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Anna Dreber at Handelshögskolan i Stockholm - Stockholm School of Economics

for helping me navigate through this thesis and providing guidance throughout

the Master of Economics Program.

I also want to thank the entire AI R&D team at King for their help. I am

especially grateful to Lele Cao and my supervisor Stefan Freyr Gudmundsson

for their advice and feedback.

Last but not least, I want to thank my parents and friends for supporting me

through the master program, especially Ruiqi and Karolina for never failing to

make me laugh.

1



Table of Contents

1 Introduction 5

1.1 Why Study Cluster Analysis in Economics? . . . . . . . . . . . . 5

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Data Science Background 8

2.1 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Types of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Silhouette Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . 12

2.5 A/B Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Game Theory 19

3.1 Types of Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 The Model 23

4.1 K -Means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 The Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . 25

4.4 K -Means Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Business Application - Method 29

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 A/B Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Results 32

6.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Results on A/B Test . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 45

2



8 Appendix and Acronyms 49

List of Figures

Section 2

2.1 Silhouette Analysis for k = 3 to k = 5 . . . . . . . . . . . . . . . 11

2.2 PCA from Two-Dimension to One . . . . . . . . . . . . . . . . . 13

2.3 Simple Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Deep Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 t-SNE vs PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 t-SNE with perplexity= 2 . . . . . . . . . . . . . . . . . . . . . . 18

Section 4

4.1 K -Means Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Section 6

6.1 Dimensionality Reduction for Static, Active Gamers, . . . . . . 34

6.2 Dimensionality Reduction for Time-Series, All Gamers . . . . . . 36

6.3 Dimensionality Reduction for Time-Series, Active Gamers . . . . 38

6.4 t-SNE of Latent Space, k = 5 . . . . . . . . . . . . . . . . . . . . 39

6.5 Bar Plot, Static Clusters . . . . . . . . . . . . . . . . . . . . . . . 40

6.6 Heatmap of Static Clusters, k = 5 . . . . . . . . . . . . . . . . . 41

6.7 99% Confidence Intervals, Static Clusters . . . . . . . . . . . . . 41

6.8 Bar Plot, Time-Series Clusters . . . . . . . . . . . . . . . . . . . 42

6.9 Heatmap of Time-Series Clusters, k = 5 . . . . . . . . . . . . . . 43

6.10 99% Confidence Intervals, Time-Series Clusters . . . . . . . . . . 44

3



List of Tables

Section 2

2.1 Types of Learning Methods . . . . . . . . . . . . . . . . . . . . . 8

Section 3

3.1 Two Player Games . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Section 8

8.1 Static Silhouette Scores, Active Gamers . . . . . . . . . . . . . . 49

8.2 Time-Series Silhouette Scores, Active Players . . . . . . . . . . . 49

8.3 Static Silhouette Scores, All Players . . . . . . . . . . . . . . . . 50

8.4 Time-Series Data, All Players . . . . . . . . . . . . . . . . . . . . 50

8.5 Deep Autoencoder with Over-Complete Layer, Silhouette Scores 50

4



1 Introduction

1.1 Why Study Cluster Analysis in Economics?

The goal of this paper is to model cluster analysis and advanced machine learn-

ing techniques in a game theoretical framework. The modern field of data science

itself is a combination of statistics and computer science, making use of tech-

nological computing advancements in solving more complex statistical models,

including the methods used in econometrics. Many economists do not know

that they are already data scientists: regression analysis in econometrics is one

of the predominant supervised methods (See Section 2) in data science (Lupták,

2015). Although data science is closely associated to econometrics, it shares

many similarities with game theory as well. They stem from a similar frame-

work - both take inspiration from observations in nature and iterate to stable

equilibria. Hugo Steinhaus, one of the founders of the K -Means algorithm that

we focus on this paper, was also an early founder of game theory (Steinhaus,

1956). By exploring similarities in cluster analysis with econometrics and classic

game theory, we attempt to bridge the gap between more classical economics

and modern data science methods.

By utilizing the latest techniques in data science, game theorists as well as

econometricians can take advantage of the latest innovation in machine learn-

ing. Data science can be used to solve complex economic models in game theory,

where games with higher dimensions cannot be easily represented with 2D payo↵

matrices. It can also be used to segment the population in applied game theory

experiments, where noisy results can mask underlying behavior patterns. Lastly,

unsupervised methods allow researchers to broadly analyze a multivariate data

set and make hypotheses without over-segmenting the data set by di↵erent vari-

ables and trying to pick out any statistically significant relationships between

di↵erent variables. This prevents p-hacking or fishing, when researchers pick out

statistical significant p-values in a data set using multiple comparisons rather

than only testing the stated hypothesis.
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1.2 Literature Review

Many top computer science journals such as IEEE publish a great deal of pa-

pers and even entire issues in an economic framework, particularly in algorithmic

game theory. Dhamal et al. (2011) develop a new cluster algorithm using the

shapley value and other concepts from game theory. Pelillo (2009) describes

the connections between game theory and data science in an article, as well

as work with Bulò in his Ph.D. thesis and subsequent paper on hypergraph

clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-

bernetics) published an entire journal in game theory (Vasilakos et al., 2010).

The 13 papers in this journal use classical game theory to study wireless network

resource allocation and auctions, anomaly detection, and virus-drug interaction.

Despite regression analysis being a core statistical method in both economics and

computer science, there were few such technical collaborations in the economics

field. Only recently have data science methods been used to further insight into

economics data, but still rarely in economics journals. For example, Best et al.

(2017) uses a text classification machine learning method to analyze responses

to policies, particularly individuals and organizations tasked with implement-

ing government policies. Unsupervised methods, particularly cluster analysis,

can be used to group similar entities by a range of factors. R̆ezanková (2014)

uses agglomerative hierarchical clustering, k -medoids, and K -Means algorithms

to group Eastern European economies by multiple levels of economic activity

by age group and group various household goods as economic indicators. After

this exploratory analysis, they then go back and see the defining factors for each

cluster, and how similar or dissimilar di↵erent countries are by variable using

hierarchical dendograms. This exploratory analysis could be the baseline for

more classical regression analysis in subsequent econometric papers. Florczak

et al. (2015) cluster micro household behavior in Poland to analyze if the vari-

ables of interest have significant multivariate correlations. Setyaningsih (2012)

implement cluster analysis to study small businesses in Indonesia, using mi-

cro data such as employee education level and management styles. Hollenstein

(2000) implement similar research, but use firm-level data measure innovation

levels using a variety of indexes to compare between di↵erent types of Swiss

companies. In all these papers, a non-linear analysis allows researchers to look

for multivariate patterns without segmenting the testing population or having
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to choose between multiple indicator variables.

Exploring a data set through unsupervised methods such as cluster analysis

can help find novel patterns in the data. The practical application in this paper

partially focuses on cluster analysis on time-series data, as it is a commonly

used data type in economics. The cluster analysis process we focus on in this

paper can be highly useful in econometrics, as it replaces manually segmenta-

tion of the population of interest. It can be used to find meaningful patterns in

the data without picking out mere statistical anomalies (Benjamin et al., 2017;

Camerer et al., 2016; Gelman and Loken, 2013). Cluster analysis hinders the

researcher from manually segmenting the data set or choosing between input

variables. In the result section of this paper, we show how cluster analysis can

be used to segment A/B test results (see Section 6).

