
Stockholm School of Economics

Department of Economics

5350 Master’s Thesis in Economics

Academic Year 2017–2018

Risk-Managed Momentum Strategy

Using Support Vector Machines

Patrick Daniel Schneeberger (41214)∗

Abstract

Investment decisions are difficult to make, given the uncertainty about the future. For the

purpose of reducing that uncertainty, I investigate, for one, how the consumer price index

and the return on the 3-month US Treasury bill can be used by support vector machines to

make monthly directional trend predictions of a value-weighted portfolio of stocks traded

at AMEX, NYSE and NASDAQ. For another, I examine to which extent the risk-managed

momentum strategy proposed by Barroso and Santa-Clara (2015) can be improved when

those predictions are incorporated. I find that the monthly stock market prediction accuracy

lies at 61.1 percent over the time horizon from 1965 to 2017. A prediction-based flexible

volatility target in the risk-managed momentum strategy achieves an improvement in the

higher order moments as well as in the Sharpe ratio which in turn reduces the crash risk of

momentum.

Keywords: Financial Market, Investment Decisions, Momentum Strategy,

Support Vector Machines

JEL: C38, G01, G10, G11

Supervisor: Federica Romei

Date submitted: 9th May 2018

Date examined: 29th May 2018

Discussant: Jonas Nauerz

Examiner: Maria Perrotta Berlin

∗41214@student.hhs.se



Acknowledgements

I would like to thank my thesis supervisors Prof. Federica Romei, Ph.D. of the Economics

Department at the Stockholm School of Economics, and Prof. Paul Söderlind, Ph.D. of the Swiss
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1 Introduction

Investment decisions would be straightforward if an investor had complete information about the

future. Unfortunately, investment decisions must be made under uncertainty, for the future has

yet to unfold. Accurate predictions would reduce that uncertainty but, as Niels Bohr ironically

states, ”It’s tough to make predictions, especially about the future.”1 Despite this problematique,

it is not a matter of impossibility. Indeed, when it comes to financial time series applications, the

classification method of support vector machines has proven to provide very promising results

(Theofilatos, Georgopoulos, Likothanassis & Mavroudi, 2014).

This leads to the two-fold research question: First, to which extent are support vector

machines capable of predicting a stock market’s directional trend when using macroeconomic

input features on a monthly basis? Second, how much can an investment strategy, namely the

risk-managed momentum strategy proposed by Barroso and Santa-Clara (2015), be improved

when those predictions are incorporated? I will develop a model along these two questions but in

reverse order; doing so elucidates more clearly the momentum strategy’s link with the support

vector machine predictions.

Those questions will be answered by investigating the US stock market. Using support vector

machines, I predict the directional trend of the value-weighted portfolio constructed out of all

stocks traded at AMEX, NYSE and NASDAQ as these are the stocks which are used to build

the momentum portfolios. The monthly percentage change in the consumer price index as well

as the monthly percentage change in the return on the 3-month US Treasury bill are used as

macroeconomic input features for the support vector machines. Subsequently, I incorporate these

findings into the risk-managed momentum strategy proposed by Barroso and Santa-Clara (2015),

which in turn is based on the findings of Jegadeesh and Titman (1993). Barroso and Santa-Clara

found that around 77 percent of the risk of momentum is attributed to specific risk and even

though it is highly variable over time, it can be predicted to some degree. Their model uses

monthly volatility forecasts of momentum returns to scale the exposure to the momentum risk

towards a certain target level in order to have a constant risk over time. They chose a target

corresponding to an annualised volatility of 12 percent, whereas I let this target to be flexible

and dependent on the stock market’s directional trend prediction. When the market is predicted

to flourish, I allow for a higher volatility target and for a lower if otherwise.

Thereafter, I analyse the performance of the following investment strategy. At first an investor

1It is unclear who deserves the laurels. Niels Bohr, Samuel Goldwyn, K. K. Steincke, Robert Storm Petersen,

Yogi Berra, Mark Twain and Nostradamus are worth considering.
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puts exactly one dollar into the risk-free asset. Simultaneously, he invests a certain percentage of

that risk-free investment in the momentum portfolio.2 Each month, this strategy reinvests the

accumulated wealth in the risk-free rate and puts anew a certain percentage of this investment

in the momentum portfolio.

Given the availability of data, I am able to apply the above mentioned strategy on the time

horizon beginning in February 1965 and ending in December 2017. Predictions of the support

vector machines prove to be accurate 61.1 percent of the time, which reduces the uncertainty

about the future. The incorporation into the risk-managed momentum strategy results in an

increase in the Sharpe ratio from 0.752 to 0.832 when compared to the model proposed by

Barroso and Santa-Clara (2015). Furthermore, the higher order moments improve as well, which

in turn leads to a lower crash risk of momentum.

The remainder of this thesis is as follows. Chapter two contains a review of the existing

literature in the field of momentum strategy as well as of support vector machines. Chapter

three elaborates on all components of my model on the risk-managed momentum strategy with

a flexible target volatility. Chapter four discusses the data. In chapter five, the results are

presented and discussed while chapter six investigates the robustness of these results. Chapter

seven closes the thesis with a conclusion.

2This percentage depends on whether the standard momentum strategy by Jegadeesh and Titman (1993),

the risk-managed momentum strategy by Barroso and Santa-Clara (2015) or my strategy using different scaling

methods is applied.
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2 Economic Background and Motivation

My model makes a two-fold contribution to the academic literature. On the one hand, it

demonstrates how macroeconomic data can be used by support vector machines [SVMs] in order

to make one-month ahead forecasts of the stock market’s trend direction. On the other hand, it

shows that the incorporation of these findings into a risk-managed momentum strategy leads to

an improvement in the Sharpe ratio as well as in the higher order moments.

I build on the momentum strategy proposed by Barroso and Santa-Clara (2015), which has,

in contrast to the standard momentum strategy of Jegadeesh and Titman (1993), some sort of

risk-management involved. The aim of this risk management is to steer the portfolio’s volatility

to a previously determined target in order to achieve a constant risk over time. This is achieved

by scaling the weights invested in the winners-minus-losers [WML] portfolio by the fraction of

the target over the portfolio’s monthly volatility forecast. Barroso and Santa-Clara opted for a 12

percent annualised volatility as their target level. This is exactly the point where I enhance their

strategy by using a flexible instead of a constant volatility target level. The trend prediction of

the stock market movement determines the level of the target: more volatility is allowed if the

prediction is positive and less if the forecast is negative.

Kim (2003) showed that support vector machines give promising results when it comes to

financial time series predictions. His empirical findings on the daily Korean composite stock

market index are that SVMs outperform other prediction methods such as back-propagation

neural networks and case-based reasoning. Likewise, I take the SVM approach to get stock

market predictions but on a monthly basis. The aim is to predict the trend direction of a

value-weighted portfolio, which is constructed out of all the stocks traded at AMEX, NYSE and

NASDAQ stock exchanges. I use the monthly percentage change in both the consumer price

index [CPI] and the return on the 3-month US Treasury bill as input features for the SVMs. The

output of the model is either an up or down movement prediction of the value-weighted portfolio.

Confident predictions of the future trend-direction of these stocks – which potentially are part of

the momentum strategy –, allow an investor to appropriately adjust the volatility target from

the momentum strategy and thereby to optimise his profits.

All in all, my empirical research shows that predictions made by SVMs can be incorporated

into a risk-managed momentum strategy, and doing so helps to improve it in terms of lowering

an investor’s risk. The following two subchapters provide a broader overview on the current state

of literature regarding momentum strategy as well as support vector machines.
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2.1 Momentum Strategy

Momentum is a measure of the increase or decrease of a stock price over a given time horizon.

Stocks that grow fast over a certain period are considered to have a positive momentum or a

negative momentum if otherwise. Jegadeesh and Titman (1993, 2001) and Chan, Jegadeesh and

Lakonishok (1996) demonstrated that stocks having performed well in the past continued to do so

over the next year. Additionally, they found that stocks with a higher momentum underperform

in the long term, that is, in the subsequent 24 to 60 months. These findings led to a so-called

momentum strategy of buying past winners and selling past losers which has proven to generate

good returns.

While Jegadeesh and Titman exclusively investigated the US stock market, other researchers

examined in-depth the European stock market. They find, even tough Europe differs from the

United States in its social, cultural and economic environment, that momentum can be observed

in the European stock market as well. Research in this field has shown that returns to momentum

can be found across asset classes, time and country boarders. (Schiereck, De Bondt & Weber,

1999; van Dijk & Huibers, 2002; Rouwenhorst, 1998; Hou, Karolyi & Kho, 2011)

Furthermore, Herberger, Kohlert and Oehler (2011) found that the momentum trading

strategy is nothing that belongs to the past, for it is nowadays still possible to generate superior

returns by applying it. But why do higher momentum stocks generate superior returns? The

literature splits on this question into two fields. On the one hand, there is the risk-based

explanation stating that those higher returns come along with higher risk. For instance, Chan

et al. (1996) argued that those profits are generated through informational asymmetries in the

financial markets. Chordia and Shivakumar (2002) asserted that momentum does not per se

represent a market risk in itself but potentially correlates to an unobserved source of risk and thus

serves as a proxy of this risk. They found that many macroeconomic factors are correlated with

momentum and regard this as a plausible explanation for those higher returns on momentum.

On the other hand, behavioural economists argue that it is the investment decision relying

on some sort of behavioural bias that leads to higher returns. That said, investors are viewed as

irrational and thus fail to take into account lagging macroeconomic effects. Some behavioural

observations on this issue have been made. For one, people are slow to incorporate new information

and, for another, tend to jump on the bandwagon. Furthermore, they are likely to over- or

underreact to new information, which leads to selling winning stocks too early or holding on to

losing stocks for too long. (Frazzini, 2006; Kahneman & Tversky, 1982; Shiller, 1981; De Bondt

& Thaler, 1985)
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Despite the disparate opinions on the cause of superior returns of momentum, its effectiveness

is undoubted. But what happens when we take trading costs into account? Sagi and Seasholes

(2007) as well as Ammann, Moellenbeck and Schmid (2010) investigated on how the profitability

of the momentum strategy changes when transaction costs are considered. After doing so and

even additionally adjust for risk measures, they still found significantly high returns.

