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Abstract

This thesis studies the value of implied volatility estimates for portfolio allocation
under the modern portfolio theory (MPT) framework introduced by Markowitz and
compares the pricing performances of several common option pricing models. The
thesis consists of two parts. The first part compares the NAGARCH framework
with the bidirectional Markov switching models (B-MSM) of (Duan et al., 2002) and
develops an efficient pricing algorithm for European options under a finite-state
model. The variance-implied portfolios are then evaluated on the S&P 500, giving
further evidence for using implied volatility estimates for asset allocation. The sec-
ond part compliments the first by analyzing the value of implied volatility estimates
using practical alternatives, namely the Black-Scholes (BS) model, the ad-hoc Black-
Scholes (ABS) model and the VIX. The ABS model shows very promising results,
outperforming standard BS in form of option pricing and under MPT can create
value via volatility timing, beating a buy-and-hold strategy on the S&P 500 in some
cases and showing improvements over a VIX induced strategy. However, the sim-
ple, practical approaches fall short when compared to the models in part 1, both
in form of option pricing as well as MPT asset allocation, suggesting that there is
a considerable payoff in estimating implied volatility under these more complex
frameworks.
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Part I

The Economic Value of NAGARCH

and Markov-Switching Implied

Volatility Estimates



I.1 Introduction

Since the work of (Markowitz, 1952) and the introduction of the two-factor model

for optimal asset allocation, researchers have been driven to find the best stock re-

turn and volatility forecasts. Starting with the seminal papers of (Engle, 1982) and

(Bollerslev, 1986), generalized autoregressive conditional heteroskedasticity (GARCH)

models have long been in the focus of an increasing number of researchers for the

analysis and forecasting of volatility. The models generally benefit from the exis-

tence of efficient statistical estimation routines and allow for major stylized facts

such as volatility clustering. Many extensions of the basic GARCH model have

been put forward, with the nonlinear asymmetric GARCH model (NAGARCH) re-

cently gaining increasing popularity by offering to also capture the leverage effect.

Studies have shown, however, that GARCH models sometimes appear too smooth

and underperform during major unexpected structural changes such as financial

crises. Therefore, building on the work of (Hamilton, 1989), research into Markov

switching models (MSM) has grown, where the underlying price dynamic is mod-

elled to switch between different volatility regimes at random times, according to

a Markov process. Whilst these models thus also allow the variance to influence

returns, they originally did not allow returns to affect the variance process. (Duan

et al., 2002) has closed this gap by introducing a new class of MSM’s that contain a

bidirectional feedback mechanism between both processes, therefore matching this

property of the GARCH models. This new class of bidirectional Markov switch-

ing models (henceforth, B-MSM) is more general than the GARCH framework as
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Chapter I.1. Introduction

it allows for an additional type of shocks to affect the volatility process besides the

return innovations, hence allowing the modelling of the aforementioned structural

breaks.

Having chosen one of these models, historical return data can be used to estimate

the variance over this past period and invest into assets according to the two-factor

model. However, there is only so much that can be learned from the past and there

is no guarantee that future returns and volatilities will resemble their past. Hence,

asset allocation research has moved to forward-looking measures, most notably, the

estimation of the volatility implied in observed option prices.

The thesis contributes in several ways. It proposes an efficient estimation proce-

dure for valuing European options in the (Duan et al., 2002) framework and derives

option-implied parameter estimates for the bidirectional Markov switching model

with 11 states. Then, the thesis shows the value of implied volatility for asset alloca-

tion purposes and compares the portfolio performances based on B-MSM with the

ones achieved via the NAGARCH model.

The structure of the thesis is as follows. In chapter I.2, the thesis is further placed into

the existing literature, providing an overview over many important contributions

related to the topics being discussed. Afterwards, in chapter I.3, the frameworks

of the NAGARCH and B-MSM models are introduced under the physical and the

risk-neutral measure. Here, two special cases of B-MSM are considered, namely

the two-state case without a return feedback mechanism in the spirit of the original

MSM’s, and the limit framework as the number of states approaches infinity. The

data set used for the empirical analysis is then described in chapter I.4, including

the applied exclusion filters. Then, in chapter I.5 and chapter I.6, the estimation pro-

cedures for each model are presented and the results are discussed. The thesis ends

with chapter I.7, where the conclusions drawn from the thesis’ results are presented.
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I.2 Literature Review

Given the nature of this thesis, there are three major research fields the thesis must

be placed into: asset allocation, option valuation models and Markov switching

models.

I.2.1 Asset Allocation

Modern portfolio theory is based on the two-factor model developed by Markowitz

(Markowitz, 1952; Markowitz, 1959). In this model, asset returns are assumed to be

random and a portfolio’s return is the weighted sum of its individual asset returns,

which implies that the expected portfolio return equals a linear combination of the

expected returns of all single investments. Markowitz further proposed that the risk

of the portfolio should then analogously be expressed by the variance of the port-

folio returns. He introduced a notion of efficient portfolios, which are not strictly

dominated by any other portfolio in a mean-variance sense. (Markowitz, 1959) and

(Tobin, 1958) make the connection between the two-factor model and the expected

utility theory of (Von Neumann and Morgenstern, 1945). Tobin also proved an im-

portant result, now known as Tobin’s separation theorem, which separates the in-

vestment decision from the risk aversion of the individual investor. In this sense,

everyone invests into the same market portfolio and a risk-free asset, and only the

two proportions are determined by the individual risk aversion parameter. Hence,

the only inputs the model needs to determine the optimal allocation of capital are

4



I.2.2. Option Valuation Models

the expected value and volatility of the returns of the market portfolio. Given these

parameters, the model pins down the optimal portfolio weights depending on the

investor’s risk aversion.

Since the volatility parameter of the underlying assets is generally not known, one

could use the historical variation of asset returns. However, the portfolio alloca-

tion problem is concerned with future returns and there is no reason to assume that

the past will exactly repeat itself. Hence, an arguably more fitting approach is to

use the forward-looking nature of implied volatilities contained in option prices.

Since options are also concerned with future returns of the underlying and their

market prices already imply a certain volatility of the underlying asset, it seems

natural to use this volatility estimate also for these asset allocation purposes. The

economic value of option-implied estimates for optimal asset allocations has been

shown in similar settings by (Kostakis et al., 2011), who showed that option-implied

return distributions can improve portfolio returns compared with historical-based

measures, and (Busch et al., 2011), who successfully tested the predictive power of

option-implied forecasts versus realized volatility forecasts.

I.2.2 Option Valuation Models

Option valuation models became extensively popular in recent years after the re-

search field first blossomed with the invention of the Black-Scholes model (BS) (Black

and Scholes, 1973; Merton, 1973). BS was so ground breaking because it offered a

simple, closed-form solution to price European options with the only unobservable

parameter to be estimated being the volatility of the underlying asset. Hence, the

price of an European option under BS boils down to estimating volatility, with the

option price then being given by a simple monotone increasing function. Besides the

extreme simplicity, this also shows the major flaw of the model as it assumes that
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Chapter I.2. Literature Review

the volatility of the underlying asset does not depend on market movements, an

assumption that has been vastly rejected by empirical studies. In fact, by inverting

said mapping and retrieving the implied volatilities from observed market prices

of European option contracts, researchers have found what is known as volatility

smiles and smirks, i.e. non-flat implied volatility surfaces across different money-

ness values of option contracts, which is in direct contrast to what is assumed in BS.

Given this insufficiency of BS, substantial empirical research has been conducted

into alternative option pricing models. These models are usually trying to develop

plausible specifications of the processes of the underlying financial variables. By

doing so, these models usually imply an associated risk-neutral probability mea-

sure that is then used to find the price of a derivative as the discounted value of its

expected future payoffs. Besides many other approaches1, the bulk of modern asset

pricing models can reasonably be classified into stochastic volatility models (SVMs)

and discrete time volatility models (DTVMs).

One of the main ideas of SVMs compared to time variant or local volatility models

was to describe volatility with a second, stochastic process (next to the already be-

ing modelled process for the underlying asset). This finally allowed to incorporate

empirical observations such as volatility clustering2 and the leverage effect3. Another

advantage of SVMs is that they typically generate return distributions with fatter

left tails and higher peaks than the otherwise commonly assumed normal distribu-

tion. Furthermore, (Renault and Touzi, 1996) have shown that a stochastic volatility

1Noteworthy mentions include the implied local volatility models advocated by (Dupire, 1994),
jump diffusion models after (Merton, 1976) and lattice approach models, which build on the (Cox
et al., 1979) binomial tree model.

2Volatility clustering stands for the observation that large absolute changes are more likely to
be followed by large ones and small ones more likely to be followed by small absolute changes
(Mandelbrot, 1963).

3The leverage effect describes the phenomenon when negative returns have a stronger impact on
volatility than positive returns of the same magnitude (Black, 1976).
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I.2.2. Option Valuation Models

model like the Hull-White model (Hull and White, 1987) with independent Brown-

ian motions always results in an implied volatility smile for (vanilla) equity deriva-

tives. The main disadvantage of SVMs is that they introduce a non-tradable source

of randomness, making the market incomplete, and pricing and hedging measures

no longer unique, which strongly limits their practical applications (Mitra, 2011).

Meanwhile, DTVMs mostly build on the autoregressive conditional heteroscedastic-

ity model by (Engle, 1982) and its generalization to (GARCH) models in (Bollerslev,

1986). These frameworks assume that variance is driven by a (discrete) innova-

tion process and past realizations. Empirically, this class of models has been very

successful for modelling asset prices, which lead to (Duan, 1995) developing a lo-

cally risk neutral measure in the GARCH framework. Economists have extended

the basic GARCH model to allow for some of the stylized facts that are captured

by the SVM’s. Prominent examples are the GJR-GARCH (Glosten et al., 1993) and

TGARCH (Zakoian, 1994) models, which incorporate asymmetry in the ARCH pro-

cess (i.e. volatility clustering), whilst the EGARCH model (Nelson, 1991) incorpo-

rates the previously described leverage effect. (Engle and Ng, 1993) proposed the

nonlinear asymmetric GARCH model (NAGARCH), which allows for both, volatil-

ity clustering and the leverage effect. Many studies have compared different itera-

tions of GARCH settings, proving the empirical strength of GARCH models com-

pared with SVMs (Lehar et al., 2002) and of the NAGARCH setting in particular

compared with other GARCH settings (Christoffersen and Jacobs, 2002; Christof-

fersen and Jacobs, 2004). A major advantage of most DTVM’s is that volatility at

certain points in time is fully known given the model parameters, thus allowing for

unique pricing and hedging measures. On the other hand, DTVMs generally do not

allow for closed-form pricing formulas as is typical for SVMs4. However, it should

be mentioned that (Heston and Nandi, 2000) recently found an analytic expression

4For example, see the Hull-White model (Hull and White, 1987), which allows for a closed-form
solution for European options even in the case of correlated return and variance processes.

7



Chapter I.2. Literature Review

for pricing European options under certain GARCH specifications.

I.2.3 Markov Switching Models

According to (Hamilton and Susmel, 1994), a major drawback of GARCH models

is their high persistence of shocks on volatility as empirical research points towards

recurrent significant changes in the structure of the markets, resulting in parameter

instability. Examples of those studied effects that disturb markets and cause ma-

jor issues for these models are financial crises (Jeanne and Masson, 2000; Hamilton,

2005) and changes in government policy (Hamilton, 1988; Sims and Zha, 2004). To

deal with these changing conditions, economists became increasingly interested in

nonlinear, time-varying parameter models that offer the inclusion of such structural

breaks.

The Markov switching model (henceforth, MSM), introduced in the seminal work

of (Hamilton, 1989), uses several regimes and allows some parameters to switch

between them over time, enabling the model to capture more complex data pat-

terns. This switching process is driven by an unobservable latent state variable that

follows a Markov process, i.e. each realization of the variable is assumed to only de-

pend on its most immediate past value. It exists a vast amount of literature on using

MSMs for financial and economic research, with a comprehensive recent survey pro-

vided in (Guidolin, 2011; Guidolin, 2013). Given the empirical success of both MSM

and GARCH, it was natural to try and combine both frameworks (Cai, 1994; Gray,

1996; Dueker, 1997; Bollen, 1998; Klaassen, 2002). (Duan et al., 2002) then proposed

a new class of MSM that captures the impact of return innovations on the volatil-

ity process and thus created the bridge to the GARCH framework. Their models

also include the MSM proposed in the seminal work of (Hamilton, 1989) as a limit-

ing case, but in the more general setting allow for a bilateral feedback mechanism

8



I.2.3. Markov Switching Models

between the return and volatility processes to capture more complex empirically

observed phenomena. Empirically, MSM have shown very promising results for

option pricing. (Bollen et al., 2000) proved that even a basic regime switching model

with independent shifts in the mean and variance can dominate several common

GARCH specifications in the foreign exchange market. Hence, given the empirical

success of MSMs, this thesis attempts to extend the work of (Giudice, 2017), who

studied the economic value of NAGARCH-implied volatility estimates, by obtain-

ing the option implied volatility estimates from a B-MSM according to (Duan et al.,

2002) instead and by measuring the models’ option pricing and portfolio allocation

performances5.

5For alternative research on using MSMs for asset allocation purposes see for example (Guidolin
and Timmermann, 2007).

9



I.3 Methodology

This paper considers a stock market index and its corresponding rate of return Rt+1,

defined by

Rt+1 = log

(
St+1

St

)
, (I.3.1)

where St denotes the index closing level on day t. Furthermore, a utility maximizing

investor is assumed, who is solely concerned with the expected returns and variance

of the portfolio, and who is equipped with an information set Ψt that contains real-

izations of all relevant variables up to time t.

I.3.1 Portfolio Optimization Framework

It is assumed that the investor can invest into two assets, a risk-free one such as a

10-year U.S. government bond, and a risky one, say the S&P 500 index (e.g. through

buying an ETF such as State Street’s SPY). Denoting the proportion invested in the

S&P 500 and the risk-free asset by xst and xbt , and the daily yield of the risk-free asset

during the time interval [t, t+1] by rf 1, the conditional expected value and variance2

of the portfolio returns are given by

Et[R
P
t+1] = xstEt[R

s
t+1] + xbtrf (I.3.2)

1For better readability and conformity with the literature, notation is being simplified to rf . How-
ever, this shall not imply that the rate is taken to be constant over all maturities in the empirical part
of this study, but rather that the appropriate rate is chosen at any time and for each maturity.

2Henceforth, notation is slightly being abused for better readability, the reader should be aware
that Et[Rt+1] and Vt[Rt+1] always stand for E[Rt+1|Ψt] and V[Rt+1|Ψt], respectively.

10



I.3.2. Nonlinear Asymmetric GARCH(1,1)-M Model

and3

Vt[R
P
t+1] = (xst)

2Vt[R
s
t+1]. (I.3.3)

The portfolio optimization problem then becomes finding a series of portfolios,

which have an efficient trade-off between maximizing (I.3.2) and minimizing (I.3.3).