In Bulò and Pelillo (2009), a hypergraph cluster algorithm is analogized to

an evolutionary stable strategy game. Inspired by Bulò and Pelillo’s paper A

game-theoretic approach to hypergraph clustering, we use the framework of game

theory to model the K -Means algorithm and its related validation technique,

but from a more economics-focused perspective.

Outline

In this paper, we start with a detailed technical background in cluster analysis

(Section 2) and game theory (Section 3), for readers unfamiliar with either field.

In Section 4, we detail the K -Means algorithm and model it in a game theo-

retical framework, similar to Bulò and Pelillo (2009). We describe the method

in which we applied this model on a corporate data set from the mobile game

company King in Section 5, and the results on static and (time-series) activity

features in Section 6. Lastly, we conclude with final comments and ideas for

further research in Section 7.

Although this is a thesis for the Master of Science in Economics, we incorpo-

rate data science research methodology such as Background and Method akin

to data science papers.
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2 Data Science Background

The following section chapter provides background information for those unfa-

miliar with data science approaches. In the field of economics, the most com-

monly used statistical method is regression analysis. Although it can be very

e↵ective in fitting a set of inputs x = {x1, x2, ...xn

} to output y by a set of

weights {�1,�2, ...�n

}, it is limited by the availability of such an output label

y. Supervised learning methods are defined in the use of a y value, called the

ground truth, that is used to fit the model and measure its accuracy. On the

other hand, unsupervised learning has no ground truth label, only the input data

set x. Unsupervised learning methods focus on extracting patterns of similarity

and di↵erence from just the input data set (Friedman et al., 2009). Table 2.1

shows the core supervised and unsupervised methods.

Table 2.1: Types of Learning Methods

Supervised Unsupervised

Maps x to ground truth label y Maps x to some grouping based on x

Regression Clustering

Classification Anomaly detection

Association

2.1 Cluster Analysis

Cluster analysis is one of the core unsupervised learning method in the field of

data science and machine learning. Instead of fitting the data set into a set of

weights that predict the output label, the data set is partitioned into groups

with similar characteristics (Aggarwal and Reddy, 2013). It is commonly used

in fields such as business and marketing analytics, where there is ample data

available, such as characteristics of the customer base, but generally few heuris-

tics on which information is actually valuable for the business.

Because the results cannot be measured for accuracy with a known output la-

bel, the results must instead be validated using various measures of inter-cluster
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similarity or intra-cluster separation. The features used for cluster analysis must

be carefully chosen, and may need dimensionality reduction such as principal

component analysis or autoencoder (more in Section 2.4). A complicated opti-

mization model such as this requires a more complex algorithm using machine

learning, as well as robust validation to justify the results of the model.

2.2 Types of Models

There are various methods in which to cluster the data set. Probabilistic mod-

els such as Expected Maximization (EM) algorithms are a type of generative

models that assume the data set follows a certain distribution, and measures

the likelihood of each point following this distribution. The sum of probabili-

ties is maximized to find the likely distribution of the data set. Probabilistic

models can sometimes be simplified to distance-based algorithms, which divide

data points to the closest cluster. Distance-based algorithms are either flat or

hierarchical.

Agglomerative hierarchical methods merge points or sets together, while divi-

sive hierarchical methods split sets into smaller ones. In contrast, flat methods

cluster the data set in one shot. The most common flat methods are K -Means

(distances are measured to the mean of each cluster, called the centroid), k -

medians (distance is measured to the median value of each cluster, therefore

less susceptible to outliers), and k -medioid (clusters are chosen by selecting spe-

cific data points as centers).

Di↵erent methods have varying strengths and weaknesses depending on the

type of data set or underlying pattern. The most common and simple cluster-

ing method is the K -Means model, in which the cluster centroids are represented

by the mean of the data points assigned to each cluster. Although we exper-

iment with alternate methods such as k -prototypes (K -Means optimized for

categorical data) and hierarchical models, we found that loss rate and results

were similar to K -Means. We will be using K -Means model for the rest of the

paper, so that methods can be more consistently compared using validation such

as Silhouette Score. K -Means is explained in greater detail in Section 4.1.
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2.3 Silhouette Score

In practical applications, the ”correct” value of k, the number of clusters to

group the data set, is unknown. The silhouette score can be used to measure

both the homogeneity within each cluster, as well as the heterogeneity between

clusters:

s(x
i

) =
b(x

i

)� a(x
i

)

max{a(x
i

), b(x
i

)}
where a(x

i

) is the average distance from point x

i

to other points in the same

cluster, and b(x
i

) is the average distance from x

i

to points in the closest neigh-

boring cluster (Rousseeuw, 1987). The average silhouette score for each cluster-

ing result can be used to compare both the intra- (within) and inter- (between)

cluster variance between di↵erent k values. Figure 2.1 shows the silhouette anal-

ysis for k = 3 to k = 5. The area graphs show each point’s silhouette score, with

colors representing di↵erent clusters. When k = 3, the largest cluster (black)

is too widely distributed, and a(x
i

) is too large, implying it should be split up

to multiple clusters. When k = 5, the two smallest clusters (yellow and light

blue) are close together, and b(x
i

) is too small, implying they should be joined

to one cluster. It shows that k = 4 has the highest average silhouette score (red

dotted line), because points in the same cluster are close together, while points

in other clusters are far apart.

Silhouette score has the advantage of taking into account the size and distance

between di↵erent clusters, whereas other commonly used methods such as dis-

tortion or elbow method only looks at the variances of the data set within its

assigned cluster (Aggarwal and Reddy, 2013). Because it takes into account the

variance within as well as between clusters, it is more consistent for di↵erent

values of k. We use the silhouette score for the main quantitative comparison

method between clustering algorithms.

However, we also look at alternate values of k when the results are not use-

ful - for example, if one cluster contains a disproportionate amount of the data.

In practical uses where k is not pre-determined by some external requirement,

there is also a constraint of choosing a ”reasonable” number of clusters k.

k < k̄
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(a) k = 3

(b) k = 4

(c) k = 5

Figure 2.1: Silhouette Analysis for k = 3 to k = 5 (Scikit-Learn)

k = 3 shows one cluster that is too large, k = 5 has two clusters that

could be compiled together. k = 4 is ”just right” - clusters are similar

sizes, well segregated from each other, and contain points close to each

other. [This figure is best viewed in color]

For example, a market analyst may set k = 10 if that is the number of cat-

egories the business has decided to segment the market by. If there is not a

pre-determined rule, she may set k̄ = 15, because any further market segmenta-

tion will not be practical for the business. If she plans to manually cluster some
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similar clusters together after the K -Means algorithm, k̄ may be even higher.

2.4 Dimensionality Reduction

With the emergence of big data and micro-data collection, ample information

is available for cluster analysis. A novel problem that emerges, however, is that

there is too much information, and it is often di�cult to determine which vari-

ables are important or correlated. Therefore, dimensionality reduction methods

are used to condense the data set and reduce noise, leaving only essential infor-

mation.

For example, imagine a clothing company has a data set of various body mea-

surements from their customers, from height and waist circumference to arm

length and weight. A dimensionality reduction method may reduce all these

features down to a couple variable, maybe representing dress sizes the com-

pany could have. This reduces the large variances in people’s body shapes to a

singular number that still contains the general information of someone’s body

dimensions. This kind of dimensionality reduction prevents over-personalization

or over-fitting.

