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Abstract 

 

The influence of both phases of El Niño-Southern Oscillation (ENSO) on commodity futures 

index returns is evaluated for the period between 1970 and 2016. Additionally, the potential of 

ENSO related trading is examined. Associations of the Oceanic Niño Index (ONI) with 

commodity index returns are studied by Granger causality tests, ordinary least squared 

regressions and a mean return analysis approach. In general, the results of the effect 

measurements indicate the existence of larger and statistically more significant effects during 

La Niña phases for most of the commodities. Surprisingly, El Niño effects show relatively low 

statistical significance in measured effects. Historical performance tests of ONI triggered 

trading strategies with varying holding periods indicate potential to exploit ENSO related 

effects especially for short investments. 
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1. Introduction 

The El Niño-Southern Oscillation (ENSO) is a medium-frequency weather pattern that can have 

substantial impacts on local economies. The pattern consists of two phases, a warm phase 

referred to as El Niño and a cold phase, the so-called La Niña. ENSO can be measured by sea 

surface temperature (SST) anomalies in the Pacific Ocean. Due to changes in the water 

temperatures and disturbances in atmospheric pressure, ENSO events can affect local weather 

conditions, entailing disruptions in agricultural and other commodity markets. The 

phenomenon has attracted attention by an increasing number of economists in recent years who 

studied, among others, the impact of ENSO events on crop yields, commodity prices and macro-

economic conditions. Previous research often utilizes prices of physical commodities that have 

high historic availability, yet provide limited meaningfulness for actors in financial markets. 

Furthermore, the timing of effects is often neglected. This gap in research leads to the main 

questions of this thesis: To what extent are ENSO related effects in futures-based commodity 

index data measurable and financially exploitable? This question can be of interest to numerous 

stakeholders, e.g. investment managers, raw material producers as well as intermediaries who 

are exposed to price changes.  

The empirical approach to measure price effects is threefold in order to investigate 

different aspects of the relationship between ENSO and commodity index returns: (1) 

Correlations and Granger causality tests are employed to analyse if ENSO related 

climatological data has predictive value for commodity index returns. (2) OLS time series 

regressions indicate effect direction and size. (3) Mean return plots in combination with dummy 

variable regressions provide information about the development of return effects over time and 

potential lags. Subsequently to measuring the effects, indicative trading strategies are defined 

and tested on historical performance to point out the potential of ENSO related commodity 

investments. Thereby, it is examined whether it is feasible to time trades based on the ENSO 

phenomenon.  

In general, the results of the effect measurements indicate the existence of larger and 

statistically more significant effects during La Niña phases for most of the commodities. La 

Niña shows significant positive impact on a variety of commodities, namely soybeans and 

soybean related products, wheat, corn, sugar, cotton and nickel. Crude oil and heating oil 

instead are negatively impacted during La Niña phases. For El Niño, we find negative return 

effects on soybeans and soybean related commodities as well as for crude oil and heating oil. 
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In contrast, El Niño affects wheat and sugar returns positively. Overall, we only find meaningful 

qualitative explanations for a link between ENSO and agricultural as well as petroleum 

commodities. For such commodities, we find the clearest effects inherit in soybean oil, corn, 

sugar, cotton, crude oil and heating oil. The findings for the trading strategies overall suggest 

high monthly geometric excess returns in absolute means for most of the commodities during 

both ENSO events. Measured effects and qualitative explanations suggest that these returns are 

ENSO related. Furthermore, we find evidence that ENSO events are priced in quickly, thus, 

timing is indispensable. 

The remainder of this paper is structured as follows: Section 2 provides a literature 

overview related to the ENSO weather patterns and commodity investments. Section 3 explains 

the empirical approach including data description and methodology. Section 4 presents and 

analyses the results of the empirical approach. Section 5 discusses limitations of the approach 

used. Section 6 concludes. 

2. Literature Review 

2.1. The Weather Phenomenon El Niño-Southern Oscillation 

The El Niño-Southern Oscillation (ENSO) is a medium frequency weather pattern that brings 

reoccurring changes to the global weather. The name El Niño dates to references by South 

American fisherman from the west coast who recognized unusually warm waters in the Pacific 

Ocean around year-ends. In Spanish, El Niño means Christ child and refers to the occurrence 

of the weather phenomenon around Christmas time. By now, the mentioning of El Niño usually 

refers to irregular strong warm water currents in the Pacific Ocean and the accompanied global 

weather effects. These warm water periods are followed by either neutral periods or directly by 

the opposing cooling phase of the tropical Pacific, the so-called La Niña (Spanish for ‘the girl’). 

This alternating cycle is often called El Niño-Southern Oscillation (ENSO) due to the 

collaborating effect of oceanic temperature changes and atmospheric pressure anomalies 

(Trenberth, 1997). 

The development of the distinct ENSO phases is initiated by changes in the air pressure 

system above the Pacific coasts. Usually, atmospheric pressure is relatively low in the Western 

Pacific (i.e. Southeast Asia, Australia) and high in the Eastern Pacific. This air pressure 

differential causes trade winds to move from the high-pressure East to the low-pressure West, 

pushing surface water in the Pacific Ocean from the coast of South America westwards toward 
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Australia and Southeast Asia (“Walker Circulation”). Thereby, cold water from lower levels 

dwells up at the coast of South America, while the water piles up in the Western Pacific Ocean. 

In fact, this leads to a difference in sea level of about half a meter, allowing the sun to heat up 

the surface water.  

Occasionally, the trade winds of the Walker Circulation relax and, thus, potentially 

trigger an El Niño event. Softer trade winds can cause warm water to swell back to the East. 

The water flowing back contains an immense amount of thermal energy which heats up the air 

above the surface of the Eastern Pacific coast, leading to an upward atmospheric pull which 

disrupts the Walker Circulation to an even greater extent. This in turn allows more warm water 

to swell back from west to east, resulting in a self-supporting cycle. Such an El Niño event can 

have effects on the global climate conditions and can sustain for a period of several months up 

to a few years (Becker, 2016). 

Often, but not necessarily, El Niño periods are followed by La Niña phases which are 

triggered by stronger than normal westward trade winds. These winds increase the piling up of 

warm water in the Western Pacific Ocean and increase the upwelling of cold water in the 

Eastern Pacific Ocean.  

2.1.1. ENSO Indicators 

The two most prevalent indicators to measure ENSO activity are the Southern Oscillation Index 

(SOI) and Oceanic Niño Index (ONI). The SOI is calculated by differences in air pressure 

between Tahiti in the East Pacific and Darwin in the West Pacific. Whereas a negative SOI 

value indicates El Niño events, a positive index stands for La Niña events. ONI is calculated 

based on sea surface temperature anomalies by the U.S. National Oceanographic and 

Atmospheric Administration (NOAA). These anomalies are measured in the NIÑO3.4 region 

which lies in the Central Equatorial Pacific. The NOAA defines warm and cold phases as a 

minimum of five consecutive 3-month running average of SST (ONI) surpassing a threshold of 

+0.5℃ for El Niño or -0.5℃ for La Niña. 
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Figure 1 Historical Development of Oceanic Niño Index (ONI) 

 

Figure 2 Historical Development of Southern Oscillation Index (SOI) 

 

Figure 1 and 2 plot the historical development of the El Niño-Southern Oscillation (ENSO) measures Oceanic Niño 

index (ONI) and Southern Oscillation Index (SOI). The monthly data is collected from the United States National 

Oceanic Atmospheric Administration (NOAA) for the period from January 1970 to December 2016. The NOAA 

definition requires ONI to breach a threshold of 0.5 for El Niño or -0.5 for La Niña for a minimum of five consecutive 

months. 
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2.1.2. Consequences to Regional Weather and Economies 

Both, warm and cold periods, can have considerable impact on regional weather and ecological 

conditions. Even though the regional magnitudes of ENSO impacts differ from case to case, 

experts agreed on generalized regions which are affected in most cases. These patterns occur in 

the form of geographical shifts in precipitation but also temperature variations.  

El Niño periods can have severe consequences. The strong warming of the sea off the 

shore of Ecuador and northern Peru entails negative implications for the local fishing and guano 

industry. Fish populations are depleted due to their dependence on upwelling nutrient-rich 

waters, which in turn leads to starvation of seabirds. Furthermore, evaporation of warm sea 

waters has interfering effects on regional precipitation patterns (Caviedes, 2001). The southern 

United States, Peru, Ecuador, parts of Argentina, Central Asian countries and the east of Africa 

face excess precipitation. In the United States, more rainfall in the south benefits California 

lime, almond and avocado harvests. Parts of the US and Canada enjoy warmer weather and 

better fishing conditions. Cashin et al (2015) state that in South America, higher precipitation 

can benefit vegetation and certain crops in arid regions. However, according to Caviedes (2001) 

floods and landslides can entail damages and heavy rains might also entail soil erosion. At the 

same time, abnormal weather conditions such as the disruption of the Walker Circulation, 

occurrence of high pressure systems (referred to as ‘blocking’) or non-appearance of humid 

winds can lead to dry spells or outright droughts in several regions. Dryness is often experienced 

in certain regions in Africa, India, Southeast Asia, Australia, northern Brazil and Central 

America. (Caviedes, 2001). In southern Africa aridity has general negative effects on 

agricultural output, in Indonesia yields of coffee beans, cocoa, palm oil and other commodities 

are deteriorated. Cashin et al (2015) explain that India, a major producer of rice and sorghum, 

normally faces a weak monsoon and warmer conditions exacerbating to high aridity boreal 

summer. Parts of Central America show dry conditions and Mexico experiences benefitting 

conditions for oil production due to alternating geographical impacts of hurricanes. The 

International Research Institute for Climate and Society (IRI) provides Figures 3 and 4 below, 

which are based on the works of Ropelewski and Halpert (1987) and Mason and Goddard 

(2001).   
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Figure 3 and 4 show world-wide precipitation shifts for El Niño and La Niña phases. Even though the impacts depend 

on specific ENSO events, strongest shifts remain similar. The maps are provided by the International Research 

Institute for Climate and Society and based on the works of Ropelewski and Halpert (1987) and Mason and Goddard 

(2001). 

Figure 3 El Niño Worldwide Precipitation Map 

Figure 4 La Niña Worldwide Precipitation Map 
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The impact of La Niña periods is in general relatively contrary to those of El Niño. Areas close 

to the Pacific Ocean which experience high precipitation during El Niño periods, are more 

likely to face droughts. Rainfall is generally enhanced over parts of Africa, India, Southeast 

Asia and Australia and parts of Brazil, Central America and the United States. On the other 

hand, parts of Central Asia and India, the west of South America and subtropical North America 

as well as southern Brazil and Argentina see drier than normal weather conditions during their 

respective winter seasons. Alaska, western Canada and the northwest of the United States get 

colder than normal air due to a lack of stimuli from the Pacific Ocean while the south-eastern 

United States become warmer and drier than in normal periods. In Caviedes (2001) it is stated 

that the Indian monsoon season tends to come along with enhanced rainfall during summer 

seasons.  

2.2. Previously Measured Effects of ENSO Events 

To analyse ENSO effects on commodity prices, the scope needs to be broadened to economic 

growth, general inflation and commodity price inflation. These three measures can regularly be 

found in ENSO related literature and several sources (e.g. Brunner, 2002; Laosuthi and Selover 

,2007; Cashin et al, 2015) claim that there exists an interdependence between these measures. 

Thus, the analysis of causes for commodity price inflation becomes sounder if economic growth 

and inflation measures are incorporated in addition to ENSO measures.  

2.2.1. ENSO Impact on GDP Growth 

Cashin et al (2015) find statistically significant GDP growth effects following El Niño shocks 

on most analysed economies during the subsequent four quarters. These effects are measured 

by impulse response functions to a one standard deviation reduction in SOI anomalies. 

Statistically significant effects of El Niño shocks on GDP output are usually not evident over 

all quarters, as major El Niño impacts are experienced during specific seasons, depending on 

the geographic regions. Australia, New Zealand, India, Indonesia and South Africa experience 

a negative real GDP growth following an El Niño event. The authors explain these negative 

GDP growth effects by lower agricultural output due to droughts in Southern Australia, New 

Zealand, Indonesia and South Africa, floods in New Zealand and weak monsoons in India. 

