.1 

clearly show a steep increase in VIX futures trading activity from 2009 onwards, the 

year when the first VIX ETPs were launched. The introduction of VIX ETPs suddenly 

allowed retail investor as well as institutional investors barred from trading in the 

futures market to gain exposure to volatility as shown by Whaley (2013). Given that 

the ETPs offering long exposure to volatility have been significantly more popular than 

the ones offering short exposure, a substantial net buying demand has been introduced 

to the VIX futures market. In earlier research, Bollen and Whaley (2004) find that net 

buying pressure for put options on the S&P 500 affects the implied volatility of index 

options. Hence, an argument can be made that with a newly introduced net demand 

for "insurance", the volatility risk premium increased. Therefore, returns of the VXX 

and VXZ during the backtested period could potentially be overstated, given the 

relatively lower volatility risk premium due to the previous lack of access for certain 

investor classes. 

6.3.2 Preference Values 

An issue that we came across in our PGP model for the full period concerns the 

dominance of a single preference value over the other preference values. Davies et al. 

(2006) show that this is related to the high sensitivity of the results to preference 

values. They show that skewness optimal portfolio allocations, and more so kurtosis 

optimal portfolio allocations tend to dominate the respective portfolio, if the respective 

preference value is above a certain threshold. This threshold seems to be very much 

dependent on the statistical properties of the used data. Hence, a set of preference 

values for return, skewness and kurtosis that theoretically should represent relatively 

balanced investor preferences, might not achieve its goal given that it can be dominated 

by a single preference value. 

Besides the high sensitivity of preference values, a more general question emerges 

regarding preference values: what are the appropriate preference values mirroring the 

investors' precise utility function? Even though it is established that investors try to 
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increase odd moments and decrease even moments, the exact investor preferences are 

unknown. This means that we can only draw conclusions about tendencies in asset 

allocations given certain preferences values, rather than finding a truly optimal 

portfolio suitable for all investors. 
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7 Robustness under different Investment Intervals 

It is well established that the choice of the investment interval influences the return 

distribution of assets (see for example Fisher and Lorie (1970), Levy (1972) and Smith 

(1978)). This effect is called the "intervalling effect". Return variance increases with 

the investment interval (i.e. the variance of quarterly returns is higher than the 

variance of monthly returns), while the behaviour of skewness is more complex (see for 

example Chang et al. (2008), Fisher and Lorie (1970), Lau and Wingender (1989), and 

Prakash et al. (2003)). Therefore, Levy (1972) argues that if the chosen investment 

interval does not represent the "true" investment horizon then there will be a 

systematic bias in the results. Chunhachinda et al. (1997) and Prakash et al. (2003) 

show empirically that the choice of investment intervals changes consequently not only 

the portfolio allocation weights but also the number of assets in the optimal portfolio.  

We do not claim to capture the "true" investment interval of retail investors by 

using quarterly returns and therefore test our findings for robustness by looking at 

different intervals. While a longer investment interval would represent a more 

reasonable approximation, it would not yield sufficient observations for a proper 

analysis. Hence, to examine the impact of the intervalling effect on our findings, we 

rerun our empirical analysis using monthly and weekly returns. Table A - 1 and Table 

A - 4 in the appendix show the descriptive statistics of monthly and weekly return 

data. We indeed find that the standard deviation, skewness and kurtosis of the single 

assets are considerably different than for quarterly return data as in Table 7 in Section 

4.3.11  

The results for the mean-variance spanning tests using monthly and weekly results 

are reported in Appendix A.VII. It is striking that during the main period none of the 

tests is statistically significant anymore when using monthly and weekly returns. For 

the backtested and full period, the results using quarterly returns are confirmed 

nonetheless. Yet, the tangency portfolios and the global minimum-variance portfolios 

show significantly lower improvements of the Sharpe Ratio and the standard deviation 

respectively in all three periods. Gilster (1979) shows that differences in autocorrelation 

of different assets can be a potential explanation for significantly changed portfolio 

allocations due to the intervalling effect. As volatility displays a highly pronounced 

negative autocorrelation due to its strongly mean-reverting characteristic, this result 

does not completely come as a surprise. It highlights the importance of considering the 

appropriate return interval that corresponds to the individual investor's investment 

horizon when making investments in volatility.  

                                      
11 Note that standard deviations are based on annual rates of return that are obtained by employing 

a simple scale factor of 12 and 52 to monthly and weekly returns respectively. The resulting higher 
magnitude of standard deviations for shorter intervals may therefore seem counterintuitive to the theory 
at first. However, when rescaling by dividing monthly and weekly standard deviations by 12 and 52 
respectively again, we indeed find the correct behaviour. This is in line with Chang et al. (2008) and 
Prakash et al. (2003). Skewness and kurtosis are scale-invariant. 
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Table 17 shows the results for the constrained mean-variance portfolio optimisation 

using the three different return intervals for the main period. We again see changes in 

volatility allocations: the tangency portfolio for monthly and weekly investment 

intervals includes the VXZ during the main period, contrary to the portfolio using 

quarterly intervals. On the other hand, the combined allocation in the global minimum-

variance portfolios shrinks slightly in size and favours the VXZ over the VXX. The 

results for the other two periods as reported in Appendix A.VIII paint a similar picture. 

Hence, our earlier findings that highly risk-averse investors investing in the global 

minimum-variance portfolio would have benefitted from including volatility exposure 

in their portfolio also uphold for investors with shorter investment horizons.  

Table 17. Tangency and Minimum-Variance Portfolios Robustness Results Main Period. The table shows 
the tangency (T) and global minimum-variance (GMV) portfolios for the constrained mean-variance 
optimisation during the main period using quarterly, monthly and weekly returns scaled by a factor of 
4, 12 and 52 respectively. SR depicts the Sharpe Ratio. 

 Quarterly Interval  Monthly Interval  Weekly Interval 

  T GMV  T GMV  T GMV 

VXX 0.0% 4.1%  0.0% 0.2%  0.0% 0.4% 

VXZ 0.0% 4.4%  1.8% 6.4%  2.9% 5.0% 

S&P500 30.0% 25.8%  4.2% 3.3%  5.4% 6.7% 

AW 0.0% 0.0%  0.0% 0.0%  0.0% 0.0% 

UST 35.0% 35.0%  35.0% 35.0%  35.0% 35.0% 

IGCB 0.0% 25.6%  24.0% 29.6%  21.7% 19.5% 

HYCB 35.0% 5.1%  35.0% 25.5%  35.0% 33.4% 

RE 0.0% 0.0%  0.0% 0.0%  0.0% 0.0% 

GSCI 0.0% 0.0%  0.0% 0.0%  0.0% 0.0% 

GLD 0.0% 0.0%  0.0% 0.0%  0.0% 0.0% 

Mean 0.088 0.024  0.061 0.039  0.059 0.050 

StdDev 0.095 0.061  0.128 0.108  0.202 0.192 

SR 0.922 0.398  0.475 0.366  0.294 0.260 

 

The outcomes of the polynomial goal programming model using monthly returns for 

the main period can be found in Table 18. Portfolio B and D, which are both skewness 

driven, show similar or higher volatility exposures when compared to the results using 

quarterly intervals. This intuitively makes sense, as the skewnesses of the volatility 

ETNs are considerably higher on a monthly basis than on a quarterly basis, while on 

average the opposite holds for the other assets. Moreover, we again observe the 

sensitivity of the preference values as the allocations in portfolio D basically ignore the 

investors' preference for returns. Portfolios C, E and F are largely kurtosis driven 

portfolios and exhibit changes in different directions in terms of volatility exposure 

when employing monthly returns. While portfolios C and F show a significantly lower 

volatility exposure, portfolio E shows a higher one. The first observation is a direct 

consequence of elevated levels of kurtosis for the volatility assets when using monthly 

returns. The latter observation can potentially be explained by the switch from GLD 

allocations to IGCB allocations and the VIX ETNs' correlations, which are negative 

with the IGCB and positive with the GLD. The portfolios G to J which include 



 

 43 

preferences for all moments have constantly higher volatility exposure compared to the 

quarterly rebalanced portfolios, although portfolio I is affected by the preference value 

sensitivity problem. This suggests that investors with a shorter investment horizon 

would benefit from the VIX ETPs to an even greater extent and proves the robustness 

of our main findings in Section 6.2. The results for the main period using weekly returns 

can be found in Table A - 21 in the appendix. They are basically identical to the results 

using monthly returns and hence further substantiate the robustness of our conclusions 

drawn.   