Over-fitting is particularly a problem in unsupervised learning methods, when

the accuracy of the model cannot be measured with a known output. This is

when a model fits the sample data set, but is too specific to use for the entire

population. In this example, personalizing a specific size for each individual is

impractical. Reducing all of their measurements to one or two variable allows

a company to produce a limited number of di↵erent sizes and still satisfy most

of their customers.

There are various ways to reduce the number of features in a data set, from

linear combinations to deep learning algorithm.

Principal Component Analysis

Principal Component Analysis (PCA) is one of the simplest and widely used

dimensionality reduction technique (Pearson, 1901). The goal of PCA is to cre-

ate a linear combination of the data set features (Shlens, 2014). It searches

for the principal component ”axis” along which various features are correlated,
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and transform the data along this axis to reduce variance and the number of

features. When two variables have a strong linear correlation, one variable can

be used to describe both.

Figure 2.2 shows the same two-dimensional data set in its original form (left)

and PCA-transformed form (right). In the original form, the data roughly fits

the line y = 3
5a + 2. By ”turning” the data along this axis, it reduces the y

dimension to pc2 = 0, and only one dimension pc1 is needed to describe the

data set. The number lines below the graphs show the variance along the x and

y axis is reduced to only variance along pc1, while pc2 is centered close to 0.

Figure 2.2: PCA from Two-Dimension to One (Powell, 2014)

The original data set is converted from two dimensions (x, y) to one

dimension (pca1) using PCA by reducing the variance along the diagonal

trend. pca2 is reduced to 0 for all points and can be taken out.

While beneficial for simple and fast dimensionality reduction, PCA has the

drawback of assuming that the true variables of interest are the ones with the

greatest variance. However, this may not always be the case, so it is critical

to normalize the data. It also assumes linear relationships between di↵erent

features, and that the principal components are orthogonal. For more complex

relationships, an autoencoder may be more suitable.
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Autoencoders

Autoencoder (AE) are a form of neural network used to compress and decom-

press large data sets using hidden layers (Stanford). While a supervised learning

method fits a set of input values to a set of output values, autoencoders try to fit

a set of values to itself, using a learned form of the identity function. However,

it is limited by the number of hidden units in the inner layers, which is less

than the original number of features. The identity function aims to find a set of

weights w that keep as much of the original data set’s information as possible,

but with less values. The first half is called the encoder. The encoder is like a

non-linear form of the PCA, in that the data set can be reduced to less variables

or features. The second half is called a decoder, and uses the inverse of the en-

coder to reconstruct the data set. A predetermined loss functions measures the

di↵erence between the original data set and the reconstructed data set, and the

autoencoder optimizes on this function. The resulting data set is compared to

the original, and weights are iteratively adjusted to reduced the error between

the reproduced and original data sets.

It is often used to find structures within the data, such as patterns in images or

correlations among variable sets. The smallest layer with m

⇤ features is called

the latent space, and these encoded values are used for dimensionality reduction

purposes. A simple autoencoder is visualized in Figure 2.3. The first set of blue

circles Y represent the input - the original data set - before being encoded, with

8 features in this case. The green circles V are the encoded representation, and

have 6 features. The last column of blue circles Ŷ shows the reconstructed data

set output.
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Figure 2.3: Simple Autoencoder (Berniker and Kording, 2015)

The first set of blue circles Y represent the original data set before being

encoded, with 8 features in this case. The green circles are the encoded

representation, and have 6 features. The last column of blue circles Ŷ

shows the reconstructed data set. This autoencoder reduces the data set

from 8 features to 6, then back to 8. It aims to keep the reconstructed

data as similar to the original data set as possible.

Autoencoders can also have more complex forms that can capture more complex

and deep information. Di↵erent loss functions and metrics can measure the

di↵erence between the original data set y and the recreated data set ŷ. A

common metric is the mean square error (MSE)(Keras Documentation, a):

1

n

nX

i=1

(y
i

� ŷ

i

)2

There are also various optimizer functions to measure (Keras Documentation,

b). We chose the Adam optimizer due to its e�ciency in large and sparse data

sets (Brownlee, 2017; Diederik P. Kingma, 2015).

Deep Autoencoder

Instead of having just one encoded layer, Deep Autoencoder (DAE) can have

multiple layers to reduce dimensions gradually. Figure 2.4 shows a DAE with 5

inner layers. Instead of reducing 8 features to 2 in one shot, each layer reduces

the most important information down to the essentials, to prevent important

information from being lost, and uses mirroring layers to decode back to the

recreated data set.
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Figure 2.4: Deep Autoencoder (Berniker and Kording, 2015)

This deep autoencoder reduces the data set from 8 features down to 2.

By adding multiple layers, this process is more gradual and aims to keep

the more important patterns in the data set.

Over-Complete Autoencoder

When the data set is too sparse, an autoencoder with an over-complete layer can

help fill the missing data points. An over-complete layer has more nodes than

the original data set, and this can help predict the missing parts of the original

data set. In an over-complete deep autoencoder, one layer can be greater than

the original number of features, before reducing down to the smallest latent

space.

t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is used for dimension-

ality reduction and data visualization (va der Maaten and Hinton, 2008). It

minimizes the Kullback-Leibler (KL) divergence between the data distribution

and embedded distribution by measuring the distance or dissimilarity between

data points and converts them to conditional probabilities. Points that are

more similar are grouped closer together, making it easier to see which values

are similar in a 2D or 3D space. Figure 2.5 shows the di↵erence in dimension-

ality reduction using t-SNE and PCA on the same data set. t-SNE makes it

easier to see how similar values are grouped together than PCA.
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Figure 2.5: t-SNE vs PCA (R-Bloggers, 2017)

The two graphs show dimensionality reduction of the same data set

with colors representing which cluster they are assigned to. While both

reduce the number of features/dimensions, t-SNE aims to visualize the

segregation of the data by grouping similar data points together.[This

figure is best viewed in color]

While useful for visualization, t-SNE should not be used for dimensionality

reduction in K -Means. There are several parameters in the t-SNE algorithm

that drastically change the results, therefore the patterns in the t-SNE results

may not be real patterns in the data set. Altering one parameter may cause the

visualization to show relationships that do not actually exist in the data (Distill,

2016). Figure 2.6 shows the original data set of random values from a Gaussian

distribution, and what it looks like after running t-SNE with perplexity 2. Some

points seem clustered together when they are in reality random. Consequently,

t-SNE is only used for appealing visualization, not for further analysis.
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Figure 2.6: t-SNE with perplexity= 2 (Distill, 2016)

t-SNE sometimes shows patterns in the data that do not exist. Above,

the original data set is a random Gaussian distribution, but t-SNE makes

it appear to group several points together.

2.5 A/B Testing

In the practical application of this paper, we compare the dimensionality re-

duction methods and choose one to cluster using K -Means. We then compare

the di↵erent clusters’ reactions to A/B testing. A/B testing is an experimental

process commonly used in web or tech based analytics, in which the population

is randomly divided into a control (A) and test (B) group. The control group

is kept the same, while the test group is given a new feature. The di↵erence-in-

di↵erences is measured to see if there is a positive or negative reaction to the

new feature, controlling for change over time. This is generally measured by

changes in some Key Performance Indicators (KPI), such as number of clicks or

amount spent.
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3 Game Theory

Game theory studies the interaction of multiple decision makers. It analyzes the

action of multiple players in maximizing their payo↵s or utilities. The framework

described in this section can be used to model K -Means algorithm in Section

4.1. In their research, Bulò and Pellilo use game theory to model a hypergraph

cluster algorithm. Similarly, we use game theory to model the K -Means cluster

algorithm, but with further analysis on the game theory framework.

