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The Dynamics of Sectoral Network Formation

1 Introduction

In the past, the structure of relationships between firms and sectors was not considered to be

relevant for studying aggregate phenomena. While this may have been due to lack of neces-

sary modelling tools or access to micro-level data, conceptual arguments were also dismissive

(Dupor, 1999). However, recent literature has contested this position and argued that the

microstructure of the economy is important. For example, seminal work by Acemoglu et al.

(2012) highlighted how an unbalanced sectoral network may lead to higher macroeconomic

volatility. Other studies have shown how these structures impact R&D development (Ace-

moglu et al., 2016a), the transmission of monetary policy (Ozdagli and Weber, 2017) and the

synchronisation of business cycle co-movements across countries (di Giovanni et al., 2018).

Although evidence in favour of the importance of sectoral networks has grown in recent

years, a complete framework which would characterise how these structures emerge and

change over time has not been developed. This has been a challenging task given that

existing approaches have been unable to capture empirical facts such as that the distribution

of linkages is skewed and fat-tailed (Bernard and Moxnes, 2018), or that the geographical

expansion of linkages depends on existing relationships (Chaney, 2014; Morales et al., 2017).

Thus, the contribution of this work is to develop a framework which accounts for these

empirical features and also informs about the dynamics of new linkage formation. The pro-

posed model incorporates input-output relationships between firms and includes a geographic

dimension. This allows applying the framework to an international sectoral network setting.

The resulting model produces a distribution of linkages which qualitatively matches empirical

observations and also exhibits path dependence in how new relationships form. In particular,

the derived model predicts that as more outward linkages are established, they become more

geographically spread out. Some of these elements have been captured in previous studies

(Chaney, 2014). However, a contribution of the present work is that the results are derived

in an input-output setting. This allows extending implications of the model from firm to

sectoral level. Furthermore, the framework highlights how the likelihood of new linkage for-

mation is dependent on both network proximity and geographical distances. Conceptually,

the two mechanisms that drive these results are that firms are more likely to find compatible

production inputs if their existing suppliers use them and that firms use their existing set of

relationships to establish new connections in different locations.

After deriving key results from the model, we bring these aspects to a novel empirical

setting using the World Input-Output Database (WIOD). Given that a framework which

would allow for input-output relationships and geographic variation has been lacking in the

literature, applications of the WIOD for studying network formation have been limited.

In the empirical part of the study we first show that, in line with theoretical predictions

and previously studied contexts, the WIOD features a skewed and fat-tailed distribution

of linkages. Furthermore, the geographic variation of these linkages is also in line with

predictions of the model. Thereafter, we study the likelihood of new linkage formation

by estimating a probability model and show that the likelihood of new linkage formation

increases with closer network proximity, shorter geographic distances and the higher number
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The Dynamics of Sectoral Network Formation

of existing connections. On the other hand, results relating to the theoretical prediction that

geographic distances become easier to overcome as sectors establish more connections are

mixed and inconclusive.

The present study relates most closely to the works of Chaney (2014) and Carvalho and

Voigtländer (2014). Chaney (2014) introduced a network-based approach in explaining how

firms search for export destinations. The proposed model distinguished local and remote

search processes and explained the geographic distribution of French firm export destina-

tions. In line with the present work, the model captures the fact that geographic expansion

is path dependent. On the other hand, Carvalho and Voigtländer (2014) related the emer-

gence of network structure to firms’ choice of intermediate inputs. Specifically, a pre-existing

input-output relationship between sectors could determine the search of new potentially use-

ful production inputs. The model predicts that network proximity between sectors impacts

further linkage formation. These studies make important contributions in explaining forma-

tion of linkages between firms and sectors, however, the scope of both papers limits their

application to an international sectoral network setting. In Chaney (2014) the network for-

mation is limited to the search of customers and is silent on the use of inputs, whereas

Carvalho and Voigtländer (2014) are focused only on national input-output relationships.

Both of these concerns are addressed in the present study.

The remainder of this work is structured in the following way. Section 2 discusses litera-

ture relevant for this study and highlights the existing research gaps. Section 3 describes and

develops the theoretical framework. Section 4 presents the descriptive features of the WIOD

and describes the empirical strategy for testing predictions of how new linkages between

sectors form. Section 5 presents the empirical results and discusses limitations of the study.

Section 6 concludes the study.

Section 1 Tadas Gedminas 2
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2 Literature Review

Early research that studied the impact of microstructure focused on whether micro-level

shocks could explain macroeconomic fluctuations. The prevailing sentiment from this body

of work was that the effect is negligible or can generally be accounted for. For instance, Lucas

(1977) suggested that it is possible to apply the law of large numbers argument given the

high number of firms in the economy. This would imply that, in expectation, idiosyncratic

firm level shocks average out and studying these shocks would not help in explaining business

cycle fluctuations. From a different point of view, Hulten (1978) laid out theoretical justifi-

cations for attributing micro-level shock significance to the direct share of output. Similarly,

Dupor (1999) derived theorems and conditions under which the input-output structure of

the economy would be irrelevant for the transmission of sectoral level shocks to aggregate

fluctuations.

Recent work, however, has begun to challenge these ideas. Seminal work by Gabaix

(2011) proposed a “granular hypothesis” for aggregate fluctuations. The author showed that

if the firm size distribution is fat-tailed, micro-level shocks originating in large firms could not

be absorbed by the rest of the economy and hence could translate to aggregate fluctuations.

Alternatively, Acemoglu et al. (2012) showed that, among other things, output volatility

may be impacted by the network structure of input linkages between sectors. More recently,

Baqaee and Farhi (2017) suggested that first-order approximations, which were essential for

Hulten’s (1978) results, are not appropriate if non-linearities exist. Instead, aspects such as

structural elasticities of substitution, network linkages, structural returns to scale, and degree

of factor reallocation are missed when using first-order approximations. In an international

setting, di Giovanni et al. (2018) showed how linkages between firms can explain business

cycle co-movements between countries. Given that large firms tend to be more engaged in

cross-border trade, shocks originating abroad can still reach the rest of the economy via

indirect linkages. While these studies contribute to increasing evidence that microstructure

is important, mechanisms behind how these structures emerge remain understudied.

The remainder of the literature review is structured into four parts. The first part covers

evidence of microstructure having an impact on the macroeconomy, with the focus on input-

output linkages. The second part discusses the role of microstructure in an international

setting. The third part highlights key approaches in existing modelling frameworks. The

final part discusses empirical methods used in analysing input-output linkages and previous

works that have used the WIOD.

2.1 Importance of Microstructure

Initial attempts to account for granular features of the economy were multi-sector general

equilibrium models. These models were mainly used to explain co-movements across sectors.

For example, Long and Plosser (1983) developed a multi-sector real business cycle model,

where shocks originating in one sector are allowed to propagate to other sectors via produc-

tion input relationships. Horvath (1998) extended the model and showed that the degree
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to which sectoral shocks translate to aggregate volatility is not due to the total number

of sectors (or firms), but rather to the way they are related. Crucially, if sectors are not

connected, the shocks may have a much more sizeable impact.

Empirical work measuring and verifying these effects has been more sparse. Among the

studies that have explored these ideas, Conley and Dupor (2003) estimated whether eco-

nomic distances, measured by input-output relationships, could explain the comovements in

productivity between sectors. The authors found significant and positive covariance between

sectoral total factor productivity growth and the effect was stronger for sectors that had sim-

ilar sets of inputs. Also, work by Foerster et al. (2011) showed that accounting for sectoral

linkages can explain half of the variation in industrial production during the Great Modera-

tion, whereas variation in large sectors is not as significant. Similarly, Carvalho and Gabaix

(2013) studied whether sectoral volatility could help explain aggregate output volatility. The

authors calculated a measure referred to as “fundamental volatility” which weights sectoral

volatility by share of total output. They found that this measure has high explanatory power

and could also provide an explanation for the Great Moderation.

In contrast to these works, recent research has argued that the scope of these effects can be

traced back to individual firm behaviour. For example, Gabaix’s (2011) work showed that due

to fat-tailed firm size distributions, shocks to large firms could have a non-negligible impact

on aggregate output. In support of this hypothesis, Carvalho and Grassi (2015) extended

the framework. The model derived by the authors incorporates empirically observed features

such as aggregate output and productivity persistence, and that volatility is time-varying.

The primary driver of these effects are shocks originating in large firms, in line with Gabaix

(2011). On the other hand, Grassi (2017) highlighted a conceptual issue with the “granular

hypothesis”. Specifically, the hypothesis states that large firms can contribute to aggregate

fluctuations, but at the same time are unable to impact equilibrium prices and quantities. To

account for this, Grassi (2017) introduced a framework where firms engage in oligopolistic

competition and respond to productivity shocks strategically, depending on their market

power.