Furthermore, Barroso and Santa-Clara (2015) investigated on how much risk is attributed

to both market and strategy. It turned out that only 23 percent of the risk involved in the

momentum strategy is explained by the former while the rest is specific to the latter. Furthermore,

this specific risk (77 percent) is persistent and predictable; therefore, an investor may indeed take

this risk into account. They also found that the monthly volatility forecast for the WML portfolio

is very well approximated by the average monthly volatility over the previous six months which is

calculated on the basis of daily returns. This volatility forecast can then further be used in order

to scale the exposure to the WML portfolio which in turn allows an investor to get a constant

level of volatility over time. I will exclusively enhance the approach of Barroso and Santa-Clara

(2015) for two reasons. On the one hand, their strategy serves as a good baseline model, as it

implements a scaling of the exposure to the momentum risk. On the other hand, this leaves room

for improvement by allowing the target level to be dependent on the stock market’s directional

trend predictions. Support vector machines, for instance, constitute such a prediction method.

2.2 Support Vector Machines

The financial sector relies increasingly heavily on machine learning algorithms when it comes to

modelling and trading of financial indices. Theofilatos et al. (2014) showed that the conventional

artificial neural networks reach their limits when solving problems with multiple inputs. The

technique of support vector machines, which was originally developed by Vapnik (1995), remedies

these problems, for SVMs were precisely designed to solve classification problems in the n-

dimensional space. The goal is to find a structural model, which has little risk of miss-specifying

out-of-sample data.

Even though support vector machines were already developed in the early 1990s, only as

early as in the year 1997 did SVMs find their way into time series applications (Moskowitz, Ooi

& Pedersen, 2012, pp. 999–1004). Cao and Tay (2001), for example, used them to forecast future

contracts from the Chicago Mercantile Exchange while Kim (2003) was able to predict the direction

of the Korean composite stock index with the help of SVMs. They both independently showed

that SVMs outperform back-propagation neural networks. Their results indicate that support
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vector machines are considerably valuable when it comes to financial time series forecasting. In

2005, Huang, Nakamori and Wang found strong results by applying SVMs on the Nikkei 225

index in order to predict its weekly up and down movement.

Now we proceed with the construction of a model that combines the risk-managed momentum

strategy of Barroso and Santa-Clara (2015) with a prediction-based flexible target volatility.
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3 Model

In this chapter, a model of risk-managed momentum strategy combined with a flexible target

volatility will be developed. I will start with the basic momentum strategy which has been widely

discussed by Jegadeesh and Titman (1993). Thereafter, relying on the findings of Barroso and

Santa-Clara (2015), I will elaborate on the implementation of the risk-management into the

momentum strategy. After a discussion of all the relevant parts of the momentum strategy which

are necessary to build my own model, I will finally approach the machine learning technique of

support vector machines to predict the directional trend of the stocks of interest – there, I rely

mainly on James, Witten, Hastie and Tibshirani (2017, chapter 9).

3.1 Basic Momentum Strategy

As mentioned in the literature review, people are likely to either over- or underreact to informa-

tion.3 Based on this behaviour, it is possible to develop profitable trading strategies that are

built on the history of stock returns. In particular, Jegadeesh and Titman (1993) investigated

such strategies in-depth. One of their main findings is that there exists a way of creating a

portfolio such that significant positive returns over a holding period of three to twelve months are

generated. The key lies in not only holding long positions in those stocks, which have performed

well over the past few months, but also holding short positions in those that have performed

poorly. Such portfolios which are long in the past winners and short in the past losers are

well-known in the finance literature as momentum portfolios or winners-minus-losers portfolios.

They are zero-cost investments.

Jegadeesh and Titman (1993) analysed such momentum portfolios on stocks that are traded

at NYSE and AMEX for the time period from January 1965 to December 1989. But how are

those WML portfolios constructed? In each month t, all the stocks, which are traded at NYSE

and AMEX, are listed based on their returns over the last J-months in ascending order, whereas

J can either be 3, 6, 9, or 12. The next step is to form ten decile portfolios that are equally

weighted. We call the top decile losers, for they had the least returns over the past J-months,

and the bottom decile winners, for they had the largest returns. At time t, the strategy then

takes a long position in the winner portfolio and a short position in the loser portfolio. These

long and short positions will subsequently be held for K-months, where K can also either be 3,

6, 9 or 12. With the mentioned formation and holding periods (J = 3, 6, 9, 12; K = 3, 6, 9, 12),

one can build 16 different momentum portfolios. For example, the strategy that was built on the

3See Shiller (1981), Kahneman and Tversky (1982) as well as De Bondt and Thaler (1985).
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returns over the previous quarter can be held for either one, two, three or four quarters. This

already yields four different strategies.

Because the holding periods are longer than one month, an investor using such a strategy

holds at every point in time t multiple portfolios, namely the one selected at time t and all the

ones that had been selected in the previous (K − 1)-months. Therefore, the strategy does not

only select a new WML portfolio at time t, it also closes out old positions, namely those initiated

in month t −K. Interestingly, Jegadeesh and Titman (1993) found that the most successful

zero-cost strategy out of those 16 strategies is the one with a formation and holding period of 12

and 3 months, respectively.

In addition to those 16 strategies, they analysed the same portfolios again but then implement-

ing a one-week lag between the formation period and the holding period in order to avoid some

of the bid-ask spread as explained by Lehmann (1990). Doing so improved the afore-mentioned

portfolio’s return from 1.31 percent to 1.49 percent.

In this thesis, I will not weigh up the performance of momentum portfolios of different

formation and holding periods against each other, for my contribution lies on the implementation

of SVMs. The reason for pointing to Jegadeesh and Titman (1993) is that their research created

the foundation for the momentum strategy on which Barroso and Santa-Clara (2015) further

built up and eventually developed the risk-managed strategy.

3.2 Risk-Managed Momentum Strategy

Having conveyed the basics of the momentum strategy, I will take a further step forward by

introducing the concept of risk-management into the momentum strategy. For this purpose,

we shall start by answering the following three questions: how can the risk of a portfolio be

measured? What is the advantage of controlling this risk? And perhaps the most interesting

question is, how can it be controlled? In the financial literature, a portfolio’s variance indicates

its risk. The variance describes the strength of the amplitude around the data’s mean – its

square root (standard deviation) is also well known under the term volatility. An increase in the

portfolio’s variance implies higher risk, as the probability of large gains as well as large losses

are more likely. In short, a high (low) variance implies high (low) fluctuations around the mean

and therefore more (less) uncertainty about the future path of that portfolio. To control the risk

of an investment, one needs to predict the expected future volatility of the portfolio of interest.

With such a forecast, one can scale the exposure to the strategy and thereby control the risk.4 A

4Such volatility-scaling methods were already investigated by Moskowitz et al. (2012) as well as Baltas and

Kosowski (2013), whereas they mainly applied these methods on asset-specific volatilities.
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higher volatility increases the exposure whereas a lower one reduces the risk of the investment. I

will build up on the findings of Barroso and Santa-Clara (2015), who used such a scaling method

for WML portfolios in order to have a constant volatility over time.

They decomposed the risk of momentum into market and specific risk and found that the

market component accounts only for 23 percent of the total risk and a large part of the risk of

momentum is specific, that is, depending on the strategy. Furthermore, they found that the risk

of momentum is highly variable over time and is predictable to some degree.

But why do we even need such a volatility-scaling despite the findings of Jegadeesh and

Titman (1993) showing that WML portfolios are quite profitable? Barroso and Santa-Clara

(2015) demonstrated in their research paper, where they analysed the same stocks as Jegadeesh

and Titman, that WML portfolios mainly generated considerable profits but once in a while

the strategy was fatally hit by crashes (Daniel & Moskowitz, 2016). Worth mentioning are the

ones that occurred in 1932 and 2009, where the WML strategy delivered a −91.59 and a −73.42

percent cumulative return over two and three months, respectively. Imagine you had invested one

dollar in the WML portfolio in July 1932, you would have recovered from that crash only by April

1963, which is a time-horizon of 31 years (Barroso & Santa-Clara, 2015, pp. 1–6). The aim of

the volatility-scaling is to bring down exactly this risk to get hit by such huge crashes. Although

WML portfolios are profitable, they occasionally suffer severely from recessions. Given that this

risk is only partly market-related and mainly strategy-related, it can actually be controlled for

by means of volatility-scaling.

Now let me reveal the open secret behind the risk-management of momentum. Barroso and

Santa-Clara (2015, pp. 10–12) estimated the monthly variance forecast on the basis of the daily

returns from the previous six months. This variance forecast looks as follows.5

σ̂2WML,t =
21

126

125∑
j=0

(rWML,dt−1−j − r̄WML)2, (1)

where

• σ̂2WML,t is the monthly variance forecast,

• {rWML,d}Dd=1 are the daily returns,

• r̄WML is the mean of the WML returns of the previous 126 days6 and

• {dt}Tt=1 is the time series of the dates of the last trading session of each month.

5I follow the notation of Barroso and Santa-Clara (2015).
6It is calculated as follows: r̄WML = 1

126

∑125
j=0 rWML,dt−1−j .
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According to Barroso and Santa-Clara (2015): ”As WML is a zero-investment and self–financing

strategy we can scale it without constraints” (p. 11). We can now use the square root of equation

(1) in order to scale the returns of the momentum portfolio the following way.

rWML∗,t =
σtarget
σ̂t

rWML,t, (2)

where

• rWML,t is the unscaled monthly return of the momentum,

• rWML∗,t is the scaled/risk-managed momentum and

• σtarget is a constant number towards which the volatility shall be steered.