A set of players interact with each other in a strategic form game. Each player i

chooses a strategy, and the combination of strategies will result in utility for

all the players. Each player can choose a pure strategy to maximize utility ⇡

i

,

or choose several in a mixed-strategy with certain probability distribution to

maximize her expected utility E(⇡
i

). Two payo↵ matrices of a 2 player game

are shown in Table 3.1. The first value is the utility of player 1, with each

strategy row labeled on the left. The second value is the utility of player 2, with

each strategy as a column labeled above the utility grid. In the first game on

Table 3.1a, it is optimal for player 1 to choose a strategy that is the same as

player 2, while player 2 wants to choose a strategy that is the opposite of player

1. In the classic Prisoner’s Dilemma depicted in Table 3.1b, it would be optimal

for both if they both chose Quiet than both betrayed the other. However, if one

chose Quiet, the other could betray to get even higher utility.

Table 3.1: Two Player Games

(a) Left Right

Left Right

Left 1, -1 -1, 1

Right -1, 1 1, -1

(b) Prisoner’s Dilemma

Quiet Betray

Quiet 2, 2 -1, 3

Betray 3, -1 0, 0
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3.1 Types of Games

There are several di↵erent categories of games, as well as extensive form games

that include additional aspects or qualities to the game. They can drastically

change the framework and the strategies players choose.

Cooperative vs Non-Cooperative

Cooperative games force players to form coalitions and commit to their strategy.

They require some sort of binding agreement, such as contracts, that ensure

that the agreed upon strategy is played, even if a player wants to deviate. In

non-cooperative game theory, there are no such binding rules. Players choose

a strategy that is utility maximizing, typically under Nash equilibrium (see

Section 3.2).

Symmetric vs Asymmetric

Symmetric games are when all players have the same payo↵ function. In Ta-

ble 3.1, Left Right is asymmetric: player 1 and player 2 receive di↵erent payo↵s

when playing the same strategy, and switching strategies does not switch pay-

o↵s. Prisoner’s Dilemma is symmetric: When player 1 chooses Betray while

player 2 chooses Quiet, player 1 receives the same payo↵ as player 2 would if

player 1 chose Quiet and player 2 chose Betray.

Simultaneous vs Sequential

All players choose strategies at the same time in simultaneous games, while

players take turns in sequential games. Table 3.1 games are simultaneous, but

can be converted to a sequential game where one player goes first. Sequential

games can have perfect information (in which all players know which strategies

have been chosen previous to theirs), or non-perfect information (in which some

players do not know all of the previous decisions).

One-Shot vs Repeated

A One-shot game is only played once, while repeated games play multiple or

even infinite times. In repeated games, players may choose a strategy that

takes into account the past and the future. They may play a di↵erent strategy
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depending on past history of other players, or play certain strategies to signal a

favorable reputation and gain more utility in subsequent rounds. In Table 3.1b,

players will be more likely to choose Quiet if they know they will be playing the

game again. The increase in payo↵ from Betraying once will be outweighed by

the potential of getting (Quiet, Quiet) instead of (Betray, Betray) in subsequent

periods.

3.2 Nash Equilibrium

In non-cooperative game theory, Nash equilibrium (NE) is a set of strategies

in which no player is able to deviate from her strategy and increase (expected)

utility, given all other players play the NE strategy (Nash, 1950, 1951). Formally

put, a game consists of a set of players C = {c1, c2, ...ck}. Each player c
j

plays

a strategy s

j

from her set of possible strategies S
j

to maximize expected utility:

max
sj2Sj

E(⇡
j

(s
j

, s�j

))

where s�j

denotes the strategies of all players except player j. A NE is a set

of strategies for every player {s⇤1, s⇤2, ...s⇤
k

} such that no player can deviate to

increase utility, given that all other players play the NE strategy. For all players

c

j

2 C and all other strategies s0
j

2 S

j

:

E(⇡
j

(s⇤
j

, s

⇤
�j

)) � E(⇡
j

(s0
j

, s

⇤
�j

))

In the game shown in Table 3.1a, the NE is the mixed strategy s

⇤
1 = (0.5, 0.5),

s

⇤
2 = (0.5, 0.5). Both players need to play completely randomly to prevent the

other one from deviating to another action more often. If player 1 plays Left

more often, player 2 would play Right more often, to player 1’s detriment. Like-

wise, if player 2 played Left more frequently, player 1 would play Left more

frequently as well, hurting player 2’s expected utility.

In the Prisoner’s Dilemma in Table 3.1b, the NE is the pure strategy s

⇤
1 = (0, 1),

s

⇤
2 = (0, 1). That is, both players will always choose to betray. This is because if

they choose Quiet, it would be better for either to deviate to Betray. Therefore

they will both end up choosing (Betray, Betray), even though (Quiet, Quiet) is

better for both players.

If the game is repeated infinitely, however, the Prisoner’s Dilemma may lead
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to a (Quiet, Quiet) NE. If both players care about their future utility, they will

be better o↵ choosing to cooperate and choose Quiet to assure that the other

player also plays Quiet. This is similar to cartel collusion in industrial organi-

zation. Players do not ”betray” the other companies in the cartel by decreasing

the price in the market, due to threat of the other companies also lowering prices

in the subsequent periods down to competitive prices:

⇡

collusion

= 2 + 2� + 2�2 + ...

where � is the discount factor per period (how much the future matters compared

to the present).

⇡

deviation

= 3 + 0� + 0�2 + ...

will not be worth it if ⇡
collusion

> ⇡

deviation

, or � >

1
3 .
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4 The Model

In the following section, we detail the K -Means algorithm and its process. We

then present a game in which each player is a cluster with utility based on

inter-cluster similarity and how dimensionality reduction is modeled under game

theory. Finally, we show that K -Means strategy results in a Nash equilibrium

in this game.

4.1 K -Means Algorithm

K -Means is one of the most commonly used algorithm in cluster analysis (MacKay,

2003). It takes a data set {x1, x2, ...xn

} comprised of n points of length m, with

m denoting the number of features or variables in the data set. The algorithm

groups the points into k clusters using the function that maps f : Rm ! Rm,

from the point to the location of the nearest cluster. K -Means algorithm aims

to find the local minimum of the sum of squared errors from the data points to

its assigned cluster’s centroid:

min
cj

nX

i=1

d(x
i

, f(x
i

))2 = min
cj

kX

j=1

X

xi2Sj

d(x
i

, f(x
i

))2

where d(x, y) = ||x � y|| =
p
(x1 � y1)2 + (x2 � y2)2 + ...+ (x

m

� y

m

)2 is the

Euclidean distance function and S

j

is the set of points in Cluster j 2 {1, 2, ...k}.
After choosing the value k, the K -Means iteration process is as following:

⇤ Iteration 1 : Cluster centers {s1, s2, ...sk} are chosen randomly. Function

f(x
i

) = s

j

takes the data set and uses the distance function to find the

closest cluster center, and assigns each point with that cluster.