It has been argued, however, that the importance of the microstructure is not limited to

firm size distributions and instead the structure of linkages between firms may play a more

important role (Gabaix, 2016). For example, di Giovanni et al. (2014) analysed whether

aggregate fluctuations can be attributed to firm level shocks. The authors were able to

contrast the impact of fat-tailed firm size distribution and linkage effect and found that

linkages are approximately three times as important in driving aggregate fluctuations.

An overview of the literature behind the role that production networks play in impacting

the rest of the economy is summarised in Carvalho (2014). In one of the most influential

works within this literature, Acemoglu et al. (2012) developed a formal model to characterise

the relevance of input-output linkages in propagating micro-level shocks. The authors suggest

that it is not the sparseness of the sectoral networks, but rather the asymmetry in the role

that sectors play that results in sectoral shocks leading to higher macroeconomic variation.

Alternatively, Acemoglu et al. (2016a) documented the presence of network effect in R&D
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development. By studying patent citation network, the authors found that technological

progress by the upstream firms is a strong predictor of downstream innovation. On the other

hand, Ozdagli and Weber (2017) linked the network structure of firm relationships to the

transmission of monetary policy shocks. The authors found evidence that network linkages

may have a significant second-order effect on individual firms stocks depending on how firms

are linked to each other.

Within growth literature, there has also been an acknowledgement of the role that mi-

crostructure may play in explaining differences between countries. Ciccone (2002) showed

that the type of industrial technologies that countries adopt could result in sizeable differences

in productivity levels and aggregate income. The primary driver of this result was whether

the adopted industrial technologies were intermediate input intensive. In line with this ar-

gument, Jones (2011) used intermediate input production chains as a potential explanation

for income differences across countries. The differences emerge from the insufficient use of

intermediate inputs or single sector inefficiencies that propagate through the input-output

network and that drag the rest of the economy.

While the above described body of work highlights the relevance of structure of linkages,

an important issue that has not been sufficiently addressed in the literature is the process

behind the formation of new linkages (Acemoglu et al., 2012; Carvalho, 2014). Existing

studies have mostly taken the network structure as given and the impact was studied by

changing the structure exogenously. Some notable exceptions that have tried to address this

issue are Carvalho and Voigtländer (2014), Lim (2017), and Oberfield (2018). In particular,

Carvalho and Voigtländer (2014) applied a random graph model, closely related to Jackson

and Rogers (2007), to study the network structure of input-output linkages. The proposed

model differentiated between essential and variety inputs and the main theoretical predictions

of the model were tested using U.S. sectoral data. The study showed that network proximity

between sectors is relevant for predicting new link formation.

2.2 Microstructure in International Trade

Independently from developments in macroeconomics, international trade literature has also

turned focus to microstructure. This is most evident in recent research which highlights firm

heterogeneity in explaining trade flows. For example, Bernard et al. (2003) developed an

extended version of Ricardian trade model to account for qualitative facts of U.S. firm trade.

The model allows for many countries, geographic barriers and imperfect competition, and

it captures aspects such as higher productivity among exporters, the small fraction of firms

which export and that among exporters, the share of exports to total output is not large. A

significant contribution of this work is that it introduced firm level trade models. Helpman

et al. (2008) extended Melitz (2003) model to allow decomposing the impact of trade on

the intensive and extensive margins. The authors argued that since previous estimations of

gravity trade models ignored countries that do not trade, it may have led to systematically

biased estimation. Among the findings in the paper, the authors showed that the growth in

trade between 1970 and 1990 was mostly in the intensive margin. On the other hand, Eaton
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et al. (2011) documented empirical regularities which were not accounted for by traditional

models. The paper highlighted the importance of firm efficiency as the key attribute in

explaining variation across firms in market entry. Armenter and Koren (2015) showed that a

basic Melitz trade model does not quantitatively match empirical data regarding export size

and frequency. The authors suggested that a different source of firm heterogeneity needs to

be included in the model to match observed data.

One potential source of firm heterogeneity that has been proposed to explain these em-

pirical observations is informational frictions. Allen (2014) used data on regional agricultural

prices in the Philippines and documented the role of information frictions in impacting price

dispersion. The study found that approximately half of the price dispersion was due to

information frictions. Study by Albornoz et al. (2012) focused on Argentinian firms, which

when searching for new trade location gave up exporting very shortly, even in the presence

of significant entry costs. However, other exporters increased their foreign sales and ex-

panded to new destinations in relation to the original entry market. The paper proposed

a mechanism where, for an individual exporter, profitability in a given location is initially

uncertain. On the other hand, if firms do decide to enter the market, they may learn more

precisely whether their expansion is profitable and then choose to either extend their trade

in that location or expand to similar destinations. This leads to what the authors refer to as

“sequential exporting”, where the possibility of profitable expansion makes the initial entry

cost worthwhile, even in the presence of high failure rates. The authors verified that the

results were not driven by firm heterogeneity, country-specific shocks, credit constrains or

impact of rivals.

In studying how Chinese firms expanded to new export destinations after removal of

trade restrictions, Defever et al. (2015) also found presence of path dependence in how firm

chose new destinations. The spatial correlation is higher than what would be expected from

a standard gravity trade model and further provides evidence that trade destination choices

are not independent. Morales et al. (2017) proposed a model to combine these mechanisms

with conventional gravity trade models. The authors refer to the mechanism as “extended

gravity”, where further expansion is dependent on existing destination. The implications of

the model were tested empirically, where the extended gravity effect was attributed to four

factors: whether new export destinations with regards to existing ones shared a border, were

in the same continent, spoke the same language and had similar income per capita levels.

The authors found that entry sunk costs are significantly lower in the presence of at least one

of these factors. While recent empirical work has emerged to highlight limitations of existing

heterogeneous firm trade models, information frictions arguments have been raised in the

past . For example, Rauch (1999) found evidence that for trade in differentiated products,

proximity and historical ties can help explain observed trade patterns. The author proposed

that network-search type models may be required to give theoretical justification for these

observations.

More explicitly, business and social networks have been suggested as potential mecha-

nisms that could help firms overcome informational frictions (Rauch, 2001; Chaney, 2016).
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Garmendia et al. (2012) study these aspects in explaining intranational trade in Spain. The

paper empirically showed the existence of regional home bias in trade, which disappears

after controlling for social and business networks. In one of the most relevant papers for

the present work, Chaney (2014) developed and an illustrated application of random graph

model in international trade setting. The starting point of the modelling framework was the

idea that firms face information barriers and thus are unable to identify all of the potentially

profitable markets. Instead, firms learn about new locations to trade by performing a local

and remote search. Remote search is modelled as preferential network search, where firms

use their connections in locations abroad to conduct search of new markets. After develop-

ing the model, the study showed that firm connections and geographic distributions of these

connections implied by the model matched data of French firms.

With regards to previously discussed research in macroeconomics, there is also recent lit-

erature on elements of the microstructure amplifying cross-border spillovers. Burstein et al.

(2008) studied and documented the synchronisation of business cycles between countries

that are engaged in trade along supply chains. The key mechanism behind the extent of

this synchronisation was the elasticity of substitution when choosing intermediate inputs.

Alternatively, di Giovanni et al. (2018) empirically analysed whether French firm interna-

tional trade linkages can explain the correlation between business cycle co-movements. The

authors observed that at least two-thirds of these co-movements could be attributed to direct

and indirect linkages. The direct linkage effect primarily came from larger firms, which were

more likely to have international connections and accounted for at least half of France’s value

added.

2.3 Network Structure Modelling

First approaches that captured the structure of sectoral linkages were previously discussed

multi-sector general equilibrium models. In this regard, a key foundational paper which

incorporated this approach is Long and Plosser (1983). This paper introduced sectoral

level granularity in a real business cycle framework. In turn, other works continued to use

this framework as the basis for further study of sectoral linkages with the most notable

example being Acemoglu et al. (2012). Similarly, Atalay (2017) developed a multi-sectoral

general equilibrium model, which highlighted the role of elasticity of input substitution as

the principal mechanism behind the extent of sectoral shock propagation. A recent example

by Pasten et al. (2018) developed a multi-sectoral model which allows for heterogeneity in

sectors by price stickiness. This model, which is more in line with prevailing New Keynesian

approaches in macroeconomics, shows that the degree of idiosyncratic shock propagation

is much more related to price stickiness rather than sector size effects or asymmetries in

the input-output structure. While these approaches are most closely related to traditional

macroeconomic models, they are silent on how the structure of linkages between sectors

emerges and changes over time.

