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Abstract 
 

Building on a new method of pricing options by modelling the underlying risk-neutral distribution with 
‘physicist’ Hermite polynomials, we assess the properties of these distributions over time. We employ 
a set of S&P 500 index options ranging from 2007 to 2016. First, we provide a detailed overview of the 
estimation process for Gauss-Hermite risk-neutral densities. Second, we derive a simple method of 
directly expressing risk-neutral skewness and kurtosis from the estimated parameters of the 
distributions. Owing to high correlations between these moments, we focus on skewness in our analysis. 
We also highlight some problems associated with the tail-shape of Gauss-Hermite risk-neutral densities 
extracted from real-world option quotes. By careful filtering we can however remove those problematic 
densities. Third, we create a time-series index of skewness, which we find to be closely linked to the 
CBOE SKEW index. Fourth, we find that risk-neutral skewness is a mean-reverting, volatile and auto-
correlated time series. However, the variation in skewness over time cannot be sufficiently modelled by 
autocorrelation or using returns of the underlying. Also, while we do find evidence that time-varying 
skewness is positively related to out-of-sample pricing errors, a large portion of the variation of risk-
neutral densities remains unexplained. We conclude that while Gauss-Hermite risk-neutral densities are 
sufficiently well behaved to study for risk-neutral moments given appropriate filtering, our analysis 
suggests that they might not contain more information than other methods used in this context. 
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1. Introduction 
The standard approach for pricing options is the Black-Scholes model. However, its 

assumptions are somewhat restrictive and do not hold up to the data very well. Specifically, it 

has been shown that stock-returns historically have not followed the Gaussian distribution. As 

this is widely known, traded option prices typically do not fully adhere to the standard model. 

This again has been shown with Black-Scholes implied volatilities following a U-shaped 

pattern when plotted against strike prices (Macbeth and Merville, 1979). This so-called 

volatility-smile is a way of adjusting the implied distribution for fatter tails. However, over time 

new models for pricing options emerged to account for a non-flat implied volatility surface 

(IVS). Those models are less restrictive in their assumptions and can handle non-Gaussian 

return distributions. By calibrating these models to the prices of traded options, the underlying 

risk-neutral density (RND) implied by the market can be backed out.  

These RNDs can be thought of a representation of the markets risk aversion and the 

expected probability distribution of an assets future return. Thus, studying dynamics of these 

implied distributions might reveal information that can be used by market participants and 

central banks alike. While there is only mixed evidence about how predictive RNDs are of 

future returns, their higher moments can still be a way of measuring investors' expectations and 

market sentiment. An increasingly large body of research has been focussed on the question of 

how much information is embedded within option prices, and over time, this branch has 

progressively made use of new (option pricing) methods for backing out risk-neutral densities. 

However, most of the literature on this topic is comparatively mature and has been concerned 

with pre-2007 datasets. Also, while new formal pricing models have been introduced over time, 

some of them have not yet been studied in this context. We thus propose to extend on the 

literature by exploring the feasibility of a new option pricing model to study for RND dynamics. 

We also employ a more recent set of S&P 500 index options (European exercise style) covering 

the period from January 3, 2007 to April 29, 2016. 

A promising candidate to do so is the pricing model proposed in Necula, Drimus and 

Farkas (2016). It builds on an expansion of the Gaussian distribution based on Hermite 

polynomials (thus the name Gauss-Hermite- or GH-expansion) that can be fit to option data. 

Also, it has been shown to price options comparatively well, both in- and out-of-sample. 

Necula, Drimus and Farkas (2016) report average pricing errors amounting to only 10% of a 

comparable expansion based method as developed in Corrado and Su (1996), as well as a 

slightly better performance when compared to spline-based parametrizations of the IVS. This 

points to comparatively stable RNDs and is the reason for us to choose this model.  
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Building on previous research and using this new technique of backing out RNDs, we 

hope to answer the following questions. First, we ask if GH-RNDs are suitable for extracting 

higher moments implied by option prices. This relates to the question of tail behaviour of GH-

RNDs. It also requires showing how to calculate measures of asymmetry and fatness of tails of 

these RNDs, based on the estimated coefficients of the expansion. Second, we ask how these 

measures evolve over time and whether they can be used to replicate some findings in the 

literature. 

Thus, we add to the literature in the following ways. First, we provide a detailed 

overview of the estimation process for Gauss-Hermite RNDs and show how the optimization 

can be expressed as a simple least-squares problem. Due to time-constraints we introduce a 

simplified method of estimating the first two moments of the distributions and slightly relax 

restrictions on the estimated densities. We however show that our estimation still produces 

comparable results to those obtained in Necula, Drimus and Farkas (2016). Second, we point 

out some problematic tail behaviour associated with the Gauss-Hermite method. Still, we find 

that careful filtering can ensure realistic RND estimates. Third, we derive simple formulas for 

skewness and kurtosis based on the estimated expansion coefficients, which we then use to 

build time-series indices of those moments. Interestingly, our skewness index is closely tied to 

the CBOE SKEW index, which however is calculated very differently. Fourth, we use these 

measures to study the dynamics of Gauss-Hermite risk-neutral distributions implied by options 

on the S&P 500. We find that changes in risk-neutral skewness and kurtosis are highly 

correlated, and for this reason we focus solely on the skewness index in the further analysis (as 

is often done in the literature). We also find that while the skewness index is a highly auto-

correlated series, changes in the index appear to be mostly random and shocks cannot be 

consistently attributed to returns of the underlying. Still, skewness is related to VIX levels as 

in times of extremely high implied volatility, skewness is small. Also, our measure of skewness 

is especially volatile during times of high volatility in the underlying. This is important, as we 

show that time-varying skewness explains some part of the variability in the out-of-sample 

pricing performance of the GH-expansion. However, a large part of RND dynamics cannot be 

accounted to either changes in the level of implied volatility or risk-neutral skewness. While 

our findings mostly confirm earlier studies that have been conducted on the IVS, they also 

imply that GH-RNDs do not contain more information than RNDs estimated with other 

methods do. This assessment is however limited, as we restrict our analysis to rather simple 

tests. Also, we do not show if other results in the literature are replicable, e.g. if the GH-RNDs 

predict actual return distributions. 
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The rest of this paper is structured as follows: We first provide a comprehensive review 

of the existing literature to motivate our topic in Chapter 2. In Chapter 3, we explore one well-

studied and one comparatively new method (Gauss-Hermite expansion) of backing out RNDs. 

We also show that skewness and kurtosis of the RND can be expressed as a linear combination 

of its estimated expansion coefficients, and we propose a possible definition for time-series 

indices of said moments. In the empirical section (Chapter 4), we introduce our dataset and 

proceed with the estimation of RNDs. We carefully compare our pricing performance with that 

of the relevant reference literature to ensure the validity of our optimization routine, given the 

simplified model employed in our paper. A short discussion about the tail-behaviour of GH-

RNDs follows and we introduce some additional filters to ensure well-behaved densities. We 

proceed by studying the evolution of risk-neutral skewness over time, both graphically and 

employing time-series analysis models and regressions. In Chapter 5, we provide a critical 

assessment of our results, their implications and links to the literature, and identify topics for 

future research. Lastly, Chapter 6 concludes. 
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2. Literature review 
2.1 Option pricing 

Options are derivative contracts offering the right to buy (call option) or sell (put option) an 

asset (underlying) at certain agreed upon prices (strike or exercise price) either at a specific date 

(maturity) or during a certain interval of time. Options are often traded as standardized contracts 

in regulated markets. Thus, their prices are set by the laws of supply and demand. However, as 

derivatives, their prices will also be tied to characteristics of the underlying. This and the 

uncertain payoffs of option contracts makes their valuation not straightforward. In the 

following, we highlight the evolution of important pricing models (for European exercise 

styles). 

 The first paper to evaluate stock options using mathematical methods is credited to 

Bachelier (1900), wherein he applied a Brownian motion to model a stochastic process, 

accounting for random movements in the underlying. However, by assuming the options value 

to rise in proportion to the square root of the time to maturity, this model significantly 

overpriced long-term option contracts. To obtain more realistic prices, Samuelson (1965) 

expanded on Bachelier’s idea by introducing a geometric Brownian motion instead. However, 

owing to economic arguments (diversification of risk and no-arbitrage arguments), Samuelson 

and Merton (1969) refuted the above models. 

These ideas were further revamped by Black and Scholes (1973) and Merton (1973), 

who pioneered the risk neutral valuation framework. The widely acknowledged and used Black-

Scholes-Merton (BSM) formula gives the price of a vanilla option under a series of assumptions 

that are necessary to ensure the condition of no arbitrage (constant risk-free rate, no transaction 

costs, borrowing at the risk-free rate and no constraints on short-selling). While these 

assumptions do not deviate from reality by much, the assumption of a constant volatility and a 

Gaussian distribution however are more problematic. Several early empirical studies including 

Macbeth and Merville (1979) and Hull and White (1987) provided a critique of the BSM 

formula which misprices deep in-the money and deep out-of-the money options. These 

irregularities can be observed by plotting BSM-implied volatilities (IV), defined as the 

volatility input in the BSM model that makes the theoretical price equal to that of the traded 

option, against strike prices over a fixed maturity. The result is a ‘U’ shape within the curve, 

often known as a volatility smile. This smile also varies across different maturities and periods 

(e.g. Homescu, 2011). At any given day, the different IV’s over a range of strike prices and 

times to maturities are referred to as an implied volatility surface (IVS). Empirically, this 

surface has been quite uneven, while the assumptions of the original BSM model would require 
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a flat surface. Thus, deviations from the BSM model again can be attributed to the restrictive 

assumptions of the model, especially that of log-normally distributed returns. Historically 

however, realized log-returns exhibited leptokurtic (fat-tailed) and asymmetrical distributions 

(see for example Fama, 1965 or Harris and Küçüközmen, 2001).  

While practitioners simply took the IV-smile as granted and learned to work around it, 

it was clear that the higher implied volatilities in the tails must stem from either market-wide 

non-constant (or non-zero) risk-aversion or from expected distributions of the underlying at 

maturity that exhibited fatter tails than the Gaussian distribution. Thus, implied risk-neutral 

distributions seemingly deviate from the assumption of a normal distribution. This resulted in 

academics starting to explore pricing models using processes that could explain this behaviour, 

or to focus on models that are able to deal with non-Gaussian distributions in closed form.  

On one hand, there are so called parametric approaches, which basically try to come up 

with pricing processes that are consistent with observed market prices. Early studies by Cox 

(1976) and Rubinstein (1983) utilized and modified the BSM formula by applying more 

realistic assumptions to the underlying stochastic processes and partially explained the biases 

prevalent in the BSM model. Also, other improvements such as the jump-diffusion process 

(Merton, 1976), stochastic volatility approaches (Heston, 1993), and lognormal mixture models 

(Melick and Thomas, 1997) have been proposed. These models further evolved into a 

combination of the previous techniques (Andersen, Fusari and Todorov, 2015).  

On the other hand, Jarrow and Rudd (1982) argued that parametric approaches often 

yield distributions that cannot be integrated analytically. This reliance on numerical methods 

of integration increases complexity. Also, while moments of empirical distributions might be 

well known, it is not straightforward to account for those moments using parametric 

approaches. These arguments gave rise to non-parametric models. So-called Edgeworth- or 

Gram-Charlier Type-A (GC-A) expansions (both consist of the same series but differ in the 

truncation of terms and thus accuracy) have been used by Jarrow and Rudd (1982) and Corrado 

and Su (1996) to introduce asymmetry and fat tails to RNDs. These series are based on 

'probabilist' Hermite polynomials. To ensure more realistic densities, Jondeau and Rockinger 

(2001) and Jurczenko, Maillet, and Negrea (2004) further added a non-negativity and a 

martingale restriction to earlier models, respectively. Generally, these expansion-based 

methods have the advantage that they can approximate non-normal distributions by modifying 

a Gaussian distribution with said Hermite polynomials. Also, and their coefficients directly 

reflect the distributions’ skewness and kurtosis, and integration is straightforward. Thus, they 
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have been widely used in the literature. However, compared to methods of interpolating the 

IVS or newer expansion-based models, their pricing performance is sub-par. 

This was affirmed in Necula, Drimus and Farkas (2016), who pointed towards the bad 

convergence properties of Edgeworth and GC-A series and instead proposed the use of Gauss-

Hermite polynomials for generating a modified RND. They also derived an easy to use closed-

form pricing model with coefficients that can be calibrated to option data and showed that their 

model significantly outperforms related methods in- and out-of-sample. Since this model to our 

best knowledge has not been used widely in the literature, and with its interesting properties, 

we decided to use it in our study of risk-neutral densities. It will be interesting to see how it 

performs in estimating densities that are not only able to price options more accurately, but can 

also be interpreted in a meaningful way.  

In this regard, time-series studies have been mainly focussed on simple measures like 

volatility, skewness and kurtosis of the implied RND. However, compared to Edgeworth and 

GC-A series, the estimated coefficients of the GH-expansion cannot be interpreted as easily, 

especially as the series is truncated at a larger number of terms. We take this as a motivation to 

derive some expressions that simplify the interpretation of GH-RNDs significantly, such that 

one can directly calculate skewness and kurtosis from the parameters of these distributions. 

Again, this will be especially useful when studying how RNDs evolve over time. Before doing 

so, we however first proceed by introducing the existing literature on time-series dynamics of 

the IVS and RNDs. 

 

2.2 Dynamics of the implied volatility surface 

In the implied volatility space, several methods have been suggested to account for such 

dynamics. Early studies by Schönbucher (1999) and Ledoit and Santa-Clara (1998) modelled 

dynamics of implied volatilities jointly with those of the underlying. Thus, stochastic volatility 

in the underlying was shown to diffuse into implied volatilities across all strikes. Other models 

studied how a set of underlying factors impact the shape of the IVS. The IVS was shown to be 

not perfectly correlated with returns of the underlying, and their dynamics are decomposed in 

level, slope and convexity effects, which also have been shown to be highly auto-correlated and 

mean-reverting (Skiadopoulos, Hodges and Clewlow, 2000 and Cont and Da Fonseca, 2002). 