Barroso and Santa-Clara (2015, p. 11) chose a constant target of an annualised volatility of 12

percent when scaling the momentum portfolios.7 The fraction
σtarget
σ̂t

then provides a number

that determines the positions in the long-short portfolio.

By applying this technique, Barroso and Santa-Clara (2015, p. 12) found that for the time

period 1927 to 2011, the volatility-scaled momentum portfolio improved in comparison to the

standard momentum strategy in the following way. First, the Sharpe ratio went up from 0.53 to

0.97. Second, the excess kurtosis dropped from 18.24 to 2.68 and the left skewness improved from

-2.47 to -0.42, which clearly indicates that huge crashes affect this type of improved momentum

strategy much less strongly. Third, the lowest one-month return was only -45.20 percent, whereas

it was -96.69 percent for the standard momentum portfolio. Although these results demonstrate a

high performance of the volatility-scaled momentum strategy, there is still room for improvement.

For instance, my own model allows a flexible target volatility, which is solely determined

by the stock market movement predictions made by support vector machines.8 I will test four

different possibilities of incorporating the stock market predictions into the volatility target

in order to make the latter flexible. The 12 percent target volatility decided by Barroso and

Santa-Clara (2015, p. 11) serves as a basis. Then, if the stock market’s prediction is positive,

x percentage points are added to the 12 percent target volatility and if the stock market’s

prediction is negative, x percentage points are subtracted from the target level. For example,

if x is one, then the target volatility is 13 when the stock market is predicted to go up and 11

if it is predicted to go down. My first three scaling methods work exactly as described above,

whereas the first scaling method uses x = 1, the second x = 2 and the third x = 3. However,

7No reasoning for choosing a 12 percent annualised target volatility was provided.
8How the stock market movement will be predicted via SVMs will be explained shortly.
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this method is flawed in that it treats a single down prediction in the same way as it treats

multiple consecutive down predictions, because the target level is completely independent from

the previous ones. The same holds true for up predictions.

My last scaling method fixes this issue in the following way. I either add or subtract now a

certain value from the one of the last month’s target volatility. The start value at the initial

period is again set to 12 percent. If the stock market’s prediction is positive, I add one percentage

point and if it is negative, I subtract one percentage point. Furthermore, I set an upper limit of

15 percent and a lower bound of 9 percent. I additionally include a constraint correcting the

current months target level to 12 percent if the prediction is down and the previous months

target level is above 12 percent. This shall help to react faster to down predictions.9

We reach the preliminary conclusion that holding on those momentum strategies of Jegadeesh

and Titman (1993) is profitable but suffers severely during economic crashes. Barroso and

Santa-Clara (2015) implemented some sort of risk-management by introducing volatility scaling

into the strategy and demonstrated that doing so clearly improves the performance of WML

portfolios.

Having now completed the part about the momentum strategy itself, I will subsequently

approach the machine learning part. With the help of support vector machines, for which I

use macroeconomic indicators as input features, I will create a prediction model for the trend

direction of the value-weighted portfolio of the stocks of interest, namely the ones traded at

AMEX, NYSE and NASDAQ. This trend direction will then be used to adjust the level of the

target volatility according to the prediction of the market movement. Depending on whether

the SVM’s output predicts the stocks to go up or down next month, I allow for more or less

volatility, respectively.

3.3 Support Vector Machines

Recall that financial time series are very noisy, non-stationary and chaotic. Therefore, it is very

difficult to make an accurate prediction of the future behaviour of a financial time series by using

information only of its past.10 Vapnik (1995) revolutionised the field of classification techniques

by inventing the concept of support vector machines which has gained in popularity since the

1990s. According to James et al. (2017, chapter 9), SVMs are among the best methods when

it comes to classification and pattern recognition problems. Subsequently, we will see in more

9Admittedly, the upper and lower bound of 15 and 9 percent, respectively, are arbitrarily chosen but so would

be any other.
10See Deboeck (1994) as well as Abu-Mostafa and Atiya (1996).
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detail that even the complex stock market prediction problem can be broken down into a binary

classification problem. A benefit of using SVMs over other methods is that any kind of input

feature can be used. Applied on the prediction of the future path of a specific stock market, one

could potentially use input features such as technical, inter-market or macroeconomic indicators.

As my intention in this chapter is mainly to convey the concept of SVMs rather than to

reinvent the wheel, I will follow closely the explanations made by James et al. (2017, chapter

9).11 Before delving into the world of SVMs, I start with an example illustrating how a support

vector classifier [SVC] works.12

Linearly Separable Data

Imagine that while you and your friends are walking down the streets, an animal suddenly

appears. Unfortunately, none of you is certain about the type of animal. However, it seems to be

either a cat or a dog. In order to identify which one it is, you may make use of support vector

classifiers. By chance, one of your friends has a data set available, which contains information

about dogs, cats and some of their characteristics such as body size and nose shape. The idea

is to use this data set in order to assign the unknown animal to either class (cat or dog). The

procedure involves three steps. First, you plot your data and mark the animals that are classified

as dogs with a blue dot and those which are characterised as cats with a red dot. Second, you

search for the specific line which perfectly separates those two classes – this line is called maximal

margin hyperplane. (The tiny dots in Figure 1 on the following page indicate which side of the

hyperplane belongs to which classification while the larger dots are generated from that data set

about cats and dogs.) Third, you take the measurements from that unknown animal about its

size and the shape of its nose and plot it as well into the graph. Depending on which side of

the hyperplane the point lies on, the animal is expected to belong to this or that species. If it

falls into the blue area, it would be classified as a dog; and as a cat if it falls into the red area.

Ultimately, you and your friends would come to the conclusion that the animal is, given its nose

shape and size, a dog (see the blue dot that is surrounded by a black square in Figure 1 on the

next page).

This example illustrates how SVCs are used to solve a binary classification problem. Let us

11If not indicated otherwise, the subsequent explanations in the balance of this chapter are based on James et

al. (2017, chapter 9).
12Support vector classifier is the precursor of support vector machines. SVCs are used in the linearly separable

case such as in the following cat/dog example. When we deal with non-separable data sets, kernels are used in

order to enlarge the feature space; in this case, where a SVC is combined with a kernel, we speak of SVMs.

12



2 4 6 8 10

body size

no
se

 s
ha

pe

1

2

3

4

5

6

Figure 1: Classification Example

now begin to develop the SVM theory more or less from scratch by starting with the definitions

of input features and classifiers.13 An input feature is basically just an observation, which is

numerically listed in a matrix X that consists of

x1 =


x1,1

...

x1,p

 , . . . , xn =


xn,1

...

xn,p

 ,

whereas n stands for the number of observations and p describes how many different input

features are used. Those input features are then usually linearly re-scaled into a range of [−1, 1].

This normalisation process is necessary to get all input features into the same range, which avoids

that large value inputs would dominate low value inputs. (Kim, 2003, p. 310) As I use two

macroeconomic input features, which both describe a monthly change in percentages and thus

are already on the same scale, I do not need to apply such a linear scaling method. These data of

the input features are listed in an n× p matrix in the p-dimensional space.14 These observations

are then further assigned to one out of two classes. Mathematically, this is written the following

way: y1, . . . , yn ∈ {−1, 1} whereas −1 as well as 1 describes numerically one class, respectively.

13In this part, I follow closely the explanations made by James et al. (2017, chapter 9) as well as their labels.
14In our cat and dog classification example, we had p = 2 as there were two input features, namely body size

and nose shape.

13



Referring to the cat/dog example, this would be equivalent to assign all the cats to class −1

and all the dogs to class 1. This data set X, which is called training data, is used to derive

the parametrisation of the maximal margin hyperplane. This parametrisation is then used for

classifying the so-called hold-out data, which looks mathematically as follows: x∗ = (x∗1, . . . , x
∗
p)
T .

It is evident that the hold-out data contains only data of the input features, yet no information

of its classification, for it is simply not available. With the help of the SVCs, the hold-out data

will then be assigned to either of the two classes.

In this thesis, the monthly data of the CPI growth and of the change in the 3-month US

Treasury bill rate will serve as such input features that classify the up or down movement of

the stocks traded at AMEX, NYSE and NASDAQ. Notwithstanding the great advantage of

SVMs to work in a p-dimensional space, I limit myself to two input features for four reasons.

First, macroeconomic input features only are considered in order to use non-financial data. As a

downside, this reduces the range of possible input features. Second, their availability is further

restricted as data on at least a monthly basis is required.15 Third, the limited computational

capacity constitutes a practical obstacle. Finally, adding more input features would not help to

convey the idea of SVMs any better and so, for the sake of parsimony, two suffice. As a pleasant

side effect, using only two input features and thereby restricting the model to a two-dimensional

space makes it possible to visualise the results.

But how are those two macroeconomic inputs assigned to a class? Returning to the example

with cats and dogs, body size and nose shape are replaced by macroeconomic indicators, whereas

the classification changes now from cats and dogs to up and down movements of the stock market.

However, the classification in this work is slightly more demanding than the one from the cat/dog

example, because we find ourselves dealing with time series data. This gives rise to the following

idea. For each month t, a value-weighted portfolio of all the stocks traded at AMEX, NSYE

and NASDAQ is constructed. Then one applies a simple difference method to those portfolios

where the portfolio price from month t is subtracted from the portfolio’s price from month t+ 1.

