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Abstract

This thesis investigates the performance of machine learning models in predicting

long-term issuer credit ratings, relative to the that of traditional statistical modeling

approaches. Our dataset consists of 3,992 ratings by S&P, Moody’s and Fitch of

American non-financial, non-governmental companies, in the period 1 January 2010

through 1 September 2016. 20% of the dataset is used strictly as an out-of-sample

set, in order evaluate the models’ performance. We find that our best-performing

machine learning model, the ExtraTrees algorithm, achieves an accuracy of 37% when

predicting over 16 classes – significantly better than our highest performing statistical

method, multiple discriminant analysis, which had 27% accuracy. When predicting

over 6 and 2 separate classes, the best-performing models achieved accuracies of 70%

and 92%, respectively. These results are in line with previous research on the topic,

but are the results of training on a significantly larger dataset. Whereas our results,

and past studies show that a relatively high degree of accuracy is possible, the specific

implications and possible applications are still unclear.
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1 | Introduction

This chapter introduces the research topic, credit ratings, machine learning, and the rel-

evance of credit rating modeling. We explain the motivation for choosing the research

topic, define the thesis’ central research question and specify the objective of the study.

Further we briefly describe the methodology that we will use to answer the research ques-

tion. Finally, this chapter concludes with a high-level summary of structure of the thesis

and its chapters.

1.1 Background and motivation

For any investment or financial transaction, risk is a major consideration and affects the

decisions of investors, lenders, borrowers and other market participants (IOSCO, 2003).

In corporate credit markets, credit ratings have become one of the primary references

for financial institutions and other investors to assess credit risk (IOSCO, 2003). Credit

ratings are the opinion of a rating agency about the credit quality of a bond issuer or a

particular debt security, summarized as a grade according to a predefined scale (Bennell

et al., 2006).

Credit rating agencies (CRAs), such as Standard & Poor’s Financial Services (S&P),

Moody’s Investor Service (Moody’s) and Fitch Ratings (Fitch) are some of the providers

of credit ratings. CRAs are specialized companies, with the resources and knowledge to

gather and analyse the data needed to assess credit quality (Bennell et al., 2006).

Typically, if the risk of lending to a borrower is high, investors will require a higher

compensation. This compensation usually comes in the form of higher effective interest

rates (Surkan and Singleton, 1990), but can even take other shapes, such as more lender-

favourable terms or rights (Frank, 2009). Given the recognition and extensive use of credit

ratings by the financial industry and regulators, CRAs are instrumental in determining the

cost of borrowing for debt security issuers, giving them an influential position in financial

markets (Maher and Sen, 1997).

The CRAs state that both quantitative and qualitative factors are considered in their

assessment and use public. Both company-published and public domain information,

as well as proprietary information, such as company-provided data and information from

meetings with the issuer’s management (Standard & Poor’s Financial Services LLC, 2016).

There are many CRAs, but the largest ones are S&P, Moody’s, and Fitch (Frank,

2009). However, obtaining a rating from any of these CRAs is both costly and time-

consuming, as such an analysis is performed by experts (Hajek and Michalak, 2013). This

expense translates into lower profit for the company and its investors. Furthermore, CRAs

have been heavily criticised for issuing misleading and untimely ratings. The CRAs’ role

in exacerbating the 2008 financial crisis, and scandals such as Enron’s bankruptcy in 2001,

serves as stern reminders not to trust credit ratings blindly. In the specific case of Enron,

it had an investment-grade credit rating up until five days before it filed for bankruptcy
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(White, 2010). Lastly, CRAs have faced criticism for the opaqueness of their methodology

and limited information about which variables are considered.

One way of lowering the costs, improve the timeliness of credit ratings, and create more

transparency, could be to automate the rating procedure. Within academic literature,

there has been extensive research on attempting to model credit ratings using publicly

available information and a variety of statistical techniques. More recently, using machine

learning techniques for this purpose have been studied in academic literature.

Machine learning has become increasingly pervasive in many disciplines and applica-

tions, and have gained substantial attention from academia and the industry. Whereas

classical statistical methods are focused on theory-driven hypothesis testing, machine

learning has a more data-driven approach to modelling. Furthermore, machine learn-

ing models often have relaxed assumptions on the structure of the data and can model

complex non-linear relationships. However, machine learning models are often criticised

for being ’black-boxes’, from which it is hard to derive meaningful economic implications.

Thus, as a theoretical tool, machine learning models are limited in what they can tell us

about the underlying structure of the data.

Machine learning models are used for a multitude of tasks, but are frequently used

for classification problems. Within finance, credit ratings is one of the most apparent

classification problems. There has been numerous studies attempting to model credit

ratings using machine learning models, with varying degrees of success. Modelling credit

ratings is a relevant topic both for academic understanding and for the financial industry.

Whereas machine learning models will likely not replace the role of CRAs, they do present

an interesting topic. In particular, it allows us to examine how much information publicly

available accounting data holds about credit ratings. In turn, this also allows us to assess

the value that CRAs provide in the act of rating a company. Furthermore, it could serve

as a lower-cost method of assessing credit risk, or even for predicting credit rating changes

and corresponding bond yield changes.

The research topic could also be of great interest to the credit rating industry, as

machine learning could help CRAs automate some of their processes, saving costs, or

provide valuable information to their analysts, which could aid them in making more

informed decisions, increasing the quality of the ratings.

1.2 Research problem and goal

Credit ratings have been modelled using various statistical and machine learning tech-

niques. These attempts have done so with varying degrees of accuracy, but seem to

exhibit the trend that machine learning models show greater promise in modelling ratings

with high accuracy.

Generally speaking, two types of ratings exist; issuer ratings and issue ratings. Key to

credit ratings is the default risk - in short, the capacity and willingness of the bond issuer

to meet its financial commitments on a timely basis (Huang et al., 2004).

However, most of the literature on the subject has limited itself to investigating one or

a few different modelling approaches at the time. Furthermore, in many studies, collecting
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a large sample has seemingly proved difficult for researchers. Moreover, many reports and

articles have joined multiple of the ratings into groups (e.g. investment-grade, specula-

tive), instead of considering the full range of possible ratings, which seems to devalue the

relevance of their results. As such, it appears that there is room for improvement, both

regarding methodology, and increasing the relevance of results.

In light of these observations, this thesis seeks to answer the research question of how

well machine learning models can predict credit ratings, and if they can do so with higher

accuracy compared to traditional statistical methods. Lastly, if they are better – we are

interested in which model yields the highest accuracy.

As part of attempting to answer this research question, this thesis will model credit

ratings from S&P, Moody’s and Fitch based on public financial data, using different sta-

tistical and machine learning techniques. The goal is to have a comparable benchmark of

the different approaches, on the prediction accuracy. This thesis will attempt to alleviate

some of the issues from past studies, collect a large sample size and to use as many ratings

classes as possible. Another goal of the thesis is also to implement an automated process

for selecting modelling parameters. In the spirit of scientific rigour and academic integrity,

another goal of the thesis will be to elaborate in-depth on the methodology used, such

that others can reproduce or develop on the study.

Lastly, the final goal of the thesis is to provide the reader with an understanding of

both credit ratings and the applied machine learning approaches.

The goal of thesis is not so much to determine which variables are most relevant in

the credit rating process, nor is it necessarily to create more transparency about the

ratings process. Machine learning would be inconvenient way to answer those questions,

as many machine learning techniques, generally have little room for logic interpretation of

its parameters.

On the contrary, this thesis seeks to investigate, the accuracy that machine learning

models can achieve in modeling credit ratings, and which of the different machine learning

algorithms in the scope of this thesis, have the highest accuracy. Whereas this is not

distinctly unique, compared to previous studies, we do believe this thesis differentiates

itself from other studies, by combining best practice from past studies, along with a

significantly larger dataset compared to any previously published study within this field.

1.3 Overview and thesis outline

The thesis starts by, in Chapter 2, giving the reader an understanding of what credit

ratings are, their role in financial markets, and how the rating process is structured.

Chapter 3, explores both traditional statistical and machine learning modelling ap-

proaches that have been used to model credit ratings. In the chapter, some basic knowl-

edge of the models and their characteristics is described, along with some challenges of

using these types of models for modelling credit ratings. The chapter seeks to give the

reader some background on how the machine learning algorithms work and explain how

these are different from statistical approaches.
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Chapter 4 is dedicated to a review of previous literature on the topic. It will go over

some past attempts to model credit ratings, both using statistical and machine learning

techniques. We briefly explain and discuss the methods of the different authors and how

these relate to the work presented in this thesis.

Chapter 5 describes the methodology used in this thesis. We describe how we apply

the modelling techniques in practice, and how we find modelling parameter. Secondly, we

describe how the modeling is done, and which techniques are employed and how. Lastly,

we go through the performance evaluation methods used to evaluate the different models.

In chapter 6, we first detail the data collection process, how we process the data and

our considerations regarding this. We then present and describe the data that we have

collected and go through the data processed prior to any modeling, and present relevant

data from this process.

In chapter 7, the main analysis of the thesis is presented. Here, we show the main

findings of the different modelling approaches and their intermediate results. In the end,

we present an overview of the performance of the different models.

Finally, in chapter 8, we conclude the thesis with the conclusions that we can draw from

the analysis in chapter 7. We summarize the findings, discuss the results, and consider

the implications, recommendations, and potential applications of the findings. Lastly, we

discuss the validity of the results, methodological weaknesses and potential improvements,

and suggestions for further research.

1.4 Summary

In this chapter, we have introduced the research topic. Risk is a major consideration,

when investing in debt securities, and as many market participants use credit ratings as a

proxy measure for risk, CRAs have a large influence in the market. Obtaining a rating is

both time-consuming and expensive, and the CRAs have faced significant criticism for not

providing timely and unbiased ratings. One way to alleviate some of these issues would

be to automate the process, using machine learning algorithms, as these have proven to

be suitable models for predicting credit ratings based on public information. This thesis

seeks to compare machine learning models and statistical models, in order to create a

benchmark, and hence identify which machine learning algorithm provides the highest

accuracy. The structure of the thesis has been described, and in the next chapter, we will

give background on the topic of modeling credit ratings, and how these can be modeled.
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2 | Credit Ratings and Credit

Rating Agencies

2.1 Introduction

This chapter provides background information about credit ratings, the CRAs and their

methodology. We start by defining credit ratings, describe their role in credit markets, who

the different users of credit rating are and how they use them. We proceed by describing

the rating scales of the different CRAs, the general credit rating process, and describe

the variables that are considered in a credit rating. Lastly, we describe the criticism that

CRAs have faced.

2.2 Credit Ratings

There is no single industry definition or standard defining what a credit rating is. The

U.S. Securities and Exchange Commission (SEC) states that credit ratings reflect a CRA’s

opinion, of the creditworthiness of a particular company, security, or obligation (U.S. Se-

curities and Exchange Commission, 2003). Moody’s define creditworthiness as the ability

and willingness of an obligor to make full and timely payment of amounts due on a security

over its life (Moody’s Investors Service, 2004).

More than 150 CRAs exist worldwide (Langohr and Langohr, 2012). Each has its

focus, ratings scale and methodology. For more than a century, these agencies have been

providing their opinions on bonds and the companies that issue them. Over time, credit

ratings have become increasingly important for users and providers of debt financing (Lan-

gohr and Langohr, 2012). As we will see in this section, credit ratings affect markets in

a multitude of ways, among others, issuers’ access to capital, transaction structures, and

the ability of certain institutional investors to make particular investments (U.S. Securities

and Exchange Commission, 2003).

The primary users of credit ratings are bond investors who use the rating as a measure

of the creditworthiness of issuers and hence the riskiness of securities they issue (IOSCO,

2003). This gives CRAs a vital role in credit markets and their opinions affect the mar-

ketability and yields of bonds (Kaplan and Urwitz, 1979). However, as we will see in

this section, credit ratings have more wide-ranging implications for market participants,

beyond just issuers and investors (IOSCO, 2003). For instance, ratings can also have im-

plications for non-bond related contracts between issuers and private contractors, as well

as for agreements between banks and issuers.

The three largest CRAs, S&P, Moody’s and Fitch are all classified as nationally statis-

tical rating organisations (NRSROs) by the SEC, giving their ratings certain entitlements.

The SEC is the enforcing part of the financial regulatory body in the United States, whose

responsibility it is to protect investors, market integrity and to facilitate capital forma-
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tion (U.S. Securities and Exchange Commission, 2016). Both the SEC and its European

equivalents, are frequent users of credit ratings. For instance, the SEC have more lax

requirements for bond prospectuses, if the issuer is rated by an NRSRO (Frank, 2009).

In Europe, although the uses of ratings in regulatory contexts historically have been less

common (Langohr and Langohr, 2012), they now have significant regulatory implications.

For instance, the Basel II framework specifies that ratings from approved agencies can

be used by banks, when calculating capital reserve requirements (Bank for International

Settlements, 2005). The regulatory uses of credit ratings go beyond these few examples,

and we will look further into these in this chapter.

In determining a credit rating, S&P, Moody’s and Fitch consider both quantitative

factors, such as sales, earnings, and leverage, as well as qualitative factors such as market

position and reputation. These are through a scoring system, converted into a single score

on a scale of credit ratings. Whereas the process and specific factors considered differ

between agencies, there are significant similarities in the method and process between the

larger agencies (IOSCO, 2003).

The credit rating industry has been subject to controversy over the past few decades.

Literature suggests that the large credit CRAs have played a significant role in exacerbat-

ing some high-profile bankruptcies, and in the 2008 financial crisis (White, 2010). As the

firms being rated are also the ones paying the CRAs, their objectivity has been called into

question, further supporting the need for automated, objective credit rating alternatives

(Frank, 2009).

2.3 Rating agencies

CRAs are the companies that assess the creditworthiness of corporate and government

entities, and the fixed-income securities that these issue. CRAs provide investors and

lenders with an understanding of the risk faced when purchasing the bonds of a fixed in-

come security issuer. As such, a credit rating is an evaluation of the ability and willingness

of a borrower to pay their financial commitments to the lenders under the terms of the

issue, with the purpose of decreasing the asymmetric information between the two parties

(Langohr and Langohr, 2012).

CRAs, in their present form, did not emerge until about 100 years ago. In the 19th

century, its place was filled by three separate types of institutions; credit reporting agencies,

the specialised business press and investment banks (White, 2010). The first to bring these

parts under one roof was John Moody in 1909, who established Moody’s Investor Service.