However, the latter two components have appeared to only account for a small portion of the 

variation in the IVS. In risk-neutral space, these would correspond to the overall level of implied 

volatility, skewness and excess kurtosis.  
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Additional studies by Hafner (2005) and Goncalves and Guidolin (2006) have been 

concerned with dynamics of the IVS both in the cross-section and as time series. While Hafner 

(2005) again decomposed these dynamics into different risk-factors that in turn are affected by 

returns in the underlying and hence are stochastic, Goncalves and Guidolin (2006) in fact found 

that IVS movements were highly predictable and could be economically exploited (but only 

when assuming low transaction costs). Building on these insights, Bedendo and Hodges (2009) 

and Chen, Zhou and Li (2016) recommended the use of so called Kalman filters (linear and 

nonlinear ones, respectively) to improve IVS models. These have been shown to significantly 

improve pricing performance and to generate more robust forecasts.  

We conclude that dynamics of the IVS are to some degree predictable, but are also 

affected by more than one risk-factor, as correlation of the IVS with shocks to the underlying 

(and implied volatility) is far from perfect. These risk-factors correspond to the slope and 

curvature of the implied volatility surface, and thus must be related to skewness and kurtosis of 

the corresponding risk-neutral densities. Not surprisingly, these measures have been widely 

used in the literature on that topic.  

 

2.3 Dynamics of risk-neutral densities 

While some research has been conducted about new option pricing models to account for the 

volatility smile and many papers have studied its time series dynamics, a different branch of 

literature has been busy studying these dynamics in the risk-neutral space. They also 

investigated the informational content hidden in option implied RNDs and how that could be 

useful to market participants and regulators. Basically, they ask the question whether RNDs 

extracted from market traded options can be used in other areas than pure option pricing. This 

is interesting, as options contracts are exchange traded securities with their prices depending 

on future expected payoffs. Hence, their premia must reflect a combination of market-wide 

expectations and risk-aversion. (These individual effects are hard to disentangle and while some 

effort has been made on separating them, covering this would be beyond the scope of our paper.) 

Some questions that have been asked repeatedly in this context are: a) how option prices 

behave prior to and following market-relevant events, b) whether option prices can predict 

future moves in the underlying or related, whether they can accurately predict the future return 

distribution and its tail-risks, c) how they are related to market sentiment and d) how they can 

be interpreted by central banks. We highlight the most relevant findings in the following. 

An early study by Bates (1991) investigated, whether option prices reflected crash fears 

prior to the 1987 U.S. market crash. In fact, one year before the crash, out-of-the-money puts 
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were found to be relatively expensive compared to calls. This was reflected in negative risk-

neutral skewness. Still, Bates (1991) rejected the hypothesis of strong fears immediately prior 

to 'Black Monday' (October 19, 1987). Instead, they interpreted skewness as reflecting a 

growing demand for insurance in a market that has generally seen growing stock valuations in 

the prior years. Furthermore, Bates (2000) not only indicated that negative skewness persisted 

even after the 1987 crash, but also that this high implied market risk was not justified, given 

subsequent price movements. This points to the interpretation that risk-expectations in option 

prices in fact might lag movements in the underlying while they do not predict future price 

swings. Furthermore, this points to large risk-premia (basically the difference between risk-

neutral and real probabilities) associated with jump risks.  

Studying this in more depth, Alonso, Blanco and Rubio (2005) found that that the 

hypothesis that the RND predicted the future distribution of the underlying returns could not be 

rejected (for the Spanish market index). However, they did find long sub-periods where this 

relationship did not hold. Moreover, they pointed out that the RNDs significantly 

underestimated the right tail of the distribution. In contrast, Shiratsuka (2001) found that for the 

Japanese market, implied distributions contained information about future price movements, 

however not to a higher degree than historical distributions did. Additionally, the RNDs shape 

was affected by prior moves in the underlying, while in turn the shape of the RND predicted 

future movements in the underlying only for some sub-sample periods - RNDs can thus not be 

interpreted over time in a straightforward fashion. Similarly, Birru and Figlewski (2012), while 

acknowledging RNDs as a very detailed snapshot of investors' expectations in times of crisis, 

found that the RND merely reacted to movements in the underlying. This was affirmed by 

Gemmill and Saflekos (2000), who also pointed out that the implied RND still might reflect 

investor sentiment, which however appeared not to have any forecasting ability - RNDs can 

thus be used by the central bank or by market participants who wish to base their trading 

activities on divergences between their own and market expectations. Combining these insights, 

we see that there is very mixed evidence about the usefulness of RNDs to predict future 

movements in the underlying and to anticipate market crashes. Even if there is a relationship, 

it generally does not hold over time.  

Still, regarding the question if RNDs are affected by investors sentiment, Han (2008) 

conducted a thorough market research using sentiment proxies. According to his findings, there 

is some effect of sentiment on option prices, which turned out to be especially significant for 

bearish sentiment (more negatively skewed RND and a steeper volatility smile). Thus, market 

sentiment affects options prices, which however could not be explained by models assuming 
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perfect-markets and rational expectations. While agreeing with the insight that sentiment affects 

option prices, Andreou, Kagkadis and Philip (2012) further expanded on this by distinguishing 

'rational' sentiment based on economic fundamentals and irrational sentiment or ‘Error in 

Beliefs’. They found that up until mid-1997 (corresponding to the dataset used in Han, 2008) 

the irrational component had been driving option prices. However, for a longer dataset, rational 

expectations had a significant effect on option implied skewness, while irrational sentiment did 

not.  

 Concluding from the above studies, option prices and their RNDs have some correlation 

to markets future expectations and thus these are often used by central banks while conducting 

monetary policy research. The amount of correlation, however has been a topic of contention 

among many researchers. Lynch and Panigirtzoglou (2008) found that most implied RNDs 

were stationary and persistent with expectations reverting to their long run averages except in 

exceptional circumstances. They argued that these expectational variables provided little to the 

predictive power in terms of future macroeconomic variables over their sample period. 

However, this does not mean that RNDs are not useful for central banks. On the contrary, in 

times of monetary forward guidance, an assessment of market sentiment is of high importance 

to monetary authorities. Also, as Jondeau and Rockinger (2000) pointed out, confidence 

intervals of risk-neutral densities (of currency or interest-rate options) could be used to assess 

if monetary policy is viewed as credible by the market. Credibility is one of the key-factors for 

monetary policy to be effective.   

Now obviously, we cannot test for all the questions mentioned above. Instead, we focus 

on some basic properties of RND dynamics. We graphically study how higher-order moments 

of Gauss-Hermite risk-neutral densities react to or anticipate market-relevant events. Further, 

we focus on simple time-series statistics, such as autocorrelations. Lastly, we test the hypothesis 

that returns of the underlying affect these moments, and study if that has implications for option 

pricing and risk management.  
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3. Methodology 
3.1 Probability measures and derivative valuation 

Before introducing the methodology used in this paper, we must first define some more 

theoretical concepts about risk-neutral valuation and the theory of probability measures.  

 In the following, we follow the definitions in Gan, Ma and Xie (2014). If Σ"is an algebra 

(i.e. a collection of subsets of set #), then a measure on Σ" is a set function on Σ" that is non-

negative and countably additive. The latter condition requires a) the set function of an empty 

set to satisfy $(∅) = 0 and b) for disjoint elements of Σ" noted as *+, *-, . ..	to satisfy 

$( *0)
1
02+ = $(*0)

1
02+ , i.e. the probability assigned to the union of all elements equals the 

sum of probabilities assigned to each individual element. Under these conditions, $ is a 

probability measure if $(#) = 1, and then (S,	Σ", $) is called a probability measure space. 

  Simply speaking, a probability measure is thus defined as a function $	in probability 

space, which assigns real probabilities to all possible outcomes. By definition, it has unitary 

mass (i.e. that the sum of probabilities of all outcomes equals one), its codomain is constrained 

to 0, 1  (for discrete distributions) and it again satisfies the property of countable additivity.  

Importantly, in finance a risk-neutral measure is defined as the probability measure 

under which the discounted expected value of an asset exactly equals its market price. This 

argument is closely related to the fundamental theorems of asset pricing and to no-arbitrage 

arguments. We call this the martingale restriction, which can be written as 4 5678#9:8 ;<=>
=

56?8#9, where @9:8 is the risk-neutral measure of asset # at future time A + C (and as expected 

at A), D denotes the assets dividend yield and E is the risk-free rate. From this, it follows that the 

price of a derivative on asset # at time A is given as the expected value of its future payoffs 

under the risk-neutral measure, discounted by the risk-free rate. For a European call, it is thus 

dependent on the payoff function FGH	 #9:8 − J, 0  where J is the options exercise price, and 

the risk neutral density function @9:8(#9:8) of the underlying # at time A + C (maturity). The 

price of such an option can be expressed as 
 

 
K9(E, C, J, @9:8) = 5678 FGH	 #9:8 − J, 0 	@9:8(#9:8)	L#9:8

1

61

. (1) 

 

It is easy to see that this is simply the discounted future cash flow of the option, given (risk-

neutral) expectations regarding the distribution of #9:8. In this basic form, the exact risk-neutral 

measure is not yet assigned to any specific function, and no assumptions are made about the 

underlying return generating process. For option pricing, this is obviously crucial. As outlined 

above, many pricing models have been proposed, and there exist multiple ways of 
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approximating RNDs. It is beyond the scope of this paper to introduce each method, but a 

comprehensive overview is provided in Jackwerth (2004). Rather, we will focus on suitable 

ways of extracting RNDs from option data, which can then be studied in our time series 

analysis. For this, we explore two different methods as outlined below. Generally, it will be 

important to note that we relax the assumption of a unique risk neutral measure and seek to 

extract densities for options (SPX) with the same underlying (S&P 500), at different dates A and 

with different maturity dates A + C.  

 

3.2 Non-parametrical approximation 

To get a general sense about the nature of risk neutral densities, we explore a method that does 

not rely on any analytic density functions or assumptions about the underlying return generating 

process and which is widely used in the literature. As Breeden and Litzenberger (1978) pointed 

out, there exists an approximate relationship between the risk neutral distribution and the 

(second) derivative of option premia with respect to their strike prices. It can be shown that this 

relationship is approximately given by 
 

 
@9:8 #9:8 = J = lim

∆→"
578

1

∆-
K9 J + ∆, C + K9 J − ∆, C − 2K9 J, C  (2) 

 

where ∆ denotes the discrete step size between strikes JS, and @9:8 #9:8 = J  is the density at 

exercise price K. For a detailed discussion and derivations, see Malz (2014) or Figlewski 

(2010). Using this method, one can approximate the risk neutral density directly from market 

traded options.  

However, as simple as it looks, this method in its basic form has some caveats. First, it 

is very sensitive to its inputs and ∆, which can yield unrealistic densities, potentially producing 

negative probabilities. From equation (2) we see that options with a continuum of strike prices 

are necessary for the equality to hold. Second, the RND only extends into the tails as far as to 

the second smallest and largest exercise price. Still, as the literature evolved, several extensions 

have been developed to overcome these issues. Here, we focus on the more recent works of 

Figlewski (2010) and Malz (2014).  

First, to address the fact that options are only traded with exercise prices in very discrete 

steps, options with more strikes must be interpolated. This is often done by translating option 

premia to implied volatility space, interpolating volatilities by fitting a spline and finally 

backing out interpolated option premia. Figlewski (2010) here pointed to splines of fourth 

degree with one knot for the interpolation and adopting a 'smoothing spline', i.e. not forcing the 

estimates to go through every point. A simpler method would be to use cubic splines. However, 
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as already pointed out in the literature, we find that this method yields unsmooth and noisy IV 

data, which results in badly behaved RNDs. This is due to the fact, that option prices are not 

always well behaved and do not always follow smooth curves (especially in the tails where the 

bid-ask-spread are often quite high). This results in problematic values in the (approximate) 

second derivative, when forcing a spline through every observation. It has been shown before, 

and we also find that for smaller step sizes, negative probabilities are then more often observed. 

Malz (2014) proposed to solve this trade-off by finding the smallest step ∆, under which RNDs 

for the whole dataset are still non-negative. Since the optimal ∆	is positively related to the 

general volatility level (Malz, 2014) and since our dataset includes the financial crisis, we 

would have to choose a rather large ∆. This yields a high level of discreteness. Another issue 

related to smoothing is that implied volatilities are best estimated from out-of-the-money 

options. When using splines, this requires smoothing around the current level of #9, as one must 

strictly cut off in-the-money options such that there are no 'double' or overlapping observations 

around #9. This would often result in a small 'jump', since implied volatilities in calls and puts 

do not always have the same level (see Figlewski, 2010).  

Second, several methods are available to address the issue of missing observations in 

the tail of the distribution. Figlewski (2010) proposed the use of a generalized extreme value 

(GEV) distribution, by fitting its parameters such that a smooth transition between the tails and 

the central portion of the distribution is ensured and that the probability mass equals one. This 

has the advantage that fat tails can be modelled. However, even if returns have historically 

exhibited fat tail behaviour, Malz (2014) posed the question of how useful it is to estimate tail 

risk by looking at the centre of the distribution. Instead, Malz (2014) recommended to assume 

implied volatilities in the tail to be equal to that of the option with the lowest and highest strike 

price, respectively. This 'clamping' procedure simply yields a lognormally shaped tail, but is 

also much easier to implement in practice.  