Alternative approaches, on the other hand, have tried capturing granularity by modelling

individual firm behaviour. This has been more common in international trade literature,
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whereas applications in macroeconomics have been more limited. Some recent examples

include Chaney (2018) who provided a microfounded explanation behind the gravity trade

equation. The study focused on the distance coefficient and proposed a model where assum-

ing Pareto firm size distribution and that larger firms are more likely to engage in exports

of further distances could explain the empirical estimates of the distance coefficient. An

exception in macroeconomics, however, is di Giovanni et al. (2014). Instead of basing the

model on previously mentioned general equilibrium models, the paper used approaches more

commonly applied in international trade (Melitz, 2003; Eaton et al., 2011). This gave a more

micro-founded explanation behind aggregate fluctuations and allowed to decompose firm level

effects, sectoral level shocks and the importance of linkages between firms. However, while

in contrast to multi-sectoral models these approaches capture more granular elements, they

still miss out how the structure of linkages between firms and sectors forms.

More rigorous treatment of endogenising production network formation has been tackled

by Oberfield (2018) and Lim (2017). Oberfield (2018) developed a model where entrepreneurs

have an option to produce a good in many ways and hence make the choice of input decision

by cost-optimisation. This feature endogenously produces outcomes where “star” suppliers

emerge - highly productive input producers that are widely adopted. Lim (2017) developed

a model which relaxed Oberfield’s (2018) assumption that production recipes are available

to entrepreneurs exogenously. However, the model still features rich structure where firms

are allowed to differ in the way they are connected to other firms, the role they play in the

supply chain, and they are dynamically looking and changing their partners. To the best

of my knowledge, these two works develop the richest frameworks for studying firm network

formation. However, the richness of these models comes with the trade-off and introduces

challenges for testing implications of these models empirically.

An alternative approach that has been proposed in the study of the dynamics of firm

and sector network formation is to incorporate models from the broader field of network

literature. One of the first works to integrate these models in production network analysis

was Atalay et al. (2011). The paper proposed a preferential attachment network formation

model, where new links are more likely to form between nodes (sectors) that are already

highly connected. The authors showed that this framework captured the distributions of

sector linkages more accurately, especially at the tails of the distribution. Alternatively,

Carvalho and Voigtländer (2014) incorporated models from Jackson and Rogers (2007) in

the study of production network formation. By distinguishing essential inputs and variety

inputs for production, the authors showed how implications for the dynamics of network

formation could be extended from firm to sectoral level. Afterwards, the authors present

supporting empirical evidence for the proposed mechanism. In international trade literature,

Chaney’s (2014) work is closest to this approach. By incorporating preferential attachment

in the model and by distinguishing between a local and remote search of customers, the paper

develops a model for studying the geographic variation of customers. While these types of

models are appealing due to their tractability and ability to match qualitative features of

distributions of linkages, the mechanisms in these models are more mechanical and miss out

Section 2 Tadas Gedminas 8



The Dynamics of Sectoral Network Formation

on optimising and equilibrium behaviour.

2.4 Empirical Study of Network Structure

Empirical approaches that have been used to study network structure both in macroeconomic

and international trade literature often depend on the modelling framework that has been

used. In particular, highly structured multi-sectoral general equilibrium models are matched

empirically by calibration and are then used to study how much variation in the data can be

attributed to various shocks and elements of the microstructure. A notable exception to this

is Acemoglu et al. (2016b). In this paper, the authors contrasted the impact of supply and

demand side shocks along the supply chain. In line with theoretical predictions, the authors

found that demand-side shocks propagated upstream, and supply-side shocks downstream of

the supply chain.

A more recent and novel approach to the empirical study of the importance of input-

output linkages has been to exploit exogenous variation in supply chains. Barrot and

Sauvagnat (2016), captured variation in natural disasters in the U.S. to measure how id-

iosyncratic shocks propagate through production networks. Similarly, Carvalho et al. (2016)

studied the aftermath of the Great East Japan Earthquake of 2011. In their study, the

authors used exogenous variation in the spatial dimension and studied how shocks originat-

ing in earthquake struck regions propagated upstream and downstream through the rest of

supply chain. The authors found that the shock propagation effect could account for a 1.2

percentage point decline in Japan’s gross output.

Focusing on the literature that is relevant to the present study and that has studied which

factors influence the likelihood of new link formation, Carvalho and Voigtländer (2014) is a

notable example. The authors constructed and estimated a probability model for predicting

input adoptions. The study found that closer network proximity in input-output relationships

positively impacts the likelihood of input adoption. In addition, the authors further studied

whether closer proximity could influence the time it takes for an input to be adopted and

found supporting evidence of the effect. In international trade literature, Chaney (2014)

used a probability model to estimate the likelihood of entering new export destinations.

The empirical model was used for motivating the modelling framework and the estimation

technique was similar to Carvalho and Voigtländer (2014).

Concerning the data used in present work, most common application of the WIOD have

been on the extent of country engagement in global value chains. For example, Timmer et al.

(2014) highlighted a number of qualitative facts about global value chains. Namely, there

has been a tendency of increasing fragmentation of production, with growing share of foreign

value added being part of the production. Furthermore, there is a growing trend of use of

capital and high-skilled labour in production, especially in developed economies. This aspect

has also been documented in Los et al. (2015), highlighting that regional fragmentation has

not increased as much as global fragmentation. In an attempt to provide an example case for

application of the WIOD, Timmer et al. (2015) presented how the automotive production has

chained over time. The focus of these and related studies have mostly been on the intensive
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margin of trade. In contrast, in the present work, we focus on the extensive margin of trade

- binary relationships between sectors.

In concluding the literature review, we focus this study in exploring an existing gap within

literature and studying how international sectoral linkages form. Thus, the research questions

that we aim to answer is: What determines the likelihood of new network linkage formation

between sectors? To answer this question we first develop a model that incorporates input-

output relationships and includes a geographic dimension. After developing the framework

and showing key implications of the model, we test them in an empirical setting using the

WIOD.
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3 Theoretical Framework

The theoretical framework is based on the works of Jackson and Rogers (2007), Chaney

(2014) and Carvalho and Voigtländer (2014). From Carvalho and Voigtländer (2014) we

implement ideas of distinguishing different types of inputs. The spatial dimension is included

following Chaney (2014). Finally, derivations of the key properties of the model are related

to Jackson and Rogers (2007). The aim of the theoretical framework is to capture empirical

features that characterise the sectoral network structure in an international input-output

setting found in previous works and the WIOD dataset. In the first part of the modelling

framework, we highlight implications of the model at the firm level and then show which of

the properties are preserved when aggregating to sectoral level.

3.1 Initial Setup

The model is constructed in a discrete time setting. We define the set It as the set of all firms

(varieties) that exist in period t. Individual elements i of the set It correspond to individual

firms. We assume that the set is finite, discrete, and consists of nt number of firms. Each

period the number of firms grows at an exogenous rate γ. Firms are differentiated by their

choice of input sets. When a new firm is born it draws a subset of firms Ki ⊂ It that become

essential input providers. This set is drawn randomly and uniformly from the set of all firms,

It. Denote the size of this set mK . Essential inputs can be thoughts as production inputs

without which the firm would not be able to operate.

Alternatively, firm’s search for variety inputs. These inputs can be thought as being used

for differentiating the product. Instead of searching for variety inputs randomly, the firm

considers its network neighbourhood of essential input providers. Specifically, candidates for

variety inputs are firms that source at least one of the firm in the set Ki as input. This feature

aims at capturing the fact that when a firm searches for non-essential inputs, it is more likely

to find technologically compatible input if it is used by one of its existing suppliers. From

this set, the firm chooses variety input set Ni, which has size mN
1.

Next, we introduce the spatial dimension to the model. We define location space by set

C, which consist of discrete elements c representing individual locations. Intuitively, the set

C can be thought as representing the set of countries. Note that within each location the

same firm set It exists. In other words, if we take an individual firm i within the set and if it

is defined by some essential input set Ki, an identical firm exists in all other locations. While

this is a strict symmetry assumption, firms that are defined by the same set of inputs will

differ across locations in the number of customers they have (firms that use them as inputs).

Alternatively, this may lead to situations where a Ki type firm becomes dominant within a

location, while in other locations the same type of firm has only a few customers. Another

interpretation of this setup would be to think of It as the set of production recipes which are

1A key difference from present work and Jackson and Rogers (2007) is that we abstract from modelling
probability of adoption as we do not endogenize this process. In Carvalho and Voigtländer (2014) for example,
the probability of adopting an essential input was assumed to be equal to 1 and probability of adopting a
variety input was endogenized to be between 0 and 1.
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uniformly available to entrepreneurs across all locations. However, over time the utilisation

of these recipes may produce asymmetries across locations. In addition, given that the set

It grows at an exogenous rate γ it is also assumed to be symmetric across all locations

Having defined firm and location sets separately, we next describe how they link within

the model. First of all, when a firm draws its set of essential inputs, it independently draws

the location of the input provider. For example, if a firm is born in location c0, when it

draws one of the essential input providers from set Ki, it also draws the location of the input

provider c. For this we introduce a probability function defined over the whole location set

C, which corresponds to the likelihood of a search originating in location c0 drawing a match

in c: g(c0, c). In this setting we further assume that the location set C is equal to the integer

set C = Z2. This way a distance measure can be defined as the absolute difference between

the two locations: |c0 − c|. Hence, the probability function can be expressed as: g(|c0 − c|).
Note that the probability function is also symmetrical g(c0, c) = g(c, c0), since |c0 −

c| = |c − c0|. For the remainder of the framework we impose two additional assumptions

regarding properties of the spatial matching probability function g(., .): (i) probability of a

match is decreasing in distance, and (ii) the distribution has a finite second moment. As it

will be shown later, these are sufficient assumptions to derive key properties related to the

geographical distribution of linkages between firms.