Even S&P was has deep roots in the history of CRAs – The Poor Company, a prominent

specialised business press company, merged with Standard Statistics to become the S&P

we know today. Investment banks, as underwriters, used their good reputation incite the

confidence of investors (Langohr and Langohr, 2012), but this function was in part taken

over by the CRAs, who offered an independent evaluation.
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2.4 The Need for Credit Ratings

Credit ratings exist as a piece of information at the intersection where supply and demand

for capital meets. Providers and users of ratings agree that they are an opinion of an

entity’s creditworthiness. In this section, we explore the economic function that credit

ratings fill, and look at how different market participants use ratings.

2.4.1 Economic Function of Credit Ratings

Credit ratings reduces friction in matching users and providers of capital, as they satisfy

certain needs of both parties, respectively. Capital providers need information about the

quality and risks of their investments and users of capital need access to said capital. By

satisfying these needs, credit ratings facilitate optimal decisions for investors and borrow-

ers. Credit ratings can in a sense be seen as a way to reduce transactions costs, as they

for investors reduce the cost of information and, for borrowers, reduce the cost of market

access (IOSCO, 2003).

A prospective borrower will have more information about its creditworthiness than

potential lenders, as they have access to information, which is not publicly available, as

well as a more specialised understanding of the market and economic conditions they are

operating within. This asymmetry of information between the two parties puts lenders in

a position, where they gain from selectively disclosing information that would favourably

bias the opinion of outsiders.

Such information asymmetries lead lenders to insist on being rewarded for taking upon

the risk of such asymmetries impacting them adversely, which translates into higher capital

costs for borrowers (Frank, 2009).

A primary rating function is to objectively measure the credit risk, about a certain

issue or issuer and to resolve the information asymmetries that exists between lenders and

borrowers. As such, the CRAs, by providing an unbiased opinion, with access to some

non-public information, alleviates some of this asymmetry and minimise the higher capital

costs of borrowers and higher investment evaluation costs on the part of lenders. This is

the primary value of credit ratings - reducing the transaction costs and market friction,

that can occur in such transactions, by reducing information asymmetry. This is also why

regulators condone the existence of CRAs - in fact, they share some of the same goals in

promoting a well-functioning capital market.

This works as the CRAs are held accountable by both sides involved in a debt trans-

action. For borrowers to be willing to pay for a credit rating, they must believe that it

lowers the capital costs more than the costs of the rating itself. If they do not believe

that it has a positive financial impact, they will simply choose not to be rated. For the

rating to have any information for the lenders, they must believe that the rating has useful

information about the credit quality of the potential investment. Evidently, the degree to

which lenders feel that a particular CRA does have any useful information, depends on

the reputation and performance of the CRAs in accurately assessing credit quality. If a

CRA should consistently fail in correctly assessing the credit quality, they will no longer
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be of value to lenders, and thus lose its value to borrowers.

As a secondary function, credit ratings exist as a means of comparison between issuers

and issues. Ratings give market participants a common standard, used to refer to credit

risk by (Langohr and Langohr, 2012).

2.4.2 Users of Credit Ratings

As mentioned, credit ratings play a significant role in the decisions made by a multitude

of market participants, even beyond lenders. Below, we look at how different market

participants use credit ratings.

Issuers/Borrowers

Issuers use credit ratings for a number of reasons. These include improving the marketabil-

ity and pricing of their securities (U.S. Securities and Exchange Commission, 2003), as a

means to increasing their trustworthiness to investors and other counterparties. Further-

more, some investors have a preference for bonds with a rating, either due to the lower

need for evaluation and monitoring or for regulatory reasons. As such, issuers use ratings

simply to advance their access to capital (Becker and Milbourn, 2010).

Investors

Mutual funds, pension funds and insurance companies are among the largest owners of

debt securities, and most retail participation in debt markets takes place through these

fiduciaries (U.S. Securities and Exchange Commission, 2003). These entities are substan-

tial users of credit ratings, as they as regulated entities under U.S. law, in many instances

are prohibited from purchasing debt securities rated below a certain rating (Langohr and

Langohr, 2012). Furthermore, in addition to helping investors understand the risks and

uncertainties of investments, the independent opinion of creditworthiness that CRAs pro-

vide makes it easier for investors to compare different potential investments, while saving

them the costs of doing their own analysis to evaluate risk prospects.

Brokers, Underwriters and Investment Banks

To a large extent, brokers and underwriters use credit ratings in a similar fashion as

investors. Also, many underwriters have what they call ’rating advisory groups’, who

assist clients in selecting appropriate CRAs for their offerings and guide issuers through

the rating process. Also, ratings have significant importance in over-the-counter (OTC)

markets, where brokers and investment banks use credit ratings to determine appropriate

counterparties and collateral levels (Frank, 2009). Furthermore, many of these firms are

themselves issuers of bonds and debt instruments, such as the heavily discussed collater-

alized mortgage obligations (CMOs) (U.S. Securities and Exchange Commission, 2003).
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Private Contractors

In financial and non-financial contracts, credit ratings are extensively used in so-called

’rating triggers’. These special clauses are triggered in the event of specified rating actions,

such as an issuer’s rating falling below a certain threshold. These can give counterparties

and lenders the right to terminate the contract, accelerate credit obligations or have the

rated entity post collateral (Langohr and Langohr, 2012). Such rating triggers can have

severe implications, as they can exacerbate liquidity strains for issuers, who are already

faced with a deteriorating credit quality (U.S. Securities and Exchange Commission, 2003).

Regulators

In the U.S., ratings have been a part of legislation since 1931, when it was ruled that

banks could not hold bonds rated lower than BBB (Sinclair, 2008). During the past

few decades, regulators, have increasingly used credit ratings to help monitor the risk

of investments held by regulated entities such as banks and funds (U.S. Securities and

Exchange Commission, 2003). Today, the use of ratings in regulation is widespread, in

both federal and state laws in the U.S., as well as in EU law (Langohr and Langohr,

2012). In the U.S., the largest CRAs are recognised as NRSROs, giving their ratings a

certain entitlements for regulatory purposes. In the European Union, the credit ratings of

banks determine their capital reserve requirements, under the Basel II directive (Bank for

International Settlements, 2005). Essentially, financial regulators use credit ratings and

CRAs to outsource their judgements (White, 2010). The regulatory frameworks concerning

credit ratings have contributed to the significance of CRAs in credit markets, in which

they are now of central importance.

2.5 Credit Rating Methodology

2.5.1 Types of Credit Ratings

There are two types of credit ratings; issue credit ratings and issuer credit ratings. This

thesis focuses on the latter; issuer ratings.

Issue and issuer credit ratings use identical symbols, but their definitions do not entirely

correspond to each other. In essence, issuer ratings reflect only the risk of default, whereas

issue ratings also incorporate views of the loss given default - or in other words, how much

investors can recover given that an issuer default on an obligation (Standard and Poor’s,

2008).

Issuer Ratings

’Issuer Ratings’ rate the issuer/company as a whole, regardless of the particular debt

instrument. It is not specific to a particular financial obligation, but rather provides an

overall assessment of a company’s creditworthiness (Standard and Poor’s, 2008).
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Issue Rating

’Issue credit’ ratings, also called bond ratings, are the CRAs opinion about credit risk

about a specific financial obligation or security.

2.5.2 Ratings Scales

CRAs summarise their opinions about the creditworthiness of obligors in ratings that are

represented by a grade, from a set scale. The goal of these grades is to represent a group

within which the credit quality and risk characteristics are roughly the same (Langohr

and Langohr, 2012).

Even though the ratings scale and definitions vary between the agencies, the rating

categories are in industry practice considered as being more or less comparable (Frank,

2009).

Table 2.1 describes the long-term issuer credit rating scale used by S&P. Their rating

scale is divided into several categories ranging from the famed AAA rating, reflecting the

strongest credit quality, to D, reflecting that the issuer is in currently in default or a state

where payment default is imminent or unavoidable. Issuers who are rated in the top four

categories AAA to BBB are said to be ’investment grade’ while anything below it is said

to be ’non-investment grade’, and are even referred to as ’speculative’, ’high-yield issues’

or ’junk bonds’.

In addition to the a letter grade, the addition of a ’+’ or ’-’ as suffix gives an additional

indication of the credit quality of the issuer in question. We also notice the two ratings

’R’ and ’SD’ which describe specific credit default or near-default situations. The rating

’R’ is assigned to issuers who are under regulatory supervision, due to some aspect of its

financial condition. The rating ’SD’ stands for ’Selective Default’, describing a situation

where an issuer has failed to repay only a subset of their financial obligations but continues

to pay the remainder. Short-term ratings are slightly different and for S&P these range

from A-1 to D, and indicate the credit quality on a short-term time horizon. These will

not be further elaborated upon, as this thesis is concerned with long-term issuer ratings.

As mentioned, the rating scales and definitions vary between agencies. In Table 2.3,

below, the rating scales of the different agencies, and their inter-agency equivalents are

presented, along with grade classifications.

2.5.3 Credit Rating Process

The credit rating process and methodology vary between CRAs. Some agencies use purely

quantitative models and statistical analysis to form their rating. However, the larger CRAs

all combine quantitative and qualitative factors (IOSCO, 2003).

Obtaining a rating is a laborious, time-consuming and intrusive process, where the

issuer must be prepared to submit a vast quantity of data, and have its senior management

attend several meetings with the CRA, share confidential information, conduct facility
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Table 2.1: S&P Long-Term Issuer Ratings Definitions

Rating Definition

AAA
Obligor has extremely strong capacity to meet its financial commitments. ’AAA’ is the highest
issuer credit rating assigned by S&P Global Ratings.

AA
Obligor has very strong capacity to meet its financial commitments. It differs from the highest-
rated obligors only to a small degree.

A

Obligor has strong capacity to meet its financial commitments but is somewhat more susceptible
to the adverse effects of changes in circumstances and economic conditions than obligors in
higher-rated categories.

BBB

Obligor has adequate capacity to meet its financial commitments. However, adverse economic
conditions or changing circumstances are more likely to lead to a weakened capacity of the
obligor to meet its financial commitments.

BB

Obligor is less vulnerable in the near term than other lower-rated obligors. However, it faces
major ongoing uncertainties and exposure to adverse business, financial, or economic conditions
which could lead to the obligor’s inadequate capacity to meet its financial commitments.

B

Obligor is more vulnerable than the obligors rated ’BB’, but the obligor currently has the
capacity to meet its financial commitments. Adverse business, financial, or economic conditions
will likely impair the obligor’s capacity or willingness to meet its financial commitments.

CCC
Obligor is currently vulnerable, and is dependent upon favorable business, financial, and eco-
nomic conditions to meet its financial commitments. An

CC

Obligor is currently highly vulnerable. The ’CC’ rating is used when a default has not yet
occurred, but S&P Global Ratings expects default to be a virtual certainty, regardless of the
anticipated time to default.

R

Obligor is under regulatory supervision owing to its financial condition. During the pendency
of the regulatory supervision the regulators may have the power to favor one class of obligations
over others or pay some obligations and not others.

SD / D

Obligor is in default on one or more of its financial obligations including rated and unrated
financial obligations but excluding hybrid instruments classified as regulatory capital or in
non-payment according to terms.

NR An issuer designated ’NR’ is not rated.

(+) / (-)
The ratings from ’AA’ to ’CCC’ may be modified by the addition of a plus (+) or minus (-)
sign to show relative standing within the major rating categories.

Source: S&P Global Ratings Definitions, Standard & Poor’s Financial Services LLC (2016)
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Table 2.3: Long-Term Issuer Credit Ratings by Different Agencies

Group S&P Fitch Moody’s Description

1 AAA AAA Aaa Prime

2 AA+ AA+ Aa1

High grade3 AA AA Aa2

4 AA- AA- Aa3

5 A+ A+ A1

Upper medium grade6 A A A2

7 A- A- A3

8 BBB+ BBB+ Baa1

Lower medium grade9 BBB BBB Baa2

10 BBB- BBB- Baa3

11 BB+ BB+ Ba1 Non-investment grade

12 BB BB Ba2
Speculative

13 BB- BB- Ba3

14 B+ B+ B1

Highly speculative15 B B B2

16 B- B- B3

17 CCC+ CCC+ Caa1

Substantial risks18 CCC CCC Caa2

19 CCC- CCC- Caa3

20 CC
CC

Ca
Extremely speculative

C Default imminent

-

R DDD C

In defaultSD DD -

D D -
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tours, and have staff ready to respond to follow-up questions that the CRA might have

(Langohr and Langohr, 2012).

Before a debt issue, the issuer typically contacts a CRA and requests a phone call

or meeting with a representative from the CRA, who will give information on the rating

process and the costs.

From there on, the credit rating process is very much driven by the CRA. Submitting

in documents to the CRA. These typically include:

• Relevant information on the company and its industry

• Descriptions of operations, products, and risk management

• Business plan

• Five years of audited annual financial statements

• Interim financial statements

• Draft registration statement or offering memorandum

This sets the CRA’s process in motion, and a team of analysts are assigned to the

case. Typically, an analyst will cover only one or two industries, in order to be sufficiently

specialised. They do basic research and prepare the meetings with management. An

overview of the credit rating process can be seen in figure 2.1.

Figure 2.1: Overview of a Credit Rating Process

Source: Langohr and Langohr (2012)

After this, interviews are held with the management of the company. Their purpose is

to review the company’s operational and financial plans, management policies, and other

factors that could impact their credit quality.

After this, the research on the part of the CRA commences, and the analyst team will

try to determine an appropriate credit rating, by bringing together understanding, data

and methods.
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The analyst then submits her recommendation to the rating committee - an internal

committee composed of a lead analyst, managing directors and junior analytical staff.

They examine the recommendation and its arguments and decide upon a final rating. The

CRA communicates the rating decision to the issuer and underwriter. The issuer now has

three options. They accept the rating, or they can appeal the rating, and give supporting

arguments and documentations as to why it should be revised. Additionally, if the issuer

strongly disagrees with the rating, but cannot present adequate arguments as to why it

should be revised, they can decide to withdraw the rating request and refuse its publishing

(Langohr and Langohr, 2012).