This is formalized as

x∗t = argmin
xst ,x

b
t

−κ
(
xstEt[R

s
t+1] + xbtrf

)
+

1

2
(xst)

2Vart[R
s
t+1] s.t. xst + xbt = 1, (I.3.4)

where κ and xst + xbt = 1 are the investor’s risk aversion and the budget constraint,

respectively. A portfolio is called parametric-efficient if it is a solution for (I.3.4) for

some positive parameter κ. It has been shown (see, for example, (Best, 2010)) that

these parametric-optimal portfolios are then given by

xs∗t =
Et[R

s
t+1]− rf

κVart[Rs
t+1]

, xb∗t = 1− xs∗t . (I.3.5)

Hence, a framework is needed to determine Et[R
s
t+1] and Vart[R

s
t+1].4

I.3.2 Nonlinear Asymmetric GARCH(1,1)-M Model

The NAGARCH(1,1)-M model is an extension of the basic GARCH(1,1) model5:

Rt+1 = rf + σt+1zt+1, zt+1
iid∼ N(0, 1)

σ2
t+1 = ω + αR2

t + βσ2
t .

(I.3.6)

3Since the second asset is assumed to be free of risk, Vt[rf ] = Covt

[
rf , R

s
t+1

]
= 0. If either the

variance or the covariance with the index were positive, the asset would contain intrinsic/extrinsic
risk and thus would not be risk-free.

4Henceforth, Vart[Rt+1] ≡ σ2
t+1.

5Empirical evidence usually supports the choice to include only one lag of the ARCH and GARCH
processes, as higher orders often do not provide much additional value but increase parameter un-
certainty and overfitting risks.
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Chapter I.3. Methodology

For this model to remain sensible, further conditions are required. Obviously, the

variance process needs to remain non-negative and for most practical purposes (in

this case, the asset shall be non-risk-free) it is even required to be positive. This can

be achieved by setting ω > 0, α ≥ 0 and β ≥ 0. Furthermore, for the processes to

remain stable, the variance process must not diverge over time but needs to remain

stationary. It can be shown that this is ensured by enforcing that α+ β < 1, which is

known as the stationary condition of the basic GARCH(1,1) model.

The NAGARCH(1,1)-M model extends this framework in several ways. First, the

model allows for positive and negative returns to have an asymmetrical impact on

the variance process. Second, it extends the ARCH part of the GARCH(1,1) model

(αR2
t ) by adding a non-linear bias-adjustment parameter θ. Lastly, the return process

is also modelled in a non-linear, heteroscedastic fashion (hence the ’-M’, ’in-mean’,

suffix).

For the modelling purposes of this paper, two measures must be introduced: the

physical measure P and the risk-neutral measure Q. The former can be seen as sub-

jective, as it allows for risk aversion to affect asset valuations. As it is human nature,

investors are usually risk averse and want to be compensated for risky positions,

and hence demand a (unit) risk premium λ for the risk they are taking. Thus, under

this measure the fair price of an asset such as an index option would be difficult to

pin down since it would depend on each investor’s risk aversion parameter. There-

fore, the equivalent risk-neutral measure is used for pricing these assets with the

property that in an arbitrage-free and complete market there exists a unique price

for all assets6 such that the expected return on all investments equals the risk-free

rate.

Both measures are important for the presented asset allocation framework. As will

be shown, given the investor’s risk aversion the optimal weights under the consid-

ered asset allocation framework are uniquely determined by the (unit) risk premium
6Second fundamental theorem of asset pricing.
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I.3.2. Nonlinear Asymmetric GARCH(1,1)-M Model

and the index volatility. Whilst the former is clearly part of the physical measure

(there is no risk premium in a risk-neutral world), the latter can be estimated both

via the physical and the risk-neutral measure, i.e. by obtaining it from historic data

or by inferring it from contemporary option prices. The potential advantage of using

the implied volatility contained in option prices is that it is based on expectations

of future market movements (and thus the market’s volatility) and thus is better

aligned with the risks the investor is facing.

I.3.2.1 NAGARCH-M under the Physical Measure

The conditional return process Rt+1 and the conditional variance process σ2
t+1 of the

NAGARCH(1,1)-M model under the physical measure P (henceforth, NAGARCH-

P) are given by

RP
t+1 = rf + λσt+1 −

1

2
σ2
t+1 + σt+1zt+1,

σ2
t+1 = ω + ασ2

t (zt − θ)2 + βσ2
t , zt ∈ N(0, 1).

(I.3.7)

For the variance σ2
t+1 to remain well defined, it is again necessary that ω > 0, α ≥ 0

and β ≥ 0. The unconstrained parameter θ is included to allow for the leverage effect

(Black, 1976), where θ > 0 results in negative returns to have a larger impact on

the variance process than positive ones of the same magnitude. The persistence of

the variance process can be proved to be α (1 + θ2) + β, so that the unconditional

variance becomes σ2 = ω
1−α(1+θ2)−β . Thus, the stationary condition of NAGARCH-P

is α (1 + θ2) + β < 1.

The conditional expected return under P is then given by

EP
t [Rt+1] = rf + λσt+1 −

1

2
σ2
t+1, (I.3.8)
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Chapter I.3. Methodology

which plugged into (I.3.5) leads to

xs∗t =
rf + λσs,t − 1

2
σ2
s,t − rf

κσ2
s,t

=
1

κ

(
λ

σs,t
− 1

2

)
, xb∗t = 1− xs∗t (I.3.9)

where σ2
s,t follows (I.3.7).

This is the central equation of this thesis, since all future models will be using the

same return process, only differentiating themselves in the way they model the vari-

ance process. Hence, for the asset allocation part of this thesis, λ will be uniquely

determined under the NAGARCH-P framework, whereas the variance estimation

will depend upon each framework.

I.3.2.2 NAGARCH-M under the Risk-Neutral Measure

Following (Duan, 1995), a locally risk-neutral valuation relationship (LRNV) exists,

consisting of a measure Q equivalent to P, if either of the following holds:

1. The investor’s utility function has constant relative risk aversion and changes

to the logarithmic aggregate consumption have conditional normal distribu-

tions with constant mean and variance under P.

2. The investor expresses constant absolute risk aversion and changes to the ag-

gregate consumption have conditional normal distributions with constant mean

and variance under P.

3. The utility function is linear7.

Assuming that the conditions for the LRNV are satisfied, the expected return and

variance under Q become

EQ
t [Rt+1] = rf (I.3.10)

7Note that the basic assumption on the investor, to be solely concerned with the return and vari-
ance of the portfolio, does not necessarily imply that the utility function is quadratic, as long as the
returns are expected to be following a normal distribution.
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I.3.3. Markov Regime-Switching Model

and

VarQt [Rt+1] = VarPt [Rt+1] = σ2
t+1. (I.3.11)

This implies that (I.3.7) under Q is given by

RQ
t+1 = rf −

1

2
σ2
t+1 + σt+1z

∗
t+1,

σ2
t+1 = ω + ασ2

t (z∗t − θ∗)
2 + βσ2

t , z∗t ∈ N(0, 1).

(I.3.12)

with z∗t = zt + λ and θ∗ = θ + λ. Again, ω > 0, α ≥ 0 and β ≥ 0 and the stationary

condition is α (1 + θ∗2) + β < 1, leading to the stationary variance under the risk-

neutral measure, σ2 = ω
1−α(1+θ∗2)−β .

I.3.3 Markov Regime-Switching Model

In this section, the variance is no longer allowed to assume all potential values, as

was the case in the NAGARCH framework before, but instead a set of fixed val-

ues is imposed, which the variance process is allowed to take at any point. In a

Markov switching model (MSM), the variance is usually assumed to remain in a

specific volatility regime for a random amount of time before randomly switching

over into another regime. Here, the switches between these states occur according

to a Markov process, i.e. the probability distribution of moving from one state to an-

other does not depend on the states of the process past the current one. This thesis

uses the formulation of (Duan et al., 2002), which implements the switching me-

chanic via a threshold model and in the most general framework assumes that the

regime switching probabilities of the latent variance process are affected by return

innovations. This way, a bidirectional feedback mechanism is established between

the variance and the return process, which is in line with many empirical observa-

tions.
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Chapter I.3. Methodology

This thesis first considers the general bidirectional switching model (B-MSM) by

Duan et al., under the physical measure and the risk-neutral measure. Afterwards,

the unidirectional model with two regimes is presented as a special case that al-

lows for closed-form solutions for European option prices, but does not include a

feedback mechanism from returns to volatilities. Then, in subsection I.3.3.3 the limit

model (B-MSM-Inf) of the bidirectional framework, when the number of regimes ap-

proaches infinity, is shown, which ultimately creates the bridge to the NAGARCH

framework presented in the previous section as a special case of B-MSM-Inf.

I.3.3.1 Bidirectional-MSM

The return process in the bidirectional MSM with K < ∞ states under the physical

measure follows

R
(K)
t+1 = ln

(
S
(K)
t+1

S
(K)
t

)
= rf + λσ

(K)
t+1 −

1

2
σ
(K)2
t+1 + σ

(K)
t+1zt+1, zt+1 ∈ N(0, 1), (I.3.13)

where the (K) index indicates that the model of the return process depends through

the volatility process on the total number of regimes chosen. Of course, at each

point in time there will only be one realization of the return process, but under

this framework (other than in the NAGARCH model) knowledge of the return re-

alization is not sufficient to pin-down the current volatility estimate. Thus, the re-

turn process moving forward is modelled depending on which regime the process

might visit and thus, the model changes with the total number of regimes consid-

ered. The volatility process with K regimes is driven by a Markov chain that is fully

determined by the K × K transition matrix between volatility states. While in the

NAGARCH(1,1) model the volatility process σt+1 was solely subject to the return

innovations zt and its past value σt, in the MSM model a second innovation term,

ξt, is introduced as an unobservable state variable that is independent of the return
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I.3.3. Markov Regime-Switching Model

innovations. The overall impact of zt and ξt on volatility is then determined via the

following updating function8:

F (zt, ξt) = q1(zt − θ)+ + q2(zt − θ)− + (1− q1 − q2)|ξt|, (I.3.14)

where q1 ≥ 0, q2 ≥ 0 and q1 + q2 ≤ 1 are weights assigned to the positive and nega-

tive realizations of the return innovations zt, subject to the bias adjustment θ. Hence,

similarly to the NAGARCH model before, this model also allows for the previous

form of the leverage effect (θ > 0) to create asymmetries in the volatility responses to

return innovations. However, this more general setting further amplifies (or damp-

ens) this asymmetry using the weights q1 and q2. For instance, the leverage effect can

also be seen if θ = 0 and q2 > q1. Additionally, if the weights q1 and q2 are positive,

then return innovations are fed back into the volatility process and the structure of

(I.3.14) captures volatility clustering, i.e. the phenomenon that large absolute re-

turns are likely be following large absolute returns.

Assuming K volatility levels {δ1, δ2, . . . , δK} and corresponding threshold values

{c0(δi), c1(δi), . . . , cK(δi)} satisfying c0(δi) = 0 and cK(δi) =∞, the volatility is deter-

mined by

σ
(K)
t+1 = δi if ci−1

(
σ
(K)
t

)
≤ F (zt, ξt) < ci

(
σ
(K)
t

)
for i = 1, 2, . . . , K, (I.3.15)

with F (zt, ξt) given by (I.3.14). Regarding the choice of volatility regimes, the fol-

lowing partition condition must be satisfied:

δ1(K)→ 0 and δK(K)→∞ as K →∞,

sup
i∈{1,2,...,K−1}

[δ2i+1(K)− δ2i (K)]→ 0 as K →∞.
(I.3.16)

8With the usual notation (zt − θ)+ ≡ max (zt − θ, 0) and (zt − θ)− ≡ max (θ − zt, 0).
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Chapter I.3. Methodology

The bi-directional K-state MSM under the physical measure P is then given by

RP
t+1(K) = rf + λσ

(K)
t+1 −

1

2
σ
(K)2
t+1 + σ

(K)
t+1zt+1,

σ
(K)
t+1 = δi if ci−1

(
σ
(K)
t

)
≤ q1(zt − θ)+ + q2(zt − θ)−

+ (1− q1 − q2)|ξt| < ci

(
σ
(K)
t

)
,

for i = 1, 2, . . . , K, t ∈ {0, 1, . . . , T − 1}, 0 ≤ q1, 0 ≤ q2, q1 + q2 ≤ 1,zt+1

ξt+1

 |Ψt
P∼ N (02×1, I2×2) ,

(I.3.17)

with (02×1, I2×2) denoting a zero vector and the identity matrix, respectively.

However, assuming that q1, q2 and θ are known, the state transition probabilities

still depend on the choice of threshold values ci(σ
(K)
t ). Hence, following Duan et al.,

the following structure is imposed:

ci

(
σ
(K)
t

)
=

√√√√max

(
1
2

[
δ2i (K) + δ2i+1(K)

]
− ω

ασ
(K)2
t

− β

α
, 0

)
for i = 1, . . . , K − 1,

(I.3.18)

with ω > 0, α > 0, β > 0, c0
(
σ
(K)
t

)
= 0 and cK

(
σ
(K)
t

)
=∞. The additional parame-

ters ω, α, β are introduced in this way, so that it can be shown that the model, given

certain assumptions, converges towards the NAGARCH model as the number of

regimes approaches infinity (subsection I.3.3.3).
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I.3.3. Markov Regime-Switching Model

Assuming that the conditions for the existence of an LRNV stated in subsection I.3.2.2

are satisfied, local risk-neutralization leads to

RQ
t+1(K) = rf −

1

2
σ
(K)2
t+1 + σ

(K)
t+1z

∗
t+1,

σ
(K)
t+1 = δi if ci−1

(
σ
(K)
t

)
≤ q1(z

∗
t − θ∗)+ + q2(z

∗
t − θ∗)−

+ (1− q1 − q2)|ξ∗t − ν| < ci

(
σ
(K)
t

)
for i = 1, 2, . . . , K, t ∈ {0, 1, . . . , T − 1}, 0 ≤ q1, 0 ≤ q2, q1 + q2 ≤ 1,z∗t+1

ξ∗t+1

 ≡
zt+1 + λ

ξt+1 + ν

 |Ψt
Q∼ N (02×1, I2×2) ,

(I.3.19)

where ν is a correction parameter similar to λ, which locally risk-neutralizes ξt.

I.3.3.2 Two-State Unidirectional MSM

The unidirectional model (U-MSM) follows from (I.3.17) and (I.3.18) when setting

q1 = q2 = 0, i.e. by removing the (potentially asymmetric) impact of return innova-

tions on the state transition probabilities.

U-MSM with two states under the physical measure is then defined as

RP
t+1(K) = rf + λσ

(K)
t+1 −

1

2
σ
(K)2
t+1 + σt+1zt+1,

σ
(K)
t+1 = δ1 if 0 ≤ |ξt| < c1

(
σ
(K)
t

)
,

σ
(K)
t+1 = δ2 if |ξt| ≥ c1

(
σ
(K)
t

)
,

and

zt+1

ξt+1

 |Ψt
P∼ N (02×1, I2×2) .