Table 18. Polynomial Goal Programming Results Main Period Monthly Returns. This table shows the 
portfolios optimised with the polynomial goal programming model for the main period using monthly 

returns scaled by a factor of 12. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, skewness and 
kurtosis respectively. SR depicts the Sharpe Ratio (negative values omitted). 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 28.0% 0.0% 23.6% 0.0% 0.0% 0.0% 0.0% 23.7% 0.0% 

VXZ 1.8% 0.0% 7.0% 0.0% 5.6% 11.2% 8.4% 5.8% 0.0% 8.0% 

S&P500 4.2% 35.0% 0.0% 35.0% 0.0% 4.2% 8.5% 5.7% 35.0% 5.9% 

AW 0.0% 0.0% 0.0% 0.0% 0.0% 1.9% 0.0% 0.0% 0.0% 0.0% 

UST 35.0% 9.6% 35.0% 16.8% 35.0% 35.0% 35.0% 35.0% 31.4% 35.0% 

IGCB 24.0% 17.9% 15.1% 18.6% 21.2% 0.0% 7.4% 10.2% 4.2% 9.0% 

HYCB 35.0% 0.0% 27.2% 0.0% 29.7% 22.4% 28.4% 35.0% 0.0% 27.9% 

RE 0.0% 0.0% 3.0% 0.0% 0.0% 6.9% 1.1% 0.0% 0.0% 2.1% 

GSCI 0.0% 4.7% 0.4% 1.1% 0.0% 2.0% 0.0% 0.0% 0.0% 0.0% 

GLD 0.0% 4.8% 12.3% 4.9% 8.4% 16.3% 11.3% 8.3% 5.6% 12.2% 

Mean 0.061 -0.108 0.038 -0.078 0.042 0.029 0.041 0.049 -0.086 0.040 

StdDev 0.128 0.522 0.147 0.432 0.127 0.183 0.141 0.127 0.443 0.145 

Skew 0.346 2.497 0.321 2.484 0.247 0.486 0.432 0.396 2.478 0.397 

Kurt 0.648 9.920 -0.929 9.826 -0.888 -0.784 -0.780 -0.528 9.489 -0.862 

SR 0.475 n.a. 0.260 n.a. 0.329 0.159 0.290 0.383 n.a. 0.278 

 

The results for the backtested and full period are reported for both monthly and 

weekly intervals in Appendix A.IX. Contrary to the main period, the exact results 

based on monthly and weekly returns now also differ from each other. We can also 

observe the dominance of the skewness preference over other preferences for portfolios 

D and I again as the allocations ignore the VXZ and favour the VXX. However, still 

every single combination of examined preference values yields substantial exposure to 

volatility. This further proves the suitability of volatility for different investors during 

the backtested and the full period. Moreover, this stresses again the importance of 

selecting the appropriate return interval when selecting the optimal portfolio. 

All in all, we indeed find different allocations when using monthly or weekly instead 

of quarterly intervals. However, these allocations still include substantial exposure to 

the VIX ETPs and prove the robustness of the main findings obtained in Section 6. 
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8 Conclusion 

The staggering amounts lost by investors holding long volatility ETPs led us to study 

the suitability of those products as portfolio diversifiers for retail investors over 

different periods. In a first step, we revisit and extend the findings in the existing 

literature using mean-variance spanning tests and the mean-variance criterion in the 

context of a typical set of asset classes available to retail investors via ETFs. In a 

second step, we fill the gap in the literature as we incorporate investor preferences for 

higher moments and determine optimal portfolios using the PGP model. The findings 

are then tested for robustness under different investment intervals.  

The mean-variance spanning tests show that the VIX ETPs expand the opportunity 

set of an unconstrained investor. The inclusion of VIX ETPs improves the Sharpe Ratio 

of the tangency portfolio and reduces the standard deviation of the global minimum-

variance portfolio. To provide more practical implications for retail investors, we 

introduce weight and short-selling constraints and solve for the mean-variance efficient 

frontier. We find that VIX ETPs are useful instruments for highly risk-averse investors 

seeking the global minimum-variance portfolio. On the other hand, investors looking 

to maximize the risk-adjusted return as measured by the Sharpe Ratio will find VIX 

ETPs less suitable in that they provide performance improvements only during periods 

of prolonged high levels of volatility. The results are largely robust under different 

investment intervals. 

The PGP analysis considers investor preferences for the first four moments of the 

portfolio's distribution, thus allowing us to take into account the favourable skewness 

properties of volatility. In general, the inclusion of higher moments into the 

optimisation process tends to benefit allocations to VIX ETPs. We find substantial 

allocations to VIX ETPs for investors who have strong preferences for skewness. Such 

investors are willing to trade a sizeable part of expected returns in exchange for higher 

skewness. We also find a similar tendency for investors having an elevated preference 

for kurtosis, although to a lesser extent. Investors with high preferences for returns on 

the other hand will find volatility less suitable for their portfolio. These directional 

findings apply to all periods and are robust under different investment intervals. 

Overall, our results suggest that the undiminished popularity of VIX ETPs can be 

empirically justified from a portfolio diversification perspective. This offers an 

alternative to the existing notion in the literature that investors in VIX ETPs either 

lack sophistication or engage in highly speculative trades. 

It is important to point out limitations of our study and indicate opportunities for 

potential future research. Our results from the PGP model are based on different 

combinations of preference values for the distribution moments. These preference values 

are however not representative of the "true" investor utility function, which can be at 

best approximated. Thus, we cannot determine whether the truly optimal portfolio 

includes VIX ETPs but rather provide directional findings. Furthermore, we have seen 
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that the choice of intervals does have an influence on volatility exposure. Due to limited 

observations, we examine weekly, monthly and quarterly investment horizons. It is 

however reasonable to assume that a retail investor's investment horizon might be 

longer than a quarter. Therefore, it would be interesting to repeat the analysis with 

longer investment intervals once a larger data sample is available. Another important 

point to note is that we focus our analysis on U.S. equity volatility in the context of a 

broad set of asset classes. However, equity volatility futures and ETPs have also been 

introduced in different geographical markets (e.g. Europe) recently. These assets could 

be included in a more comprehensive analysis given the selection of international 

benchmark assets. Moreover, the popularity of volatility is currently restricted to the 

equity space with recently introduced volatility futures on treasuries failing to gain 

comparable investor attention. A closer examination of this development and a look 

into volatility products on other asset classes might appeal to practitioners. Finally, to 

be able to extract specific practical implications, an ex-ante approach should be carried 

out. So far, first attempts by Alexander and Korovilas (2012) and Bahaji and Aberkane 

(2015) have only considered the first three moments. However, we have shown that 

VIX ETPs have desirable co-kurtosis features. Hence, it would be interesting to carry 

out an ex-ante analysis using a performance criterion that considers the first four 

moments.   
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A.I VIX Futures Term Structure over Time 

Figure A - 1. VIX and VIX Futures Price Chart. The chart shows the price of the VIX and the first 
seven month VIX futures from 2004 to 2016. Note that at settlement day, each future will switch to the 
next calendar month future, i.e. in March the first month future will switch from the March future to 
the April future. Hence, this future prices are not investable given that the underlying changes every 
month and no rolling costs are taken into account. 