If the issuer accepts the rating, the CRA then publishes a press release, along with

the rating report, while notifying financial information providers of the new rating. From

there on, the rating will be monitored for one year. If the issuer has requested it, the CRA

will continue to survey the issuer or issue, and revise the credit rating, in case financial

conditions change (Standard and Poor’s, 2008).

2.5.4 Credit Rating Methodology

CRAs look at some factors to assess the overall business and financial risk profile of an

issuer and issue. While business risk factors involve fundamental analysis, dependent upon

a large degree of subjective judgement, the financial risk factors involve looking at financial

ratios over time (Standard and Poor’s, 2008).

CRAs start by looking at the business risk of the company, where they evaluate the

business of the company, the factors affecting the country, market and the issuer’s compet-

itive position within it. Finally, management is evaluated on their performance (Standard

and Poor’s, 2008).

Having evaluated the business risk, CRA proceed to analyse the financial risk of the

issuer. As mentioned, this is a more quantitative and objective measure than assessing

business risk, where financial ratios are used. To adjust for industry and company specific

accounting policies and standards, several adjustments are made by analysts (Standard

and Poor’s, 2008).

Below are the factors used for assessing both business and financial risk are listed, and

subsequently described briefly, based on the description by S&P.

Business Risk

• Country risk

• Industry Risk

• Competitive position

• Profitability and peer group comparisons

• Management review

Financial Risk

• Accounting characteristics and information risk
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• Accounting characteristics and information risk

• Cash flow adequacy

• Capital structure and asset protection

• Liquidity and short-term factors

• Debt maturity schedules

Source: Standard and Poor’s (2008)

Country risk

The operating environment in the particular country can have a large impact on the

creditworthiness of issuers, both directly and indirectly. CRAs look beyond the credit

rating of that country to evaluate country risk, including the impact of government policy

on the issuer’s business and financial environment (Standard and Poor’s, 2008).

Industry risk

The degree of operating risk facing a company depends on the dynamics of the industry in

which it participates. CRAs analyse the strength of industry prospects and the competitive

factors affecting it, including growth prospects, cyclicality, technological change, labour

unrest, regulatory interference, and changes in demand and supply (Standard and Poor’s,

2008).

Competitive position

To assess the competitive position of an issuer, CRAs look at key factors, specific to the

industry, in which it operates. Company size and diversification also play a role, but the

CRAs stress that there is no fixed size criterion for certain ratings. However, size is often

correlated to rating levels, as larger companies benefit from economies of scale, translating

into a stronger competitive position (Standard and Poor’s, 2008).

Profitability and peer group comparisons

Profitability is an important factor in credit quality assessment. A company generating

higher operating margins has greater ability to meet financial obligations and withstand

business adversity, while also attesting to asset values. CRAs also compare with peer

companies on key profit metrics, to assess how the issuer is performing (Standard and

Poor’s, 2008).

Management review

Management is assessed for its role in determining operational success and its risk toler-

ance. CRAs use both track record of managers as well as the interviews conducted. This

is a highly subjective process. The plans and policies of management are assessed, in their

realism, their state of implementation, and how well they are executed or enforced.
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Governance, risk tolerance and financial policies

The financial risk profile is, in part, determined by governance policies and procedures,

the company’s appetite for financial risk and its financial policies, concerning accounting

practices, capital spending levels, debt tolerance, merger activity and asset sales (Standard

and Poor’s, 2008).

Accounting characteristics and information risk

Financial statements and disclosures serve as the CRAs’ primary source of information

about the financial condition and performance of companies. Accounting characteristics

are reviewed, to determine whether ratios and statistics derived from the statements can

be used to appropriately measure performance and position.

Analytical adjustments are often made to better portray reality and to make the ratios

and statistics comparable to peer group companies (Standard and Poor’s, 2008).

Cash flow adequacy

Although there is usually a strong relationship between cash flows and profitability, earn-

ings is an accounting concept, and debt obligations must be serviced in cash. Thus, CRAs

evaluate the debt-servicing capabilities by analysing cash flow patterns.

Cash flow analysis is according to Standard and Poor’s (2008) the single most crit-

ical aspect of credit rating decisions, and is even more important when they are rating

speculative-grade issuers, as they often have limited sources of alternative financing, which

can be raised to service debt, and they are thus reliant on generating cash internally.

Capital structure and asset protection

CRAs will conduct a review of the issuers capital structure, which encompasses both the

level and mix of debt types. Their analysis goes beyond reported debt and includes items

such as leases, pension and medical liabilities, guarantees, and contingent liabilities.

Liquidity and short-term factors

Other factors, which are not in the other categories are examined as part of this category.

The potential impact of adverse outcomes is considered, along with the management’s

contingency plans for these. Such outcomes include legal problems, lack of insurance

coverage and covenants in loan agreements. In essence, this is an examination of how

stress affects the company and its capability to sustain strain in the short run.

Debt maturity schedules

CRAs will look at the repayment scheduling of existing debt, to assess how reliant the

issuer is on bank financing, as well as how the timing of servicing of existing debt, coincides

with forecasts.
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These factors help score the issuer on a 1-5 scale on both the business and financial risk

profile, which are in turn used to formulate an anchor rating.

Table 2.4: Table of Typical Ratings Outcomes

Financial Risk Profile

Business Risk Profile Minimal Modest Intermediate Agressive Highly Leveraged

Excellent AAA AA A BBB BB
Strong AAA AA A- BBB- BB-

Satisfactory AAA BBB+ BBB BB+ B+
Weak BBB BBB- BB+ BB- B

Vulnerable BBB B+ B+ B B-

Source: Standard and Poor’s (2008)

However, as mentioned, there are some factors contributing to the outcome being

different than the rating shown in Table 2.4, which is a function of the CRA’s methodology,

the analysts’ evaluation and the rating committee’s opinion.

2.6 Criticisms of Rating Agencies

Credit ratings have been widely accused of having severe involvement in the reasons behind

and events leading to the 2007-2008 global financial crisis (White, 2010). In particular, the

largest point of criticism was their involvement in giving investment-grade ratings to CDOs

and MBSs, although these were backed by low-quality loans. While criticism of CRAs is

not new, there is still substantial debate surrounding CRAs, due to their significant role

in financial markets.

2.6.1 Conflicts of Interest

Issuers Paying for Ratings

It is often argued that CRAs have a clear conflict of interest, as they serve to masters; the

issuers and the investors. While investors want the ratings to be objective and as accurate

as possible, issuers want ratings to be better, to increase capital access and lower their

cost of debt (Langohr and Langohr, 2012). As it is the issuers who pay the fees for ratings

the worry is that this shifts the emphasis to commercial gains, rather than the provision

of objective and unbiased measures of creditworthiness.

Ancillary Business

In addition to their core rating business, the large CRAs have developed ancillary busi-

nesses such as rating assessments services, risk management and consulting services (U.S.

Securities and Exchange Commission, 2003).

These ancillary businesses create another potential conflict of interest for CRAs, and

there are concerns that rating decisions are affected by whether the issuer purchases any
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of these additional services. In many ways, this concern is similar to that, which is preva-

lent in other professional services industries, such as auditing firms supplying consulting

services or investment banks both conducting equity research, while also providing trans-

action services (U.S. Securities and Exchange Commission, 2003).

Familiar Relationships with Management of Issuer

In the rating process, CRAs will meet with management of the company they are rating.

The worry is that CRAs could open themselves up to adverse influences and the vulner-

ability of being misled, having adverse effects on the accuracy and bias of their ratings

(Frank, 2009).

2.6.2 Accuracy and Timeliness

The accuracy and timeliness of ratings have been under large scrutiny, especially in the

wake of Enron and other high-profile bankruptcies. In the case of Enron, despite CRAs

having been aware of the company’s issues for months prior, Enron’s rating had remained

investment-grade until a few days before declaring bankruptcy (Frank, 2009).

2.6.3 Competition

The credit rating industry is dominated by S&P, Moody’s, and Fitch. This has lead

to concerns surrounding the state of competition in the industry. There has been much

discussion about the three largest CRAs’ statuses as NRSROs, and that this impedes com-

petition, as it creates larger barriers to entry (U.S. Securities and Exchange Commission,

2003).

Furthermore, Fitch has in the past accused S&P and Moody’s of using anti-competitive

practices such as ’notching’, where they will consistently give an issue a lower rating, unless

that issuers other ratings are also rated by the same CRA (U.S. Securities and Exchange

Commission, 2003).

Becker and Milbourn (2010), investigates the effect of increased competition on rating

quality. Their results suggest that competition has lead to lower-quality ratings. As such,

the question of whether the industry has too little or too much competition, appears to

be an unresolved question in academic literature.

2.7 Summary

The general view in literature is that the role played by CRAs is conducive to the efficient

operation of financial markets. As we have seen ratings are used for a variety of purposes,

among a multitude of market participants. It is firmly established that CRAs have a

substantial impact on the functioning of markets, and thus their opinions hold a lot of

power.

While a large number of CRAs exist worldwide, the industry is dominated by the three

largest firms, being S&P, Moody’s and Fitch. They all use a combination of both subjective
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and objective, quantitative measures, in assessing the creditworthiness and credit quality

of issuers and debt issues.

CRAs have faced substantial criticism both in the wake of high-profile bankruptcies,

such as Enron, as well as for its role in exacerbating the 2007-2008 global financial crisis.

This calls into question the objectivity, accuracy and timeliness of credit ratings.

With the concerns surrounding credit ratings, one can make an argument for a need to

develop an alternative method for evaluating creditworthiness or some form of auditing of

the quality of the CRAs’ ratings. Such a method could involve better statistical modelling,

which could contribute to more objective ratings and improved timeliness.

In the subsequent chapter, the methods used to model credit ratings are explored.
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3 | Modelling Techniques

3.1 Introduction

In this chapter, we will look at some of the different types of modelling techniques that

have been used in past studies to model credit ratings, and those that will be used in this

thesis.

We start by considering the more classical statistical models, their characteristics, and

their strengths and weaknesses in modelling credit ratings.

After considering some of the statistical techniques, we will review some selected ma-

chine learning approaches that will be employed in this thesis.

As we will discuss in this thesis, there is no clear line on what separates statistical

techniques from machine learning techniques, but for the purposes of this thesis, the

techniques considered machine learning are clearly specified.

Lastly, this chapter will explain some general techniques used in data mining. Data

mining is somewhat different from classical statistical methods, as it concerns itself less

with econometric theory of how models should be constructed, but takes its outset in data,

and uses specific techniques as a means for creating models that are both effective, and

generalizable.

The aim of this section is to give the reader an understanding of the different approaches

that have been used to model credit ratings in past studies, and the ones that will be used

in this thesis. This will be of importance in understanding the chapters containing the

literature review, methodology, and analysis.

3.2 Statistical Techniques

In this section, I will go through a few of the models, which belong to the class of traditional

statistical techniques, that have been used for modelling credit ratings. While this list is

not exhaustive, it aims, to give an understanding of some of the ways to model credit

ratings.

3.2.1 Logistic Regression

Logistic Regression (LR) has long been a common technique in statistics and econometrics.

Logistic regression is an especially appropriate model when the response variable (i.e. the

variable, which we are trying to predict) is categorical.

A linear regression model outputs a continuous response variable through the linear

combinations of predictor variables (Kennedy, 2013). In distinguishing a dichotomous

outcome, we want to reduce this output to 0 or 1. LR achieves this by applying a logistic

transformation, which transforms the output from [−∞,+∞] to a probability such that

g(x) ∈ {0, 1}.
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g(x) = log
πg

1− πg
= x′

iβ (3.1)

where πg is the probability of belonging to a class, and the term
πg

1−πg is called the

odds ratio. This is the logit transform link function, which is used to relate the probability

of class membership to a linear function of the input variables. There are multiple other

link functions such as the probit function. However the logistic function is the easiest to

interpret and the differences in performance are small (Kennedy, 2013).

The vector of coefficients, β, are estimated using maximum likelihood estimation

(MLE), which is an iterative optimisation function that iteratively ’guesses’ coefficient

value to maximise the log likelihood (Kennedy, 2013).

A graphical comparison of linear and logistic regression is shown in figure 3.1

Figure 3.1: Logistic vs. Linear Regression

As an extension of the binomial logit, it can also be made into a multinomial logit

model, that has the ability model multiclass problems, such as credit ratings. In the

multinomial logit model, the log-odds of each response is assumed to follow a linear model.

g(xij) = log
πij
πiJ

= αj + x′
iβj , (3.2)

where αj is a constant and and βj is a vector of regression coefficients for j = j ∈
[1, J − 1]

3.2.2 Linear Discriminant Analysis (LDA)

In short, LDA separates classes by finding the linear combinations of features which best

separates them, using these linear combinations as a projection vector.

Figure 3.2 shows two plots, illustrating how LDA differs from normal comparisons of

the means. The left plot shows the distributions of the two classes when projecting the

features onto the line joining the class means. The difference is clear in this example; in

the left plot, there is a significant overlap between the two distributions of classes, which

21



Figure 3.2: Illustrating LDA separation vs. Means Comparison

Source: Reproduction from Bishop (2006)

leads to poor separation. When using LDA, we see that the corresponding projection,

shows virtually no overlap in the class distributions, leading to improved class separation.

Multiple Discriminant Analysis (MDA) is much like LDA, but with more than two

classes, and a solution that is a projection space that simultaneously has the best joint

separation of groups in the multivariate space.

3.3 Machine Learning Techniques

3.3.1 Support Vector Machines

Support Vector Machines (SVMs) use instances from the training data as support vectors,

to outline a class-separating hyperplane in the feature space. Its optimisation sets the

margin, which maximises the Euclidean distance from the separating hyperplane to the

closest support vector. An important part of SVMs is using a so-called kernel to map

the input variables to a higher dimensional feature space, such that it becomes linearly

separable (Kennedy, 2013).

In Figure 3.3 we see how the SVM works, by creating a separating hyperplane, which

maximises the margin between the input features as support vectors. It is important to

note here, that this is a simple example, where the data is easily linearly separable. If it

had not been linearly separable, the SVM would, using a kernel function, map the input

vectors to a higher dimensional space (e.g. x2, or any other higher-dimensional space), to

make the classes linearly separable.

In general, SVMs perform well across many different domains. They have also been

successfully applied to the problem of predicting credit ratings.