(I.3.20)

The transition probabilities for the Markov process are then obtained as follows.

Denote the transition probabilities for switching from regime i to regime j by pij ≡

P P (σt+1 = δj|σt = δi) for i = 1, 2, j = 1, 2. The transition probability for remaining
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Chapter I.3. Methodology

in regime 1 is then given by

p11 ≡ P P (0 ≤ |ξt| < c1(σt)|σt = δ1)

= Φ (c1(δ1))− Φ (−c1(δ1)) ,
(I.3.21)

where Φ denotes the cumulative standard normal distribution. Obtaining the other

probabilities analogously, yields the state transition matrix

p11 p12

p22 p21

 =

Φ (c1(δ1))− Φ (−c1(δ1)) 1− Φ (c1(δ1)) + Φ (−c1(δ1))

Φ (c1(δ2))− Φ (−c1(δ2)) 1− Φ (c1(δ2)) + Φ (−c1(δ2))

 . (I.3.22)

By locally risk-neutralizing (I.3.20) in the same way as the bi-directional MSM, the

dynamics under the risk-neutral measure are obtained:

RQ
t+1(K) = ln

(
S
(K)
t+1

S
(K)
t

)
= rf −

1

2
σ
(K)2
t+1 + σt+1z

∗
t+1,

σ
(K)
t+1 = δ1 if 0 ≤ |ξ∗t − ν| < c1

(
σ
(K)
t

)
,

σ
(K)
t+1 = δ2 if |ξ∗t − ν| ≥ c1

(
σ
(K)
t

)
,z∗t+1

ξ∗t+1

 |Ψt
Q∼ N (02×1, I2×2) .

(I.3.23)

The transition probability matrix then becomes

Φ (ν + c1(δ1))− Φ (ν − c1(δ1)) 1− Φ (ν + c1(δ1)) + Φ (ν − c1(δ1))

Φ (ν + c1(δ2))− Φ (ν − c1(δ2)) 1− Φ (ν + c1(δ2)) + Φ (ν − c1(δ2))

 . (I.3.24)

As (Duan et al., 2002) show, the price of an European call option contract with ma-

turity T and strike price X for given volatility regimes δ1 and δ2, current stock price
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I.3.3. Markov Regime-Switching Model

St and risk-free rate rf , conditional on the current volatility being δk, is given by

Ck
0 (X,T ) =

T∑
j=0

γkTjC
k
j0

with Ck
j0 = S0Φ(d1j)−Xe−rfTΦ(d2j),

d1j =
ln (S0/X) + Trf + φ2

j/2

φj
,

d2j = d1j − φj,

φ2
j = jδ21 + (T − j)δ22.

(I.3.25)

γkTj represents the risk-neutral probability of the process being in regime 1 j times

and T − j times in regime 2, after initially being in state k (k = 1, 2). The option

prices under the 2-state unidirectional MSM can thus be seen as weighted BS prices.

It should be noted that (I.3.25) implies that neither variance is allowed to equal zero,

but since the thesis is restricting variances to remain positive due the nature of the

risky asset, this is of no further concern. To obtain γkTj , let F 1(i) be the probability

of the first (re)visit to regime 1 happening after i periods under the condition that

the process started in regime 1. γ1Tj (and γ2Tj analogously) is then determined for

j = 0, . . . , T as

γ1mk =
m−k+1∑
j=1

F 1(j)γm−j,k−1 for m = 1, . . . , T ; k = 2, . . . ,m,

with F 1(m) = p12p
m−2
22 p21 for m = 2, . . . , T,

γ1m1 = p11p12p
m−2
22 + (m− 2)p212p21p

m−3
22 + p12p21p

m−2
22 for m = 2, . . . , T,

γ1m0 = p12p
m−1
22 for m = 1, . . . , T,

and γ111 = F 1(1) = p11.

(I.3.26)
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Chapter I.3. Methodology

I.3.3.3 B-MSM-Inf

If the return and variance processes are following (I.3.17), with the threshold values

determined by (I.3.18), the partition condition being satisfied and the current stock

price and volatility known, then the B-MSM-K model, as the number of states ap-

proaches infinity, converges almost surely in P over the time interval [0, T ] towards9:

RP
t+1 = rf + λσt+1 −

1

2
σ2
t+1 + σt+1zt+1, zt+1 ∈ N(0, 1)

σ2
t+1 = ω + βσ2

t + ασ2
t

[
q1(zt − θ)+ + q2(zt − θ)− + (1− q1 − q2)|ξt|

]2
.

(I.3.27)

It is important to recognize that B-MSM-Inf no longer assumes a discrete state space,

but rather a continuum of regimes with infinite possible volatility levels. The model

is again subject to the usual feasibility conditions, i.e. non-negativity or positivity

of ω, α and β, and the usual restrictions on the weights q1 and q2. Furthermore, the

stationary variance can be computed10 and again needs to remain below 1. Now, if

q1 = q2 = 1
2
, i.e. by removing the state innovation term ξt and assigning the same

weights to the positive and negative bias-adjusted return innovations, the volatility

process in (I.3.27) becomes

σ2
t+1 = ω + βσ2

t + ασ2
t

[
(zt − θ)+ + (zt − θ)−

2

]2
zt ∈ N(0, 1) (I.3.28)

Defining α̃ := α
4

then leads to the NAGARCH-P specification in (I.3.7), since (zt −

θ)+ + (zt − θ)− = zt − θ.

Locally risk-neutralizing (I.3.27) analogously leads to the B-MSM-Inf formulation

9For a summary of the proof provided in (Duan et al., 2002), see section A.1.
10The formula for the stationary variance is being omitted at this point due to its lengthy and

convoluted expression. For details on its calculation it is referred to (Duan et al., 2002).
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under the risk-neutral measure Q:

RQ
t+1 = rf −

1

2
σ2
t+1 + σt+1z

∗
t+1,

σ2
t+1 = ω + βσ2

t + ασ2
t

[
q1(z

∗
t − θ∗)+ + q2(z

∗
t − θ∗)− + (1− q1 − q2)|ξ∗t |

]2
,z∗t+1

ξ∗t+1

 |Ψt
Q∼ N (02×1, I2×2) ,

(I.3.29)

with θ∗ = θ+λ. Again, setting q1 = q2 = 1
2

leads to the risk-neutral NAGARCH(1,1)-

M (henceforth, NAGARCH-Q) dynamics in (I.3.12).
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I.4 Data

I.4.1 Overview

chapter II.3 The empirical analysis is conducted using data on Standard & Poor’s

500 (henceforth, S&P 500) European-style index options. The data is obtained from

Optionmetrics, which is part of the Wharton Research Data Services of the Univer-

sity of Pennsylvania. As pointed out in (Heston and Nandi, 2000), the market for

S&P 500 index options is the second most active index options market in the United

States and the largest in terms of open interest in options1. The data set spans from

January 01, 2010 to July 31, 2014. It has become very common in recent research pa-

pers testing option valuation models to use a time frame of approximately three to

five years2, which seems to be an ideal choice balancing results stability with poten-

tial overfitting issues, and, as pointed out in (Christoffersen and Jacobs, 2002), it is

generally desired to use a fairly long time series when dealing with models relying

on highly persistent volatility processes.

The data set is sampled each Wednesday (or on the next available trading day in

case of a holiday), in-line with the previously mentioned research papers, resulting

in 239 recordings. These recordings are split into four periods, the first week is used

as an in-sample period for parameter estimation, and the following three weeks are

1(Rubinstein, 1994) even considers it to be one of the best markets for testing valuation models for
European-style options.

2See, for example, (Christoffersen and Jacobs, 2004; Heston and Nandi, 2000; Bakshi et al., 1997).
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used for out-of-sample model evaluation. Regarding the price data, the observa-

tions consist of the closing best bid and best ask prices of the option contracts, and

the closing index price, thus leveling potential time discrepancy problems.

Since many of the stocks pay dividends, the daily cash dividends for the S&P 500

are collected, which are available in the S&P 500 information bulletin. For the risk-

free rate proxy, the LIBOR curve is taken and linear interpolation between the data

points is performed, with the maturities left of the short-end of the curve being ap-

proximated by the closest available LIBOR rate.

I.4.2 Dividend Adjustment

Since European-style options cannot be exercised prior to maturity, the spot stock

price must be adjusted for discrete (expected) dividends. Denoting the dividend

payment s days from time t with Dt(s) and the corresponding daily yield with rf ,

the present value at time t of the dividend payments for an option expiring after τ

days is given by

PV Dt =
τ∑
s=1

e−rf sDt(s). (I.4.1)

PV Dt is then subtracted from the time-t index spot level and the resulting, dividend-

adjusted, value is used for all further analysis. This procedure is done on each day

for all option maturities, which means that each day every option might face a dif-

ferent (adjusted) index price depending on the maturities of the options and their

(assumed to be known) future dividend payments.
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I.4.3 Exclusion Filters

Several exclusion filters are applied. First, options with maturities shorter than six

days or longer than 100 days are excluded as these products are often driven by ad-

ditional market forces that are not part of this study (e.g. liquidity-related biases).

Second, to ease potential issues with price discreteness for option valuation, mid

prices (i.e. the averages of the bid and ask quotes) below $0.30 are removed from

both data sets. Third, also to avoid liquidity-related biases, thinly traded options

are excluded, with an arbitrary threshold set at 50 contracts per day. Fourth, follow-

ing (Dumas et al., 1998), only options with absolute moneyness less than or equal

to 0.1 are included in both samples, since deep in- and out-of-the-money options

have very small time premia and hence contain little information about the volatil-

ity function. Here, absolute (forward) moneyness is defined as |Mt|:= |K/Ft − 1|,

where K and Ft denote the strike price of the option and the forward price of the

index, respectively3.

Fifth, a series of no-arbitrage conditions are imposed, following the work of (Gonçalves

and Guidolin, 2006):

1. Maturity Monotonicity (τ2 > τ1):

ct(τ2)− ct(τ1) ≥ 0 (I.4.2a)

pt(τ2)− pt(τ1)−K [e−rf τ1 − e−rf τ2 ] (I.4.2b)
3As (Häfner, 2004) and (Natenberg, 1994) have pointed out, although the spot moneyness, which

uses the spot price instead of the forward price, is often preferred by traders, the forward based
measure has a more favourable theoretic behaviour. Both authors point towards log(K/Ft) as the
preferred definition for moneyness and K/Ft − 1 is then a simple approximation from a first order
Taylor series expansion, offering the easier interpretations of moneyness as a proportion of the for-
ward price of the underlying index. The definition is therefore also being used in (Heston and Nandi,
2000) and (Dumas et al., 1998).
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2. Reverse Strike Monotonicity (K1 > K2):

[K1 −K2] e
−rf τ − ct(K2) + ct(K1) ≥ 0 (I.4.3a)

pt(K1)− pt(K2)− [K1 −K2] e
−rf τ ≥ 0 (I.4.3b)

3. Box spreads:

[pt(K1)− ct(K1)]− [pt(K2)− ct(K2)]− [K1 −K2] e
−rf τ ≥ 0 (I.4.4a)

[K1 −K2] e
−rf τ − [pt(K1)− ct(K1)] + [pt(K2)− ct(K2)] ≥ 0 (I.4.4b)

4. Maturity spreads:

[pt(τ1)− ct(τ1)]− [pt(τ2)− ct(τ2)]−K [e−rf τ1 − e−rf τ2 ] ≥ 0 (I.4.5a)

[pt(τ2)− ct(τ2)]− [pt(τ1)− ct(τ1)] +K [e−rf τ1 − e−rf τ2 ] ≥ 0 (I.4.5b)

pt(τ) and ct(τ) denote the prices of put and call options at day t with maturity in τ

days and strike price K. Of course, in practical applications, exploiting these poten-

tial arbitrage violations is subject to various market frictions, with the most notably

one being transaction costs. To account for the latter, each no-arbitrage condition

above is being evaluated using the available best bid and ask prices corresponding

to the short and long positions taken (hence the bid-ask spread is used as a proxy

for the total transaction costs, see subsection I.5.3.2). This, however, also means that

the inverse of each condition must be checked as well, to ensure that there is no

arbitrage opportunity in neither the bid nor the ask prices of the given option. To
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illustrate this, (I.4.2a) is being tested as:

caskt (τ2)− cbidt (τ1) ≥ 0 (I.4.6a)

caskt (τ1)− cbidt (τ2) ≤ 0. (I.4.6b)

To further ease the immense computational burden of the (weekly) non-linear op-

timization routines later on, and to remain consistent with the aforementioned pa-

pers, the thesis reduces its scope to call option prices, although the analysis can also

be performed equivalently for put options. This results in a total of 18,280 data

points.

I.4.4 Summary

Here, a short overview of some key characteristics of the data set is provided. The

call contracts are classified by moneyness and days to maturity (DTM). In particular,

the option contracts are split into short (6 ≤ DTM ≤ 50) and long (51 ≤ DTM ≤ 100)

term contracts. Since the parameter estimation will be performed every four weeks,

Table B.1 shows the number of call contracts by maturity and moneyness for the in-

sample week (when estimation is performed) and the following three weeks (where

out-of-sample performance is measured). Note that due to the exclusion filters ap-

plied, deep-in-the-money4 and deep-out-of-the-money contracts are excluded. The

data set is thus bulked around at-the-money contracts, with a slight concentration

of out-of-the-money call contracts. Regarding maturity, the data set is concentrated

around short term contracts, with approximately twice as many short term contracts

as contracts with long term maturities. Meanwhile, Table B.2 shows the correspond-

ing call prices, which range between approximately $1 and $160, with the long term

4Note that by the definition of maturity used, Mt = K/Ft − 1, a call option is in-the-money if
Mt < 0.

28



I.4.4. Summary

contracts being higher priced due to higher potential gains by limited downside.

Also, in-the-money options are higher priced than out-of-the-money options due to

a higher payoff for the same terminal index level.

The S&P 500 index during the time period is presented in Figure B.1, showing

that the S&P 500 steadily grows after a quite tumultuous start as the U.S. recov-

ered from the aftermaths of the financial crisis in 2008-2009. Figure B.2 and Fig-

ure B.3 show two important characteristics that are fundamental for the modelling

approach taken in this thesis: First, the returns series appears random with little

predictability to be detected, whereas the absolute return series (as a proxy for the

unobservable daily volatility) seems less like a white noise process. This observa-

tion is supported by a formal Box-Pierce test, rejecting the independence hypothesis

of the latter series even at the lowest common significance levels, hence the deci-

sion for modelling the second moment instead of the first. Additionally, the figures

show clear volatility clustering, where large absolute returns are followed by large

absolute returns, which motivates the use of non-linear asymmetric models.
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I.5 Parameter Estimation and

Performance Measurement

I.5.1 NAGARCH-M

I.5.1.1 Maximum-Likelihood Estimation

Given the historical nature of the physical measure, the parameters of (I.3.7) can

conveniently be estimated via maximum likelihood estimation (MLE). Under MLE,

focusing on the past of the time series, the return innovation zt in (I.3.7) can be

backed out via zt =
Rt+1−rf+ 1

2
σ2
t+1

σt+1
− λ. Thus, given the assumed Gaussian distribu-

tion of zt, the parameters are obtained by maximizing the following log-likelihood

function for the observed return time series:

logL = −(T − 1) log 2π

2
−
∑T

t=2 log σ2
t

2
−
∑T

t=2

(
Rt+1 − rf − λσt+1 + 1

2
σ2
t

)2
2σ2

t+1

, (I.5.1)

subject to the feasibility and stationarity conditions presented in subsection I.3.2.1.

