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Abstract

The structure of interbank connections affects financial system’s resilience to shocks. This thesis

determines the implications of network’s architecture on stability of a banking system. A frame-

work for structural analysis established in Elliott, Golub and Jackson (2014) is applied to the

financial network model from Gourieroux, Heam and Monfort (2012) in order to examine perfor-

mance of various network structures under two shock scenarios. The model used in the present

research is calibrated to match data for a Swedish banking system (at the end of 2016). The results

suggest that under an idiosyncratic shock regime, a mid-range level of diversification creates the

most prone to default environment as banks are exposed to a significant propagation risk due to

a bankruptcy of individual institutions, while a complete network structure shows good resilience.

However, under a systemic shock regime, the complete network structure is the most susceptible

to contagion. These findings support claims that diversified networks exhibit robust-yet-fragile

tendencies, as concluded in Gai and Kapadia (2010).
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1 Introduction

As recovering from a financial crisis is a costly and protracted process,1 financial regulators are con-

tinuously attempting to establish a regulatory framework (such as the Basel Accords) that would help

to prevent crises. The introduction of Basel I was a milestone as it established a common regulatory

framework adapted in virtually all countries with active international financial institutions.2 Later it

was followed by a revised framework referred to as Basel II, that was due to be implemented before

the events of 2008. The global financial crisis of 2008 has taken a toll on the majority of the devel-

oped economies and highlighted shortcomings of the existing regulatory framework. It has showed

that analysing financial entities without considering their interconnectivity can create a false sense of

stability as the systemic risk might not be sufficiently accounted for.3 In Brunnermeier et al. (2009)

the authors argue that prior to the crisis, the regulatory framework was aiming at preventing failures

of individual financial institutions and further macroprudential measures are necessary to address sys-

temic risk. Similar conclusions regarding the necessity of capturing and reducing systemic risk were

made in Claessens (2015).4 Once implemented, the Basel III regulatory framework is set to add the

system-wide, systemic risk-based framework to the existing firm-specific approach.5

The structure of the financial market plays an important role in shaping of the systemic risk as it

affects the potential spread of losses among financial entities in the system.6 The global financial crisis

of 2008 demonstrated that the existing interdependencies may in fact amplify losses in the financial

system7 and made it clear that a proper assessment of the potential risk of contagion is a necessity in

a current situation of globalised and highly interconnected financial markets. Consequently, following

the global financial crisis more attention was directed towards further understanding and quantification

of the impact of network structures on the stability of the financial system.

An important stream of research on the systemic risk consists of analyses which focus on charac-

terising the best network structures given different types of shocks (e.g. idiosyncratic default of an

individual institution or a systemic shock to the financial system) and contagion channels, through a

process of numerical simulations. In Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) the authors identi-

fied the best and the worst network structures under moderate and large shock regimes, by simulating

network’s responses to shocks in a stylised model. They showed that for a mild shock, the best struc-
1E.g. Reinhart and Rogoff (2014) shows that within five to six year after the onset of the financial crisis of 2008,

only the United States and Germany managed to reach their 2007-2008 peaks in income per capita out of all countries
undergoing systemic crisis.

2See Basel Committee on Banking Supervision (2014).
3See Acharya et al. (2017).
4Galati and Moessner (2013) provides an overview of research on the topic of macroprudential policy, while Hanson,

Kashyap and Stein (2011) discusses a potential design of macroprudential regulations.
5See Hannoun (2010).
6See Yellen (2013) and Plosser (2009).
7See Gai and Kapadia (2010).
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ture is a complete network, whereas in case of a large shock it becomes the most vulnerable structure.

Gai and Kapadia (2010) explored how the impact of contagion depends on the type of shock used

and how it is influenced by various alterations of the network structure. Their results indicated that

diversified financial systems exhibit a robust-yet-fragile tendency.8 A complex approach towards the

analysis of implications of various network structures is presented in Elliott, Golub and Jackson (2014).

In their research, they introduced concepts of integration (level of dependency on other institutions)

and diversification (total number of connections to counterparts) of institutions in a financial system.

Application of these two concepts in a model guarantees a considerable level of flexibility with respect

to generating and simulations of different network structures. Furthermore, they employed a stylised

model of organisations’ cross-holdings of shares to examine the impact of diversification and integra-

tion on the stability of the system. Their results showed that diversification increased the fragility of

the system in its middle ranges, while for a fully diversified network the systemic risk was limited, and

that high levels of integration caused a decline in a number of defaults.

The aforementioned analyses are focused mainly on obtaining generalised results regarding the

influence of various network architectures on the systemic risk in a financial system. A considerable part

of the literature on financial networks and systemic risk concentrates on the empirical testing of various

contagion channels and shock propagation mechanisms (such as debt and shareholding exposures, or

assets’ "fire sales"). Based on the available data, authors attempt to identify exposure channels that

serve as shock transmitters and accommodate further spread of losses in financial systems. Upper

(2007) provides a comprehensive survey on empirical literature that uses counterfactual simulations

calibrated to imitate specific financial networks.

The main purpose of the present research is to bridge the gap between counterfactual, empirical

simulations of prespecified financial systems and general analysis on the impact of different network

structures on the systemic risk. The previously described framework established in Elliott, Golub

and Jackson (2014) offers a flexible and tractable method of generating different network structures.

However, the shock propagation mechanism employed in that paper does not include typically used

exposure channels such as interbank lending or assets’ market prices. Hence, to put that framework

for structural analysis to the test, a shock propagation mechanism developed in Gourieroux, Heam

and Monfort (2012) is applied in the present research. In their paper, Gourieroux, Heam and Monfort

developed a network model that considers debt and share holding channels of contagion,9 and calibrated

it (using data for the French banking system) to conduct a counterfactual simulation of the implications
8The term robust-yet-fragile describes a financial network that is resilient when facing moderate shocks, however,

is highly susceptible to default and serves as a shock transmitter and amplifier under more adverse scenarios. Similar
conclusions regarding the robust-yet-fragile feature of financial systems were drawn in e.g. Haldane (2009).

9The model presented in Gourieroux, Heam and Monfort (2012) is particularly useful for the implementation in the
structural analysis framework as it considers a contagion through shareholdings (similarly to Elliott, Golub and Jackson
(2014)), allowing for a better comparability of results.
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of idiosyncratic shock on the probability of default of institutions in the system. They concluded that

interconnectivity can efficiently lower the probability of default due to diversification of risk, however,

pairwise defaults occur more frequently compared to the system with no connections.

Combining these two frameworks allows for a full structural analysis of the implications of network

architecture on a spread of losses through two shock propagation channels.10 Therefore, it gives an

opportunity to further investigate the influence of the network architecture under complex model

settings with two propagation channels as well as to compare the outcomes of a simulation to those

obtained in Gai and Kapadia (2010), Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) and Elliott, Golub

and Jackson (2014). Finally, to further augment the analysis, the network model of the banking system

is tested under two types of shocks: idiosyncratic and systemic.

After establishing the extended framework for the structural analysis, three main research questions

arise:

1. Do the results on the impact of diversification and integration on the stability of the system

hold under the new, more complex network model?

2. What kind of network structure guarantees the lowest probability of default under idiosyncratic

and systemic shocks?

3. Is the robust-yet-fragile tendency present in the modelled network?

In order to add the empirical component into the present research and to calibrate the network

model, the framework for structural analysis is applied to the case of the Swedish banking system.

The aim is to provide answers to the general questions stated above based on the counterfactual

simulation as well as to benchmark the actual structure of a banking system in Sweden (obtained from

the data as described in section 4 of the thesis) against other network structures generated using the

combined framework. That way, it is possible to gain some insights regarding the best and the worst

network structure for the Swedish case under different types of shocks and to prove the usefulness

of the framework from Elliott, Golub and Jackson (2014) in a more complex model setting. To my

knowledge this is the first study that applies the above mentioned framework for structural analysis

to a model with debt and shareholding contagion channels in order to derive insights on implications

of network architecture on the systemic risk, based on the case of the Swedish financial system.

In the past three decades the Swedish economy suffered from two major financial crises. The fiscal

bailout cost of the financial crisis in the 1990s was estimated at around 4% of the Swedish GDP
10As stated in Degryse and Nquyen (2007), a financial contagion occurs as a product of materialisation of two risk

factors: the risk that at least one institution in the network is affected by a shock (likelihood of bearing losses) and the
risk of a further propagation of the shock through the system (potential impact on the network). The focus of this thesis
is on the latter.
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according to Boyd, Kwak and Bruce (2005). The global financial crisis of 2008 was not as harsh on

Sweden as it was on some other developed economies (Swedish economy did not fall into long-lasting

recession following the crisis11).12 However, it showed that there are certain shortcomings in the

banking supervision as it did not account for the macroeconomic aspects enough.13

Over the last few years the Swedish economy grew steadily, while the unemployment continuously

decreased. However, the indebtedness of Swedish households went up as the aggregate debt-to-income

ratio for Swedish households increased to 180% in 2016 and the credit growth among households

and non-financial companies remained high (fostered by low interest rate and peaking house prices in

Sweden).14

The Swedish banking system is large (its total assets amount to around 400% of Sweden’s GDP)

and made up of around 120 banks and credit institutions. However, the four major banks account

for approximately 85% of the total amount of loans and deposits in Sweden (and about 330% of

Sweden’s GDP), dominating the market.15 As concluded in a report prepared by the Swedish Financial

Supervisory Authority (Finansinspektionen (2017)), the resilience of the domestic banks is satisfactory

as they fulfil capital and liquidity requirements and have higher profitability than their European

counterparts. However, a large portion of financing of the Swedish banks comes from foreign markets

exposing them to volatility on the international capital markets. Additionally, a substantial share

of their assets consists of mortgages and other loans connected to real estate sector, making them

vulnerable to any potential turbulences on the housing market. Furthermore, numerous reports from

both domestic and international organisations16 are stressing that the Swedish banking system is

significantly concentrated and interconnected, which emphasises the importance of accounting for the

systemic risk entirely.