3.2 Dynamics of Customer Acquisition

To proceed further, we consider how an individual firm’s customers change over time. We

define the total number of customers that a firm i has at time t as di(t). In network literature,

this would correspond to the outdegree of a firm. We further define fi,t(c), which is the

number of costumers that a firm i has in location c at time t. The relationship between the

two variables is:

∑
c∈C

fi,t(c) = di(t) (3.2.1)

The key process of interest in this framework is how a firm acquires customers over time

in some location c. Formally, this implies characterising fi,t+1(c) − fi,t(c) process. In this

setup, firms acquire new customers by new firms using them as inputs. More specifically,

a new firm may acquire firm i as an essential input or a variety input. First, focusing on

the acquisition as an essential input, this happens when firm i and location c0 are selected.

Probability of drawing location c0 has been described above and depends on probability

function g(c0, c). For drawing firm i as essential input, note that essential inputs are chosen

by a uniform search, hence the probability that the firm will be selected is 1
nt

. Given that

each firm draws mK essential inputs and that in each period the number of new firms is

γnt, the expected increase in customers in some location c from essential input adoption is

described by equation:

2In Chaney (2014) the main conclusions are derived using the integer set for defining location. However,
the author further shows that conclusions also hold for different location sets. For the present work we
maintain integer set for location set throughout the rest of the modelling framework.
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γnt

(
mK

nt

)
· g(c0, c) = γmK · g(c0, c) (3.2.2)

This implies that the number of customers that become essential input users in location

c increases with the exogenous growth rate, γ, and with larger number of inputs chosen as

essential inputs, mK . Furthermore, the expected number decreases if the firm’s location,

c0, is further away from c. Next, the firm may also become a variety input via network

neighbourhood search. For this to occur, first of all, the new born firm in location c needs

to identify one of the firm i’s existing customers as an essential input, such that it becomes

part of the set of potential variety inputs, Ni. Moreover, instead of considering the origins of

the firm, the starting point of the search process is from location of its customers cd. Finally,

it needs to be weighted by the number of customers that the firm has in this location, i.e.

fi,t(cd) and the fact that mK
nt

of these customers would be selected in expectation.

Next, consider the size of the network effect. The expected number of total linkages

is equal to m = mK + mN , which corresponds to the total number of inputs that any

firm uses. Given that in total mK inputs are taken as essential inputs, the total size of

the network neighbourhood from which a firm might choose variety inputs is mK · m =

mK ·(mK+mN ). Since the total number of firms that will be selected as variety inputs is mN ,

the corresponding network search probability is mN
mK ·m . As before, we need to multiply this

expression by the total number of new firms born: γnt. Combining all of these components,

the expected increase in number of customers from variety input adoption is:

γnt ·
(
mK

nt

)
·
(

mN

mK · (mK +mN )

)
·
[ ∑
cd∈C

fi,t(cd) · g(cd, c)

]
=
γmN

m
·
[ ∑
cd∈C

fi,t(cd) · g(cd, c)

]
(3.2.3)

Similar as with essential inputs, the likelihood of becoming adopted as a variety input

increases if the growth rate of firms is higher and more variety inputs are adopted. An

important element which introduces path dependence in the model, is that now the location

matching happens with respect to where existing customers are located, not the origins of

the firm. Hence, the likelihood is higher if the location c is closer where the firm has a larger

number of customers fi,t(cd). Combining increases from essential and variety input adoption,

the process of new customer acquisition in location c is described by:

fi,t+1(c)− fi,t(c) = γmK · g(cd, c) +
γmN

m

∑
cd∈C

fi,t(cd) · g(cd, c) (3.2.4)

While this characterized how a firm acquires customers in a particular location it can

be shown that the expected total number of customers that a firm has is independent of

the location matching. We direct the steps of the solution to Appendix A.1. The resulting

equation characterises how the total number of firm’s customers evolves over time:

di(t+ 1)− di(t) = γmK + di(t) ·
γmN

m
(3.2.5)
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From Equation (3.2.5) we can directly observe the path dependence in the customer

acquisition process which is captured by the fact that the increase depends on di(t), i.e. the

total number of customers at time t. In the next part we solve the difference equation and

show how it relates to the distribution of firms by customers.

3.3 Characterising Firm Distribution by Customers

In this form, Equation (3.2.5) is a linear first-order autonomous difference equation. Before

solving the equation we assume that when a firm is born at time t0, no other firm uses it as

input, i.e. di(t0) = 0. We further define r = mK
mN

, as the measure of relative importance of

essential inputs to variety inputs. Solution to the difference equation is given in Equation

(3.3.1) whereas the steps are reported in Appendix A.2.

di(t) = rm

[(
1 +

γ

1 + r

)t−t0
− 1

]
(3.3.1)

Using the solution to the difference equation, we can obtain the distribution of firms by

number of customers. Define Ft(d) as the cumulative distribution function, which is the

fraction of firms with number of customers smaller than d. Conversely, 1 − Ft(d) is the

fraction of firms with number of customers larger than d. Then it follows:

Proposition 3.1. If the customer acquisition is characterised by Equation (3.3.1), the cu-

mulative distribution of firms by number of customers, Ft(d) follows:

Ft(d) = 1−
(

rm

d+ rm

)log(1+γ)·
(
log(1+ γ

1+r
)
)−1

(3.3.2)

The proof of Proposition 3.1 is described below. First, note than in Equation (3.3.1), if

we fix t and d, the equation has a unique solution for t0. In other words, at a given time t, in

expectation, firms which have the number of customers d, are those that were born in period

t0. Denote this period as t?. In this case, the expression 1 − Ft(d) then corresponds to the

fraction of firms that are older than t?, which leads to the expression: 1−Ft(d) = nt?
nt

. Next,

we have that nt = (1 + γ)nt−1 ⇒ nt−1

nt
= (1 + γ)−1. Moreover, t? = t? + t− t = t− (t− t?).

Hence the expression nt?
nt

= (1 + γ)−(t−t
?) = 1− Ft(d). Using Equation (3.3.1) we can solve

for t− t? for a given d:

d = rm

[(
1 +

γ

1 + r

)t−t?
− 1

]
(3.3.3)

d+ rm

rm
=

(
1 +

γ

1 + r

)t−t?
(3.3.4)

log

(
d+ rm

rm

)
= (t− t?) log

(
1 +

γ

1 + r

)
(3.3.5)

t− t? = log

(
d+ rm

rm

)
·
(

log(1 +
γ

1 + r

))−1
(3.3.6)
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Using the expression for the cumulative distribution we get:

1− Ft(d) = (1 + γ)−(t−t
?) (3.3.7)

1− Ft(d) = (1 + γ)− log( d+rm
rm

)·
(
log(1+ γ

1+r
)
)−1

(3.3.8)

Next, using the logarithm property alog b = blog a, Equation (3.3.8) can be rearranged to

obtain:

1− Ft(d) =

(
d+ rm

rm

)− log(1+γ)·
(
log(1+ γ

1+r
)
)−1

(3.3.9)

=

(
rm

d+ rm

)log(1+γ)·
(
log(1+ γ

1+r
)
)−1

(3.3.10)

Ft(d) = 1−
(

rm

d+ rm

)log(1+γ)·
(
log(1+ γ

1+r
)
)−1

(3.3.11)

Which corresponds to Proposition 3.1. As it will be shown below, it is useful to consider

the firm distribution by customers in a log-log scale. We plot this distribution in Figure 3.1,

whereas we derive the analytical features of the distribution in Appendix A.3, which show

that the distribution in log-log scale is concave in the left-tail and linear in the right tail.

As discussed in Jackson and Rogers (2007) the difference between the left and right tail

has an intuitive explanation. When the firm is young it has a low number of other firms using

it as an input (d small), hence the majority of new connections come from other firms choosing

the firm via random uniform search (being selected as an essential input). On the other

hand, as the number of customers grows, eventually the network search mechanism becomes

dominant which generates fat-tailed distribution, which is approximately linear in log-log

scale. This implies that the network search speeds up as the number of existing customers

increases, which results in strong path dependence and in the emergence of dominant firms

that have a large number of customers.