 

A.II Short-Term Index and Mid-Term Index Calculation 

As taken from Standard & Poor's (2016), the returns of the Short-Term Index and the 

Mid-Term Index are calculated as follows: 

𝐼𝑛𝑑𝑒𝑥𝑇𝑅𝑡  =  𝐼𝑛𝑑𝑒𝑥𝑇𝑅𝑡−1× (1 +  𝐶𝐷𝑅𝑡  + 𝑇𝐵𝑅𝑡), 

 

where 𝐼𝑛𝑑𝑒𝑥𝑇𝑅𝑡−1 is the 𝐼𝑛𝑑𝑒𝑥𝑇𝑅 on the preceding business day, 𝐶𝐷𝑅𝑡 the Contract 

Daily Return as determined by 

𝐶𝐷𝑅𝑡 =  
𝑇𝐷𝑊𝑂𝑡

𝑇𝐷𝑊𝐼𝑡−1
 −  1, 

 

where 𝑇𝐷𝑊𝑂𝑡 is the Total Dollar Weight Obtained on 𝑡, as determined by 

𝑇𝐷𝑊𝑂𝑡 =  ∑ 𝐶𝑅𝑊𝑖,𝑡−1× 𝐷𝐶𝑅𝑃𝑖,𝑡

𝑛

𝑖=𝑚

, 

 

and TDWIt−1 is the Total Dollar Weight Obtained on 𝑡 − 1, as determined by  

𝑇𝐷𝑊𝐼𝑡−1 =  ∑ 𝐶𝑅𝑊𝑖,𝑡−1× 𝐷𝐶𝑅𝑃𝑖,𝑡−1

𝑛

𝑖=𝑚

, 

 

with CRWi,t being the Contract Roll Weight of the 𝑖-th VIX Futures Contract on date 

𝑡, 𝐷𝐶𝑅𝑃𝑖,𝑡 being the Daily Contract Reference Price of the 𝑖-th VIX Futures Contract 

on date 𝑡, 𝑚 equal to 1 for the Short-Term Index and equal to 4 for the Mid-Term 
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Index, and 𝑛 equal to 2 for the Short-Term Index and equal to 7 for the Mid-Term 

Index. 𝑇𝐵𝑅𝑡 is the Treasury Bill Return, as determined by 

𝑇𝐵𝑅𝑡 = (
1

1 −  
91

360 × 𝑇𝐵𝐴𝑅𝑡−1

)

𝐷𝑒𝑙𝑡𝑎𝑡
91

− 1, 

 

where 𝐷𝑒𝑙𝑡𝑎𝑡 is the number of calendar days between the current and previous business 

days and 𝑇𝐵𝐴𝑅𝑡−1 is the most recent weekly high discount rate for 91-day US Treasury 

bills effective on the preceding business day. 𝐶𝑅𝑊𝑖,𝑡 for the Short-Term Index is defined 

as  

𝐶𝑅𝑊1,𝑡 = 100 × 
𝑑𝑟

𝑑𝑡
 , 

𝐶𝑅𝑊2,𝑡 = 100 × 
𝑑𝑡 − 𝑑𝑟

𝑑𝑡
 , 

 

and for the Mid-Term Index as 

𝐶𝑅𝑊4,𝑡 = 100 × 
𝑑𝑟

𝑑𝑡
 , 

𝐶𝑅𝑊5,𝑡 = 100, 

𝐶𝑅𝑊6,𝑡 = 100, 

𝐶𝑅𝑊7,𝑡 = 100 × 
𝑑𝑡 − 𝑑𝑟

𝑑𝑡
 , 

 

where 𝑑𝑡 is the total number of business days in the current Roll Period beginning with 

and including, the starting CBOE VIX Futures Settlement Date and ending with, but 

excluding, the following CBOE VIX Futures Settlement Date and 𝑑𝑟 is the total 

number of business days within a roll period beginning with, and including the following 

business day and ending with, but excluding, the following CBOE VIX Futures 

Settlement Date. 

At the close on the Tuesday, corresponding to the start of the Roll Period, all of 

the weight is allocated to the first month contract. Then on each subsequent business 

day a fraction of the first month VIX futures holding is sold and an equal notional 

amount of the second month VIX futures is bought. The fraction, or quantity, is 

proportional to the number of first month VIX futures contracts as of the previous 

index roll day, and inversely proportional to the length of the current Roll Period. In 

this way the initial position in the first month contract is progressively moved to the 

second month contract over the course of the month, until the following Roll Period 

starts when the old second month VIX futures contract becomes the new first month 
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VIX futures contract. In addition to the transactions described above, the weight of 

each index component is also adjusted every day to ensure that the change in total 

dollar exposure for the index is only due to the price change of each contract and not 

due to using a different weight for a contract trading at a higher price. 

The base dates of the Short-Term Index and the Medium-Term Index are 20 

December 2005 at base values of 100,000. 

A.III Interpolating VIX Futures  

Prior to April 2008, not all consecutive first to seventh month VIX futures were listed. 

For the purpose of the historical S&P 500 VIX Futures Index series calculations, some 

VIX future prices have to be interpolated. The procedure has been taken from Standard 

& Poor's (2016).  

The following assumptions have been made in interpolating VIX futures contract 

prices from near-by listed contracts: When the 𝑖th future was not listed, but 𝑖th+1 and 

𝑖th-1 futures were listed, the following interpolation has been assumed: 

 

𝐷𝐶𝑅𝑃𝑖,𝑡
2 = 𝐷𝐶𝑅𝑃𝑖−1,𝑡

2 +
𝐵𝐷𝑎𝑦𝑠(𝑇𝑖 − 𝑇𝑖−1)

𝐵𝐷𝑎𝑦𝑠(𝑇𝑖+1 − 𝑇𝑖−1)
(𝐷𝐶𝑅𝑃𝑖+1,𝑡

2 − 𝐷𝐶𝑅𝑃𝑖−1,𝑡
2). 

 

When 𝑖th and 𝑖th+1 futures were not listed, but 𝑖th+2 and 𝑖th-1 futures were listed, 

the following interpolation has been assumed: 

 

𝐷𝐶𝑅𝑃𝑖,𝑡
2 = 𝐷𝐶𝑅𝑃𝑖−1,𝑡

2 +
𝐵𝐷𝑎𝑦𝑠(𝑇𝑖 − 𝑇𝑖−1)

𝐵𝐷𝑎𝑦𝑠(𝑇𝑖+2 − 𝑇𝑖−1)
(𝐷𝐶𝑅𝑃𝑖+2,𝑡

2 − 𝐷𝐶𝑅𝑃𝑖−1,𝑡
2). 