In order to simplify the simulation of the network model, the present research is limited only to the

four major institutions: Nordea, SEB, Swedbank and SHB. Among these banks, Nordea is by far the

largest measured in total assets, followed by SHB, SEB and Swedbank. Although they all conduct their

business internationally (primarily in other Nordic countries and Baltic states, with Nordea having a

majority of its operations outside of Sweden), they are all headquartered and incorporated in Sweden,

thus making it responsible for their supervision. The data used for the calibration of the model were

extracted mainly from the institutions’ annual financial statements (for the end of 2016).

The main results of the present research are as follows. Under the idiosyncratic shock regime,
11See European Commission (2012).
12Österholm (2010) quantifies the impact of the global financial crisis on the Swedish economy, showing its negative

effects on the growth of the real GDP in Sweden.
13See Öberg (2009).
14Similar factors played important role in the development of the financial crisis in 1990s, as described in Englund

(2015).
15See Finansinspektionen (2017).
16See e.g. Swedish Riksbank (2017), European Commission (2016), or International Monetary Fund (2016).
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full diversification of the system leads to a lower probability of default compared to the case with no

connections, while moderate levels of diversification create the most vulnerable environment. Greater

integration of the system causes an increase in the total number of defaults observed. In the case of the

systemic shock regime, increase in diversification and integration levels always drives the probability

of default up. The model exhibits the robust-yet-fragile tendency as once the initial losses are large

enough, the network amplifies shocks further, resulting in additional cases of default.

The rest of the thesis is organised in a following way. Section 2 contains a detailed review of existing

literature in the field of modelling of shock propagation mechanisms and analyses of financial networks.

Section 3 provides details on the network model, framework for structural analysis and the procedure

used for the simulation of the responses of the model to idiosyncratic and systemic shocks. Section 4

describes the data used in the simulation and presents the structure of exposure matrices derived from

the data. Section 5 contains the results of the numerical simulation. In Section 6 the results and their

validity are discussed and further extensions of the research are proposed, while Section 7 concludes

the thesis.

2 Literature review

The focus of this section is to review the existing literature on the topic of financial networks, with a

particular focus on mechanisms for shock amplification and propagation, in order to provide a solid

understanding of the developments in the field of network analyses. Following Upper (2011), we

distinguish two main types of contagion channels in the banking system, that is: liability side and

asset side channels.

In the present research, we focus solely on channels of contagion connected to the asset side of

balance sheet.17 Asset side contagion channels are further divided into direct and indirect effect

channels. The former includes, among others, the two channels of shock propagation used in this

thesis, namely interbank lending and equity cross-holdings. The latter includes exposures to assets’

prices.

Much of the literature on financial networks was built on the seminal paper by Eisenberg and Noe

(2001). In that paper, the authors modelled in-network exposures through interbank lending channel

and proved the existence of a unique "clearing payment vector" in the system. Furthermore, they

developed a "fictitious default algorithm" that computes the clearing vectors and produces information

on exposures of the entities in the system to the systemic risk. Another paper with a similar approach

to modelling of contagion channel is Allen and Gale (2000), where authors proposed a model analysing
17Examples of liability side contagion channels as listed in Upper (2011) are: common pool of liquidity (Diamond and

Rajan (2005), Brunnermeier and Pedersen (2009)), information about asset quality (Acharya and Yorulmazer (2008)),
or fear of direct effects (Dasgupta (2004), Freixas, Parigi and Rochet (2000)).
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impact of devaluation of interbank claims due to a banking crisis, on other financial institutions in the

system. In addition, this paper introduced concepts of complete and incomplete network structures18

and the authors observed that the former form of the network exhibits greater robustness to financial

crises than the latter. Variations of the interbank lending contagion channel are also used as shock

propagation mechanisms in Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) and Gai, Haldane and

Kapadia (2011).

An example of the implementation of interbank lending and equity cross-holding channels can be

found in Gourieroux, Heam and Monfort (2012). Building on the model by Eisenberg and Noe (2001),

Gourieroux, Heam and Monfort additionally included a propagation mechanism through the net value

of institutions in the network. In their paper, they demonstrated how to set up and solve the model

as well as show implications of the French network structure on banks’ resilience. The results they

obtained indicate that individual defaults of banks are less frequent under the modelled structure,

however, pairwise defaults occur more often. The equity cross-holdings shock propagation channel

was also used in Elliott, Golub and Jackson (2014), to present the implications of integration and

diversification of exposures in the system on its stability.

Cifuentes, Ferrucci and Shin (2005) extended the model of Eisenberg and Noe (2001) to account

for the systemic risk arising from the exposure to market prices of assets (an example of an indirect

effect of a shock to the financial system). They introduced a framework for analysis of the impact

of changes in assets’ market price, due to the "fire sales" phenomenon, on the stability of financial

institutions and presented the algorithm that solves for the equilibrium price of assets. In their paper,

Cifuentes, Ferrucci and Shin showed that mark-to-market rule can induce further losses in the financial

system in case a "fire sale" occurs. In Gauthier, Lehar and Souissi (2012), authors employed a similar

framework to conduct a counterfactual simulation of the response of the Canadian banking system to

initial shocks. Their findings suggested that adding a systemic perspective to banking regulations can

significantly enhance the financial stability. Gai and Kapadia (2010) included interbank lending and

"fire sales" contagion channels in their model to investigate how different network structures cope with

idiosyncratic and aggregate shocks. They showed that a financial network exhibits robust-yet-fragile

tendency. Similar approach to modelling of indirect shock propagation mechanisms can be also found

in Chen, Liu and Yao (2014) and Greenwood, Landier and Thesmar (2015).

3 Model of the banking system

A model of the interbank network is constructed in order to determine the consequences of two types

of shocks on the system. After the introduction of a shock to the network, the model finds a fixed point
18Allen and Gale established basic concepts of network structure, frequently referred to in many subsequent papers.
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solution to the system of equations through an iterative algorithm. The model of the banking network

can be used to determine how different structures of the banking network contribute to the overall

probability of default of banks in the system. To pin down influences of different network structures,

there are two channels of contagion applied in the present research:

1. Equity cross-holding;

2. Interbank lending.19

These channels of contagion enable analysis of the stability of various structures of a banking sys-

tem as it faces different types of shocks. In the present analysis there are two types of shocks considered:

1. Systemic shock, that is a randomised, negative shock to the institution’s asset side that has a

direct negative impact on all banks;20

2. Idiosyncratic shock, that is a randomised shock (may be either negative or positive as it is normally

distributed around zero) to the asset side of institutions.21

Testing the outcomes of different shocks allows for the assessment of the performance of network

structures in normal times (the case of idiosyncratic shock) and during a severe crisis (the example of

systemic shock). Thus, the present analysis provides some valuable insights on the resilience of various

structures of a banking network.

The network model implemented in this research was developed in the Gourieroux, Heam and

Monfort (2012). Their model provides a mechanism that returns net values of all institutions in the

system (hence, indicates which banks are in a default) given initial shocks imposed on the network and

lays a foundation for the present analysis. However, in Gourieroux, Heam and Monfort (2012) authors

applied their model to a single, prespecified network without considering any potential variations of the

interbank exposures and their possible consequences. Therefore, to conduct a full structural testing, it

is imperative to come up with an appropriate framework that enables running the model on different

structures of the banking system.

A solution to that issue are concepts of integration and diversification of networks developed in

Elliott, Golub, Jackson (2014). These concepts may serve as means to obtain different forms of the

interbank exposures and therefore allow for the analysis of networks varying in the number of direct
19In this thesis, different terms are used to refer to these two propagation channels. For the equity cross-holding

channel: shareholding, net value exposure. For the interbank lending channel: debt exposure, liability exposure.
20Systemic shock may be seen as, for example, a consequence of a crisis on the housing market, when a significant

number of mortgage loans are not performing.
21Idiosyncratic shock can be interpreted as a result of bad investment choices (when negative) or some additional

profit (when positive). In the current framework, under the idiosyncratic shock some banks might experience certain
losses, while other could make a profit.
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connections (diversification) and in the size of the total exposures (integration). In the present analysis

the concepts of integration and diversification are both adapted into the model taken from Gourieroux,

Heam, Monfort (2012) in order to test the resilience of a banking system to shocks under different

network structures.

The following paragraphs contain a summary of the structure of banks’ balance sheets, a detailed

description of the model, further characterisation of shocks applied as well as discuss how different

network structures are obtained and simulated.

3.1 Balance sheet

For the purpose of the analysis a simplified bank’s balance sheet is considered, as described in Gourier-

oux, Heam and Monfort (2012). There are N = {1,...,n} institutions in the system which are inter-

connected through stocks and debts. Balance sheet of institution i consists of the asset side Ai and

the liability side Li (also referred to as the debt of i). The former comprises of the sum of exposures

towards other institutions’ liabilities (such as value of securities and bonds issued by bank j and held

by institution i as well as loans granted to j by i, denoted as a portion of j ’s total liabilities to which

i is eligible, equal to �i,jLj), sum of exposures to the net values of institutions in the system (through

a shareholding, denoted as a portion of net value of bank j owned by institution i, equal to ⇡i,jYj)

and exogenous assets Axi (other assets such as loans to corporations, household mortgages etc.). The

latter has only one element, which is the total liability of institution i, Li, equal to the contractual

value L⇤
i when bank is not in default and subject to a potential decrease in case of a bankruptcy. A

product of a difference between asset and liability sides is the net value Yi (also referred to as the

equity of i).

Asset Liability
⇡i,1Y1 Li

...
⇡i,nYn

�i,1L1
...

�i,nLn

Axi

Ai Li

Table 1: Balance Sheet of institution i.
Source: Gourieroux, Heam and Monfort (2012).

As the focus of the analysis is on the solvency constraints and liquidity aspects are not of interest

in the present research, different maturities of debt are not considered in the model. Table 1 shows
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the balance sheet of institution i as described above.