3.4 Geographical Distribution of Customers

Next, we derive results related to the geographic distribution of customers. For this, consider

again Equation (3.2.4), which describes how a firm acquires new customers in location c. To

simplify notation, we suppress the subscript i and assume that the origins of the firm is

c0 = 0. This simplifies to:

ft+1(c)− ft(c) = γmK · g(|c|) +
γmN

m
·
( ∑
cd∈C

ft(cd) · g(|cd − c|)
)

(3.4.1)

In order to proceed further, first focus on the term in the brackets:
∑

cd∈C ft(cd) · g(|cd−
c|). Note that ft(.) can be thought as a random variable defined across location set and
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Figure 3.1: Distribution of Firms By Number of Customers. Counter-cumulative
distribution of firms by customers obtained in Equation (3.3.11). Both the density and
number of customers are expressed in log scale. The parameters were set to: γ = 0.02, r = 1
and m = 20.

g(|.|) is a probability distribution function defined across the same set. This expression

then corresponds to the product of the two functions across their domain, or the discrete

convolution product of the two functions:

ft+1(c)− ft(c) = γmK · g(|c|) +
γmN

m
·
( ∑
cd∈C

ft(cd) · g(|cd − c|)
)

(3.4.2)

= γmK · g(|c|) +
γmN

m
· ft(c) ∗ g(|c|)︸ ︷︷ ︸
convolution product

(3.4.3)

In this form we can apply the convolution theorem, which says that the convolution

product is equal to the product of Fourier transformed functions. More explicitly: f(c) ∗
g(|c|) = f̂(ω) · ˆg(ω), where f̂(ω) =

∑
c∈Z f(c)e−iωc, and ĝ(ω) =

∑
c∈Z g(|c|)e−iωc. Using the

Fourier transformations, we can rewrite Equation (3.4.3) as:

f̂t+1(ω)− f̂t(ω) = γmK · ĝ(ω) +
γmN

m
f̂t(ω) · ĝ(ω) (3.4.4)

As in the previous section, we have a linear first-order difference equation with f̂t=t0 = 0.

The equation permits solution to:
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f̂t(ω) = rm ·
[(

1 +
γĝ(ω)

1 + r

)t−t0 − 1

]
(3.4.5)

The steps of the solution are presented in Appendix A.4. Keeping the result in mind,

note that g(|.|) defines the likelihood of a single location match. Alternatively, we can define

the expected geographic density of customers for a firm which already has d number of

customers. This would take the form gd(c) = fd(c)
d . Furthermore, as shown in the proof

of Proposition 3.1, we can transform these functions from referring to time, to number

of customers. Hence, we can define a corresponding function gt(c), which represents how

geographic density changes over time, gt(c) = ft(c)
dt

. In this form, we can apply a Fourier

transformation to gt(c):

ĝt(ω) =
f̂t(ω)

d(t)
(3.4.6)

Since we have derived the terms f̂t(ω) and d(t), this leads to the expression:

ĝt(ω) =
f̂t(ω)

d(t)
=
rm ·

[
(1 + γĝ(ω)

1+r )t−t0 − 1
]

rm ·
[
(1 + γ

1+r )t−t0 − 1
] =

[
(1 + γĝ(ω)

1+r )t−t0 − 1
][

(1 + γ
1+r )t−t0 − 1

] (3.4.7)

To proceed further, we formally define a random variable Ct for location realizations. A

key property is the second moment of random variable Ct, since it corresponds to the average

squared distance of customers. We formally define ∆t as the average squared distance of

customers of a firm of age (t− t0):

∆t ≡
∑
c∈C

c2gt(|c|) = E[C2
t ] (3.4.8)

Alternatively, as before we can define ∆d as the average squared distance of customers,

of a firm that already has d number of customers. In this form it is possible to obtain how

the average distance of customers changes over time and, more importantly, conditional on

the number of existing customers.

Proposition 3.2. The average squared distance of customers, ∆d, conditional on the number

of existing customers, d, is increasing in the number of existing customers d and takes the

form:

∆d = A · ln
(
1 +

d

rm

)
·
(

1 +
rm

d

)
(3.4.9)

A =
[∑
c∈C

c2g(|c|)
]
· γ

1 + r + γ
·
[

ln
(
1 +

γ

1 + r

)]−1
(3.4.10)

The proof of the proposition is provided in Appendix A.5. The proof relies on the fact

that gt(|c|) is a probability function, hence the Fourier transformation can be related to the

characteristic function of the distribution. Specifically, it can then be used to obtain moments

of gt(|c|) by taking derivatives of ĝt and evaluating them at ω = 0. After expressing how

squared distance of customers changes over time, the final step derives the expression for the

squared distance of customers depending on the number of customers that a firm has (∆d).
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Figure 3.2: Average Distance of Customers. Relationship between number of customers
(d) and the average squared distance of customers ∆d, (Equation (3.4.9)). The x-axis is
plotted in log scale. The parameters were set to: γ = 0.02, r = 1 and m = 20.

Note, that the part ln
(
1+ d

rm

)
·
(
1+ rm

d

)
implies that ∆d is increasing in d. To see it more

clearly, Figure 3.2 shows the relationship explicitly, using the same assumptions as in Figure

3.1. Note that to maintain consistency with results in this paper and with comparability

with previous work, the x-axis (number of customers), is re-scaled in log scale.

The key result in these derivations is that the average squared distance of firm’s customers

increases as the total number of customers increases. This mechanism suggests that as the

firm acquires new customers they become more spread out. To understand what is driving

this result, we can contrast this with the distribution obtained when aggregating over all

locations (Figure 3.1). As it was shown and argued, the process of customer acquisition

is dominated by different elements depending on how many customers a firm has. When

the firm has a low number (small d), customer acquisition is mainly driven by new firms

using it as an essential input. If we consider the customer acquisition Equation (3.4.1),

the likelihood of this occurring is associated with local search (originating in c0). Hence,

when this mechanism is dominant, the average distance of customers is small (see left-tail

in Figure 3.2). However, over time, when further customer acquisition becomes dominated

by network based search, the distribution of customers across location increases much more

substantially and depends on the geographic location of existing customers. This is also the

result obtained in Chaney (2014) and which has been documented empirically.

Another important note about the results with regards to location is that the two as-

sumptions about g(|.|) were that the likelihood of location decreases with distance and that

Section 3 Tadas Gedminas 18



The Dynamics of Sectoral Network Formation

g(|.|) has a finite second moment. Hence, the result does not rely on strong assumptions

about the underlying distribution of location matching.

3.5 Sectoral Level Implications

An advantageous aspect of modelling input adoption by distinguishing essential and variety

inputs is that it is then possible to extend implications of the model from firm to sectoral

level. This can be achieved by assuming that firms are classified into sectors based on their

set of essential inputs. Before proceeding, note that the set of firms It can also be represented

by a nt × nt matrix of directed relationships between firms, where an element of the matrix

bij = 1 would indicate that firm i is using firm j as an input. As it will be discussed later, it

is also useful to define a binary vector µKi of length nt for each firm, where elements of the

vector correspond to other firms and are equal to 1 if the firm is an essential input provider

for firm i.

Similarly, a sector classification sj is defined by a binary vector µsj of length nt, which

indicates whether sourcing the corresponding firm is necessary to be classified into a sector.

We assume that sectors are symmetric in the number of inputs that are used to define a sector

(number of elements equal to 1 in µsj ), which is equal to x. Furthermore, we assume that

there is a finite number of sectors J . Formally, a firm is classified into sector sj if it has the

largest overlap between the vector that is used to define its set of essential inputs (µKi) and

vector that is used to define sector sj (µsj )
3. Given that in expectation the overlap between

the two vectors would not be perfect, we define ksj as the expected number of elements that

are equal to 1 in both µKi and µsj . Since sectors are assumed to be symmetric in the number

of inputs that define them, the expected value of ksj is the same for all sectors.

Similarly as with firms, we can define an input-output sector matrix J × J , where each

element aij corresponds to a binary variable which indicates if there are firms classified

to sector si that source inputs from sj . An important aspect that is different from similar

aggregation described in Carvalho and Voigtländer (2014) is that sectors si and sj are allowed

to be in different locations, denoted ci and cj respectively. Next, if a relationship between

two sectors does not exist, we define a network proximity measure ηsi,sj (c) = (µsj )
′νsi(c),

where νsi(c) is the number of firms that are used to classify into sector sj and are located

in c, that use one of si firms, located in ci as input. Remember that when a firm is born in

location cj , it may source its essential inputs from location other than cj . This introduces

an additional complexity to the framework, hence we need to consider network proximity

measure in all possible location. As it will be shown later on, this setup implies that the

likelihood of a new relationship forming between sectors sj and si depends jointly on the

network proximity ηsi,sj (c) and location matching function g(., .).