 For all the improvements to this method, we decided against using it in our analysis for 

several reasons. First, to obtain realistic RNDs, finding the correct step size of the 

approximation is crucial, with optimal values to ensure non-negative probabilities varying from 

day to day. Results are heavily dependent on the type of interpolation used. Second, tails are 

not straightforward to model and their meaningfulness is up to debate. Third, these density 

estimates have been extensively studied before, and they do not translate into any closed form 

option pricing model. Lastly, time-series studies often used shape measures such as skewness 

and kurtosis, which however are not straightforward to calculate for discrete RNDs. For these 

reasons, we decided to explore a different and relatively new method of extracting RNDs. 
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3.3 Gauss-Hermite expansion 

As mentioned in Chapter 2.1, a large body of research has been conducted on alternative option 

pricing models. Of those, one branch has been building on modifications of the Gaussian 

distribution, using an Edgeworth series expansion (Jarrow and Rudd, 1982) or a Gram–Charlier 

type A expansion (Corrado and Su, 1996, 1997), both of which make use of so called 

'probabilist' Hermite polynomials. Multiple papers followed this approach and modified it over 

the years. Necula, Drimus and Farkas (2016) provide a comprehensive overview of the topic, 

but also point to deficiencies of this method. Namely, they criticise the bad convergence 

properties of these polynomials and instead advocate the use of 'physicist' Hermite or Gauss-

Hermite polynomials to model the risk-neutral measure. They also derive a closed-form option 

pricing formula based on these polynomials and report improved pricing performance over 

other (related) methods. Thus, this model has practical implications, which makes it an 

interesting candidate for our analysis. Also, its coefficients can be calibrated to traded options 

by minimizing squared pricing errors (see below). 

The 'physicist' Hermite polynomials are defined recursively as 
 

 T0:+ H = 2HT0 H − 2UT06+ H  (3) 
 

with T" H = 1 and T+ H = 2H (Bronstein et al., 2013). As Necula, Drimus and Farkas (2016) 

point out, these polynomials converge to a fat tailed-distribution, which is an important feature 

in the context of option pricing. This result follows from the analysis of 'physicist' Hermite 

polynomials in Myller-Lebedeff (1907), who stated that 'a function V(W) that, together with its 

first two derivatives, is continuous and finite in −∞ ≦ W ≦ ∞, and which vanishes for W = ±∞ 

of order higher than three, i.e. for which [\F
]→±1

W^V W = 0, can in this area be constructed by 

the series V(W) = G05
6
_`

` T0(W), which is derived in Fourier's fashion'. One can easily see 

why the modification can be based on a Gaussian distribution, which is defined as a(W) =

+

-b
56

_`

` . 

Since it is reasonable that the probability of a log-return of ±∞ is zero (i.e. the function 

vanishes at infinity), the GH expansion can thus be used to construct a density function that 

approximates the real risk neutral measure. The standardized log-return risk neutral density can 

then be expressed as 
 

 
@(H) =

1

c
a
H − d

c
G0

1

02"
T0

H − d

c
 (4) 
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where a(H) is the standard normal distribution, G0 are the expansion coefficients of the GH-

expansion and d is the first and c is the second moment of the distribution (Necula, Drimus and 

Farkas, 2016). Note, that the GH-polynomials are being used to modify the shape of the 

Gaussian given the associated weights G0. To illustrate this and to give some intuition, we plot 

several	a(H)T0(H) in Appendix A. Also note, for G+ = 1 and if all subsequent G0 = 0, the RND 

is simply the Gaussian distribution. 

 Following Necula, Drimus and Farkas (2016), we truncate the expansion after 20 terms. 

A higher order approximation can improve convergence, however it does so only to some 

limited extent. Also, the introduction of more terms is limited by the number of traded options 

available. Lastly, the estimation of more coefficients might prove too noisy for our time series 

model, especially as coefficients will naturally become extremely small for higher orders. This 

can also be seen in Appendix A, since the extreme values of Hermite polynomials are increasing 

with the polynomials' order n. Also, we find that the time needed for estimating the expansion 

coefficients would be increased significantly when using a higher number of terms. 

 Using equation (4) and truncating as above, the pricing formula of a European call with 

maturity A + C	may now be written as 
 

 
K9(#9, J, E9, D, e9,8, c9,8, C) = #95

b<,>67:
f<,>
`

-
8

G0,9,8g0

-"

02"
− J5678 G0,9,8h0

-"

02"
 (5) 

 

where e9,8 and c9,8 denote the annualized mean and volatility of the risk neutral distribution 

over the period C (as a share of one year or 360 trading days) and at time A, and E is the risk-

free rate. Also, g0 is given by  
 

g0:+ = 2a(−L+)T0(−L-) + 2c9,8 Cg0 + 2Ug06+ 
 

with g" = i(L+), g+ = 2a(−L+) + 2c9,8 Cg". Similarly, 
 

h0:+ = 2a(−L-)T0(−L-) + 2Uh06+ 
 

where h" = i(L-) and h+ = 2a(−L-). i(H) is the cumulative standard normal distribution and 
 

L+ =
[jV(#9/J) + (e9,8 + c9,8

-)C

c9,8 C
, L- = L+ − c9,8 C. 

 

For a detailed proof and derivation, please refer to the Appendix of Necula, Drimus and Farkas 

(2016).  
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It is easy to see that for G+ = 1 and for all subsequent G0 = 0, and if d = E −
f`

-
 (i.e. 

enforcing that the risk-free rate equals the expected log return), equation (5) collapses to the 

standard Black-Scholes framework. Also note, that the pricing formula is only given for call 

options. Thus, to include put prices in the estimation process, one must transform them into call 

prices using their implied volatilities and the Black-Scholes-Framework. This is reasonable, as 

the risk neutral space is just a transformation of the implied volatility space, i.e. we are not 

interested in the actual dollar price of an option, but more in the implied volatilities. These can 

be expressed by calls and puts alike, without losing informational value. 

To implement the model, one must first obtain estimates for risk-neutral mean and 

volatility. Necula, Drimus and Farkas (2016) refer to a method outlined in Bakshi, Kapadia and 

Madan (2003) that calculates these moments without any model-assumptions. However, as this 

method relies on the availability of options with a continuum of strike prices, it is extremely 

sensitive to the method used for interpolating prices. We were not able to identify a feasible 

way of doing so, such as to ensure consistently good pricing performance with the GH pricing 

formula. We find that the mean and volatility estimates using this method are especially 

sensitive to the step size of the interpolation. As an alternative, Farkas, Waelchli and Necula 

(2015) introduced another way of obtaining cumulants of the distribution, however this method 

seems to be beyond the scope of this thesis, both mathematically and given time constraints. 

Instead, we propose a simple way of obtaining both mean and variance, that has proven to be 

quite robust for us. For volatility, we choose the value that minimizes squared pricing errors 

across all options (of a given maturity and on a given trading day) in the standard Black-Scholes 

framework. For mean-estimates, we use a similar method, but with the modified Black-Scholes-

framework that assumes a non-zero mean process (basically, the GH-expansion with G",8 = 1 

and G0,8 = 0 for all U ∈ (1, 20)). We believe this to be a feasible method, as the GH expansion 

builds on the Gaussian, such that we can approximately use the Gaussian for fitting the first 

two moments of the distribution to the data. Also, we find that this method yields reasonable 

estimates that work well in the further analysis (see Chapter 4.2). 

It is easy to see from Equation (5) that the call price is linear in the GH-expansion 

coefficients G0,8. This is helpful as we can fit those coefficients such that the sum of squared 

pricing errors is minimized. We can in fact severely simplify the problem at hand by employing 

matrix notation, such that 
 

min
n<,>

	 49,8 − K9,8 ∗ p9,8
-
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where p9,8 is the vector of GH expansion coefficients associated to the expansion for options 

estimated at time A and with maturity A + C, 49,8 denotes the column vector of observed market 

prices (again, where puts are transformed to calls first), and K9,8 is a matrix calculated as 

outlined in Appendix B.  

To obtain realistic values for p9,8, one has to impose several restrictions on the 

optimization to ensure that the estimated density satisfies the measure properties outlined in 

Chapter 3.1. Namely, the probability mass of the RND must equal one and non-negativity of 

the density must be ensured. We show these restrictions in matrix notation in the Appendix C. 

Interestingly, both the constraint of unitary mass and non-negativity of the RND can be 

expressed in a linear form. Thus, we can use a linearly-constrained least-squares optimization 

algorithm for extracting estimates of p9,8. We find the 'Lsqlin'-algorithm in Matlab to be quite 

efficient for doing so, as it produces similar estimates as 'Quadprog' (Necula, Drimus and 

Farkas, 2016 pointed to quadratic programming to obtain expansion coefficients) in slightly 

less time. Interestingly, we find that using the 'Lsqlin'-algorithm for a large consecutive number 

of optimizations randomly converges to non-optimal solutions, yielding extremely high pricing 

errors (for around 0.01% of the dataset). We noticed that some of these solutions are not 

reproducible and thus simply run the estimation a second time for these observations, which 

removes some of them. We will later show how to filter out the remaining RNDs with extreme 

pricing errors. 

 Lastly, one must also implement the martingale restriction, as pointed out in Chapter 

3.1. For the GH-expansion with 21 terms, this is given as  
 

 
5

b<,>6 76? :
f<,>
`

-
8

G0,9,8\
0T0 −\c9,8 C = 1

-"

02"
, \ = −1 (6) 

 

(see Necula, Drimus and Farkas, 2016 for a proof). We find that in our framework of estimation, 

this restriction conflicts with the restriction of unitary mass. Upon implementing all constraints, 

we cannot get option prices to converge using the 'Lsqlin'-algorithm, i.e. the expansion 

consistently yields high pricing errors. However, using only the mass- and non-negativity 

restriction, the martingale is often violated, whereas enforcing the martingale and non-

negativity yields probability masses extremely close to 1 (99.5% of the RNDs estimated later 

have a mass between 0.95 and 1.05, with an average mass of 0.9939). In practice, we thus 

decide to drop the restriction of unitary mass and only enforce non-negativity and the 

martingale restriction. 
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3.4 Higher order moments of Gauss-Hermite risk-neutral densities 

In the Black-Scholes model, the underlying distribution of log-returns is assumed to follow a 

normal distribution. However, this assumption is not reflected in market-traded option prices. 

A large body of literature exists on the IVS, which is a manifestation of this anomaly. Another 

way of studying this behaviour is to transform the IVS into risk-neutral densities and comparing 

their shapes with that of a Gaussian distribution. Typically, the literature focusses on measures 

of asymmetry and fatness of tails. These are usually represented by the third (skewness, q+) and 

fourth (kurtosis, q-) standardized moment of a distribution. We can define these as 
 

 
q+(H) = 4

r − ds
^

c^
= 	

r − ds
^

c^
t H LH

:1

61

 (7) 

and 

 
q-(H) = 4

r − ds
u

cu
	= 	

(r − ds)
u

cu
t(H)LH

:1

61

 (8) 

 

for a density function t(H).	Now, in contrast to the GC-A type expansions which are defined 

to have coefficients directly reflecting skewness and kurtosis, this is not the case for the GH-

expansion method. Interestingly however, as we derive in Appendix D, for the RND represented 

as a Gauss-Hermite expansion, these moments can still be expressed as a simple linear 

combination of the (estimated) expansion coefficients and some expressions based on the 

polynomial's order n: 
 

 

q+ = G0

1

02"
v0
^, where	v0

^ =
2U + 1

2U!

U − 1
2

!
, U	 = 	jLL

0, 5[W5

 (9) 

and 

 
q- = G0

1

02"
v0
u, 	where	v0

u =
4U- + 4U + 3

U!
U
2
!
, U = 5~5U

0, 5[W5

. (10) 

 

 These expressions are somewhat intuitive: since polynomials of even order are 

symmetric, they do not introduce any skewness to the RND, but contribute to kurtosis. 

Similarly, as polynomials of odd order are so called odd functions, i.e. they satisfy 

– a H T0 H = a(−H)T0 −H , they introduce skewness to the RND, but not kurtosis. 

Lastly, we can define the excess kurtosis (kurtosis in excess of that of the Gaussian 

distribution) as q-Ä = q- − 3. In the following, we will use these expressions to study the shape 

of the GH-RND over time. For this, we create time series indices of said moments.  



	 18 

3.5 Time series indices of higher order moments 

Let's denote the estimated skewness and kurtosis from equations (9) and (10) for RNDs of 

options traded at time A and with maturity A + C by q+,99:8 and q-,99:8. As we defined skewness and 

kurtosis as normalized third and fourth moments, they do not depend on mean and variance of 

the distribution, and have the same scale across maturities. Thus, we create daily time series 

indices for skewness and kurtosis by taking the average of those moments across all available 

(after filtering) RNDs. We therefore define the skewness and kurtosis indices as  
 

q+,9 = 100 − 10 ∗
1

i9
q+,9
9:8

8

, q-,9 = 100 +
1

i9
q-,9
9:8

8

. (11) 

 

over all available maturities A + C at trading day A (i9 denotes the number of available 

maturities at time A). The method of scaling used for q+,9 is borrowed from the CBOE SKEW 

index as outlined in Chicago Board Options Exchange (2010). After applying some filters 

(which will be discussed later), skewness is always negative, and thus higher values of q+,9 will 

indicate a high negative skewness. The definition of q-,9 is a modified version of the definition 

of the skewness, noting that our estimates of excess kurtosis are positive everywhere and larger 

than skewness by approximately a factor of 10. Higher values of q-,9 indicate higher kurtosis. 

This methodology of averaging observations will obviously lead to some loss of detail; 

a full analysis of the dataset however would be beyond the scope of this paper. Also, due to its 

changing composition, some noise might be introduced to the index. On the other hand, by 

aggregating multiple maturities, we might get smoother and more robust estimates of the 

moments of the RNDs for options across multiple maturities. This is the reason why we use an 

extended maturity band for the calculation of these indices, compared to the CBOE SKEW 

index that is based only on two near-term option chains. Due to our filtering techniques (see 

Chapter 4.4), the effect of the changing composition of the index would in fact become even 

more pronounced. Using more maturities instead, the number of dates where the composition 

in the index changes also increases slightly. However due to the higher number of option chains 

(compared to the CBOE SKEW) in the index, the effect of this rebalancing will in fact be 

smaller, since the weight of each individual RND is 1/i9. Lastly, applying a narrower maturity 

band, on some days the index would only be based on one RND and on others we would lose 

information in the longer, but still somewhat liquid option chains. Thus, we accept the 

introduction of noise from a time-varying composition of the index in exchange for smoothing 

of potentially noisy estimates of skewness and kurtosis for individual option chains, and also 

for the simplicity in creating a time series index that this methodology allows.   
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4. Empirical results 
4.1 Data  

Our dataset consists of SPX option quotes (closing prices) and dividend yields from January 3, 

2007 to April 29, 2016. It was obtained from OptionMetrics. We also use corresponding data 

for S&P 500 index levels (closing prices) and the risk-free rate (one month treasury bill rate) 

obtained from WRDS. Lastly, we use VIX and SKEW quotes directly from the CBOE website.  