3.2 Network model

In the present model, before any shocks are introduced to the system and all institutions are solvent,

the following accounting relationships hold for all i = 1,...,n:

8
>>><

>>>:

Li = L⇤
i

Yi = Ai � Li

=
Pn

j=1(⇡i,jYj) +
Pn

j=1(�i,jL
⇤
i ) � L⇤

i + Axi

(3.1)

In the present framework all shocks are applied to the system through the exogenous asset component

Ax. As a consequence of a shock the initial exogenous asset value Ax0 changes into Ax.22 After

the introduction of a shock, the system is no longer in its initial state. A decrease in the value of

exogenous assets inevitably leads to a fall of the net values of institutions affected by the shock.

Hence, it is possible that a given institution might not be able to cover its contractual debt and its

net value might decrease to zero. In that situation, a default of a bank occurs. The net values of

institutions and the values of their total debts after the application of a shock are solutions of the

system: 8
<

:

Yi = max{Ai � Li, 0}

Li = min{Ai, L
⇤
i }

(3.2)

The first equation in the system (3.2) allows for the potential default (in case of Ai  Li) and returns

the resulting net value of institution i. It also considers a limited liability of shareholders (up to the

value of Yi in the worst case scenario). The second equation indicates the amount of debt (equal to

Ai/L
⇤
i ) that may be recovered by debtholders in case of a bankruptcy of institution i. System (3.2)

implies the seniority of debtholders with respect to shareholders, as the net value is the first to be

wiped out in case of a default.

Combining systems (3.1) and (3.2) produces:

8
<

:

Yi = max{
Pn

j=1(⇡i,jYj) +
Pn

j=1(�i,jL
⇤
i ) +Axi � Li, 0}

Li = min{
Pn

j=1(⇡i,jYj) +
Pn

j=1(�i,jL
⇤
i ) + Axi, L

⇤
i }

(3.3)

The solution of the system (3.3) are two consistent sets of values Y = (Y1, ..., Yn)’ and L = (L1, ..., Ln)’.

Furthermore, the resulting values of Y and L provide information regarding the defaulted institutions
22Shocks are described in details in section 3.6.
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(Yi = 0, Li < L⇤
i ), the institutions which remained solvent (Yi > 0, Li = L⇤

i ) and the net and liability

values of all institutions in the system.

In order to analyse the model described by the system (3.3), it is necessary to ensure that a solution

to this system exists and is unique. After Gourieroux, Heam and Monfort (2012), let us formulate the

following proposition:

Proposition 1. If ⇡i,j � 0, �i,j � 0, 8i,j ,
Pn

i=1 ⇡i.j < 1, 8i,j ,
Pn

i=1 �i.j < 1, 8j , the solution of the

system (3.3) (equilibrium values of Y and L) exists and is unique for any choice of non-negative ex-

ogenous assets Axi and total liabilities L⇤
i (for i = 1, ..., n).

The proof of the Proposition 1 is found in Gourieroux, Heam and Monfort (2012).23 The solution

of the system (3.3) provides the equilibrium values of institutions’ net values Y and liabilities L, de-

pending on the specification of the financial system S = {⇧,�, L⇤, Ax}, where ⇧ = (⇡i,j) and � =

(�i,j) are the (n, n) equity and debt exposure matrices, respectively.

3.3 Default analysis

Once shocks are introduced to the system and the respective outcomes are computed according to the

equations in the system (3.3), there are three different states in the equilibrium that an institution can

reach:

1. Survival (S);

2. Fundamental Default (FD);

3. Contagious Default (CD).

In the survival state, a bank does not default as its reserves are sufficient to cover any potential

losses from the initial shock as well as those arising from the equity cross-holding and debt exposures.

As it was mentioned before, a bank faces bankruptcy once its net value drops to zero (Yi  0 due

to the losses caused by shock and propagation effect). The survival state is defined by the following

inequality:
nX

j=1

(⇡i,jYj) +
nX

j=1

(�i,jLj) +Axi > Li (3.4)

As long as the condition (3.4) is satisfied, institution i will remain solvent, its net value will take a

positive value (Yi > 0) and its actual liabilities will be equal to the nominal ones (Li = L⇤
i ).

The fundamental default state occurs when a net value of an institution drops to zero due to a
23For proof see Appendix 2 in Gourieroux, Heam and Monfort (2012).
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direct effect of a shock. Let us use the following notation to define a direct effect of a shock:

Ax0
i �Axi = �Ai (3.5)

Therefore, the necessary condition for the fundamental default state to occur is following:

�Ai � Yi (3.6)

Finally, the contagious default state occurs once institution i survives a direct impact of a shock

but defaults due to a contagion effect, through one of the exposure channels. The necessary conditions

for that state to occur are following:

8
>><

>>:

�Ai < Yi

�Ai +
nX

j=1

(⇡i,jY
0
j )�

nX

j=1

(⇡i,jYj) +
nX

j=1

(�i,jL
⇤
j )�

nX

j=1

(�i,jLj) � Yi

(3.7)

As the framework for the analysis of the network model is set, let us discuss the measures of

outcome that are employed to compare the results. The main measure is the probability of default of

each institution. In each scenario,24 a bank can either survive a shock and a consequent propagation

effect or default. Dividing the number of defaults for a given bank across all scenarios by the total

number of scenarios provides a simple measure of the probability of default. In case of n different

scenarios a simple way to express the method of calculating a probability of default is:

PDi =
nX

i=1

( Yi0)/n (3.8)

where A denotes an indicator function of A. That measure shows individual, unconditional probabil-

ities of default of each institution in the network.

Apart from individual probabilities of default, probabilities of joint default (default of institution i

due to a contagion effect conditional on the default of institution j ) are also of interest. By computing

those, one can assess the systemic importance of each bank in the system, that is determine which

institution can cause the most damage (or increase the probability of default of other institutions

the most) in case of its default. As the focus of the thesis is to analyse the network structures, it is

important to understand which institutions are prone to default and may pull other banks down with

them.

Additionally, the model allows for calculations of the total net value of non-defaulted banks and the
24Scenarios refer to a series of random draws of shock values that are being used to compute probabilities of default

in each setting of the model. More information on scenarios is provided in the Section 3.7.
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total value of debts of all institutions after including all negative effects. Those values might be used as

a mean to compare different structures of banking network, where higher values of debt and net values

indicate that losses experienced in a given system are lower. The total net value of non-defaulted

institutions is given by:

Ŷ =
nX

i=1

Yi, (3.9)

which is a measure essential for shareholders. The total value of debts of all institutions is computed

from the following equation:

L̂ =
nX

i=1

Li, (3.10)

which is a measure important for bondholders. By examining the outcomes for these two measures, it

is possible to draw conclusions regarding the overall effects of shocks. They can be used as measures

supplementary to probabilities of default, as they inform about the "depth" of losses.

3.4 Example of contagion

Illustrating how the network model and shock propagation channels work might be helpful to under-

stand the mechanics behind it. Let us assume that there is a simple system with only two institutions

(bank 1 and bank 2). The balance sheets of institutions in this example are following:

- Bank 1: ⇡1,1 = ⇡1,2 = �1,1 = 0, �1,2 = 20%, L⇤
1 = 150 and Ax1 = 200,

- Bank 2: ⇡2,1 = 50%, ⇡2,2 = �2,1 = �2,2 = 0, L⇤
2 = 150 and Ax2 = 130.

Net values of both institutions can be obtained from the second equation in (3.1) and are equal to 80

and 20 respectively.25 Now, let us assume that due to some adverse event, exogenous asset components

(Ax1 and Ax2) of both institutions decrease by 10%. The effects of the aforementioned event can be

divided into two parts: direct and contagion. The direct effect of the decrease of exogenous asset

components is a decline in net values (to 60 and 7 respectively26).

The contagion effect applies differently to both institutions. Bank 1 is exposed only to the debt of

its counterpart (only affected when Bank 2 defaults on its liabilities), while Bank 2 owns half of the

Bank 1’s equity (affected whenever the net value of Bank 1 changes). Due to the decrease of the net

value of Bank 1 (from 80 to 60), the asset side of the Bank 2’s balance sheet is affected. Its net value

falls below zero (due to the contagion effect, the asset side of Bank 2 declines in value by 10) and Bank

2 is in the default state. At this point Bank 2 is not able to pay back all its debts (L2 < L⇤
2) and as

25For Bank 1: 200 + 20% * 150 - 150 = 80, Bank 2: 130 + 50% * 80 - 150 = 20.
26For Bank 1: 200 * 90% + 20% * 150 - 150 = 60, Bank 2: 130 * 90% + 50% * 80 - 150 = 7.
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a consequence Bank 1 does not recover the full amount owed by Bank 2. Present value of the Bank

2’s liabilities can be computed from the second equation in (3.3). Bank 1’s loss due to the interbank

exposure is equal to 0.6 as the recovery rate is equal to A2/L
⇤
2.27 Bank 1’s net value declines to 59.4

and it is in the survival state.

3.5 Network structure

A pivotal element of the present analysis is the stability of a banking system subject to different struc-

tures of the interbank network. In order to bring the structural element into the analysis, concepts of

network diversification and integration developed in Elliott, Golub and Jackson (2014) are introduced.

3.5.1 Integration and diversification

In Elliott, Golub and Jackson (2014) the authors were investigating the impact of different levels of

integration and diversification on the stability of a financial system. These concepts allow for the

testing of a broader number of different network structures and comparison among them, hence their

usefulness for the analysis of the resilience of a banking system.

At first, it is necessary to understand the idea behind integration and diversification before diving

into the mathematical representation and implementation of those. The intuition behind those concepts

is as follows. Integration refers to the size of the total in-network exposure of the analysed institutions.

The increase of integration of institution i means that its total in-network exposure increases, whereas

the decrease of integration has the opposite effect. Diversification defines a number of banks to which

the institution i is connected. Higher diversification means that the same amount of in-network

exposure of bank i is divided among more institutions. On a contrary, a decrease in diversification of

a bank indicates that its exposure is divided among less counterparts. By setting different levels of

both these measures, one can obtain a number of various network structures with diverse quantity of

connections and sizes of in-network exposures.