22



Figure 3.3: Illustration of SVM

3.3.2 Neural Networks

Neural networks is a class of machine learning which learns relationships from data, and

have been used extensively in a variety of applications. They consist of processing units,

known as nodes (in some cases described as neurons or perceptrons), which are organised

into layers. Each node between each layer is interconnected with every node in the next

layer, with different weights. The weights that are the parameters, estimated in the model.

It starts with an input layer, where the input features are passed to it. The data then

propagates throughout the network, layer by layer between the input and output layers

(these are referred to as ’hidden’ layers), until it arrives at the output layer.

Within each node is an activation function that, based on the values passed to it from

the previous interconnected nodes and their associated weights, gives the value of the

nodes, which is then passed on to each node in the subsequent layer.

Figure 3.4: Illustration of Neural Network with two input variables, one hidden layer, and
binary response variable
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3.3.3 Nearest Neighbours

Nearest Neighbour type classifiers are memory-based and do not require a model to be

fitted by estimating parameters. The k-Nearest Neighbour algorithm (KNN), given an

input, x0 in the feature space, finds the nearest, in terms of Euclidean distance, k training

points for x(r), r = 1, . . . , k (Hastie et al., 2009) and classifies the input instance as the

class, which the majority of those neighbours belong to. This is illustrated in Figure 3.5,

where we can see that when k = 3, the input feature set would classify the instance shown

as belonging to the blue class.

Figure 3.5: Illustration of k-Nearest Neighbor Algorithm with k = 3

In practice, the KNN-algorithms, establishes ’decision boundaries’ in the feature space.

In Figure 3.6, we see how the decision boundaries are made up, based on the training data

points shown, and as a function of how many of the nearest points it should consider.

Given a set of input variables, the kNN-model will look at which decision boundary in the

feature space, that the set lies within and classify it as such.

Figure 3.6: Illustration of k-Nearest Neighbor Decision Boundaries with different values
for k

3.3.4 Decision Trees

Tree-based algorithms partition the feature space into a set of rectangles and then fit a

simple model in each one. They are conceptually simple, yet powerful models (Hastie

et al., 2009).

In Figure 3.7 we see how this works in practice. Here, a decision tree classifier has been

trained using some the test data. Here we see exactly, that the algorithms draw rectangles
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Figure 3.7: Illustration of Decision Tree Algorithm, with Different ’Depths’

to separate the data. The parameters, that the algorithms estimates are the points in the

feature space, where the rectangles are bounded. In the leftmost graph, the tree depth

has been set to 1, meaning there can be only one parameter separating the data. Here the

algorithm chooses to draw the decision boundary line at y = 0.8, separating the data into

the ’red’ and ’blue’ classes. Of course, this is less useful as we have three classes of data

in this example. We improve the result further by allowing a depth of 3 levels in the tree,

as shown in the middle graph. Lastly, this can be improved slightly by drawing another

rectangle, by increasing the maximum depth to 4 levels.

Figure 3.8: Decision Tree Shown as Graph

In Figure 3.8, we see how the tree, which is also in the rightmost plot in Figure 3.7, is

constructed and which parameters are calculated. It is much like a rule-based algorithm

for creating decision boundaries.

3.3.5 Ensemble Techniques

In machine learning, ensemble methods are not algorithms in themselves, but rather meta-

methods, which combine multiple algorithms into one. The goal of doing this is to get

models with higher accuracy or greater stability. In this subsection, we will discuss some

of the ensemble methods used in machine learning.
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Bootstrap Aggregation (Bagging)

Bootstrap aggregation, also known as ’bagging’, is a meta-algorithm, made up of several

different classifiers, who each ’vote’, with equal weight, on which class the observation

should be assigned to. In training each of the classifiers, a random subsample of the data

is drawn, hence the name ’bootstrap’.

Figure 3.9: Bootstrap Aggregation Visualisation

Source: Maheshwari (2016)

Boosting

Boosting is another type of ensemble technique, in which the meta-classifier is incremen-

tally trained, where the result of each classifier re-weights the data to emphasise the data

points, that the previous models has misclassified, and gives them more weight in the next

classifier. Thereby, these points, are taken more into account, in the final classifier, which

becomes increasingly better at classifying the ’corner cases’. It uses weak classifiers - if

one used strong classifiers, the strongest one would take the vast majority of the weight,

and thereby cancel out the weaker classifiers.
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Figure 3.10: A boosting model made of multiple weak learners

3.3.6 Hyperparameters

In machine learning, most algorithms have some set of configuration parameters, that

determines how the model will behave. In order to distinguish these from standard model

parameters estimated when training the model, they are called hyperparameters. These

express high-level properties of how the algorithm in the model should behave (Quora,

2017).

For instance, this could be the step size that should be used in a SGD-based optimiza-

tion routine, or the maximum number of leaves should be in a decision-tree model.

3.3.7 Hyperparameter optimization

Having established what hyperparameters are, we also need to know how to set them

for each model. This is often a complex task, and can often take expertise rather than

a structured approach. There are a few different strategies available; manual search,

an exhaustive grid search, a random search or Bayesian optimization. The first can be

time-consuming and require expert knowledge or insight. Grid and random search can

be extremely computationally expensive, as they need to evaluate many different model

configurations, with algorithms that are already computationally expensive. Lastly, using

Bayesian optimization of hyperparameters you adjust the hyperparameters of a model,

based on previously tested hyperparameter values.

Under Bayesian optimization, we develop a model for the metric that we want to opti-

mize as a function of the hyperparameter(s). The model is then evaluated, at which point

our model believes it will gain the highest metric score, and tests that hyperparameter.

Based on the output, it then updates its expectations, develop a new model and then

test it at the newly found point. This is also known as sequential model-based global

optimization.

In our case, we use Gaussian processes as a means to model the objective function,

and we optimize at each point for the expected improvement, and iteratively update our

expectations with every observation. We illustrate this below in Figure 3.11, where we see
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the blue line as a fitted model to our two observations. Based on this, we calculate where

the largest expected improvement is, and evaluates that point.

Figure 3.11: Bayesian Hyperparameter Optimization with Gaussian Processes

Source: Reproduction from Head (2015)

When this is done in practice, we optimize over a number of hyperparameters simul-

taneously, which is much like the simple illustration in this subsection, but in a higher-

dimensional space.

3.3.8 k-Fold Cross Validation

In the k-Fold Cross Validation technique we split the training sample into k random parts.

When a model is trained, we train and test over the data k times using the k− 1 parts for

training and the last part for evaluating the model. Effectively, this is a method for giving

the models different data to be trained on each time, and leaving the remaining part out

as a holdout sample. This is done in order for our training model to not be as overfitted,

with respect to a specific dataset. Instead, we now have 10 different models which we can

evaluate, and thus also find the statistical uncertainties of the model’s metrics, as we now

have a sample of the models.
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Figure 3.12: k-Fold Cross Validation

3.3.9 Train-Test Splitting

The performance of the models is generally done by measuring the ability of the model

to correctly determine the rating of observations for which the true rating is known. This

generally is done by dividing the sample into two parts - a training and a test, or hold-

out, sample, which is ’unseen’ by the model. This is considered the appropriate way of

validating the model, as models can be poorly generalisable due to either over- or under-

fitting of the model.

3.3.10 Information Leakage

Information leakage in machine learning is when information from the test set has ’leaked’

into the model. In essence, this implicates that the trained model, has already ’seen’ the

data it we are using to evaluate it with. This often results in some degree of overfitting

and poor generalization of the model, meaning that the metrics obtained from evaluating

the model on the test set is not valid, as it not truly out-of-sample (Brownlee, 2016).

Information leakage can occur from a number of different reasons, and it can sometimes be

hard to identify when it occurs. For instance, if one were to standardize the dataset, or do

a cross-sectional operation on it, using information from the training set that information

would be embedded into the entire dataset, and hence affect the entire dataset - even after

subsequently splitting it into training and test. In order to avoid information leakage, the

first step after obtaining the data, is to split it into training and testing datasets, and keep

these apart.
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3.4 Comparison Measures

3.4.1 Accuracy

Classification accuracy is the number of correct predictions made divided by the total

number of predictions made (Brownlee, 2014),

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

3.4.2 F-measure

The F-measure (or F1 score) is a measure of accuracy. In evaluating machine learning

models, we often consider the measures precision and recall. Precision, is the rate of

true positives to total positives, whereas recall, also known as specificity, measures the

proportion of true positives to the sum of true positives and false negatives. However, an

increase in one of these metrics often comes at a cost to the other. Hence, the F-measure

is useful in re-conciliating these, and can be seen as the weighted average between these

two.

Precision = p =
TP

TP + FP
(3.4)

Recall = r =
TP

TP + FN
(3.5)

F1 = 2
pr

p+ r
(3.6)

3.4.3 Cohen’s Kappa

Cohen’s kappa measures the agreement between two raters, in their ability to classify N

items into C mutually exclusive classes. It is done to measure how well a trained classifier

can predict a set of values, compared to a naive classifier, which simply assigns classes at

chance, only knowing the class distribution (Viera and Garrett, 2005).

Kappa can take on values in the range of k ∈ [−1, 1], where 1 is equal to perfect

agreement, and any values less than one implies less than perfect matrix agreement.

Kappa can be negative, but this implies that the two classifiers agreed less than would

should be expected by chance.

The equation for k is:

κ =
p0 − pe
1− pe

= 1− 1− p0
1− pe

, (3.7)

where p0 is the relative observed agreement, and pe is the hypothetical probability of

chance agreement, using the observed data to calculate the random classification proba-

bilities.

In Table 3.4.3, we see the interpretations of different Kappa values, as specified by

Viera and Garrett (2005). According to the kappa values, for any of our models to be
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good predictive models, they should have a kappa value of 0.40 or higher.

Table 3.1: Interpretations of Kappa Values

Kappa Value Interpretation

[0, 00, 0.20[ Poor agreement
[0.20, 0.40[ Fair Agreement
[0.40, 0.60[ Moderate Agreement
[0.60, 0.80[ Good Agreement
[0.80, 1.00[ Very Good Agreement

3.5 Summary

In this chapter, we have gone through some basics of using both statistical methods and

machine learning techniques for classification tasks in general. We have also explained

how we can measure the effectiveness of the models.

Whereas this chapter serves as an introduction to machine learning techniques, there

exists a plethora of other techniques within this field, which are equally interesting, and

relevant to this area of reasearch. Many of these other techniques, have been used for

many interesting problems successfully, and could potentially contribute to solving the

problem studied in this thesis. However, these are outside the scope of this thesis.

Having built a basic understanding of what machine learning is and how it is applied to

the problem of predicting credit ratings, we will in the next chapter look at how researchers

have done so in past studies.
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4 | Literature Review

In this chapter, we consider some of the past literature on the topic of modeling credit

ratings. We both look at some of the older literature, which primarily uses statistical

methods, and more recent literature, which also uses machine learning algorithms. We

attempt to provide the reader with a coherent overview of the previous research that have

been made on the topic, and present the most relevant articles, summarize their method

and key findings.

4.1 Introduction

Modeling credit ratings is an old topic within literature. Fisher (1959), used statistical

techniques to analyse industrial bond ratings. Furthermore, Horrigan (1966) used linear

regression and accounting data to model credit ratings. West (1970), expanded on this,

also using statistical techniques. Ederington (1985) continued this path of research and

benchmarked various regression techniques.

Most of the early research in modeling credit ratings was done using statistical tech-

niques. In the 1980s Machine Learning appeared as a branch of computer science and it

was soon thereafter applied to the topic of credit ratings. There does not exist, as such, a

clear distinction between statistical and machine learning techniques, but it should rather

be seen as a continuum of different techniques, ranging from statistical hypotheses to

computational pattern recognition (Frank, 2009).

Statistical classification techniques classification have existed for far longer than ma-

chine learning methods. Whereas they take their point of departure from traditional

probability statistics, machine learning draws on ideas from a diverse set of disciplines:

artificial intelligence, probability, statistics, computational complexity, information theory,

and philosophy (Gibert et al., 2008).

In short, the techniques share some similarities, but there are differences that separates

the various methods into the two categories. Much like this thesis, past research has also

compared statistical and machine learning techniques, for the purpose of modeling credit

ratings. As such, this scope of this thesis is not novel in itself, yet we believe that certain

elements of methodology and data characteristics of previous studies could be improved

upon.

4.2 Statistical Methods

The first work in the area of bond rating modeling was by Fisher (1959), who used linear

regression to explain the variance of risk premiums between bonds, where the risk pre-

miums was defined as the difference between the bond’s yield-to-maturity (YTM), and

the risk-free interest rate. He hypothesized that a bond’s YTM was a function of the

issuer’s risk of default and the bond’s marketability, and that risk of default could be
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estimated by looking at historical financials, historical debt repayment performance and

the debt-to-equity ratio.

Both Horrigan (1966) and West (1970) took this idea a step further and used linear

regression to predict credit ratings. Horrigan (1966) considered the six highest rating

classes by S&P and Moody’s. He used accounting data in a two step approach – he

first regressed bond ratings on 15 financial ratios, in order to select the most relevant

variables. Subsequently, he regressed the ratings on these selected variables he achieved a

58% accuracy on Moody’s ratings and 52% on S&P’s ratings.

West (1970) critically commented on the work of Horrigan (1966), as he claimed the

original model by Fisher (1959) was more theoretically sound, and replicated Fischer’s

model, using one additional variable, and achieved a 62% accuracy.

Pinches and Mingo (1973), instead of using linear regression, studied predicting credit

ratings using multiple discriminant analysis (MDA), to increase the prediction accuracy.

For their final model, they achieved a 60% accuracy.

Kaplan and Urwitz (1979) criticized all the work done up until now, as they all failed

to take into account the ordinal nature of bond rating (i.e. that they were groups on an

increasing scale), and instead implemented a multivariate probit regression model, and

achieved 69% accuracy.

A number of studies has since then been conducted, using statistical models and most

of these show prediction accuracy in the range 50-70%, most using 6 rating classes, ignoring

the ’+’ and ’-’suffixes of the ratings.

Researchers have tested a number of financial variables, however those proving to be

most robust are measures of size, leverage, capital intensiveness, ROI, earnings stability

and debt coverage (Sprengers et al., 2006).

Few have managed to surpass the 70% limit mark on prediction accuracy, and one can

debate whether simply using 6 classes is sufficient for the prediction to be relevant for

real-world applications. Recently, however, a number of researchers have attempted a new

approach to predicting credit ratings, through machine learning models, with the aim of

improving accuracy and increasing the granularity of the predictions.