Particularly, this leads to an estimate of the unit risk premium λ, which is essential

for the portfolio allocation purposes considered in the second part of this thesis. For

a better maximum likelihood estimate, the data set is extended to daily observations

(spanning the same period) for this particular estimation, subject to the same data

filters described in chapter I.4.
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I.5.1. NAGARCH-M

I.5.1.2 Randomized Quasi Monte Carlo

In order to use the forward-looking information hidden in the implied volatility of

option prices, NAGARCH-Q is estimated by fitting the model to observed option

prices. Since the multi-period distribution of the GARCH process is unknown, the

required index level at maturity, ST , needs to be simulated via Monte Carlo meth-

ods. The procedure proposed in this thesis first uses the physical parameters es-

timates obtained via MLE and transforms them into their risk-neutral counterparts

(see subsection I.3.2.2). Then, to obtain a start value for the risk-neutral variance pro-

cess at day t, an variance updating rule is used. (Christoffersen and Jacobs, 2004)

propose to link the volatility between estimation days via

σ2
t+1 = ω + ασ2

t

([(
Rt − rf +

1

2
σ2
t

)
/σt

]
− θ∗

)2

. (I.5.2)

Following (Christoffersen and Jacobs, 2004), the thesis uses the 250 daily returns

prior to the new estimation date and the obtained parameter starting values to up-

date the initial volatility estimate.

Given this start value, a large number of quasi random variables are drawn from

a 20-dimensional Sobol’ low discrepancy sequence (Sobol, 1967). The main idea of

using Monte Carlo methods for option pricing is the discrete simulation of a given

distribution with each path corresponding to a certain realizations of the distribu-

tion approximating variable. The problem with using pseudo random variables lies

in the infeasibility of drawing infinite many times and thus the issue of always only

facing a certain spectrum of the distribution. Instead, quasi random variables do

not attempt to simulate a random process, but take deterministic (often equidis-

tant) values that best match the theoretic distribution and therefore often represent

a better image of the distributional paths. In fact, many studies have shown that
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quasi Monte Carlo methods converge faster than their pseudo counterparts and of-

ten show lower pricing errors for option valuation models. In order to still resemble

the random characteristic of the return innovations (and to further reduce the vari-

ance among simulation estimates) the iterates are additionally scrambled using the

procedures proposed by (Owen, 1998) and (Faure and Tezuka, 2002).

The thus defined randomized quasi Monte Carlo procedure draws 600 observations

from each dimension, but drops each first 100 iterates as a burn-in sample, making

for a total of MC = 10000 simulation paths for each trading day until the maturity

of the option. Given this shock matrix, the corresponding σ̂2
t+1 and R̂t+1 values are

obtained using (I.3.12) and the simulated path price at maturity is calculated as

Ŝi(T ) = S0e
(
∑T

j=1 R̂i,t+1) i = 1, 2, . . . ,MC. (I.5.3)

Unfortunately, as pointed out in (Duan and Simonato, 1998), a known issue of the

standard Monte Carlo approach is that this simulated price may violate rational

option pricing bounds along its path, making the price estimate non-sensible. In

particular, it is required that the discounted asset price at any point in time is a

Q-martingale, i.e.

EQ [e−rf tS(t)|Ψτ

]
= e−rf τS(τ) ∀t ≥ τ ≥ 0. (I.5.4)

This cannot be ensured along all simulation paths using standard Monte Carlo,

which in turn may lead to a violation of the non-arbitrage condition

C0(t) >
(
S0 −Ke−rf t

)+
. (I.5.5)
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To solve this problem, (Duan and Simonato, 1998) propose a correction to the stan-

dard Monte Carlo simulation procedure, called the empirical martingale simula-

tion (EMS). The method is formalized as follows: Given the terminal stock prices in

(I.5.3), the EMS prices at maturity, S∗i,T , are defined as

S∗i (T ) = S0
Zi(T )

Z0(T )
, (I.5.6)

with

Zi(t) = S∗i (t− 1)
Si(t)

Si(t− 1)

Z0(t) =
1

n
e−rf t

MC∑
i=1

Zi(t),

(I.5.7)

for i = 1, . . . ,MC, t = 1, . . . , T . The price of a call contract at day t under the

NAGARCH-Q model is then calculated as

CNG
t = e−rfT

1

MC

MC∑
i=1

(Si(T )∗ −K)+ , (I.5.8)

satisfying CNG
t > (S∗0(t)−Ke−rf t)+ = (S0 −Ke−rf t)+. The authors show that using

EMS also reduces the pricing error of the Monte Carlo estimate and can thus also be

seen as a variance reduction technique1. The parameters are then estimated using

a cross-section of available option contracts at day t via non-linear least squares by

minimizing2

MSEt =
1

n

n∑
j=1

(
CNG
j,t − Cmkt

j,t

)2 (I.5.9)

1Other variance reduction techniques such as a control variate technique (controlling for the un-
derlying index level, whose expected value is known under the risk-neutral measure) and an an-
tithetic variate technique were implemented as well, but could not improve the RQMC procedure
significantly, which is not untypical for quasi Monte Carlo procedures.

2Several studies (Christoffersen and Jacobs, 2003; Bams et al., 2004; Renault, 1997) have shown
the importance of the loss function and have frequently identified the mean square error function as
the best available choice.
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where Cmkt
t denotes the market (mid) prices of the cross-section of calls at day t,

subject to the feasibility and stationarity conditions described in subsection I.3.2.2.

I.5.2 The Markov Switching Model

I.5.2.1 B-MSM-K: Lattice Approach

To estimate the implied parameters of the bidirectional MSM with K states from

option prices, a multinomial lattice approach is used, which establishes a discrete

Markov chain approximation that converges towards B-MSM as the number of time

steps increases. One of the major drawbacks of standard lattice approaches for op-

tion valuation under heteroskedasticity is that due to the inherent path dependence

in these models the resulting tree is generally not recombining. As in the classic

Binomial option pricing modelling approach, jump sizes are usually uniquely de-

termined by the volatility of the underlying asset. Thus, whilst the jump size under

the standard log-normal model (e.g. BS) is constant over time, it varies under het-

eroscedastic models.

This is a major concern for the goals of this thesis, since non-recombining trees im-

ply an exploding number of nodes to be calculated. For example, the total number

of nodes in a non-recombining daily binomial lattice for an option that expires in

100 days is 2100 − 1, which is not computational feasible for the purposes of this

paper, given that there are 60 estimation days with a total of approximately 4500 in-

sample option contracts and each pricing algorithm needed to be repeated several

times during optimization routines.

Whilst the following algorithm originally proposed by (Ritchken and Trevor, 1999)

to price options under a NAGARCH model, and adapted in (Duan et al., 2002) for
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Markov switching models, is highly efficient and allows for a form of recombining

lattice, the approach is thought for pricing single European and American options

given fixed model parameters. Since the thesis is only considering European op-

tions, but wants to infer the model parameters from several cross-sections of option

prices, a few simplifying assumptions are taken, which allows to derive the option

prices directly from the modelled terminal stock prices instead of using the usual

backward recursion. The model to be estimated is given by the return and variance

processes under the risk-neutral measure (I.3.19), with the threshold values set ac-

cording to (I.3.18).

For a given number of regimes,K, the model parameters to be estimated are ω, α, β, θ∗,

q1, q2 and σ̄t,T , where σ̄t,T defines the ’level’ of the volatility regimes over the time

interval [t, T ] (see Equation I.5.11). First, the K volatility regimes must be set ac-

cording to the partition condition. Given an estimate for σ̄t,T , the thesis proposes

the following dynamic, in the spirit of the one used in (Duan et al., 2002):

δ2i = L(K) + (i− 1)
U(K)− L(K)

K − 1
for i = 1, . . . , K (I.5.10)

where

L(K) = σ̄2
t,T

(
1−
√
K − 1

l

)+

U(K) = σ̄2
t,T

(
1 +

√
K − 1

l

) (I.5.11)

for some positive integer l, which determines how far adjacent variance regimes are

spread out. In other words, the partition is centered around the estimated variance

scale parameter σ̄t,T , with the allowed variation limited by K and l.

Next, the order of the lattice approach must be set, i.e. how many different paths

are considered at each node of the tree. Assuming an equal number m of downside

and upside scenarios and a single horizontal movement of the stock price, each
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node is followed by 2m + 1 branches. In fact, let (yat , σt+1) be a discrete random

process approximating (yt, σt+1) with ya0 = y0 = lnS0. Then, given (yat , σt+1 = δk),

the multinomial process approximating the conditional normal distribution follows:

(yat+1|σt+1 = δk) = yat + jηkγ (I.5.12)

for j = 0,±1,±2, . . . ,±m. Here, γ is the jump size (i.e. the gap between adjacent

future nodes) and ηk is the smallest positive integer that guarantees the first two mo-

ments of the approximating process to match the theoretical conditional moments

EQ
t [yt+1|σt+1 = δk] = yt + rf − δ2k/2 and Vt[yt+1|σt+1 = δk] = δ2k, whilst also en-

suring that the path probabilities remain well-defined (i.e. all probabilities fall into

[0, 1]). To obtain the probabilities for a j = 0,±1, . . . ,±m-move of the log stock price,

(Ritchken and Trevor, 1999) divide each day into m homoscedastic intervals, with

the variance then being updated at the end of the day. The path probabilities over

the full day are then given by the following trinomial dynamic:

P
(
yat+1 = yat + jηkγ|σt+1 = δk

)
= P (j; k) j = 0,±1,±2, . . . ,±m, (I.5.13)

where

P (j; k) =
∑

ku, km, kd

(
m

ku km kd

)
pkuu p

km
m pkdd (I.5.14)

with ku, km, kd ≥ 0 such that m = ku + km + kd and j = ku − kd, and the three

probabilities defined as

pu =
δ2k

2η2kγ
2

+
(rf − δ2k/2)

√
1/m

2ηkγ

pm = 1− δ2k
η2kγ

2

pd =
δ2k

2η2kγ
2
−

(rf − δ2k/2)
√

1/m

2ηkγ

(I.5.15)

36



I.5.2. The Markov Switching Model

According to (Ritchken and Trevor, 1999), a way of setting ηk to satisfy these two

conditions is to let it be determined by

(ηk − 1) <

√
δk
γ
≤ ηk (I.5.16)

for a given set of variance regimes δk and jump size parameter γ.

It is important to note that for the class of models considered in (Ritchken and

Trevor, 1999) the path transition probabilities are time variant as they depend on

the volatility at time t. However, as already indicated by the substitution of σt with

δk, under B-MSM there are fixed volatility levels that can be attained on each day.

Therefore, the path probabilities conditional on being in a certain volatility regime

remain the same over time, allowing for the computation of a constant m ×K ma-

trix P(j, k)j=0,±1,±2,...±m, k=1,2,...,K , containing the probability for all price innovations

j and volatility regimes δk.

Using this forward procedure allows to simulate all log stock prices of the next day.

However, whilst some volatility regimes induce ’single-jump’ prices with ηk = 1,

some volatility regimes might require ’double-jump’ prices with ηk = 2 for the first

two return moments to match the assumed ones, and so on. Since it cannot be

known which volatility regime the price process is coming from, all potential price

paths, i.e. single and multiple price jumps, need to be considered. To circumvent

this computational issue, the thesis proposes the following way of determining the

jump size parameter γ:

γ =

√√√√σ̄2
t,T

(
1 +

√
K

`

)
. (I.5.17)

This contributes in two ways. First, it is a desired property that the jump sizes of

the lattice depend on the variance of the underlying asset, and secondly, this spe-

cific setting ensures that γ is sufficiently large so that for each modelled variance δk

sensible probabilities can be found for all 2m + 1 ’single-jump’ log prices to match
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the conditional mean and variances of the conditional normal distribution being

approximated. In other words, it allows for ηk ≡ 1 ∀k. This implies that the approx-

imate log stock value on day t at ’level’ j can be easily computed as

ya(m)(t, j) = y0 + jγ for j = 0,±1,±2, . . . ,±tm. (I.5.18)

for t = 1, . . . , T , where T denotes the maturity of the option contract.

Now, the option price at each node is given by the discounted expected value of all

2m+ 1 subsequent nodes. Unfortunately, while the tree contains a single stock price

at any node, the volatility regime at these nodes cannot be known and thus it is nec-

essary to carry K option prices at each node and the expected value also depends

on the transition probabilities between the volatility regimes. At maturity of the op-

tion contract though, each option price equals the payoff of the option contract and

thus only depends on the approximate log stock price and not the volatility regime

at that time. Hence, the K-vectors at all terminal points of the tree contain K equal

values.

As illustrated in subsection I.3.3.2 for the unidirectional model with two states, the

transition probabilities depend on the threshold values3. However, in the bidirec-

tional model, the transition probabilities also depend on q1, q2, θ∗ and the return

innovation zt. Since by construction it is ensured that the first two conditional mo-

ments are matched, the normalized innovations in the lattice, conditional on the

path innovation j = 0,±1,±2, . . . ,±m and regime k = 1, 2, . . . , K, are expressed as

z∗(j, k) =
jγ − (rf − δ2k/2)

δk
. (I.5.19)

Clearly, as m approaches infinity, z∗(j, k) converges in distribution towards a stan-

dard normal random variable. Let πk,p(j) denote the state transition probability

3For simplification and following (Duan et al., 2002), it is assumed that ν = 0.
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for switching from regime k to regime p given the standardized return innovation

z∗(j, k) =
jγ−(rf−δ2k/2)

δk
. Since a Gaussian distribution is assumed for the state vari-

able ξt, the transition probabilities are calculated analogue to the reduced case in

subsection I.3.3.2 as

πk,p(j) ≡ PQ(cp−1(δk) ≤ q1(z∗t (j, k)− θ∗)+ + q2(z
∗
t (j, k)− θ∗)−

+ (1− q1 − q2)|ξ∗t | < cp(δk)
)

= Φ(Υp(j, k))− Φ(−Υp(j, k))− Φ(Υp−1(j, k)) + Φ(−Υp−1(j, k)),

(I.5.20)

where Φ again represents the cumulative standard normal distribution and

Υi(j, k) ≡ ci(δk)− q1(z∗t (j, k)− θ∗)+ − q2(z∗t (j, k)− θ∗)−

1− q1 − q2
(I.5.21)

for i = p− 1, p.