Contrary, Argentina, Brazil, Canada, China, Chile, Europe, Japan, Mexico, Singapore, Thailand 

and the USA experience positive GDP growth due to beneficial temperatures, more rain and 

less frequent natural disasters. Overall, El Niño seems to stimulate global GDP growth as those 
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economies affected positively account for a higher fraction of the global economic output than 

those negatively affected. 

 Laosuthi and Selover (2007) examine the effects of ENSO on economic growth in a 

different way than Cashin et al (2015). Contrary to the approach of Cashin et al, who analyse 

only El Niño shocks, Laosuthi and Selover estimate correlations between SOI (as ENSO 

measure) and GDP growth over the whole period from 1950 to 2000. The authors find 

statistically significant negative effects on growth in Mexico, South Africa, Australia, Canada 

and France. However, data for most countries shows weak and insignificant ENSO effects on 

the economic output. 

2.2.2. ENSO Impact on Commodity Prices 

Cashin et al (2015) analyse El Niño effects on real commodity prices. They argue that not only 

non-fuel commodities are affected, but also crude oil prices are inflated both due to higher 

demand caused by higher energy needs and lower supply from thermal power plants and 

hydroelectric dams. These findings are supported by GVAR models and statistical significance 

is tested with an impulse response analyses of oil prices and non-fuel commodity prices to a 

one standard deviation reduction in SOI anomalies. They show that both, non-fuel commodity 

prices and oil prices are increasing quarter on quarter for the analysed horizon of one year. The 

effect is significant for non-fuel prices from the second quarter onwards (95% confidence) as 

well as for oil prices from the first quarter (84% confidence) and from the second quarter 

onwards (95% confidence). Cashin et al (2015) suggest that the positive shock in non-fuel 

prices is triggered by lower supply from the Asia-Pacific region and then reinforced by higher 

global demand. The same goes for fuel prices which are driven by higher global demand due to 

El Niño caused growth effects on major economies. 

Laosuthi and Selover (2007) use correlations and Granger tests with different annual, 

quarterly and monthly lags for the SOI to study the relationship between SOI and commodity 

price inflation. Their findings suggest that the relationship is weaker than the one found by 

Brunner (2002) and Cashin et al (2015). Correlations between SOI and commodity price 

inflation are modest, showing negative correlation for seven out of 15 commodities and positive 

correlation for the remaining eight. The analysed commodities are banana, cacao, coconut, 

coffee, cotton, maize, palm oil, pepper, rice, rubber, sorghum, soybeans, sugar, tea and wheat. 

For maize and sorghum these correlations are statistically significant and positive. Statistically 

significant Granger causality is found for maize and sorghum with one annual lag and for 
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soybean, maize and sorghum with two annual lags. The same analysis with quarterly data shows 

significance for maize price inflation at two and four quarter lags, at four and six quarter lags 

for coconut oil, at six quarter lag for palm oil and two quarter lag for rice price. Laosuthi and 

Selover (2007) do not find statistical significance for monthly data and suggest that this could 

be due to seasonality or higher noise in the data.  

Brunner (2002) constructs econometric models to research the impact of ENSO cycles 

on non-oil commodity prices and on price inflation and GDP growth in the G7 countries. He 

uses vector autoregressive (VAR) models and impulse response functions to estimate the effects 

of ENSO on commodity prices. The tests indicate a statistical relationship between commodity 

prices and ENSO and to a lesser extent also for inflation and GDP growth. Nevertheless, no 

economic significance is given. According to Brunner, ENSO affects variances in coconut oil 

prices most, followed by palm-, soybean-, and groundnut oil and other food items such as rice, 

wheat, soybeans and maize. Moreover, fish meal and rubber prices as well as iron ore and 

copper are influenced by ENSO shocks. 

Ubilava (2012) studies the relationship between ENSO conditions and world coffee 

prices. The author finds that the price effect is varying, depending on the two coffee sorts 

Robusta and Arabica. El Niño events tend to affect Arabica prices negatively and Robusta 

prices only to a lesser extent. With a time-lag of a few months, this trend reverts and Robusta 

prices increase over the pre-El Niño levels. These effects are opposite in La Niña times. In 

general, Robusta coffee prices are well below Arabica coffee prices. Thus, in El Niño periods, 

the prices of lower quality Robusta and higher quality Arabica coffee converge while in La 

Niña periods the prices diverge. 

Ubilava and Holt (2013) examine El Niño effects on world vegetable oils. The shocks 

observed had permanent effects on oil prices. Prices increase for positive ENSO events (El 

Niño) and decrease for negative ENSO events (La Niña). Coconut oil and palm kernel oil prices 

react the most to ENSO shocks, while the magnitude of effects for groundnut oil was the lowest 

using their statistical methods. 

Ubilava (2014) finds that world wheat prices are negatively affected by positive ENSO 

shocks and adversely affected by negative shocks. La Niña effects tend to have a bigger 

amplitude than El Niño effects due to asymmetries and storage effects. In times of La Niña, 

wheat prices increase due to a lack of supply which can only be absorbed to a certain extent by 

storages. On the other hand, during El Niño times, wheat prices react less since an excess supply 

can be stored to avoid extreme decreases in prices. 
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Linking rice production to ENSO based climate variability is topic of the research of 

Naylor et al (2001). Their regression results show a strong connection between sea surface 

temperature anomalies and rice production in Indonesia. According to the authors, 40% of rice 

output variances can be explained by year-to-year fluctuations in SST anomalies measured with 

a lag of four and eight months. 

Iizumi et al (2014) study the impact of El Niño-Southern Oscillation on global crop 

yields. Besides presenting a global map with visualised impacts, the authors show that during 

El Niño the global mean soybean yield improves between 2.9% to 3.5% and on the contrary, in 

La Niña years the global soybean yield is influenced negatively between -1.6% to -1.0%. Yields 

for maize, rice and wheat are affected mostly negatively in a range of -4.0% to -0.2% during 

both, El Niño and La Niña periods. Iizumi et al (2014) measure the geographical distributions 

of El Niño and La Niña impacts on crop yields as deviations from the running 5-year means. 

They find significant negative effects for El Niño periods in 22-24% of harvested areas 

worldwide and positive effects for 30-36% of harvested areas worldwide. For La Niña periods 

the observed effects differ and only 2-4% of worldwide harvested areas are positively affected 

and at the same time 9-13% show negative impacts. Overall La Niña effects on harvested areas 

and crop yields tend to be lower than those of El Niño. In all periods, there are offsetting effects 

where yields in some regions are positively affected and negatively impacted in other regions. 

2.2.3. ENSO Impact on Inflation 

In addition to economic stimulation and rising commodity prices, Cashin et al (2015) find 

statistically significant upward pressure for consumer price indices (CPI) around the globe. The 

authors suggest that this broad inflation occurs due to commodity price inflation, government 

policies and aggregate demand-side pressure from higher economic activity. The inflation 

measures increase most in economies in which food accounts for a high fraction in the CPI 

baskets as it is the case for many Asian countries such as Thailand, India and Indonesia. Support 

to this result is given by a positive correlation between the share of food in the CPI and the 

inflation responses to El Niño shocks. 

2.3. Predictability of ENSO Events 

Commonly, ENSO prediction models can be separated into three different categories, purely 

statistical models, physical ocean-statistical atmosphere hybrid models and fully physical 

ocean-atmosphere coupled models. Generally, an ensemble forecast seems more powerful than 
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individual forecasts and the different groups of models have their advantages in predictions 

with different lead times (Chen and Cane, 2008). 

 Fedorov et al (2003) state that it is difficult to predict El Niño events and attempts to do 

so have not been very successful at this time. According to them, the main challenge in 

predicting an El Niño event and its amplitude is that it is caused by an interplay between the 

Southern Oscillation and atmospheric noise. The authors arrive at the conclusion that the 

influence of random atmospheric disturbances differs, depending on the phase of the oscillation 

and thus, the predictability of specific El Niño events is limited. In an analysis of twelve 

different statistical and dynamic models, the authors find that for the 1997/98 El Niño, as well 

as for the 2002 El Niño, the forecasts regarding the timing, duration and magnitude were 

differing substantially from each other. The existing models are capable of predicting the 

occurrence of at least some El Niño events. However, the magnitude of those events is more 

difficult to predict since it depends on random atmospheric disturbances.  

 Chen et al (2004) use a coupled-ocean atmosphere model to predict El Niño events in 

retrospective with a lead time of up to two years. The authors conduct retrospective forecasts 

of ENSO events for a 148-year period from 1857 to 2003. This period is studied since 

observations dating back further are lacking quality. They find that El Niño events are mostly 

dependent on initial oceanic conditions (sea surface temperatures) and to a lesser extent on 

random and unpredictable atmospheric noise, although westerly wind bursts do have effects on 

the duration and amplitude of ENSO events. During the 148-year period examined, 24 El Niño 

(anomaly of 1℃ warmer water) and 23 La Niña (anomaly of 1℃ colder water) events have 

occurred in the Niño3.4 region in the Central Equatorial Pacific. The simple model used could 

predict most events at a six-month lead time and even with a two-year lead time the model 

could successfully predict major ENSO events. Nevertheless, errors exist in the forecasted 

amplitude of these events and in the predicted start of El Niño and La Niña periods respectively. 

One of the biggest issues of this model is the inability to predict smaller ENSO events. 

 Nowadays, the probabilistic forecasts of ENSO events by the International Research 

Institute for Climate and Society seem to provide a promising data source and method. These 

probabilistic monthly forecasts are available from 2002 onwards and include human 

judgements as well as model output (IRI, 2017).  
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2.4. Commodity Investments 

Investing in commodities entails various obstacles for investors such as the exposure to physical 

deliveries, regional price differences, various currencies and seasonality patterns. From a pure 

investment point of view, it generally is favourable if futures contracts imply cash settlement 

instead of physical delivery. Moreover, the commodity should be traded in the markets with 

sufficient liquidity to allow investments and divestments when necessary. Demidova-Menzel 

and Heidorn (2007) point out that despite high volatility, commodity investments can reduce 

overall volatility of a portfolio due to a low correlation with other asset classes such as stocks 

or bonds. Moreover, commodities are real assets and thus are strongly linked to inflation rates 

and can offer a natural hedge against value changes of money. 

2.4.1. Types of Commodity Investments 

Demidova-Menzel and Heidorn (2007) provide a distinct overview on commodity investments. 

Commodity related investments include direct investments in physical commodities, direct 

investments into commodity-exposed companies and investments into commodity products 

such as futures, options, ETF’s or other structured products. Investments into physical 

commodities, if available, require physical storage for the commodity and thus can be difficult. 

Direct investments into commodity-exposed companies do not require physical storage for an 

investor but inherit a different obstacle. An investment in commodity exposed companies is not 

a pure investment into a specific commodity as many companies are horizontally or vertically 

diversified. Moreover, an equity investment also depends on other factors that influence the 

earnings and value of the company, e.g. general stock market conditions. According to 

Demidova-Menzel and Heidorn (2007), studies show, that the correlation of returns on 

commodity related companies are closer correlated to overall equity markets than to their 

underlying commodities. Commodity futures offer tradability including the opportunity of 

taking both long and short positions in commodities. Additionally, they are often cash settled 

and are closely linked to the underlying commodity price. One major issue which commodity 

futures inherit lies in rather short-term contract lengths and thus a high exposure to seasonality 

and short-term volatility in the underlying price.  

Demidova-Menzel and Heidorn (2007) take a detailed look on commodity futures 

indices. These allow investments in a basket of commodities, e.g. agricultural commodities or 

an aggregate investment into Arabica coffee. This is important as futures are usually specific 

on one commodity type and region and thus a broad variety of futures exists per commodity. 
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Moreover, commodity futures indices also provide the service of rolling over expiring futures 

into new futures according to a predetermined roll strategy.  

 Indices based on commodity futures provide three sources of returns - the spot price 

return of the underlying commodity, collateral return and roll return. The collateral return is the 

yield earned by an investment into the risk-free rate, assuming the full value of the underlying 

futures is invested. The roll return is generated from exchanging close-to-expiration futures 

contracts into longer-maturity contracts. Depending on the current slope of the term structure 

of futures prices and the rolling strategy, this return can be positive or negative.  

2.4.2. Commodity Futures Investment Strategies 

Lesmond et al (2001) show that the availability of short selling is a key characteristic of futures 

investment strategies. In contrast to equity markets, short selling in futures markets is relatively 

easy. Positive abnormal returns in equity momentum strategies rely heavily on short-sales, 

although in practice it can be difficult to take short positions in equities. 