The classification procedure then assigns at time t a one to the input features if the portfolio

price from month t to month t+ 1 went up or remained at the exact same level. In the case that

the portfolio price dropped from month t to month t+ 1, a minus one is assigned to the input

features. The reason why the input features are classified with the stock market movement from

month t to t+ 1 is that this allows us to use input features at time t to get a prediction of where

the stock market is likely to be at time t+ 1. This classification can be done in the explained

15GDP, for instance, is reported on a quarterly basis and thus is too infrequent.
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manner because all the data from the past for deriving the parametrisation is available. In other

words, one is actually able to assign these up and down movements to the input features, which

are older than t.16 The clue is to apply at time t only the newest input features to the model

which is parametrised with older data.

Now having discussed what an input feature and a classification are, we can proceed to

the next obstacle – how to find the best hyperplane. Having p input features means that we

are in a p-dimensional space, where a hyperplane is a flat affine subspace with a dimension of

p− 1. As mentioned earlier, I will use only two input features. Accordingly, we are working in a

two-dimensional space with a one-dimensional subspace (a line). Now imagine having two input

features that are categorised into one out of two classes like in Figure 2.
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Figure 2: Linearly Separable Data in the Two-Dimensional Space

Obviously, the red points can be linearly separated from the blue ones by drawing a straight

line through Figure 2. But what is the best way to separate those two classes? In Figure 3 on the

following page, the left panel shows four out of infinite possible straight lines being separating

hyperplanes. The right panel depicts the best separating hyperplane, which is also coined as the

maximal margin hyperplane.

But why is this maximal margin hyperplane considered to be the best choice? Imagine you

shift this hyperplane as far to the left and to the right until it touches another point on either

side (dashed lines in Figure 4 on the next page), then the shortest distance from the hyperplane

16For example, at time t − 10, the up or down movement of the mentioned stocks is calculated as follows:

portfolio price at t− 9 minus the portfolio price at t− 10; if this results in a positive difference, one assigns a 1 to

the input features at t− 10 and otherwise a −1.
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Figure 3: Different Possibilities of Separating Hyperplanes

to one of the dashed lines is the margin. Maximising this margin simultaneously maximises the

distance between the hyperplane and the nearest data points to it. Doing so minimises the risk

of misclassifying some of the hold-out data. Those dots surrounded by black squares in Figure 4

are called support vectors. The maximal margin hyperplane can be derived solely by the use of

these support vectors. They are also called support vector classifiers as they determine to which

side of the hyperplane hold-out data is assigned.
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Figure 4: The Maximal Margin Hyperplane

Graphically it is very intuitive what a hyperplane is and why the margin has to be maximised.
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But how is it calculated mathematically? In the p-dimensional space, a normal hyperplane is

defined as follows.17

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0 (3)

All points X = (X1, . . . , Xp)
T that fulfil equation (3) are said to lie exactly on the hyperplane.

For reasons already mentioned, only two input features are used and so we are dealing with a

hyperplane in the two-dimensional space of the following form

β0 + β1X1 + β2X2 = 0, (4)

whereas all points X = (X1, X2)
T fulfilling equation (4) lie on the hyperplane itself. There are

points X, which do not fulfil equation (4) and thus are separated to either side of the hyperplane.

All points X, for which

β0 + β1X1 + β2X2 > 0 (5)

holds, lie on one side of the hyperplane and for all points X, for which

β0 + β1X1 + β2X2 < 0 (6)

holds, lie on the other side of the hyperplane. Referring to the introductory example with cats

and dogs, equation (5) mathematically describes the side where all the dogs are located and

equation (6) describes the side where all cats are located.

In order to find the parametrisation of this optimal hyperplane, one uses the training data,

which consists of x1, ..., xn ∈ R2 and the associated classifications y1, ..., yn ∈ {−1, 1}. Using this

notation, one can rewrite equation (5) as

β0 + β1xi1 + β2xi2 > 0 if yi = 1 (7)

and equation (6) as

β0 + β1xi1 + β2xi2 < 0 if yi = −1. (8)

The maximal margin hyperplane can then be found as the solution to the following optimisation

problem.

max
β0,β1,β2

M (9)

subject to

2∑
j=1

β2j = 1 (10)

yi(β0 + β1xi1 + β2xi2) ≥M ∀i = 1, ..., n (11)

17The term normal hyperplane is used to differentiate it from the maximal margin hyperplane.
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This optimisation problem states that we aim to maximise the margin M over the parameters

β0, β1, β2. The three βi parameters are weights, which are learned by the algorithm and they

fully determine the hyperplane. Furthermore, the sum of squares of all beta parameters have

to add up to one as the distance between the separating hyperplane and an observation x is

described by
1

||β||
, where the length of β is scaled to one, which forces the nearest observations

to the separating hyperplane to have an inner product of 1. Maximising
1

||β||
means minimising

||β||, where one could also minimise ||β||2 =
∑2

j=1 β
2
j = 1. Equation (11) is a constraint which

requires that each observation be on the correct side of the hyperplane. Later on in this chapter,

we will see that the maximal margin hyperplane can also be represented by a simple equation

which solely makes use of the inner products of the support vectors with each observation. Due

to the limited scope of this thesis, I shall not deal with every mathematical derivation.

Now the only remaining question is: how will this model be applied on the macroeconomic

data for predicting the trend direction of the stocks? As mentioned before, I divide the data into

a formation sample (in-sample) and a hold-out sample (out-of-sample). The goal of the SVM

is to develop a classifier based on the in-sample data that can correctly classify the hold-out

observation on the basis of its input features. As this thesis deals with the prediction of time

series, I will use a rolling window for this estimation process. That means, I will use at any point

in time the data from the previous 60 months (t− 60 to t− 1) in order to get the parametrisation

for the maximal margin hyperplane. This estimated model will then be used to classify the input

features at time t, which gives us a prediction of the stock market movement at time t+ 1. This

procedure, which is called walk-forward, was already applied by Żbikowski (2015) on financial

time series and was described in detail by  Ladyżyński, Żbikowski and Grzegorzewski (2013).18

The classification process looks mathematically as follows. After having created a hyperplane

on the basis of the in-sample data, we use the hold-out observation x∗ as input to the equation

f(x∗) = β0 +β1x
∗
1 +β2x

∗
2. If f(x∗) is positive, then I assign a one (up movement) to the hold-out

observation and otherwise I will assign a minus one (down movement) to it.

Linearly Non-Separable Data

None of this is of any concern provided that the data is perfectly linearly separable by a hyperplane.

However, this is most certainly not the case, which is why a situation is conceivable where the

data set of interest is not linearly separable as illustrated in the Figure 5 on the next page.

A possible solution to this non-separating problem is to use soft-margins.19 A hyperplane with

18See also Colby (2003, pp. 10–12).
19This technique is also often applied when one outlier distorts the maximal margin hyperplane from an
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Figure 5: Non-Separable Data

soft-margins still tries to linearly separate the two classes as good as possible but it additionally

allows for some observations of the training data to lie on the wrong side of the margin or even

on the wrong side of the hyperplane. This has two benefits: first, we get greater robustness to

individual observations and second, we achieve a better classification for the majority of the

training observations. Mathematically, we only need to slightly adjust the maximisation problem,

which was stated for the maximal margin hyperplane (this will be explained afterwards). For the

time being, it is sufficient to know that two new parameters are implemented. On the one hand,

there is a slack variable ε1, . . . , εn that allows single observations to be on the wrong side of either

the margin or hyperplane or both. On the other hand, there is a parameter C, which is called

tuning parameter. This tuning parameter sums up all the εi and serves as a boundary, meaning

that it determines how many violations to the margin and to the hyperplane are tolerated.

Figure 6 on the following page shows two such hyperplanes with soft-margins, whereas in the

left panel a smaller value for C is used than in the right panel.20 As the package e1071 in the

software R is used to derive all the upcoming results in this thesis, it is worth mentioning that

this R package uses the value of C the other way around. Hence, low cost values allow for wide

margins while high values of C tighten the margin. In the remainder of the theoretical part I use

hyperplane that would obviously fit the data better under the condition that this one allows the outlier to be

misclassified (James et al., 2017, chapter 9).
20Because C is the sum of all εi, the tolerance to violation increases in C and therefore, the margin for a large

value of C is wider than for a low value of C. Furthermore, wider margins use more data points as support vectors

than small margins do.
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C as defined in the literature while I use C in the results part as defined by this package.
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Figure 6: Tuning Parameter C – Tolerance for Violations

Given the practicality of using soft-margins, I will now proceed to the mathematical part,

where this tuning parameter C will be implemented into the already known maximisation problem.

The maximisation problem under soft-margins looks now as follows.

max
β0,β1,β2

M (12)

subject to
2∑
j=1

β2j = 1 (13)

yi(β0 + β1xi1 + β2xi2) ≥M(1− εi) (14)

εi ≥ 0,
n∑
i=1

εi ≤ C (15)

Remember that M is the margin’s width and we aim at having it as large as possible. C is a

non-negative parameter which sums up all εi, which are so-called slack variables. They allow

some individual observations to lie on the wrong side of the margin or even on the wrong side of

the hyperplane. The values of the epsilons can be interpreted as follows:

• If εi = 0, then the ith observation is on its correct position.

• If εi > 0, then the ith observation is on the wrong side of the margin.