⇤ Iteration 2 : The mean value of the data points in each cluster is calculated

as the new cluster centers. For each cluster strategy s

j

2 S:

s

j

= µ

j

:=
1

|S
j

|
X

x2Sj

x

where |S
j

| is the cardinality of S
j

. Data points are assigned to the closest

cluster with the new cluster centers.
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⇤ Iteration 3, 4, 5...: The process from Iteration 2 is continued for a prede-

termined number of iterations, or until a stable equilibrium is reached.

In practice, iterating over the mean of each cluster’s assigned points leads to

an equilibrium that minimizes the sum of square errors. Figure 4.1 shows 6

iterations of this process in a random data set of two dimensions x = [�2, 2]

and y = [�0.5, 3] (m = 2). Because the first random iteration cluster centers

are all chosen close to (0, 2.5), it takes several iterations for the centers to spread

out and reach equilibrium.

Figure 4.1: K -Means Iterations (Pandre)

The figure above shows 6 iterations of the K -Means process. The 3

cluster centers start from random locations and gradually iterate to the

optimal locations.

4.2 The Game

K -Means clustering can be framed as a k player game. It is a non-cooperative,

symmetric, simultaneous, repeated game. Although the game is run for multiple

iterations to reach equilibrium, we only calculate utility from the payo↵s after

stable equilibrium is reached and the strategy no longer changes. All previous

iterations are exploratory ”searching” of the equilibrium, and frame the strategy

set of each player for the next period.
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The game takes a data set and divides it among the players. Utility is then

measured by intra-cluster similarity, or how similar the values in each cluster

are to each other. Each player chooses a strategy by choosing location in the

m dimensional space to maximize utility. Each player chooses the strategy that

will minimize its average distance from its centroid to its assigned data points.

Therefore, the clusters must find a strategy that will divide all the points in

the data set between the players, and consider how this will a↵ect its centroid,

which is the mean of its cluster values. Like most games, the strategy of each

player a↵ects the utility of other players.

Put formally, the game consists of k players with their strategies {s1, s2, ...sk}
and a set of points {x1, x2, ...xn

}. Each point has m values for each variable

in the data set. Each player chooses a location in the space Rm. Afterwards,

the data set is partitioned to the closest cluster using the function f(x
i

). Each

player maximizes her utility by maximizing on the negative sum of square error,

or minimizing the sum of square error:

max⇡
j

= max
sj

X

xi2Sj

�d(x
i

, s

j

)2 = min
sj

X

xi2Sj

d(x
i

, s

j

)2

The strategy set is continuous rather than discrete, but is limited by the min-

imum and maximum value found for each feature. This way, players cannot

optimize by choosing a location that is too far from the data set to be allocated

any points, therefore having a ”mean distance” of zero. That is, each player

must be allocated at least one data point.

Lastly, we limit the range of movement from one location to inside the space

of its assigned points from the previous iteration. This is to prevent sudden

random movement, and is akin to the learning rate of multiple iterations. By

limiting the strategy set, it decreases the number of iterations towards equilib-

rium. In this sense, past history is important. The random starting points of

the K -Means process may change which final NE is reached.

4.3 Dimensionality Reduction

In the game theory framework, dimensionality reduction is akin to reducing

the strategy set from a m dimensional point to size m

⇤, making computation
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easier and reducing noise, but also losing detailed information. Dimensionality

reduction methods in K -Means reduces the strategy space of the game from

Rm to Rm

⇤
. While it simplifies the game strategy set, it also reduces some of

the details of the game and fundamentally changes the game structure. Neural

networks such as autoencoders can help limit the amount of information lost

when reducing dimensions, compared to manually excluding certain variables

from the game.

4.4 K -Means Strategy

Once equilibrium is reached using the K -Means algorithm, the cluster centers

are stabilized to the mean values of the points in each cluster. To be a NE, each

cluster cannot unilaterally move to increase utility, given all other clusters play

the same strategy.

To be a Nash equilibrium of the game, it must not be optimal to deviate uni-

laterally. For K -Means to reach NE, it is key that the strategy set is limited to

within the area of its current cluster points. In this way, it prevents one cluster

from choosing the location of another cluster.

Suppose Cluster j chooses alternate strategy s

0, which is a distance of d̄ =

{d1, d2, ...dm} away. By changing strategy from s

⇤
j

= µ

j

to another location s

0
j

,

at least one of the following things will happen to Cluster j:

1. Keep the same set of points

2. Move closer and gain set of points X 0

3. Move further away and lose assignment of set of points X 00

1. For a given set of points, the mean value is the utility maximizing strategy.

Proof Given a set of points assigned to each cluster, K-Means finds the local

maximum utility.

⇡

j

= �
X

xi2Sj

d(x
i

, s

j

)2 = �
X

xi2Sj

||x
i

� s

j

||2

= �
X

xi2Sj

⇣q
(x

i,1 � s

j,1)2 + (x
i,2 � s

j,2)2 + ...+ (x
i,m

� s

j,m

)2
⌘2
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where x

i,l

is the value of the lth dimension for point x

i

. The utility is then

equivalent to

= �
X

xi2Sj

⇣
(x

i,1 � s

j,1)
2 + (x

i,2 � s

j,2)
2 + ...+ (x

i,m

� s

j,m

)2
⌘

Because each (x
i,l

� s

j,l

)2 values are always positive, where the square root to

the second power is equivalent to the identity function. Taking the first order

condition:

d⇡

ds

j

=
X

xi2Sj

⇣
2(x

i,1 � s

j,1) + 2(x
i,2 � s

j,2) + ...+ 2(x
i,m

� s

j,m

)
⌘
= 0

X

xi2Sj

⇣
2(x

i,1 � s

j,1)
⌘
+

X

xi2Sj

⇣
2(x

i,2 � s

j,2)
⌘
+ ...

X

xi2Sj

⇣
2(x

i,m

� s

j,m

)
⌘
= 0

For each dimension 1, 2, ...m, the summation becomes zero when s

j,l

= µ

j,l

.

Therefore the utility maximizing strategy is the local maximum of the utility

function.

2. For each point in set X

0, assigning it to Cluster j will decrease its util-

ity. Even if the cluster moves closer to other points already assigned to itself,

it will be increasing distance for at least one point (since s

j

= µ

j

implies clus-

ters on both sides of every dimension). Therefore Cluster j would not change

strategies to gain more points.

3. When a point moves to decrease the number of assigned points, it is crucial

to consider the ”punishment” strategy of the other clusters. Because we have

switched the framework from an algorithm to a game with multiple players,

strategies must account for the reaction of other players.

For a point x0 2 X

0, let us denote the di↵erence between the K -Means cluster

strategy and new deviation strategy as d. This strategy loses assignment of

one point x

i

that would otherwise be in the K -Means strategy s

⇤
j

, and utility

changes from ⇡

⇤
j

to ⇡

0
j

.

In this case, it is crucial that the game is repeated, and other clusters have

the chance of ”punishing” this deviating strategy. Given the clusters were pre-

viously at equilibrium - that is, s

j

= µ

j

for all j 2 k - point x

i

must have

previously been further than d

⇤ from all other clusters. The utility of the sec-

ond closest cluster g would decrease by ||x
i

� s

g

||2 as it would now be assigned
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to the point, so Cluster g can discourage this move from Cluster j by simply

moving �d̄ = {�d1,�d2, ...�d

m

} away from this point, assigning point x
i

back

to Cluster j. It is a NE in the sense that Cluster j will not deviate from s

⇤

because this punishment would decrease utility. This punishment is not always

a sub-game perfect strategy - if the strategy is not credible and Cluster g may

lose utility by punishing Cluster j.