 We remove incomplete option quotes (where there is no implied volatility listed), 

options with times to maturity larger than one year, in-the-money options, as well as options 

with bid-prices of zero. Furthermore, we also filter the data such that the no-arbitrage condition  
 

KG[[ > FGH(0, #56?8 − J5678), $ÇA > FGH(0, J5678 − #56?8) 
 

holds in the data (see Expression (15) in Farkas, Necula and Waelchli, 2015).  

Additional to these general filters, to be able to interpret RND estimates in a meaningful 

way, we must make sure that they are representative of the 'true' RND expected by the market. 

Thus, an early filter (which will be expanded upon later) is added with regards to the number 

of available strikes at each combination of trading day and maturity. We decide to filter 

observations where there are less than 23 strikes available. Usually one would need a much 

larger sample size for a regression to be meaningful, but we are not interested in making any 

predictions on these regressions/coefficients. Instead, the optimization procedure is simply an 

exercise to fit the RND to the option data as closely as possible. Thus, any number of strikes 

below the number of parameters of the RND (estimated mean and volatility, and the 21 

expansion coefficients) would obviously be meaningless. Observations with 23 or more strikes 

however should be appropriate and can be assumed to be an estimate of the 'true' RND. This 

makes sense, as we also have quite stringent constraints on the shape of the RND (to enforce 

the martingale restriction and non-negativity). 

After applying these early filters, we are left with a total of 2,544,679 options with a 

maturity structure as shown in Table 1.  
 

Table 1. Maturity structure of option data. 

 Time to maturity 

 < 0.25 0.25 - 0.5 > 0.5 All 

Number of options 1,741,933 406,610 396,136   2,544,679 

This table shows the number of options (after filtering as outlined in Chapter 4.1) in the dataset and per maturity 
band. Time to maturity is measured as days to maturity divided by 360. 
 

When using option data, one must make some simplifying assumptions. As Bliss and 

Panigirtzoglou (2002) pointed out, there are several frictions that could produce potential errors 
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in option data. First, errors due to data-recording and reporting can often be problematic given 

the less than perfect liquid nature of options. However, we believe that we can bypass this 

problem using several filters to clean the data. Also, rather than using raw quotes, we use 

reliable data from OptionMetrics. Second, liquidity-differences can potentially have some 

impact on pricing. However, we decide not to remove non-traded options for two reasons: to 

have a larger dataset to work with and for the fact that these options still reflect some market 

participants' willingness to trade at the given bid- and ask prices Also, we use midpoint prices. 

Third, infrequent trading within some options poses a problem of non-synchronicity, i.e. the 

daily closing price reported may not reflect current 'trading' prices for all strikes. However, in 

a large market with multiple market makers, and using best bid and ask-prices across several 

exchanges, we can rule out heavy pricing errors (except within high volatility states of the 

market). Still, with trading at CBOE ending 15:15 Central Standard Time (CST), we must 

assume that the day-end data for the S&P 500 index levels (and other variables) is recorded at 

that time, too.  

 

4.2 In-sample pricing performance  

We use the method outlined in Chapter 3.3 to extract the parameters of the risk neutral densities. 

Filtering as above, we obtain estimates for 29,893 RNDs (each one corresponding to an 

individual combination of one of 2,348 trading days and 388 maturity dates). For each of these 

estimates, we have a sufficient number (23 or more) of options available at different strike 

prices. To measure pricing performance, the mean absolute pricing error (MAE) is given as 
 

Ép4 =
1

i
ÑS − ÑS

Ö

S2+
 

 

where i is the number of options priced by a given RND (or alternatively the number of options 

in a given subset of the data) and ÑS and ÑS are the real (calculated from IV) and estimated prices 

of a call option, given the previously estimated corresponding RNDs.  

 However, since the definition of MAE does not consider differing general price levels 

of options with different times to maturity and time varying implied volatilities, we additionally 

propose to measure the pricing performance based on the model's relative absolute pricing error 

(RPE), which we define as 
 

Ü$4 =
ÑS − ÑS

Ö
S2+

ÑS
Ö
S2+

. 
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Now, in-sample pricing errors measure how well RNDs approximate real option prices. 

We report these in Table 2. For the whole dataset (after filtering in 3.1), we find a MAE of 0.2. 

Since the maturity structure of our dataset (see Table 1) is different than that of Necula, Drimus 

and Farkas (2016), we must however compare pricing performance of individual maturity 

bands. We find MAE for short term (C < 0.25) options of 0.15, which is slightly larger than 

that of Necula, Drimus and Farkas (2016), who report a corresponding MAE of 0.11. Note, that 

they do not calculate relative pricing errors. Lastly, we notice that MAEs are higher for longer 

term options, but RPEs are stable over C, which is due to higher premia associated with large C. 
   

Table 2. In-sample pricing errors of the GH model. 
 Time to maturity 

 < 0.25 0.25 - 0.5  0.5 - 1 All* 

MAE (USD) 

 

RPE 

 

No. of RNDs 

 

Average No. of  

strikes per RND 

0.1524 

(0.0976) 

0.12% 

(0.07%) 

15,339 

(15,332) 

113.56 

(113.57) 

0.3626 

(0.1456) 

0.16% 

(0.06%) 

6,501 

(6,497) 

62.55 

(62.55) 

0.2313 

(0.2288) 

0.09% 

(0.09%) 

8,053 

(8,047) 

49.19 

(49.20) 

0.1983 

(0.1257) 

0.12% 

(0.07%) 

29,893 

(29,876) 

85.13 

(85.14) 

Average mean absolute pricing errors of the GH expansion (after filtering as outlined in Chapter 4.1) over the 
whole dataset, whereby we weight each RND by its number of available strikes. We also report (simple) average 
RPEs over all observations/RNDs. Lastly, we report the number of estimated RNDs and the average number of 
available strikes per RND in each maturity band. Numbers in parentheses refer to results after filtering the 17 
observations where the GH expansion was not able to converge to option prices and yielded a relative pricing error 
of more than 2.5%.  
 

While the pricing performance on average is reasonable, we also find some extremely 

high errors (MAE well above $100), and thus instances where the GH expansion is not able to 

approximate option prices. These correspond not only to dates with high volatility in the 

markets, but also appear randomly. This can be due to some errors in the option data (as 

discussed above), but also due to the fact that we observe non-monotonic call prices (i.e. prices 

of call options on a given date/maturity combination not strictly falling for increasing exercise 

prices) on dates with the highest pricing errors. This can yield high errors in any model that 

enforces a strict probability measure, as from a pricing perspective this behaviour can only 

result from negative parts in the RND. In practice however, it might simply result from large 

differences in the IVS of call and put options, which we combine around #9 (to remove in-the 

money options), potentially yielding a 'jump' in prices. Since we will filter out RNDs with 

relative pricing errors above 2.5% later (Chapter 4.4), Table 2 additionally reports pricing 

errors of the remaining RNDs after this filtering. Note that this only removes 17 RNDs out of 
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a total of 29,893 RNDs. Upon filtering these, our MAEs are slightly lower than those reported 

in Necula, Drimus and Farkas (2016) (but we do not enforce a unitary probability mass).  

These results show that our implementation of the GH-expansion holds up to the 

literature in terms of pricing performance. This is especially important, since we use a different 

method to obtain estimates for mean and volatility (see a short discussion below). We also do 

not filter for volatility-adjusted moneyness (see Necula, Drimus and Farkas, 2016) to have more 

available option quotes. Judging from the pricing performance, we are confident that we can 

consider the estimated densities as a good approximation of the real risk neutral measures and 

use them in our analysis.  

Concerning our simplified estimates of mean and volatility, we need to make sure that 

they do not induce high errors to our model in case the RNDs deviate from the Gaussian 

distribution. Thus, we check if there is a connection between pricing performance and the 'share' 

of RND that is explained by the Gaussian distribution (i.e. estimates for G"). Naturally, since 

we estimate the first two moments such that pricing errors are minimized under a normal 

distribution, the performance of the GH-expansion might be negatively affected when the RND 

deviates heavily from the Gaussian distribution. To check this hypothesis, we regress the 

obtained RPE (after filtering as above) on the absolute difference of G" and 1 (an G" of 1 simply 

produces the Gaussian), i.e.  
 

Ü$4 = â G" − 1 + ä 
 

for which we find the p-value of â to be 0 and a Ü- of 0.34. Hence, as expected, there is a 

penalty associated with deviations from normality. This again might be attributed to our method 

of fitting mean and volatility. However, it could also be that in high volatility- and high 

uncertainty states of the market (where deviations from the Gaussian are the largest) prices are 

generally not well behaved and thus errors are naturally large. We further find evidence of this 

when regressing G" − 1  on the estimated volatility (which by design is closely linked to VIX), 

which again yields a p-value of the coefficient as 0 and a Ü- of 0.56. Also, we find that there is 

a relationship between RPE and the estimated volatility. We recognize that due to our model-

bound estimation of mean and volatility, we can hardly distinguish between these individual 

effects. To check whether our estimators have a significantly negative effect on the performance 

of the GH expansion, one would have to rigorously compare it with the performance when 

using other, model-independent estimators, for example the ones given in Bakshi, Kapadia and 

Madan (2003). Again, due to time constraints, we refrain from doing so and point to the fact 
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that our pricing performance generally holds up to that reported in Necula, Drimus and Farkas 

(2016).  
 

Figure 1. Evolution of daily average RPE from January 3, 2007 to April 29, 2016.  

 

 

Daily average relative pricing errors of the GH expansion over time (average over all available options and 

maturities at any given date). The upper graph shows in-sample pricing errors (after removing 17 RNDs with RPEs 

> 2.5%), while the lower graph shows out-of-sample (one trading day forecast) pricing errors, using updated mean 

and volatility estimates.  

 

Lastly, we observe that the daily pricing performance (measured by RPEs across all 

options on a given trading day) is highly time-varying (see Figure 1). Especially during times 

of crisis, the expansion cannot be sufficiently fit to option data and RPEs are relatively high. 

This again can relate to the argument about mean and volatility estimates, as provided above. 

 

4.3 Out-of-sample pricing performance 

A first step and an intuitive method of testing whether RNDs are stable over time is to check 

for their out of sample pricing performance. If errors are significantly higher out-of-sample than 

in-sample, while controlling for the level of the underlying, mean, volatility and other inputs 

(generally only keeping the expansion coefficients constant), we can conclude that the RNDs 
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are not stable. Necula, Drimus and Farkas (2016) indicate good out-of-sample performance (by 

linear extrapolation of parameters from the previous day) compared with other methods, but 

errors on average are still much higher than in-sample. For our purposes, we differentiate 

between three methods: first, we obtain out-of-sample option price estimates by using previous-

trading-day mean, volatility and GH-expansion coefficients to price options 'today', whereby 

we must keep in mind that we use the RND estimates corresponding to the correct maturity. 

Second, we use 'todays' volatility estimates with previous-day mean and GH expansion 

coefficients. Third, we update both volatility and mean estimates and use previous-day GH 

expansion coefficients. In all three methods, we use updated levels of the underlying as well as 

updated dividend yields and risk-free rates.  

 Table 3 shows that our out-of-sample pricing performance is significantly worse than 

in-sample performance. We thus conclude that RNDs are not stable enough to ensure a 

reasonable performance of the model over time, given constant GH expansion coefficients. This 

is interesting as it points to changing shapes of the GH-RNDs and is exactly the point which 

we will study later. (We recognize that the time differential between two adjacent trading-days 

is a large time span considering today's market speed. It would obviously be interesting to study 

if results would differ when using smaller time intervals, i.e. intraday or tick quotes. As we are 

constrained to the dataset at hand, we however cannot present an answer to this and leave it to 

future research.) 
 

Table 3. Out-of-sample pricing errors of the GH model. 

 Time to Maturity 

 < 0.25 0.25 - 0.5  0.5 - 1 All 

d, c not updated	 

only c	updated 

d, c updated 

in-sample RPE 

0.56% 

0.28% 

0.24% 

0.07% 

0.48% 

0.34% 

0.27% 

0.06% 

0.51% 

0.41% 

0.29% 

0.09% 

0.53% 

0.33% 

0.26% 

0.07% 

Average relative out-of-sample pricing errors of the GH expansion when using previous-day RNDs for option 
valuation. Previous day here refers to the previous trading day, i.e. the time difference can exceed 1 day. We 
differentiate between three methods: first, we use all RND parameters from the previous day. Second, we only use 
historical GH expansion coefficients and mean but use the current day volatilities. Lastly, we use historical GH 
expansion coefficients with fully updated mean and volatility estimates. All non-RND-related variables 
(underlying, risk-free rate, etc.) are updated for pricing. For comparison, we again report in-sample pricing errors. 
 

 However, we also observe that while we find an out-of-sample performance comparable 

to the reference literature using the first method (we do not report MAE in the table, but we find 

the MAE for short maturities to be 0.86, vs. 0.81 in Necula, Drimus and Farkas, 2016), the 

method of using updated estimates of volatility yields much lower errors. Further including 
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updated mean estimates decreases pricing errors even more, but only has a much smaller effect. 

Generally, mean and volatility estimates thus, must to some degree be compatible with GH-

coefficients across different days. From a market participant’s perspective, this may be 

imperative when it is necessary to price new options on a day and in a market, where there are 

not enough options traded such as to sufficiently fit the complete RND (but enough to fit mean 

and volatility).  

 Combining above insights, this out-of-sample pricing behaviour indicates that 

accounting for shocks in the underlying and to implied volatility is still not sufficient to capture 

changes in the full IVS. Instead, large out-of-sample errors (using method 3) imply that the 

shape of the RND is highly time-varying and there might be higher-order risk-factors associated 

with option portfolios. This has implications for risk-management, which will be discussed in 

the context of the time-series study of shape-measures. 

Also, we want to stress that the out-of-sample pricing performance is highly time 

varying (see Figure 1), too. Consequently, the parameter stability of the GH-expansion based 

RNDs between individual trading days must also be time-varying, and might be linked to 

market uncertainty and the general level of volatility within the market. We will later study this 

behaviour in more detail and link it to the volatility of changes in risk-neutral skewness. 