Before proceeding further to sectoral level implications, we introduce an additional vari-

able. By considering a firm i located in ci, we define isj (c) as the number of firms in location

c, that would be classified into sector sj , that source the firm i as an input. We can relate

3Distance between two binary vectors can be measured as the Hamming distance, where the distance is
greater the larger the number of non-matching elements exists. In this context a firm is classified into sector
sj if it has the minimum Hamming distance with respect to µKi .
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this value to the sector proximity measure, if we consider all firms i that define sector si.

Specifically, the network proximity measure is equal to:

ηsi,sj (c) =
∑
i∈si

isj (c) (3.5.1)

The next proposition describes on which factors the likelihood of a new connection form-

ing depends on:

Proposition 3.3. If we take two sectors sj and s′j, both located respectively in cj and c′j,

which do not use any inputs from sector si located in ci, sj is said to be more likely to adopt

sector si as input than s′j if:

∑
c∈C

g(cj , c) · ηsi,sj (c) >
∑
c∈C

g(c′j , c) · ηsi,s′j (c) (3.5.2)

The proof of the proposition is in Appendix A.6. The result suggests that the likelihood

of adoption is dependent on the local network proximity between sectors weighted by the

distance between the location and where sector sj is. Furthermore, this likelihood is not

dependent on location of the sector si directly. Instead, since sectoral adoption only happen

due to network neighbourhood search, we only need to consider where sector si contacts are

located. On the other hand, if we consider the expected expansion of connections, sector si

is more likely to have more connections near ci.

3.6 Summary of Theoretical Framework

Using a random graph model with differentiated types of inputs and location we showed

that the following properties can be derived: (i) from Section 3.3, the distribution of firms

by number of customers (in log-scale) is concave in the left-tail and is linear in the right-

tail, which reflects a fat-tailed distribution; (ii) from Section 3.4, the average distance of

customers increases with total number of customers and is not dependent on the underlying

probability function of location matching; (iii) from Section 3.5, the likelihood of input

adoption increases if network proximity, weighted by geographic matching function, is larger.

In contrast to previous works, (i) and (ii) have been derived before (Chaney, 2014). However,

the contribution of the work is that the results of (i) and (ii) were obtained allowing for input-

output relationships between firms. Furthermore, implications of (iii) with regards to the

joint importance of network proximity and geographic distances are novel.

From the derived results and propositions of the framework, we highlight three hypothesis

which we will consider in the empirical part of the study when analysing the WIOD. First,

given the derived properties of the distribution by number of outward linkages in Section

3.3, the first hypothesis states that:

Hypothesis 1 (H1). The distribution of sectors by number of outward linkages is skewed

and exhibits a fat right tail.

Next, considering theoretical prediction regarding increasing average distance of cus-

tomers from Proposition 3.2 the hypothesis states:
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Hypothesis 2 (H2). The average squared distance of customers increases as sectors accu-

mulate more outward linkages.

Finally, the last hypothesis focused on the likelihood of new network formation and is

based on Proposition 3.3:

Hypothesis 3 (H3). The likelihood of new linkage formation increases with shorter network

proximity and shorter geographical distances.

Hypothesis H3 is considered using an econometric estimation, whereas Hypotheses H1

and H2 are primarily analysed qualitatively.
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4 Empirical Analysis of Sectoral Network Formation

4.1 Data

The primary source of data for the present empirical study is the World Input-Output

Database (WIOD) (Timmer et al., 2015), November 2016 release. The dataset covers inter-

country industry-by-industry trade flows, for 43 countries and 54 sectors4. The considered

data release covers the period between 2000 and 2014 and reports yearly trade flows in

current prices, denominated in millions of US$. Using this data, it is possible to track how

much a given sector in a country imports from and exports to every other sector in every

other country. The data also tracks total output, final demand, and changes in inventory

and gross capital for each sector in the sample. All unmatched flows are gathered together

under ”Rest-of-the-World” classification. Given that the estimation will rely on geographic

matching, we omit this category.

In addition to information regarding trade flows, together with the 2016 WIOD trade

data release, a socio-economic data companion was released in February 2018. This data

contains additional information about each of the sectors that are part of the 2016 release:

number of employees, total hours worked, labour and capital compensation and nominal

capital stock. Furthermore, the data contains industry level deflators for value added, total

output and intermediate inputs.

Since theoretical implications are tied to geographic variation of linkages between sectors,

we also collect data on geographic distances between countries. We follow Chaney (2014) and

use distance measures calculated and reported by CEPII. In particular, we used a measure

defined as the distance between country centroids which correspond to population weighted

coordinates of major cities within the country.

Since in this study we focus on the extensive margin of trade - binary relationships be-

tween sectors - and due to potentially noisy trade data, we impose a cut-off point. Following

Carvalho (2010), we set that a relationship between two sectors exists, if, from the point of

view of importing sector, the inflow is at least 1% of the total sectoral intermediate input

use. For robustness, we tested the sensitivity of econometric results based on less and more

restrictive thresholds. In the next section we characterize the main features of WIOD.

4.2 Qualitative features of WIOD

In this section, we focus on the key descriptive features of WIOD that relate to the theoretical

predictions. Specifically, the focus is on whether the distribution of sectors by outward

linkages, as proposed in Hypothesis H1, is skewed and exhibits a fat right tail. Furthermore,

in relation to Hypothesis H2, we check whether the average distance of linkages increases the

more connections a sector has. First of all, we visualise the international sectoral network in

Figure 4.1, where sectors by country are highlighted.

4In Appendix A.7 we report the list of industries and countries that were part of the sample
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Figure 4.1: WIOD Network. Sectoral network structure by country in 2014. A link
between two sectors indicates that one of the sector constitutes at least 1% of intermediate
input use of the other sector. Large country labelled nodes correspond to average location
of country sectors within the network. Country abbreviations and names are matched in
Appendix A.7. Data source: author’s rendering of WIOD (Timmer et al., 2015).

To visualise this network we used Fruchterman and Reingold (1991) plotting algorithm.

The algorithm plots the network nodes (in this cases sectors) such that more connected

nodes are grouped. Furthermore, to highlight how each country is positioned within the
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Figure 4.2: Sectoral Indegree Distribution in WIOD. The plots show the empirical
density of sectors in WIOD by number of sectors that they import inputs from (indegree).
Panels are for different sample years. Data source: author’s rendering of WIOD (Timmer
et al., 2015).

network, we include country labelled centroids which correspond to the average location of

country-specific sector nodes in the plot.

First, note that countries which have sectors that are most connected are within the

centre of the network. These countries are Germany, Russia, the Netherlands, the U.K. and

Belgium. On the other hand, if we focus on countries that are at the periphery of the network

we can observe the emergence of geographic regions. For example, the top right corner

consists of Scandinavian countries and the Baltic States, the top left corner consist of Central

European countries and the bottom left consists of countries in the Mediterranean region.

This indirectly matches the prediction of the theoretical framework and supports Hypothesis

H2, given that less connected sectors tend to be more local in their connections, hence we can

observe geographic regions by a pure network proximity visualisation. Conversely, sectors

that are highly connected tend to have more spread out relationships and hence are found

in the centre of the network.

Having highlighted some of the features from an aggregate network overview, we con-

sider the distributions of sectors by the number of linkages. Specifically, this is relevant for

checking whether the WIOD supports Hypothesis H1 which claims that the distribution of

outward linkages should be skewed and have a fat-right tail. The distribution of linkages

has been one of the key motivations for applying network-based models in studying firm and
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Figure 4.3: Sectoral Outdegree Distribution in WIOD. Left panel shows empirical
density of sectors in WIOD by number of sectors that they export to (outdegree), plotted in
non-scaled values. The right panel shows the same distribution, but with density and number
of sectors adjusted in log of base 10 scale. Each plot within each panel is for different sample
years. Data source: author’s rendering of WIOD (Timmer et al., 2015).

sectoral linkages due to the emergence of power-law type distributions (Jackson and Rogers,

2007; Gabaix, 2016). Moreover, a sharp asymmetry between the indegree (number of inputs

that a sector uses) and the outdegree (number of sectors that use it as an input) has been

documented empirically in other international contexts (Bernard and Moxnes, 2018), hence

it is relevant to check whether the WIOD network exhibits these features as well.

We first consider the empirical density of indegree which is presented in Figure 4.2, where

each panel is for different years (2002, 2006, 2010, 2014). We can see that the distribution

in most years is centred and single peaked. A similar characterisation of sector linkages

has been observed in the case of the U.S. (Carvalho, 2010). This supports the modelling

assumption that the number of inputs that are used is stable and is not time varying.