• If εi > 1, then the ith observation is on the wrong side of the hyperplane.
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Which role does the tuning parameter C exactly take? It is a value that we can freely choose in

order to bound the sum of εi. In other words, it tells something about our tolerance of violations

of observations which are located on the wrong side. The tuning parameter C is usually chosen

via the grid search method, that means a set of different values for the parameters C are tested

and then the best performing one is chosen. In addition to the grid search method, I use also the

so-called k-fold cross-validation technique. In practice, I use data of 60 months in order to get a

parametrisation of the model with a specific cost value C, which is then further used to classify

the hold-out data.(Jung, 2018)

I will apply a ten-fold cross-validation on the SVM, wherefore I randomly split those 60

inputs into ten folds. Then the model of interest will be fitted ten times on this data set, where

nine folds are used as training data and one fold is used as test data, which differs from the

hold-out data in that the latter is used for predictions only. This procedure enables me to fit

the model on a total of 540 inputs and test it also on all 60 inputs. Having fitted this model 10

times for the 60 inputs, I thereafter average the values to produce the final model. One could

say that this method allows me to use 50 years of data by actually only using 5 years of data as

input in order to get the parametrisation of the SVM. The cost of doing so is that one needs to

fit the model eleven times instead of only once, but this minimises the out-of-sample error (test

data). As I aim to evaluate different cost values, this ten-fold cross-validation will be repeated

for every cost value I want to test for and then the grid search method chooses the model that

had the smallest out-of-sample error. (Jung, 2018) This model is then further used to classify

the hold-out data for which only the input features are available.

An alternative approach to deal with non-separable data, with non-linear decision boundaries,

is to enlarge the feature space of the predictors by applying a quadratic, cubic or even higher-order

polynomial function to it. This enlargement would solve some of the non-linearity problems but

is inefficient when it comes to practical applications due to its computational inefficiency. Instead

of enlarging the feature space by applying polynomial functions on the input features, one can

make use of so-called kernels, which is mathematically extremely efficient because only inner

products are needed to solve the previously mentioned maximisation problem from the support

vector classifier. The property of the inner product in the feature space having a corresponding

kernel in its input space allows it to do calculations, via the use of kernel functions, in the input

space rather than in the high dimensional feature space. The use of kernels also helps to solve

highly non-linear classification problems. This method of using kernels is called support vector

machines and is an extension of the support vector classifier. I will only briefly discuss the topic
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of inner products and kernels here, as it is, for one, well explained in mathematical textbooks

and, for another, the focus of this thesis lies in the practical application of the model.21 The

maximisation problem stated in the equations (12) to (15) involves in principle only the inner

products of the observations (input features).22 The inner product of two observations xi and x′i

is given by the following equation.

〈xi, x′i〉 =

p∑
j=1

xijxi′j (16)

For instance, a linear support vector classifier can be described by using inner products as follows.

f(x) = β0 +

n∑
i=1

αi〈x, xi〉 (17)

From equation (17) one needs to estimate n alpha parameters and β0. In order to do so, only

the inner products of all pairs of training observations are needed. If equation (17) has to be

evaluated for some out-of-sample data, one needs to compute the inner product of the new

points from the out-of-sample data (x) with each point from the training data (xi). If a training

observation is not a support vector, then its αi value is zero; in contrast, if αi is non-zero, the

training observation is in the solution for the support vectors.

f(x) = β0 +
∑
i∈S

αi〈x, xi〉 (18)

represents any solution function from equation (17), where S is the collection of all αi, of which

those that are non-zero constitute support vectors. Now, one can replace the inner product in

equation (18) with the following generalisation of the inner product

K(xi, x
′
i), (19)

where K is a function, which we call kernel.23 Equation (18) can then be re-written as

f(x) = β0 +
∑
i∈S

αiK(x, xi). (20)

James et al. (2017) describe a kernel as ”a function that quantifies the similarity of two obser-

vations” (p. 352). The mathematical expression of the linear kernel, where the support vector

classifier is linear in its features, is given by equation (16). In contrast, a polynomial kernel

would look like

K(xi, x
′
i) = (1 +

p∑
j=1

xijxi′j)
d, (21)

21Aronszajn (1950), Girosi (1997) and Heckman (2012) elaborate more on the topic of kernels.
22Remember that the inner product of two k-vectors m and n is: 〈m,n〉 =

∑k
i=1mini.

23For a thorough discussion on kernels, the reader is referred to Bishop (2006, chapter 6).
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where d describes the order of the polynomial. A SVM using a polynomial kernel allows for much

more flexible decision boundaries.

In this thesis, I will, on the one hand, investigate whether it is possible to fit a SVM with a

linear kernel using different cost functions and macroeconomic input features. On the other hand,

I will examine a model with a radial kernel, as this is quite a popular choice in the literature and

renders promising results. The radial kernel takes the mathematical form of

K(xi, x
′
i) = exp

−γ p∑
j=1

(xijxi′j)
2

 , (22)

where γ = 1
2σ2 is the free parameter of the Gaussian basis function. More precisely, γ is the

inverse of the standard deviation of the Gaussian basis function. The radial basis function kernel

is used to make a statement about the similarity of two points, in this case about a support vector

and an out-of-sample point. The size of γ determines the variance of the Gaussian function. If γ

is chosen to be small, the Gaussian function gets a large variance, which in turn leads to the case

that two points are considered to be similar even if they are far apart (in Euclidean distance).

But if γ is chosen to be large, the Gaussian function gets a small variance and then two points

are considered to be similar only if they are extremely close to each other. In order to find the

best value for γ, the grid search method combined with the k-fold cross-validation method can

be applied in the same way as for the cost value. (Bishop, 2006, Chapter 6)

The use of such a radial kernel is shown in Figure 7 on the next page on the same non-separable

data, which has been used with soft-margins in the linear separation case (compare Figure 6 on

page 20).

In conclusion, this section about the support vector machines has shown how perfectly linearly

separable data can be classified into two classes by using support vector classifiers. We then

proceeded to a case, where the data was no longer linearly separable and we introduced soft-

margins, which allow some of the training observations to lie on the wrong side of the margin or

even the wrong side of the hyperplane. Finally, we went from the support vector classifiers to

the support vector machines, where the main idea is to use the computationally efficient concept

of kernels in order to get non-linear decision boundaries. I will investigate in the practical part

whether support vector machines with a linear kernel and different cost values can be applied

on the macroeconomic input features in order to classify the up and down movement of the

value-weighted portfolio of interest. Furthermore, I will also examine SVMs using a radial kernel

with different values for the cost and gamma by means of a grid search combined with a ten-fold

cross-validation.
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Figure 7: SVM Using a Radial Kernel

Overall, this chapter has shown that momentum profits can be made due to the fact that

people over- and underreact to information (Jegadeesh & Titman, 1993). Furthermore, it has

been shown that the basic momentum strategy can be improved by implementing some sort of

risk-management in order to reduce the loss due to a financial crash (Barroso & Santa-Clara,

2015). Lastly, I introduced the concept of SVM to predict the trend direction of the stocks,

which are potentially part of the momentum strategy. These predictions optimise the flexible

target volatility.
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4 Data

The aim of this chapter is mainly to establish transparency behind the data gathering process

but also to provide a reasoning for why some of the data has been chosen. For that purpose,

summary statistics and few figures will visualise the data set. The data for this thesis is of

two sorts. First, data on macroeconomic fundamentals as well as data on a value-weighted

portfolio containing all stocks traded at AMEX, NYSE and NASDAQ is used. This data is

needed to fit the prediction model by means of support vector machines. Second, data on the

daily and monthly momentum portfolios as well as on the risk-free rate is gathered. This data,

in combination with the outcome of the prediction model, is used to construct the risk-managed

momentum strategy with a variable target volatility.

4.1 Support Vector Machines

The objective of SVMs is to predict the up and down movement of all stocks traded at AMEX,

NYSE and NASDAQ. For this purpose, monthly data on the value-weighted portfolio of all

stocks traded at those stock exchanges is gathered from the Wharton Research Data Services

(2018).24 The data set contains the monthly value of the value-weighted index as well as the

corresponding returns for the time period from December 1925 to December 2017. This data is

reported on the last trading day of each month. The up and down movement of this index from

time t to t+ 1 decides whether the classifier variable gets assigned a 1 or a −1 at time t. For

example, we are interested in the classification for February, then one subtracts the reported

index value from January from the one reported in February. If this difference is positive, then

the stock market is expected to go up and therefore the classifier is assigned a 1 and if it is

negative it gets assigned a −1.25 Figure 8 on the next page illustrates in the left panel how the

index has evolved over the time horizon of interest while the right panel shows the corresponding

return series. One can see that this return series is indeed very noisy as already indicated by

Abu-Mostafa and Atiya (1996) and Deboeck (1994).

In this thesis two macroeconomic variables are used as input features for the SVM, namely

the monthly change in the consumer price index as well as the monthly change in the 3-month

US Treasury bill return. Given that the three stock exchanges of interest register a broad array

of different securities (5,729 in the end of 2017), input features with a wide economic impact

are required, for the securities are distributed over a great variety of industries. The CPI is

24The Wharton Research Data Services obtained these data from the Center for Research and Security Prices.
25In the unlikely event that the difference is zero, I would treat it like an up movement.
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Figure 8: Time and Return Series of the Value-Weighted Index
Source: Author’s rendering of CRSP data (2018).

commonly used as a measure of the current inflation level in an economy (Amstad, Potter & Rich,

2017). In addition, inflation plays an important role across all industry sectors as it impacts the

interest rate, which in turn affects investment decisions in any business.

The data on the monthly CPI change is gathered from the Federal Reserve Bank of St. Louis

(2018) from January 1960 to February 2018.26 The current level of the CPI is officially reported

in the middle of a month. This means that when the stock market prediction for the next

month is made (at the end of the month), the input data on the CPI is already two weeks old.

Nevertheless, the CPI is still seen as one of the most adequate macroeconomic indicator and

therefore used as input feature.

Figure 9 on the following page shows how the consumer price index has changed on a monthly

basis for the time period of interest. Especially the crisis of 2009 stands out with a significant

drop of 1.915 percent. Table 1 also shows that the monthly change in the CPI was around 0.3

percent, which means that there is a positive trend over the whole time interval.

Min. Median Mean Max.

-1.915 0.291 0.307 1.806

Table 1: Summary Statistics: CPI
Source: Author’s rendering of OECD data (2018).