A more formal representation is as follows. As previously, there are n institutions that make up

a set N = {1,...,n}. In the present analysis there are two sources of the interconnectedness: debt

and equity exposures. Throughout the thesis, it is assumed that both contagion channels have the

same structural features (it excludes cases when e.g. diversification of debt channel increases while

diversification of equity channel decreases). Therefore, let us assume for a notational purpose that

there is one combined source of exposure, denoted by E. That produces a following equality:

Ei,j = �i,jL
⇤
j + ⇡i,jYj , (3.11)

27As A2 = 147, L⇤
2 = 150 and the value of interbank claim of Bank 1 was equal to 30. Thus it recovers 29.4.
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where Ei,j denotes the total exposure from both sources of institution i to the institution j. Addition-

ally, it follows that Ei =
Pn

j=1(Ei,j) (denoting the total exposure of institution i to all banks in the

system) and E =
Pn

i=1(Ei) (denoting the total in-network exposure of all institutions). After Elliott,

Golub and Jackson (2014), let us formally define integration and diversification of the network.

Following the notation introduced above, an increase of integration of institutions in the system

(assuming that diversification remains unchanged) would lead to a higher exposure through at least

some of the existing connection. The system E0 is more integrated than system E if and only if:

1. E0
i,j � Ei,j for all i, j, and

2. E0
i,j > Ei,j for some i, j.

Thus, integration captures the size of institutions’ total in-network exposure.

The banking system becomes more diversified when the total in-network exposure of a given insti-

tution is divided among more counterparts. Formally, the system E0 is more diversified than system

E if and only if:

1. E0
i,j  Ei,j for all i, j such that Ei,j > 0, with some ordered pair (i, j ) for which the inequality

is strict, and

2. E0
i,j > Ei,j = 0 for some (i, j ).

Hence, diversification represents the spread of institutions’ in-network exposures.

3.5.2 Analysis of structures

For the purpose of the present analysis, various levels of both diversification and integration are used.

The base case structure of the model is the one obtained from the real data28 and it is tested against

other potential network structures obtained through a process of simulation.

Analysis of different levels of diversification requires a tractable and flexible method of generating

networks. A random graph model offers an ability to impose some structure on the distribution of

potential interbank lending and equity exposure matrices. Through a simulation process, the ran-

dom graph model generates networks with desired characteristic that allow for inferences with high

probability.29

Let us define fixed matrices G and H with all entries equal to either 0 or 1. They are referred

to as network matrices of unweighted, directed graphs. Matrices G and H represent the network of

interbank lending and equity exposures respectively. When institution i has a claim on institution j ’s

debt, then Gi,j = 1. Similarly, Hi,j = 1 means that institution i owns some shares of institution j. To

obtain the exposure matrices, it is necessary to determine the amount of the exposure for which each
28The real data, original network is complete in terms of debt exposures and close to complete in terms of equity

exposures, where complete network refers to the structure defined in Allen, Gale (2000). The real data network is
further described in section 4.

29See Elliott, Golub, Jackson (2014)
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direct link accounts for. Institution i is exposed to a portion of institution j ’s liabilities equal to:

�i,j = (
EDi ⇤Gi,j ⇤ SAjPn

j=1(Gi,j ⇤ SAj)
)/Lj , (3.12)

where EDi denotes the total exposure of institution i to liabilities of all other institutions in the system,

Gi,j is a network matrix representing interbank lending network as defined earlier, SAj indicates the

total assets of institution j in Sweden and Lj is the total value of institution j ’s liabilities. Therefore,

the exposure of institution i is divided among ddi =
Pn

j=1 Gi,j (where ddi is the degree of connectivity

of institution i in terms of debt exposures) other institutions to which i is connected proportionally

to the size of each institution’s assets in Sweden.30

The same procedure applies to the equity exposures. Institution i is exposed to a portion of

institution j ’s equity equal to:

⇡i,j = (
EEi ⇤Hi,j ⇤ SAjPn

j=1(Hi,j ⇤ SAj)
)/Yj , (3.13)

where EEi denotes the total exposure to equity of institution i divided among dei =
Pn

j=1 Hi,j

institutions (proportionally to the size of each institution’s assets in Sweden), Hi,j is a network matrix

describing the network of equity exposures and Yj is the total net value of institution j.

Hence, in order to set different levels of diversification it is necessary to change the degrees of

connectivity of institution i (ddi and dei), where a higher degree is characteristic for more connected

networks. Testing various sizes of integration in the system requires some alterations of the total

exposures of institution i (EDi and EEi), where an increase in values of those measures increases the

integration of institution i. By adjusting those four variables, it is possible to obtain a broad number

of different structures of the network and compare their performance (in terms of defaults, total assets

and total losses) when shocks are applied.

3.5.3 Disconnected institutions

In the framework described in the previous section there is an important issue that arises in certain

situations. When an institution has no direct links to any other institution in the system its exposure

must be channeled differently.

A good way of doing that is fixing values of a given exposure to zero and increasing the value of

exogenous assets by the respective amount (one could treat it as cashing shares or bonds held and

"reinvesting" them,31 ultimately turning exposure value into additional exogenous assets). In this way,
30In Elliott, Golub and Jackson (2014) authors assumed that exposure are divided evenly among all organisations,

here I allow for more heterogeneity among exposure values.
31Intuitively, if an institution decides to cancel its investment in e.g. bonds of other banks in the system, it will likely
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it is possible to "switch off" a channel of contagion without meddling with the aggregate values on the

balance sheet. Considering that a magnitude of shocks depends directly on the size of exogenous assets

(greater value of exogenous assets translates to a greater change of the net value as a consequence of

shock), disconnecting an institution leads to na increase of sensitivity of that particular institution to

the initial shock.32

To analyse institution i that has no outgoing links in the network, one could set
Pn

j=1 �i,j = 0 and
Pn

j=1 ⇡i,j = 0 (in case when ddi = dei = 0, if one of the degree measures was different from 0, a sum of

a row in the respective matrix of exposures should be different from 0). If the initial system is described

as S0 = {⇧,�, L⇤, Ax0}, cashing institution i ’s stocks and bonds of other banks produces two systems
fS0
i = {0, 0, L⇤

i ,
gAx0

i } and fS0
j = {⇧,�, L⇤

j , Ax0
j}, where gAx0

i = ⇧i ⇤Y 0+�i ⇤L⇤+Ax0
i = Y 0

i +L⇤
i , for all

j 6= i. The equilibrium values are then calculated for the new situation. The same procedure could be

applied should there be no connections in the network (the case of completely disconnected network).

In that case, the only effects of shocks would be direct.

3.6 Shocks

As it was previously mentioned there are two types of shocks considered in the present analysis, both

aimed to provide valuable insights on the consequences of different network structures on the stability

of a banking system. Firstly, let us focus on the idiosyncratic shock followed by the description of the

systemic shock.

3.6.1 Idiosyncratic shock

The first type of shock used in the analysis is an idiosyncratic shock to the system. It is modelled as

a randomised change of value of the exogenous assets of each individual institution from Ax0 to Ax.

Shocks are introduced to the system similarly to the approach used in Gourieroux, Heam and Monfort

(2012). Shocks to each institution in the system take randomly drawn values, normally distributed

around 0. Shocks are derived according to the following formula:

log(Axi) = log(Ax0
i ) + ui, i = 1, ..., n, (3.14)

where ui is a stochastic value with E(u) = 0.00, V (u) = �2,� = 0.025. The value of the standard

deviation was calibrated to ensure that there is a certain amount of defaults in the system, so that

a comparison among structures is possible. As the Swedish banks are in general resilient, standard

utilise that unused resources in some other way, e.g. grant mortgage loans to households.
32The same rule applies to the integration analysis. Once an integration is decreased, a part of the exposure amount

is turned into exogenous assets, eventually making any shock more severe (similarly, increasing integration leads to a
decrease in a magnitude of shocks).
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deviation of the shock had to be large enough for some institutions to default in at least some of the

cases.

The idiosyncratic shock assigns randomly either a loss or a profit to each institution in the system.

Hence, as a results of the shock the value of exogenous assets of a given bank may either increase or

decrease with equal probabilities. Any potential losses and gains can be interpret as effects of some

underlying characteristics of each institution.33

The idiosyncratic shock as described here bears some resemblance to the shocks introduced in Gai

and Kapadia (2010) and Elliott, Golub and Jackson (2014). Idiosyncratic shock can also be seen as a

variation of a small shock regime used in Acemoglu, Ozdaglar and Tahbaz-Salehi (2015).

Based on the network model used in the present research one may anticipate that more diversified

banking system lowers the probability of defaults, as any potential losses to a given institution are

divided among higher number of counterparts. Hence, in a more connected network, even in case of a

single default, any further cascades of bankruptcies and joint defaults should be rare. The total losses

resulting from the occurrence of a negative shock are expected to be smaller in a network with more

links compared to a less diversified system.

3.6.2 Systemic shock

The second type of shock considered is a systemic shock. It has a system wide negative impact on the

value of institutions’ exogenous assets components. It can be perceived as a financial crisis that causes

losses of all banks in the system. One example of such situation could be an outbreak of a crisis on the

housing market, leading to severe losses on mortgage loans. The magnitude of losses would depend on

the size of individual banks’ exposures to that specific type of loans as well as on institution specific

characteristics (such as required collateral, risk aversion and etc.).

The systemic shock is introduced in the model in the same way as the idiosyncratic shock described

above, however, the values are normally distributed around a negative value instead of 0. Both the

mean and the standard deviation of shocks are calibrated based on historic data. Figure 1 shows a

percentage of non-performing loans to gross loans for Sweden between 1998 and 2014, and standard

deviation from that time series was used for the calibration of volatility of the systemic shock.34 The

mean for the systemic shock was chosen based on the information obtained from Englund (2015),

where the author estimated that in the peak of Swedish banking crisis credit losses were reaching up

to 7.5% of total loans. Therefore, setting a mean value of losses due to a shock to approximately 4%

seems plausible, considering that we discuss a case of an adverse scenario. The shock causes a decrease
33E.g. riskiness of a business model.
34Although it is not a perfect proxy for the deviation of potential shocks, it gives some realistic approximation of a

variation in loan losses, which constitute a substantial part of exogenous assets component for the Swedish banks.
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Figure 1: Bank non-performing loans to gross loans in Sweden.
Source: The Federal Reserve Bank of St. Louis.

of the value of exogenous assets component according to the following formula:

log(Axi) = log(Ax0
i ) + ui, i = 1, ..., n, (3.15)

where ui is a stochastic value with E(u) = �0.04, V (u) = �2,� = 0.0062. This type of shock can be

compared to the one introduced in Gauthier, Lehar and Souissi (2012)35 as well as to a large shock

regime in Acemoglu, Ozdaglar and Tahbaz-Salehi (2015).