Next, we consider the distribution by outdegree, which is presented in Figure 4.3. First,

we focus on the counter-cumulative distribution of sectors by outdegree in non-scaled values

(left panel). In support of Hypothesis H1, it can be seen that the distribution is skewed

and exhibits a right fat-tail which is characterised by a disproportionate number of sectors

that have a very high outdegree. To relate it more closely to the underlying distribution

derived in the theoretical model, we plot in the right panel the distribution in log-log scale,

where both the outdegree and the density are expressed in logs of base 10. Once again, the

pattern is similar to the one observed in previous studies (Carvalho, 2010; Chaney, 2014) and

qualitatively matches the theoretical distribution that is obtained in the previous section (see

Figure 3.1 and Appendix A.3). Specifically, the outdegree distribution is concave in the left

tail and is approximately linear in the right tail. As discussed in the theoretical framework,

this may reflect that the behaviour in the tails is different. For a sector that is initially
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Figure 4.4: Input Adoption Events by Network Proximity. Network distance between
sectors between which an adoption event occurred. Network distance between sectors is
measured by the shortest network path.

not well connected, most of the new connections will come from uniform random search.

However, once the sector becomes more connected, the new connections will primarily come

from network neighbourhood search.

In addition to focusing on the overall network, we also consider adoption events separately.

While the precise definition of what is meant by an adoption event will be introduced in later

sections, intuitively it represents events, when a connection between an input providing and

an input receiving sector did not exist in 2000 but was eventually established at some point.

First, we consider the network proximity distance, measured by the shortest network path

between sectors in Figure 4.4. We can see a clear trend that the majority of new connections

that were formed were between sectors that had close proximity to each other. This result

qualitatively supports Hypothesis H3, which states that the likelihood of adoption would be

increasing with closer network proximity.

Alternatively to network proximity, we also consider the average squared distance of new

connections from input sending sector’s point of view. Figure 4.5 reports in log-scale how

the average squared distance of new connections depends on the existing number of outward

linkages and number of countries serviced. This relates to the theoretical prediction, that as

the sector becomes an input provider to more sectors, the new connections will tend to be

geographically further away. While the increase is not uniform and noisy in the right-tail,

an upward trend can be observed. This suggests that the higher number of connections that

a sector had at reference year 2000, the more likely it was to form connections with sectors

that were further away which provides support for Hypothesis H2.
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Figure 4.5: Input Adoption Events by Geographic Distance. Geographic distance
of new connections between sectors. Each point in the plot measures the average squared
distance between sectors that formed a new connection, conditional on the number of sectors
or countries serviced by the input sending sector prior to the connection forming.

4.3 Econometric Strategy

In this part we focus on the econometric estimation and the definition of key empirical

variables. The identification relies on the fact that during the WIOD sample years sectors

established new relationships. Specifically, by contrasting the existing network structure at

the start of sample years in 2000 with all other years, it is possible to determine out of

all possible relationships which ended up forming. Hence the econometric model aims at

characterising which variables could predict whether a new connection was established.

As it was mentioned above, due to potential noisiness of trade data a threshold is imposed

to constitute an economically meaningful relationship between sectors. Formally, we define

a binary variable Tradeis1,s2 , which is equal to 1 if in year i, from the point of view of sector

s1, imports from sector s2 constituted at least 1% of total intermediate input usage of sector

s1, and is equal to 0 otherwise. Next, given that the key interest of the econometric analysis

is to study the likelihood of new network formation, we define a new variable for adoption

events. Formally, this variable takes the form:

Adopts1,s2 =

1 , if Trade2000s1,s2 = 0 & Tradeis1,s2 = 1, for one of i = 2001, 2002, ..., 2014

0 otherwise

(4.3.1)

Based on this definition, the dependent variable corresponds to an event, when for a given

set of two sectors, there was no trade relationship at the start of the sample in year 2000,

but at least in one of the remaining sample years s1 sourced inputs from s2. The empirical

model that we estimate is:
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P (Adopts1,s2 |X) = Φ

(
α+ β1net dists1,s2 + β2Dc1=c2 + β3g(distc1,c2)+

β4out degrees1 + β5g(distc1,c2)× out degrees1 + β6avg dists1+ (4.3.2)

βControls+ εs1,s2

)
Note that c1 and c2 correspond to countries in which sector s1 and sector s2 are located

respectively. All explanatory variable values are taken as their value in year 2000. Next we

explain each of the explanatory variables, their definitions and construction, and their ex-

pected impact based on theoretical predictions. We report summary statistics of explanatory

variables in Appendix A.8.

First of all, net dists1,s2 is a measure of network proximity. Imposing the trade cut-

off and taking the WIOD sample of 43 countries and 54 industries allows to represent the

international input-out table by a 2322×2322 binary matrix, which corresponds to a directed

network. Next, given that the theoretical implications are tied to the notion of network

proximity, for each possible relationship 23222 we calculate the network proximity using

Dijkstra’s (1959) algorithm, which finds the shortest path between two nodes (country-

industry pairs). If Hypothesis H3 is true, the expected sign of the coefficient is negative

(β1 < 0) since the model predicts that closer proximity should increase the likelihood of new

connection forming and the shorter the network path, the closer two sectors are.

An important set of explanatory variables are related to the impact of geographical

distances on the likelihood of a new link forming. For the exact choice of variables we follow

set of explanatory variables that were used in Chaney (2014), with the crucial difference that

the present estimation includes cases where a link may form between sectors that are in the

same country.

For this reason, we include a dummy variable Dc1=c2 which is equal to 1 if the two sectors

are in the same country. The dummy is included given that there is a theoretical lower limit

to the value that the physical distance can take and there may be concerns of non-linearity

in the relationship at the limit, which in this case would be captured by a fixed effect.

Furthermore, we define a function g(distc1,c2) which takes as input the physical distance

between two countries in which the two sectors are located. For the baseline specification

we assume that the function g(.) takes the form: g(distc1,c2) = distc1,c2 + dist2c1,c2 . In later

sections we consider alternative forms of the g(.) function. Similarly as with the network

proximity variable, if Hypothesis H3 is true, we would expect that the impact of distance

is negative (β3 < 0). In other words the further away the countries where the sectors are

located, the lower the likelihood of a link forming between the two sectors.

In the estimation we also include variable out degrees1 , which corresponds to the number

of outward linkages of sector s1, i.e. number of sectors that used it as an input in year 2000.

This variable captures the theoretical feature of the model that sector linkage formation

may exhibit path dependence - the more connections a sector has the more likely it is to

form new links in the future, hence the expected sign of the estimate is positive (β4 > 0). In
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addition to including out degrees1 as a separate variable, we also include interaction between

the out degrees1 and the distance function. Finally, related to this argument we include

avg dists1 variable, which is the average distance of existing outward links. The last two

variables indirectly relate to Hypothesis H2. Namely, the model predicts that as the sector

accumulates more outward linkages, the average distance of these linkages increases. This can

also be thought as representing the fact that distance barriers are less significant if the sector

has more outward linkages. Hence if Hypothesis H2 is true, we would expect the estimate

of the interaction term β5 to have the opposite sign of β2. Similarly, if outward linkages

are more spread out, that should make the network based search of further distances easier,

hence we would expect that higher average distance of customers increases the likelihood of

an adoption event (β6 > 0).

In addition to variables that relate to the theoretical framework, we also include control

variables which may impact the likelihood of adoption. For this part we follow Carvalho

and Voigtländer (2014). First of all, we include input receiving and input sending country

and industry fixed effects. Moreover, we include a measure of geographic isolation, defined

by the average distance to all countries in the sample. This variable captures the fact

that some countries may be geographically remote and hence sectors in these countries face

higher barrier of becoming adopted as inputs in another country. Finally, we include log of

number of employees in the sector and log of real value added per employee as a proxy for

productivity. The intention of these control variables is to account for industry size effects,

i.e. larger sectors more likely to form linkages, and quality of the sector, measured by value

added per employee, as it may be the case that more productive sectors are more successful

in forming new linkages. Employee number and productivity variables are included both for

input sending and receiving sectors.

While the theoretical maximum number of observations is 23222 = 5, 391, 684, we limit

the sample in the following way. We first remove observations where s1 = s2, i.e. the link

between the sector and itself is omitted. Next, we remove sectors that do not link to any

other sector and hence a network distance measure cannot be established. Furthermore, we

exclude cases when Trade2000s1,s2 = 1, since these sectors already have a link between each other

at the reference year 2000.

Due to binary nature of the model, we estimate it as a logit model. Given that the base

rate of adoption compared to total number of potential adoption events is low, in estimation

results together with logit coefficients we report fully standardised coefficients (Long and

Freese, 2014). These coefficients measure how many standard deviations the dependent

variable changes by a one standard deviation change in the explanatory variable. Using these

coefficients it is possible to comment on the relative importance of explanatory variables. In

addition to logit estimation, for robustness we also report results of a linear probability

model (LPM) estimated with ordinary least squares. Among other robustness checks we

consider alternative cut-off points that constitute an economically significant relationship

(5% and 0.1%). Furthermore, we consider a smoothed trade series by applying a 3-year

moving average smoothing, to check that results are not driven by potentially noisy yearly
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fluctuations.