Narayan et al (2015) examine momentum-based trading strategies in commodity futures 

markets. They allow for long and short positions in the best and worst performing commodities 

and find that investors can earn statistically significant profits with momentum-based trades. 

They base their analysis on oil, gold, silver and platinum futures as these commodities account 

for more than two thirds of total trading volumes in commodity markets. Wang and Yu (2004) 

examine contrarian futures-based trading strategies. They find return reversals over a one-week 

time horizon in several futures markets, among them commodity futures markets, and suggest 

that it is possible to generate abnormal profits from contrarian commodity strategies even after 

transactions costs. Vrugt et al (2004) employ macroeconomic trading signals based on business 

cycles, monetary policies and market sentiment and find that these signals can generate 

profitable trades.  
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3. Empirical Approach 

This part will be structured as follows. First, the data employed in this study is explained and 

critically discussed. Second, the methodology employed for measuring ENSO related price 

effects is described including (1) correlations and Granger causality tests, (2) time series 

regressions and (3) mean return analysis. Third, the methodology utilized for trading strategies 

and historical performance tests is explained. 

3.1. Data 

3.1.1. Data Description 

This thesis is reliant on following data sources: the United States National Oceanic and 

Atmospheric Administration (NOAA, 2017) for ENSO related weather data, BLOOMBERG 

(2017) for commodity price indices and the iLibrary of the Organization for Economic Co-

operation and Development (OECDiLibrary, 2017) for inflation data. 

 The NOAA publishes monthly data on the two ENSO measures Oceanic Niño Index 

(ONI) and Southern Oscillation Index (SOI), starting in 1950. Both measures indicate 

anomalies from long-term means. In the case of the ONI measure, a monthly calculated, three-

month running mean of Sea Surface Temperatures (SST) is employed for comparison to a long-

term average. Due to an overall warming trend of the sea temperatures, the 30-year average 

periods are adjusted by the NOAA to avoid incorporating global long-term weather trends in 

the forecasting of ENSO events. Specifically, the NOAA creates so-called centred 30-year base 

periods, which are updated every five years. For instance, during the period from 1961 - 1965, 

the SST anomalies are computed against the base period from 1946 - 1975. Since the 

encompassing 30-year period is not available in the present, the computations are compared to 

the last available base period, e.g. in 2017, the period from 1986 - 2015 is used. These base 

periods will be adjusted, as soon as data is available. The implication of this method is that SST 

anomalies from the most recent decade are subject to slight adjustments in the future, when new 

data points occur and the final 30-year averages can be employed. Table 1 provides summary 

statistics for the ENSO indicators ONI and SOI between January 1970 and December 2016. 
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Table 1 Summary Statistics for ENSO Indicators 

This table reports summary statistics for the monthly El Niño-Southern Oscillation (ENSO) measures Oceanic Niño 

Index (ONI) and Southern Oscillation Index (SOI). The monthly data is collected from the United States National 

Oceanic Atmospheric Administration (NOAA) for the period from January 1970 to December 2016. The NOAA 

definition requires ONI to breach a threshold of 0.5 for El Niño or -0.5 for La Niña for a minimum of five consecutive 

months. 

Measure Observations Mean SD Min Max 
      

ONI 564 -0.004 0.825 -1.900 2.300 

SOI 564 0.104 1.010 -3.600 2.900       

 

 The S&P GSCI Total Return commodity indices are chosen as a proxy for commodity 

prices throughout this paper. The dataset, withdrawn from BLOOMBERG, contains daily time 

series data for prices of 18 single commodity indices and one weighted commodity portfolio, 

the S&P GSCI TR index, an all commodities index2. The indices are based on commodity 

futures prices and employ a standard roll strategy. Indices using a standard roll strategy usually 

invest in a single futures contract, which is normally the first nearby, most liquid expiration 

month. Upon reaching expiration date, they roll-over in another single futures contract. 

Commodity indices are chosen for this thesis because they are reaching back as far as 1970 and 

are both directly investable and are based on an approach which is imitable for every investor. 

In order to match the ENSO measures retrieved from the NOAA, daily GSCI data is 

transformed to monthly data. In this procedure, the respective data point from the last trading 

day of each month is used. For the mean return analysis, the data is transformed to a three-

month basis.  

Additionally, OECD Inflation data is withdrawn from the OECD iLibrary. The collected 

time series reaches from February 1970 to December 2016 and provides monthly consumer 

price percentage changes for the entire basket. Table 2 provides summary statistics for monthly 

returns of the collected commodity price index data and OECD inflation. 

 

                                                 
2 The weights of the all commodities index are not reported. However, a high correlation between the all 

commodities index and crude oil returns (R = 0.91) indicates a high loading on petroleum commodities. 
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Table 2 Summary Statistics for Monthly Commodity Return Data 
This table displays summary statistics for monthly S&P GSCI Total Return commodity indices returns and inflation 

for member countries of the Organization for Economic Co-operation and Development (OECD). The commodity 

index data is collected from BLOOMBERG and returns data reaches from February 1970 to January 2017. For some 

commodities data is not available for the entire time frame. OECD inflation data is collected from the OECD iLibrary 

data base and reaches from February 1970 to December 2016. 

Commodity Observations Mean STD Min Max       

All Commodities 565 0.0073 0.0578 -0.2820 0.2577 
      

Wheat 565 0.0027 0.0793 -0.2527 0.4239 

Corn 565 0.0025 0.0765 -0.2280 0.4655 

Soybean Meal 265 0.0148 0.0814 -0.2042 0.3015 

Soybeans 565 0.0099 0.0814 -0.2198 0.5683 

Soybean Oil 145 0.0026 0.0730 -0.2510 0.2668 

Cocoa 397 0.0000 0.0815 -0.2494 0.3522 

Coffee 433 0.0046 0.1074 -0.3089 0.5424 

Cotton 481 0.0046 0.0701 -0.2258 0.2752 

Sugar 529 0.0071 0.1157 -0.2969 0.6863 
      

Aluminium 313 -0.0004 0.0549 -0.1676 0.1592 

Zinc 313 0.0038 0.0720 -0.3417 0.2806 

Lead 265 0.0087 0.0831 -0.2743 0.2703 

Nickel 289 0.0082 0.0985 -0.2748 0.3516 

Copper 481 0.0104 0.0769 -0.3555 0.3843 

Gold 469 0.0055 0.0561 -0.2041 0.2823 

Silver 529 0.0079 0.0957 -0.4687 0.5591 
      

Crude Oil 361 0.0086 0.0961 -0.3243 0.4889 

Heating Oil 409 0.0090 0.0920 -0.2886 0.3760 

       

OECD inflation 563 0.0047 0.0035 -0.0094 0.0187 

      

3.1.2. Critical Discussion of Data Sources 

This part briefly discusses potential shortcomings and the reasoning for choosing the ENSO 

related weather data of the NOAA and the S&P GSCI Total Return commodity indices.  

Both the measurement of effects as well as the trading strategies are based on ONI 

measures. Since these are publicly available, prices could already be affected before the official 

ENSO limits, set by the NOAA, are breached. Probabilistic predictions for ENSO events 

provided by the NOAA could mitigate this issue due to possible timing advantages. However, 

such predictions are also published and the historical availability is limited. Thus, it was decided 

to use the ENSO measures presented above for the purposes of this paper. 

 Employing GSCI Total return data as a proxy for commodity prices entails two issues. 

First, the process of rolling can significantly affect the performance of commodity investments 

and second, the data quality of GSCI indices prior to their launch is questionable. As Erb and 
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Harvey (2006) find, rolling yields can affect the performance both positively and negatively, 

depending on the respective term structure of futures prices. The standard case, in which a 

commodity has a lower spot price than forward price, is called contango. Opposite to that is a 

relationship known as backwardation, in which the spot price of a commodity is higher than the 

forward price. Erb and Harvey (2006) analyse the cross-section of commodity futures returns 

and find a negative roll return in two thirds of analysed commodities and a positive roll return 

in one third of the analysed commodities. S&P GSCI Total Return indices employ a standard 

roll strategy in which the about-to-expire futures contract is rolled over into the next nearby 

contract month, which can be expensive in a contango environment.  

The second issue with index data is that the calculation of historical values prior to the 

launch of the GSCI indices in 1991 can reduce the quality of the data. According to S&P Dow 

Jones Indices (2017), back-testing procedures are subject to limitations due to an application of 

index methodology in hindsight. The reasoning for choosing index data regardless is that data 

provided by other sources such as the World Bank (2017) are often based on prices for physical 

goods and, thus, unsuitable for the purposes of this thesis. 

 Furthermore, historical performance tests with more frequent than monthly data points 

could have been beneficial to implement advanced trading conditions (e.g. stop loss conditions). 

However, as the ENSO measures, employed as buying signals for the trading strategies, are 

only available monthly, it was decided to transform the entire data set to a monthly basis. 

3.2. Methodology for Measuring of Effects 

The methodologies used to study economic effects of ENSO events in existing literature are 

mainly reliant on Granger causality tests (e.g. Brunner, 2002; Laosuthi, 2007), correlations 

(Laosuthi, 2007), vector autoregressive models (Brunner, 2002; Ubilava, 2012; Cashin et al, 

2015) or smooth transition vector error correction (Ubilava and Holt, 2013). This thesis utilizes 

correlations, Granger causality, OLS time series regressions and a mean return analysis. 

3.2.1. Granger Causality Tests and Correlations 

Granger causality tests are employed to identify if precedent variation in the Oceanic Niño 

Index has explanatory power of variations in commodity prices. Before conducting Granger 

tests, the time series data is tested on stationarity. For these purposes, Augmented Dickey Fuller 

tests are applied. The time series data of the ONI measure and commodity indices are tested 
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positively on stationarity. Therefore, the data does not have to be transformed. The following 

relationship is tested: 

 

ONIt−k  → 𝑅𝑖,𝑡 

 

where ONI refers to the ENSO measure Oceanic Niño Index at time t-k, R is the return of 

commodity i at time t, k is the lag in months. The tests are estimated for a lag of three and six 

months. In the results part correlations and Granger estimates are displayed (see Section 4). 

3.2.2. Times Series Regression Model 

Regressions are utilized in order to measure potential effect directions and sizes. In the time 

series regression model, an ordinary least squared (OLS) approach is followed and commodity 

returns are regressed on the ENSO measure while controlling for OECD Inflation. This control 

variable is selected to adjust for macroeconomic effects. Regressions are run of the following 

form: 

 

𝑅𝑡,𝑖 = 𝛼𝑖 + 𝛽0,𝑖 ∗ 𝑂𝑁𝐼𝑡 + 𝛽1,𝑖 ∗ 𝐼𝑁𝐹𝑡 + 𝜖𝑡,𝑖 

 

where R is the total return of commodity index i at time t, ONI represents the ENSO measure 

at time t, INF is the OECD inflation rate at time t and 𝜖 is the model error term at time t for 

commodity i. As independent variables are chosen without lags, this model relies on the 

assumption that changes in ENSO data are priced in immediately. In addition to the whole 

dataset, the regression is estimated for two subsets. Subset I contains only periods in which ONI 

values are greater or equal to zero, Subset II contains the periods in which ONI values are 

negative. Therefore, Subset I captures mainly El Niño related effects and Subset II primarily La 

Niña related impacts. The aim of choosing these subsets is to investigate possible differing 

effects in the two ENSO phases. 

3.2.1. Mean Return Analysis 

For visualising the development of ENSO price effects and potential lags, mean returns of 

historical phases of La Niña and El Niño are plotted versus mean returns over neutral periods. 

ENSO events were selected based on the official NOAA definition that ONI values must remain 

at a level greater or equal to 0.5 for El Niño and smaller or equal to -0.5 for La Niña for at least 
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five consecutive months. Furthermore, we define ENSO phases to always start in June and 

reach to May in the following year because ENSO events, both El Niño and La Niña, usually 

start in the second half of the year, reaching the peak in northern winter and decrease 

subsequently. Defining yearly phases starting in June ensures a long enough timeframe for 

comparison purposes, yet allows for clear distinction between separate phases. Out of the 46 

year-long periods from June 1970 to May 2015, 16 El Niño phases and 14 La Niña phases were 

identified, the remaining 16 are neutral. If an ENSO event lasts longer than one year it is 

separated into more phases. The identified event phases are shown in Table 3.  