The key di↵erence between the K -Means algorithm and the game theoretical

K -Means strategy is that we must also account for possible deviations. Besides

deviation strategies, the K -Means strategy and original algorithm are very sim-

ilar to each other, only di↵ering in framework. Using game theory to explain

the clustering process, we created an economical interpretation of a primary

statistical method in data science. With this insight, we applied the K -Means

algorithm in a corporate setting.
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5 Business Application - Method

Using the new game theory interpretation of K -Means algorithm, we hope to

have a better understanding in applying cluster analysis to a business case.

We applied the described method at King Digital Entertainment plc, an inter-

national mobile game company with headquarters in Stockholm, Sweden. We

focused on the data of who play Candy Crush Saga, King ’s most popular game.

It is a free-to-play game with millions of daily active users.

We hope that the combination of K -Means algorithm and dimensionality re-

duction methods can segment the gamers base into meaningful profile types

and provide more comprehensive insight to di↵erent types of customers, rather

than categorizing customers based on one or two variables.

In the practical application of the game theory K -Means framework at King, we

first use a small data set (n ⇡ 10, 000) to compare the di↵erent types of dimen-

sionality reduction methods on static, activity, and combination data sets. After

comparing their silhouette score and applicability, we use the selected models to

predict clusters for the A/B test population in the period before the A/B test,

trained with a larger data set (n ⇡ 100, 000). Lastly, we assign the A/B test

population (n ⇡ 10, 000, 000) to di↵erent clusters and compare the di↵erence in

reactions to the A/B test. To make up for multiple comparison or p-hacking

correction, we used p = 0.01 significant values instead of p = 0.05.

Because the game theoretical setting and the data science application at King

use similar terms such as games and players, the following table shows the

equivalence between game theory and what these values are at King :
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Variable Game Theory K -Means at King

{c1, c2, ...ck} (set of) strategies (set of) clusters

k number of players number of clusters

m strategy dimensions number of features

Rm strategy space feature space

{x1, x2, ...xn

} used to calculate utility data set of gamers
P

x2Ci
d(x, c(x))2 utility function K -Means function

{µ1, µ2, ...µk

} (set of) strategies values (set of) cluster centers

5.1 Data

We used two data sets of Candy Crush gamer information: static and time-

series. The static data set contained m = 91 demographic and aggregated

information (ex: total number of games played), indexed by unique player iden-

tifiers. The static cluster analysis is used to see how fundamentally di↵erent

players (casual vs. intense, advanced vs. beginner) react to A/B tests.

We also created a time-series data set of each gamers’ Candy Crush activity

over the span of 4 weeks. We took the weekly average of 4 weeks of game play,

and summed up 3 hour periods into one feature. This was done to stabilize

values and mitigate the e↵ects of unusually high play. For example, Feature 19

comprised of the amount of game activity from noon to 3 P.M. on a Wednesday,

from calendar week 1 to week 4 of 2017. We chose to divide each activity by the

total amount over the week to represent the distribution of play, rather than

the absolute amount (which is captured by the static data set). This helps us

analyze if the time of play is important for A/B tests involving a waiting period.

To choose the optimal model to cluster the data, we use a data set of n = 10, 000

to 20, 000 active Candy Crush gamers. After deciding on a dimensionality re-

duction method, we increased the same size to n = 500, 000 for static data and

n = 100, 000 for time-series data to fit the model parameters. Both data sets

were limited to active players only, defined by at least an hour of play during

the period of interest.
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5.2 A/B Test

We used an A/B test to measure the business value of the clusters, by com-

paring the di↵erences in the change in important business factors called Key

Performance Indicators (KPI). If clusters show vastly di↵erent reactions to an

A/B test, it may be beneficial to implement the feature to only the clusters that

show a positive reaction. This A/B test was implemented February 2, 2017, and

it examines the e↵ect of lowering the friction of additional game play. A feature

that limited game play was kept for the control group, and taken out for the

testing group in this A/B test.

We looked at a KPI that measured activity level. Overall, the test group showed

an increase in activity after this A/B test feature, but we hope to capture further

information on which groups showed a higher increase in this KPI.
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6 Results

6.1 Dimensionality Reduction

We compared the silhouette score of k = 10 and k = 16 for various dimension-

ality reduction methods. PCA and autoencoders were used to reduce each data

set down to 16 features. We found that dimensionality reduction methods im-

prove silhouette score over K -Means on the static data set. Although manually

removing features had the highest silhouette score, it also reduced important

information contained in those features. Table 8.1 in the Appendix shows the

silhouette score of static data with 16 clusters as well as 10 for comparison and

robustness in a sample of 10, 000 gamers, as well as the ratio between the largest

and smallest cluster when k = 10.

For both the static and time-series data sets, the more advanced dimensionality

reduction allowed more patterns to be captured for each cluster. Although this

decreases variance by individual features, overall variance increases and clusters

identified players di↵ering over a set of variables, not just one or two. Dimen-

sionality reduction methods also helped even out the distribution of players,

because gamers with extreme values were mitigated when using the dimension-

ality reduction methods to find over-arching patterns in the data, rather than

creating clusters of outliers. We decided to use a deep autoencoder with an

over-complete layer for both static and time-series data, as this has the most

even distribution of the data set between clusters.

Static

Figure 6.1 shows bar plots displaying the di↵erent cluster results when using a

large data set of static information on gamers. Each set of k = 10 bars show the

average z-score of each feature. The z-score was used to show multiple variables

at once, and for confidentiality reasons.

Figure 6.1a shows the cluster results after running K -Means on the original

data set after standardized to z-score. Figure 6.1b shows the cluster results of
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the data set of only selected features, while Figure 6.1c shows K -Means cluster

results after using PCA down to 16 features. Figures 6.1d - 6.1f show the results

of K -Means after encoding m = 56 to the mirroring layers {16}, {30, 16, 30},
and {70, 50, 30, 16, 30, 50, 70}, respectively, and using the smallest latent space

m

⇤ = 16.

While the level of variance between di↵erent model change drastically, the au-

toencoders added additional value in evening out the size of the clusters. In

the original data set, a few outlier players ended up in their own cluster, due

to their extreme z-scores (for example, Cluster 5 in Figure 6.1a contains only 1

gamer with z-score of over 20 for Feature 2). Using the autoencoders, the high-

est z-score was around 3.5, and the number of players in each cluster was quite

even. Because gamers were clustered based on their overall profile, not just one

extreme variable, their z-score was lower but more meaningful, and there was

variance along all the variables, not the one of two highly skewed variables.
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(a) Original Data (b) Selected Features

(c) PCA (d) Autoencoder

(e) Deep Encoder (f) Deep Encoder (over-complete)

Figure 6.1: Dimensionality Reduction for Static, Active Gamers

Each bar plot shows the di↵erences between the k = 10 clusters on

8 selected features. The use of autoencoders drastically even out the

distribution of players between clusters, shown by the lack of extreme

clusters like Cluster 5 in Figure 6.1a. [This figure is best viewed in color]

Time-Series

When comparing models in the time-series data set, we found that taking the

daily average of everyday vastly improved silhouette score. However, this was

mostly because of the reduction in number of features and simplification of the
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data set. Because the daily average does not di↵erentiate between those who

play more on weekends and more on weekdays (which could have crucial impact

on the A/B test), we decided to not use this model. PCA had the highest silhou-

ette score, but there was too much variance between cluster sizes. For example,

static data was clustered based on highly right-skewed variables, where outliers

had z-scores over 4. This lead to one cluster with around 80% of the data set.