Intuitively, as all institutions are subject to certain losses under systemic shock scenario the more

connections are established in the network, the less resilient should be the banking system. Many fun-

damental defaults may occur in the system and a large number of links can cause a further propagation

of losses. It is likely that joint defaults take place much more frequently than under the idiosyncratic

shock. Lastly, as the number of defaults in the system goes up, the total loss in terms of the aggregate

net value of all institutions in the network would be expected to be significantly larger than under the

other shock.
35Though in their paper authors obtained credit losses through a very detailed modelling procedure, whereas in the

present research the focus is on the propagation mechanisms rather than on modelling of shocks.
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3.7 Simulation

Once the framework for the network analysis is established, it is time to describe the simulation

procedure used to obtain the results on the stability of the Swedish banking system under different

network structures.

To find a solution to the system (3.3), a variant of the fictitious default algorithm first described

in Eisenberg and Noe (2001) is used. After the introduction of a shock into the system, institutions’

net values are computed. If a significant alteration of the net values is reported, the algorithm starts

another iteration and the effects of changes in the net values and of any potential defaults on liabilities

affect the system. The algorithm iterates until there are no new defaults reported and the difference

between net value of each institution between two consecutive iterations is negligible.

This simulation is conducted for both types of shocks analysed in the present research. Shocks are

randomised and there are 2500 sets drawn for each shock scenario according to equations (3.14) and

(3.15).

In order to obtain different levels of diversification of the network structure, the random graph model

is used. In the variant implemented in the present thesis,36 a network is generated by connecting nodes

(in this case nodes stand for institutions) randomly according to a prespecified rule. The mechanism

generating network matrices G and H is described by function G(n,p), where n denotes number

of nodes and p is an independent probability of establishing each connection. By adjusting values

of the probability of generating a connection between two nodes, one can achieve a desired level of

diversification of the network. For a given level of the probability, the average directed degree of

connectivity is the expected number of outgoing links from each institution, denoted by d. In the

course of the simulation, probability p is set to obtain values of average directed degree of connectivity

ranging from 0 (disconnected network) to 4 (complete network), according to the following rules: d/(n-

1) for matrix G and d/n for matrix H.37 For each of the levels, there are 2500 various structures drawn

that satisfy these average directed degree of connectivity.38

Finally, to bring the integration analysis to the picture all the previously drawn structures are

considered using different sizes of total exposures of institutions in the system. The original sizes of

integration is the one obtained from the data (EDi and EEi) and to test different levels of integration,

exposure variables are multiplied by the following set of factors: {0.5, 0.8, 0.9, 1, 1.1, 1.2, 1.5, 2, 2.5}.

The fictitious default algorithm computes the resulting default probabilities as well as the total net
36One of the alternatives of the model described in Erdös and Rényi (1959) and Erdös and Rényi (1960).
37Different rules apply due to the fact that in matrix G self exposures are not permitted, while in matrix H it is

allowed for an institution to keep its own shares. Therefore, there is a different quantity of possible links to be generated
for both matrices and hence they require different rules.

38Random draw of large number of structures that meet the required degree distribution enables interferences based
on the results of the simulation.
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value and total losses for each scenario described above.

4 Data

The analysis of the banking sector requires a large portion of data, typically difficult to gather. A good

source of data regarding banks’ balance sheets are regularly filled financial statements, which provide

useful information on financial institutions’ activities.

For the purpose of the present research the public financial statements of the biggest banks in

Sweden were analysed to allow for a reconstruction of the simplified balance sheets of these institu-

tions. The gathered data consists of aggregate values for different types of exposures within Sweden.

Information on maturities of banks’ liabilities were omitted as that is beyond the scope of the present

analysis.

As the Swedish banking sector is very concentrated with four major banks accounting for around

85% of total assets,39 the focus of the analysis is only on the biggest institutions: SEB, Swedbank,

Nordea and Handelsbanken.40 The data were gathered for the end of 2016 from the annual financial

statements published by each of the four banks.

4.1 Exposure matrices

The information gathered from banks’ financial statements was used to construct exposure matrices

� and ⇧ essential to the model. These two matrices describe the original structure of the Swedish

banking system. The original structure is being used as a benchmark in the analysis of the stability

of different network architectures.

4.1.1 Equity cross-holding exposure matrix

Exposure matrix ⇧ was obtained directly from the financial statement (as the largest shareholders of

a given bank are named).41 Each institution can have links to every other bank as well as to itself

(an institution can hold its own shares). The equity cross-holding exposure matrix obtained explicitly
39See Sveriges Riksbank (2017).
40It is assumed that there are only four banks in Sweden and they account for 100% of the total assets in Sweden.

Other institutions are omitted due to lower significance.
41Only major links were considered as information on the financial statement typically includes only the biggest

shareholders. Therefore, the size of exposures is likely to be understated.
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from the data is following:

⇧ =

2

6666664

0.0080 0.0100 0.0000 0.0000

0.0110 0.0290 0.0190 0.0062

0.0240 0.0420 0.0630 0.0316

0.0110 0.0100 0.0000 0.0134

3

7777775
,

where each entry informs about a fraction of an institution’s equity (or net value) held by others.

4.1.2 Interbank lending exposure matrix

It is not as straightforward to come up with exposure matrix �. In this case, there are no precise data

publicly available. In financial statements one can only find aggregated data for each bank’s exposures

and based on that generate desired matrix of exposures.

Commonly used method of establishing unknown interbank exposures are information criterion

methods such as entropy maximisation algorithm, described in Blien, Graef (1998).42 Another ap-

proach to obtain the exposure matrices is to employ a mechanism that assigns values to each link in

the network according to a prespecified rule. In Gauthier, Lehar and Souissi (2012) it was showed

that assigning interbank claims according to the size of total assets of each bank gives similar results

to the entropy maximisation algorithm. Hence, to simplify the simulation process a prespecified rule

is applied in this thesis. The mechanism implemented in the present research assigns values to each

link in the network according to the respective sizes of the assets in Sweden of each interconnected

institution.

Another question to be resolved is the structure of the original interbank lending exposure matrix.

As it was pointed out, there are no precise data regarding amount of exposure as well as counterparts

involved. In numerous reports43 it is stated that the main vulnerabilities of the Swedish banking

system are its high concentration and interconnectedness. Based on that knowledge, an assumption is

made that each bank is exposed (have some debt claims such as bonds, securities or loans granted) to

every other institution in the network.44

42Method used for example in Gourieroux, Heam and Monfort (2012) and Gauthier, Lehar and Souissi (2012).
43See e.g. Sveriges Riksbank (2017), International Monetary Fund (2016), European Commission (2016), Finansin-

spektionen (2017).
44The same assumption was made in Gourieroux, Heam and Monfort (2012).
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Considering these assumptions, the following interbank lending exposure matrix, G, is obtained:

� =

2

6666664

0.0000 0.0149 0.0151 0.0109

0.0033 0.0000 0.0100 0.0072

0.0012 0.0037 0.0000 0.0027

0.0020 0.0059 0.0060 0.0000

3

7777775
,

where each entry refers to a portion of banks’ total liabilities that other institutions have claims on.

The values on the main diagonal show the size of the self-exposure. As the data were gathered for the

consolidated banking groups, there is no self-lending available.

5 Results

As the network model and the framework for the structural analysis are set and the data required

for the simulation are described, it is time to move on to the results of the numerical simulation.

The aim of the simulation is to increase the understanding regarding the actual interactions between

structural factors and to determine their influence on the stability of individual banks and of the

system as a whole. The outcomes of the simulation show the impact of idiosyncratic and systemic

shocks on the banking network across a number of generated structures. The results are given in terms

of probabilities of default of institutions in the system (as defined previously) and values of variables

such as the net values and the actual liabilities of banks in the network. However, as the results of the

numerical simulation depend heavily on its calibration, it is important to focus on the tendencies and

interactions obtained from the simulation, rather than resulting values in absolute terms.

At first, the results of the simulation after the introduction of the idiosyncratic shock are presented,

followed by the description of responses of the modelled network to the systemic shock. In both cases

the original network structure obtained from the data (as described in section 4) is tested against a

version without any connections, followed by an in-depth structural analysis of the performance of

networks with various integration and diversification levels.

5.1 Idiosyncratic shock

The case of an idiosyncratic shock is based on the example analysed in Gourieroux, Heam and Monfort

(2012), where random institution specific shocks with a mean equal to 0 and a given standard deviation

were applied to the network model. Tested scenarios may provide some insights regarding the potential

advantages of a diversified network structure due to a certain level of positive feedback effect from other

institutions (through the net value exposure channel) and diversification of losses among banks in the
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financial system.

5.1.1 Original and disconnected networks

The first step on a way to understand the implications of different network structures on the overall

stability of the banking system is to pin down the exact consequences of the original network structure45

compared to the case of a disconnected network, where there are no links among institutions.

Table 2 contains probabilities of default (from this moment on referred to as PD) of institutions

in the system, subject to idiosyncratic shock. PD values where obtained by dividing number of

occurrences of defaults across all the simulated shock scenarios. The outcomes were computed for

both the original and the disconnected networks and the resulting total PD were further divided based

on their origins (fundamental or contagious46).