For reduction of noise, monthly returns are cumulated to three-month returns for the 

entire dataset. The three-month periods are defined to include the months June-August, 

September-November, December-February and March-May. These periods are selected as they 

match into the previously defined year-long event phases. Finally, the mean returns for these 

three-month periods are computed and plotted for defined El Niño, La Niña and neutral phases. 
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Table 3 Identified ENSO Event Phases 

This table displays identified El Niño-Southern Oscillation (ENSO) phases from 1970 to 2016. The phases are 

defined to start in June and end in May of the following year and selected to match the official definition by the 

United States National Oceanic Atmospheric Administration (NOAA). The NOAA definition requires ONI to 

breach a threshold of 0.5 for El Niño or -0.5 for La Niña for a minimum of five consecutive months. Of the 46 year-

long periods form June 1970 to May 2016, 16 were identified as El Niño phases and 14 as La Niña phases. The 

column month of breach shown in the table below refers to the initial breach of the ONI threshold or states ‘ongoing’ 

if the previous ENSO event extends over a period longer than one year.  

 

 El Niño Phases (June to following May)  

 

ENSO 

Periods 

Month of 

breach 

Months 

above 

threshold 

Max ONI 

 
      

 72/73 Jun-72 10 1.9  

 76/77 Oct-76 6 0.8  

 77/78 Oct-77 5 0.8  

 79/80 Nov-79 6 0.6  

 82/83 May-82 12 2.1  

 86/87 Oct-86 9 1.2  

 87/88 ongoing 9 1.6  

 91/92 Jul-91 12 1.6  

 94/95 Nov-94 6 1  

 97/98 Jun-97 12 2.3  

 02/03 Jul-02 9 1.2  

 04/05 Aug-04 10 0.7  

 06/07 Oct-06 5 0.9  

 09/10 Aug-09 10 1.3  

 14/15 Dec-14 7 0.8  

 15/16 ongoing 12 2.3  
          

 La Niña Phases (June to following May)  

 

ENSO 

Periods 

Month of 

breach 

Months 

above 

threshold 

Min ONI 

 
      

 70/71 Aug-70 11 -1.3  

 71/72 ongoing 8 -0.9  

 73/74 Jul-73 12 -1.9  

 74/75 ongoing1 10 -0.8  

 75/76 ongoing 10 -1.6  

 84/85 Nov-84 8 -1.1  

 88/89 Jun-88 12 -1.8  

 95/96 Sep-95 8 -0.9  

 98/99 Aug-98 11 -1.4  

 99/00 ongoing 12 -1.6  

 00/01 ongoing 9 -0.8  

 07/08 Sep-07 10 -1.4  

 10/11 Aug-08 10 -1.5  

 11/12 Sep-11 7 -0.9  
          

 

Note: (1) ONI values for September and October 1974 

below threshold.     
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3.3. Methodology for Trading Strategies and Historical Performance Tests 

Two types of ENSO timing strategies are generated at the per commodity level. The strategies 

are created identically in terms of entry dates, which are based on ENSO weather measures, but 

differ in terms of selling condition. In Selling Strategy I, a fixed holding period is set. Hence, 

varying exit months and holding periods for different ENSO events are implied. In Selling 

Strategy II, a fixed exit month is determined, implying identical exit dates for each commodity 

and each ENSO event. Subsequently, the strategies are tested on historical performance. 

Analysis of sea surface temperatures shows that both El Niño and La Niña events tend 

to start during boreal spring without showing significant temperature increases and effects. The 

changes in ONI data and weather become stronger and more obvious during boreal summer and 

autumn and usually peak in the winter months. Thus, entry trades are generally defined to be 

only placed in months within the six-month period from June to November when ENSO 

weather effects reach traction and public awareness starts to be prevalent. Below, it will be 

referred to the period between June and November as Entry Period. The first half of the year is 

excluded for following reason. An entry into a trade could be too early in the first half since 

temperature anomalies early in the year can be misleading. Moreover, ENSO events usually 

peak during the boreal winter, so an early investment could expose an investor to unwanted 

noise or seasonality. 

Two options were considered as underlying for the buying signal: the previously 

discussed ENSO weather data in form of ONI or SOI and more complex probabilistic forecasts. 

Due to a limited historical availability of the more accurate probabilistic ENSO event forecasts, 

the entry timing is based on ENSO measures. Reliable data for these measures (ONI, SOI) can 

be obtained from the NOAA from 1950 onwards. The two ENSO measures ONI and SOI show 

high negative correlation (R = -0.74). Given the correlation, we choose one of the measures as 

our trading signal, namely ONI. An investment into a commodity is only assumed if a signal is 

generated by ONI. The divestment follows according to the respective selling strategy.  

Next, two options for defining an ONI based signal for an investment into commodities 

were considered. The first one is triggered by a single rise above the threshold of 0.5℃ anomaly 

from the long-run average (i.e. an ONI value of greater or equal to 0.5 for El Niño events and 

a value smaller or equal to -0.5 for La Niña events) during the Entry Period. In the second 

option considered, the rise above the threshold must remain for at least three consecutive 

months. This three-month approach inherits the advantage of eliminating misleading signals 

(false positive). Nevertheless, implementing this buying strategy has two highly limiting 
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consequences. First, it indicates buy signals late and thus, the investor might miss early 

movements of commodity prices as reaction to a starting ENSO event. Second, if three 

consecutive months must be breached within the defined Entry Period, only signals which start 

before October will be captured. This limits possible investments and historical data from Table 

3 shows that some of the initial ENSO breaches occurred in October or even later. Since the 

single-month strategy only generated five misleading signals for El Niño (i.e. El Niño was 

indicated 21 times ex ante but only occurred 16 times) during the analysed period, emphasis is 

put on the first entrance strategy to incorporate early price reactions. In the case of La Niña, the 

single-month breach entry strategy generated 19 buy signals and 14 La Niña events occurred.  

Following the entry into trades, the determination of the exit signal or holding period 

are essential. We considered two simple non-commodity specific exit options. For Selling 

Strategy I the holding period is fixed and results are derived for holding periods of one and six 

months. Selling Strategy II implies an investment until a specific month between December and 

May following the ONI breach, independent on the time of the entry into the trade. Thus, the 

length of the holding period can vary between one and eleven months. Subsequently, geometric 

monthly returns and excess returns over a buy-and-hold strategy are calculated for each 

commodity. Results for the exit strategies are derived for Selling Strategy I for one and six 

months and for Selling Strategy II for exit in March. Results for Selling Strategy I are explained 

in Section 4.2., results for Selling Strategy II are stated in the Appendix. 

For tests of historical performance of previously described strategies, again S&P GSCI 

indices are used because these are based on futures prices and follow a roll-over approach which 

would have been historically imitable by any investor. In Section 3.1., the reasoning for the 

choice of S&P GSCI indices and the methodology behind these futures-based indices is 

explained in more detail. The tests for ENSO based strategies begin with the availability of 

investable commodity products in 1970. Due to varying time series length of the commodity 

indices, the historical test could not be conducted back to 1970 for all commodities. The tests 

for the trading strategies are started with only three commodity indices in 1970 (corn, wheat 

and soybeans) and the most recent one added is soybean oil in 2005. All in all, 18 different 

commodity indices are analysed over time from 1970 to the beginning of 2017. 

The described trading strategies are based on characteristics and patterns of ENSO 

events and do not assert the claim of being the best possible trading strategy for past returns. 

There are ways to optimize these returns, especially by adjusting the trades on a per commodity 

basis since different commodities show varying responses to changes in weather patterns in 

terms of lags, lengths and magnitudes. 
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4. Results 

This section will be structured as follows. First, the results for measured effects will be 

presented. This includes the following parts: (1) The results for the correlations and Granger 

tests. (2) The results for the time series regression. (3) The mean return analysis. This part 

provides an extensive interpretation. (4) A summary of measured effects. Afterwards, the 

results of the trading strategies are reported and explained. 

4.1. Results for Measuring of Effects  

4.1.1. Correlations and Granger Test 

Table 4 reports the correlations and Granger causalities with lags of three and six months for 

all commodities on the ENSO measure ONI. Positive correlations indicate a positive return 

effect for El Niño and a negative effect for La Niña. Out of the total 19 commodity indices, 13 

show a negative effect. This indicates that El Niño (La Niña) mostly has a negative (positive) 

effect on commodity returns. It must be pointed out, however, that possible non-linear effects 

cannot be identified by correlations.  

In general, the correlations range from -0.1575 to 0.0492. The most negative being the 

petroleum commodities and the most positive being soybeans. The sizes of these correlations 

seem to be mainly in line with the correlations found by Laosuthi and Selover (2007). The 

authors find correlations for quarterly data between commodity returns and SOI (which has a 

high negative correlation with ONI, see Section 3.3.) within a range of -0.0778 to 0.0658 for 

those commodities which are part of our study. However, they find differing direction of 

correlations for coffee and cotton. The correlation coefficient for the all commodity index is  

-0.0776. The reason for the highly negative result for the all commodities index might be the 

overweighting of petroleum in this index. The index shows a Granger causality with a P-value 

of 0.0619 at a lag of six months which would be considered statistically significant with 90% 

confidence. 

The correlations for agricultural commodity returns show mainly negative values apart 

from soybeans, cocoa and cotton. The largest negative coefficients are the ones of soybean meal 

and soybean oil with a value of -0.0647 and -0.0788 respectively. However, the correlation of 

soybeans shows a value of 0.0492. The difference in sign of these the correlations of these 

commodities is contrary to expectations as soybean meal and oil are related products to 

soybeans. Furthermore, for soybean oil and soybeans, the estimates suggest a Granger causality 
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at the six-month lag level, for soybean oil also at the three-month level. Wheat has a correlation 

coefficient of -0.0364 and shows statistically significant Granger causalities both for the three 

and six month lags. 

The results for metals show low correlation estimates in absolute terms compared to 

agriculture commodities. Nickel and copper show the lowest correlation coefficients with 

values of -0.0379 and -0.0263 respectively and gold and silver the highest with values of 0.0433 

and 0.0370 respectively. Granger causality was found for copper at the six-month lag level with 

a statistical significance at the 10% level. The correlations of the energy commodities crude oil 

and heating oil include the highest negative values, which seems to suggest that El Niño (La 

Niña) has a negative (positive) effect on returns.  

Further, the correlation for crude oil with ONI is -0.1575 and for heating oil the value 

is -0.1088. For crude oil the results suggest a Granger causality at the three- and six-month lag 

level but with higher statistical significance at the former. This suggests that a three-month 

lagged ONI time series is slightly more useful to predict crude oil returns. Heating oil shows 

statistically significant Granger causality for a lag of three months which indicates that the 

three-month lagged ONI value has predictive value for heating oil. 
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Table 4 Correlations and Granger Causalities of Commodity Returns on ONI Measures 

This table presents the results for correlations of commodities returns and the Oceanic Niño Index (ONI) as well as Granger 

causalities of the form: ONIt−k → 𝑅𝑖,𝑡, where ONI refers to the employed ENSO measure at time t-k, R is the return of 

commodity i at time t, k is the lag in months. For the Granger tests, F-statistics and p-values for three and six month lags are 

reported. The estimates are calculated for the returns of 19 S&P GSCI commodity indices, collected from BLOOMBERG, 

over the period from February 1970 to January 2017. The ONI data is collected from the United States National Oceanic and 

Atmospheric Administration. (*** p<0.01, ** p<0.05, * p<0.1) 

Commodities 

Correlations with 

ONI 

F-Statistic 

(3 lags) P Value 

F-Statistic 

(6 lags) P Value 
      

All commodities -0.0776 0.8560 0.4638 2.0153 0.0619* 
      

Wheat -0.0364 3.3295 0.0194** 1.9377 0.0729* 

Corn -0.0346 1.4460 0.2284 1.2986 0.2558 

Soybean meal -0.0647 1.3501 0.2587 1.0073 0.4211 

Soybeans 0.0492 1.6245 0.1826 2.2339 0.0387** 

Soybean oil -0.0788 4.3058 0.0062*** 2.3670 0.0337** 

Cocoa 0.0079 1.4848 0.2182 1.2156 0.2973 

Coffee -0.0372 0.3626 0.7801 0.3357 0.9180 

Cotton 0.0183 0.4807 0.6958 1.4063 0.2104 

Sugar -0.0466 0.2363 0.8711 0.8407 0.5388 
      

Aluminium -0.0006 0.3562 0.7847 0.8494 0.5327 

Zinc -0.0127 0.5579 0.6432 1.0333 0.4037 

Lead 0.0110 0.6643 0.5747 1.1204 0.3509 

Nickel -0.0379 0.2358 0.8714 0.8008 0.5700 

Copper -0.0263 0.2337 0.8729 1.9353 0.0737* 

Gold 0.0433 0.3169 0.8132 0.7202 0.6335 

Silver 0.0370 0.3909 0.7596 0.5133 0.7984 
      

Crude oil  -0.1575 2.7748 0.0413** 2.0428 0.0595* 

Heating oil -0.1088 2.1564 0.0927* 1.5336 0.1658 
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4.1.2. Times Series Regression Model 

Table 5 summarizes the multiple regression results of S&P GSCI commodity index returns on 

ONI and OECD inflation for the whole sample and the two subsets. Whereas Subset I only 

includes observations where ONI is greater or equal to zero (i.e. El Niño related observations), 

Subset II includes data points where ONI values are smaller than zero (i.e. La Niña related 

observations).  