 

4.4 Tail behaviour and additional filtering  

We previously saw that for some observations, in-sample pricing errors have been very high. 

However, in order to interpret the RND estimates in a meaningful way, we have to be confident 

that they are representative of the 'true' RND expected by the market. Hence, we must apply 

additional filters to remove observations (i.e. trading day and maturity combinations) where 

pricing errors are too high (meaning that the GH expansion does not converge to the true RND). 

Now we cannot simply filter pricing errors based on mean absolute errors, as this would not 

consider differing general price levels of options with different times to maturity. Instead, we 

propose to filter observations based on their relative absolute pricing errors and suggest 

removing RND observations that have an RPE larger than 2.5% of the average option price in 

that observation. We believe that this should be sufficient to ensure with some confidence that 

the estimated RND is the one 'expected by the market'. Using a more stringent filtering (i.e. 

even lower pricing errors as a cut-off) would result in some trading-days with no RND estimates 

left.  

 Also, we filter out longer maturities (> 3 months), because shorter ones are the most 

liquid, as well as RNDs of options with less than a week to maturity. 
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 This method of filtering also has an additional advantage, which is linked to the tail 

behaviour of Gauss-Hermite RNDs. From Appendix E, we see that these densities can have 

multiple peaks, which we found to be quite common among our estimated RNDs. Generally, 

those in Necula, Drimus and Farkas (2016) also sometimes exhibit multiple peaks (especially 

for short maturities) and this kind of behaviour has been observed for Gram-Charlier Type-A 

kind of expansions in earlier papers (e.g. Jondeau and Rockinger, 2001), too. We believe that 

in the Gauss-Hermite model, this can result from a) the fact that we truncate the expansion at 

n=20 which doesn’t yield full convergence, b) discreteness in option data, which is especially 

pronounced on some days and less so on others, and c) the lack of option data in the tails of the 

distribution.   

 Now in itself, the property of having multiple peaks is not problematic for an RND, 

even if these shapes are rather non-standard. Interestingly, the RND in Appendix E still yields 

very low pricing errors and adheres to the characteristics of a probability measure as outlined 

in Chapter 3.1 (except for the probability mass, which is only very close to 1). Since we estimate 

the parameters of the RND by fitting them to the centre of the distributions, and since for pricing 

only cumulative densities starting at the smallest available strike matter, tail behaviour can be 

somewhat arbitrary, even after putting restrictions on the densities. Now, while these RNDs 

produce very low pricing errors, we recognize that ‘humps’ that are very far in the tail pose 

problems when estimating skewness and kurtosis. We see this from Equations (7) and (8). 

This is due to the fact that small absolute values of H (i.e. in the range −1 < H < 1) 

generally do not contribute much to the estimated higher moments, since H^and Huwill naturally 

become quite small in this interval. Instead, skewness and kurtosis are most heavily influenced 

by values outside −1 < H < 1, for which we however generally do not have many option 

quotes. In that sense, the GH expansion might not be the best method for studying higher 

moments, as its tail behaviour is hard to motivate and the sometimes multi-peaked RNDs can 

prove to be problematic. The method based on general extreme value theory proposed in 

Figlewski (2010) might thus provide better estimates. A potential solution can be the study of 

confidence intervals of the distribution instead, which might be easier to interpret and is less 

prone to errors.  

Lastly, note that the above critique mostly applies to kurtosis, as skewness also measures 

the asymmetry of a distribution and thus can still be interpreted in a meaningful way. Also, the 

filtering for RPEs and for shorter times to maturity and pricing errors as outlined above appears 

to remove the RNDs with the most extreme tail shapes. We thus proceed by studying if our 

remaining RNDs and the corresponding estimates of skewness and excess kurtosis can be used 
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to create a meaningful time series and if they can be used to replicate some findings in the 

literature.  
 

Table 4. Descriptive statistics of estimated skewness and excess kurtosis. 

 Mean Median Standard Deviation Min. Max. Count 

Skewness 

Excess Kurtosis 

-2.05 

8.48 

-2.06 

8.12 

0.51 

3.47 

-6.75 

0.83 

-0.34 

36.94 

14,043 

14,043 

Summary statistics of skewness and excess kurtosis estimates that have been obtained from the previously 

estimated RND's (after filtering as outlined in Chapter 4.4) and calculated accordingly to the expressions derived 

in Appendix D.  

 

 Filtering as above, we are left with 14,043 observations. Using these, we can directly 

estimate skewness and kurtosis according to Equations (9) and (10). We provide summary 

statistics on these moments in Table 4. We see that skewness is always negative, which implies 

a fat left tail. Excess kurtosis is consistently above zero, and thus there is always more weight 

in the tails.  

 

4.5 Time-series indices of higher order moments  

We previously obtained skewness and excess kurtosis estimates for multiple option chains with 

different maturities for each trading day. To create a meaningful time series of moments of the 

RND however, we must somehow aggregate them. To do so, we have to make sure that the 

RNDs included in the index are somewhat comparable and well behaved. Thus, the index will 

only consist of RNDs that passed some strict filters. For the sake of clarity, we will here present 

these again. 

 As outlined above, we first filter individual options that have a bid-price of zero or no 

quoted implied volatility, options that do not satisfy the no-arbitrage condition (see Section 4.1), 

as well as in-the-money options. Second, we do not estimate RNDs for date-maturity-

combinations that have less than 23 different exercise prices left after applying the previous 

filters. Third, to make sure that the estimated RNDs are close to the 'true' RNDs, we filter out 

those date-maturity-combinations on which the corresponding estimated RNDs yield average 

relative pricing errors larger than 2.5%. Lastly, we only include RNDs with maturities ranging 

from 1 week (shorter maturities might introduce pricing problems shortly before expiration) up 

to 3 months (longer maturities are less liquid and yield more extreme tail-shapes, as already 

discussed earlier) in the index. Given these filters, we can now combine the remaining RNDs 

according to the definition given in Chapter 3.5 (Equation 11). Before studying these indices, 

we however want to highlight some important features of the skewness and kurtosis index here. 
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 First, note that we omit the kurtosis index from here on, since it is highly correlated 

(85%) with that of the skewness index (see Appendix F). There is a clear relationship: whenever 

the skewness index increases, so does the kurtosis index. This is due to the obvious link by 

definition of both indices. Thus, kurtosis mostly stems from a fat left tail (since a higher 

skewness index reflects higher negative skewness). Also, as Bakshi, Kapadia and Madan (2003) 

pointed out, adding kurtosis terms does not significantly improve option pricing models, which 

is why we believe that kurtosis does not add much additional information in our analysis. The 

time series created for skewness and that of the S&P 500 index are shown in Figure 2.  

 Lastly, note that our index of skewness follows the CBOE SKEW index rather closely 

(see Figure 2), with both indices exhibiting a correlation of 63% over the whole time-period. 

The overall trends are similar in both series. Only while our index is more volatile in the earlier 

part of the series (2007 - 2008), the opposite is true for the latter part of the series (2014 - 2016). 

From 2010 to 2013, both series are very similar. The differences in the earlier and later parts of 

the series might stem from the number of options included in our skewness index. During 2007 

and 2008, we have quite a low number of RNDs that pass our filters, such that the index on 

some days only consist of one or two often time-varying maturity bands. Towards the end of 

our dataset however, we have many more available option quotes and RNDs that pass our 

filters, such that the index combines many RNDs which makes the index less volatile.  

 Still again, both CBOE SKEW and our skewness index closely follow each other. This 

relationship is especially striking, since the CBOE SKEW is calculated in a completely different 

way with a method based on that outlined in Bakshi, Kapadia and Madan (2003). This suggests 

that in fact we can use the RNDs estimated from a Gauss-Hermite expansion method to create 

a meaningful skewness index.  

 We proceed by studying some dynamics of risk-neutral skewness using this index. What 

follows is a combination of graphical analysis of skewness over time, which is supplemented 

by some statistical tests for its time series properties. 

 

4.6 Qualitative analysis 

How can we interpret the skewness index? To abstract from the complexity of previous 

sections, we now start with a simple graphical analysis of the time series of skewness. First 

however, let's again define what skewness means. As already mentioned above, skewness is a 

measure of the degree of asymmetry of a distribution about its mean. Importantly, a distribution 

with a negative (positive) skewness can imply either fatter or longer tails on the left (right) side 

of the distribution when compared to its right (left) tail. However, a distribution with a skewness 
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Figure 2. Gauss-Hermite and CBOE skewness indices and the S&P 500 (January 3, 2007 – April 29, 2016). 

These graphs show the Gauss-Hermite skewness index and the S&P 500 (upper graph) as well as the Gauss-Hermite skewness index and the CBOE SKEW (bottom graph) between 

January 3, 2007 and April 29, 2016. 
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of zero may not necessarily be a strict symmetric distribution but may imply that the asymmetric 

nature of one side of the tail balances out with the other. Thus, a distribution with a fatter left 

tail and longer right tail may still have a skewness of value zero. Skewness thus essentially 

measures the relative weights of both tails, compared from the origin (as we defined skewness 

to be normalized).  

 Why is skewness important? An interesting calculation about the effect of skewness on 

the probability of negative log-returns of 2 and 3 standard deviations is shown in CBOE (2010). 

A higher skewness increases tail risk dramatically. Thus, while implied volatility scales risk-

neutral distributions evenly across all strikes, increasingly negative risk-neutral skewness 

captures market participant’s assessment that an extremely negative market event is becoming 

more likely. We will now study its evolution over time. 

Generally, from Figure 2 we see that the skewness index is a volatile mean-reverting 

time series. It has a minimum of 106.9 (skewness of -0.69) and maximum of 134.3 (skewness 

of -3.4), with only very few days with such extremely skewed RNDs. We see that the index is 

always above 100, which means that the average skewness of options with maturities from one 

week to 3 months is negative over the whole time-period, suggesting a fatter or longer tail 

(compared to the Gaussian distribution) on the left side of the risk-neutral densities. It is also 

especially striking that the level of skewness was rather low during the 07'-08' financial crisis 

while spikes in skewness seem to be preceded or occur simultaneously to large losses in the 

underlying. Potentially, this can be explained by the fact that implied volatility was already 

very high during the financial crisis period and that from Figure 3 we see that extreme levels 

of VIX typically go along with only moderate levels in the skewness index. This has already 

been pointed out in a paper by the Chicago Board Options Exchange (2010) and it suggests that 

in times of high economic uncertainty the implied asymmetry and fatness of tails of the 

underlying is rather small, while the whole distribution is stretched simply by a higher level of 

expected volatility. We proceed to studying this behaviour for individual sub-periods of high  

volatility and market-relevant events in more detail below.  

 The U.S. financial crisis (2007 –2009) was a devastating one and exhibited periods of 

extreme market volatility with many stock-indices dipping to their lowest values in decades, 

liquidity drying up and implied volatility (VIX) spiking to all-time highs. We again observe 

that during this period, the skewness index in fact exhibited its minimum values, with a daily 

average of 113.39, compared to 119.38 of the whole dataset. Now, let's look at individual 

trading days. On September 15, 2008, the day Lehman Brothers filed for bankruptcy, the S&P 

500 lost nearly 5% to its previous day closing price. This event also caused a spike in the 
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skewness index, which jumped from 110 to 114. In the turbulent following days, the S&P 500 

suffered further heavy losses, losing another 5% on September 17 and 8.8% on September 29 

(on this day, the U.S. House of Representatives rejected the governments' bailout plan). These 

events are also reflected in the skewness index, which jumped by 7.8 and 3.6 points, 

respectively. However, these extraordinary market events do not lead to an abnormal increase 

in the general level of the skewness index, which was still relatively low compared to other 

time periods. This relates to the argument about the connection between high volatility and low 

skewness periods. Interestingly, subsequent losses in the S&P 500 did not induce similar jumps 

in the skewness. While the S&P 500 declined by 5.9% on October 7 and suffered a 6.3% loss 

on October 22, the skewness index in fact decreased by 7 and 1.4 points, respectively. Thus, 

while some adverse events and negative returns in the underlying are met with increased 

skewness, this is not true of others during the period of the financial crisis (see Figure 4). 
 

Figure 3. Skewness index and VIX. 

 
This graph shows daily levels of the skewness index and corresponding levels of the CBOE volatility index (VIX). 
  

After the financial crisis, there of course have been other times of market turmoil which 

corresponded to highly volatile events within the world economy. First, on May 6, 2010 U.S. 

equity indices suffered one of their largest intraday losses (in a matter of minutes) in what has 

become widely known as the Flash Crash. While the S&P 500 at its close had lost 3.3%, the 

skewness in fact decreased on that day and only jumped to a slightly higher level the day after. 

Second, a similar pattern emerged after August 8, 2011 (Black Monday), the day the U.S. 

sovereign debt rating was downgraded from AAA to AA+ by Standard and Poor’s and the S&P 
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500 suffered consecutive large losses for several days. While the S&P 500 lost nearly 7% on 

that day, the skewness in fact did decrease and was rather flat the following days. Only 

following the 5% market drop on August 18 and a worsened economic outlook did the skewness 

spike by more than 6 points, but it immediately dropped to its previous levels the day after. 

It seems that adverse market events do not always correspond to spikes in risk-neutral 

skewness. In fact, skewness is sometimes persistently low (<110) for several trading days 

during the financial crisis. This for example was the case between January 3 and January 17, 

2008, which corresponded to the onset of the crisis when investors were mulling over a looming 

recession or in November 2008 when federal bailouts for U.S. auto-makers were rejected by 

the republicans. 

From the above analysis, we conclude that there is no clear relationship between 

extreme returns of the underlying and swings in the level of risk-neutral skewness, which in 

itself is very volatile. We also see that the average skewness of options with maturities from 

one week to 3 months is consistently negative over the whole time-period. Furthermore, we 

find that the level of the skewness was relatively low during the 07'-08' financial crisis, which 

however corresponds to the fact that extremely high implied volatilities usually correspond to 

less asymmetric RNDs. We will study a few of these observations more closely in the following 

section.  
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Figure 4. Skewness index and S&P 500 (August – December 2008). 