Extending this notion to all regime pairs, a K × K state transition probability ma-

trix Π(j) can be derived. Hence, given the modelled call price on day t at price

level j conditional on the current volatility regime being δk, the probability asso-

ciated with the call price on day t + 1 at price level j + 2 and volatility regime

p, is given by πk,p(2)P (2, k). Since this probability is time invariant, the matrices

can be combined. Let the j resulting K × K matrices be represented by Θj , with

Θj(k, p) = P (j, k)πk,p(j).

For simplification, and to further ease the still significant computational burden,

m = 1 is assumed, which reduces the multinomial lattice to a trinomial one and the

number of (one-period) transition probability matrices to 3. Note that by using this

algorithm with these proposed simplifications, the number of potential nodes has

dropped significantly compared to the initially contemplated non-recombining lat-

tice. In fact, the number of nodes on each day no longer grows exponentially with T ,

but instead in a linear manner. This allows to conveniently calculate the number of
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paths over several periods to a certain level j in a similar manner as before. Extend-

ing the previous notion and assuming that the volatility today is δk, the transition

probability matrix of arriving at level h in T days is given by

Θ
(T )
h =

∑
ku, km, kd

(
T

ku km kd

)
Θ

(ku)
1 Θ

(km)
0 Θ

(kd)
−1 , (I.5.22)

for h = 0,±1,±2, . . . ,±T, h = ku − kd and ku, km, kd ∈ [0, T ]. Θ
(m)
i represents the

m-th power of the i-th matrix (or in other words, the product of m-times multiply-

ing the i-th matrix with itself). The elements of the 2T + 1 resulting matrices contain

the probabilities associated with the terminal state call prices T periods from to-

day conditional on today’s volatility regime. Finally, the call price today (at day t),

conditional on the volatility being δk, is obtained as

Ca
t (k) = e−rfT

K∑
p=1

T∑
h=−T

(
ey0+hγ −K

)+
Θ

(T )
h (k, p). (I.5.23)

The objective is then to minimize the average of the state dependent mean square

errors with the observed market prices of the option contracts on day t:

$MSE =
1

nK

K∑
k=1

n∑
i=1

(Ca
t,i(k)− Cmkt

t,i )2. (I.5.24)

I.5.2.2 U-MSM-2: Analytical Solution

In the case of the unidirectional two-state Markov switching model, closed-form

solutions are available in (I.3.25) and (I.3.26). However, the volatility innovation

ξt is still present and the volatility regimes are still not identifiable. Therefore, fol-

lowing the suggestion of (Duan et al., 2002), the model is reparameterized with the

parameters to be estimated being the volatility regimes, δ1 and δ2, and the transi-

tion probabilities, p11 and p22. Second, given numerically optimized start values for
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these four parameters, state option prices are calculated using the formulas for both

potential current volatility regimes. This setting is then numerically optimized with

the objective being to minimize the sum of mean square pricing errors with respect

to the observed market prices of the call contracts.

I.5.2.3 B-MSM-Inf: Monte Carlo

Since the limit bidirectional model converges to a framework with a continuum of

volatility regimes, the estimation can be done via Monte Carlo. Hence, the proce-

dure is the same as the one described in subsection I.5.1.2, with the sole exception

that here a second, independently drawn, set of quasi random variables is generated

to model the state innovations ξ. There are six parameters to be estimated, namely

ω, α, β, θ∗, q1 and q2. Hence, other than in (Duan et al., 2002), the weights q1 and q2 in

the B-MSM-K and B-MSM-Inf frameworks are not restricted to be equal, offering to

capture additional asymmetric impacts of different return innovations on volatility.

The start values, including the initial volatility σt, are obtained via a numerical

search by drawing random numbers from the feasible region of each parameter and

comparing the resulting mean square errors for the first estimation period. Sub-

sequent estimations use the previous estimates as start values4. The optimization

objective is again to minimize the mean square errors with respect to the observed

market prices of the call contracts.

4Of course, since this optimization routine is highly non-linear, a unique optimum may not exist
or cannot be found in a sensible amount of time.
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I.5.3 Performance Measurement and Trading Costs

Portfolio re-balancing is assumed to happen monthly, in-line with the parameter

estimation. In academic literature, this is often rather done on a daily basis, since this

better matches some theoretic model characteristic (e.g. constant risk-free rate), and

provides better results before costs. However, daily re-balancing is often not very

practical due to trading costs and other restrictions, which is the reason a monthly

cycle is chosen. Following the works of (Fleming et al., 2001), (Kolusheva, 2008)

and (Giudice, 2017), the performances of the portfolio allocation schemes based on

the different variance models are subject to trading costs and are measured via two

performance criteria.

I.5.3.1 Performance Measures

Let µ̂ be the sample mean of the model returns of a given allocation scheme and σ̂2

the corresponding sample variance. The first measure taken is the classical Sharpe

Ratio (SR). The SR for a given strategy j is defined as the mean of the generated

excess returns divided by their sample standard deviation, i.e.

ŜRj =
µ̂j − rf
σ̂j

. (I.5.25)

Second, for each scheme a Certainty Equivalent Return (CER) is calculated, i.e. the

rate of return that makes the investor indifferent between accepting CER and invest-

ing following the scheme in question. CER is commonly formalized as

CERj = µ̂j −
κ

2
σ̂j

2. (I.5.26)
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I.5.3.2 Trading Costs

Trading costs are usually split into explicit and implicit costs. Explicit costs are the

realized costs of trading, such as broker commissions and taxes. Indirect costs are

related to the optimal execution of the trade, including the bid-ask spread and the

price impact of the order (e.g. if a large order needs to be split in several parts,

additional implicit costs may occur if the price of the asset changes between the

execution of each suborder). Since taxes are country dependent and the price im-

pact of execution may depend on the broker, the technology, the time of the day

and many other factors, this thesis will approximate the explicit and implicit trad-

ing costs by their two main components, the broker commission and the bid-ask

spread. As shown in many studies, transaction costs have generally declined over

the years, with average broker commissions on big U.S. equity stocks being more

than halved between 1982 and 1992 (Stoll, 1995) to approximately 24 basis points

of trade value and further decreased to less than 15 basis points in 2000 (Domowitz

et al., 2001). (Keim and Madhavan, 1998) attribute this decline to more competitive

market environments and the increased use of low-cost electronic crossing networks

by institutional traders. (Domowitz et al., 2001) estimate the combined (one-way)

explicit and implicit transaction costs for the NYSE in 2000 at slightly less than 30

basis points of trade value. Hence, since technology innovations and algorithmic

execution have further spiked in recent years, but still considering the existence of

a necessary fundamental lower bound, total transaction costs of ten basis points of

trade value for a stock index such as the S&P 500 nowadays seems appropriate.

Furthermore, as in (Giudice, 2017), leveraged investment in the stock index (by bor-

rowing at the risk-free rate, e.g. by short-selling government bonds) is permitted,

but capped at 200% of equity, i.e. xbt ∈ [−1, 1] and xst ∈ [0, 2]. However, in this case,

additional borrowing costs occur and are estimated at two basis points of borrowed

value. As in other studies on transaction costs such as (Marquering and Verbeek,
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1999), it is assumed that there are no additional trading costs associated with the

risk-free asset.

Re-balancing is assumed to happen at the beginning of a trading day. Hence, given

the previously set portfolio allocation to the risky asset, xst , the effective fraction of

the portfolio allocated to the risky asset at the start of period t + 1 (or the end of

period t) is

x̂st+1 =
xste

Rs
t+1

xste
Rs

t+1 + xbte
rf
, (I.5.27)

where Rs
t+1 and rf are the returns of the risky and risk-free assets over [t, t + 1],

respectively. The portfolio return in period [t+ 1, t+ 2] after trading costs is then

RP
t+2 = xst+1R

s
t+2 + xbt+1rf − 0.001|xst+1 − x̂st+1|−0.0002(xst+1 − 1)+. (I.5.28)
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I.6.1 Parameter estimation

In this section, the results from the option valuations and portfolio allocations are

described. Table B.3 shows the parameter estimates for the five models. The MLE es-

timates for NAGARCH-P are in-line with the usual results obtained in the literature,

with an average GARCH coefficient β of approximately 0.85 and an average ARCH

coefficient α of approximately 0.07. The sample mean of the unit risk premium is

approximately 0.02. All parameters under MLE are highly significantly1 different

from zero (under the assumed Gaussian distribution with usual significance levels).

The NAGARCH-Q estimates echo these results, with all four parameters being of

the same magnitude as their equivalents under the physical measure. However, it

should be noted that the parameters are no longer as clearly significant as before,

as they show much higher standard deviations among the estimates. This is due to

the Monte Carlo optimization routine for non-linear functions, which behaves much

more volatile than the MLE under the physical measure.

For the unidirectional Markov switching model with two states, the two volatility

regimes were estimated together with their transition probabilities (reported are the

ones for remaining in the current state). The probabilities are extremely close to 1

1Henceforth, ’(statistically) significant’ is to be understood under the premise of the assumed
Gaussian distribution, as well as the usual significance levels.
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and show relatively small standard deviations, meaning that the states seem to al-

most absorb the process after a random amount of time. The bi-directional model

with finite states was estimated for K = 11 states2. The algorithm produces sensible

estimates, with β being in-line with the previous estimates and the average volatil-

ity estimate over [t, T ] matching δ1 from U-MSM-2, which is a very pleasing result,

given that the estimates were obtained using two completely different estimation

routines and different start values. A bit surprising are the return-feedback weights

q1 and q2, which are not significantly different from zero, which would imply that

for some cases the uni-directional model may be considered instead, given the lat-

ter’s much faster and simpler estimation procedure.

Finally, the estimates for the continuous limit model of the B-MSM-K framework,

when the number of states approaches infinity, are shown. It is evident that the

β estimate is much smaller than in the previous models, which may be due to the

return innovations being captured by q1 and q2. However, the estimated volatility

on day t again matches the previous estimates, although the standard deviation is

higher, which is most likely again due to the random-based Monte Carlo method

compared to the non-stochastic estimation routines used for U-MSM-2 and B-MSM-

11.

I.6.2 Out-of-Sample Option Pricing

After estimating the optimal parameters for each model, the corresponding mean

square errors are obtained. Keeping the estimates then constant (as assumed in

2It should be noted that although the proposed estimation algorithm is a huge improvement over
the initial setting for the purposes of this thesis, running the algorithm to find the best estimates is
still very time consuming given the long data period and the large number of K ×K matrices to be
stored and multiplied, computational issues with storage and (numerical) loss of significance might
occur. Hence, the choice of 11 states as a feasible representative for non-trivial higher state B-MSM.
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the respective frameworks), the mean square errors for pricing the call option con-

tracts on the following three Wednesdays are calculated. Table B.4 shows the re-

sults3. For the finitie-regime Markov Switching models the average mean square

error across states is used on each estimation day. As could be expected, the models

with more parameters perform better in-sample than the ones with less parameters,

which is evident in the smaller average MSE value of B-MSM-Inf compared with

NAGARCH-Q (with additionally a smaller standard deviation among these MSE

values). The very low B-MSM-11 MSE value, which is lower than the one for infi-

nite states, indicate that the model performs on average better in pricing the options

in-sample than the one considering infinite many potential volatility regimes, which

shows that a finite-state Markov model is indeed appealing to be considered.

However, out-of-sample the B-MSM-11 model seems to struggle, with higher av-

erage mean square errors compared to the other models, suggesting that at least

some of its parameters need to be updated over time4. The U-MSM-2 model shows

a very strong performance out-of-sample, despite its very parsimonious modelling

approach, with the evaluation occurring one week later displaying an only slightly

higher MSE value compared to NAGARCH-Q and B-MSM-Inf and even a smaller

MSE value two weeks out-of-sample. This indicates that the volatility level can be

assumed to roughly remain between the two volatility regimes over several weeks,

again motivating the class of Markov switching models for option valuation.

3It should be noted, that due to the monthly re-estimations of the parameters, which mostly use
their previous estimates as start values, and the non-linearity of the optimization routines (generally
not guaranteeing a unique optimum), the MSE values can be expected to be higher than if daily re-
estimation would have been applied. The trade-off, however, is that the models are fitted based on a
longer time period with more market moving events, which is usually desirable.

4(Duan et al., 2002) update the intercept for each out-of-sample evaluation, which may improve
the performance significantly, but loses comparability with U-MSM-2.
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I.6.3 Portfolio Strategy Performance

Using (I.3.9), the optimal portfolio weights corresponding to the (physical) risk-

premium obtained from the maximum likelihood estimation of NAGARCH-P and

the implied volatility estimate induced from each risk-neutral pricing framework

are calculated for risk aversion values of 2, 4 and 8. The portfolio is then re-balanced

every month using the new estimates, whilst the portfolio value is simulated on a

daily basis (with trading costs set as in subsection I.5.3.2). Presented in Table B.5 are

the daily portfolio weights held in each strategy. It is very apparent that the weights

between NAGARCH-Q, U-MSM-2 and B-MSM-2 only differ ever so slightly, but

the weights induced by B-MSM-Inf are noticeably higher on average (due to the

lower estimated index volatility, as indicated in Table B.3), but also significantly

more volatile. Table B.6 then shows the annualized portfolio returns for each strat-

egy, for the case with trading costs and if trading costs were removed. Given the

annualized return of the S&P index over the same period of 16.62%, all models out-

perform the index in the absence of trading costs for κ = 2, whilst in their presence it

is still achieved by all models besides U-MSM-2, indicating that although the aver-

age weights and their standard deviation between U-MSM-2 and NAGARCH-Q are

very similar, the strategies differ in their volatility timing. Additionally, all option-

pricing models besides U-MSM-2 outperform NAGARCH-P, which demonstrates

the value of option-implied information.

Assuming an initial portfolio value of 100, the resulting portfolio performance for

each of the strategy and each considered risk-aversion parameter are illustrated in

Figure B.4 till Figure B.13, both, when considering trading costs and when omit-

ting trading costs. To measure the Sharpe ratios of the strategies, the average of the

short-ends of the LIBOR curve during the data period was taken as a proxy for the

daily risk-free rate, which amounts to 3.24E − 06. Table B.7 then shows the Sharpe

ratio of the returns of each strategy with and without trading costs. Due to the more
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volatile returns, B-MSM-Inf no longer performs best under this measure, but instead

the NAGARCH models prevail with the highest Sharpe ratios.

Finally, Table B.8 displays the excess annualized certainty equivalent returns (in ba-

sis points) for all considered strategies and risk-aversion parameters. Hence, the

results can be interpreted as the additional fixed return an investor would accept in-

stead of investing in a portfolio consisting of a long position according to the strat-

egy and a short position in the index. For low risk aversion levels this results in

relatively high values due to the outperformances of these strategies over the S&P

500, but for higher risk aversion the negative utility derived from the return vari-

ances dominate and the values turn negative.
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I.7 Conclusions

This thesis has developed an efficient algorithm for the B-MSM-K models proposed

by (Duan et al., 2002) and has inferred model parameters for the bidirectional mod-

els with 11 and infinite states and for the unidirectional model with two states from

option prices. The results showed strong option pricing performances of the bidi-

rectional MSM, outperforming the NAGARCH model for both 11 and infinite states.