In general, inflation has a positive and statistically significant relationship with 

commodity returns in many cases, especially with energy commodities. The inflation 

coefficients for crude oil and heating oil are 9.699 and 6.3662 respectively. This suggests that 

a one percent rise in the consumer price index on average goes along with a 9.699% rise in 

crude oil return. The positive relationship of commodity returns and inflation compares well 

with previous literature (e.g. Furlong and Ingenito, 1996; Gorton G., & Rouwenhorst, 

K.G.,2006.).  

For most commodities in the whole sample, the ONI coefficients show relatively low 

economic and statistical significance. For the whole data set the most significant and largest 

effects are measured for crude oil with -0.0192 and heating oil with a value of -0.0127 which 

provides evidence that El Niño (La Niña) has a negative (positive) effect on returns. The all 

commodities index coefficient for ONI with -0.0051 also shows a negative and statistically 

significant result. As there is evidence that the all commodities index is heavily weighted on 

petroleum, especially crude oil (the measured correlation coefficient of the all commodities 

index and crude oil returns is 0.9093), the similarity in effects was expected.  

The two subsets differ both in terms of measured effect size and statistical significance. 

Subset I shows ONI coefficients with lower economic magnitude of ONI coefficients and fewer 

commodities with statistical significance. The subset suggests statistically significant (ten 

percent level) negative effects for lead (-0.0197), nickel (-0.0258) and crude oil (-0.0207) and, 

thus, provides evidence for negative return effects during El Niño events. Subset II reports in 

general results with higher economical and statistical relevance compared to Subset I and the 

whole sample. According to the estimates, La Niña affects returns positively for commodities 

with statistically significant results. This is the case for the all commodities index with an ONI 

coefficient of -0.0221, which is a gain comparable to the results of the commodities crude oil 

and heating oil which show statistically significant ONI coefficients of -0.0306 and -0.0401 

respectively. The statistically significant results for agriculture commodities are corn (-0.0258), 

soybean oil (-0.0539), cotton (-0.0255) and sugar (-0.0397). For metals nickel copper and silver 
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are statistically significant and show ONI coefficients of -0.0378, -0.0242 and -0.0308 

respectively. 

For the two subsets, it is interesting to note that the ONI estimates do not only differ in 

the effect magnitude but partly also in terms of direction. This is the case for the agriculture 

commodities corn, soybeans, soybean oil, cocoa, cotton, sugar and the metal commodities zinc, 

lead and silver. For the energy commodities, the price effects are consistent in terms of direction 

for both subsets. This result indicates that the above-mentioned commodities have a similar 

price effect for both ENSO periods. However, the measured effects are in general larger and 

more significant for La Niña. 

In conclusion, the largest and statistically most significant effects are measured for La 

Niña periods and those happen to be always positive. Looking at commodities with a statistical 

significance level of at least five percent, corn, soybean oil, cotton, sugar, silver and heating oil 

show the largest positive return effects during La Niña. The less robust results for El Niño might 

indicate that El Niño has smaller non-significant effects on commodity returns. However, it 

could also be the case that El Niño effects are lagged in time (e.g. ONI showed a Granger 

causality for wheat and copper at the six-month lag level). Further, the ONI measures have non-

linear effects on certain commodity prices and, thus, it is indicated that both La Niña and El 

Niño can affect these prices in the same direction. 
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Table 5 Time Series Regression of Commodity Returns on ONI and Inflation 

 

  

This table reports results for the time series OLS regression of the form 𝑅𝑡,𝑖 = 𝛼𝑖 + 𝛽0,𝑖 ∗ 𝑂𝑁𝐼𝑡, + 𝛽1,𝑖 ∗ 𝐼𝑁𝐹𝑡 + 𝜖𝑡,𝑖, where R refers 

to the total monthly return of commodity i at time t, ONI represents the ENSO measure Oceanic Niño Index at time t, INF is the 

OECD inflation rate at time t and ϵ is the model error term at time t for commodity i. The model is run for monthly S&P GSCI 

Commodity index returns collected from BLOOMBERG. Return data is available from February 1970 to January 2017, however not 

for all indices. The inflation data is collected from the OECD iLibrary. The model is estimated for the whole sample and two subsets. 

Subset I contains only data points for which ONI is greater or equal to zero (El Niño related). Subset II contains data for which ONI 

is smaller than zero (La Niña related). (*** p<0.01, ** p<0.05, * p<0.1) 
 

Whole sample  Subset I (ONI ≥ 0)  Subset II (ONI < 0) 

 

Intercept 

ONI 

Measure Inflation Obs.  Intercept 

ONI 

Measure Inflation Obs.  Intercept 

ONI 

Measure Inflation Obs.                

All commodities -0.0064 -0.0051* 2.936*** 563 
 

-0.0039 -0.0057 2.9808*** 280 
 

-0.0172** -0.0221** 2.3232** 283 
               

Wheat -0.0024 -0.0034 1.0792 563 
 

-0.0055 -0.0016 1.4094 280 
 

-0.0012 -0.0047 0.6851 283 

Corn -0.0036 -0.0031 1.3023 563 
 

-0.0080 0.0067 1.0511 280 
 

-0.0181* -0.0258** 1.0047 283 

Soybean meal 0.0125* -0.0060 0.7911 263 
 

0.0133 -0.0084 1.4348 114 
 

0.0140 -0.0046 0.4770 149 

Soybeans 0.0055 0.0050 0.9334 563 
 

0.0010 0.0073 1.6170 280 
 

0.0047 -0.0026 -0.0617 283 

Soybean oil -0.0062 -0.0039 5.3359** 143 
 

-0.0151 0.0147 3.7814 61 
 

-0.0351** -0.0539** 4.4483 82 

Cocoa 0.0075 0.0008 -2.2830 395 
 

0.0076 -0.0036 -1.4139 194 
 

0.0136 0.0069 -3.0085 201 

Coffee -0.0058 -0.0055 2.8110 431 
 

0.0061 -0.0122 1.3137 215 
 

-0.0110 -0.0008 4.6628* 216 

Cotton -0.0038 0.0009 1.9453** 479 
 

-0.0014 0.0016 1.9552* 255 
 

-0.0207** -0.0255** 1.4049 224 

Sugar -0.0010 -0.0064 1.7125 527 
 

-0.0209 0.0147 2.8833 265 
 

-0.0126 -0.0397** -0.3808 262 
               

Aluminium -0.0052 0.0002 1.7846 311 
 

0.0118 -0.0040 -2.3635 160 
 

-0.0256*** -0.0145 4.9314*** 151 

Zinc 0.0057 -0.0012 -0.8480 311 
 

0.0141 -0.0076 -1.8894 160 
 

0.0034 0.0017 0.1854 151 

Lead 0.0089 0.0010 -0.3625 263 
 

0.0299** -0.0197* -1.4626 114 
 

0.0101 0.0150 1.4344 149 

Nickel 0.0048 -0.0042 1.4350 287 
 

0.0324** -0.0258* 0.0016 138 
 

-0.0254* -0.0378* 1.3307 149 

Copper 0.0031 -0.0033 1.7284* 479 
 

0.0098 -0.0042 0.9925 255 
 

-0.0154 -0.0242* 2.5812 224 

Gold 0.0007 0.0027 1.0986 467 
 

-0.0003 0.0021 1.4782 243 
 

0.0017 0.0007 0.3725 224 

Silver -0.0048 0.0047 2.6734** 527 
 

-0.0093 0.0148 2.7535* 265 
 

-0.0254** -0.0308** 1.5884 262 
               

Crude oil -0.02*** -0.0192*** 9.699*** 359 
 

-0.0137 -0.0207* 8.7029*** 187 
 

-0.0315** -0.0306* 10.3747*** 172 

Heating oil -0.0122* -0.0127** 6.3662*** 407 
 

-0.0084 -0.0166 7.2224*** 202 
 

-0.0279** -0.0401** 4.7216** 205 
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4.1.3. Mean Return Analysis 

Figure 5, 6 & 7 show selected plots for the results of the mean return analysis. Mean returns 

are calculated for each commodity over four subsequent three-month periods, given El Niño, 

La Niña and neutral phases. Returns are cumulated to three-month periods to reduce noise in 

the plots. However, periods are differing from usual quarters to match the defined one-year long 

ENSO phases starting in June. Relative developments of returns during ENSO events and 

neutral periods suggest ENSO event return effects. We employ dummy variable regressions to 

test for statistical significance of these return differences3. If results of these tests show 

statistical significance, it will be highlighted in the description of results below. However, only 

a limited number of commodities show statistical significance. One reason for that could be the 

limited sample size. Graphs are displayed in this part for selected commodities for which the 

plots indicate relatively large effects. These commodities include the agriculture commodities 

soybeans, wheat, corn, sugar, cotton and cocoa; the metals nickel and zinc; as well as the energy 

commodities, crude oil and heating oil. It is noteworthy that the mean-return plots are 

fluctuating substantially for most commodities and thus indicate changing effects over time. In 

most cases, no consistent positive or negative excess return over the neutral periods becomes 

evident and the excess returns change from positive to negative or vice versa during the one-

year period. Therefore, the interpretation of the mean-return plots does not claim absolute 

propriety and emphasis is laid on statistically significant results. When interpreting the effects 

per commodity, we draw links to previous literature and the precipitation maps (see Figure 3 

& 4) as well as the findings from Granger tests and OLS regressions. 

According to Figure 5, soybeans mean returns suggest a strong negative initial reaction 

during El Niño phases. In subsequent periods from September to May however, the El Niño 

mean returns remain higher compared to neutral means. Statistical significance is found for the 

negative impact in the first period. This result is in line with the argumentation in previous 

literature (e.g. Cashin et al, 2015), that El Niño can benefit soybean production due to wetter 

than normal climate in Southern America and the United States. According to the Food and 

Agriculture Organization of the United Nations (FAOSTAT, 2017), the countries with largest 

                                                 
3 For this procedure commodity returns are regressed on dummy variables indicating specific periods. Two dummy 

variables are included for the La Niña and El Niño phases defined in Table 3 and three dummy variables for the 

three-month periods defined for the mean variance analysis (period 4 is excluded to avoid multi-collinearity). 

Additionally, interaction terms of the two ENSO event variables with the three period variables are added, which 

results in six additional terms. Finally, the OECD Inflation was added to control for macroeconomic effects. The 

coefficients of the interaction terms are studied to draw inferences about the incremental effects and statistical 

significance of having both an ENSO phase and one of the three periods in place. 
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soybean production are the United States, Brazil and Argentina. Iizumi et al (2014) find 

statistically significant results for global soybeans crop yields being positively affected during 

El Niño. These results are in accordance with Cashin et al (2015). Their results claim that the 

highest positive impacts are evident for North- and South America. The subsequent reversal in 

returns is counterintuitive to this explanation. However, one reason could be a mean-reverting 

tendency. For La Niña, the measured effects are mainly converse to El Niño. Following the 

logic from above, one interpretation could be that dryer conditions in South America and in the 

United States potentially harm crop production and might cause the prices of soybeans to 

increase. However, statistical significance is not found for these results. As can be seen in the 

result sections above, soybeans show a statistically significant Granger causality at the six-

month lag, but do not show any significant results for coefficients in the time series regressions. 
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Figure 5 Selected Mean Return Plots for Agriculture Commodities 

The figure shows plots of mean returns for six selected agriculture commodities over El Niño, La Niña and neutral phases. 