 
This graph shows the Gauss-Hermite skewness index and S&P 500 during the most volatile period of the financial crisis (August 2008 – December 2008) and highlights market-

relevant events. 
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4.7 Time series statistics 

In the following, we analyse the time series behaviour of the skewness index in a more statistical 

framework. We also ask if there is a significant relationship of changes in the underlying and 

that in risk-neutral skewness.  

 A first step is to check for autocorrelation in the time-series of the skewness index. From 

Figure 5, we see that there is significant autocorrelation present in the series, and it is decreasing 

slowly after many lags. This means that high levels of skewness typically are followed by high 

levels of skewness, and low levels are associated with previous low levels. Similarly, the same 

is true for the VIX. A natural question to ask is where the variation in skewness and VIX stems 

from. For the VIX, a well-documented behaviour is the so-called leverage effect. It postulates 

that implied volatility increases for lower levels of the underlying (for example Geske, 1979). 

Thus, some variation in the VIX series can be attributed to returns in the underlying. We show 

this in the first regression in Table 5, where we denote the S&P 500's log return by	∆#$ =

ln(#$/#$*+). Regressing today's level of VIX on the one day lagged VIX and today's log-return 

in the underlying, we confirm that both coefficients are highly significant and the high 

associated -. implies that a large part of the variation in the VIX can be explained by these 

coefficients. Thus, negative returns in the underlying indeed typically go along with increases 

in implied volatility. A similar picture emerges for the skewness index when regressing it on 

the associated S&P 500 return and the previous day's skewness (see the second regression in 

Table 5). However, the -. of the equation (83%) is not as high as that of the equation for VIX. 

Thus, a larger part of the variation in the level of skewness cannot be explained by these 

coefficients.  

 While the above method is the standard way of checking for the leverage effect, we 

believe it would be more interesting to remove the autocorrelation in VIX and skewness and 

see how much of the remaining variation can be explained by returns in the underlying. To 

remove autocorrelation, we take the first difference in the skewness series, i.e. ∆/+,$ = /+,$ −

/+,$*+, and do the same with the VIX series. Both series still exhibit some significant 

autocorrelation at early lags, however autocorrelation dies out quickly (see Figure 5). For the 

sake of simplicity and readability, we do not study the autocorrelation further, as its effect is 

negligible (see Table 5, specification 5). Thus, we regress first differences in VIX and skewness 

solely on log-returns of the underlying in equations 3 and 4 in Table 5. Here, the picture 

becomes much clearer. While the coefficient assigned to log-returns of the S&P 500 is highly 

significant in both equations, the underlying’s returns explain 72% of the variation in the first 

difference of the VIX series, but 0% of that of skewness. Hence, daily changes in risk-neutral 
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skewness cannot be explained with corresponding returns of the underlying. We also show this 

in Figure 6a, from which we can see that there is no clear relationship in the tails, either. Thus, 

not even extreme movements in the underlying affect the skewness index in a consistent 

fashion. This is in line with our previous graphical analysis. 
 

Figure 5 - Autocorrelation plots of skewness index and VIX. 

 
These graphs show the autocorrelation functions (ACF) of the skewness index (upper left), VIX (upper right), first 

differences in the skewness index (bottom left) and first differences in VIX (bottom right) for up to 40 lags. 

 

 To fully reject an effect between movement in the underlying and the skewness, we 

must also study for lagged effects between both variables. For this purpose, we propose to study 

these relationships in the framework of a vector autoregressive (VAR) model. Such a model 

fits changes in both underlying and the skewness index on previous (lagged) changes in both 

variables. To study for such a relationship, we must specify the maximum number of lags 

included in that model. This is tricky, because one must consider both statistical information 

criteria and economic considerations. Often, there is a trade-off between the models' 

performance and its complexity when it comes to the numbers of lags included. To make things 

worse, we find that different information criteria suggest different optimal lag-lengths for a 

model containing both series of changes in skewness and the underlying (see Appendix G for  
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Table 5. Linear regressions1. 

No. Dependent 

Variable 

Intercept 2$-+,456 /+,$-+ ∆#$ ∆2$,456  ∆/+,$  ∆/+,$-+ 27,$,89:; -. 

1 2$,456 0.35* 0.98*  -125.1*     0.99 

2 /+,$ 10.86*  0.91* 7.81*     0.83 

3 ∆2$,456 0.02   -125.42*     0.72 

4 ∆/+,$ 0.001   7.705*     0.00 

5 ∆/+,$ 0.003      -0.24*  0.06 

6 -<=$,+ 0.001*    0.01*    0.70 

7 -<=$,> 0.002*     0.001*   0.10 

8 -<=$,> -0.001*       0.315* 0.27 

This table shows the results of several regressions used to test dependencies involving the skewness index. The 

dependent variables are reported in the left column. /+,$ denotes the level of the skewness index, ∆/+,$ is the first 

difference in that series, ∆#$ is the log-change in the S&P 500, 2$,456 denotes the level of VIX, ∆2$,456 is the first 

difference in that series, and 27,$,89:; denotes the estimated EWMA volatility of the skewness index. -<=$,+ and 

-<=$,> are the daily average relative pricing errors of the GH-expansion, calculated with previous day as well as 

updated mean and volatility estimates, respectively. (*) denotes significance at the 1% level. Empty cells mean 

that a variable has been omitted in the corresponding equation. 
 

Figures 6a and 6b. Correlation of changes in the skewness index with S&P 500 returns (left) and changes 

predicted by an AR(1) process (right). 

 

These graphs show the correlation of first differences in the skewness index against log-returns in the S&P 500 

(left graph), and the correlation of first differences of the skewness index predicted by an AR(1) model (see Table 

5, equation 5) and actual changes in the skewness index (right graph). 

 

Stata outputs). While the Akaike information criterion (AIC) suggests the inclusion of up to 18 

lags, the Bayesian information criterion (BIC) suggests only 2 lags (it does penalize the 

                                                
1 All regressions in Table 5 are (multiple) linear regressions of the form ? = @A + C, where ? contains 
observations of the dependent variable, @ contains observations of the independent variables and the intercept, A 
is the vector of coefficients and C contains the stochastic error terms. 
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inclusion of additional parameters more than AIC does), and the Hannan–Quinn information 

criterion (HQIC) suggests 5 lags. We suggest sticking with 5 lags, which balances both AIC 

and BIC, is easy to interpret (5 trading days means one week) and should be more than enough 

time for all information to diffuse between markets. Now, in the context of a VAR model we 

can also test the hypothesis, that all coefficients of all lags (that are included in the model) of 

variable x on variable y are zero. This is equivalent to the null hypothesis of no Granger 

causality of x on y. Checking for Granger causality in this fashion, we find that we cannot reject 

the null hypothesis of no Granger causality of lagged changes in the underlying on risk-neutral 

skewness (p-value of 0.17). Thus, changes in the skewness-index are not Granger caused by 

log-returns of the underlying. On the other hand, we can reject the null hypothesis for changes 

in skewness on changes in the underlying (p-value of 0.013). However, when tracing this back 

to the VAR estimation results, this is probably due to multiple coefficients of skewness on the 

S&P 500 that are close to being statistically significant. However, the -. of that equation is 

extremely low (0.02), which is why we also disregard potential economic effects of changes in 

risk-neutral skewness on returns of the underlying. Also note, that various coefficients of lagged 

changes in skewness on 'current' changes in skewness are significant. Thus, there might be 

autocorrelation present in that series. However, we already disregarded the effect to be 

economically insignificant, and the autoregressive AR(1) model estimated from the data does 

not appear to predict movements in the skewness very well, as is shown in Figure 6b. Including 

more lags does not improve results. 

 

4.8 Skewness and pricing errors 

The fact that skewness cannot be explained by returns of the underlying points to the 

interpretation that skewness may constitute another risk-factor when it comes to option-pricing 

or risk-management of option portfolios.  

 We already saw earlier that the pricing errors of the GH-expansion can be significantly 

reduced when accounting for updated volatility estimates (see Chapter 4.3). We also show this 

in regression 6 of Table 5, where we regress the daily average relative pricing errors (out-of-

sample, using previous-day’s mean and volatility) across all RNDs on absolute changes in the 

VIX. The associated coefficient is highly significant and positive, and absolute changes in the 

overall level of VIX explain 70% of the variance of the out-of-sample pricing errors. Thus, 

whenever VIX jumps, the previous day's RNDs yield high pricing errors when used to price 

options out-of-sample. Unsurprisingly, VIX is thus a risk-factor for option portfolios.  
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 Now, if one accounts for updated mean and volatility estimates and denotes the resulting 

daily out-of-sample pricing errors by -<=$,>, we can check if this remaining pricing risk is to 

some degree explained by absolute changes in risk-neutral skewness. From Table 5 (regression 

7), we see that the associated coefficient is again both positive and highly significant. However, 

changes to risk-neutral skewness explain only 10% in the remaining variation of out-of-sample 

pricing errors (after accounting for updated mean and volatility). Thus, skewness might indeed 

be another risk-factor for option portfolios, its effect however is relatively small. This is to some 

degree surprising; however, we also recognize that changes in skewness cannot capture all 

details of changes in the shape of RNDs. 

 While the immediate correlation between pricing-errors and the magnitude of changes 

in the skewness index is limited, we also compare realized volatilities of the skewness index to 

GH pricing errors. For this we calculate daily estimates of realized volatility of the skewness 

index using an EWMA1 approach. To keep things simple, we set the weighting factor to λ =

0.94, which is suggested by RiskMetrics for daily returns. Let's denote the realized skewness 

volatility by 27,$,89:; and check for a connection to -<=$,>. From Table 5 (regression 8), we see 

that the out-of-sample pricing errors are significantly positively linked to higher realized 

volatilities in the skewness index, with the associated -. being much higher when compared to 

the regression including absolute daily changes in the skewness index. Thus, while changes in 

skewness cannot explain a large portion of remaining pricing errors, GH pricing errors are still 

usually higher in times of highly volatile skewness.  

 Lastly, we check for a possible relationship between implied and realized volatilities of 

the underlying and skewness. As already stated above, estimated skewness is rather small for 

days with extremely high implied volatilities. For days with low levels of VIX however, the 

corresponding level of risk-neutral asymmetry is not as clear. While the level of skewness is 

more spread out for smaller VIX levels, they are still associated with the highest levels of risk-

neutral skewness. Interestingly, the same relationship also holds for daily historical volatility 

estimates of the underlying. We can also estimate these using an EWMA approach (again with 

λ = 0.94). It turns out that VIX and realized volatilities are highly correlated (94.5%). Thus, in 

times of extreme market uncertainty (both historical and forward looking), RNDs are on 

average more symmetrical than over the whole dataset.  

 We also find that the skewness index is more volatile in times of high volatility in the 

underlying. We see this when comparing the EWMA-volatility estimates of the skewness index 

                                                
1 Exponentially weighted moving average. We define the daily EWMA volatility estimate as 
2$,8:9;
. = λ2$*+,8:9;

. + 1 − λ -$
., with -$. being the the squared log-change in the underlying series at time J. 
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with EWMA-volatility estimates of the S&P 500. While both series are not highly correlated, 

we find that volatility in skewness still tends to jump when volatility in the underlying spikes 

(see Figure 7). Thus, while the overall level of risk-neutral skewness on average is relatively 

low when market volatility is high, the uncertainty in the option markets about the skewness of 

the future RND rises in those times, too.  
 

Figure 7. Skewness and S&P 500 EWMA volatilities. 

 

 
This graph shows daily estimated S&P 500 EWMA volatilities and EWMA volatilities of the skewness index. 
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5. Discussion  

5.1 Implications 

We previously studied time-series dynamics of the risk-neutral skewness index extracted from 

S&P 500 options. We find that skewness is consistently negative, which implies a fat left tail 

of the RND when compared to the Gaussian distribution. Strikingly, the tail is comparatively 

thin during the financial crisis and other periods of market uncertainty. We link this behaviour 

to high implied and realized volatilities during that time, a property that we show to go along 

with rather low skewness in option prices. We also find that our skewness index is close to the 

CBOE SKEW index, that it is a mean-reverting series and it exhibits high autocorrelation. 

However, its daily variability is relatively high and hard to capture in an economic model. We 

observe that while changes in the skewness index are statistically significantly auto-correlated, 

the predictive power of that autocorrelation for one-day ahead forecasts is low. Also, returns in 

the underlying (instantaneous as well as at multiple lags) do not co-move with skewness. We 

further find similar results for correlations of the skewness index with VIX, even though high 

volatility states in the market typically go with relatively symmetric RNDs. For 'normal' levels 

of VIX however, there is no distinct relationship between both series. Moreover, there is no 

clear and consistent reaction of skewness to market relevant events. We only found that 

volatility in the skewness series usually increases when realized (and implied) volatility in the 

underlying does. Combining above insights, it is highly unclear where the variation in the 

skewness series stems from. This indicates a stochastic process or another yet unknown variable 

affecting risk-neutral skewness.  

 We also show that accounting for updated volatility estimates can significantly reduce 

out-of-sample pricing errors. For short-term options (<3 months to maturity), 50% of pricing 

errors can be attributed to daily changes in the overall level of implied volatility. Thus, risk-

neutral implied volatility is an important risk-factor for options. However, even when 

employing updated mean and volatility estimates, the remaining out-of-sample pricing 

performance using previous-day RND shape parameters is still significantly worse than in-

sample. This points to time-varying shapes of the estimated RNDs. We link this to variability 

in the skewness series, which we show to account for some part (10%) of the variability in 

remaining out-of-sample errors. However, a large part of out-of-sample errors still remains 

unexplained.  

 A stochastic risk-neutral skewness that to some degree affects pricing performance is 

problematic. Thus, our evidence points to skewness as an additional risk-factor for option 

portfolios, since not all pricing errors can be accounted for with movements in the underlying 
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(Delta risk) and parallel shifts in the implied volatility surface (Vega risk). These risk-factors 

are typically employed for risk-management purposes of option-portfolios, but only account for 

about 50 % of out-of-sample pricing errors in our paper. While the effect of skewness-risk alone 

is not negligible but also might not be extremely important for risk-management purposes, the 

unknown source of the remaining variability in the RND after accounting for effects of implied 

volatilities (and skewness) is even more so. (Since kurtosis has been shown to be highly 

correlated with skewness, we believe it would not add anything in explanatory power here.) 