Institution Original Disconnected Difference
Names network network in total PD

Fund. Cont. Tot. Fund. Cont. Tot.
Nordea 1.12 0.08 1.20 1.32 - 1.32 -0.12 pp
SEB 1.52 0.24 1.76 1.72 - 1.72 0.04 pp

Swedbank 0.40 0.44 0.84 0.52 - 0.52 0.32 pp
Handelsbanken 1.40 0.04 1.44 1.48 - 1.48 -0.04 pp

Average 1.11 0.20 1.31 1.26 - 1.26 0.05 pp

Table 2: PD of banks in simulation, divided into fundamental, contagion and total PD. PD showed as
percentages, difference in PD in percentage points.

As it can be seen, for Nordea and Handelsbanken the obtained PD are lower for the original network

compared to the disconnected case, whereas other institutions were defaulting more frequently under

the original network. On average a default of an institution is more likely to occur in the original

network rather than in a case when banks are disconnected.

Decreased PD for two banks in the original case compared to the disconnected network is likely to be

a result of different severities of fundamental shocks between these two networks. Due to the underlying

assumption regarding the disconnected institutions, fundamental defaults take place more frequently

in the disconnected network case.47 As contagious defaults are rare for Nordea and Handelsbanken,

their overall PD are lower for the original network compared to the disconnected one.

In the original network under the idiosyncratic shock there are no occurrences of joint defaults. It

indicates that although the PD through the contagion channels are higher than 0, bankruptcies usually
45Network structure introduced in section 4.1.
46As defined in section 3.3.
47In section 3.6.3 it was assumed, that whenever an institution has no outgoing connections of some sort, it reinvest a

respective "unused" amount and increases its exogenous assets Ax that are subject to shock. Hence, once an institution
becomes disconnected its exposure towards other institutions is equal to zero, however, its direct exposure to a shock
increases.
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occur for a single bank at a time, without tipping other institutions over. This result is consistent with

the intuition explained in section 3.6.1. As the original network is almost fully connected, a single case

of a default due to the idiosyncratic shock does not cause an outburst of a wider banking crisis and

losses are contained.

Institution Original Disconnected Difference
Names network network in values

NV LV NV LV NV LV
Nordea 313.56 5570.82 313.63 5570.78 -0.07 0.05
SEB 141.61 2479.28 141.54 2479.28 0.07 -0.01

Swedbank 129.50 2024.38 129.27 2024.41 0.23 -0.03
Handelsbanken 138.92 2490.90 138.88 2490.89 0.03 0.01

Total 723.59 12565.38 723.33 12565.37 0.26 0.01

Table 3: Average net values (NV) and liability values (LV) of institutions across all shocks and their
differences between networks, in billions of SEK.

Finally, by examining net and liability values of institutions presented in table 3, one can learn more

about the influence of shocks on banks under different network structures. Although the differences in

average amounts of net and liability values between networks are not substantial, it is worth mentioning

that despite higher total PD for the original network, net values obtained from the simulation on that

structure are greater compared to the disconnected network. It indicates that despite being more

prone to defaults, the average loss for the original system was smaller compared to the disconnected

network. It may be a result of a combination of positive in-network feedback through the net value

exposure channel,48 greater direct effect of shocks on the disconnected network (due to its additional

portion of exposure to the initial shock compared to a diversified system) and diversification of losses

inflicted by negative shocks.

5.1.2 Structural analysis

Once the differences between the original and the disconnected networks are highlighted, it is time

to bring up full structural analysis. As already explained in the simulation section, different network

structures were obtained through a process of solving the model for a range of values for diversification

and integration. The results are as follows.

Figure 2 shows how the average PD of institutions in the system differs for various levels of inte-

gration and diversification. For the disconnected system (diversification equal to 0) the average PD

is equal to 1.26%. Once some connections start to form (diversification greater than 0), the average

PD of a bank in the network goes up. After exceeding certain threshold level of diversification, the
48That effect may occur when some institutions are profiting as a result of a positive shock and the increase of their

net value positively affects other banks connected to them through the equity exposure channel.
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average PD starts to decline to 1.24%.

Figure 2: Average PD (in percentages) in the system for different values of integration (0.8 to 1.2) and
diversification (0 to 4) of the network.

The results of the simulation showed that when the number of outgoing links from each institution

is relatively small, the number of defaults is significantly higher compared to a well-diversified network.

It is due to the fact, that for the middle levels of diversification, the network is typically connected,49

yet single exposures are still large enough to affect connected banks.

When the level of diversification surpasses the critical point, the average PD of banks in the system

decreases and for the fully diversified network the PD is lower than in the disconnected network case.

By examining plots of fundamental PD and contagion PD, one can get more understanding of the

underlying factors that influence the distribution of PD in figure 2.50 These two figures show that the

contagious risk from well-diversified exposures is lesser than the risk arising from additional portion of

exposure to the direct shock in case of a disconnected network.

In terms of the impact of different levels of integration on the average PD in the system, results

indicate that an increase in integration (up to 120% of the original value of exposure) leads to a higher

value of PD. Figure 3 shows the influence of integration once some more extreme values are considered.
49There is a path from any node to any other. By Theorem 4.1 in Jackson (2010), if the probability of establishing

an individual connection, p, is larger than log(n)/n, then the probability that the network is connected tends to 1. In
the system considered in this thesis, the threshold for the connectedness is exceeded for the average directed degree of

connectivity equal to 0.6 and 0.8 for matrices G and H, respectively.
50See Figure 5 and Figure 6 in the Appendix, respectively.
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Figure 3: Average PD (in percentages) in the system for different values of integration (0.5 to 2.5) and
diversification (0 to 4) of the network.

As it can be seen, in the present setting the impact of higher levels of integration on the resilience is

clearly negative. Testing the influence of integration for its value greater than 2.5 (corresponding to

250% of the actual exposure) would be unrealistic, suggesting strictly negative implications of greater

exposures on the resilience of the banking system.

Apart from investigating the implications of different levels of diversification and integration on

the average values of PD in the system, it is also useful to examine their influence on each bank

individually. Table 4 displays values of PD for individual banks for a few selected levels of integration

and diversification. It turns out that Swedbank is the most sensitive to changes in integration levels,

though its PD does not react much to shifts in diversification. On the other side of the spectrum

is Nordea, which reacts to different setting of diversification the most (for integration equal to 1.2,

change between diversification levels 1 and 3 is equal to 0.08 pp), whereas it is not severely affected

by integration levels.

When it comes to the assessment of the systemic importance of institutions in the system, it is

useful to analyse joint defaults of banks in the network. Table 5 shows PD of joint default of banks in

the system. Results show that in this particular case, Handelsbanken and SEB appear to be the most

influential institutions in the system as in some scenarios their defaults lead to further bankruptcies

in the network. In this example, default of SEB caused Swedbank to default due to a contagion
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Institution Integration = 0.8 Integration = 1 Integration = 1.2
Names Diversification = Diversification = Diversification =

1 2 3 1 2 3 1 2 3
Nordea 1.22 1.19 1.18 1.20 1.16 1.15 1.20 1.14 1.12
SEB 1.74 1.72 1.70 1.74 1.73 1.71 1.74 1.73 1.71

Swedbank 0.67 0.69 0.69 0.75 0.75 0.74 0.83 0.84 0.80
Handelsbanken 1.46 1.44 1.44 1.46 1.43 1.42 1.45 1.42 1.42

Average 1.27 1.26 1.25 1.29 1.27 1.25 1.31 1.28 1.26

Table 4: PD of banks in simulation by integration and diversification levels. PD showed as percentages.

effect in more than 1% of scenarios. The occurrences of joint defaults are more frequent for the

network characteristics presented in table 5 compared to the original (more diversified) system, which

is consistent with the expectations that under the idiosyncratic shock scenario, higher connectivity

causes a decline in the number of contagious defaults.

Nordea SEB Swedbank Handelsbanken
Nordea - 0.00 0.00 0.00
SEB 0.00 - 1.08 0.43

Swedbank 0.00 0.00 - 0.00
Handelsbanken 0.40 0.30 0.00 -

Table 5: PD of joint default of banks in simulation for Integration = 1 and Diversification = 1. PD
showed as percentages.

As it was stated before, low levels of diversification cause an increase of PD of institutions in the

system. However, when it comes to the total net value of banks in the network, even low levels of

diversification guarantee lower overall losses in the system compared to the disconnected case. As

the diversification level increases, the total losses of all institutions in the simulation are decreasing.

Though the difference between the complete and the disconnected networks amounts to approximately

SEK 300 million. Hence, the effect of diversification of losses in the system does not seem to be

substantial. In terms of integration, it does not significantly affect the amount of the total losses in

the system. Figure 7 presents the distribution of the total net value of institutions in the network as

a function of different diversification and integration levels.51

Similar finding applies to total liability values. As the diversification level increases, the total actual

liabilities of institutions in the system are increasing.52

51See Figure 7 in Appendix.
52See Figure 8 in Appendix.
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5.2 Systemic shock

As the response of the modelled network to the idiosyncratic shock is already analysed, let us move

to the case of the systemic shock. Its aim is to test the resilience of the original network and various

combinations of the structure to more adverse scenarios, such as e.g. mortgage loans crisis. The

ultimate goal of the systemic shock is to discover how different network structures influence the stability

of the system in the face of more severe losses.

5.2.1 Original and disconnected networks

Similarly to the analysis of the effects of idiosyncratic shock, let us start by comparing the results of

the model for the original and the disconnected networks. This comparison provides some first insights

into the performance of the basic network structures under the systemic shock scenario.

In table 6 one can find PD for individual banks in the network for both the original and the discon-

nected network cases. Similarly to the analysis of the idiosyncratic shock, probabilities of fundamental

and contagious defaults were distinguished.

Institution Original Disconnected Difference
Names network network in total PD

Fund. Cont. Tot. Fund. Cont. Tot.
Nordea 0.68 0.24 0.92 1.04 - 1.04 -0.12 pp
SEB 0.56 1.68 2.24 1.12 - 1.12 1.12 pp

Swedbank 0.00 2.32 2.32 0.00 - 0.00 2.32 pp
Handelsbanken 0.76 1.04 1.80 1.16 - 1.16 0.64 pp

Average 0.50 1.32 1.82 0.83 - 0.83 0.99 pp

Table 6: PD of banks in simulation, divided into fundamental, contagion and total PDs. PD showed
as percentages, difference in PD in percentage points.