The phases are defined to start in June and end in the following May and are selected to match the official definition by the 

United States National Oceanic Atmospheric Administration (NOAA). For these purposes, 16 El Niño phases, 14 La Niña 

phases were identified. The year-long phase is divided into four periods for which mean returns are calculated (June-August, 

September-November, December-February and March-May). S&P GSCI commodity indices data is used as proxy for 

commodity prices. The price data starts in February 1970 and reaches to January 2017 but not all commodities indices are 

available for the whole timeframe. 
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Soybean meal and oil are derived products of soybeans which are created during 

soybean processing. Thus, it is expected that price effects show similar directions to soybeans 

in both ENSO phases. Correlations in returns with soybeans are 0.91 and 0.77 for soybean meal 

and soybean oil respectively. Confirming expectations, this relation becomes also apparent to 

a certain extent in the mean return plots, in which specific similarities in development can be 

seen (see Appendix B: Figure I for mean return plots of these commodities). Interestingly, La 

Niña mean returns show high magnitude positive return reactions for soybean oil for the first 

three periods. The OLS results from Section 4.1.2. also suggest a large statistically significant 

positive coefficient for soybean oil during La Niña. Soybean meal shows statistically significant 

effects in the second three-month period. For El Niño, the results suggest negative return 

reactions for the first three-month period for all soybean related commodities. However, the 

effects are reverting to a positive effect in the second three-month period (for soybean oil 

statistically significant). The mean-return analysis of soybean oil reveals relatively high 

variances in mean returns. One explanation for this volatility could be the short time-series of 

soybean oil which only starts in 2005 and thus is significantly shorter than for the other 

commodities analysed. Taken together, the results suggest negative effects for soybeans and 

soybean related commodities in the initial three-month period of El Niño phases, reverting to 

positive return effects in the second period. For La Niña, we measure a positive tendency 

especially in the second three-month period, which is generally in line with the findings of the 

OLS regression. 

 The results for wheat returns provide confirmatory evidence for large positive effects in 

La Niña phases, especially in period one and period three, in which also statistical significance 

for the incremental effects are found. For El Niño, the mean returns are consistently above the 

neutral periods means and the plot also suggests positive effects, especially for the second 

period. The results of the Granger tests in Section 4.1.1. suggest a statistically significant 

prediction power of the ENSO measure ONI on wheat at a lag level of three and six months. 

FAOSTAT (2017) reports China, India, the United States and Russia to be the countries with 

largest wheat production. According to the findings of Iizumi et al (2014), global crop yields 

for wheat fall during both ENSO phases, but in particular during La Niña events. The authors 

find negative yield impacts in parts of North America and Australia during El Niño phases. 

During La Niña phases, South America and Russia are countries which are negatively affected. 

The suggested effects in the plot are in line with findings of Iizumi et al (2014), as positive 

return differences from neutral periods are especially high during La Niña events but also 

existing during El Niño phases. Ubilava (2014) finds similar results for La Nina, but a small 
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negative return impact for El Niño. In summary, wheat returns experience mainly positive 

effects from both ENSO phases. 

For corn, the graph suggests effect similarities in terms of direction with wheat for La 

Niña phases and to some extent also for El Niño events. Yet, the magnitude of the measured 

difference for La Niña phases is smaller. The evidence for positive La Niña effects is also 

supported by the findings from the regression analysis of Subset II in the previous part. The 

mean returns for El Niño suggest a negative effect in the first three-month period but revert to 

a positive effect especially during the consecutive months from September to November. 

According to FAOSTAT (2017), countries with the highest corn output are the United States, 

China and Brazil. Iizumi et al (2014) find statistically significant evidence for negative crop 

yield impacts on corn on a global scale during both phases. Since lower crop yields tend to push 

prices upwards, these findings are mainly in line with results in this thesis. Yet, the plots suggest 

a positive return impact in El Niño phases only after the first three-month period. The difference 

in findings could be explained by lagged price effects, different geographical focus of 

commodity price data or rolling cost distortions in the indices employed in this study. All in all, 

a clear effect for corn in El Niño phases cannot be derived due to a lack of statistical 

significance. In contrast, the effects for La Niña are generally positive and in line with OLS 

regression results. 

Figure 5 shows that during the first three periods in La Niña phases, sugar returns are 

on average substantially positive compared to neutral phases. Apart from the very first three-

month period, the plot suggests also a large positive effect for El Niño phases. These return 

patterns are in line with the OLS regression analysis, despite a lack of statistical significance 

for El Niño results. According to FAOSTAT (2017), Brazil and India are by far the largest 

producers of sugar canes. Like wheat and corn, sugar crops are sensitive to droughts and require 

sufficient rainfall to thrive (FAOSTAT, 2012). Therefore, a lack of rain in the major cultivation 

areas during El Niño periods can impact production yields negatively and, thus, returns 

positively. In La Niña periods, both dryness in southern India but also wet and warm conditions 

in northern Brazil are common. Taken together, sugar is affected positively by both ENSO 

phases. 

The results for cocoa do not suggest a clear effect for El Niño, as the mean returns are 

fluctuating around the mean returns of neutral periods and are mainly low in magnitude. An 

exception is the last period, for which the plot suggests a large negative return impact. La Niña 

observations in general suggest larger effects, with a negative direction during summer and 

autumn but a substantially positive effect during winter (statistically significant). The countries 
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with largest cocoa production are Ivory Coast, Ghana and Indonesia (FAOSTAT, 2017). From 

a weather point of view, El Niño is expected to cause dryness in Indonesia and parts of Ivory 

Coast and Ghana. Hence, it is expected that prices are pressured upward on average. However, 

the plot does only suggest a clear direction in the last period, in which the mean return difference 

is negative. In contrast, La Niña weather patterns should benefit crop yields due to opposing 

weather effects. The expected effects for La Niña are in line with the earlier described returns 

during summer and autumn, but surprisingly not with the subsequent statistically significant 

positive returns during winter. A comparison with the findings of the OLS regression in the 

previous part is not insightful as the measured coefficients showed minor economic and 

statistical significance. Further research is needed to develop a better understanding of the 

ENSO influence on cocoa crop yields and returns. 

 Regarding cotton, we find changing, but similar effect directions for both phases in the 

first three periods. The results suggest negative effects in the first period for both ENSO phases, 

but the effect reverts for the two subsequent periods. In the final period, El Niño mean returns 

remain higher than neutral mean returns, but La Niña mean returns fall to a negative level. For 

La Niña, we measure statistically significant positive return effects in the OLS regression and 

in the dummy regression for the third period. Interpreting these results from an agricultural 

point of view, FAOSTAT (2017) reports China, India, United States and Pakistan as the 

countries with the largest cotton production. Fraisse (n.d.) finds evidence that while La Niña 

impacts crop yields negatively on average, El Niño phases show geographically differing 

effects. Whereas areas in the southeast tend to have lower crop yields during El Niño phases, 

areas in the mid-south show higher yields on average. The southern states of the US often 

experience dryness during La Niña phases. These results are mainly in line with the findings in 

this paper as higher average returns compared to neutral periods are found both for El Niño and 

La Niña phases. Another reasoning for higher cotton returns during El Niño phases could be 

higher likelihood for dryness in India and parts of Pakistan due to disturbance of the monsoon. 

In summary, evidence for La Niña is strong and clear in favour of positive return effects, while 

interpretation for El Niño is ambiguous.  
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This study includes the metals lead, nickel, zinc, aluminium, copper, silver and gold. Due to 

less apparent or fluctuating effects as well as a less clear intuitive link between ENSO events 

and metal returns, only the plots for nickel and zinc are shown and discussed in this section. 

Figure 6 suggests that El Niño events impact nickel price returns positively during the 

first two periods but subsequently effects are reverting and returns show a negative difference 

from December to May. The OLS regressions show statistically significant negative impact in 

El Niño phases while the dummy regression indicates statistically significant return effects. For 

La Niña, the plots show a positive mean return difference in the first two three-month periods 

(statistically significant in the first period) and suggest a strong negative effect in the last period. 

The OLS regression supports these findings with statistically significant positive return effects 

(90% confidence). This is contrary to the argumentation of Cashin et al (2016) who argue that 

heavy rainfalls during La Niña periods in Indonesia – one of the largest producers of nickel – 

let prices decrease due to Indonesia’s reliance on hydropower. With the same reasoning, they 

suggest rising prices due to disturbed monsoon and less rainfall during El Niño events. To sum 

up, we find evidence for positive return effects during La Niña. However, these findings are 

contrary to possible qualitative explanations. For El Niño, the evidence is unclear. 

 For zinc, the plot shows opposite and large mean return differences in the second period. 

In this period, the plot suggests that La Niña affects returns positively and El Niño negatively, 

relative to the neutral periods. Subsequently, according to the mean return plots, both El Niño 

Figure 6 Selected Mean Return Plots for Metals 

The figure shows plots of mean returns for two selected metal commodities over El Niño, La Niña and neutral phases. The 

phases are defined to start in June and end in the following May and are selected to match the official definition by the 

United States National Oceanic Atmospheric Administration (NOAA). For these purposes, 16 El Niño phases, 14 La Niña 

phases were identified. The year-long phase is divided into four periods for which mean returns are calculated (June-August, 

September-November, December-February and March-May). S&P GSCI commodity indices data is used as proxy for 

commodity prices. The price data starts in February 1970 and reaches to January 2017 but not all commodities indices are 

available for the whole timeframe. 
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and La Niña show meaningful negative effects compared to the neutral periods. According to 

our dummy regression, La Niña has a statistically significant positive impact on zinc returns in 

the first three-month period. However, the link between weather disturbances and returns is not 

clear for zinc. Nevertheless, one reasoning for the negative price impact during El Niño phases 

could be that floods in Peru hinder the production of zinc and thus prices show positive 

reactions. In general, results for zinc do not provide sufficient evidence to allow meaningful 

inferences.  

 

 

 The similarities of the crude oil and heating oil plots suggest a close link between these 

two commodities which becomes also apparent in the correlation (R = 0.88). Both, crude oil 

and heating oil show negative effects for El Niño events in the first three-month period. 

Subsequently, both crude oil and heating oil returns show negative absolute returns in the two 

three-month periods from September to February. In general, the OLS regressions find a 

negative impact of EL Niño on returns (statistically significant for crude oil). La Niña plots 

offer evidence for a negative effect only in the first three-month period for both, crude oil and 

heating oil. Subsequently, La Niña effects revert and are positive. This is in line with the OLS 

regression findings. As El Niño regularly stimulates temperatures in North America, Canada 

and Japan, resulting in warmer winters and potential lower demand for oil, prices are expected 

Figure 7 Mean Return Plots for Petroleum Commodities 

The figure shows plots of mean returns for the commodities crude oil and heating oil over El Niño, La Niña and neutral 

phases. The phases are defined to start in June and end in the following May and are selected to match the official definition 

by the United States National Oceanic Atmospheric Administration (NOAA). For these purposes, 16 El Niño phases, 14 La 

Niña phases were identified. The year-long phase is divided into four periods for which mean returns are calculated (June-

August, September-November, December-February and March-May). S&P GSCI commodity indices data is used as proxy 

for commodity prices. The price data starts in February 1970 and reaches to January 2017 but not all commodities indices 

are available for the whole timeframe. 
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to fall during this period. Mainly opposite weather effects are true for La Niña and thus, prices 

are assumed to rise. Another explanation might be a change from the supply side. Supply can 

be positively affected during El Niño periods due to beneficial weather in Mexico. La Niña 

events instead often cause disruptions through severe storms in the Gulf of Mexico and thereby 

narrow the supply of oil. Cashin et al (2015) find contrasting results to those stated in Figure 7. 

By employing impulse-response functions, the authors find positive oil price returns as reaction 

to El Niño caused oil price shocks. This is contrary to the findings derived from above plots 

and interpretation of ENSO weather impacts. In summary, petroleum commodity returns are 

mainly positively influenced by La Niña events and negatively by El Niño events. 

4.1.4. Summary of Measured Effects 

In summary, the results indicate the existence of larger and statistically more significant effects 

in La Niña phases for most of the commodities.  

For El Niño, we find negative return effects on soybeans and soybean related 

commodities as well as for crude oil and heating oil. In contrast, El Niño affects wheat and 

sugar returns positively. The other commodities, namely cocoa, corn, cotton, nickel and zinc, 

do not reveal clear effects for El Niño phases.  