Thus, as Bedendo and Hodges (2009) pointed out, risk-neutral skewness might thus introduce 

another level to Vega risk. 

 We further found these results and interpretations to be reflected in previous research 

on IVS dynamics. An important study by Cont and Da Fonseca (2002) decomposed these 

dynamics into different risk-factors corresponding to the level, slope, and curvature of the IVS. 

These correspond to volatility, skewness and kurtosis in risk-neutral space. Their main findings 

are as follows. First, the IVS is highly dynamic. This is reflected in our assessment of RNDs, 

since these produce higher out-of-sample errors than in-sample errors. Second, they find that 

the largest part of IVS variability can be explained by the overall level of volatility. We also 

find that accounting for this can reduce pricing errors significantly. On a related note, we can 

confirm the assessment that level effects (VIX) are highly negatively correlated with returns in 

the underlying. Third, skewness has been shown to be highly auto-correlated, mean reverting, 

and not correlated to returns of the underlying. Also, it has been shown to have a small (about 

3% of the variation) but significant effect on IVS dynamics. Thus, while using a different 

dataset and a very different methodology, our evidence points in the same directions.  

 Similarly, previous research on the topic of risk-neutral skewness pointed out links to 

investor sentiment (see Chapter 2.3). From our analysis, we do not find strong fears or 

anticipation of market crashes. Risk-neutral skewness was comparatively low in most of those 

cases, for example right before the Lehman bankruptcy. This relates to findings in Bates (1991). 

 While we can confirm some findings in the literature, there are also some discrepancies. 

For example, Gemmill and Saflekos (2000) and Birru and Figlewski (2012) find that RNDs 

reacted to movements in the underlying, and left-skewness increased only during and after 

crashes. Contrary to that assessment, we do not find any clear immediate (or lagged) link 

between returns in the S&P 500 and the level of or changes in skewness. On the other hand, to 

study possible lead-lag effects of returns of the underlying on implied risk-neutral moments, 

the use of intraday trading data would most likely draw a clearer picture, since we believe it to 
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be unrealistic that information would diffuse into option prices (or back) with a lag of a day or 

more. 

 Furthermore, since Andreou, Kagkadis and Philip (2012) pointed out that ‘rational’ 

sentiment based on economic fundamentals seems to drive option implied skewness, we find it 

especially striking that skewness in the crisis period was relatively low, while economic 

fundamentals were deteriorating and the macro-outlook was worsening quickly. We can only 

hypothesise that uncertainty was on such extreme levels that option prices across all strikes 

(and not only the left tail) had been associated with high premia during the crisis. Also, from 

the paradigm of market efficiency, one would expect returns to be independently and identically 

distributed. A related potential explanation is pointed out in CBOE (2010): markets might 

simply not view a repeated crash as likely. This also relates to demand-driven option-pricing 

models, which predict that if markets do not view consecutive extreme losses as likely to 

happen, then the demand for downward protection and thus for far out of the money put options 

will be lower. This is reflected in relatively lower premia associated with such options and 

hence, the implied volatility smile is not as steep on the left side (Bollen and Whaley, 2004). 

However, these explanations somewhat contradict the notion of volatility clustering. 

Lastly, Gemmill and Saflekos (2000) put forward the argument that since estimates of 

historical return skewness require a large dataset, one instead might possibly use densities 

implied in option prices for risk management purposes (to forecast future return densities of the 

underlying). However, our time varying assessment of tail-risk and time-varying out-of-sample 

pricing performance suggests that the shape of the option-implied RND heavily changes over 

time. This points to problems when using RNDs in risk-management, since it is not clear which 

RND one should use. However, we do have to keep in mind that these densities are risk-neutral 

and not real world densities, thus one must transform them first, as time-varying risk-aversion 

might in fact contribute heavily to the variation in RND shapes. Also, with our simple analysis, 

we can obviously not answer the question whether RNDs predict future realized return 

distributions, which would be required for them to be applicable to risk-management. However, 

the results in the literature about the usefulness of RNDs for real-world probability forecasting 

are mixed at best (see Chapter 2.3). Thus, risk-neutral densities might not be directly applicable 

for risk-management purposes, especially as they are highly volatile in times of high volatility 

in the underlying.  

 Our results combined with previous research have several implications, as we outlined 

above. However, they do not draw a fully conclusive picture and several topics are still to be 

explored. We point to some of them in the following. 
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5.2 Research outlook 

First, due to more stringent legislation and lessons learned from past crises, financial risk-

management is becoming increasingly important. It is concerned with the risk entailed in 

financial portfolios. Obviously, risk management heavily relies on assumptions about the future 

distribution of the portfolio, its underlying risk-factors and their interdependencies. As 

discussed above, skewness constitutes an additional, often overlooked risk factor for option 

portfolios. Also, a significantly large portion of pricing errors cannot be explained by the first 

three moments of RNDs. Thus, more research would be needed to identify ways of accounting 

for these kinds of risks.  

 Second, previous papers have made some progress on decomposing skewness and 

kurtosis risk in the IVS (see Chapter 2.2), which is why we believe that some of these 

techniques (e.g. Kalman filters) can also be employed to study for dynamics in the GH 

coefficients, which fully parametrize the implied volatility smile. That might draw a clearer 

picture about the link between skewness and pricing errors. 

 Third, to extend on the methodology used in our paper as mentioned in the previous 

point, we also believe that employing intraday option data might facilitate some new insights. 

This also applies to the study of immediate links between returns in the underlying and risk-

neutral skewness, which was pointed out in the literature, but which we however have not been 

able to confirm with our methodology. 

 Lastly, while GH-RNDs might not be able to predict future return distributions, the 

underlying Gauss-Hermite quadrature might still be helpful in risk-management. First, the 

expansion coefficients can be fit to historical return distributions. This can be helpful to easily 

calculate Value-at-Risk and other measures analytically (e.g. Pimbly, 2006). Second, some 

progress has already been made to model multivariate distributions using Gram-Charlier 

densities (see Del Brio, Niguez and Perote, 2009), and it would be interesting to see if the GH 

expansion also can be used in such a way, and how it would perform in practice.  
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6. Conclusion 
We use a new method of extracting risk-neutral skewness and a comparatively recent dataset 

(2007-2016) of S&P 500 index options. We show that while the tail behaviour of RNDs 

estimated using a Gauss-Hermite approach are sometimes problematic due to the general lack 

of option quotes far into the tail, stringent filtering (for pricing errors, time to maturity and the 

number of available strike prices) can still ensure realistic RND estimates.  

 We derive easy to use formulae for calculating risk-neutral skewness and kurtosis 

directly from the estimated GH expansion coefficients. Obviously, this is even easier for 

Edgeworth and Gram-Charlier Type-A based pricing models, which however have sub-par 

pricing performance, potentially making the GH approach more likely to be used in practice.  

 We continue by using our estimates to create a time series of option implied skewness 

(and kurtosis). We find the skewness index to be closely correlated to the CBOE SKEW index, 

which is computed using a completely different method. We are thus confident that our 

skewness index can be interpreted in a meaningful way. However, this also means that the GH 

expansion does not reveal additional information about risk-neutral skewness. We further find 

that kurtosis is highly correlated to risk-neutral skewness, which not only means that kurtosis 

mostly stems from a more pronounced left tail (since skewness is usually negative), but also 

that kurtosis does not add much additional information. We thus solely focus on the time series 

properties of our skewness index.  
 We find that the level of skewness implied in option prices is mean-reverting and highly 

auto-correlated. However, the variation in skewness can neither be attributed to past changes in 

skewness, nor is it related to returns of the underlying or changes in VIX. Furthermore, we link 

times of high volatility in skewness to increased out-of-sample pricing errors of the GH 

expansion. This points to skewness possibly being an additional, stochastic risk factor for option 

pricing. However, a large part of out-of-sample pricing errors remains unexplained. We can 

thus replicate some findings in the literature that decomposed dynamics in the implied volatility 

surface into different risk components (level, slope and curvature of the IVS). Nonetheless, our 

paper is only a very small first step in this direction and lacks the detail and sophistication of 

most methods employed in previous papers. We also believe that a more detailed dataset 

including intraday quotes would improve the assessment of some relationships in the data. Still, 

our findings in combination with previous literature have obvious implications for risk-

management. 
 Lastly, since options are a way of trading risk, implied risk-neutral densities can provide 

policymakers with information about aggregate market expectations of future return 
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distributions and have been linked to market sentiment. Thus, risk-neutral skewness can be used 

by central banks to assess sentiment and the perceived credibility of monetary policy, which is 

important for monetary forward-guidance. Similarly, implied RNDs (and therefore their 

implied skewness) can be used by market participants who wish to base their trading activities 

on divergences between their own and market expectations. However, to better interpret such 

measures at any given time, a prior study of their dynamics over time is necessary. While we 

only pursue this for S&P 500 options, the GH expansion and our measures of skewness and 

kurtosis could obviously also be used for options with other underlyings.  
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8. Appendices 
Appendix A – Gauss-Hermite polynomials 
 

Polynomial modification of the Gaussian distribution for various n. 

 

We plot polynomial modifications 	K L MN L 	of the standard normal distribution K L 	for various orders n, the 

sum (weighted by GH-expansion coefficients) of which approximates the RND for O ⟶ ∞. 
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Appendix B - Minimization problem 
 

Let R$,S denote a column vector with length m, containing the exercise prices of all T options 

traded at time J and with maturity J + U (filtered as outlined in Part 4.1). Once we obtained 

estimates for mean and volatility (as described in Part 3.3), we can for each element of R$,S 

calculate the corresponding V+ and V. (see Equation (5) in Part 3.3). Given this, we can 

similarly calculate all corresponding WN and XN. We then store those values in matrices W$,S and 

X$,S of dimension (T	×	21) such that 
 

W$,S =
W[(R+) ⋯ W.[(R+)
⋮ ⋱ ⋮

W[(R_) ⋯ W.[(R_)
	, X$,S =

X[(R+) ⋯ X.[(R+)
⋮ ⋱ ⋮

X[(R_) ⋯ X.[(R_)
. 

 

Now, modifying  
 

W$,S = #$`
ab*cd

eb
f

. S
W$,S 

 

and 
 

X$,S = `*cSR$,S ⊗ X$,S 
 

where ⊗ denotes row-wise multiplication. We now can combine  
 

h$,S = W$,S − X$,S 
 

which gives the estimated prices of each option depending on its strike price by 
 

=$,S = h$,S ∗ j$,S 
 

where j$,S is the vector of GH expansion coefficients and =$,S is the vector of estimated calls. 

Thus, to find the GH expansion coefficients, we can simply minimize the absolute difference 

between estimated (=$,S)	and observed (=$,S)	prices by finding values for j$,S that minimize 
 

TkO	 =$,S − =$,S
.
= TkO	 =$,S − h$,S ∗ j$,S

.
. 

 

This yields estimates of j$,S which can be found in a least-squares sense. However, in the 

estimation process, one has to consider several constraints to ensure that j$,S yield a RND that 

adheres to the properties of a probability measure. These constraints are outlined in Appendix 

C. 
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Appendix C - Linear constraints 

 

First, to ensure that the probability mass equals one, we must impose  
 

l(L)
m

*m
VL =

1
2
K
L − n
2

oN
m

Np[
MN

L − n
2

VL
m

*m
= 1 

 

l(L) VL
m

*m
= oN

1
2
K
L − n
2

MN
L − n
2

VL
m

*m

m

Np[
= 1. 

 

It turns out that this can be simplified to 
 

l(L) VL
m

*m
= oN K L MN L VL

m

*m

m

Np[
= 1. 

 

such that we can get the linear constraint 

 

 M$,S ∗ j$,S = 1 (Constr. 1) 

 
 

where 

M$,S
q
=

K L M[ L VL
m

*m
…
. . .
. . .

K L M.[ L VL
m

*m

. 

 

It is not straightforward to derive the integrals in M$,S
q analytically, but they can easily be 

obtained numerically. This derivation gives some intuition about the nature of the constraint of 

unitary mass. It is also equivalent to imposing 
 

o.s
(2t)!
t!

= 1
m

sp[
 

 

truncated such that 2t ≤ 20, which is given in Necula, Drimus and Farkas (2016). Second, to 

enforce non-negativity on the RND, one must have  
 

l(L) =
1
2
K
L − n
2

oN
m

Np[
MN

L − n
2

≥ 0 

 

for all L ∈ (−∞;∞) and hence 
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oNK
L − n
2

MN
L − n
2

m

Np[
≥ 0. 

This could be derived using the characteristic function, or one can simply introduce small 

discrete steps on the x-axis and ensure that l(L) > 0	at all steps, i.e. that 
 

@$,S ∗ j$,S ≥ { 
 

or equivalent 
 

 −@$,S ∗ j$,S ≤ { (Constr. 2) 
 

 

for  
 

@$,S =

K
L| − n
2

M[
L| − n
2

⋯ K
L| − n
2

M.[
L| − n
2

⋮ ⋱ ⋮

K
LN − n
2

M[
LN − n
2

⋯ K
LN − n
2

M.[
LN − n
2

 

 

and where { is a vector of zeros. We find that having many linear constraints with L ranging 

from L| = −10 to LN = 10 and discrete steps of size 0.001 is sufficient to ensure non-negativity 

in practice. Lastly, the as outlined in Necula, Drimus and Farkas (2016), the martingale 

restriction is given by 
 

 
`

a},b* c*~ d
e},b
f

. S
oN,$,SkNMN −k2$,S U = 1

.[

Np[
, k = −1 (Constr. 3) 

 

 Thus, all constraints on the RND can be expressed in a linear fashion. Hence, we can 

use the a linear least-squares optimization (Lsqlin in Matlab) to find j$,S by 
 

min =$,S − h$,S ∗ j$,S
.
 