For all the banks except Nordea the disconnected network case guarantees lower levels of PD.

In most of the cases, the difference between structures is larger than under the idiosyncratic shock

scenario. One institution that clearly stands out is Swedbank, which does not default fundamentally

in the simulation, however its total PD of default is the highest of all bank. These evidences indicate

that when all institutions are subject to a negative shock, higher connectivity of the network does not

increase the resilience but leads to a greater fragility of the system. Another interesting feature of the

obtained results is that for the systemic shock the main component of the total PD are contagious

defaults (except for Nordea), whereas in the case of idiosyncratic shock, the fundamental component

was a dominating one for a majority of institutions.

In terms of the systemic importance of institutions in the network, the most significant banks are

Nordea and SEB, while Swedbank is influenced the most by their potential defaults (as it defaults in
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4.35% and 3.57% of cases when Nordea and SEB go bankrupt, respectively). There were no occurrences

Nordea SEB Swedbank Handelsbanken
Nordea - 0.00 4.35 4.35
SEB 0.00 - 3.57 1.79

Swedbank 0.00 3.45 - 0.00
Handelsbanken 0.00 2.22 0.00 -

Table 7: PD of joint default of banks in simulation for the original network. PD showed as percentages.

of a joint default of SEB and Nordea, however, SEB’s PD is affected by defaults of Swedbank and

Handelsbanken. Finally, the most resilient bank turned out to be Nordea, which was unaffected by

other banks’ defaults. This last finding goes in line with the results presented in table 6, which indicated

that Nordea was the least affected by the contagion channels. Not surprisingly, under the systemic

shock joint defaults are by far more frequent compared to the idiosyncratic case as connectivity only

induces further spread of losses.

When it comes to the average net values of institutions after the introduction of systemic shock,

the obtained results are much lower than in the case of the idiosyncratic shock (which is line with

higher PD of banks under the systemic shock). The difference between the combined net values of

all institutions across the two networks tested is much higher under the systemic shock scenario. As

expected, the total losses in the system are larger when contagion channels are considered compared

to the case with fundamental effect alone. Surprisingly, despite bigger losses in terms of net value, the

total value of liabilities is higher for the systemic shock scenario compared to the idiosyncratic case.

It indicates that although there are more defaults in the system altogether, the severity of shocks on

banks is not as extreme as in the case of the idiosyncratic shock (likely to be due to a higher standard

deviation of the idiosyncratic shock).

Institution Original Disconnected Difference
Names network network in values

NV LV NV LV NV LV
Nordea 80.12 5571.37 79.21 5571.35 0.92 0.02
SEB 32.52 2479.53 38.06 2479.62 -5.53 -0.09

Swedbank 27.54 2024.40 45.37 2024.50 -17.84 -0.10
Handelsbanken 30.52 2491.10 33.77 2491.14 -3.26 -0.04

Total 170.70 12566.4 196.41 12566.61 -25.71 -0.22

Table 8: Average Net values (NV) and Liability values (LV) of institutions across all shocks and their
differences between networks, in billions of SEK.
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5.2.2 Structural analysis

The next step is to compute the results for a range of diversification and integration levels and to

examine how different network structures influence values of the measures used.

Figure 4: PD (in percentages) for different values of integration (0.8 to 1.2) and diversification (0 to
4) of the network under systemic shock scenario.

Figure 4 shows the resulting average PD for a number of combinations of diversification and in-

tegration. The shape of a plot is much different comparing to the case of idiosyncratic shock. As it

can be noticed, the more connections are established in the system due to increasing average directed

degree of connectivity, the higher is the respective PD level. It suggests that once all banks in the

network are affected by the shock, the benefits of diversification are no longer present. Figure 9 and

figure 10 show the evolution of fundamental and contagious defaults.53 Although the fundamental PD

is once again decreasing as the diversification increases, the surge in the risk of contagion due to the

higher connectedness is by far larger in magnitude.

In a moderate range, different levels of integration are having similar impact on PD as in the

idiosyncratic case. The higher level of integration is applied, the more defaults are observed in the

system. To complete the analysis of the implications of different structures on the average value of PD

in the system, let us inspect the results for slightly more extreme levels of integration (just as it was

done for the idiosyncratic shock). Figure 11 shows the impact of setting integration to values ranging
53See Figure 9 and Figure 10 in Appendix.
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from 0.5 to 2.5.54 Even for extreme cases when the total exposure of institutions in the system is

equal to 250% of the original value, integration has nothing but negative effect on the stability. For

the highest level of integration investigated, the average PD in the network goes up to 20%.

The average values of PD for the whole system showed in figure 4 and figure 11 indicate that the

overall influence of a growing diversification and integration on the stability of the network is negative.

Let us now take a look at the values of PD for individual institutions in some selected cases. Table 9

shows individual PD for banks in the system.

The first thing that stands out in table 9 are the values of PD for Nordea. As for all other banks

an increase in integration has a negative effect on their resilience to shocks, Nordea’s PD declines.

Additionally, as it was previously inferred, a growing number of links in the system was causing the

PD in the network to increase. However, in case of Nordea, growing diversification has the opposite

effect. Those two evidences suggest, that Nordea is more susceptible to direct shock (which is more

severe for lower levels of integration and diversification) compared to the contagion effect, whereas all

other institutions are more prone to default due to the spread of losses.

Institution Integration = 0.8 Integration = 1 Integration = 1.2
Names Diversification = Diversification = Diversification =

1 2 3 1 2 3 1 2 3
Nordea 0.97 0.90 0.89 0.96 0.87 0.87 0.94 0.83 0.81
SEB 1.70 1.83 1.89 2.01 2.17 2.22 2.37 2.56 2.62

Swedbank 0.69 0.85 0.85 1.60 1.99 2.08 3.32 4.10 4.15
Handelsbanken 1.50 1.61 1.61 1.67 1.81 1.84 1.89 2.07 2.11

Average 1.21 1.29 1.31 1.56 1.71 1.75 2.13 2.39 2.42

Table 9: PD of banks in simulation by integration and diversification levels. PD showed as percentages.

As expected, joint defaults are more frequent under the systemic shock compared to the idiosyn-

cratic case. As all institutions are subject to a certain direct loss, there are more cases of defaults in

total and consequently banks are more prone to contagious defaults. Based on the example presented

in table 10, Nordea and Handelsbanken are by far the most systemically important institutions in the

network. However, these results hold for low levels of diversification as the joint defaults showed for

the original (more diversified) network55 indicate that SEB has larger influence on the stability of the

system compared to Handelsbanken (Nordea appears to be systemically important in both cases).

As for the total net value in the system, the results are as expected.56 For low levels of diversification

the PD is lower and the total net value is higher compared to more diversified networks. With an

increase in PD, institutions are defaulting more frequently and hence the total loss in net value in more
54See Figure 11 in Appendix.
55Presented in table 7.
56See Figure 12 in Appendix.
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Nordea SEB Swedbank Handelsbanken
Nordea - 0.66 3.04 3.04
SEB 0.00 - 1.45 0.69

Swedbank 0.00 1.18 - 0.00
Handelsbanken 0.21 1.83 2.03 -

Table 10: PD of joint default of banks in simulation for Integration = 1 and Diversification = 1. PD
showed as percentages.

connected networks is greater. In terms of the total liability value, there is no significant difference

among different structures.57

5.3 Sensitivity of results

The results of the numerical simulations described above help to understand how different network

structures and levels of integration influence the overall resilience of the banking system in the face of

idiosyncratic and systemic shocks. As it was previously stated, the patterns and interactions revealed

by the simulations are of interest in the present research (not the resulting values in the absolute

terms). However, in order to complete the analysis of the impact of different shocks on various network

structures it is also important to determine whether the obtained trends and relationships were just

a result of a specific calibration or rather hold under alternative shock specifications. Additionally, it

is informative to establish the effect of changes in the severity of shocks on the overall stability of the

banking system.

To verify whether changes in calibration of shocks cause a drastic shift in the obtained patterns, the

simulations of network’s responses to idiosyncratic and systemic shocks were repeated for new severity

levels of shocks. Figure 14 and figure 15 show the resulting values of the average PD in network obtained

for idiosyncratic shock with a standard deviations equal to 0.02 and 0.03 respectively.58 Although the

values of PD are much different, the overall shape of graphs indicates that the general conclusions

regarding the influence of network structures on the stability hold also for other calibrations of the

idiosyncratic shock. By examining figure 16 and figure 17 we can also conclude that the general pattern

holds as well for the various magnitudes of the systemic shocks.59 The scope of defaults is different

compared to the original shock values, however, the relationship between network structure and changes

in PD remains similar. These results indicate that the robustness of the results is satisfactory as the

main findings of the present research hold under different calibrations of shock values.

When it comes to assessing the impact of changes in the severity of shocks on the overall PD of

banks in the system, it is not that straightforward. Intuitively, as the severity of shocks increases,
57See Figure 13 in Appendix.
58See Figure 14 and Figure 15 in Appendix.
59See Figure 16 and Figure 17 in Appendix.
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the total number of defaults goes up. That simple intuition is confirmed by the results of simulations

presented in figure 14, figure 15, figure 16 and figure 17. However, the relationship between the

magnitude of shock and the number of bankruptcies is not linear in nature due to the existing interbank

connections. Furthermore, mild shocks are not causing too much fuss as banks have some ability to

absorb moderate losses. However, once the severity of shocks crosses a certain threshold, the number

of defaulting institutions increases rapidly. Additionally, the impact of increasing severity of shocks on

the stability of the banking system is not uniform across different types of shocks. The results obtained

from the simulations suggest that under the systemic shock scenario, any increase in the severity of

initial shocks leads to a greater rise in a number of default cases compared to the idiosyncratic shock

scenario.