La Niña shows significant positive return impact on several commodity. Soybeans and 

soybean related products, wheat, corn, sugar, cotton and nickel are positively affected during 

La Niña phases. Results for cocoa and zinc are ambiguous while crude oil and heating oil are 

negatively impacted during La Niña phases. 
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4.2. Trading Strategy Results 

In contrast to the empirical analysis conducted in the prior parts of the paper, this section 

presents a more detailed perspective on potentially achievable trading results. The trading 

strategies employed serve the purpose of demonstrating the possibility of ENSO related 

investments, which are triggered by a breach of specific ONI thresholds as a buying signal. As 

described in Section 3.2., historical performance is tested for different trading strategies in both 

El Niño and La Niña periods and compared to a buy-and-hold strategy over the whole sample 

period.  

Table 6 and Table 7 report the results for Selling Strategy I for El Niño and La Niña, 

including a fixed holding period of one and six months4. Fixed holding periods are chosen to 

visualise effects for equal investment lengths across commodities and for different ENSO 

events. The holding periods are chosen as one and six months to show the variation inherited 

in differing investment horizons. To put the trading strategy results in perspective, the buy-and-

hold returns are added to the tables as comparison. Monthly geometric excess returns over the 

respective monthly geometric buy-and-hold returns are derived for each commodity and both 

holding periods. Trades are triggered by a breach of the ONI threshold of +/- 0.5℃ deviation 

from the long-term mean.  

Table 6 shows the historical performance for Selling Strategy I during El Niño events. 

More specific, the results are shown for the 18 commodities analysed in this paper and the 

investment horizon lies between February 1970 and January 2017. Entry signals are generated 

by a breach of the +0.5℃ ONI threshold and the exit follows according to the fixed holding 

period of one or six months. The monthly geometric buy-and-hold return corresponds to the 

whole sample period. The commodities are ranked according to their one-month excess return 

over the buy-and-hold strategy, starting with the highest.  

In general, the trading strategy causes both positive and negative excess returns in the 

two holding periods. Both, positive and negative returns can be beneficial to the investor, 

depending on the respective long or short positioning in the market. Since commodity index 

futures data is chosen to examine the returns, the availability of long and short positioning for 

the investor is given. Comparing the monthly excess returns of the one-month and six-month 

holding periods, significant differences between these two become evident. In general, the 

shorter holding period triggers bigger movements in excess returns, both positive and negative. 

                                                 
4 Results for Selling Strategy II and exit month March can be found in the Appendix. 
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This holds true for all commodities but wheat, heating oil and crude oil. These commodities 

show relatively low absolute excess returns for the one-month period and slightly higher 

absolute excess returns for a six-month holding period. One possible explanation for this 

observation is that ENSO events cause initial prices spikes which tend to revert to some extent 

afterwards. The one-month holding period captures only the initial spikes but not the following 

reversal.  

In addition, a few commodities show a change in direction of the excess returns when 

comparing one-month holding period to six-month holding period (aluminium, copper, zinc, 

soybean oil, soybeans and corn). For these commodities, the reverting effects seem to exceed 

the initial price spike. However, it is possible that the reversion is subject to a seasonal pattern 

or other effects, depending on the respective commodity. According to the results, coffee, 

nickel, silver and zinc with values of 4.18%, 3.87%, 3.81% and 3.28% respectively show the 

largest positive monthly geometric returns (higher than three percent) for the trading strategy 

with a one-month holding period. The returns for these commodities fall drastically when 

increasing the holding period to six months. The commodities with lowest returns for the one-

month period are soybean meal with -5.73%, sugar with -2.42%, soybean oil with -2.32% and 

soybeans with -2.04%. Also in this case, six-month holding period returns are far smaller. 

Interestingly, for crude oil the results are in line with the statistically significant results from 

the OLS regression (see Section 4.1.2.). For nickel and lead, the negative return effect suggested 

by the OLS regression cannot be recognized. The measured effects for the first three-month 

period in the mean variance analysis suggest similar effects to the performance of trading 

strategies with one-month holding period. For all commodities for which such measured effects 

are statistically significant (see Footnote 3 for details on significance measurement), i.e. coffee, 

nickel and soybeans, the trading strategy returns have similar directions. 



 40 

Table 6 Historical Performance of Selling Strategy I for El Niño Phases 

The table reports a summary of the historical performance of Selling Strategy I during El Niño phases. The buying 

signal is a single ONI threshold breach of 0.5 within the period from June to November. The respective geometric 

monthly excess return over the buy-and-hold strategy is derived for the holding period of one and six months. 

Commodities are ranked by their one-month excess returns from highest to lowest. The investment horizon lies 

between February 1970 and January 2017, not all commodities are available for the entire period.  

Commodity 

1 Month 

Excess Return 

6 Month 

Excess Return 

Buy-and-hold 

Return 

 

Number of Invested 

Months (1M 

Holding Period) 
 

   
 

Coffee 0.0418 0.0108 -0.0008 16 

Nickel 0.0387 0.0063 0.0033 10 

Silver 0.0381 0.0021 0.0030 20 

Zinc 0.0319 -0.0018 0.0011 12 

Lead 0.0192 0.0023 0.0058 8 

Gold 0.0186 0.0018 0.0038 18 

Cotton 0.0181 0.0050 0.0021 19 

Copper 0.0108 -0.0025 0.0074 19 

Aluminium 0.0066 -0.0005 -0.0020 12 

Cocoa 0.0063 0.0048 -0.0041 14 

Heating Oil -0.0007 -0.0136 0.0049 15 

Wheat -0.0048 0.0049 -0.0004 21 

Crude Oil -0.0082 -0.0146 0.0044 13 

Corn -0.0093 0.0011 -0.0003 21 

Soybeans -0.0204 0.0011 0.0067 21 

Soybean Oil -0.0232 0.0098 -0.0013 4 

Sugar -0.0242 -0.0003 0.0008 20 

Soybean Meal -0.0573 -0.0222 0.0116 8 

         

 

Figure 8 exemplifies the historical performance of the trading strategies with a six-month 

holding period for the case of sugar. The graph shows the cumulative performance for the El 

Niño investment strategy, La Niña investment strategy and a buy-and-hold strategy over the 

whole sample period from 1970 to 2017. When a buying signal for El Niño or La Niña 

investments is generated, the sugar commodity index is purchased and held for six months. 
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The simple buy-and-hold strategy resembles the performance of the sugar commodity index 

over the whole sample period. Two extreme spikes become obvious, one in 1974 and one in 

1980/81. As one can see, the 1974 price spike was in alignment with a La Niña period and 

consequently the La Niña trading strategy was beneficially affected by the hike. The 1980/81 

extreme occurred during an El Niño period and thus, the El Niño trading strategy could generate 

abnormal positive returns. Due to timing of entry and exits, the La Niña strategy performs better 

than the El Niño strategy and the buy-and-hold in this specific sample period. A large fraction 

of this superior return results from the early phase of the sample and the before-mentioned 

spikes. The number of invested months for the El Niño and La Niña strategies is significantly 

lower than for the buy-and-hold strategy.  

 Table 7 provides the historical performance for Selling Strategy I during La Niña phases. 

The reasoning and methodology is similar as explained above for El Niño phases apart from 

the fact that a breach of the ONI threshold is now recognised once the temperature deviates 

more than -0.5℃ from the long-term average.  

Figure 8 Historical Performance of Sugar ENSO Trading 

 

This Figure plots cumulative returns for sugar, employing an El Niño, La Niña and buy-and-hold strategy. The buying 

signal is a single ONI threshold breach of +/-0.5 within the period from June to November. The investments follow a fixed 

holding period of six months. The historical performance test uses S&P GSCI sugar index data which is available from 

1973 and reaches to January 2017.  
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Table 7 Historical Performance of Selling Strategy I for La Niña Phases 

The table reports a summary of the historical performance of Selling Strategy I during La Niña phases. The buying 

signal is a single ONI threshold breach of 0.5 within the period from June to November. The respective geometric 

monthly excess return over the buy-and-hold strategy is derived for the holding period of one and six months. 

Commodities are ranked by their one-month excess returns from highest to lowest. The investment horizon lies 

between February 1970 and January 2017, not all commodities are available for the entire period. 

Commodity 

1 Month 

Excess Return 

6 Month 

Excess Return 

Buy-and-hold 

Return 

Number of Invested 

Months (1M 

Holding Period) 
 

   
 

Lead 0.0628 -0.0076 0.0058 9 

Sugar 0.0412 0.0167 0.0008 17 

Crude Oil 0.0319 0.0028 0.0044 11 

Heating Oil 0.0296 0.0145 0.0049 14 

Soybean Oil 0.0256 -0.0016 -0.0013 5 

Nickel 0.0175 -0.0007 0.0033 9 

Silver 0.0156 -0.0004 0.0030 17 

Wheat 0.0153 0.0047 -0.0004 19 

Zinc 0.0091 -0.0045 0.0011 9 

Aluminium 0.0088 -0.0059 -0.0020 9 

Cotton 0.0087 0.0003 0.0021 14 

Copper 0.0038 -0.0019 0.0074 14 

Soybeans 0.0024 -0.0078 0.0067 19 

Gold -0.0008 -0.0002 0.0038 14 

Soybean Meal -0.0098 0.0032 0.0116 9 

Cocoa -0.0112 -0.0080 -0.0041 13 

Corn -0.0115 0.0047 -0.0003 19 

Coffee -0.0425 0.0026 -0.0008 14 

         

 

In general, comparing El Niño and La Niña trading on a one month basis, the results 

suggest a positive return effect for more commodities during La Niña, as only five commodities 

show a negative monthly geometric return. Yet, this does not hold in the longer term. For all 

commodities apart from soybeans, the absolute excess returns are higher in the case of a one 

month holding period. Thus, similar to before, the results indicate a relatively high initial La 

Niña response of commodity returns. Eleven commodities even change the direction of excess 

returns comparing one-month holding period with six and, thus, highlight the significance of 

timing for overall trading performance. Moreover, our findings suggest that it is necessary to 

further examine each individual commodity to find the optimal holding period in relation to 

ENSO based trading. The commodities with a positive excess return above three percent are 

lead with a value of 6.28%, sugar with a value of 4.12% and crude oil with a value of 3.19%. 

Again, the geometric excess returns decrease significantly with an increase in holding period, 
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in the case of lead the excess returns even revert. Regarding the results with negative excess 

returns, coffee shows particularly large negative returns with a value of -4.25%. The La Niña 

trading strategy results for a one-month holding period are highly in line with the findings in 

the OLS regression (Section 3.2.), in which positive and statistically significant results are found 

for sugar, crude oil, heating oil, soybean oil, nickel, silver, copper, cotton and corn. Hence, corn 

is the only commodity for which differing evidence in the trading strategies is found. For La 

Niña, the measured effects for the first three-month period in the mean variance analysis suggest 

similar effects to the performance of trading strategies with one-month holding period. All 

commodities for which such measured effects are statistically significant (see Footnote 3), i.e. 

lead, nickel, wheat and zinc, the trading strategy returns have similar directions. 

In the following, the trading strategy results for coffee, sugar, cocoa, nickel and crude 

oil are discussed in greater detail. It appears, that coffee delivers the most robust trading results. 

The effect is exactly opposite with high positive one-month excess returns during El Niño 

(4.18%) and strong negative one-month excess returns during La Niña (-4.25%). Interestingly, 

the findings of the effect measurement in Section 4.1. are less clear and suggest the following. 

In the mean return analysis, the El Niño effects measured are statistically significant positive 

(90% confidence), for La Niña effects are less clear. The OLS regression does not report 

statistically significant results. The performance of sugar is in line with the effects found in the 

OLS regression and mean-return analysis. La Niña weather drives sugar prices upward (4.12% 

one-month excess return) while El Niño weather conditions cause an initial drop in prices 

(--2.42% one-month excess return) and a reversion afterwards (-0.03% one-month excess 

return). Moreover, cocoa delivers constant positive excess returns in El Niño phases (0.63% 

one-month excess return and 0.48% six-month excess return) and constant negative excess 

returns in La Niña phases (-1.12% one-month excess return and -0.8% six-month excess return). 