4.3 Machine Learning Algorithms

While the earlier work was focused on using traditional statistical methods, in combination

with economic theory to model ratings, Dutta and Shekhar (1988) were some of the first

to use machine learning techniques for this purpose. Since then, multiple research papers

have been published on the topic, each exploring different techniques and nuances.

The early work of Dutta and Shekhar (1988) used neural networks to predict credit

ratings, and found that these outperformed their traditional statistical counterparts. They

found that their neural network model was able to attain a 83% accuracy in identifying

”AA” from ”non-AA” ratings. They used linear regression as a benchmark case, which

achieved less than 50% accuracy.

Surkan and Singleton (1990) also used neural networks, but on two groups of rat-

ing classes by Moody’s, and achieved an 88% accuracy, which significantly outperformed
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benchmark tests using multiple discriminant analysis.

Kim et al. (1993) compared a backpropagating neural network model against bench-

mark models using linear regression, multiple discriminant analysis, rule-based systems

and logistic regression, and found that the neural network far outperformed the other

models when distinguishing between 6 ratings classes, scoring 55% accuracy, where the

other models all scored around 40%. This was a very interesting study due to the number

of different models investigated. However, the sample consisted of a mere 168 ratings.

Generally, neural networks have often been suggested models, when it comes to mod-

eling credit ratings. Other noteworthy studies, such as Moody and Utans (1994), Kumar

and Bhattacharya (2006), and Frank (2009), have all proven that machine learning, and

in particular neural networks, perform well for this purpose, and are more effective than

classical statistical approaches.

As mentioned, there exists a large number of machine learning models other than

artificial neural networks, which are useful for predicting credit ratings. More recently, a

number of other algorithms, have been investigated for the purpose of predicting credit

ratings, one of them being support vector machines (SVM).

Huang et al. (2004) showed that the performance of neural network and SVM models

are in fact comparable, and that SVM models in some cases outperform neural networks,

when tested on the same datasets. One of their conclusions was that since SVM models

are less computationally expensive to train than neural networks, while delivering similar

performance, SVM’s could be preferable in practice than ANNs.

Ye et al. (2008) investigates the accuracy of two different types of SVM algorithms to

predict over 19 different classes of credit ratings, and achieves impressive results, with up

to 64% accuracy – considerable improvements over their benchmark algorithms, which are

bagged decision trees and a probit model. Lee (2007) also investigates SVM on a large

Korean dataset, and achieves a 78% accuracy, predicting over 5 classes of ratings.

Wu et al. (2014) combine multiple algorithms in an ensemble classifier, where each

model is trained separately, and is then combined into a hybrid, where the four models

’vote’ on which class should be assigned to the observation. Predicting over 9 classes of

ratings, in a Taiwanese dataset, they achieve an accuracy of 60%. Interestingly however,

one of the single models, a bagging decision tree model, actually performs slightly better

at 61%. Their finding shows that there is definitely some potential in ensemble classifiers,

however that single-approach models with a boosting or bagging technique, can be more

accurate.

From the literature review, it is clear that machine learning has been extensively

applied to the credit rating problem, and that it often offer accuracy improvements over

classical statistical techniques. However, comparing rating accuracies across studies can

be hard, given that each use different datasets and different numbers of rating classes.

4.4 Conclusion

In Table 4.1, a selection of previous studies, their modeling approaches and the results

achieved are summarised. We see that some of these have impressive prediction accuracies.
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Here, it is important that we consider the sample sizes used, and the number of classes

they predict. Generally, a lower number of classes is easier to predict and thus yields

higher model accuracy. In this study, an attempt is made on having as many categories

as possible, in order to maintain the relevance of the findings.

Table 4.1: Selected Past Studies

Author Major method Dataset Samples Classes
Prediction

Accuracy (%)

Horrigan (1966) OLS US 352 6 59
West (1970) OLS US 313 6 62

Pinches and Mingo (1973) MDA US 180 5 60
Kaplan and Urwitz (1979) Probit US 327 6 69
Dutta and Shekhar (1988) ANN US 47 2 88

Surkan and Singleton (1990) ANN US 146 2 88
Kim et al. (1993) ANN US 168 6 55

Moody and Utans (1994) ANN US 797 16 30
Huang et al. (2004) SVM S. Korea 74 5 80

Kumar et Bhattacharya (2006) ANN US 129 6 79
Lee (2007) SVM S. Korea 3,017 5 78

Ye et al. 2008 SVM US 1,570 19 64
Frank (2009) ANN US 153 4 75

Wu et al. (2014) Ensemble Taiwan 11,616 9 60

4.5 Summary

In this chapter, we have provided some background on the problem of predicting credit

ratings, and reviewed the past literature written on the subject, both with respect to statis-

tical techniques and machine learning algorithms. We have also provided some perspective

on the weaknesses in some of these studies, and how this study attempts to differentiate

itself from this already-conducted research.
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5 | Methodology

This chapter describe testing setup, and the methodology used for training and evaluating

the different models. Additionally it describes which specific models, we evaluate. First,

we go through the setup. We then describe how we find and set optimal hyperparameters

for the models. We then describe the modeling process, and lastly we elaborate on the

testing procedure for evaluating the individual models’ performance.

5.1 Setup

After extracting the data with Bloomberg and Excel, data processing, cleaning and sub-

sequent modeling was done using Python. The primary packages used were pandas1,

scikit-learn2 and scikit-optimize3.

pandas was used for data manipulation, cleaning, and for making tables and figures.

scikit-learn was used for model training and evaluation. It is an open-source package

for Python, which includes a number of different machine learning algorithms and support

functions.

For hyperparameter optimization the scikit-optimize package was used. This pack-

age has a number of different optimization functions, but for the purposes of this thesis,

Gaussian Processes optimization was used.

5.2 Hyperparameter Optimization

When training machine learning models, the models themselves have input parameters,

which affect their behaviour, which are referred to as hyperparameters. Tune a model’s hy-

perparameters, for maximum model performance, can be very difficult and time-consuming.

Naturally, one could perform a complete search of the input space, to find the optimal

parameters, however, for some models, there are sometimes more than 5 hyperparameters

that can be adjusted, rendering the input space massive. This, in combination with

machine learning algorithms generally being computationally expensive functions, makes

this an impractical method of optimization. Instead, one can attempt to model the model

evaluation measure as a function of the hyperparameter input space, and thereby do an

approximated optimization of the hyperparameters.

This is the method we have chosen to employ in this thesis for selecting our hyperpa-

rameters. We use a technique called Gaussian Processes, which optimizes for the expected

improvement in cross-entropy of the prediction and actual output vector. In practice this

allows us to rather efficiently optimize the models, without spending multiple hours wait-

ing for an exhaustive grid search to compute. If we had done a full grid search, we could

1http://pandas.pydata.org/
2http://scikit-learn.org/
3https://github.com/scikit-optimize
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potentially have obtained better hyperparameters, but they might have been the same as

the ones found by the process described.

Before training each model, we use each of the training sets, and find 3 optimal sets

of hyperparameters for each of the different rating classes. We then store this, and use it

as needed when training the models.

5.3 Model Training

Having identified the optimal hyperparameters for a given algorithm, we proceed to train

the different statistical and machine learning models.

The statistical methods and machine learning method we will use in this thesis are:

Statistical Methods

• Logistic Regression

• Multiple Discriminant Analysis

Machine Learning Algorithms

• k-Nearest Neighbors

• Support Vector Machines

• Artificial Neural Networks

• ExtraTrees (Decision-tree algorithm with bagging)

• AdaBoost (Decision-tree algorithm with boosting)

On a practical level, we for each rating class group instantiate a classifier of the given

type and pass them its unique configuration from the hyperparameters previously found.

We then pass them the training datasets, consisting of both features and labels.

After the models have completed training we proceed to model evaluation.

5.4 Model Evaluation

When evaluating the data we evaluate them on four different measures, both in-sample

(i.e. with the training data), and out-of-sample (i.e. test data). On a practical level, we

pass them the features of the labels it should predict. This returns a vector of predictions,

which we can then use to benchmark against the true labels.

The four measures we use to compare the models on are Accuracy, F1 Score, Cohen’s

Kappa and ”1-off Accuracy”. 1-off accuracy is simply the accuracy of where the prediction

is at most one rating away from the true rating.

After evaluating the models, we present evaluation metrics for each model, as well as

a confusion matrix for the ”Class I” grouping, showing the predicted and true ratings in

a matrix, as a percentage of the class total.
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5.5 Summary

In this chapter we have described our setup for doing the testing, which we perform using

the Python packages pandas and sklearn. We have elaborated on how we select and set

hyperparameters for each of the models, which we do using scikit-optimize and Gaussian

Processes optimization. We then described the modeling process and which models we will

be attempting. Lastly we have gone through how we will evaluate the model performance

using four different metrics.
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6 | Data

6.1 Introduction

In this chapter, we describe the data selection and collection methodology. We specify

the data that we need to collect and then describe the steps that we go through to obtain

our raw dataset. Next, we describe how we process the raw data, before we use it for

modelling.

We have attempted to thoroughly document how data was collected in order to preserve

transparency, and for helping future researchers validate or expand on this study. We feel

it is important to stress that, to our knowledge, we managed to extract a rather unique

dataset. Compared to similar studies within the same field, we have not found others who

match our dataset with respect to the number of observations, for U.S. ratings.

Subsequently, we describe the data that we have collected, and present selected results

from the pre-processing stages.

6.2 Data Selection and Collection

The data we need in order to answer the research question is the credit ratings over a given

time period, and relevant accounting figures of the issuer at the time of rating. Having

the issuer’s accounting figures allows us to observe factors likely to affect credit ratings or

signal creditworthiness. This raw data is then further processed, prior to being used for

modeling. The exact data points we extract are detailed below, and have been selected

based on information from the CRAs and past literature on the topic.

The data was collected from Bloomberg, in part through the terminal application

and in part through the Excel plug-in. We used Bloomberg’s RATC function to list all

ratings published by S&P, Moody’s, and Fitch in the period 1 January 2010 - 1 September

2016. Only U.S. companies were included in the search, and we deliberately excluded

financial companies and government entities. The reason for doing so is that financial

companies often have radically different accounting practices than companies from other

industries, and that the rating of government entities would be significantly influenced by

the possibility of the U.S. government covering some obligations in the event of bankruptcy.

Having collected these ratings, we needed to know which companies that were publicly

traded at the time of rating, as detailed financial information would likely not be avail-

able for private companies, due to lower reporting requirements. To determine this, we

extracted the last observed stock price at the date of the rating for the issuers in question.

If the company hadn’t been publicly traded within the preceding 30 days, the price would

not return a value, and hence we could determine whether the company had been traded

or not.

After excluding non-public firms from the list of ratings, we enriched it with financial

data from the issuers’ most recent quarterly financial statements, preceding the rating.
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The specific data that the ratings were enriched with are presented in Table 6.1.

Table 6.1: Add caption

Cash Flow Statement Balance Sheet Income Statement
Trailing 12M Free Cash Flow Total Common Equity T-1 year Trailing 12M Earnings for Common Equity
Trailing 12M Cash From Operations Short-term Debt Trailing 12MNet Income

Long-term Debt Trailing 12M Net Sales
Current Assets Trailing 12M Operating Income
Current Liabilities Trailing 12M Pre-tax Income
Average Total Assets Trailing 12M Amortization and Depreciation
Average Total Invested Capital Trailing 12M Total Interest Expense
Cash and Near-cash Items Earnings Per Share
Marketable Securities and Other Short-term Investments
Account Receivables
Short and Long Term Debt
Total Assets
Total Invested Capital
Total Common Equity
Total Equity
Total Liabilities
Net Fixed Assets

Having isolated the final sample, containing both the ratings and financial information

about the issuers, we can proceed with processing the data further through calculating

the actual model inputs and cleaning the data.

The data collection procedure as described is illustrated in Figure 6.1.

Figure 6.1: Data Collection Process
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This concludes our data collection. We now have the ratings for the study period, and

the associated financial data for the same period as the rating.

6.3 Data Preparation

In the data preparation step, we prepare the raw data that we have collected to be used

in the models. This consists of six parts. First, we calculate the financial ratios. Then,

we clean the data. We then group the ratings into categories of different granularity. We

then split the data into training and test sets. Subsequently we winsorize the data, in

order to eliminate the effect of outliers on model performance. Lastly, we standardize all

data, through demeaning and scaling.

6.3.1 Calculating financial ratios

In order to make the data comparable across companies of different scales, we calculate

ratios, instead of using the financial data directly. We look at four different categories

of financial ratios; liquidity, profitability, cash flow adequacy and capital structure. For

inspiration on which input to include in the models, we considered information from both

the CRAs, as well as from other researchers in the topic, such as Frank (2009), Lee (2007),

Kumar and Bhattacharya (2006) and Kim (2005).

The ratios that we calculate using the raw data are presented in Table 6.2, and the

formulae for the calculated inputs are shown in Appendix A.

Table 6.2: Calculated inputs

Liquidity Profitability Cash Flow Adequacy Capital Structure Other

Cash Ratio Net Income Solvency Ratio Debt Ratio log(Sales)
Quick Assets to Total Asets Operating Income Interest Expense to Sales Common Equity to Total Invested Capital
Current Ratio Operating Margin Times Interest Earned Debt to Equity
Current Assets to Total Assets Pre-Tax Margin Debt Coverage Long-term Debt to Capital

After Tax Profit Margin Operating Cash Flow to Sales Total Equity to Total Assets
Asset Turnover Cash Flow Return on Assets Long-term Deb to Fixed Assets
Return on Invested Capital Before Tax
Return on Equity
Retun on Assets
Profitability Ratio
Sales to Net Worth

6.3.2 Data cleaning

After calculating the ratios, we do a number of data cleaning operations, in order to have

a dataset which is sufficiently clear of errors.