26In the time series of the CPI, the year 2010 is indexed as 100.
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Figure 9: Monthly Change in the Consumer Price Index
Source: Author’s rendering of OECD data (2018).

The 3-month US Treasury is gathered from the Federal Reserve Bank of St. Louis (2018).

Fama and Schwert (1977) and Fama (1981) showed that the 3-month US Treasury bill is negatively

related to future stock market returns and serves very well as a proxy of future economic activity.

It has been chosen as an input feature because these securities are held from a multitude of

different investors such as domestic financial intermediaries, institutional investors or the Federal

Reserve System. Furthermore, the US Treasury securities take on a pivotal role in the world’s

financial markets. As the payments of the principal as well as the interest of US Treasury

securities is fully secured by the credit of the US government, it also reveals something about the

health of the state. The great diversity of the different types of investors, the financial influence

and its safety mean that these securities are not only widely spread across the economy but also

potentially a good macroeconomic input feature. (Dupont & Sack, 1999, pp. 791–792)

Figure 10 on the following page illustrates the return in the 3-month US Treasury bill during

the time horizon of interest. Using the monthly percentage changes in these returns as input

features yields to both negative and positive changes.27

Given the data of those two macroeconomic input features and the value-weighted index

27Figure 16 on page V in the appendix illustrates the monthly percentage change in the 3-month US Treasury

bill.
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Figure 10: Return on the 3-Month US Treasury Bill
Source: Author’s rendering of data from the Board of Governors of the Federal Reserve System (2018).

as well as the constraint that 60 months of data are required to make predictions, the stock

market’s directional trend was predicted the first time for February 1965. The time interval ends

in December 2017.

4.2 Risk-Managed Momentum Strategy

We will now discuss the data used to build the risk-managed momentum strategy with a flexible

target volatility. From the data library provided by Kenneth R. French (2018), I gathered data

on the daily and monthly ten-momentum sorted portfolios formed on the stocks traded at AMEX,

NYSE and NASDAQ. From there, I also gathered data on the monthly risk-free rate.28,29

French (2018) constructed the ten-momentum sorted portfolios the following way. For each

month, all stocks traded at AMEX, NYSE and NASDAQ with prior return data are sorted in

ascending order. The ten deciles are constructed by using the breakpoints of only those stocks

that are listed at the NYSE. In other words, each decile has the same amount of NYSE stocks

included. For a stock to be part of the portfolio for month t which is constructed at the end of

month t− 1, it must have a price for the end of the month t− 13 and a good return for t− 2.

28The one-month US Treasury bill return has been chosen as the risk-free rate.
29The risk-free rate will be used later in order to show how different portfolios could have evolved over time.
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Evidently, there is a time lag between the formation period and the holding period in order to

avoid some of the bid-ask spread, which has been mentioned in the previous chapter.

The monthly return on the WML portfolios is illustrated in Figure 11 showing the range in

which those returns lie. The first WML portfolio (February 1965) contains 229 securities in the

winner and 339 in the loser portfolio, respectively, whereas in the last WML portfolio (December

2017) 463 securities were held in the winner and 492 in the loser portfolio. Table 2 provides

further information about the firm size and the monthly returns of the WML portfolios. The

firm size of the winners was on average three times as large as the one of the losers. Furthermore,

the huge losses of -42.02 percent in 2001 and -45.59 percent in 2009 catch the eye. Especially

crashes of such magnitude will be mitigated by using my risk-managed momentum strategy with

a flexible target volatility.
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Figure 11: Monthly Return on the WML Portfolios
Source: Author’s rendering of data from the Kenneth R. French Data Library (2018).

Min. Median Mean Max.

firm size losers (in millions) 18.01 151.00 362.740 4,717.67

firm size winners (in millions) 32.02 500.73 1,327.040 9,493.07

monthly returns (in percent) -45.58 1.72 1.279 26.16

Table 2: Summary Statistics: WML portfolios
Source: Author’s rendering of data from the Kenneth R. French Data Library (2018).
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5 Results and Discussion

The aim of this chapter is to illustrate and discuss the results for both the stock market

predictions from the SVMs and the implementation of a flexible target volatility to the risk-

managed momentum strategy. These findings shall then be used to answer the two-fold research

question. How accurate can support vector machines fed with macroeconomic input features

predict the future stock market movement? How far can those new findings from the SVMs be

used to improve the risk-managed momentum strategy by applying those insights to scale the

target volatility?

5.1 Support Vector Machine Predictions

In order to predict the up and down movements of the value-weighted portfolio, I investigated

on support vector machines with two different types of kernels, namely linear and radial. Due to

the fact that the used input data is not perfectly linearly separable, it was not possible to obtain

meaningful results by applying the linear kernel.30 As matter of fact, many cases exist where

a linear kernel fails to differentiate between the two classes and thus assigns all test data and

therefore also all the hold-out data (out-of-sample data) to the same class. This is the reason

why I decided not to further investigate in the linear kernel. In contrast, the SVMs with a radial

kernel were capable of differentiating the two classes. Figure 12 on the next page illustrates a

SVM with radial kernel applied on the given data set. To remember, the dots that are surrounded

by black squares are support vectors and play a crucial role when it comes to the classification

of the hold-out data. As mentioned in the chapter on the model, I use the grid search method

combined with the ten-fold cross-validation method in order to find the best cost value as well as

the best γ parameter. Table 3 on the following page contains information on how often which

cost and γ value has been chosen in the best fitting model. In 464 out of 635 times, a γ value

of 0.4 has been chosen as best performing value. The reason why I did not allow for values of

γ < 0.4 is that the variance of the Gaussian function would become larger and this would, in

turn, lead to the case where two points are considered as similar even if they are far apart. In

short, too small a value for γ would lead to the same problem that is present with the linear

kernel, where it became impossible to consistently differentiate between both classes.

Using the given data, it is possible to predict the stock market movement for the time horizon

starting in February 1965 and ending in December 2017. Table 4 on page 32 displays a confusion

30Figure 17 on page VI in the appendix illustrates two examples, where a linear kernel has been applied on the

given data.
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Figure 12: SVM Using a Radial Kernel

Cost Value Occurrence Gamma Value Occurrence

10−1 301 0.40 464

100 108 0.45 37

101 70 0.50 48

102 90 0.55 48

103 66 0.60 38

Table 3: Count of Used Cost and Gamma Values

matrix as well as the average in- and out-of-sample accuracy of the SVMs using a radial kernel.

It can be seen that the out-of-sample prediction is correct in 61.1 percent of the time. Already

this result answers the first part of the two-fold research question. Indeed, it is possible to predict

the stock market movement to some degree by using the monthly change in the 3-month US

Treasury bill returns as well as the monthly change in the CPI as input features. Furthermore, it

outperforms that strategy, in which the stock market continues its trend from last month, by 4.9

percentage points in prediction accuracy.

As an interim result, SVMs with a radial kernel are able to predict the stock market movement

with an accuracy of 61.1 percent. The confusion matrix also shows that the SVMs with a radial
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kernel perform much better in predicting the up than the down movement.

truth in-sample accuracy out-of-sample accuracy

-1 1
p

re
d

ic
ti

on -1 52 56 65.677% 61.102%

1 191 336

Table 4: Predicted vs. True Stock Market Movements

5.2 Risk-Managed Momentum Strategy

Having shown the strength of the SVM, we take now the next step and incorporate the obtained

results to the risk-managed momentum strategy via the four different scaling methods for the

target volatility. Imagine the following investment strategy. An investor initially puts exactly

one dollar into the risk-free asset. Simultaneously, he invests a certain percentage (dependent

on the strategy) of that risk-free investment in the WML portfolio. Each month, this strategy

reinvests the accumulated wealth in the risk-free rate and again spends a certain percentage of

this investment on the WML portfolio. Figure 13 on the following page illustrates how such a

one-dollar investment in the beginning of 1965 would have developed until the end of December

2017 using different strategies. On the ordinate are the cumulative returns on a logarithmic scale

so that the performance in the beginning of the strategy, too, is recognisable.31 The standard

momentum strategy reaches a cumulative return of 6,795.50 US dollar at the end of the year

2017. The model of Barroso and Santa-Clara (2015), which I use as a baseline model, clearly

outperforms the standard momentum strategy by achieving a cumulative return of 84,632.29 US

dollar. My strategy of the risk-managed momentum strategy with a flexible target volatility is

able to outperform the baseline model independently of the scaling method applied on the target

volatility. The scaling method where I allow 15 percent annualised volatility when the SVMs

have predicted an up movement for the stock market and 9 percent annualised volatility if the

SVMs have predicted a down movement, turns out to perform best.32 It achieves an astonishing

return of 184,143.30 US dollar by the end of 2017, which is roughly more than the double of the

baseline model. Figure 18 on page VII in the appendix shows the weights in the WML portfolios.