These findings for cocoa are in line with the qualitative explanation given in the mean-return 

analysis, even though the mean-return plots do not clearly support this. As suggested by the 

plots from the mean-return analysis, nickel shows high initial positive price reactions to both 

El Niño and La Niña events (3.87% one-month excess return for El Niño and 1.75% one-month 

excess return for La Niña). Subsequently these positive excess returns diminish and eventually 

turn negative. The patterns found for crude oil in the employed OLS regression and mean-return 

analysis are mostly consistent with the performance of the conducted trading strategy. Crude 

oil prices react negative to beneficial weather conditions and increased supply during El Niño 

phases and negative due to non-beneficial weather conditions during La Niña phases. The one- 

and six-month holding period El Niño excess returns of -0.82% and -1.46% confirm these 
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findings as well as the positive La Niña excess returns of 3.19% and 0.28% for one- and six-

month holding period respectively.  

 Overall, the strategies suggest high monthly geometric excess returns in absolute means 

over the continuous buy-and-hold for most of the commodities during El Niño and La Niña 

events. Comparisons of results with both the measured effects in prior sections and qualitative 

explanations, provide strong indication that these are ENSO related and not pure chance. 

Furthermore, the measured returns for the one-month period suggest higher monthly geometric 

returns, providing evidence that price reactions are happening quickly, thus, timing is essential. 

5. Limitations of Approach 

This part discusses the limitations of the employed empirical approach. As the utilized data is 

already critically discussed in Section 3.1.2., this part focuses on the methodology. First, the 

general assumption of the empirical model is discussed. Afterwards, we discuss the employed 

models specifically. 

 In the case of this thesis, historical data is utilized to estimate models which could allow 

predictions for future commodity price developments. Therefore, it is important to discuss 

factors which might alleviate the assumption of reoccurrence of historical patterns. Regarding 

the demand side of commodity markets, increased possibilities for substituting commodities 

might mitigate future ENSO effects on commodity prices. Substitution could happen in terms 

of geographical origin, e.g. due to ongoing globalisation and further reduction of transportation 

costs. Consequently, commodity buyers can relatively easy switch to suppliers from other 

countries if weather affects crop yields locally. On the other hand, commodity purchasers could 

substitute ENSO reliant commodities with alternative commodities which are less dependent 

on weather effects. One example for substituting effects is described by Caviedes (2001) where 

a decline in fish meal production due to weather changes was substituted in the 1970s by 

soybean meal as major source for animal forage. Another more general case is the substitution 

of fossil fuels by biofuels, studied by Ji and Fan (2012). 

Another influencing factor of the world demand for commodities are so-called super 

cycles, as seen in the beginning of the new century with exceptional growth in developing 

countries, especially China. By today, China accounts for almost 50% of the world’s industrial 

metal consumption and is a major driver in world commodity prices. Moreover, sudden income 

growth in China, but also in India and other developing countries led to an increase in 

worldwide demand and agricultural commodity prices. As this growth cycle now normalises, 
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the pressure on commodity prices releases and thus could significantly impact future price 

developments (World Bank, 2015).  

From the supply side perspective, producers of agricultural commodities might be able 

to react quicker to approaching ENSO events in the future due to advancements in forecasting 

methods (Section 2.3.). Thereby, they can adapt fertilization and type of cultivated crop in order 

to mitigate the impact of ENSO related weather changes on their harvests. What is more, 

improvements in storage and preservability could potentially have mitigating effects on ENSO 

related negative crop yield impacts.  

Granger causalities suggest that past values of one time series are useful for predicting 

another time series (Granger, 1969). However, statistically significant Granger causalities 

between two variables do not necessarily imply that a true cause and effect relationship exits. 

For example, when considering two variables, where one variable Granger causes the other, it 

could be the case that both are affected by an unknown exogenous variable with different lags. 

In this paper, such a case is considered unlikely due to the exogeneity of the ONI as weather 

related measure.  

Next, the limitations of the OLS regression are discussed. As macro-economic effects 

could have confounding influence on the dependent variable, inflation was added as a control 

variable. Moreover, utilizing OLS regressions does not account for possible non-linarites or 

lagged effects. Through the separation of the dataset into two subsets with negative and non-

negative ONI values, it is accounted for differing effect sizes and directions of the two ENSO 

phases. However, for studying lagged and non-linear effect sizes, the mean return analysis is 

employed. 

 One limitation of the employed mean return analysis is the limited number of historic 

ENSO phases that overlap with the time horizon of utilized time series data. This issue is 

especially problematic for commodities for which time series data is available only after 1970 

as this limits the sample size. Due to this fact, it is not surprising that statistical significance 

was only found for a relatively small number of analysed commodities (see Footnote 3). The 

utilization of commodity data with longer historic availability could have alleviated this issue. 

However, such data is often not derived from the common financial markets such as stock 

exchanges, but rather determined in local auctions or other price finding mechanisms which do 

not necessarily resemble globally available investment possibilities. As the aim of this study 

was to demonstrate investment opportunities and thus the possibility of investing is key, 

futures-based index data was chosen. Another important characteristic of the mean-return 

analysis is the fact that due to a relatively small number of events which are incorporated, 
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extreme events can influence the outcome significantly. Mean-returns in this paper are not 

adjusted for extreme events as the underlying reason for most of these extreme price changes 

is not determinable with certainty. Thus, it is frequently ambiguous whether these extremes are 

ENSO related. Furthermore, the selection of ENSO phases was conducted in accordance with 

the official definition of the NOAA, but defined by us as one-year long from June to the 

following May (see Table 3). A one-year period was chosen for comparability reasons. 

However, some of the ENSO events last longer than one year. Such ENSO events were split 

into more than one year-long periods. For example, the La Niña event lasting over three years 

from 1998 to 2001 was separated in to three single one-year La Niña phases. This approach was 

followed in order to increase the sample size of ENSO events. However, one could argue that 

ongoing ENSO phases can have differing effects on commodity prices from single-year ENSO 

events. 

 The trading strategies in this thesis are based on ENSO related weather data and 

performance is measured based on historical commodity index returns. Due to limited 

frequency of ENSO events and a relatively short timeframe, a separation into in-sample and 

out-of-sample period is not performed. Therefore, the trading strategies are not evaluated on 

their forecasting performance and rather serve as indication. Moreover, in the historical tests of 

the strategies trading costs are neglected.  

6. Concluding Remarks 

Existing research on economic ENSO effects mainly examines the influence of ENSO on 

economies and commodity prices. This paper contributes to existing research by studying price 

effects based on investable commodity index data and by pointing out ways how to exploit 

ENSO related return patterns. In order to shed light on different aspects of commodity return 

effects, the empirical approach in this paper is threefold. Granger causality tests are employed 

to analyse if ENSO related climatological data has predictive value for commodity index 

returns. OLS time series regressions indicate effect direction and size. Finally, mean return plots 

in combination with dummy variable regressions provide information about the development 

of effects over time and potential lags.  

In summary, the results of the effect measurements indicate the existence of larger and 

statistically more significant effects during La Niña phases for most of the commodities. La 

Niña shows significant positive impact on soybeans and soybean related products, wheat, corn, 

sugar, cotton and nickel. Crude oil and heating oil instead are negatively impacted during La 
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Niña phases. For El Niño, we find negative return effects on soybeans and soybean related 

commodities as well as for crude oil and heating oil. In contrast, El Niño affects wheat and 

sugar returns positively. In general, we only find meaningful qualitative explanations for a link 

between ENSO and agricultural as well as petroleum commodities. For such commodities, we 

find the clearest effects inherit in soybean oil, corn, sugar, cotton, crude oil and heating oil. 

The study of ENSO effects serves as first step towards enhancing our understanding of 

ENSO related investing. Subsequently, trading strategies for exploiting such effects are defined 

and tested on historical performance. ENSO related climatological data is the underlying 

measure for the buying signal. The overall findings for the trading strategies suggest high 

monthly geometric excess returns in absolute means for most of the commodities during both 

ENSO events. Measured effects and qualitative explanations suggest that these returns are 

ENSO related. Furthermore, we find evidence that ENSO events are priced in quickly, thus, 

timing is indispensable. Finally, due to several limitations in the empirical approach, caution 

must be exercised when interpreting results. The futures-based indices can be affected by rolling 

yields and the sample size is constrained due to a lack of historical availability. Changing trends 

in commodity markets reduce the meaningfulness of results for the future. The most important 

limitation inhibited in the model is the impact of extreme events, affecting especially the mean 

return analysis and historical performance tests.  

We conclude that ENSO with its two distinct phases, El Niño and La Niña, has impact 

on returns in futures-based commodity index data. Furthermore, we find evidence that 

opportunities to exploit this relationship in commodity futures markets exist but depend on the 

respective commodity. 
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Table I Historical Performance of Selling Strategy II El Niño 

The table shows a summary of the historical performance of Selling Strategy II during El Niño phases, employing 

March as exit month. The buying signal is a single ONI threshold (+0.5℃) breach within the period from June to 

November. The respective geometric monthly excess return over the buy-and-hold strategy is derived for the exit 

month March. Commodities are ranked by their one-month excess returns from highest to lowest. The investment 

horizon lies between February 1970 and January 2017, not all commodities are available for the entire period. 

Commodity 

March Excess  

Return 

Buy-and-hold  

Return 

Number of Invested 

Months 
 

   

Soybean Oil 0.0084 -0.0013 30 

Coffee 0.0067 -0.0008 125 

Nickel 0.0060 0.0033 76 

Cotton 0.0052 0.0021 143 

Lead 0.0031 0.0058 63 

Silver 0.0027 0.0030 148 

Aluminium 0.0013 -0.0020 91 

Corn 0.0010 -0.0003 155 

Soybeans 0.0001 0.0067 155 

Gold -0.0013 0.0038 138 

Wheat -0.0014 -0.0004 155 

Zinc -0.0016 0.0011 91 

Copper -0.0027 0.0074 143 

Cocoa -0.0027 -0.0041 107 

Heating Oil -0.0073 0.0049 116 

Sugar -0.0100 0.0008 148 

Crude Oil -0.0101 0.0044 102 

Soybean Meal -0.0207 0.0116 63 
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Table II Historical Performance of Selling Strategy II La Niña 

The table shows a summary of the historical performance of Selling Strategy II during La Niña phases, employing 

March as exit month. The buying signal is a single ONI threshold (-0.5℃) breach within the period from June to 

November. The respective geometric monthly excess return over the buy-and-hold strategy is derived for the exit 

month March. Commodities are ranked by their one-month excess returns from highest to lowest. The investment 

horizon lies between February 1970 and January 2017, not all commodities are available for the entire period. 

Commodity 

March Excess 

Return 

Buy-and-hold  

Return 

Number of Invested 

Months 
 

   

Sugar 0.0177 0.0008 124 

Crude Oil 0.0138 0.0044 81 

Heating Oil 0.0126 0.0049 98 

Copper 0.0094 0.0074 98 

Corn 0.0012 -0.0003 140 

Soybean Meal 0.0127 0.0116 63 

Cotton 0.0021 0.0021 98 

Silver 0.0029 0.0030 124 

Coffee -0.0013 -0.0008 98 

Wheat -0.0011 -0.0004 140 

Soybean Oil -0.0021 -0.0013 32 

Gold 0.0016 0.0038 98 

Lead 0.0013 0.0058 63 

Nickel -0.0016 0.0033 63 

Cocoa -0.0094 -0.0041 96 

Zinc -0.0061 0.0011 63 

Aluminium -0.0092 -0.0020 63 

Soybeans -0.0022 0.0067 140 
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Figure I Remaining Mean Return Plots 

  



 iv 

  

Figure I shows plots of mean returns for nine selected commodities over El Niño, La Niña and neutral phases. The phases 

are defined to start in June and end in the following May and are selected to match the official definition by the United 

States National Oceanic Atmospheric Administration (NOAA). For these purposes, 16 El Niño phases, 14 La Niña phases 

were identified. The year-long phase is divided into four periods for which mean returns are calculated (June-August, 

September-November, December-February and March-May). S&P GSCI commodity indices data is used as proxy for 

commodity prices. The price data starts in February 1970 and reaches to January 2017 but not all commodities indices are 

available for the whole timeframe. Statistical significance is found for effects of coffee (El Niño, period 1), lead (La Niña, 

period 1), soybean meal (La Niña, period 2). 
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Figure II Remaining Trading Strategies 
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Figure II displays trading strategy plots which are showing cumulative returns per commodity, employing an El Niño, La 

Niña and buy-and-hold strategy. The buying signal is a single ONI threshold breach of +/-0.5 within the period from June 

to November.  The investments follow a fixed holding period of six months. The historical performance test uses S&P GSCI 

sugar index data which is available from 1973 and reach to January 2017.  
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