We start by cleaning up the text data that are the ratings themselves. Some of these

have extra information, such as whether the rating was unsolicited or details about credit

outlook, which is irrelevant for the purposes of this thesis. Thus, we remove this additional

data. Additionally we remove observations of ratings classes that are outside the scope of

this thesis, such as the ratings that indicate a withdrawn rating, no rating or some type of

default (”WR”, ”NR”, ”D” and ”SD”). Lastly, we removed any observations, which had

missing data, or any data, which had missing values or NaN as a value.1

1This occurred as a consequence of calculating the ratios, when e.g. a division-0 error occurred
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6.3.3 Grouping the ratings

One worry with regards to modeling each class of credit ratings, is that there are some

classes, for which there are few observations. For instance the rating ’AAA’, there are

just a handful of companies who are given that rating, such as Microsoft and Johnson &

Johnson, as of December, 2016.

Having these underrepresented classes can be a problem for machine learning algo-

rithms. There are some different strategies for overcoming them, but we chose to simply

group the rating with low class frequency with its nearest class. Additionally, we want to

be able to compare our results with the results of those papers with a lower number of

classes, and therefore we group the ratings into three sets of groups; ’Class I’, ’Class II’

and ’Class III’, going from most to least granularity. The specific class grouping can be

see in Table 6.3.

Table 6.3: Ratings Class Groupings

Credit Rating Class-I Class-II Class-III

AAA, AA+, Aaa, Aa1 1

1

1

AA, Aa2 2

AA-,Aa3 3

A+, A1 4

2A, A2 5

A-, A3 6

BBB+, Baa1 7

3BBB, Baa2 8

BBB-, Baa3 9

BB+, Ba1 10

4

2

BB, Ba2 11

BB-, Ba3 12

B+, B1 13

5B, B2 14

B-, B3 15

CCC[*], Caa[*], CC,C, Ca 16 6

6.3.4 Split the data into training and test sets

After grouping the ratings, we split the data into training and test sets for each of the

ratings classes. The training set will be used for training the models, and the test set will

act as an out-of-sample trial to evaluate the predictive power of the models.

We use a 80/20 split ratio, and we draw the two subsample pseudo-randomly using a

stratified split, meaning that the training and test sets have identical ratings distributions.

We do this in order to ensure that all rating groups are populated. This is especially critical
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for the classes with a low number of observations.

It is crucial that this split is made before winsorization and standardization, as there

could be risk of information leakage if it had been done after that. The concept of infor-

mation leakage is described in further depth in chapter 3.

6.3.5 Winsorizing

In order to handle extreme observations, either as a result of outlier in the raw data, or very

small denominators in the calculation of ratios, the data is winzorised. By winsorizing,

we do not lose any observations from the dataset. As a result, values that fell outside the

5th and 95th percentile were corrected to the values at each percentile respectively.

We start by winsorizing the training sets. We store the parameters from this and apply

them to the test sets.

6.3.6 Standardizing

Standardization is a common requirement for the input data of a number of machine

learning models. Hence, we use a scaling function, which removes the mean and scales the

data to unit variance. Again, we start by standardizing the training sets, and use these

parameters to standardize the test sets.

6.4 Raw Data Overview

The list of credit ratings was downloaded, and we excluded the companies not listed at

the date of rating.After this, our dataset consisted of 4,407 individual ratings. We then

removed the non-applicable ratings, leaving us with 4,246 samples. Lastly, we removed

samples with missing data or errors, which left us with a final dataset consisting of 3,992

ratings. This information is also presented in Table 6.4.

Table 6.4: Number of observations per step

Step Description Observations

1 Initial list 4,407
2 Removed non-applicable ratings 4,246
3 Removed observations with missing data 3,992

6.5 Rating Category Summary

Figure 6.2 shows the credit rating frequency distribution for the final dataset of the 3,992

ratings. We see that extremely few companies fall into the AAA and AA rating categories,

and the bulk of the mass being in the middle categories.

We then group these ratings into the different classes, as described in subsection 6.3.3.

In Table 6.5, 6.6, and 6.7, the distributions of each of these classes are displayed.
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Figure 6.2: Distribution of Credit Ratings
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Table 6.5: Rating Class I Distribution

Class-I Ratings Rating Count Percentage

1 AAA/AA+ 10 0.3%
2 AA 12 0.3%
3 AA- 20 0.5%
4 A+ 53 1.3%
5 A 145 3.6%
6 A- 202 5.1%
7 BBB+ 318 8.0%
8 BBB 397 9.9%
9 BBB- 366 9.2%
10 BB+ 300 7.5%
11 BB 375 9.4%
12 BB- 444 11.1%
13 B+ 455 11.4%
14 B 407 10.2%
15 B- 224 5.6%
16 CCC+,CCC,CCC-,CC,C 264 6.6%

Table 6.6: Rating Class II Distribution

Class-II Ratings Rating Count Percentage

1 AAA/AA+, AA, AA- 42 1.1%
2 A+, A, A- 400 10.0%
3 BBB+, BBB, BBB- 1081 27.1%
4 BB+, BB, BB- 1119 28.0%
5 B+, B, B- 1086 27.2%
6 CCC+,CCC,CCC-,CC,C 264 6.6%
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Table 6.7: Rating Class III Distribution

Class-III Ratings Rating Count Percentage

1 AAA/AA+, AA, AA-, A+, A, A-, BBB+, BBB, BBB- 1523 38.2%
2 BB+, BB, BB-, B+, B, B-, CCC+,CCC,CCC-,CC,C 2469 61.8%

6.6 Data Preparation

In order to be able to generalize the results obtained from the models, we preprocess the

data by first calculating the model inputs from the raw inputs in our dataset. We then

proceed by winsorizing and standardizing the model inputs.

In Table 6.8 we see the summary statistics of the model input data before it has been

standardized, yet after it has been winsorized.

Table 6.8: Summary Statistics of Model Input Data

Input Variable Mean Std. Dev. Min Max Median

ROE 0.070 0.388 -0.970 0.975 0.099
PROFIT MARGIN 0.020 0.144 -0.409 0.227 0.044
LT DEBT TO CAP 0.510 0.277 0.094 1.183 0.466
CURRENT RATIO 1.754 0.942 0.582 4.091 1.517

ROA 0.021 0.081 -0.203 0.146 0.033
OPERATING MARGIN 0.078 0.145 -0.335 0.305 0.091

PRE TAX MARGIN 0.037 0.167 -0.458 0.286 0.061
PRE TAX ROIC 0.051 0.139 -0.305 0.290 0.063

CURRENT TO TOT ASSETS 0.324 0.193 0.063 0.705 0.303
QUICK TO TOT ASSETS 0.187 0.123 0.029 0.455 0.165

DEBT TOT ASSETS 0.372 0.191 0.091 0.804 0.344
COMMON EQY TO TOT ASSETS 0.306 0.205 -0.145 0.631 0.323

TOT EQY TO TOT ASSETS 0.324 0.200 -0.130 0.644 0.343
ASSET TURNOVER 0.853 0.570 0.203 2.257 0.693
SOLVENCY RATIO 0.120 0.136 -0.184 0.407 0.111

SALES TO TOT EQY 2.661 3.474 -3.757 12.220 1.718
CASH RATIO 0.441 0.449 0.017 1.662 0.281

DEBT TO EQY 1.147 2.002 -3.215 6.873 0.799
TOT EQY AND LT DEBT TO FIXED 4.395 5.182 0.763 20.350 2.069

INT EXPENSE TO SALES 0.040 0.048 -0.015 0.175 0.023
TIMES INT EARNED 4.483 10.458 -16.282 33.493 2.726

CF TO DEBT 0.364 0.373 -0.016 1.510 0.238
CF TO SALES 0.156 0.126 -0.011 0.468 0.124

CASH RETURN ON ASSETS 0.091 0.055 -0.007 0.207 0.086
LOG SALES 8.098 1.350 5.814 10.647 8.061

6.6.1 Winsorizing

When winsorizing, we store the winsorization parameters for the training set, and apply

these to the test sets. In Table 6.9, we show the winsorization parameters.
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Table 6.9: Winsorization parameters

Lower Bound Upper Bound

ROE -0.970 0.975
PROFIT MARGIN -0.409 0.227
LT DEBT TO CAP 0.094 1.183
CURRENT RATIO 0.582 4.091

ROA -0.203 0.146
OPERATING MARGIN -0.335 0.305

PRE TAX MARGIN -0.458 0.286
PRE TAX ROIC -0.305 0.290

CURRENT TO TOT ASSETS 0.063 0.705
QUICK TO TOT ASSETS 0.029 0.455

DEBT TOT ASSETS 0.091 0.804
COMMON EQY TO TOT ASSETS -0.145 0.631

TOT EQY TO TOT ASSETS -0.130 0.644
ASSET TURNOVER 0.203 2.257
SOLVENCY RATIO -0.184 0.407

SALES TO TOT EQY -3.757 12.220
CASH RATIO 0.017 1.662

DEBT TO EQY -3.215 6.873
TOT EQY AND LT DEBT TO FIXED 0.763 20.350

INT EXPENSE TO SALES -0.015 0.175
TIMES INT EARNED -16.282 33.493

CF TO DEBT -0.016 1.510
CF TO SALES -0.011 0.468

CASH RETURN ON ASSETS -0.007 0.207
LOG SALES 5.814 10.647
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6.7 Summary

In this chapter, we have seen how the initial dataset has been obtained, enriched with

financial information, reduced from 4,407 ratings to 3,902 ratings through cleaning, and

subsequently been categorized into the different class groups of ratings that will be used

for modeling. The processes of obtaining a dataset of such size and quality, has been an

iterative process and a large part of this thesis, so it is our hope that this documentation

is useful.

In the next chapter, we will present the results from training and testing the models

on the data obtained in this chapter.
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7 | Analysis

7.1 Introduction

In this section, we present the results obtained through following the methodology de-

scribed in chapter 5, and investigate the performance of the different models and tech-

niques described in chapter 3. We consider each algorithm separately, and then contrast

the findings to previous research, and the relative performance to the other algorithms ap-

plied in this thesis. Furthermore, we display the hyperparameters from our optimizations

and discuss these briefly. Lastly, we summarize by presenting an overview of the results

obtained and discuss high-level implications.

7.2 Data and Analysis of Results

7.2.1 Statistical Methods

Logistic Regression

For Logistic Regression there are no hyperparameters to tune, and as such we proceed

directly to the model results. Looking at the results, we see that the Logistic Regression

achieves an accuracy of 27.4% in the ”Class I” grouping, with a Kappa of .2, meaning

a relatively low rate of agreement between the predicted and actual ratings. The most

relevant study to compare our findings on Logistic Regression to would be Kaplan and

Urwitz (1979), who achieved a 69% accuracy rating over 6 classes, using a probit regression.

We achieved roughly 54% accuracy, also predicting the 6 classes (”Class II” grouping), so

significantly lower. It is unclear what the exact cause of this is, yet can most probably be

attributed to a difference in methodology.

In Table 7.1 we see a confusion matrix, showing the actual rating in the rows, and the

predicted rating in the columns. Here, we see that the model make substantial classification

errors. For instance, the observations with an actual rating in group 1, were predicted

to be in group 5. Again, it is unclear what the exact cause of this is, but it could tell

us that there are some structural aspects of the data, that makes it unsuited for logistic

regression.

The Logistic Regression model that we made, have a sub-par performance, compared

to both our other models, and past research. As such, it is a less useful model to base

conclusions upon.
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Table 7.1: Confusion Matrix for Logistic Regression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.25 0.00 0.25 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.18 0.45 0.09 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00

5 0.00 0.00 0.00 0.00 0.38 0.07 0.17 0.28 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.07 0.15 0.28 0.38 0.05 0.07 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.02 0.05 0.05 0.23 0.41 0.17 0.03 0.00 0.02 0.02 0.02 0.00 0.00

8 0.00 0.00 0.00 0.01 0.03 0.05 0.20 0.38 0.15 0.01 0.05 0.09 0.03 0.00 0.00 0.00

9 0.00 0.00 0.00 0.01 0.00 0.05 0.11 0.33 0.21 0.10 0.04 0.07 0.05 0.03 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.05 0.18 0.12 0.18 0.02 0.13 0.23 0.05 0.03 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.07 0.12 0.07 0.13 0.29 0.17 0.05 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.02 0.10 0.02 0.08 0.28 0.29 0.08 0.01 0.06

13 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.03 0.02 0.10 0.22 0.30 0.24 0.01 0.03

14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.00 0.05 0.07 0.30 0.41 0.04 0.06

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.04 0.24 0.33 0.13 0.22

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.17 0.08 0.70

Table 7.2: Metrics for Logistic Regression

Accuracy Kappa F1 Score 1-off Accuracy

Class I 0.274 0.201 0.261 0.636
Class II 0.539 0.386 0.534 0.966
Class III 0.845 0.670 0.844 1.000
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Multiple Discriminant Analysis

For Multiple Discriminant Analysis there are no hyperparameters to tune, and as such we

proceed directly to the model results. The results are presented in Table 7.3.

We achieve an accuracy of 26.9% in the ”Class I” grouping, which is a reasonable

accuracy. Comparing the ”Class II” accuracy of 53% to that of Pinches and Mingo (1973),

who obtain 60%, we again see that we have achieved a lower score for a comparable model.

We suspect that the disparity is due to methodological differences.

Looking at the confusion matrix in Table 7.4, we also see that the model despite

having a relatively high 1-off accuracy measure struggles with certain groups, and makes

predictions multiple notches away from the actual rating. In this case, the model seems

to be heavily influenced by the distribution of the training data, predicting many ratings

to be in the most frequent classes.

Furthermore, considering the Kappa measures, the model does not perform well and

actually falls below 0.2, indicating a low degree of agreement between our predicted and

actual ratings.

To summarize, the MDA model does not perform well under our setup, as it has

consistently low measures, and appears to have a low degree of precision, as it predicts

ratings to be multiple notches away from the true rating. Furthermore, our performance

metrics are lower than what should be expected, considering past research.