 

When 𝑖th, 𝑖th+1 and 𝑖th+2 futures were not listed, the following interpolation has 

been assumed: 

𝐷𝐶𝑅𝑃𝑖,𝑡
2 = 𝐷𝐶𝑅𝑃𝑖−1,𝑡

2 +
𝐵𝐷𝑎𝑦𝑠(𝑇𝑖 − 𝑇𝑖−1)

𝐵𝐷𝑎𝑦𝑠(𝑇𝑖−1 − 𝑇𝑖−2)
(𝐷𝐶𝑅𝑃𝑖−1,𝑡

2 − 𝐷𝐶𝑅𝑃𝑖−2,𝑡
2), 

 

where 𝑇𝑖 is the last trade day of the 𝑖th VIX Futures contract and 𝐵𝐷𝑎𝑦𝑠 is the number 

of business days between VIX Futures last trade days. 
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A.IV VXX and VXZ Calculation 

As in Barclays (2016), the VXX and VXZ are calculated by  

 

𝐸𝑇𝑁𝑡 = 𝐸𝑇𝑁𝑡−1× (
𝐼𝑛𝑑𝑒𝑥𝑇𝑅𝑡

𝐼𝑛𝑑𝑒𝑥𝑇𝑅𝑡−1
− 0.89%×

𝐷𝑒𝑙𝑡𝑎𝑡

365
), 

 

where 𝐸𝑇𝑁𝑡 is the price of the respective VIX ETN, 𝐼𝑛𝑑𝑒𝑥𝑇𝑅𝑡 is the total return index 

of the Short-Term Index and Mid-Term Index for the VXX and VXZ respectively, and 

the investor fee amounts to 0.89%. 

A.V Descriptive Statistics 

Table A - 1. Descriptive Statistics Monthly Return Main Period. The table shows descriptive statistics 
for monthly asset returns scaled by a factor of 12 over the main period. Skewness and kurtosis are 
calculated based on standardised moments. SR depicts the Sharpe Ratio (negative values omitted). AD 
reflects the test-statistic for the Anderson-Darling normality test. ***, **, * denote statistical significance 
at the 1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 93 93 93 93 93 93 93 93 93 93 

Mean -0.625 -0.249 0.153 0.108 0.009 0.064 0.115 0.162 -0.050 0.057 

StdDev 2.355 1.173 0.551 0.714 0.027 0.209 0.224 0.751 0.797 0.648 

Skew 2.106 1.351 -0.568 0.067 0.280 0.210 0.481 -0.481 0.262 0.263 

Kurt 6.583 3.396 1.761 1.027 0.769 0.556 1.912 3.135 1.509 -0.460 

SR -0.265 -0.213 0.278 0.151 0.341 0.305 0.512 0.216 -0.063 0.088 

AD 3.389*** 1.882*** 0.854** 1.11*** 0.824** 0.523 0.589 1.043*** 0.496 0.473 

 

Table A - 2. Descriptive Statistics Monthly Return Backtested Period. The table shows descriptive 
statistics for monthly asset returns scaled by a factor of 12 over the backtested period. Skewness and 
kurtosis are calculated based on standardised moments. SR depicts the Sharpe Ratio (negative values 
omitted). AD reflects the test-statistic for the Anderson-Darling normality test. ***, **, * denote 
statistical significance at the 1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 57 57 57 57 57 57 57 57 57 57 

Mean -0.120 0.104 -0.012 0.052 0.039 0.020 0.017 0.033 0.014 0.166 

StdDev 2.328 1.222 0.500 0.661 0.060 0.255 0.344 0.840 0.989 0.654 

Skew 2.682 1.606 -1.143 -0.878 0.437 -1.465 -0.811 -1.553 -0.724 -0.213 

Kurt 10.115 3.746 2.252 2.167 0.583 4.480 4.885 4.240 0.359 0.038 

SR -0.051 0.085 -0.024 0.078 0.648 0.078 0.051 0.039 0.014 0.254 

AD 3.418*** 2.064*** 1.76*** 1.182*** 0.509 1.782*** 3.34*** 2.437*** 0.847** 0.154 
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Table A - 3. Descriptive Statistics Monthly Return Full Period. The table shows descriptive statistics 
for monthly asset returns scaled by a factor of 12 over the full period. Skewness and kurtosis are 
calculated based on standardised moments. SR depicts the Sharpe Ratio (negative values omitted). AD 
reflects the test-statistic for the Anderson-Darling normality test. ***, **, * denote statistical significance 
at the 1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 150 150 150 150 150 150 150 150 150 150 

Mean -0.431 -0.112 0.086 0.077 0.020 0.047 0.083 0.105 -0.034 0.099 

StdDev 2.314 1.186 0.579 0.719 0.045 0.233 0.289 0.837 0.850 0.615 

Skew 2.186 1.427 -0.108 -0.004 1.082 -0.731 -0.449 -0.503 -0.395 -0.026 

Kurt 6.975 3.249 4.158 2.855 2.913 3.134 5.434 4.931 0.455 0.030 

SR -0.186 -0.095 0.148 0.108 0.450 0.201 0.287 0.126 -0.040 0.161 

AD 7.013*** 3.555*** 2.864*** 1.914*** 3.096*** 1.569*** 4.221*** 4.046*** 0.547 0.110 

 

Table A - 4. Descriptive Statistics Weekly Return Main Period. The table shows descriptive statistics 
for weekly asset returns scaled by a factor of 52 over the main period. Skewness and kurtosis are 
calculated based on standardised moments. SR depicts the Sharpe Ratio (negative values omitted). AD 
reflects the test-statistic for the Anderson-Darling normality test. ***, **, * denote statistical significance 
at the 1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 391 391 391 391 391 391 391 391 391 391 

Mean -0.646 -0.261 0.156 0.107 0.010 0.066 0.116 0.162 -0.057 0.058 

StdDev 4.882 2.373 1.180 1.430 0.061 0.386 0.376 1.567 1.595 1.266 

Skew 1.240 0.731 -0.056 -0.055 -0.483 0.095 -0.110 0.271 0.114 -0.507 

EK 3.508 1.741 2.058 0.784 2.780 0.718 1.907 3.955 1.269 1.447 

SR -0.132 -0.110 0.132 0.075 0.157 0.171 0.309 0.103 -0.035 0.046 

AD 6.383*** 2.291*** 2.987*** 0.645* 2.35*** 0.621 6.058*** 4.269*** 1.758*** 0.579 

 

Table A - 5. Descriptive Statistics Weekly Return Backtested Period. The table shows descriptive 
statistics for weekly asset returns scaled by a factor of 52 over the backtested period. Skewness and 
kurtosis are calculated based on standardised moments. SR depicts the Sharpe Ratio (negative values 
omitted). AD reflects the test-statistic for the Anderson-Darling normality test. ***, **, * denote 
statistical significance at the 1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 239 239 239 239 239 239 239 239 239 239 

Mean -0.159 0.112 -0.016 0.051 0.041 0.022 0.014 0.028 -0.016 0.173 

StdDev 3.663 2.039 1.317 1.561 0.115 0.443 0.643 1.886 1.900 1.508 

Skew 1.331 0.677 -1.150 -1.325 0.323 -0.371 -3.636 -0.905 -0.421 0.235 

EK 4.107 1.301 11.059 8.452 1.622 2.374 30.056 9.250 0.612 1.922 

SR -0.044 0.055 -0.012 0.033 0.356 0.050 0.022 0.015 -0.008 0.115 

AD 5.545*** 2.153*** 7.368*** 6.44*** 1.973*** 0.933** 17.763*** 8.749*** 0.537 1.384*** 
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Table A - 6. Descriptive Statistics Weekly Return Full Period. The table shows descriptive statistics for 
weekly asset returns scaled by a factor of 52 over the full period. Skewness and kurtosis are calculated 
based on standardised moments. SR depicts the Sharpe Ratio (negative values omitted). AD reflects the 
test-statistic for the Anderson-Darling normality test. ***, **, * denote statistical significance at the 
1%, 5%, 10% level. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

N. of obs. 630 630 630 630 630 630 630 630 630 630 

Mean -0.469 -0.124 0.089 0.080 0.021 0.048 0.084 0.106 -0.038 0.104 

StdDev 4.474 2.272 1.246 1.496 0.087 0.411 0.509 1.721 1.729 1.376 

Skew 1.244 0.668 -0.604 -0.662 0.500 -0.179 -2.701 -0.468 -0.142 -0.089 

Kurt 3.901 1.590 6.526 4.389 3.752 1.728 32.918 7.375 0.986 1.811 

SR -0.105 -0.055 0.072 0.053 0.241 0.116 0.165 0.062 -0.022 0.076 

AD 10.722*** 3.749*** 9.254*** 4.997*** 8.575*** 1.372*** 26.112*** 13.03*** 1.55*** 1.43*** 

 

A.VI Correlations Tables 

Table A - 7. Correlation Matrix Backtested Period Quarterly Returns. The table shows the correlation 
matrix for quarterly asset returns scaled by a factor of 4 over the backtested period. 

 VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.931 -0.715 -0.640 0.600 -0.177 -0.729 -0.757 -0.457 0.042 

VXZ 0.931 1.000 -0.657 -0.600 0.641 -0.085 -0.662 -0.785 -0.416 0.048 

S&P500 -0.715 -0.657 1.000 0.932 -0.320 0.475 0.848 0.849 0.254 0.122 

AW -0.640 -0.600 0.932 1.000 -0.328 0.627 0.817 0.734 0.348 0.391 

UST 0.600 0.641 -0.320 -0.328 1.000 0.126 -0.182 -0.231 -0.347 0.265 

IGCB -0.177 -0.085 0.475 0.627 0.126 1.000 0.679 0.334 0.230 0.554 

HYCB -0.729 -0.662 0.848 0.817 -0.182 0.679 1.000 0.825 0.382 0.227 

RE -0.757 -0.785 0.849 0.734 -0.231 0.334 0.825 1.000 0.143 0.052 

GSCI -0.457 -0.416 0.254 0.348 -0.347 0.230 0.382 0.143 1.000 0.297 

GLD 0.042 0.048 0.122 0.391 0.265 0.554 0.227 0.052 0.297 1.000 

 

Table A - 8. Correlation Matrix Full Period Quarterly Returns. The table shows the correlation matrix 
for quarterly asset returns scaled by a factor of 4 over the full period. 

 VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.888 -0.777 -0.732 0.347 -0.289 -0.502 -0.675 -0.434 0.087 

VXZ 0.888 1.000 -0.784 -0.703 0.521 -0.259 -0.483 -0.698 -0.439 0.120 

S&P500 -0.777 -0.784 1.000 0.857 -0.347 0.447 0.594 0.816 0.401 -0.003 

AW -0.732 -0.703 0.857 1.000 -0.224 0.611 0.684 0.765 0.502 0.226 

UST 0.347 0.521 -0.347 -0.224 1.000 0.102 -0.182 -0.173 -0.199 0.346 

IGCB -0.289 -0.259 0.447 0.611 0.102 1.000 0.720 0.528 0.284 0.491 

HYCB -0.502 -0.483 0.594 0.684 -0.182 0.720 1.000 0.652 0.356 0.262 

RE -0.675 -0.698 0.816 0.765 -0.173 0.528 0.652 1.000 0.261 0.143 

GSCI -0.434 -0.439 0.401 0.502 -0.199 0.284 0.356 0.261 1.000 0.274 

GLD 0.087 0.120 -0.003 0.226 0.346 0.491 0.262 0.143 0.274 1.000 
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Table A - 9. Correlation Matrix Main Period Monthly Returns. The table shows the correlation matrix 
for monthly asset returns scaled by a factor of 12 over the main period. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.923 -0.729 -0.690 0.177 -0.406 -0.510 -0.567 -0.385 0.051 

VXZ 0.923 1.000 -0.723 -0.686 0.231 -0.420 -0.471 -0.566 -0.395 0.067 

S&P500 -0.729 -0.723 1.000 0.916 -0.198 0.535 0.684 0.850 0.565 0.068 

AW -0.690 -0.686 0.916 1.000 -0.105 0.690 0.747 0.866 0.634 0.189 

UST 0.177 0.231 -0.198 -0.105 1.000 0.293 0.011 0.038 -0.070 0.415 

IGCB -0.406 -0.420 0.535 0.690 0.293 1.000 0.723 0.684 0.463 0.384 

HYCB -0.510 -0.471 0.684 0.747 0.011 0.723 1.000 0.741 0.476 0.178 

RE -0.567 -0.566 0.850 0.866 0.038 0.684 0.741 1.000 0.445 0.156 

GSCI -0.385 -0.395 0.565 0.634 -0.070 0.463 0.476 0.445 1.000 0.315 

GLD 0.051 0.067 0.068 0.189 0.415 0.384 0.178 0.156 0.315 1.000 

 

Table A - 10. Correlation Matrix Backtested Period Monthly Returns. The table shows the correlation 
matrix for monthly asset returns scaled by a factor of 12 over the backtested period. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.883 -0.809 -0.768 0.421 -0.486 -0.776 -0.772 -0.383 -0.222 

VXZ 0.883 1.000 -0.763 -0.712 0.460 -0.329 -0.728 -0.779 -0.348 -0.207 

S&P500 -0.809 -0.763 1.000 0.903 -0.401 0.458 0.863 0.864 0.267 0.113 

AW -0.768 -0.712 0.903 1.000 -0.366 0.601 0.816 0.829 0.387 0.378 

UST 0.421 0.460 -0.401 -0.366 1.000 0.168 -0.222 -0.274 -0.274 0.198 

IGCB -0.486 -0.329 0.458 0.601 0.168 1.000 0.615 0.479 0.246 0.483 

HYCB -0.776 -0.728 0.863 0.816 -0.222 0.615 1.000 0.835 0.349 0.173 

RE -0.772 -0.779 0.864 0.829 -0.274 0.479 0.835 1.000 0.220 0.237 

GSCI -0.383 -0.348 0.267 0.387 -0.274 0.246 0.349 0.220 1.000 0.347 

GLD -0.222 -0.207 0.113 0.378 0.198 0.483 0.173 0.237 0.347 1.000 

 

Table A - 11. Correlation Matrix Full Period Monthly Returns. The table shows the correlation matrix 
for monthly asset returns scaled by a factor of 12 over the full period. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.903 -0.703 -0.701 0.322 -0.391 -0.581 -0.619 -0.382 -0.023 

VXZ 0.903 1.000 -0.655 -0.644 0.380 -0.326 -0.545 -0.596 -0.356 0.006 

S&P500 -0.703 -0.655 1.000 0.911 -0.300 0.447 0.674 0.875 0.450 0.012 

AW -0.701 -0.644 0.911 1.000 -0.238 0.575 0.677 0.864 0.538 0.172 

UST 0.322 0.380 -0.300 -0.238 1.000 0.193 -0.191 -0.150 -0.213 0.266 

IGCB -0.391 -0.326 0.447 0.575 0.193 1.000 0.629 0.556 0.312 0.398 

HYCB -0.581 -0.545 0.674 0.677 -0.191 0.629 1.000 0.703 0.362 0.123 

RE -0.619 -0.596 0.875 0.864 -0.150 0.556 0.703 1.000 0.364 0.135 

GSCI -0.382 -0.356 0.450 0.538 -0.213 0.312 0.362 0.364 1.000 0.257 

GLD -0.023 0.006 0.012 0.172 0.266 0.398 0.123 0.135 0.257 1.000 
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Table A - 12. Correlation Matrix Main Period Weekly Returns. The table shows the correlation matrix 
for weekly asset returns scaled by a factor of 52 over the main period. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.891 -0.766 -0.744 0.284 -0.093 -0.407 -0.604 -0.423 -0.059 