Out-of-sample, the performance of the infinite-state B-MSM model was still roughly

on par with the NAGARCH-Q model, despite its higher number of parameters that

may change between months. The two-state unidirectional model, although not

performing as well in-sample, showed promising out-of-sample results, which is

noteworthy given the existence of closed-form solutions, making estimation pro-

cesses comparatively fast. In the second part, the implied volatility estimates were

used for portfolio allocation using the two-factor model. Here, both the B-MSM-Inf

and B-MSM-11 model showed promising results and the value of option implied

volatilities was again shown by comparing the performances to a framework using

volatility estimates based on historic return data. It should be noted though that

while the average simulated return of the bidirectional models might be appeal-

ing for some investors, the returns are also quite volatile, which is shown by their

Sharpe ratios and certainty equivalent returns. This may be attributed to the less

smooth frameworks when compared to the NAGARCH models.

Based on the promising results for option pricing and asset allocation, it is up to

future research to verify these results for different markets and different numbers of
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states considered. Additionally, the CBOE Volatility Index (VIX) could be incorpo-

rated as a secondary measure for implied volatility and used as a control variable

in the various estimation procedures, as it obtains the expected volatility of the S&P

500 over the next 30 days and thus makes an logical inclusion.
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Part II

Practical Alternatives: (Ad-hoc)

Black-Scholes and the VIX



II.1 Motivation

Despite the empirical success of the models in Part I, namely NAGARCH and the bi-

directional Markov switching models of (Duan et al., 2002), they do have some prac-

tical drawbacks. The relatively complex, computationally burdensome and time

intensive estimation routines, such as (randomized quasi) Monte Carlo methods

and multinomial lattices, discourage some financial institutions and (private) in-

vestors from using these models. These practitioners often depend on an instanta-

neously available estimate and cannot afford to spend time on estimation routines.

Therefore, models that produce closed-form solutions for pricing securities such as

derivatives are in high demand.

One of the most well-known of these models is the Nobel prize-winning Black-

Scholes model (Black and Scholes, 1973; Merton, 1973). However, in the past decades,

several studies in academia have shown that the constant volatility assumption of

Black-Scholes does not hold up empirically and have thus looked for model exten-

sions and alternative frameworks. One of these model extensions, known as the

ad-hoc Black-Scholes model (Dumas et al., 1998), has shown very promising results

and was therefore adopted by many practitioners and researchers alike.

Despite pricing derivatives, volatility is also used in many other ways, including

risk and portfolio management. Hence, this thesis adopts the modern portfolio the-

ory of (Markowitz, 1952; Markowitz, 1959) and uses the implied volatility under

the ad-hoc Black-Scholes model as an input parameter for the risk component of

the framework. Two, alternative strategies are considered as benchmarks in the
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portfolio analysis part; a buy-and-hold strategy and one using the VIX. The CBOE

Volatility Index (VIX) also estimates implied volatility and provides investors with

an easily and instantaneously available estimate.

The second thesis part is structured in the following way. First, in chapter II.2, the

portfolio framework, the ad-hoc Black-Scholes model, and the VIX are presented.

Then, in chapter II.3 the data set used for the empirical analysis is described, before,

in chapter II.4, the analysis settings and results are reported1. The thesis ends in

chapter II.5 with the conclusions of the empirical analysis and gives an outlook for

potential further research.

1Since the second part is required to exist independently of the first part, the reader should be
aware that some of the presented content, such as the data description and the empirical settings, are
summaries of the corresponding chapters in Part I.
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II.2.1 Portfolio Theory

As in Part I, modern portfolio theory (MPT) is employed. MPT is based on the Nobel

prize-winning two-factor model proposed in (Markowitz, 1952) and linked to the

utility theory of (Von Neumann and Morgenstern, 1945) by (Markowitz, 1959). To-

bin’s separation theorem (Tobin, 1958) then states that the investment and financing

decision of the investor are independent of each other. Hence, the optimal portfolio

in this framework is a split between the market portfolio and a risk-free asset, and only

the amounts invested in each of the two assets depend on the risk aversion level of

the investor.

Hence, it is assumed that an investor can invest in two assets, a risky one, namely

the S&P 5001, and a risk-free one such as a 10-year U.S. government bond2. The

investor is assumed to be equipped with an information set Ψt that contains all rel-

evant information until time t. The challenge for the investor is then to allocate the

fractions of his or her portfolio to the risk-free and risky assets in a manner that

maximizes the investor’s utility. To simplify, it is assumed that the investor’s utility

function only relies on the mean and the variance of the portfolio returns.

1Since buying the whole index is not very practically, the usual way this theory can nowadays
be implemented is by buying an Exchange Traded Fund (ETF) on the stock index. However, this
might lead to tracking errors and the portfolio performance might deviate even in the case when all
assumptions were met.

2Although the 10-year U.S. government bond might not be entirely free of risk, especially during
the current period of increased political risk, it is still frequently used in academia as a synonym for
a risk-free investment.
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Let the fractions of the portfolio invested in each asset be denoted by xs and xb,

respectively. The expected value and variance of the portfolio returns are given by3:

Et[R
P
t+1] = xstEt[R

s
t+1] + xbtrf and

Vt[R
P
t+1] = (xst)

2Vt[R
s
t+1],

(II.2.1)

with the usual short notation Et[R
P
t+1] ≡ E[Rt+1|Ψt] and rf being the appropriate

risk-free rate, i.e. the current risk-free yield corresponding to the time horizon of the

investment.

The investor’s optimal allocation at time t under this framework thus needs to si-

multaneously maximize Et[R
P
t+1] and minimize Vt[R

P
t+1]. This is formalized as

x∗t = argmin
xst ,x

b
t

−κ
(
xstEt[R

s
t+1] + xbtrf

)
+

1

2
(xst)

2Vart[R
s
t+1] s.t. xst + xbt = 1. (II.2.2)

with κ and xst +xbt = 1 being the investor’s risk aversion level and budget constraint,

respectively.

As can be shown, this leads to the parametric-efficient portfolio allocations deter-

mined by

xs∗t =
Et[R

s
t+1]− rf

κVart[Rs
t+1]

, xb∗t = 1− xs∗t . (II.2.3)

Thus, estimates for the mean and variance of the return process are needed.

II.2.2 Black-Scholes

Although the mean of a return series has usually been impossible to forecast accu-

rately, researchers have been successful in predicting the second moment to a certain

degree. Throughout the years, a great number of papers attempted to formalize in-

creasingly convoluted frameworks in an attempt to fit cross-sections of observed
3For the derivation of these results, see for example (Best, 2010).
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option prices as perfectly as possible upon a proposed volatility process4. How-

ever, quite often some of these approaches face serious over-fitting issues and thus

usually do not perform well out-of-sample. One very successful and surprisingly

simple model that is regularly being used by some market participants is the ad-hoc

Black-Scholes model (ABS).

In order to present ABS, it is necessary to give a short overview of the original Nobel

prize-winning framework presented in the seminal papers (Black and Scholes, 1973)

and (Merton, 1973). Similarly to the setting assumed in this thesis, the Black-Scholes

model (henceforth, BS) considers the availability of two securities, a risk-free invest-

ment B, say a government bond, and an investment opportunity S with a volatile

return history, say a stock (index). Due to its risk-free characteristic, the price of B

at time t is given by

B(t) = erf t. (II.2.4)

Meanwhile, S (under the historical probability measure P) is assumed to follow a

geometric Brownian motion, i.e.

dS(t)

S(t)
= µdt+ σdW P(t), (II.2.5)

where dW P is a standard Brownian motion under P with respect to a given filtration

induced by the information set of the investor. The parameters µ and σ are usually

referred to as drift and volatility of the process and resemble the mean of the instan-

taneous rate of return on the stock and its sensitivity to the risk factor dW P.

To solve the differential equation (II.2.5), Itô’s lemma (Itô, 1944) is applied, which

leads to

St = S0e
(µ− 1

2
σ2)t+σW P

t , (II.2.6)
4Most popular are probably the stochastic volatility models, such as (Heston and Nandi, 2000),

and the deterministic volatility models, which are usually built around the GARCH framework (En-
gle, 1982; Bollerslev, 1986). For a brief overview and discussion of the main modeling approaches,
see section I.2.2 of Part I.
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where S0 denotes the start value of the stock price process.

To price a derivative under this framework, it is necessary to derive the price process

under an equivalent risk-neutral probability measure Q. It can be shown that this

yields

St = S0e
(rf− 1

2
σ2)t+σWQ

t , (II.2.7)

with rf denoting the risk-free rate and WQ
t = W P

t +
µ−rf
σ
t being a standard Brownian

motion under Q. Black, Scholes and Merton proved that pricing a European call op-

tion on a non-dividend paying stock and a European put option on a non-dividend

paying stock, with maturity T and strike price K, has the following closed-form

solutions:

Ct = StΦ(d1)−Ke−rf (T−t)Φ(d2) (II.2.8)

and

Pt = Ke−rf (T−t)Φ(−d2)− StΦ(−d1), (II.2.9)

where

d1 =
ln(St/K) + (rf + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

(II.2.10)

As usual, Φ(x) is the distribution function of a standard normal random variable,

i.e.

Φ(x) =

∫ x

−∞

1√
2π
e−

y2

2 dy. (II.2.11)

The Black-Scholes option price can thus be expressed as BS(St, K, T, rf , σ), i.e. as a

function of the stock price at time t, the option’s strike price and maturity, the risk-

free rate and the stock’s volatility. Two important observations must be made. First,

since the first four parameters are given at time t, the option pricing under Black-

Scholes boils down to estimating the unobservable stock volatility. Second, under

58
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BS, the stock volatility is assumed to be constant over time and to be the same for

all option contracts.

This leads to the following pricing procedure under BS:

1. Obtain a cross-section of option prices on day t, Cmkt.

2. For each option find the implied volatility σBSIV,i, i.e. σBSIV,i : Cmkt(Ki, Ti) =

BS(St, K, T, rf , σBSIV,i).

3. The Black-Scholes implied volatility on day t is then estimated as σBSIV =

1
N

∑N
i=1 σBSIV,i.

4. Hence, the BS price of option i on day t is BS(St, Ki, Ti, rf , σBSIV ) and the BS

price of option j on day t+ 1 (out-of-sample) is BS(St+1, Kj, Tj, rf , σBSIV ).

II.2.3 Ad-hoc Black-Scholes

Nowadays, BS is widely rejected by academia and many practitioners, because the

constant volatility assumption is considered to be unfit with many market observa-

tions5. A model extension that deals with this issue was presented in (Dumas et al.,

1998), where the volatility is still considered to be deterministic and the BS pricing

formulas are applied, but each option uses its own volatility rather than keeping the

same value over all different strike prices and maturities. Under this ad-hoc Black-

Scholes model (henceforth, ABS), the BS implied volatilities are regressed upon a

polynomial function of the strike prices and maturities of these options. Although

there are infinite possible polynomial functions that could be used for this matter,

(Dumas et al., 1998) suggest a quadratic form based on the observed parabolic Black-

Scholes implied volatility patterns ("volatility smile/skew"). Hence, ABS assumes

5According to Black himself a few years later: "... if the volatility of a stock changes over time, the
option formulas that assume a constant volatility are wrong." (Black, 1976, p. 177).
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the following structure for the volatility of option iwith strike priceKi and maturity

Ti:

σBSIV,i = β0 + β1Ki + β2K
2
i + β3Ti + β4T

2
i + β5KiTi + εi, (II.2.12)

where εi is a zero mean error term. Note that β1 = β2 = β3 = β4 = β5 leads to the

original Black-Scholes model.

The pricing procedure under ABS can thus be summarized as:

1. Obtain a cross-section of option prices on day t, Cmkt.

2. For each option find the implied volatility σBSIV,i, i.e. σBSIV,i : Cmkt(Ki, Ti) =

BS(St, K, T, rf , σBSIV,i).

3. Run the regression in (II.2.12) and denote the fitted values by σ̂ABS .

4. The ABS price of option i on day t is then BS (St, Ki, Ti, rf , σ̂ABSKi, Ti)) and

for option j on day t+ 1 (out-of-sample): BS (St+1, Kj, Tj, rf , σ̂ABS(Kj, Tj)).

II.2.4 The VIX

An alternative way to measure the S&P 500 stock index volatility is the Volatility

Index (VIX) published by the Chicago Board Options Exchange (CBOE). The VIX,

often also called the ’investor fear gauge’ (Whaley, 2000), provides a measure for the

expected volatility of the S&P 500 over the next 30 days and is frequently recognized

as one of the chief benchmarks for stock market volatility in the U.S. Its nickname

reflects the index’ tendency to jump up when a financial crisis is imminent, as can

be observed in Figure B.18. The observation is further supported by a correlation

analysis, where the VIX showed a correlation of -0.6851 with the S&P 500 index

during the period January 01, 2010 to July 31, 2014, providing further evidence for

the VIX’s importance for S&P 500 investors.
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Similar to the BS and ABS models above, the VIX provides an implied volatility

estimate, which is inferred from cross-sections of observed option prices. According

to (Chicago Board Options Exchange, 2014), the VIX is calculated as

σ̂V IX,t = 100

√√√√ 2

T

∑
i

∆Ki

K2
i

erfTQt(Ki)−
1

T

[
Ft
K0

]2
, (II.2.13)

where K and T again denote the strike price and time to maturity of an option and

rf the appropriate risk-free rate. Additionally, F stands for the forward value of the

S&P 500 index, K0 for the first strike price below F and Q(Ki) for the midpoint of

the bid-ask spread for each option with strike Ki. To interpolate the 30-day horizon,

the VIX uses put and call options with more than 23 days and less than 37 days to

expiration6. One major advantage of the VIX is the availability of historical data for

the last three decades provided by CBOE. Although the VIX does not attempt to be

an instrument to price option contracts (like the BS and ABS models do), because

of its simplicity and high data availability, it is a premier source for obtaining esti-

mates for the volatility of the S&P 500 and hence suitable for the portfolio allocation

analysis part of this thesis.

6For further details on the calculation of the VIX, see (Chicago Board Options Exchange, 2014).
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The thesis uses weekly stock market data on the S&P 500 index obtained from the

Wharton Research Data Services of the University of Pennsylvania. The data set was

obtained for the period January 01, 2010 to July 31, 20141, and on each day, the clos-

ing index level is obtained (Figure B.1). Furthermore, data on all traded put and call

option contracts (with the index as the underlying) are collected every Wednesday2,

leading to 239 observation days. The option data set consists of the best bid and ask

prices, trading volumes, strike prices, and maturities of the option contracts.