Table 7.3: Metrics for MDA

Accuracy Kappa F1 Score 1-off Accuracy

Class I 0.269 0.197 0.264 0.618
Class II 0.528 0.374 0.525 0.962
Class III 0.839 0.656 0.838 1.000
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Table 7.4: Confusion Matrix for MDA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.50 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.09 0.00 0.09 0.36 0.09 0.00 0.27 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00

5 0.00 0.03 0.03 0.03 0.28 0.07 0.21 0.28 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.10 0.10 0.17 0.25 0.28 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.02 0.00 0.02 0.05 0.03 0.28 0.36 0.14 0.03 0.05 0.03 0.00 0.00 0.00 0.00

8 0.00 0.01 0.00 0.01 0.05 0.04 0.25 0.34 0.13 0.04 0.03 0.08 0.03 0.00 0.00 0.00

9 0.00 0.00 0.00 0.03 0.00 0.08 0.08 0.29 0.16 0.11 0.07 0.11 0.04 0.00 0.03 0.00

10 0.00 0.00 0.00 0.00 0.00 0.03 0.18 0.15 0.17 0.05 0.13 0.23 0.03 0.02 0.00 0.00

11 0.00 0.00 0.00 0.03 0.00 0.03 0.05 0.08 0.11 0.04 0.19 0.31 0.12 0.04 0.01 0.00

12 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.03 0.07 0.02 0.12 0.33 0.21 0.10 0.06 0.01

13 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.02 0.12 0.22 0.25 0.23 0.02 0.04

14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.02 0.00 0.06 0.09 0.28 0.39 0.06 0.05

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.07 0.20 0.22 0.22 0.24

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.21 0.13 0.57

7.2.2 Machine Learning Models

kNN

For the k-Nearest Neighbor algorithm, there is one hyperparameter to optimize for; n neighbors.

n neighbors is how many of the nearest points the algorithm should choose for evaluating

which class the test example should be predicted to be. Here it is in each case 1, meaning

that it only looks at the single, closest example in the training set, in order to predict the

class of the test case.

We see that kNN performs rather well, with an accuracy of 33%, and quite better than

the statistical methods. There is no directly relevant comparison in the past studies we

have considered, but a 65% accuracy in the ”Class II” grouping, is comparable, albeit a

little lower, to that achieved by Kaplan and Urwitz (1979). Looking at at 1-off acurracy for

the ”Class II” grouping, we see that we achieve a 96% accuracy, which can be considered

impressive, when taking into account the simplistic and non-parametric nature of the kNN

algorithm.

The kNN algorithm seems to offer a convenient and easy-to-understand method for

predicting credit ratings, and achieves a descent accuracy. The results we obtain are not

directly comparable with past studies we’ve considered but fall within the range of results

achieved for machine learning algorithms.
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Table 7.5: Optimal Hyperparameters for the kNN Algorithm

n neighbors

Class I 1
Class II 1
Class III 1

Table 7.6: Confusion Matrix for kNN Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.25 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.09 0.09 0.00 0.00 0.45 0.09 0.09 0.09 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00

5 0.00 0.03 0.00 0.10 0.31 0.28 0.14 0.07 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.23 0.28 0.30 0.05 0.05 0.05 0.00 0.00 0.05 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.08 0.22 0.31 0.20 0.11 0.08 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.01 0.01 0.03 0.16 0.38 0.27 0.05 0.01 0.03 0.03 0.01 0.01 0.00

9 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.29 0.32 0.16 0.08 0.03 0.01 0.03 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.10 0.08 0.33 0.23 0.08 0.07 0.02 0.02 0.00

11 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.01 0.09 0.13 0.37 0.23 0.09 0.03 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.02 0.07 0.04 0.19 0.29 0.16 0.10 0.06 0.02

13 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.05 0.03 0.08 0.26 0.34 0.15 0.04 0.01

14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.07 0.04 0.05 0.22 0.33 0.21 0.02

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.02 0.11 0.13 0.36 0.07 0.24

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.13 0.15 0.66

Table 7.7: Metrics for kNN Algorithm

Accuracy Kappa F1 Score 1-off Accuracy

Class I 0.333 0.269 0.332 0.731
Class II 0.648 0.536 0.649 0.962
Class III 0.877 0.742 0.878 1.000
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SVM

For the SVM algorithm there are only two parameters to optimize for; C and gamma. For

SVMs there are a number of kernel functions available. We chose the RBF kernel, due

to its speed and accuracy, compared to other functions. The RBF is a non-linear kernel,

which seems like an appropriate choice considering the data.

Using SVM as an algorithm we obtain high metrics on all groupings, which can be seen

in Table 7.10. For ”Class I” we obtain an accuracy of 37% and a 1-off accuracy of 77%.

Looking at the confusion matrix in Figure 7.9, we also see that the majority of prediction

seems to be grouped relatively tighly around the diagonal, meaning that for the most

part, when the model does make a wrong prediction, it is not many notches off. There are

however some ratings, especially those in the ends of the scale which seem troublesome

for the SVM algorithm. For instance, ratings belonging to Group 2 are predicted to be in

group 4 and 6.

Whereas the accuracy of the SVM algorithm, being higher than the kNN algorithm

in the ”Class I” grouping, it is about the same for the ”Class II” grouping. The most

relevant study to compare this to would be that of Ye et al. (2008), who achieves a

significantly higher accuracy of 64% across 19 categories, so in that regards, our results

are disappointing. Ye et al. (2008) creates industry-specific models, include more variables

and for multiple historical years. Implementing these into our methodology would likely

have generated results comparable to Ye et al. (2008).

To summarize, whereas the SVM algorithm achieves a higher accuracy than the models

tested before this, there appears to room for improvement, due to the higher accuracies

found in comparable studies.

Table 7.8: Optimal Hyperparameters for the SVM Algorithm

C gamma

Class I 20.000 0.160
Class II 12.296 0.144
Class III 20.000 0.062
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Table 7.9: Confusion Matrix for SVM Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.25 0.50 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.09 0.00 0.00 0.64 0.09 0.00 0.09 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00

5 0.00 0.03 0.00 0.10 0.24 0.38 0.03 0.14 0.03 0.00 0.00 0.03 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.15 0.28 0.25 0.12 0.10 0.03 0.03 0.03 0.03 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.05 0.16 0.39 0.20 0.08 0.05 0.05 0.03 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.01 0.01 0.23 0.42 0.24 0.01 0.03 0.03 0.03 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.21 0.38 0.12 0.07 0.07 0.00 0.04 0.01 0.00

10 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.05 0.10 0.37 0.22 0.18 0.03 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.03 0.08 0.12 0.41 0.27 0.05 0.01 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.04 0.04 0.19 0.35 0.22 0.07 0.02 0.01

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.10 0.31 0.37 0.14 0.02 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.04 0.04 0.06 0.29 0.30 0.20 0.02

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.09 0.20 0.36 0.09 0.22

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.11 0.09 0.74

Table 7.10: Metrics for SVM Algorithm

Accuracy Kappa F1 Score 1-off Accuracy

Class I 0.367 0.305 0.364 0.767
Class II 0.646 0.531 0.645 0.961
Class III 0.889 0.764 0.889 1.000
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Artificial Neural Networks

Continuing to Artificial Neural Networks, we here do not optimize hyperparameters, as

neural networks are incredibly computationally expensive functions, and it would simply

be impractical for the level of hardware used for this thesis. This is of course disappointing,

considering the potential that ANNs holds, when looking at the past literature. Instead,

we attempted to manually tune the hyperparameters, using steps described by Frank

(2009). As such, we cannot reasonably expect the ANN models we created to perform at

their peaks, as our parameters are likely sub-optimal. The specific values we chose can be

seen in Table 7.11.

We see that our network consists of one input layer of 500 nodes, and then another 5

layers with 500 nodes each, making it a so-called ”deep” neural network. Through manual

hyperparameter tuning, we found that the ’ReLU’ activation function (Rectified Linear

Unit), showed the highest in-sample performance, and thus this was chosen for the neural

network model.

In Table 7.13, we see the performance metrics for ANN, showing an accuracy of 37%

in ”Class I”. Performing at the same level as ExtraTrees, ANN is the most accurate

algorithm, when considering ”Class I”-groupings. However, when it comes to Group II

and III, ExtraTrees, turns out to be more effective. Comparing it to past research, it would

probably be the best comparison to compare it to the study by Kumar and Bhattacharya

(2006), who achieved an accuracy if 79% when predicting over 6 classes – significantly

higher than our ”Class II” measure of 66%. Our hypothesis would be that this discrepancy

is due to the lack of proper hyperparameter optimization.

In summary, the ANN model is the most accurate one in our sample, when looking at

the performance metrics of the ”Class I” groupings. However, it leaves a lot to be desired,

as we do not achieve as strong results as past researchers, and as we are unable to properly

optimize the model.

Table 7.11: Hyperparameters for the ANN Algorithm

activation beta 1 beta 2 epsilon hidden layer sizes max iter

Class I relu 0.9999 0.98 1e-08 (500, 500, 500, 500, 500, 500) 1000
Class II relu 0.9999 0.98 1e-08 (500, 500, 500, 500, 500, 500) 1000
Class III relu 0.9999 0.98 1e-08 (500, 500, 500, 500, 500, 500) 1000
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Table 7.12: Confusion Matrix for ANN Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.75 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.27 0.45 0.00 0.00 0.09 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.10 0.48 0.17 0.17 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.30 0.28 0.25 0.10 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.08 0.09 0.27 0.30 0.16 0.06 0.02 0.03 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.03 0.03 0.11 0.46 0.27 0.05 0.03 0.03 0.01 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.22 0.44 0.15 0.05 0.04 0.01 0.01 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.23 0.35 0.20 0.07 0.07 0.03 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09 0.16 0.40 0.28 0.04 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.07 0.04 0.25 0.33 0.15 0.11 0.01 0.01

13 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.04 0.12 0.25 0.27 0.22 0.03 0.02

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.01 0.04 0.07 0.29 0.34 0.16 0.04

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.11 0.47 0.20 0.18

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.06 0.08 0.17 0.68

Table 7.13: Metrics for ANN Algorithm

Accuracy Kappa F1 Score 1-off Accuracy

Class I 0.368 0.307 0.365 0.780
Class II 0.660 0.552 0.655 0.985
Class III 0.890 0.767 0.890 1.000
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ExtraTrees Algorithm

The ExtraTrees algorithm is, a decision-tree based ensemble algorithm which implements

a meta estimator that fits a number of randomized decision trees on various sub-samples of

the dataset and uses parameter averaging to improve the predictive accuracy (scikit-learn,

2017). In short, it is simply a bagged decision-tree model.

We obtain the optimized hyperparameters listed in Table 7.14 for the three class mod-

els.

Table 7.14: Optimal hyperparameters for ExtraTrees algortihm

max depth max features min impurity split min samples leaf min samples split n estimators

Class I 57 20 1.000e-01 1 2 80
Class II 78 25 1.000e-01 1 2 100
Class III 100 25 1.000e-09 1 2 100

We find that the ExtraTrees algorithm performs quite well compared to the other

models in our sample, and achieves an accuracy level of 37% for the ”Class I” grouping,

and 70% for the ”Class II”- grouping. Whereas we don’t have an exact comparison from

past literature, we see that our results are close to those of Kumar and Bhattacharya

(2006).

Table 7.15: Metrics for ExtraTrees Algorithm

Accuracy Kappa F1 Score 1-off Accuracy

Class I 0.368 0.307 0.364 0.822
Class II 0.697 0.599 0.697 0.985
Class III 0.915 0.819 0.915 1.000

Interestingly, the ExtraTrees algorithm is a rather simplistic one, and it is interesting

that it is possible to achieve such high performance figures with this model. Compared to

more advanced and computationally expensive models, that we have tested, ExtraTrees is

performing exceptionally well.

To summarize, ExtraTrees is one of the highest performing machine learning algorithms

in our tests, and its results is comparable to that of past research. The fact that a relatively

simple model can yield this performance, seems to indicate that there are some clear

patterns in the data, which can be extracted and used for prediction, without extensive

effort.

AdaBoost

The optimized hyperparameters for the AdaBoost algorithms are presented in 7.16, be-

ing the learning rate for the optimization function and the number of weak learners

(n estimators).

In Table 7.18 we present results for the AdaBoost algorithm. Here we see that the

model seems to perform worse than any of the other models, with only a 21% accuracy

score. This can possibly be attributed to the complex relationships between the variables
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and also the high dimensionality of the input space. As AdaBoost is an ensemble method,

which build a large number of ”weak learners”, and then combines these, it could be hard

for it to correctly represent the complex relationships between the variables.

Table 7.16: Optimal Hyperparameters for the AdaBoost Algorithm

learning rate n estimators

Class I 0.648040 38.0
Class II 0.314516 57.0
Class III 1.125911 226.0

Table 7.17: Confusion Matrix for AdaBoost Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.55 0.00 0.00 0.00 0.09 0.09 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.31 0.03 0.03 0.52 0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.12 0.00 0.03 0.70 0.00 0.03 0.00 0.10 0.00 0.00 0.03 0.00

7 0.00 0.00 0.00 0.00 0.03 0.02 0.09 0.67 0.02 0.05 0.02 0.09 0.02 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.04 0.00 0.05 0.70 0.01 0.05 0.10 0.03 0.01 0.00 0.01 0.00

9 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.53 0.04 0.08 0.14 0.04 0.04 0.01 0.03 0.01

10 0.00 0.02 0.00 0.00 0.02 0.02 0.05 0.40 0.07 0.07 0.17 0.08 0.07 0.00 0.05 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.37 0.04 0.04 0.15 0.11 0.13 0.03 0.07 0.04

12 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.16 0.04 0.04 0.13 0.20 0.12 0.03 0.17 0.08

13 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.00 0.04 0.18 0.22 0.15 0.05 0.19 0.07

14 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.02 0.07 0.16 0.17 0.07 0.32 0.15

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.04 0.04 0.13 0.00 0.44 0.29

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.19 0.02 0.32 0.45

Table 7.18: Metrics for AdaBoost Algorithm

Accuracy Kappa F1 Score 1-off Accuracy

Class I 0.213 0.136 0.177 0.522
Class II 0.449 0.273 0.426 0.931
Class III 0.866 0.715 0.866 1.000

7.2.3 Comparison of Results

In Table 7.19, we present the accuracy measured across different models and class group-

ings. Measuring on accuracy, we see that the ExtraTrees algorithm is the highest scoring

in all groupings, yielding accuracy metrics of 36.8%, 69.7% and 91.5%, respectively. It

should be noted that the ANN model performs with an equal accuracy in the ”Class I”

grouping, yet cannot match the ExtraTrees algorithm on the subsequent groupings. Fur-
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thermore, ExtraTrees as an algorithm, is far less computationally expensive than ANN,

and as such, one could consider it superior – at least for the methodology of this thesis.