VXZ 0.891 1.000 -0.728 -0.705 0.287 -0.095 -0.423 -0.587 -0.391 -0.065 

S&P500 -0.766 -0.728 1.000 0.896 -0.315 0.117 0.520 0.836 0.518 0.090 

AW -0.744 -0.705 0.896 1.000 -0.251 0.279 0.538 0.820 0.609 0.184 

UST 0.284 0.287 -0.315 -0.251 1.000 0.468 -0.001 -0.150 -0.165 0.265 

IGCB -0.093 -0.095 0.117 0.279 0.468 1.000 0.481 0.279 0.259 0.371 

HYCB -0.407 -0.423 0.520 0.538 -0.001 0.481 1.000 0.504 0.396 0.153 

RE -0.604 -0.587 0.836 0.820 -0.150 0.279 0.504 1.000 0.475 0.167 

GSCI -0.423 -0.391 0.518 0.609 -0.165 0.259 0.396 0.475 1.000 0.261 

GLD -0.059 -0.065 0.090 0.184 0.265 0.371 0.153 0.167 0.261 1.000 

 

Table A - 13. Correlation Matrix Backtested Period Weekly Returns. The table shows the correlation 
matrix for weekly asset returns scaled by a factor of 52 over the backtested period. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.841 -0.741 -0.687 0.358 -0.195 -0.548 -0.633 -0.153 -0.063 

VXZ 0.841 1.000 -0.638 -0.588 0.327 -0.108 -0.428 -0.572 -0.118 -0.063 

S&P500 -0.741 -0.638 1.000 0.862 -0.295 0.161 0.620 0.839 0.183 -0.011 

AW -0.687 -0.588 0.862 1.000 -0.212 0.345 0.587 0.821 0.296 0.244 

UST 0.358 0.327 -0.295 -0.212 1.000 0.449 -0.115 -0.164 -0.114 0.201 

IGCB -0.195 -0.108 0.161 0.345 0.449 1.000 0.429 0.305 0.225 0.367 

HYCB -0.548 -0.428 0.620 0.587 -0.115 0.429 1.000 0.661 0.223 -0.042 

RE -0.633 -0.572 0.839 0.821 -0.164 0.305 0.661 1.000 0.166 0.060 

GSCI -0.153 -0.118 0.183 0.296 -0.114 0.225 0.223 0.166 1.000 0.375 

GLD -0.063 -0.063 -0.011 0.244 0.201 0.367 -0.042 0.060 0.375 1.000 

 

Table A - 14. Correlation Matrix Full Period Weekly Returns. The table shows the correlation matrix 
for weekly asset returns scaled by a factor of 52 over the full period. 

  VXX VXZ S&P500 AW UST IGCB HYCB RE GSCI GLD 

VXX 1.000 0.876 -0.748 -0.716 0.297 -0.127 -0.425 -0.603 -0.321 -0.067 

VXZ 0.876 1.000 -0.693 -0.658 0.300 -0.102 -0.408 -0.576 -0.288 -0.066 

S&P500 -0.748 -0.693 1.000 0.882 -0.303 0.139 0.552 0.839 0.373 0.047 

AW -0.716 -0.658 0.882 1.000 -0.222 0.308 0.532 0.822 0.474 0.209 

UST 0.297 0.300 -0.303 -0.222 1.000 0.426 -0.106 -0.163 -0.134 0.214 

IGCB -0.127 -0.102 0.139 0.308 0.426 1.000 0.423 0.284 0.240 0.352 

HYCB -0.425 -0.408 0.552 0.532 -0.106 0.423 1.000 0.567 0.304 0.031 

RE -0.603 -0.576 0.839 0.822 -0.163 0.284 0.567 1.000 0.337 0.122 

GSCI -0.321 -0.288 0.373 0.474 -0.134 0.240 0.304 0.337 1.000 0.305 

GLD -0.067 -0.066 0.047 0.209 0.214 0.352 0.031 0.122 0.305 1.000 
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A.VII Mean-Variance Spanning with Monthly and Weekly Returns 

Table A - 15. Mean-Variance Spanning Test Results Monthly Returns. The table shows the results for 
the mean-variance spanning test of N-assets (VXX, VXZ) with K-assets (S&P500, AW, UST, IGCB, 
HYCB, RE, GSCI, GLD) for all three periods using monthly returns scaled by a factor of 12. ***, **, * 
denote statistical significance at the 1%, 5%, 10% level. 

 Main Period  Backtested Period  Full Period 

  Value P-Value   Value P-Value   Value P-Value 

Lagrange Multiplier 4.612 0.329  9.922 0.042**  10.545 0.032** 

Likelihood Ratio 4.712 0.318  10.524 0.032**  10.775 0.029** 

Wald  4.815 0.307   11.181 0.025**   11.012 0.026** 

 

Table A - 16. Mean-Variance Spanning Test Results Weekly Returns. The table shows the results for 
the mean-variance spanning test of N-assets (VXX, VXZ) with K-assets (S&P500, AW, UST, IGCB, 
HYCB, RE, GSCI, GLD) for all three periods using weekly returns scaled by a factor of 52. ***, **, * 
denote statistical significance at the 1%, 5%, 10% level. 

 Main Period  Backtested Period  Full Period 

  Value P-Value   Value P-Value   Value P-Value 

Lagrange Multiplier 3.973 0.410  16.189 0.003***  10.545 0.032** 

Likelihood Ratio 3.993 0.407  16.599 0.002***  10.775 0.029** 

Wald  4.013 0.404   17.024 0.002***   11.012 0.026** 

 

Table A - 17. Mean-Variance Spanning Portfolios Monthly Returns. The table shows the tangency (T) 
and global minimum variance (GMV) portfolios for the mean-variance spanning test of N-assets (VXX, 
VXZ) with K-benchmark-assets (S&P500, AW, UST, IGCB, HYCB, RE, GSCI, GLD) for all three 
periods using monthly returns scaled by a factor of 12. SR depicts the Sharpe Ratio. ¢ denotes the 
change of the respective metric with regards to the respective metric of the benchmark portfolio. 

 Main Period  Backtested Period  Full Period 

  T GMV   T GMV   T GMV 

VXX 0.1% 0.5%  -2.7% -0.1%  -1.6% 0.0% 

VXZ -0.7% -0.8%  2.2% -1.3%  1.4% -0.2% 

S&P500 11.1% 2.6%  -11.8% 2.8%  1.9% 1.8% 

AW -6.3% 1.2%  13.9% 5.7%  -1.3% 0.8% 

UST 82.3% 101.3%  119.8% 106.6%  96.4% 103.0% 

IGCB 1.1% -4.7%  -20.8% -5.8%  -7.8% -8.8% 

HYCB 18.5% 3.4%  1.9% -4.2%  11.7% 4.4% 

RE -4.4% -2.3%  -1.2% -1.9%  -1.1% -1.1% 

GSCI -2.0% 0.1%  0.2% 1.5%  -0.9% 0.6% 

GLD 0.2% -1.3%   -1.6% -3.1%   1.3% -0.6% 

Mean 0.035 0.010   0.054 0.035   0.033 0.022 

StdDev 0.039 0.021  0.056 0.045  0.090 0.073 

SR 0.892 0.479  0.972 0.785  0.367 0.296 

¢ StdDev  -2.1%   -2.1%   -0.1% 

¢ SR 0.5%    12.2%    7.0%  
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Table A - 18. Mean-Variance Spanning Portfolios Weekly Returns. The table shows the tangency (T) 
and global minimum variance (GMV) portfolios for the mean-variance spanning test of N-assets (VXX, 
VXZ) with K-benchmark-assets (S&P500, AW, UST, IGCB, HYCB, RE, GSCI, GLD) for all three 
periods using weekly returns scaled by a factor of 52. SR depicts the Sharpe Ratio. ¢ denotes the change 
of the respective metric with regards to the respective metric of the benchmark portfolio.  