When using a data set of active gamers, this problem was drastically reduced.

However, using dimensionality reduction methods on active gamers still helped

even out the size of the di↵erent clusters.

To show the value of using dimensionality reduction methods, Figure 6.2 shows

a heatmap displaying the activity of the di↵erent clusters when using the time-

series data of activity of all gamers. Each row represents one cluster, and each

column is a 3 hour period over a week. For example, the first row and first

column represents the average play on Monday from midnight to 3 A.M. over a

span of 4 weeks for Cluster 0. The color scales range from no (black) activity

to high (light yellow) activity. While cluster analysis on the original data set

and PCA only captures anomalies in a specific time period (for example, the

last cluster for the original data K -Means have very high play Sunday 9 P.M. to

midnight), daily averages and encoders can capture time-series trends. Clusters

shown in Figures 6.2a, 6.2c, and 6.2d had one cluster that contained over half

the data set - the most colorful cluster that capture all players without a strong

activity concentration in one time period (Cluster 1 in Figure 6.2a, Cluster 2 in

Figure 6.2c, Cluster 6 in Figure 6.2d). All other clusters were characterized by

a single or a few period of high play.

Although taking the average by day captures daily trend, it loses information

on the di↵erence between days, for example between weekdays and weekends.

The deep encoders, particularly the deep encoder with an over-complete layer of

m

0 = 70, were more able to capture trends throughout the week. The deep en-

coders were more able to capture overall trends, since they are more distributed

between clusters by patterns than a single period of high play. This shows the

value of autoencoders’ abilities to capture time-series patterns over only using

K -Means or PCA.
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(a) Original Data (b) Average by Day

(c) PCA (d) Autoencoder

(e) Deep Encoder (f) Deep Encoder (over-complete)

Figure 6.2: Dimensionality Reduction for Time-Series, All Gamers

Each heatmap contains a row for each of k = 10 clusters, with a cell for

the amount of activity in each time period. The row spans a week of

activity, and contains all gamers, both active and inactive.

Figure 6.3 shows the same information when limiting the data set to active

gamers (at least a hour of play during the 4 week period). Figure 6.3a shows

the clusters using simple K -Means on the entire activity data set. Using only

active gamers, you can already start seeing daily trends. For example, Cluster
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0 shows gamers who play on the afternoon of every day, while Cluster 9 gamers

seem to play more in the late evening. Figure 6.3b shows the cluster results of

the data set after summing the same period each day (ex: sum of noon-3 P.M.

for the entire week), so that the data set is reduced to daily information instead

of weekly. When using daily averages, it is hard to capture daily di↵erences,

such as higher level of play on the weekends. Figure 6.3c shows K -Means cluster

results after using PCA down to 16 features. Figures 6.3d-6.3f show the results

of K -Means after encoding m = 56 to the mirroring layers {16}, {30, 16, 30},
and {70, 50, 30, 16, 30, 50, 70}, respectively, and using the smallest latent space

m

⇤ = 16.

Using only active gamers, all cluster results show a daily pattern. However,

the deep autoencoders add additional value in showing weekday vs. weekend

di↵erences. Table 8.2 in the Appendix shows the silhouette score and cluster

ratio of normalized activity data using only active gamers. Although the loss

decreased with more autoencoder layers, the silhouette score also decreased, and

we found that this was because the cluster sizes were more evenly distributed

in the autoencoders with more layers.

6.2 Results on A/B Test

The final model chosen for A/B Test analysis was the deep autoencoder with

over-complete layer. For the static data set, m = 91 features were first encoded

to 120 features, then down to 50, 30, then the final latent space of 16. For the

time-series data set, m = 56 features were first encoded to 70 features, then

down to 50, 30, then the final latent space of 16. The decoding layers mirrored

the encoding layers. They were then clustered using K -Means separately and

together. A t-SNE visualization of the encoded data set are shown in Figure 6.4.

While the static data set is quite segregated after encoding, the time-series data

set is still close together.
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(a) Original Data (b) Average by Day

(c) PCA (d) Encoder

(e) Deep Encoder (f) Deep Encoder (over-complete)

Figure 6.3: Dimensionality Reduction for Time-Series, Active

Gamers

Each heatmap contains a row for each of k = 10 clusters, with a cell for

the amount of activity in each time period. The row spans a week of

activity.
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(a) Static Data (b) Time-Series Data

Figure 6.4: t-SNE of Latent Space, k = 5

The data sets are first encoded down to 16 features using a deep au-

toencoder with an over-complete layer. We then used t-SNE to reduce

the latent space further to 2 features. The Static data set is quite seg-

regated, while the time-series data set is not. [This figure is best viewed

in color]

Static Results

For the static data set, we chose the DAE with an over-complete layer as it

had the least variance of cluster sizes. From m = 91 features, we expand to

m

0 = 120, then reduced the number of features to m

00 = 50, m000 = 30, then

finally to the latent space m

⇤ = 16. We cluster the A/B test population to

k = 5 based on the silhouette score and applicability for further analysis. (see

Table 8.5). We found that the cluster sizes were still highly varied with k = 5

having one cluster with 40% of the data set, while the smallest had 2%. Figure

6.4a shows the t-SNE graph for the latent space. While varied in size, the clus-

ters are highly segregated.

A bar plot of the clusters in Figure 6.5 shows the z-score of the each cluster

on various variables. As seen from the dimensional reduction section, the dif-

ference between clusters is not very high. The deep autoencoder mitigates the

e↵ect of extreme outliers.

The heatmap in Figure 6.6 shows each cluster’s average play per 4 hour pe-

riod, with one row for each cluster. It shows the distribution of the period when

they play. The time-series of these clusters are quite similar to each other, which

is consistent with the fact that the data set used to cluster did not contain in-

formation on time of play. It implies that static information do not correlate
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highly with the time of day in which gamers play.

Figure 6.5: Bar Plot, Static Clusters

The variance between clusters is shown for selected features. Cluster 3

contains the gamers with the highest values in Feature 1 and 3, while

Cluster 4 shows the opposite profile. [This figure is best viewed in color]
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Figure 6.6: Heatmap of Static Clusters, k = 5

Each row represents the average time-series for each cluster, over the

span of a week. There is very little variance between time-series ac-

tivity for these clusters, because this information was not used in the

clustering.

In Figure 6.7, the cumulative KPI uplift values are shown for each cluster, as

well as the 99% confidence interval of these values. The clusters shown slightly

di↵erent reactions to the A/B test. Cluster 4 in particular seem to be showing

a higher increase in KPI compared to the other clusters.

Figure 6.7: 99% Confidence Intervals, Static Clusters

The bars represent the cumulative KPI uplift for each cluster, as well as

the 99% confidence interval of these values. Cluster 4 in particular seem

to be showing a higher increase in KPI compared to the other clusters.
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Time-Series Results

Using only active gamers, we chose to use the DAE with an over-complete layer,

because it has the most even distribution of the data set into di↵erent clusters.