31Figure 19 on page VIII in the appendix displays the growth of this one dollar investment on a non-log scale.
32The model that uses the scaling method four, which reacts faster to down movements, also shows strong

results. Unfortunately, due to too many wrong down predictions, the model is not able to skim all the gains when

the market is flourishing.
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The average weight from my strategy in the WML portfolio is 98.56 percent, whereas it ranges

from 13.27 percent to 229.23 percent over the entire time horizon.
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Figure 13: Development of Momentum Strategies from 1965:02 to 2017:12 (Log Scale)

This higher return does not per se mean that I am able to outperform the baseline model in

all respects. Good measures of comparison between the performance of my model and the one

proposed by Barroso and Santa-Clara (2015) are the higher order moments such as skewness and

excess kurtosis. An also often-used indicator is the so-called Sharpe ratio [SR], which sets the

excess return of a portfolio and its risk in relation to each other. The higher the SR, the more

excess return is being generated at the same level of risk. (Sharpe, 1994) The SR is calculated as

follows.33

SR =
E(rportfolio − rf )

σportfolio
(23)

Table 5 on the following page displays the SR, the skewness, the excess kurtosis and the

cumulative return for all strategies. Getting straight to the point, I will only compare my best

performing strategy with the model from Barroso and Santa-Clara (2015). In addition, I will

juxtapose its performance with the standard momentum strategy. Barroso and Santa-Clara (2015)

were able to decrease the skewness from -1.39 to -0.15 and reduce the excess kurtosis from 7.47

33The explanation of Figure 20 on page IX in the appendix elaborates more on how the realised variance is

obtained in order to calculate the SR.
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to 1.34 when compared to the standard momentum strategy. These substantial improvements in

the higher order moments almost eliminate the crash risk of momentum. My model with the

scaling method three on the target volatility is still able to decrease the left skewness further

from -0.15 to -0.01. The excess kurtosis declines from 1.34 to 1.18. As mentioned above, the

Sharpe ratio serves as a good measure to compare two portfolios’ returns as it sets the excess

return in relation its the risk. In other words, the SR brings the performance of two portfolios

to the same scale making them comparable. By using my strategy instead of the one proposed

by Barroso and Santa-Clara (2015), the SR increases from 0.75 to 0.83. Hence, my strategy

generates more excess return at the same level of risk. All in all, one can conclude that my

strategy outperforms the baseline model by not only lowering the crash risk of momentum but

also by generating higher excess returns at the same risk. My strategy with scaling method

Strategy SR SKEW KURT Cumulative Return

Scaling method 1 0.780 -0.100 1.244 111,332.63

Scaling method 2 0.806 -0.053 1.197 144,213.36

Scaling method 3 0.832 -0.008 1.189 184,143.30

Scaling method 4 0.827 -0.021 1.226 173,623.88

Barroso and Santa-Clara 0.752 -0.151 1.339 84,632.29

Barroso and Santa-Clara (13.98 target) 0.752 -0.151 1.339 159,327.58

Standard momentum 0.601 -1.391 7.472 6,785.80

Table 5: Comparison of the Different Strategies

three has on average an annualised target volatility of 13.98 percent. If the strategy proposed

by Barroso and Santa-Clara (2015) were applied on the same target (13.98 percent), it would

generate a cumulative return of 159,327.58 US dollar without altering the distribution of the

return series. The fact that I am able to increase the SR demonstrates the superiority of my

model.

Before closing this chapter, the efficient market hypothesis [EMH] provides a possible explan-

ation for why my strategy had superior returns compared to Barroso and Santa-Clara (2015).

Imagine the setting of the weak form of the EMH as elaborated by Bodie, Kane and Marcus

(2014, pp. 353–375), where investors cannot outperform the market by analysing the history of

prices and returns. Superior returns might still be achieved through a fundamental analysis such

as macroeconomic models, which make use of public information.34 The obtained information

34For more information on the efficient market hypothesis, see also Fama (1970, pp. 383–417) and Burton
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can then be used to improve investment decisions. As a matter of fact, my strategy trumps their

strategy in terms of excess returns because the former takes additional information, which have

turned out to be relevant, into consideration.

Put figuratively, applying a risk-managed momentum strategy with a flexible target volatility

resembles a poker player who, knowing when to raise or fold, increases or decreases accordingly

his bet and thus gains more and loses less. He plays as if he could see one card of every opponent’s

hand. Although he might lose in some instances, he still wins overall. The same applies on

the stock market, where we use the information on the stock market’s directional trend as

advantage over others. This information edge allows us to accept more of the good risk during

flourishing market times and less in recessions. There, too, will be instances of losses due to

erroneous predictions (type I error) but this strategy is, generally speaking, lucrative. Certainly,

the incorporation of this information leads to superior returns as long as it is rarely used among

other investors. If all the poker players saw one card of their opponent’s hand, then this card

would become commonly shared information and one would lose his edge. In the stock market,

superior returns are only delivered as long as the information advantage remains unique.

Now the second part of the two-fold research question can be answered. Allowing for a flexible

target level in the risk-managed momentum strategy, whereas this target level is determined on

the basis of the stock market predictions made by the SVMs, generates higher returns at the

same risk level.

In conclusion, it has been shown that SVMs with a radial kernel can predict the stock market

movement with an accuracy of 61.1 percent, when using the monthly change in the 3-month

US Treasury bill returns and the monthly change in the CPI as input features. However, SVMs

fail to accurately predict on a consistent basis the down movements. Nevertheless, the gained

information on the stock market movement improves the risk-managed momentum strategy by

allowing a flexible target level. The added value comes in the form of both a lower crash risk of

momentum and a higher Sharpe ratio.

(2003, pp. 59–82).
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6 Robustness

It has been shown in the previous chapter that my model outperforms the risk-managed mo-

mentum strategy invented by Barroso and Santa-Clara (2015) when analysed over the time

horizon from February 1965 to December 2017. Now the question arises whether my strategy

shows such a good performance simply because it survives the crash in 2009 better than other

strategies; or may it also outperform the model proposed by Barroso and Santa-Clara (2015)

and the standard momentum strategy during a period without a financial crisis? The aim of this

chapter is to compute all the models for two different time horizons: one without crises and one

where a financial crisis occurs. If my strategy is still able to dominate the others during both

time intervals, we can be sure that the obtained results in the previous chapter were neither

pure luck nor due to a single event. The first time horizon is chosen from February 1965 to

December 1999. The second time begins in January 2000 and ends in December 2009, where a

crash occurred in the final year.

6.1 Non-Crisis

The confusion matrix reported in Table 6 shows that the out-of-sample accuracy of the stock

market predictions using the SVM with a radial kernel is slightly higher than it was over the

whole time horizon. Figure 14 on the following page depicts the growth of an initial one-dollar

investment when following my strategy with the scaling method three for the variable target

volatility.35 In addition, the evolution of that investment following the strategy of Barroso

and Santa-Clara (2015) as well as the standard momentum strategy is illustrated. During this

non-crisis period, my strategy achieved a cumulative return of 53,279.29 US dollar, which is

roughly twice the amount of money that would have been accumulated by the strategy of Barroso

and Santa-Clara (2015) and nine times when compared to the standard momentum strategy.

truth in-sample accuracy out-of-sample accuracy

-1 1

p
re

d
ic

ti
on -1 41 40 66.881% 61.337%

1 122 216

Table 6: Predicted vs. True Stock Market Movements (Non-Crisis 1965:02 to 1999:12)

Table 7 on the next page reports that my strategy with the flexible target improves the

35The investment strategy is the same as in the previous chapter.
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Figure 14: Performance During Non-Crisis Times

higher order moments. It shortens, so to say, the left skew and lowered the excess kurtosis, which

in turn means that the crash risk of momentum is reduced. The increase in the Sharpe ratio

means that my strategy is able to generate more excess returns for a certain amount of risk when

compared to the other strategies. As an interim conclusion, I hold that my strategy with the

third scaling method (allowing for an additional 3 percent annualised volatility on top of the 12

percent target level in up predictions and 3 less in down predictions) is able to outperform the

baseline model during non-crisis times as well.

Strategy SR SKEW KURT Cumulative Return

Scaling method 1 1.085 -0.236 1.034 35,808.46

Scaling method 2 1.118 -0.179 0.966 43,970.61

Scaling method 3 1.149 -0.125 0.937 53,279.29

Scaling method 4 1.146 -0.142 0.979 51,691.74

Barroso and Santa-Clara 1.050 -0.296 1.150 28,753.09

Standard momentum 0.797 -0.674 2.096 6,051.05

Table 7: Performance During a Non-Crisis Period (1965:02 to 1999:12)
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6.2 Crisis

It remains to investigate how the model performs during a time of crisis. For that purpose, I

analyse the strategies over a time horizon starting in January 2000 and ending in December 2009,

which includes the crash of that year. A sharp fall in the out-of-sample accuracy can be observed

in Table 8. This result emphasises the finding from the previous chapter and underscores that

the SVMs exhibit a deficient accuracy when predicting stock market downturns. One reason

is that the prediction is based on too low a frequency. In other words, the monthly data does

not completely capture such fast market movements. Nevertheless, the obtained out-of-sample

accuracy is still 53.33 percent.

truth in-sample accuracy out-of-sample accuracy

-1 1

p
re

d
ic

ti
on -1 11 14 60.194% 53.333%

1 42 53

Table 8: Predicted vs. True Stock Market Movements (Crisis 2000:01 to 2009:12)

Figure 15 on the next page displays how a one-dollar investment in the beginning would

have evolved following different strategies. It is evident that the standard momentum strategy

fluctuates much more than the other two strategies. In particular, the sharp drop in 2009 draws

special attention. Over this ten year time horizon, an investor following the standard momentum

strategy would have recorded a loss of 27.5 percent, which would have mainly been caused by the

crash in 2009. The strategy proposed by Barroso and Santa-Clara (2015) is still able to gain 87.7

percent over its initial investment. This is mainly due to the fact that their strategy survives

the crash by being exposed to the momentum risk by only 15.9 percent at this time.36 My own

strategy with the flexible target volatility and scaling method three is able to prevent most of

the losses occurred by the momentum crash by merely having a minor exposure of 13.7 percent

at that time. Over the decade, my strategy would have generated a total return of 108.9 percent

and therefore would have registered the best return among the tested strategies.