 Main Period  Backtested Period  Full Period 

  T GMV   T GMV   T GMV 

VXX -1.2% 0.1%  -3.4% -0.7%  -1.0% 0.4% 

VXZ 1.1% -0.1%  3.4% 0.1%  0.6% -1.3% 

S&P500 7.2% 1.2%  -4.7% 1.2%  5.8% 3.3% 

AW -5.5% 1.1%  3.2% 1.4%  -1.7% 0.8% 

UST 75.6% 103.8%  117.1% 107.1%  94.9% 99.7% 

IGCB 1.0% -7.5%  -21.0% -12.4%  -7.6% -5.8% 

HYCB 25.4% 2.5%  3.8% 4.3%  11.9% 5.7% 

RE -1.2% -0.7%  0.3% -1.4%  -3.3% -2.5% 

GSCI -2.7% 0.5%  0.5% 1.0%  -0.9% 0.7% 

GLD 0.3% -0.8%   0.8% -0.7%   1.4% -1.0% 

Mean 0.047 0.009   0.057 0.042   0.031 0.021 

StdDev 0.114 0.049  0.110 0.094  0.045 0.037 

SR 0.413 0.178  0.518 0.443  0.699 0.579 

¢ StdDev  -0.1%   -1.3%   -1.5% 

¢ SR 2.5%    16.1%    4.0%  

 

A.VIII Mean-Variance Optimisation with Monthly and Weekly Returns 

Table A - 19. Tangency and Minimum-Variance Portfolios Robustness Results Backtested Period. The 
table shows the tangency (T) and global minimum-variance (GMV) portfolios for the constrained mean-
variance optimisation during the backtested period using quarterly, monthly and weekly returns scaled 
by a factor of 4, 12 and 52 respectively. 

 Quarterly Interval  Monthly Interval  Weekly Interval 

  T GMV  T GMV  T GMV 

VXX 0.0% 4.7%  0.0% 5.0%  0.0% 4.3% 

VXZ 14.0% 2.2%  12.8% 2.8%  8.7% 2.1% 

S&P500 0.0% 11.6%  0.0% 16.3%  7.1% 10.5% 

AW 0.0% 0.0%  0.6% 0.0%  0.0% 0.0% 

UST 35.0% 35.0%  35.0% 35.0%  35.0% 35.0% 

IGCB 0.0% 9.3%  0.0% 20.7%  27.0% 32.0% 

HYCB 0.4% 35.0%  30.9% 17.4%  17.4% 15.1% 

RE 17.3% 0.0%  3.8% 0.0%  0.0% 0.0% 

GSCI 2.4% 2.1%  0.0% 2.4%  0.0% 0.0% 

GLD 30.8% 0.0%  16.8% 0.4%  4.7% 1.0% 

Mean 0.083 0.015  0.062 0.017  0.040 0.019 

StdDev 0.125 0.070  0.157 0.112  0.264 0.247 

SR 0.663 0.207  0.395 0.150  0.150 0.077 
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Table A - 20. Tangency and Minimum-Variance Portfolios Robustness Results Full Period. The table 
shows the tangency (T) and global minimum-variance (GMV) portfolios for the constrained mean-
variance optimisation during the full period using quarterly, monthly and weekly returns scaled by a 
factor of 4, 12 and 52 respectively. 

 Quarterly Interval  Monthly Interval  Weekly Interval 

  T GMV  T GMV  T GMV 

VXX 0.0% 1.8%  0.0% 2.2%  0.0% 1.3% 

VXZ 5.1% 7.3%  3.6% 4.0%  4.6% 4.4% 

S&P500 15.7% 21.0%  4.0% 5.2%  4.6% 8.8% 

AW 0.0% 0.0%  0.0% 0.0%  0.0% 0.0% 

UST 35.0% 35.0%  35.0% 35.0%  35.0% 35.0% 

IGCB 0.0% 12.8%  14.6% 28.7%  23.7% 30.1% 

HYCB 35.0% 20.5%  35.0% 24.1%  29.8% 19.9% 

RE 0.0% 0.0%  0.0% 0.0%  0.0% 0.0% 

GSCI 0.0% 1.6%  0.0% 0.7%  0.0% 0.0% 

GLD 9.3% 0.0%  7.7% 0.0%  2.3% 0.4% 

Mean 0.085 0.071  0.050 0.031  0.045 0.035 

StdDev 0.052 0.032  0.142 0.122  0.233 0.225 

SR 0.621 0.455  0.351 0.252  0.192 0.155 

 

A.IX Polynomial Goal Programming with Monthly and Weekly Returns 

Table A - 21. Polynomial Goal Programming Results Main Period Weekly Returns. This table shows 
the portfolios optimised with the polynomial goal programming model for the main period using weekly 

returns scaled by a factor of 52. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, skewness and 
kurtosis respectively. 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 27.2% 1.6% 22.5% 0.0% 2.0% 1.6% 0.0% 22.5% 0.0% 

VXZ 1.1% 0.0% 5.7% 0.0% 8.1% 11.3% 8.9% 4.8% 0.0% 11.1% 

S&P500 4.9% 23.0% 0.0% 27.1% 0.0% 0.0% 0.0% 0.0% 17.9% 0.0% 

AW 0.0% 7.9% 0.0% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

UST 35.0% 26.1% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 

IGCB 23.9% 0.0% 35.0% 0.0% 35.0% 35.0% 35.0% 25.2% 0.0% 35.0% 

HYCB 35.0% 0.0% 0.1% 0.0% 2.3% 0.0% 7.8% 35.0% 0.0% 3.6% 

RE 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.1% 0.0% 2.6% 0.0% 

GSCI 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

GLD 0.0% 15.9% 22.6% 14.6% 19.6% 15.2% 11.6% 0.0% 21.9% 15.2% 

Mean 0.065 -0.119 0.014 -0.090 0.019 -0.005 0.009 0.048 -0.097 0.010 

StdDev 0.217 1.079 0.410 0.887 0.373 0.433 0.360 0.203 0.963 0.373 

Skew -0.069 1.434 0.143 1.430 0.133 0.659 0.591 0.403 1.408 0.435 

Kurt 1.464 4.419 0.025 4.337 0.018 0.575 0.450 1.040 4.009 0.158 

SR 0.298 n.a. 0.035 n.a. 0.052 n.a. 0.024 0.237 n.a. 0.028 
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Table A - 22. Polynomial Goal Programming Results Backtested Period Monthly Returns. This table 
shows the portfolios optimised with the polynomial goal programming model for the backtested period 

using monthly returns scaled by a factor of 12. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, 
skewness and kurtosis respectively. 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 35.0% 13.4% 35.0% 5.5% 11.1% 0.0% 0.0% 35.0% 4.6% 