We then clustered the latent space of m⇤ = 16 into k = 5 clusters, due to its

high silhouette score and applicability for further A/B test analysis. It had an

even distribution of cluster sizes, with the biggest cluster containing 28% of the

data set while the smallest contained 13%. The t-SNE graph in Figure 6.4b

shows that the latent space is still quite consolidated. In particular, the purple

cluster is scattered throughout di↵erent clusters.

Figure 6.8: Bar Plot, Time-Series Clusters

The variance along static data is smaller for time-series cluster, because

these features were not used for the clustering process. [This figure is

best viewed in color]

A bar plot of the clusters in Figure 6.8 shows the z-score of the each cluster

on selected variables. As these variables are not part of the data set used to

cluster, there is almost no di↵erence between the clusters.

42



Figure 6.9: Heatmap of Time-Series Clusters, k = 5

Each row represents the average time-series for each cluster, over the

span of a week. Cluster 0 shows ”commuter” players, Cluster 1 and 3

show evening players, and Cluster 2 and 4 show night-time players.

The following heatmap shows each cluster’s average play per 3 hour time period,

with one row for each cluster. Figure 6.9 shows the distribution of the period

when they play. Starting from Column 1 - Monday from 0 to 3 A.M to Column

56 - Sunday 9 P.M to 12 A.M, we can see a di↵erent daily trend for each day.

Cluster 0 shows high level of play 9 to 12 P.M, as well as a secondary increase in

activity 6 to 9 P.M. There is also a low but dispersed level of activity over the

weekend. This implies this cluster consists of ”commuter players,” or players

that play during their commute to work. Cluster 1 consists of afternoon to

evening players who play during their free time. Players in Cluster 2 play late

into the night, from 9 P.M. to 3 A.M. Cluster 3 also play in the afternoon, but

less in the evening. Lastly, Cluster 4 consists of night players that play up until

midnight, but rarely after.
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Figure 6.10: 99% Confidence Intervals, Time-Series Clusters

Each bar represents the cumulative uplift in KPI after the A/B test.

They are quite similar to each other, and only Cluster 1 is statistically

significantly di↵erent from the other.

Figure 6.10 shows the 99% confidence interval for each cluster uplift from the

A/B test. Although Clusters 0, 2, 3, and 4 all overlap each other, Cluster 1

shows significant di↵erent behavior. While the KPI uplift between clusters were

not dramatically di↵erent, they showed statistically significant di↵erences.
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7 Conclusion

In this thesis, we use a game theoretical framework to bring a novel perspec-

tive into cluster analysis in economics. Although unsupervised methods such

as cluster analysis are seldom used in economics, they can bring great value

in finding similarities and patterns beyond those found using common econo-

metric tools such as linear regressions. Using dimensionality reduction methods,

large data sets of both aggregate and time-series information can be compressed

to underlying patterns within the data, and the data set can be meaningfully

partitioned across multiple variables. This gives less opportunity for p-hacking

or forking, as it replaced partitioning the data set on various combinations of

researcher-chosen variables. Stemming from a similar framework, both Nash

equilibrium strategies in game theory and clustering algorithms optimize on a

function that leads to stabilizing equilibrium. In particular, the K -Means algo-

rithm can be framed as a k player game, where the equilibrium found is a NE

when the cluster’s utility function is the negative of the distance function used

in K -Means.

There is a large potential for further research exploring other aspects of data

science in an economics framework, particularly game theory. For example,

evolutionary game theory provide a comprehensive framework for definitions of

equilibrium stability measured by the amount of mutation that still leads back

to the evolutionary stable Nash equilibrium. This can be used to measure cluster

algorithm stability, a valuable but understudied aspect of clustering robustness

(von Luxburg, 2010). Alternatively, more data science methods could be used

for econometric analysis. Classification can be used to label new industries,

businesses, or economies to a particular category. Anomaly detection can be

used to measure cartel collusion or signs of economic downturn. Expanding on

the analysis of this thesis, dimensionality reduction and cluster analysis on ex-

perimental game theory and econometrics can help segment the population into

di↵erent utility types. Advanced methods such as recurrent and convolution

neural networks could be used to find patterns in more complicated multivari-

ate data sets. Further cooperation of data science and economics can bring new

and valuable insight and influence the advancement of both fields.
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8 Appendix and Acronyms

Hyperparameters

All autoencoders were initially run for 500 epochs using the Adam optimizer,

and the loss was measured using the MSE (see Section 2.4). We used a batch

size of 200 and learning rate of 0.001. Once the model was chosen, the autoen-

coders were run again on the larger sample data set using maximum 5,000,000

iterations. We used a match size of 128 with a learning rate of 0.0001.

All t-SNE graphs were run with perplexity 30 for 500 iterations.

Table 8.1: Static Silhouette Scores, Active Gamers

Model k=10 k=16 Cluster Ratio

K -Means (all features) 0.11557 0.14206 4608

K -Means (selected features) 0.24750 0.25193 5366

PCA 0.21851 0.21791 3733

Autoencoder 0.29715 0.24304 39

DAE 0.26518 0.23617 6

DAE (over-complete) 0.19595 0.17198 5

Table 8.2: Time-Series Silhouette Scores, Active Players

Model k=10 k=16 Cluster Ratio

K -Means (all features) 0.02503 -0.01870 16

K -Means (daily average) 0.16037 0.15614 5

PCA 0.06549 0.05843 17

Autoencoder 0.09828 0.07773 6

DAE 0.15269 0.11668 14

DAE (over-complete) 0.10568 0.08400 4
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Table 8.3: Static Silhouette Scores, All Players

Model k=10 k=16 Cluster Ratio

K -Means (all features) 0.10507 0.15838 425

K -Means (selected features) 0.15582 0.33049 480

PCA 0.23318 0.24147 369

Autoencoder 0.30301 0.29207 23

DAE 0.26961 0.28746 14

DAE (over-complete) 0.25658 0.25011 3

Table 8.4: Time-Series Data, All Players

Model k=10 k=16 Cluster Ratio

K -Means (all features) 0.27042 0.31185 78

K -Means (daily average) 0.37974 0.37303 15

PCA 0.54085 0.60244 67

Autoencoder 0.25420 0.34003 22

DAE 0.17012 0.21870 19

DAE (over-complete) 0.13812 0.13297 9

Table 8.5: Deep Autoencoder with Over-Complete Layer, Silhou-

ette Scores

Model Static Activity

k = 2 0.65407 0.14695

k = 3 0.29554 0.13182

k = 4 0.21385 0.11938

k = 5 0.23253 0.11508

k = 6 0.22461 0.09271

k = 7 0.17990 0.09306

k = 8 0.17273 0.08931

k = 9 0.17007 0.08009

k = 10 0.17064 0.08046
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Acronyms

AE Autoencoder. 13

DAE Deep Autoencoder. 4, 15, 39, 41, 49, 50

KL Kullback-Leibler. 16

KPI Key Performance Indicators. 18, 30, 41, 43, 44

MSE mean square error. 15, 49

NE Nash equilibrium. 21, 23, 25, 26, 27, 45

PCA Principal Component Analysis. 3, 12, 13, 16, 32, 34, 36, 49, 50

t-SNE t-Distributed Stochastic Neighbor Embedding. 3, 16, 17, 37, 39, 41, 49
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