Here, we take also a look at the higher order moments and the Sharpe ratio (see Table 9 on

page 40). The Sharpe ratio of my model is only slightly higher than that of the others. The

reason might be that I report the average Sharpe ratio over a time horizon of ten years. Hence,

the higher SR of the standard momentum strategy in the beginning signifies that, in average, it

36In March 2009, the WML portfolio had a negative return of 39.76 percent and in April it was even worse

when it gave a negative return of 45.58 percent.
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Figure 15: Performance During Crisis Times

outperforms the model of Barroso and Santa-Clara (2015). An investigation of the mean SR for

the time window including the ten months before and after the shock in the year 2009 reveals

that the SR would change as follows. The standard momentum strategy would result in an

average SR of −0.305, Barroso and Santa-Clara’s strategy would register an average SR of 0.065

and my strategy would reach an average SR of 0.081. A closer look around the crash elucidates

the performance of all three strategies: the standard momentum performs extremely poorly while

mine is with a small margin the best performing strategy. The skewness of my strategy is slightly

better than the one of Barroso and Santa-Clara; in contrast, I report a higher excess kurtosis

than they do. As the excess kurtosis makes a statement about the tail distribution, which in turn

includes both large positive and large negative returns, a slightly higher excess kurtosis is not per

se detrimental. Finally, one may reach two conclusions. First, the standard momentum strategy’s

performance over this time period is inferior to the remaining two strategies that managed to

avoid the crash in 2009 to some extent. Second, all Sharpe ratios are close to each other but my

model is able to perform best when taking a even closer look around the crash. Third, Barroso

and Santa-Clara (2015) and I achieve major improvements compared to the standard momentum

strategy when considering the higher order moments. All in all, my model outperforms the others

in several ways despite the margin occasionally being very small.
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Strategy SR SKEW KURT Cumulative Return

Scaling method 1 0.128 -0.330 0.948 1.946

Scaling method 2 0.144 -0.316 1.078 2.017

Scaling method 3 0.160 -0.306 1.214 2.089

Scaling method 4 0.146 -0.344 1.198 2.032

Barroso and Santa-Clara 0.112 -0.348 0.826 1.877

Standard momentum 0.140 -1.298 27.567 0.725

Table 9: Performance During a Crisis Period (2000:01 to 2009:12)

In conclusion, this chapter has demonstrated that my model with a flexible target level shows

better results in times of crisis and non-crisis as well as when narrowing down the time horizon

to time intervals in both scenarios. Because my model exhibits a higher performance in either

one, it trumps the other two strategies overall.
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7 Conclusion

The aim of this thesis was two-fold. On the one hand, I have demonstrated that macroeconomic

data may very well serve as input features to SVMs when it comes to one-month ahead forecasts

of a stock market’s directional trend. On the other hand, I have shown that the risk-managed

momentum strategy proposed by Barroso and Santa-Clara (2015) can be improved by allowing

more volatility during times where the stock market is flourishing and less volatility if otherwise.

My contribution to academia is the conflation of two otherwise disparately used concepts –

momentum strategy and SVMs – for the purpose of constructing a generally enhanced model. In

order to get the one-month ahead forecasts of a value-weighted portfolio constructed out of all the

stocks traded at AMEX, NYSE and NASDAQ, the technique of SVMs was applied. The monthly

percentage change in both the CPI and the 3-month US Treasury bill rate served as input features

to the SVMs. Making predictions over a time horizon beginning in February 1965 and ending in

December 2017 resulted in a 61.1 percent prediction accuracy of the stock market’s directional

trend. These findings were then incorporated into the target level of the risk-managed momentum

portfolio of Barroso and Santa-Clara (2015), which scales the exposure to the momentum risk

by means of its monthly volatility forecast. A prediction of an up movement corresponded to a

higher volatility target while a prediction of a down movement corresponded to a lower volatility

target. The momentum portfolios are constructed on a 12 month formation period and are held

for one month, whereas a time lag between the formation an holding period is needed to avoid

some of the bid-ask spread.

The implementation of a flexible volatility target increased the Sharpe ratio from 0.752 to

0.832 when compared to the baseline model from Barroso and Santa-Clara (2015) which used a

annualised target volatility of 12 percent. Furthermore, the skewness has improves from -0.151

to -0.008 and the excess kurtosis went from 1.339 to 1.190. This means a reduction of the overall

crash risk of momentum. Furthermore, the risk-managed momentum strategy with a flexible

target level outperformed the other models in both non-crisis and crisis times as well.

It is necessary to briefly discuss one caveat: transaction costs. They were ignored because

the main objective of this thesis was the incorporation of predictions made by SVMs into the

risk-managed momentum strategy. This allowed me to compare my results with those obtained

by Barroso and Santa-Clara (2015). The findings of Ammann et al. (2010) suggest that including

trading costs in the momentum strategy still renders significant high returns. Hence, my results

are expected to alter at best negligibly when taking transaction costs into account.

In conclusion, SVMs are able to predict a stock market’s monthly directional trend to a
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certain degree when using macroeconomic variables as input features. Furthermore, the use of

those predictions allows to reduce the risk of an investment strategy, as shown on the example of

the momentum strategy. This begs the question: in which direction may the strategy be further

enhanced? I see the greatest potential in the improvement of the prediction accuracy of the down

movements. For this purpose, one could investigate different input features for the SVMs, be

they either technical (e.g., a simple moving average) or macroeconomic (e.g., the unemployment

rate or the dividend price ratio). An alternative approach is to apply my model while predicting

the stock market’s directional trend on an hourly basis, whereas those predictions would serve as

an early warning system: after a certain number of consecutive down predictions on an hourly

basis, the investment strategy should sell off its investment in the WML portfolio instead instead

of idly observing an entire month of down movements.

Coming full circle, predictions – especially those about the future – remain a daunting

endeavour; nevertheless, this uncertainty may partially be reduced when applying the risk-

managed momentum strategy with a flexible target volatility.
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Żbikowski, K. (2015). Using volume weighted support vector machines with walk forward testing

and feature selection for the purpose of creating stock trading strategy. Expert Systems

with Applications, 42 (4), 1797–1805. doi: 10.1016/j.eswa.2014.10.001

IV



Appendix

Figure 16: Monthly Percentage Change in the 3-Month US Treasury Bill Returns
Source: Author’s rendering of data from the Board of Governors of the Federal Reserve System (2018).
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This figure displays the monthly percentage change in the 3-month US Treasury bill returns.

When looking at Figure 10 on page 28, one notes that this security has huge swings during

the time horizon of interest. It reached a peak of 16.3 percent return in the 1980s and a low

of 0.01 percent in 2010. By solely observing the monthly percentage change (Figure 16), one

might get the impression that after 2008 the swings became worse. But Figure 10 on page 28

illustrates that the security returns reached its lower bound and subsequently flattened out. The

huge spikes in the monthly percentage change are therefore due to the fact that the proportional

changes from month to month increased despite lower levels of return.
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Figure 17: SVM Using a Linear Kernel
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This figure illustrates some of the difficulties which arise – using the monthly change in both

the CPI and the 3-month US Treasury bill returns as input features – when it comes to the

classification of the stock market’s up and down movement. Both panels display a SVM with a

linear kernel. In the left panel it was feasible to find a maximal margin hyperplane that divides

the up movements (blue dots) from the down movements (red dots). The support vectors are

indicated with squares around the data point. In the right panel the SVM with a linear kernel

would assign all points in the given data range to the same class. Such classification is useless

because it predicts an up movement of the stock market regardless of which values the input

features take on. This is why I discarded the possibility of getting accurate estimations for the

stock market movement when using a SVM with linear kernel.
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Figure 18: Weights in the WML Portfolio for 1965:02 to 2017:12
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This graph shows the weights for three different strategies in the WML portfolio. The

standard momentum strategy always goes long in the winners decile and short in the losers decile

for the same amount of money that already had been invested in the risk-free rate. Therefore,

the weight of the WML portfolio is always 100 percent for the standard momentum strategy.

Both the model proposed by Barroso and Santa-Clara (2015) and my own adjust the exposure

to the WML portfolio by scaling its weights (cf. chapter 3 on the model). Table 10 provides

Strategy Min. Median Mean Max.

Scaling method 3 0.133 0.933 0.986 2.293

Barroso and Santa-Clara 0.134 0.849 0.916 2.050

Standard momentum 1 1 1 1

Table 10: Summary Statistics: Weights of the Different Strategies

ancillary information on the weights of the strategies. On average, my strategy’s exposure to the

WML portfolio is slightly below 100 percent while the exposure from Barroso and Santa-Clara

(2015) is on average 91.6 percent. Over the entire time horizon, my strategy’s exposure to the

momentum portfolio ranges between 13 and 229 percent.
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Figure 19: Development of Momentum Strategies from 1965:02 to 2017:12
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This figure shows how a one-dollar investment in February 1965 would have evolved until

December 2017 following the different strategies. The investment strategy is as follows. At

start, an investor puts exactly one dollar into the risk-free asset while simultaneously investing a

certain percentage (dependent on the strategy) of that risk-free investment in the WML portfolio.

Each month, this strategy reinvests the accumulated wealth in the risk-free rate and again takes

a certain percentage of this investment in the WML portfolio. Even though, the investment

strategy started in February 1965, one can recognise a growth only from the year 1990 onwards

as the scale is very huge. This figure shows nicely the difference in the cumulative returns at the

end, whereas Figure 13 on page 33 shows better the evolution over the whole time horizon.
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Figure 20: Realised Monthly Volatility of Momentum
Source: Author’s rendering of data from the Kenneth R. French Data Library (2018).
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This figure shows the annualised realised monthly volatility for the time horizon of interest.

It is used to calculate the Sharpe ratio, which helps to compare the success of the different

portfolios. The realised variance is calculated as follows.

σ̂2RV,t =
1

21

20∑
j=0

(rWML,dt−j − r̄WML)2,

where

• σ̂2RV,t is the monthly realised variance,

• {rWML,d}Dd=1 are the daily returns,

• r̄WML is the mean of the WML returns of the previous 21 days including day t.37

Particularly noticeable is the high level of annually realised monthly volatility around the dotcom

bubble and the financial crisis.

37They are calculated as follows: r̄WML = 1
21

∑20
j=0 rWML,dt−j .
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