VXZ 12.8% 0.0% 0.3% 0.0% 0.0% 22.2% 12.0% 12.0% 0.0% 2.5% 

S&P500 0.0% 35.0% 18.6% 35.0% 0.0% 0.0% 0.0% 0.0% 35.0% 0.0% 

AW 0.5% 0.0% 22.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

UST 35.0% 3.1% 14.3% 2.8% 35.0% 35.0% 35.0% 35.0% 7.1% 35.0% 

IGCB 0.0% 0.0% 13.5% 0.0% 11.9% 0.0% 0.0% 0.0% 0.0% 8.9% 

HYCB 31.5% 26.9% 3.0% 27.2% 28.2% 0.0% 35.0% 35.0% 22.9% 31.7% 

RE 3.7% 0.0% 3.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

GSCI 0.0% 0.0% 9.7% 0.0% 11.1% 3.6% 2.9% 2.5% 0.0% 7.6% 

GLD 16.6% 0.0% 0.6% 0.0% 8.2% 28.2% 15.2% 15.6% 0.0% 9.7% 

Mean 0.061 -0.040 0.006 -0.040 0.029 0.071 0.058 0.058 -0.039 0.035 

StdDev 0.155 0.620 0.204 0.619 0.162 0.509 0.152 0.153 0.630 0.146 

Skew 0.489 2.910 -0.062 2.910 0.026 1.435 0.653 0.651 2.905 0.309 

Kurt 0.705 11.994 -0.819 11.997 -0.784 2.326 0.446 0.452 11.926 -0.435 

SR 0.395 n.a. 0.030 n.a. 0.181 0.139 0.380 0.382 n.a. 0.241 

 

Table A - 23. Polynomial Goal Programming Results Full Period Monthly Returns. This table shows 
the portfolios optimised with the polynomial goal programming model for the full period using monthly 

returns scaled by a factor of 12. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, skewness and 
kurtosis respectively. 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 33.2% 5.0% 27.1% 0.0% 0.0% 0.0% 0.0% 28.0% 0.0% 

VXZ 3.5% 0.0% 0.0% 0.0% 9.1% 21.2% 10.5% 10.4% 0.0% 10.1% 

S&P500 3.6% 35.0% 17.7% 35.0% 2.3% 0.0% 4.3% 5.7% 35.0% 3.2% 

AW 0.0% 6.2% 0.0% 2.9% 0.0% 17.0% 0.0% 0.0% 2.0% 0.0% 

UST 35.0% 25.6% 35.0% 35.0% 35.0% 0.0% 35.0% 35.0% 35.0% 35.0% 

IGCB 15.4% 0.0% 0.0% 0.0% 0.0% 24.5% 0.0% 0.1% 0.0% 0.0% 

HYCB 35.0% 0.0% 0.0% 0.0% 30.2% 0.0% 35.0% 35.0% 0.0% 33.0% 

RE 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

GSCI 0.0% 0.0% 14.1% 0.0% 4.9% 16.4% 2.2% 0.8% 0.0% 4.0% 

GLD 7.4% 0.0% 28.1% 0.0% 18.5% 20.9% 13.0% 13.1% 0.0% 14.7% 

Mean 0.050 -0.103 0.024 -0.077 0.041 0.016 0.040 0.042 -0.082 0.039 

StdDev 0.142 0.622 0.252 0.499 0.174 0.309 0.152 0.150 0.524 0.160 

Skew -0.091 2.397 0.202 2.392 0.271 0.559 0.455 0.460 2.395 0.381 

Kurt 3.138 8.352 -0.353 8.306 -0.273 0.141 -0.019 0.056 8.322 -0.185 

SR 0.351 n.a. 0.094 n.a. 0.234 0.052 0.263 0.280 n.a. 0.244 
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Table A - 24. Polynomial Goal Programming Results Backtested Period Weekly Returns. This table 
shows the portfolios optimised with the polynomial goal programming model for the backtested period 

using weekly returns scaled by a factor of 52. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, 
skewness and kurtosis respectively. 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 15.2% 7.4% 14.5% 3.5% 4.3% 3.2% 1.1% 16.5% 2.8% 

VXZ 13.2% 1.8% 12.8% 2.9% 10.2% 9.6% 11.3% 14.6% 1.3% 12.7% 

S&P500 0.0% 35.0% 0.0% 35.0% 0.0% 7.8% 6.0% 2.9% 35.0% 2.7% 

AW 5.3% 6.5% 0.0% 5.4% 0.0% 4.9% 5.6% 4.4% 4.9% 7.3% 

UST 35.0% 35.0% 0.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 

IGCB 0.8% 0.0% 29.8% 0.0% 16.3% 35.0% 35.0% 35.0% 0.0% 35.0% 

HYCB 28.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

RE 0.4% 6.4% 17.1% 7.2% 11.7% 0.0% 0.0% 2.0% 7.3% 1.7% 

GSCI 0.0% 0.0% 19.0% 0.0% 11.5% 0.0% 0.0% 0.0% 0.0% 0.0% 

GLD 17.3% 0.0% 14.0% 0.0% 11.8% 3.4% 3.9% 5.0% 0.0% 2.9% 

Mean 0.066 -0.008 0.035 -0.006 0.046 0.033 0.038 0.048 -0.012 0.041 

StdDev 0.373 0.456 0.658 0.454 0.451 0.323 0.332 0.350 0.465 0.344 

Skew 0.138 2.208 0.123 2.205 0.144 0.459 0.443 0.420 2.166 0.410 

Kurt 0.957 11.582 -0.507 11.700 -0.446 -0.152 -0.172 -0.147 10.495 -0.228 

SR 0.177 n.a. 0.053 n.a. 0.101 0.102 0.115 0.136 n.a. 0.118 

 

Table A - 25. Polynomial Goal Programming Results Full Period Weekly Returns. This table shows the 
portfolios optimised with the polynomial goal programming model for the full period using weekly returns 

scaled by a factor of 52. 𝑝1, 𝑝3 and 𝑝4 denote the preference values for mean, skewness and kurtosis 
respectively. 

Portfolio A B C D E F G H I J 

𝑝1 1 0 0 1 1 0 1 2 1 1 

𝑝3 0 1 0 1 0 1 1 1 2 1 

𝑝4 0 0 0.5 0 0.5 0.5 0.5 0.5 0.5 0.75 

VXX 0.0% 18.1% 0.0% 17.3% 0.0% 1.3% 0.8% 0.0% 16.6% 0.0% 

VXZ 1.5% 0.0% 13.5% 0.0% 11.0% 11.9% 11.5% 11.7% 0.0% 12.7% 

S&P500 2.1% 35.0% 0.0% 35.0% 0.0% 0.0% 0.0% 0.0% 27.3% 0.0% 

AW 0.0% 6.1% 0.0% 5.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

UST 35.0% 35.0% 23.8% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 

IGCB 21.2% 0.0% 32.3% 0.0% 28.4% 35.0% 35.0% 35.0% 0.0% 35.0% 

HYCB 35.0% 0.0% 0.0% 0.3% 0.0% 1.2% 3.8% 7.2% 9.9% 0.0% 

RE 0.0% 5.8% 9.9% 6.7% 8.5% 5.9% 4.4% 2.3% 6.6% 6.4% 

GSCI 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 

GLD 5.2% 0.0% 20.6% 0.0% 17.1% 9.6% 9.5% 8.8% 4.6% 10.9% 

Mean 0.052 -0.035 0.035 -0.031 0.034 0.021 0.024 0.027 -0.026 0.026 

StdDev 0.258 0.544 0.447 0.522 0.380 0.365 0.349 0.332 0.522 0.356 

Skew -1.500 1.368 0.249 1.364 0.232 0.544 0.522 0.513 1.324 0.446 

Kurt 14.777 5.373 0.072 5.532 0.079 0.352 0.315 0.338 4.679 0.184 

SR 0.203 n.a. 0.079 n.a. 0.090 0.056 0.068 0.081 n.a. 0.074 

 