Since the S&P 500 index options are European style and many of the index’s stocks

pay dividends, adjustments need to be made. Therefore, the cash dividend pay-

ments are obtained from the S&P 500 information bulletin and the linearly interpo-

lated LIBOR curve is used as a proxy for the risk-free rate. Given both data sets, and

assuming the future dividend payment structure to be known at time t, the present

value of all future dividend payments until the maturity of each option is calculated

and subsequently subtracted from the current stock value. Note that this leads to

an adjusted index level on each day that might differ within each cross-section of

option contracts.

The option data set is then filtered in several ways (following, in part, (Dumas et al.,

1998)). Options with maturities of less than six or more than 100 days are excluded,

1For detailed reasoning on why the S&P 500 index and this particular period length were chosen,
as well as many further details, it is referred to chapter I.4 of Part I.

2Wednesday was chosen, as usual, because it historically has been the weekday with the least
holidays in a year in the U.S. In any case, if a holiday still falls on a Wednesday, the next available
trading day is used instead.
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as well as options with a trading volume of less than 50, to avoid liquidity-related bi-

ases in the observed option prices. Additionally, options with prices below $0.30 are

filtered out to prevent problems stemming from price discreteness. Next, a mon-

eyness filter is applied to remove deep-in-the-money and deep-out-of-the-money

options. Finally, a set of non-arbitrage conditions (as discussed in (Gonçalves and

Guidolin, 2006)) is tested and violations extracted from the data series (for further

details see section I.4.3 of Part I). To make the results comparable to other well-

known papers on option pricing (such as (Christoffersen and Jacobs, 2004)), only

call option contracts are considered, although the analysis can be performed analo-

gously with put option contracts.
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The weekly recordings of option prices are split into four sections. The first week’s

observations serve for the in-sample parameter estimation and the following three

weeks are used for out-of-sample testing. Option contracts are then classified by

their maturity and moneyness, with the numbers of contracts and their prices dis-

played in Table B.1 and Table B.2, respectively.

II.4.1 Parameter Estimation

Following the pricing procedures outlined in chapter II.2 on a cross-section of option

prices, the parameters of the BS and ABS models are estimated by minimizing the

mean square error with the observed market prices, i.e. for ABS:

MSEt =
1

N

N∑
j=1

(
CABS
j,t − Cmkt

j,t

)2
. (II.4.1)

These parameters are then held constant over the next four weeks and the mean

square errors of the modeled option prices in each of the three out-of-sample weeks

are calculated.

For the portfolio allocation analysis, and building upon the results in Part I, the unit

risk premium during the period January 01, 2010 until July 31, 2014, is estimated at

2.41% (see λ in Table B.3). As an estimate for the daily volatility of the S&P 500 over
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the next period, the mean of σ̂ABS is used, which is obtained during each in-sample

analysis every four weeks. For the risk aversion level, the thesis considers three

cases, namely κ = 2, 4, 8. The portfolio framework then calculates the parametric-

efficient weights via (II.2.3) and re-balances monthly when the new weights are set1.

II.4.2 Trading Costs

Other than in the asset allocation model outlined in section II.2.1, the thesis addition-

ally considers the effect of trading costs on the portfolio performance2. Furthermore,

short-selling is allowed at the risk-free rate but capped at 200% of equity, resulting

in xs ∈ [0, 2] and xb ∈ [−1, 1]. Short selling costs apply and are set at two basis points

of borrowed value, but transaction costs for trading the risk-free rate are omitted.

For the risky asset, (Domowitz et al., 2001) estimate the combined transaction costs

for trading on the NYSE in 2000 at roughly 30 basis points of trade value. Thus,

considering significant innovations in infrastructure and technology during the last

two decades, transaction costs are set at ten basis points of trade value.

To determine the traded portfolio value, it is necessary to determine by how much

the previously allocated fraction of the portfolio has changed. Hence, at time t the

current fraction of the portfolio invested in the risky asset is

x̂st =
xst−1e

Rs
t

xst−1e
Rs

t + xbt−1e
rf
, (II.4.2)

where Rs
t and rf are the returns of the risky and risk-free assets over [t − 1, t], re-

spectively. The portfolio return over period [t, t+ 1] after trading costs is then given

1Although daily re-balancing is quite common in academia, as it more accurately displays the
performance of the strategy, it is very uncommon in the markets due to several market frictions
making it quite expensive.

2For a more in-depth discussion of the proposed trading costs, see subsection I.5.3.2 of Part I.
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by3

RP
t+1 = xstR

s
t+1 + xbtrf − 0.001|xst − x̂st |−0.0002 (xst − 1)+ . (II.4.3)

II.4.3 Performance Measures

Besides obtaining the mean and variance of the portfolio returns, performance is

also measured by the Sharpe Ratio (SR) and the Certainty Equivalent Return (CER).

Whilst SR measures the return the portfolio strategy provides in excess of the risk-

free alternative in relation to the risk taken, it does not incorporate the investor’s

level of risk aversion. This is included by adding CER, which gives an estimate

for the yield the investor would be willing to accept for opting not to invest in the

portfolio strategy.

Denoting the mean and variance of the resulting portfolio returns by µ̂ and σ̂, the

two measures are calculated as

SRj =
µ̂j − rf
σ̂j

(II.4.4)

and

CERj = µ̂j −
κ

2
σ̂j

2. (II.4.5)

II.4.4 Results

The ad-hoc Black-Scholes model was introduced and is being used as an improve-

ment over the standard Black-Scholes model. Hence, the analysis described so far

3By usual definition, (xst − 1)
+ ≡ max (xst − 1, 0).
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is compared to the BS framework, the VIX framework as another practical imple-

mentation, and to the models described in Part I, namely NAGARCH and the bi-

directional Markov switching models of (Duan et al., 2002).

The parameter estimates for the BS and ABS models are presented in Table B.12. It

is very apparent that none of the ABS estimates are significantly (at common sig-

nificance levels) different from zero, while the BS estimate is significantly different

from zero. However, this is of relatively low concern for the goals of this paper as it

focuses on option pricing rather than factor analysis. In fact, the in-sample and out-

of-sample pricing results for ABS, presented in Table B.9, show much smaller mean

square errors than the Black-Scholes model. Due to its approach, ABS achieves very

strong in-sample pricing accuracy, despite its simple and very fast estimation pro-

cedure. Furthermore, as displayed in Figure B.19, the ABS manages to replicate

a volatility skew, the phenomenon (frequently observed for index options) where

implied volatility is higher for options with lower strike prices than for options

with higher strike prices (at the same maturity)4. However, out-of-sample, although

still clearly surpassing standard Black-Scholes, the model performs worse than the

NAGARCH and Markov switching models of Part I, as it produces higher out-of-

sample mean square errors.

For the second part of the analysis, the portfolio strategy, the ABS induced portfolios

are compared to the VIX induced portfolios, according to the equations developed

under modern portfolio theory in chapter II.2. This attempts to show that the extra

effort that ABS requires (compared to BS or even more when compared to VIX) can

be beneficial even from an asset management perspective. The results are quantified

in Table B.10 and visualized in Figures B.14-B.17.

4A popular explanation for this kind of observation is that in-the-money calls (i.e. calls with lower
strike prices) are being bought to leverage stock exposure instead of buying the index itself, in order
to increase return on investment.
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The portfolio weights under the ABS strategy are quite aggressive, in the sense that

for κ = 2 the portfolio holds an average weight of approximately 144% of the in-

dex, i.e. is constantly leveraging its exposure. For this low risk-aversion level, the

ABS portfolio strategy then achieves a 2% to 6% (with/without trading costs) higher

annualized return than a straight buy-and-hold strategy of the index would have

achieved over the same period. However, these returns appear to also be a bit more

volatile, so that only without trading costs does the strategy achieve a Sharpe ra-

tio and Certainty Equivalent Return (0.8072 and 1.46%, respectively) higher than

that of a buy-and-hold strategy (0.7069 and 1.13%, respectively). The VIX strategy

instead uses a less aggressive strategy, with smaller fractions of the portfolio allo-

cated to the stock index and a higher fraction invested in the risk-free asset. This

indicates, based on (II.2.3), that the VIX implied volatility estimate is higher than

its ABS counterpart, an observation that has also been made when comparing the

VIX to the GARCH framework (Hao and Zhang, 2013). This results in lower annu-

alized returns, however, the annualized return of the strategy for low risk aversion

(κ = 2) is still higher than the one of a buy-and-hold strategy. As with ABS, VIX also

does manage to achieve a higher SR (0.8066) and CER (1.24%) in this case, when

compared to the buy-and-hold strategy. However compared with the ABS model

the VIX strategy performs worse in almost all measurements, with almost all of the

Sharpe ratios and Certainty Equivalent Returns being lower than in the ABS case.

If one compares these results with the ones obtained in Part I, it becomes apparent

that the NAGARCH model, which has seen remarkable popularity and empirical

success during recent years in many academic papers, still performs noticeably bet-

ter than even the ABS model. Specifically, the NAGARCH(-Q)’s Sharpe ratios for the

well-performing case of κ = 2 are 0.8387 and 0.9381 (with/without trading costs),

with a similar picture drawn by the Certainty Equivalent Returns. It is worth noting
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that according to the SR and CER measures, NAGARCH performs better than ABS

(and therefore VIX) also for higher risk aversion levels (in fact, NAGARCH manages

to achieve a higher Sharpe ratio and Certainty Equivalent Return than a buy-and-

hold strategy even for κ = 4, which is not the case with ABS).

Generally, the more risk averse the investor is, the less is being invested in the risky

asset, which during the analyzed period that showed a clear uptrend of the S&P 500,

hurts the strategy’s performance but might protect it during times of crises. Because

of this, the strategies corresponding to higher risk aversion levels of both portfolio

strategy can no longer compete with a buy-and-hold investor during the studied pe-

riod. Thus, based on these results, the more risk averse an investor is, the less he or

she should try to time market volatility with this strategy (especially during times

of prosperity) and rather straight up hold the index, which is an intuitive result and

frequently replicated in studies on portfolio management.
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After Part I has analyzed the economic value of implied volatilities in a modern port-

folio theory (MPT) setting, by comparing the NAGARCH framework with the bidi-

rectional Markov switching models proposed in (Duan et al., 2002), Part II has built

the bridge to models and instruments frequently favored by practitioners. Since the

results of MPT require an estimate for the risky asset’s volatility (in this case of the

stock index), a major part of this thesis deals with option pricing to determine which

model produces the lowest pricing errors, and thus potentially the best volatility es-

timate.

Starting from the Nobel prize-winning Black-Scholes (BS) model, which, in the past,

had been incredibly popular with practitioners, the ad-hoc Black-Scholes (ABS) model

of (Dumas et al., 1998) was introduced as a model extension and compared to its pre-

decessor in form of option pricing. The empirical analysis confirms the benefit of the

ABS model as it achieves smaller mean square pricing errors than the BS model and

replicates the volatility smirk that has been frequently observed with index options.

Then, based on the ABS implied volatility estimates a portfolio is constructed under

MPT and its performance compared with a buy-and-hold strategy. Despite show-

ing a clear uptrend, the ABS strategy achieves a higher Sharpe ratio and Certainty

Equivalent Return for low risk aversion, highlighting the value of volatility timing

for asset management purposes. Additionally, the potential value of the increased

complexity of ABS was shown again by comparing the model to a strategy based on
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the popular CBOE Volatility Index (VIX), which does not require any further com-

putations and is readily available, but seems to overestimate the index volatility

relative to the ABS (and GARCH) estimates. The results show that an investor who

wants to use either of the two instruments for a quantitative portfolio strategy using

MPT would likely be better off with the ad-hoc Black-Scholes model.

As was shown, if the investor is willing to put even more effort into his or her quan-

titative modeling approach, there have been significant contributions in recent years

in academia that might be able to achieve even better results. Most notably, the NA-

GARCH framework seems to still perform considerably better both for option pric-

ing and during the portfolio analysis under MPT, when compared to ABS. However,

this comes at the cost of increased complexity and model risk, as was shown dur-

ing the discussion of the randomized quasi Monte Carlo simulation for parameter

estimation in Part I. Therefore, using the ad-hoc Black-Scholes model might be a

sensible approach for practitioners (e.g. private investors) who want to improve

upon (or get an alternative for) the VIX and/or the standard Black-Scholes model

and do not want to indulge in more theoretical, and potentially complicated, frame-

works.

Regarding an outlook for future research, it is to be shown that these results can

hold up during a different period, most importantly during a downward cycle, and

perhaps in a different market. It should also be noted that this analysis assumes the

appropriateness of the MPT formulas. Despite its continuing relevance in academia,

some alternatives to MPT have become popular in recent years, such as the post-

modern portfolio theory, which softens some of the assumptions of MPT (such as

the assumed symmetry of the return distribution) or the Black-Litterman model,

which uses less assumptions and incorporates the individual investor’s belief in his

or her views. Hence, it is to be shown that the results in this thesis also hold up

under an alternative portfolio theory.
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A Mathematical Appendix

A.1 Derivation of B-MSM-Inf

Proof. Given the B-MSM formalization under the physical measure P in (I.3.17), the

volatility process for t = 1, . . . , T − 1 and 1 < i < K can equivalently be written as

σ
(K)
t+1 = δi(K) if

max

(
1
2

[
δ2i−1 + δ2i

]
− ω

ασ
(K)2
t

− β

α
, 0

)
≤

[
q1(zt − θ)+ + q2(zt − θ)− + (1− q1 − q2)|ξt|

]2
<

max

(
1
2

[
δ2i + δ2i+1

]
− ω

ασ
(K)2
t

− β

α
, 0

)
.

(A.1)

with

z∗t+1

ξt+1

 |Ψt
P∼ N (02×1, I2×2).

Assume that the partition condition (I.3.16) is satisfied and, without loss of general-

ity, that δ1 < δ2 < . . . < δK . Now, by construction, the ’max’ functions in (A.1) can

be dropped without loss of generality, since if the lower bound was non-positive for

all i > 1, the partition would call for σ(K)
t+1 = δ1 and analogously, if the upper bound

was non-positive for all i < K, the partition would imply σ(K)
t+1 = δK .
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Simplifying and rearranging then leads to

1

2
[δ2i−1 − δ2i ] ≤ ω + βσ

(K)2
t + ασ

(K)2
t

[
q1(zt − θ)+ + q2(zt − θ)−

+ (1− q1 − q2)|ξt|
]2 − δ2i < 1

2
[δ2i+1 − δ2i ].

(A.2)

Assuming that the partition condition holds, the gap between two adjacent volatil-

ity levels δi and δi+1 approaches zero as the number of regimes approach infinity.