The outcomes of the sensitivity analysis indicate that the general results of the simulations hold

under different specifications of shock scenarios. The results of the sensitivity analysis also confirm

that a growing severity of shocks leads to an increase in the number of defaulting banks. However, in

order to quantify this relationship and identify the threshold severity of shocks, for which their impact

on the stability surges, it is necessary to conduct some further analyses and expand the simulation

procedure.

6 Discussion

The findings of the present research suggest that under a moderate (idiosyncratic) shock regime, full

diversification of the network results in a more resilient structure, whereas for the mid-range levels

of connectivity banking system is the most susceptible to shocks. It indicates that in case of limited

losses inflicted on the financial system, full diversification of exposures mitigates the overall systemic

risk. This result is in line with Elliott, Golub and Jackson (2014), where authors referred to the mid-

range levels of diversification as network’s "sweet spot". It is also consistent with findings described

in Acemoglu, Ozdaglar and Tahbaz-Salehi (2015), where it was showed that for mild shocks, more

diversified network leads to a less fragile system, with complete network being the least prone to

contagious default. The results obtained under the idiosyncratic shock scenario support the conclusion

from Gai and Kapadia (2010) where the authors showed that the frequency of contagion is the highest

for the medium levels of connectivity and falls to virtually nothing once a certain threshold is exceeded.

However, the results obtained in the present research do not support the findings from Elliott, Golub

and Jackson (2014) regarding the implications of integration. In their paper, the authors argued that

despite having a negative influence on the resilience of the system in low to medium range, high levels

of integration lower the number of defaults in the simulation. Results of the present research indicate

that any increase in integration level inevitably leads to a higher probability of default of institutions
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in the system, as the overall exposure of a given bank to losses of other institutions expands.

Surprisingly, the total net value of institutions in the system increases as the diversification of the

network goes up. Even for the mild levels of connectivity (for which the probability of default is the

highest) aggregated losses of all banks are lower compared to the disconnected case. Furthermore, the

total net value of all institutions is the greatest for the highest level of integration. These evidences

suggest that the unexpected results for the total net value may be attributed to a combination of

the following factors: an additional portion of direct losses born by weakly diversified and integrated

networks,60 a positive feedback effect through the equity cross-holding propagation channel and a

diversification of losses among banks in the system. However, in order to determine which factor plays

the crucial role in shaping of the obtained net values it is necessary to isolate their effects.

The results obtained for the case of a stronger, systemic shock indicate that once the initial losses

in the financial system are large enough, full diversification only leads to an amplification of the

default risk. Under that shock regime, the greatest resilience of the network is achieved with the

disconnected structure (no connections among institutions). This result is in line with findings in

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) and Gai, Kapadia (2010) where authors showed that

once a large enough shock takes place, highly diversified network only facilitates further financial

contagion.

Furthermore, the results gathered from the counterfactual simulation of responses of the Swedish

banking system to shocks suggest that the modelled network exhibits a robust-yet-fragile tendency

(similarly to e.g. Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) and Gai, Kapadia (2010)). Under

the idiosyncratic shock regime a fully diversified network structure limits the probability of default of

institutions in the system, while for the systemic shock the complete network is the most vulnerable

structure. The results on the total net value in the system provide further support for the authenticity

of the robust-yet-fragile tendency. Under the systemic shock regime losses are the most significant for

the fully connected network (while under the idiosyncratic shock, the complete network guarantees the

lowest losses of the total net value) indicating that in a crisis scenario banking system serves purely as

a shock transmitter and amplifier. Finally, the results on joint defaults and differences in individual

probabilities of defaults between the original and the disconnected networks show that the systemic

risk is in fact much elevated for a full-blown systemic shock compared to the idiosyncratic case. These

outcomes confirm that the fragility of a more interconnected network increases significantly in a highly

adverse scenario.

In terms of validity of the findings, cautious is advised. Gai, Kapadia (2010) and Upper (2007)

list main issues with empirical testing of network models such as strong assumption regarding shock

propagation channels and distribution of exposures or data related problems (e.g. lack of information
60Due to their greater exposition to the initial shock arising from the assumption described in Section 3.5.3.
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on exact values of the actual interbank connections). In the present thesis, fixing the interbank

exposures required certain assumptions regarding the structure of the original network and the exposure

allocation rule. Hence, the resulting probabilities do not have direct financial or risk interpretations.

Moreover, the assumption regarding the treatment of disconnected institutions61 significantly affects

the obtained results. Although this assumption is well justified in the present model, it modifies the

direct effects of shocks depending on the network’s structure, leading to greater direct losses for the

cases of disconnected structures (the same effect is observed for networks with lower integration level).

Therefore, the results obtained in the present research could be further validated and confirmed by

testing them under different set of assumptions. However, the simulation outcomes support the findings

observed in the literature and hold under different calibrations of shocks. Hence, the general results on

the implications of network structures on the resilience of financial institutions under different shock

regimes prove to be useful in further increasing of the understanding of financial networks.

The framework used in the present research proved to be useful in capturing impacts of different

network structures on the stability of the financial system. Due to the data limitations some strong

assumption were required. The approach described in this thesis could be employed to inform policy,

however it requires obtaining more granular data on the interbank exposures. Additionally, applying an

information criterion method (such as the entropy maximisation algorithm) to obtain exposure matrices

could increase the quality of modelled exposures. Proper quantification of bilateral exposures in terms

of lending, stocks and securities would considerably enhance the numerical simulation and result in

more precise outcomes. Furthermore, in the current research different seniorities and maturities of debt

were excluded. Considering these features of the liability side of bank’s balance sheet would produce a

more realistic model of a financial system, capturing the structure of bank’s funding. Gourieroux, Heam

and Monfort (2013) describes a method of extending the network model used in the present research to

include multiple seniority levels of debt. Moreover, including additional contagion channel such as loss

propagations through changes in the market prices of assets resulting from "fire sales" (as described in

Cifuentes, Ferrucci and Shin (2005) or Greenwood, Landier and Thesmar (2015)) could be one of the

potential extensions of the shock transmitting mechanism employed in the present framework. Finally,

in order to obtain a complete framework for structural analysis of banking networks that would allow

for more concrete inferences, it is necessary to implement an appropriate credit loss model. In the

current research shock values were randomised based on the historic data, however, to improve the

quality of results it is imperative to introduce more advanced framework for the modelling of losses

(e.g. as presented in Gauthier, Lehar and Souissi (2012)).
61As described in Section 3.5.3.
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7 Conclusion

The main purpose of the present research was to determine the implications of different network

structures of the financial system on its resilience to shocks, based on the case of the Swedish banking

sector. Additionally, this study was set to test the general results on the network architecture presented

in the literature using the shock propagation mechanism described in Gourieroux, Heam and Monfort

(2012), and to show the application of the framework for structural analysis introduced in Elliott,

Golub and Jackson (2014) in a more complex model setting. The thesis established that the robust-yet-

fragile tendency of a diversified financial system described in Acemoglu, Ozdaglar and Tahbaz-Salehi

(2015) and Gai, Kapadia (2010) is exhibited in the network modelled in the present research. When

a mild shock hits the economy the complete network is the most resilient structure. However, when

the magnitude of shocks exceeds a certain threshold value, more connected systems are much more

susceptible to defaults. Under a systemic shock regime the disconnected network proved to be the

least prone to defaults as the losses do not propagate through the exposure channels. Finally, the

present study confirmed the results on the impact of diversification described in Elliott, Golub and

Jackson (2014). However, their suggestion that high levels of integration lead a decline in the number

of defaults was not demonstrated by the results obtained in the present research.62

While the majority of results described in this research are in line with the findings outlined in the

literature, further study is required to confirm these conclusions. In particular, obtaining more precise

data on the interbank claims and exposures is necessary to enhance the model and to limit the number

of assumptions needed in the present framework.

62In the range of integration levels considered in the study.
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Appendix

Figure 5: Probabilities of fundamental default (in percentages) for different values of integration (0.8
to 1.2) and diversification (0 to 4) of the network under idiosyncratic shock scenario.
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Figure 6: Probabilities of contagious default (in percentages) for different values of integration (0.8 to
1.2) and diversification (0 to 4) of the network under idiosyncratic shock scenario.

Figure 7: Total net value in the system for different values of integration (0.8 to 1.2) and diversification
(0 to 4) of the network under idiosyncratic shock scenario. Values showed in SEK billion.
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Figure 8: Total liability value in the system for different values of integration (0.8 to 1.2) and diversi-
fication (0 to 4) of the network under idiosyncratic shock scenario. Values showed in SEK billion.

Figure 9: Probabilities of fundamental default (in percentages) for different values of integration (0.8
to 1.2) and diversification (0 to 4) of the network under systemic shock scenario.
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Figure 10: Probabilities of contagious default (in percentages) for different values of integration (0.8
to 1.2) and diversification (0 to 4) of the network under systemic shock scenario.

Figure 11: PD (in percentages) for different values of integration (0.5 to 2.5) and diversification (0 to
4) of the network under systemic shock scenario.
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Figure 12: Total net value in the system for different values of integration (0.8 to 1.2) and diversification
(0 to 4) of the network under systemic shock scenario. Values showed in SEK billion.

Figure 13: Total liability value in the system for different values of integration (0.8 to 1.2) and diver-
sification (0 to 4) of the network under systemic shock scenario. Values showed in SEK billion.
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Figure 14: PD (in percentages) for different values of integration (0.8 to 1.2) and diversification (0 to
4) of the network under idiosyncratic shock scenario for E(u) = 0.00,� = 0.02.

Figure 15: PD (in percentages) for different values of integration (0.8 to 1.2) and diversification (0 to
4) of the network under idiosyncratic shock scenario for E(u) = 0.00,� = 0.03.
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Figure 16: PD (in percentages) for different values of integration (0.8 to 1.2) and diversification (0 to
4) of the network under systemic shock scenario for E(u) = �0.03,� = 0.0062.

Figure 17: PD (in percentages) for different values of integration (0.8 to 1.2) and diversification (0 to
4) of the network under systemic shock scenario for E(u) = �0.05,� = 0.0062.
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