 

under Restrictions (1), (2) and (3). As outlined in Part 3.3, we in practice however only enforce 

non-negativity and the martingale restriction. 
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Appendix D - Expressions for skewness and kurtosis 

 

First, for a continuous probability density Å(L) and some function Ç(L), we have  
 

=(Ç(L)) = Ç(L)Å(L)VL
dm

*m
. 

 

Now let us define the central moment of mth order of the probability density as 
 

=(@_) = =((@ − nÉ)_). 
 

Skewness and kurtosis however are often referred to as normalized central 3rd and 4th 

moments, i.e.  
 

/+(L) = =(
(@ − nÉ)>

2>
) 	= 	

(@ − nÉ)>

2>
Å(L)VL

dm

*m
 

 

and 
 

/.(L) = =(
(@ − nÉ)Ñ

2Ñ
) 	= 	

(@ − nÉ)Ñ

2Ñ
Å(L)VL

dm

*m
. 

 

Now, in our case the probability density function is  
 

l(L) =
1
2
K
L − n
2

oN
m

Np[
MN

L − n
2

 

 

and standardizing L = É*Ö

e
, we have 

 

l(L) =
1
2
K L oN

m

Np[
MN L . 

 

Now we could use the integral definition of skewness and kurtosis as above, but the derivation 

is easier using the characteristics function of the distribution. As defined in Necula, Drimus and 

Farkas (2016), the characteristic function for the normalized distribution is 
 

Ü(á) = `*
àf

. oN
m

Np[
kNMN á , k = −1. 

 

The mth moment of a distribution is defined as the mth derivative of Ü, evaluated at zero, i.e.  
 

=(@_) = k*_
V_

Vá_
Ü6(á)

àp[

. 

Thus,  
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=(@_) = k*_
V_

Vá_
`*

àf

. oN
m

Np[
kNMN á

àp[

. 

 

First, we can note that due to the 'summation' rule in calculus, we can evaluate each term of the 

sum individually. Also, as oN is a constant, we can write 
 

=(@_) = oN
m

Np[
kN*_

V_

Vá_
`*

àf

. MN á
àp[

. 

 

A useful insight is again, that the expression is linear in oN, hence we can write 
 

=(@_) = oN
m

Np[
âN_, 		âN_ = kN*_

V_

Vá_
`*

àf

. MN á
àp[

, 

 

where the expressions for		âN_ will be derived in the following. Now, for the skewness /+(L), 

we have T = 3, and hence  

		âN> = kN*>
V>

Vá>
`*

àf

. MN á
àp[

. 

 

For simplicity, let's denote `*
ãf

f = = and MN á = MN and å	[	]
åà

= [	]′. Thus,  
 

		âN> = kN*> =MN àp[
êêê  

 

		âN> = kN*> =′MN + =M′N àp[
êê  

 

		âN> = kN*> =′′MN + =′M′N + =′M′N + =M′′N àp[
ê  

 

		âN> = kN*> =′′′MN + =′′M′N + =′′M′N + =′M′′N + =′′M′N + =′M′′N + =′M′′N + =M′′′N àp[ 
 

Notice, that all terms of =′′′ and =′ equal zero at á = 0, thus we can drop them completely and 

have  
 

		âN> = kN*> =′′M′N + =′′M′N + =′′M′N + =M′′′N àp[ = k*> 3=′′M′N + =M′′′N àp[. 
 

Next, the only non-zero terms in = and =′′ at á = 0 are 1 and −1, respectively. Hence,  
 

		âN> = kN*> −3M′N + M′′′N àp[. 
 

Now, as MN is a polynomial, we can evaluate each of its terms individually in the derivative. 

Since we are considering the third (M′′′N) and first (M′N) derivative, only terms of MN with 

exponents of 3 and 1 will remain, while the others will equal 0 at á = 0. Since by definition 
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MN where O is even do not have those terms, we already know that		âNpëíëN> = 0. This is a very 

intuitive result, since MN of even order are symmetrical around 0 and do not introduce skewness. 

It remains to show how		âN> is defined for odd O. Now, since the non-zero terms in M′N and 

M′′′N will have to be constants (at á = 0), they thus will be closely related to the coefficients 

assigned to the L+ and L> terms in MN. In fact, we can write MN as a combination of those terms 

and those that drop out at á = 0	as 
 

MN = ìNL> + ANL++. .. 
 

where ìN and AN are some coefficients, which will yield 
 

		âN> = kN*> −3M′N + M′′′N àp[ = 6ìN − 3AN. 
 

Thus, we need to find a formula for coefficients ìN and AN. In fact, due to the recursive nature 

of the Hermite polynomials, these will only depend on the order of the polynomial. Following 

the alternative definition of physicist Hermite polynomials in Lebedev (1965) that reads 
 

MN(L) =
(−1)sO!

t! (O − 2t)!
(2L)N*.s,

N/.

sp[
 

 

where L  denotes the floor function (i.e. the greatest integer less than or equal L), it follows 

from some simplifications that the coefficients can be expressed as 
 

AN = −1
N*+
.

2O!
O − 1
2 !

 

 

and 
 

ìN = −
(O − 1)
3

AN 
 

for odd O. Now we can simply write 
 

		âN> = kN*> 6ìN − 3AN = kN*> 6(−1)
(O − 1)
3

AN − 3AN  
 

		âN> = −kN*> 6
(O − 1)
3

AN + 3AN) = −kN*> (2O + 1)AN  

 

		âN> = −kN*>(2O + 1) −1
N*+
.

2O!
O − 1
2 !
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Recognizing, that −kN*> −1
ïñó
f = − −1

ïñò
f −1

ïñó
f = − −1 N*. = 1 for odd O, we finally 

have  
 

/+ L = oN
m

Np[
âN>	 

 

where 
 

âN> =
2O + 1

2O!
O − 1
2 !

, O	 = 	ôVV

0, `öõ`

. 

 

For the kurtosis, we can again start from the definition involving the characteristic function: 
 

/. L = = @Ñ = oN
m

Np[
âNÑ, 		âNÑ = kN*Ñ

VÑ

VáÑ
`*

àf

. MN á
àp[

 

Notice that  
 

		âNÑ = kN*Ñ =MN àp[
êêêê  

 

		âNÑ = kN*Ñ =′′′MN + =′′M′N + =′′M′N + =′M′′N + =′′M′N + =′M′′N + =′M′′N + =M′′′N àp[
ê  

 

		âNÑ = kN*Ñ =′′′′MN + =′′′MN′ + =′′′M′N + =′′M′′N + =′′′M′N + =′′M′′N + =′′M′′N + =′M′′′N

+ =′′′M′N + =′′M′′N + =′′M′′N + =′M′′′N + =′′M′′N + =′M′′′N + =′M′′′N

+ =M′′′′N àp[. 
 

Again, =′ = =′′′ = 0 at á = 0. Thus, 
 

		âNÑ = kN*Ñ =′′′′MN + =′′M′′N + =′′M′′N + =′′M′′N + =′′M′′N + =′′M′′N + =′′M′′N

+ =M′′′′N àp[ 
 

		âNÑ = kN*Ñ =′′′′MN + 6=′′M′′N + =M′′′′N àp[ 
 

Also, the non-zero terms at á = 0 are =′′′′ = 3, =′′ = −1 and = = 1, which yields 
 

		âNÑ = kN*Ñ 3MN − 6Mêê
N + Mêêêê

N àp[ 
 

Recognizing that all terms of the physicist Hermite polynomials of odd order (also for their 

second and fourth derivative) collapse to zero at á = 0, we already know that		âNÑ = 0 for odd 

O. Thus, for polynomials of even order we can write 
 

MN = úNLÑ + ùNL. + ûN +⋯ 
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and then 
 

		âNÑ = kN*Ñ 3ûN − 12ùN + 24úN àp[ 
 

Similar to the skewness, the kurtosis depends on the coefficients associated with individual 

terms of the Hermite polynomial of order O.	Here again, we can express those as functions of 

O, i.e.  
 

ûN =

O!
O
2 !

−1
N
., O > 1, O = `ü`O

0, O = ôVV

 

 

ùN = −OûN 
 

úN =
O(O − 2)

6
ûN. 

 

Combining and recognizing that −kN*Ñ −1
ï
f = 1 for all even O, we get 

 

		âNÑ = kN*Ñ 3ûN − 12ùN + 24úN àp[ = kN*Ñ 3ûN + 12OûN + 4O(O − 2)ûN àp[ 
 

		âNÑ = kN*Ñ (4O. + 4O + 3)ûN àp[ 
 

		âNÑ =
4O. + 4O + 3

O!
O
2 !

, O = `ü`O

0, `öõ`

 

 

and  
 

/. L = = @Ñ = oN
m

Np[
âNÑ. 

 

An easy way of verifying these expressions for skewness and kurtosis is to use numerical 

methods (e.g. the integral function in Matlab) to compute values according to the integral 

definition of those moments. We found that both methods yield the same results. Also, using 

only O = 0, we see that the expressions yield /+ = 0	and /. = 3, which correspond to the 

Gaussian. 
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Appendix E – Tail behaviour of GH-RNDs 

 
Gauss-Hermite risk-neutral density on October 22, 2008. 

This graph shows the Gauss-Hermite risk-neutral density (standardized) estimated from option quotes on October 

22, 2008 and with a time to maturity of U = 0.91. It also shows a standard normal distribution. 

 

Appendix F – Connection between skewness and kurtosis indices 
 

First differences of skewness and kurtosis indices. 

 
This graph shows the (simultaneous) first differences of the skewness and kurtosis indices. 
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Appendix G - VAR model output and Granger causality test 
 

Information criteria for VAR models including first differences in the S&P 500 and skewness index 

(multiple lag-lengths). 

lag AIC HQIC SBIC 

1 -1.6484 -1.6448 -1.6385 
2 -1.6650 -1.6578 -1.6452* 
3 -1.6702 -1.6594 -1.6406 
4 -1.6699 -1.6555 -1.6303 
5 -1.6789 -1.6609* -1.6295 
6 -1.6779 -1.6563 -1.6186 
7 -1.6820 -1.6568 -1.6128 
8 -1.6844 -1.6556 -1.6053 
9 -1.6823 -1.6499 -1.5933 

10 -1.6876 -1.6515 -1.5887 
11 -1.6859 -1.6463 -1.5771 
12 -1.6899 -1.6466 -1.5712 
13 -1.6870 -1.6402 -1.5585 
14 -1.6859 -1.6355 -1.5475 
15 -1.6863 -1.6322 -1.5379 
16 -1.6915 -1.6338 -1.5333 
17 -1.6927 -1.6314 -1.5246 
18 -1.6979* -1.6331 -1.5200 
19 -1.6954 -1.6270 -1.5075 
20 -1.6975 -1.6255 -1.4998 

 

This table contains statistical information criteria for a VAR model including both changes of skewness and log-

changes in the S&P 500 for up to 20 lags. (*) denotes optimal lag-length according to a given information criterion. 

 

From the above table containing statistical information criteria for the optimal lag-length of 

vector-autoregressive (VAR) models, we see that the optimal number of terms to be included 

in the model is not clear, as each criterion suggest a different lag-length. We suggest using 5 

lags, as it balances the other criteria and is easy to interpret (5 days usually is one week of 

trading). The estimated VAR model then will take the following form: 
 

∆#$
∆/+,$

=
o+,+
+ o+,.

+

o.,+
+ o.,.

+

∆#$*+
∆/+,$*+

+. . . +
o+,+
† o+,.

†

o.,+
† o.,.

†

∆#$*†
∆/+,$*†

+
`+,$
`.,$

 

 

where ∆#$ and ∆/+,$ denote the S&P 500 log-return and the first difference of the skewness 

index, respectively. The model output is shown below. 
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VAR model output. 

Equation Parameters RMSE R-squared Chi-squared p-value 

∆#$ 10 0.0134 0.0252 60.4589 0 
∆/+,$ 10 1.8744 0.0861 220.7700 0 

      
Equation: ∆#$     

Variable Lag Coefficient Std. Err. z P>(z) 

∆#$*+ 1 -0.1144* 0.0207 -5.5300 0.0000 
∆#$*. 2 -0.0630* 0.0208 -3.0300 0.0020 
∆#$*> 3 0.0246 0.0208 1.1800 0.2370 
∆#$*Ñ 4 -0.0253 0.0208 -1.2200 0.2240 
∆#$*† 5 -0.0519 0.0206 -2.5100 0.0120 
∆/+,$*+ 1 0.0003 0.0001 1.9100 0.0560 
∆/+,$*. 2 0.0003 0.0002 1.8600 0.0620 
∆/+,$*> 3 -0.0003 0.0002 -1.6900 0.0910 
∆/+,$*Ñ 4 -0.0003 0.0002 -1.8800 0.0600 
∆/+,$*† 5 -0.0001 0.0001 -0.7000 0.4860 

      
Equation: ∆/+,$     

Variable Lag Coefficient Std. Err. z P>(z) 

∆#$*+ 1 -6.2651 2.8898 -2.1700 0.0300 
∆#$*. 2 3.9980 2.9079 1.3700 0.1690 
∆#$*> 3 1.1297 2.9137 0.3900 0.6980 
∆#$*Ñ 4 1.5488 2.9047 0.5300 0.5940 
∆#$*† 5 0.9281 2.8851 0.3200 0.7480 
∆/+,$*+ 1 -0.2721* 0.0206 -13.2000 0.0000 
∆/+,$*. 2 -0.1455* 0.0214 -6.8100 0.0000 
∆/+,$*> 3 -0.1123* 0.0215 -5.2300 0.0000 
∆/+,$*Ñ 4 -0.0663* 0.0214 -3.1000 0.0020 
∆/+,$*† 5 -0.0975* 0.0206 -4.7300 0.0000 

 

This table shows the estimated VAR model output for both changes in the skewness index (∆/+,$) and log-changes 

in the underlying (∆#$). Statistically significant coefficients (at 1%) are denoted by (*).  

 
Granger causality Wald test. 

Equation Excluded Chi-squared P>(Chi-squared) 

∆#$ ∆/+,$ 14.482 0.013 
∆/+,$ ∆#$ 7.6969 0.174 

 

This table shows the results of a Wald test for Granger causality. It tests the null-hypothesis that coefficients 

associated with all lags of the excluded variable are zero in the given equation of the VAR model.  