Hence, the volatility process can equivalently be written as

σ
(K)2
t+1 = ω + βσ

(K)2
t + ασ

(K)2
t

[
q1(zt − θ)+ + q2(zt − θ)− + (1− q1 − q2)|ξt|

]2
+ h(K)

(A.3)

where h(K) → 0 as K → ∞. Hence, for a fixed σ
(K)
t and ω ≥ 0, α ≥ 0, β ≥ 0, (A.2)

and (A.3) imply that σ(K)
t+1 converges almost surely in P to

σ
(K)2
t+1 = ω + βσ

(K)2
t + ασ

(K)2
t

[
q1(zt − θ)+ + q2(zt − θ)− + (1− q1 − q2)|ξt|

]2
,

which implies that σ(K)2
t+1

a.s.→ σ2
t+1 leading to S

(K)
t

a.s.→ St in P as K → ∞. Now,

assuming that S(K)
0 = S0 and σ

(K)2
1 = σ2

1 are known, the same procedure can be

used over the full period [0, T ], implying that (I.3.17) converges almost surely in P to

(I.3.27).
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B Figures and Tables

FIGURE B.1: S&P 500 closing levels from January 01, 2011 till July 31,
2014.
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FIGURE B.2: S&P 500 daily log returns from January 01, 2011 till July
31, 2014.

FIGURE B.3: S&P 500 daily absolute log returns from January 01, 2011
till July 31, 2014.
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FIGURE B.4: NAGARCH-P portfolio returns for different risk aversion
levels without transaction costs.

FIGURE B.5: NAGARCH-P portfolio returns for different risk aversion
levels with transaction costs.
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FIGURE B.6: NAGARCH-Q portfolio returns for different risk aversion
levels without transaction costs.

FIGURE B.7: NAGARCH-Q portfolio returns for different risk aversion
levels with transaction costs.
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FIGURE B.8: U-MSM-2 portfolio returns for different risk aversion lev-
els without transaction costs.

FIGURE B.9: U-MSM-2 portfolio returns for different risk aversion lev-
els with transaction costs.
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FIGURE B.10: B-MSM-11 portfolio returns for different risk aversion
levels without transaction costs.

FIGURE B.11: B-MSM-11 portfolio returns for different risk aversion
levels with transaction costs.
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FIGURE B.12: B-MSM-Inf portfolio returns for different risk aversion
levels without transaction costs.

FIGURE B.13: B-MSM-Inf portfolio returns for different risk aversion
levels with transaction costs.
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FIGURE B.14: ABS portfolio returns for different risk aversion levels
without transaction costs.

FIGURE B.15: ABS portfolio returns for different risk aversion levels
with transaction costs.
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FIGURE B.16: VIX portfolio returns for different risk aversion levels
without transaction costs.

FIGURE B.17: VIX portfolio returns for different risk aversion levels
with transaction costs.
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FIGURE B.18: S&P 500 (blue, left) and VIX (red, right) between January
01, 2010 and July 31, 2014.

FIGURE B.19: Implied Volatility Plot: ABS vs BS (01/01/2010, 10 dtm).
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TABLE B.1: Number of contracts across moneyness and maturity.

Maturity Moneyness In-sample Week 1 Week 2 Week 3 Total

6-50 days
Short term
contracts

Mt < −0.075 23 18 21 23 85
−0.075 ≤Mt < −0.050 56 50 56 54 216
−0.050 ≤Mt < −0.025 176 143 187 144 650
−0.025 ≤Mt < 0.000 561 559 557 525 2202

0.000 ≤Mt < 0.025 1084 1111 1139 1041 4375
0.025 ≤Mt < 0.050 848 827 810 779 3264
0.050 ≤Mt < 0.075 371 375 395 366 1507

Mt ≥ 0.075 154 164 165 144 627

51-100 days
Long term
contracts

Mt < −0.075 13 16 6 11 46
−0.075 ≤Mt < −0.050 19 25 21 25 90
−0.050 ≤Mt < −0.025 48 49 51 51 199
−0.025 ≤Mt < 0.000 197 204 201 225 827

0.000 ≤Mt < 0.025 341 307 349 315 1312
0.025 ≤Mt < 0.050 319 294 285 285 1183
0.050 ≤Mt < 0.075 257 235 283 253 1028

Mt ≥ 0.075 170 160 167 172 669

Total 4637 4537 4693 4413 18280

The table shows the number of call contracts across different maturity and moneyness brackets
available in the data set. Moneyness is defined as Mt := K/Ft − 1. The data is shown for the
in-sample weeks and the three following out-of-sample weeks between January 01, 2010 and July
31, 2014.
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TABLE B.2: Average quoted mid price across moneyness and maturity.

Maturity Moneyness In-sample Week 1 Week 2 Week 3 All

6-50 days
Short term
contracts

Mt < −0.075 120.19 120.60 136.37 121.05 124.51
−0.075 ≤Mt < −0.050 90.47 94.70 90.86 92.61 92.08
−0.050 ≤Mt < −0.025 60.59 59.98 59.99 61.56 60.50
−0.025 ≤Mt < 0.000 28.90 28.44 28.93 29.77 29.00

0.000 ≤Mt < 0.025 11.52 11.20 10.98 11.50 11.29
0.025 ≤Mt < 0.050 3.67 3.78 3.69 4.01 3.78
0.050 ≤Mt < 0.075 2.13 2.33 2.00 2.11 2.14

Mt ≥ 0.075 1.61 1.38 1.21 1.57 1.44

51-100 days
Long term
contracts

Mt < −0.075 136.03 138.22 147.10 123.85 123.85
−0.075 ≤Mt < −0.050 100.49 104.25 103.00 105.82 105.82
−0.050 ≤Mt < −0.025 74.29 74.85 71.32 74.55 74.55
−0.025 ≤Mt < 0.000 47.04 47.30 47.22 46.39 46.39

0.000 ≤Mt < 0.025 30.23 30.85 31.21 30.49 30.49
0.025 ≤Mt < 0.050 13.60 14.83 15.06 14.24 14.24
0.050 ≤Mt < 0.075 6.43 7.28 7.34 6.05 6.05

Mt ≥ 0.075 3.99 4.94 4.15 3.58 3.58

The table shows the average recorded market prices for all call contracts across different maturity
and moneyness brackets in the data set. Moneyness is defined asMt := K/Ft−1. The data is shown
for the in-sample weeks and the three following out-of-sample weeks between January 01, 2010 and
July 31, 2014.
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TABLE B.3: Parameter estimates

Models Parameters

NAGARCH-P ω α β λ θ
Mean 2.05E − 06 0.0724 0.8473 0.0241 0.9844
StDev 5.64E − 08 0.0020 0.0009 0.0033 0.0302

NAGARCH-Q ω α β θ∗

Mean 2.04E − 06 0.0863 0.7875 1.0676
StDev 1.84E − 06 0.0692 0.1690 0.5595

U-MSM-2 δ1 δ2 p11 p22
Mean 0.0076 0.0080 0.9539 0.9940
StDev 0.0030 0.0015 0.1090 0.0301

B-MSM-11 ω α β θ∗ q1 q2 σ̄t,T
Mean 1.07E − 07 0.2034 0.8215 0.6280 0.0606 0.0216 0.0076
StDev 1.96E − 06 0.2736 0.2835 3.5376 0.1193 0.0565 0.0023

B-MSM-Inf ω α β θ∗ q1 q2 σt
Mean 8.06E − 06 0.1465 0.2897 3.7709 0.4442 0.5479 0.0069
StDev 4.88E − 06 0.0314 0.2445 0.8919 0.1064 0.1058 0.0059

ABS β0 β1 β2 β3 β4 β5
Mean 0.0406 −4.7239E − 05 1.6427E − 08 1.9893E − 04 −4.1895E − 08 −1.2453E − 07
StDev 4.88E − 06 0.0314 0.2445 0.8919 0.1064 0.1058 0.0059

The table presents the parameter estimates obtained during the monthly estimation procedure. Shown are the sample means and
standard deviations across all 60 weekly estimations.
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TABLE B.4: Mean square errors in-sample and out-of-sample

Models In-sample Week 1 Week 2 Week 3

NAGARCH-Q 2.3784 6.6483 11.8423 13.0309
(0.9010) (3.8530) (9.2123) (10.2575)

U-MSM-2 6.4502 7.1739 11.4403 15.5383
(1.8569) (4.1074) (8.5114) (14.5939)

B-MSM-11 1.9733 10.2937 15.4064 22.5833
(0.8699) (3.3326) (13.0216) (14.0324)

B-MSM-Inf 2.2646 7.0041 12.2179 13.9965
(0.8330) (3.2715) (10.8232) (11.8431)

The sample mean and standard deviations of the model’s MSE val-
ues are presented, both in-sample and out-of-sample. U-MSM-2 and
B-MSM-11 use the average state mean square errors.

TABLE B.5: Optimal portfolio allocations

Models κ = 2 κ = 4 κ = 8

NAGARCH-Q 1.0509 0.5279 0.2646
(0.3606) (0.1826) (0.0920)

U-MSM-2 1.0534 0.5291 0.2653
(0.3690) (0.1870) (0.0942)

B-MSM-11 1.0044 0.5389 0.2697
(0.5922) (0.3818) (0.1901)

B-MSM-Inf 1.3969 0.9597 0.7008
(0.5899) (0.6491) (0.6988)

Displayed are the sample means and standard er-
rors of the weight allocations to the risky asset for
each strategy and κ.
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TABLE B.6: Portfolio returns

Models Trading costs κ = 2 κ = 4 κ = 8

NAGARCH-P Yes 17.69% 9.48% 4.82%
No 19.46% 9.74% 4.95%

NAGARCH-Q Yes 18.15% 9.73% 4.95%
No 19.97% 10.00% 5.08%

U-MSM-2 Yes 14.18% 7.06% 3.77%
No 16.86% 7.81% 4.02%

B-MSM-11 Yes 17.93% 10.48% 5.30%
No 21.60% 10.69% 5.38%

B-MSM-Inf Yes 19.26% 13.74% 9.85%
No 23.74% 16.48% 12.33%

The table presents the annualized portfolio returns for several risk
aversion parameters with and without trading costs. As a bench-
mark, the S&P 500 index achieved an annualized return of 16.82%
over the same period.

TABLE B.7: Portfolio Sharpe ratios

Models Trading costs κ = 2 κ = 4 κ = 8

NAGARCH-P Yes 0.8196 0.7317 0.4241
No 0.9189 0.7604 0.4528

NAGARCH-Q Yes 0.8387 0.7546 0.4490
No 0.9381 0.7833 0.4776

U-MSM-2 Yes 0.5808 0.3878 0.1605
No 0.7203 0.4585 0.2063

B-MSM-11 Yes 0.5942 0.6056 0.3821
No 0.7183 0.6228 0.3974

B-MSM-Inf Yes 0.6687 0.6171 0.4719
No 0.8502 0.7738 0.6400

The table presents the Sharpe ratios for each strategy for several
risk aversion parameters and with and without trading costs.
The risk-free rate is chosen as the mean of the short-ends of the
LIBOR curve during the period, which amounts to 2.92% an-
nually and 3.24E − 06 daily. As a benchmark, a buy-and-hold
strategy using the S&P 500 would have achieved a Sharpe ratio
of 0.7069 given this interest rate.
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TABLE B.8: Certainty equivalent returns

Models Trading costs κ = 2 κ = 4 κ = 8

NAGARCH-P Yes 0.23 0.13 -0.11
No 0.28 0.24 -0.08

NAGARCH-Q Yes 0.24 0.17 -0.09
No 0.32 0.25 -0.06

U-MSM-2 Yes 0.11 -0.22 -0.37
No 0.13 0.01 -0.31

B-MSM-11 Yes 0.21 -0.12 -0.15
No 0.22 0.20 -0.13

B-MSM-Inf Yes 0.30 0.16 -0.10
No 0.42 0.22 -0.06

The table presents the excess annualized certainty equivalent
returns (CER) for each strategy for several risk aversion pa-
rameters, with and without trading costs, over the S&P 500
index during the studied period. Results are presented in ba-
sis points (bp). As a benchmark, a buy-and-hold strategy us-
ing the S&P 500 would have achieved CER’s of 113bp, 79bp
and 12bp for the different risk aversion levels, respectively.

TABLE B.9: Mean square errors in-sample and out-of-
sample for ABS vs BS

In-sample Week 1 Week 2 Week 3

ABS 1.9782 8.7026 13.0883 16.3166
(2.8389) (14.2423) (16.8888) (20.5249)

BS 9.9463 16.7210 20.8447 31.9308
(4.6135) (13.8585) (18.5099) (65.7863)

The sample mean and standard deviations of the ABS
and BS models’ MSE values are presented, both in-sample
and for each of the three out-of-sample weeks.
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TABLE B.10: ABS Portfolio Strategy

Measure Trading costs κ = 2 κ = 4 κ = 8 S&P 500

Portfolio Weights 1.4384 0.7357 0.3678 1.0000
(0.4139) (0.2383) (0.1191) (0.0000)

Annualized Returns Yes 18.67% 11.30% 5.78%
16.82%No 22.88% 11.77% 5.98%

SR Yes 0.6369 0.6654 0.4535
0.7069No 0.8072 0.7032 0.4862

CER Yes 1.09% 0.71% 0.36% ∗No 1.46% 0.75% 0.38%

The table presents the average inferred portfolio weights of ABS, with its standard
errors in parentheses, as well as its annualized portfolio returns, SR and CER for several
risk aversion parameters with and without trading costs.
∗ As a benchmark, the performance of a S&P 500 buy-and-hold strategy is shown,
which accomplishes CER’s of 1.13%, 0.79% and 0.12% for the different risk aversion
levels, respectively.

TABLE B.11: VIX Portfolio Strategy

Measure Trading costs κ = 2 κ = 4 κ = 8 S&P 500

Portfolio Weights 1.0816 0.5408 0.2704 1.0000
(0.3370) (0.1685) (0.0843) (0.0000)

Annualized Returns Yes 15.86% 8.65% 4.41%
16.82%No 17.56% 8.88% 4.54%

SR Yes 0.7127 0.6314 0.3269
0.7069No 0.8066 0.6562 0.3552

CER Yes 1.09% 0.61% 0.31% ∗No 1.24% 0.63% 0.32%

The table presents the average inferred portfolio weights of the VIX strategy, with its
standard errors in parentheses, as well as its annualized portfolio returns, SR and CER
for several risk aversion parameters with and without trading costs.
∗ As a benchmark, the performance of a S&P 500 buy-and-hold strategy is shown,
which accomplishes CER’s of 1.13%, 0.79% and 0.12% for the different risk aversion
levels, respectively.
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TABLE B.12: ABS vs BS parameter estimates

Parameters

ABS β0 β1 β2 β3 β4 β5
4.0641E − 02 −4.7239E − 05 1.6427E − 08 1.9893E − 04 −4.1895E − 08 −1.2453E − 07

(2.7063E − 01) (3.2080E − 04) (9.8771E − 08) (6.7783E − 04) (5.4320E − 07) (4.6187E − 07)

BS β0
7.6230E − 03

(2.5537E − 03)

The table presents the ABS and BS parameter estimates obtained during the monthly estimation procedure. Shown are
the sample means and standard deviations across all 60 weekly estimations.
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