Looking at the two statistical models tested, namely Logistic Regression and Multiple

Discriminant Analysis, we found that these generally performed worse than the machine

learning methods, with the exception of the AdaBoost algorithm. These two achieved

sub-30% accuracies in ”Class I”, compared to the above 30% that all machine learning

models, with the exception of AdaBoost, managed to achieve. Based on the past research,

examined in the literature, this was the expected outcome, and intuitively it makes sense

that the machine learning models are better able to reflect the non-linear relationships

between the input variables. Even though the machine learning models displayed a higher

accuracy than the statistical models, we in many cases failed to achieve as high accuracies

as some of the articles examined in the literature review. Albeit disappointing, considering

the large dataset in this study, it is perhaps not that surprising, considering the focus on

a single algorithm of the other articles.

Table 7.19: Accuracy Metrics Across Models

Class I Class II Class III

LR 0.274 0.539 0.845
MDA 0.269 0.528 0.839
KNN 0.333 0.648 0.877
SVM 0.367 0.646 0.889
ANN 0.368 0.660 0.890

ExtraTrees 0.368 0.697 0.915
AdaBoost 0.213 0.449 0.866

Considering the Kappa measures described in Table 7.20, the same hypothesis of ma-

chine learning models being better predictors, compared to statistical models, is also

supported. The statistical models perform around the .20 mark, which indicates a low

degree of agreement.

Table 7.20: Kappa Metrics Across Models

Class I Class II Class III

LR 0.201 0.386 0.670
MDA 0.197 0.374 0.656
KNN 0.269 0.536 0.742
SVM 0.305 0.531 0.764
ANN 0.307 0.552 0.767

ExtraTrees 0.307 0.599 0.819
AdaBoost 0.136 0.273 0.715

7.2.4 Summary

In this section, we have seen and evaluated the performance of the different statistical

and machine learning models that we have tested on our dataset. Our findings support
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the hypothesis that the machine learning models we have tested outperform statistical

methods, in terms of the performance metrics we have chosen to consider.

Our results are for some cases on a comparable level in terms of accuracy, to past

studies, yet for other we have achieved results with somewhat lower accuracies. We have

discussed a number of reasons for why this could be the case, which is most probably

mainly methodological differences. We do in fact, in our ANN model, achieve better

results than those of Moody and Utans (1994), who, like us, predicted 16 classes using

ANN. Moody and Utans (1994) achieved a 30% accuracy, whereas we managed to achieve

37% accuracy.

One of our models, specifically ANN, appears to show a greater promise, as it per-

forms well, despite being properly optimized due to computational restrictions. This could

suggest that there is some degree of improvement possible. For the other models, consid-

ering the findings of Ye et al. (2008), SVMs might also hold a lot of potential. Whereas

ExtraTrees performed well in our tests, we do not see it having as great a potential for

improvement as ANNs and SVMs.

We will discuss and comment further on our results and the thesis as a whole in the

subsequent chapter.
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8 | Conclusion

8.1 Introduction

In this chapter, we briefly go over the results, and their implications for answering the

research question. We will then attempt to answer our final conclusion with regards to

the research problem, based on the data in our analysis. Furthermore, we will discuss our

results, and make the recommendations that we see relevant.

Lastly, we discuss how our conclusion fits into the field of predicting credit ratings,

and we will discuss any relevant issues or improvements to the methodology used in this

thesis. Lastly, we discuss other research questions that this thesis has triggered, and why

these could be interesting for further study.

8.2 Conclusion

Looking at our results, it seems that using machine learning for modeling credit ratings,

is most certainly viable. We managed to collect an impressive dataset in terms of size,

and although it failed to markedly improve upon the highest accuracies achieved in past

literature, it has shown that predicting credit ratings, and doing so with higher accuracy

than statistical models and little pre-existing knowledge of the field is possible. This

does suggest that much of the information that exist in credit ratings, is already actually

contained in historical and current accounting figures.

In our opinion, the results presented make a convincing case that machine learning

models are better able to predict credit ratings, showing approximately a 10%-point in-

crease in accuracy, when predicting over 16 classes. These findings are in line with the

findings of previous papers.

8.3 Recommendation

As per our conclusion, it seems that credit ratings can be modeled somewhat accurately

using machine learning algorithms, and that machine learning algorithms are generally

better at doing so than statistical methods. As such, any pure prediction application of

credit ratings should in our view implement a machine learning algorithm over a statistical

approach. Furthermore, actually implementing a machine learning model over a statistical

model is not harder today, due to the many software tools available, and the large body

of literature on machine learning.

However, due to the nature of machine learning algorithms as effectively ”black box”-

models, where one cannot easily deduce how the different variables contribute to the final

prediction, they might be less useful for application in understanding why certain credit

ratings are given. For those purposes, statistical models will remain easier to interpret.
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Nonetheless, considering the still relatively low accuracy rates on the full spectrum of

credit ratings (in this thesis referred to as the ”Class I” grouping), of somewhere between

30% and 40%, it is clear that the models from this thesis should most probably not be

implemented directly to any kind of business-critical application, for which accuracy is

paramount. Nonetheless, a reasonably good credit rating prediction model certainly could

have some degree of value, in an industrial application. Furthermore, it seems there are

still leeway to improve upon the models, which would also increase their usefulness. We

have already discussed potential applications, but it is worth noting that for some of these,

100% accuracy may not be a strict requirement.

Addressing the big question – can rating agencies be replace by models – the answer is

a resounding ”maybe”, in our view. In the current state, most probably not, but it is not

unthinkable that in the future one could prove a mathematical model to exhibit higher

reliability and timeliness than that of the CRAs, while also holding the trust in the market

from the market participants. With more transparency and a generally higher availability

of data, it could be conceivable that machine learning models and AI could be better

at seeing through complicated accounting structures, spotting accounting fraud, and in

general making sure that bond issuers are thoroughly investigated and evaluated, on an

objective level, such that market participants can remain confident in the functioning of

financial markets. For the time being, it seems more likely that machines increasingly will,

as we are seeing in any other industries, assist humans in making qualified decisions. As

such, the rating agencies will not be replaced overnight, but it will be a slow transition

toward more automation, and better decisions – a win for society and the financial system.

As of applications for this technology right now, one could imagine these machine

learning models providing better insights for companies about their creditor and contrac-

tors, and with an automated system would be able to plan and act accordingly, should

any of their creditors’ creditworthiness change. One could also imagine a bond trading

strategy, where one would trade an issuer’s bonds or stocks based on predictions of up- or

donwgrades.

To summarize, our recommendation based on the findings of this thesis is not to replace

the rating agencies with machines, but rather look at how machine learning can be more

accurately applied in this field, and how machine learning can assist those evaluating credit

ratings make more informed decisions.

8.4 Discussion

This thesis has explored a well-studied, yet small, some would even say ”fringe” area of

finance. As such, there is little ”best practice” to refer to in this field. Nonetheless, we feel

that we have made our case for why it is a topic relevant studying, and have attempted to

give our contribution to this field. We see that one of our largest contributions, has been

testing some of the techniques described in other research papers, on a large dataset, in

a structured manner, and have at the same time detailed how our dataset was obtained,

such that this study can either be replicated or improved upon by others interested in the

field.
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Nonetheless, there are some methodological improvements that could be fairly easily

implemented by researchers who would wish to improve upon this study. For starters,

this study has had an aim of benchmarking different algorithms, and as such been less

focused on optimizing the performance of each models, prepocessing the data thoroughly,

and tailor the input to the specific needs of the different algorithms. As such, we find

it highly likely that it would be possible to obtain significantly superior results through

going in-depth with a single algorithm, and spend effort on optimizing the results, through

a combination of input processing, variable selection, hyperparameter optimization and

using ensemble techniques.

Whereas the dataset in itself is impressive, due to its size, it is also likely that it could

use more thorough cleaning, and some logic for handling ”corner cases”, in which the

calculations will yield numbers that are not informational to the credit rating classification.

For instance, if a company has negative equity, and at the same time has negative net

income, it’s return on equity would figure as positive - which a model should link to a

good credit rating, which should most probably not be the case in this specific situation.

In our results, we believe that Artificial Neural Networks, shows great promise for

optimizing results on. It would probably have been possible to obtain higher accuracy,

had we been able to employ sufficent computational power to properly optimize the hy-

perparameters of our ANN model. Furthermore, different types of neural networks, such

as convolutional neural networks, have proven themselves useful in a number of applica-

tions. These, more sophisticated types of neural networks could most probably be used

successfully for the purposes of predicting credit ratings.

To finish our discussion, we want to state that it seems clear from our findings, as

well as the findings of the studies preceding ours, that there exists a lot of information in

accounting figures about the creditworthiness about issuers. If we can already now, like Ye

et al. (2008), with 80% accuracy predict credit ratings within 1 rating, the value created

by the CRAs does not seem to be in having the knowledge and techniques to make credit

ratings. Instead, their value seems more to be in inciting confidence in the market, their

special regulatory status, and of course, the human factor, which cannot be ignored when

it comes to finance.

8.5 Future research

This thesis has opened a number of new and interesting questions. Based on both the

actual availability of data, and the findings of previous research it seems that there are

many possibilities for researchers to investigate the topic of machine learning and credit

ratings further.

For starters, there exists a plethora of other machine learning models, which are con-

stantly being used for new and sensational applications. These could could be interesting

to apply to the problem of predicting credit ratings.

Secondly, many improvements in machine learning models is done by preprocessing

the inputs and so-called feature extraction. What’s more, is that there is more and more

data becoming available. Future research is needed in how to better process inputs and
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extract features from data, as well as research into how other, non-accounting data could

help improve the rating accuracy.

Lastly, it seems that some earlier studies have already obtained impressive results. For

instance the findings of Ye et al. (2008) are incredibly interesting from this point of view,

and it would be useful for the field to investigate if and how some of their approaches can

be encoded into a ”best practice” or if their approach could be improved upon, in order

to gain even better results.
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A | Equations

Table A.1: Equations of Variables Used

Variable Description

Profit Margin = Net Income
Net Sales

The ratio is an indicator of total margin to cover

expenses and potentially yield a profit for the

shareholders

Operating Margin = Operating Income
Revenue

This ratio is an indicator of the firms operating effi-

ciency and measure which part of a company’s revenue

that is available after paying for variable costs of pro-

duction e.g. wages and raw materials

Return on Equity = Net Income
Shareholder′s Equity

The ratio is a important profitability measure that

display the productivity of equity as reported in the

balance sheet. The measurement provides indication

of a firms ability to raise equity-capital that serve as a

cushion for the debt-holders (financial statement anal-

ysis a practioners).

LT Debt to Capital = LT Debt
LT Debt+Total Equity

The ratio yields the firms relative balance between

debt and equity of the firms long term financial

obligations.

Current Ratio = Current Assets
Current Liabilities

The current ratio is an indicator to which extent li-

abilities that will be due soon are covered by assets

that are expected to be converted to cash within the

approximate same period of time.

Return on Assets = NetIncome
AverageTotalAssets

The ratio measure the profitability of relative to its

asset-base and thus can be interpreted on how well

the firm manages it’s assets.

log (Net Sales) log-transformed net-sales that provides a levelized

measurement of the firms ability to generate revenue.

Pretax profit margin = Pre−tax icome
Net sales

A company’s earnings before tax as a percentage of

total sales or revenues. The higher the pretax profit

margin, the more profitable the company.

Return on invested capital = Pre−tax income
Avg. invested capital

Indicator that measure to which extent the company

efficiently allocates funds to profitable investments re-

gardless of source the of financing.
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Table A.1: Equations of Variables Used

Variable Description

Cashflow to sales = Cash from operations
Net sales

The ratio explains the firms ability to convert sales to

cash

Cash ratio = Cash and equivalents
Current Liabilities

The cash ratio is the ratio between cash and equiva-

lents to current liabilities and measure the firms ability

to meet its short term financial liabilities

Debt to equity = ST Debt+LT Debt
Total Equity

A measure of a firms financial leverage

Current to Total Assets = Current Assets
Total Assets

Indicates the extent of total funds invested for the pur-

pose of working capital and throws light on the impor-

tance of current assets of a firm

Quick to Total Assets = Acct. Rec.+Cash and Equiv.+Mkt. Sec. and ST Inv.
Total Assets

An indicator of a company’s short-term liquidity and

financial strength or weakness.

Debt to Total Assets = Provides a measure of the proportion of debt a com-

pany has relative to its assets. It gives an indication

of the amount of leverage being used by a company.

Common Equity to Total Assets = Common Equity
Total Assets

Expresses the share of the total assets that common

stockholders are entitled to.

Total Equity to Total Assets = Total Equity
Total Assets

This ratio expresses the proportion of total assets fi-

nanced by the owner’s equity capital. It provides an

indication of a company’s leverage

Asset Turover = Net Sales
Avg. Total Assets

This ratio measures the amount of revenue generated

for every dollar’s worth of assets. It is useful for de-

termining how efficiently and effectively management

uses its assets to generate revenues

Solvency Ratio = Net Income+Amort. and Depr.
Total Liabilities

This ratio measures a company’s ability to meet its

long-term obligations. In general, the lower a com-

pany’s solvency ratio, the more likely it is to default

on its debt obligations.

Sales to Total Equity = Net Sales
Total Equity

This ratio provides a sense of a company’s creditwor-

thiness as it measures the number of sales dollars gen-

erated with each dollar of investment

Total Equity and LT Debt to F ixed Assets = Tot. Eqt.+LT Debt
F ixed Assets

Measures the extent to which the firms fixed assets are

finance through equity and debt.
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Table A.1: Equations of Variables Used

Variable Description

Interest Expense To Sales = Int. Exp.
Net Sales

A useful metric for comparing the efficiency of a com-

pany’s interest expenditure between companies in the

same industry

Times Interest Earned = Operating Income
Interest Expense

Measures a company’s ability to pay its debt obliga-

tions and an indication of the number of times a com-

pany can cover its interest charges with its pre-tax

earnings.

Cash− flow to Debt = Cash from Operations
LT Debt+ST Debt

This ratio compares a company’s cash flow to its rev-

enues which provides a measure of the company’s abil-

ity to generate cash from its current operations.

Cash− flow to Sales = Cash from Operations
Net Sales

An efficiency ratio that rates actual cash flows to com-

pany assets without being affected by income recogni-

tion or income measurements.

Cash Return On Assets = Cash from Operations
Avg. Net Sales

This ratio measures the cash a company can generate

in relation to its asset size
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