A common concern within the literature of empirical studies of production networks is

that a source of exogenous variation is lacking. Hence there is an important concern regarding

omitted variable bias. For this reason, in addition to variables that relate to the theoretical

prediction of the model, we include additional specification with control variables that have

been found to impact the likelihood of new linkage formation. An additional concern is that

the estimation assumes that the impact of the network structure in the year 2000 has a long-

lasting effect and hence can influence network formation throughout the whole sample. While

this may be a bigger concern for empirical studies of the intensive margin of trade, since the

present analysis considers extensive margin trade and economically significant trade, their

effect should be long-term. Hence we should expect the effect to be preserved over a longer

duration. Other limitations of the estimation are discussed in Section 5.5.
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5 Estimation Results

In this section we present results of the econometric estimation described in Section 4.3.

First results of the baseline specification are reported, followed by robustness checks where

different functional forms for the impact of geographic distance were tested. In addition,

the empirical models were re-estimated using smoothed trade series and also allowing for

alternative thresholds for defining significant trade relationships. The section is concluded

with a discussion of empirical results and limitations of the study.

5.1 Baseline Results

In Table 5.1 results of the baseline specification of the model are reported. Each column

corresponds to specifications with different sets of explanatory variables. The first set of

columns report results of the estimation using network distance as the only explanatory

variable. The next set report results using an extended list of explanatory variables, but

without any control variables. The following two columns report results using fixed effect

and isolation measure controls, whereas the final set of columns report results using additional

sector employment and productivity controls. The separation of the estimation in the last

two sets is due to the fact that not for all sectors additional data on employment exists.

Focusing on estimations results that are related to the theoretical predictions of the

model, it can be seen that network proximity has a substantial impact on the likelihood

of a new network link forming. This result is consistent across all specifications. Further-

more, in comparison with other variables, network proximity has the highest relevance for

impacting the likelihood of adoption measured by fully standardised coefficients. In base-

line specifications, the standardised network proximity coefficient ranges between −0.84 and

−0.49.

Considering the impact of geographic distances the signs and significance of estimates

are in line with theoretical expectations. Namely, the larger the distance the lower the

likelihood of sector connection forming. It can also be seen that not including controls does

not allow capturing the fact that the impact of distance is not linear. Specifically, the negative

impact has a diminishing effect, given that the coefficient of the squared distance is positive

when including controls. Furthermore, as additional controls are added, the standardised

coefficient also increases suggesting that the geographic proximity has a relatively sizeable

impact on the likelihood of adoption. Finally, it can also be seen that it is relevant to control

for the fact that connecting sectors may be in the same country. Both results relating to

network proximity and geographical distances support Hypothesis H3.

Next, considering the impact of the number of existing outward linkages, estimation

results suggest that the higher the number of existing connections a sector had in 2000, the

higher the likelihood that a new link would form. This result is also in line with theoretical

prediction, however, compared to network proximity and distance it is less pronounced.

Among results that do not agree with theoretical predictions, the interaction term is negative,

suggesting that as the number of outward connections increases it becomes more difficult
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for sectors to overcome distance barriers. Furthermore, having outward linkages that are

further away also does not help to mitigate the negative impact of distance as indicated by

the negative coefficient for the average distance variable. These last two results, in fact, do

not support Hypothesis H2. It should be mentioned, however, that in contrast to other key

variables these effects are not as relevant as network proximity and geographic distance since

standardised coefficients are lower.

For completeness, in Appendix A.9 results of a linear probability model estimation are

reported. Given the low base rates, the estimate values are low. However, the sign and

significance of coefficients agree with the logit estimation. Moreover, given the high signif-

icance of variables, but low standardised coefficient values, suggests that a logit model is

more appropriate since due to low base rates the model is capturing probabilities that are

near the boundary of the lower limit where non-linearities are of greater concern.

5.2 Changing Definition of Distance

To check that results of the econometric estimation do not depend on assumptions behind

the functional form of the distance function, g(.), the econometric model is re-estimated

using alternative functional forms that have been used in previous works:

g(distc1,c2) =


distc1,c2 + dist2c1,c2

ln(distc1,c2) , Carvalho and Voigtländer (2014)

1/distc1,c2 , Chaney (2014)

(5.2.1)

All of the definitions of the functional form aim at capturing the potentially non-linear

impact of distance on the likelihood of new connection formation. In the end, the expected

sign of the effect should be consistent across all measures. It should be noted, however, that

the expected sign of the definition according to Chaney (2014) is reversed, since the variable

is decreasing as the distance measure increases. The results are presented in Table 5.2.

Similar to the baseline results the impact of distance coefficient is consistently in line

with theoretical predictions regardless of the distance definition. Furthermore, controlling

for connections forming within the same country is relevant in all cases. Moreover, network

proximity is highly significant and relevant for explaining the likelihood of further adoption.

Consistently throughout all specifications, the impact of number of outward linkages is also

significant and of similar relevance.

A notable exception where estimation results do not agree across different distance def-

initions is with regards to the interaction terms. Note, that since the distance function is

re-defined, this implies that the interaction term is now considered together with the new

distance function. In contrast to the baseline definition, the interaction term signs are in

line with theoretical predictions using Chaney (2014) and Carvalho and Voigtländer (2014)

definition and support Hypothesis H2. Namely, the coefficient supports the claim that as the

number of outward linkages increases, the negative impact of distance is smaller. Although,
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the relevance and significance of these estimates limit the strength of these conclusions.

Baseline Chaney (2014)
Carvalho and

Voigtländer (2014)

P (Adopts1,s2 |X) βlogit β̂ βlogit β̂ βlogit β̂

net dists1,s2
-0.7365∗∗∗ -0.4876 -0.7522∗∗∗ -0.5188 -0.6919∗∗∗ -0.4595
(0.0159) (0.0156) (0.0163)

distc1,c2
-0.3224∗∗∗ -0.4966
(0.0195)

dist2c1,c2
0.0153∗∗∗ 0.3316
(0.0013)

out degrees1× -0.0005∗∗∗ -0.0260
distc1,c2 (0.0001)

out degrees1
0.0092∗∗∗ 0.0566 0.0100∗∗∗ 0.0644 0.0083∗∗∗ 0.0513
(0.0005) (0.0005) (0.0004)

avg dists1
-0.0001∗∗∗ -0.0861 -0.0001∗∗∗ -0.0760 -0.0001∗∗∗ -0.0901
(0.0000) (0.0000) (0.0000)

Dc1=c2
2.3295∗∗∗ 0.1123 3.4115∗∗∗ 0.1713 2.8470∗∗∗ 0.1376
(0.0414) (0.0451) (0.0390)

1/distc1,c2
0.3909∗∗∗ 0.1218
(0.0117)

out degrees1× -0.0018∗∗∗ -0.0163
1/distc1,c2 (0.0003)

ln(distc1,c2)
-0.6099∗∗∗ -0.2391
(0.0216)

out degrees1× 0.0008∗∗ 0.0103
ln(distc1,c2) (0.0003)

α
-6.3960∗∗∗ -6.3914∗∗∗ -6.5543∗∗∗

(0.3594) (0.2949) (0.3878)

Fixed Effects Yes Yes Yes
Additional Controls No No No

Adoption Events 14,493 14,493 14,493
Observations 3,720,405 3,720,405 3,720,405
Pseudo R2 0.324 0.324 0.326

Table 5.2: Changing Definition of Distance Estimation. The table reports results
of re-estimated model using different definitions of distance. In all cases models with all
explanatory variables, fixed effects and isolation control were estimated. In Table 5.1 this
corresponds to column (3). Column βlogit reports logit coefficients. Column β̂ report fully
standardised coefficients. Terms in the brackets are robust standard errors. Symbols *
indicate statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

5.3 Changing Threshold Values

The next set of robustness checks consider the stability of results by changing how the

definition of an adoption event is specified. In the first step, a smoothing of the WIOD

trade series is applied by taking a rolling average window of 3 years for the annual series,

and where adoption events are re-calculated using the same cut-off of 1%. The reason for
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(1) (2) (3)

P (Adopts1,s2 |X) βlogit β̂ βlogit β̂ βlogit β̂

net dists1,s2
-0.9079∗∗∗ -0.7183 -0.7693∗∗∗ -0.5873 -0.7478∗∗∗ -0.5736
(0.0209) (0.0217) (0.0242)

distc1,c2
-0.0423∗ -0.0633 -0.3305∗∗∗ -0.4773 -0.3711∗∗∗ -0.5412
(0.0172) (0.0253) (0.0286)

dist2c1,c2
0.0001 0.0025 0.0157∗∗∗ 0.3189 0.0161∗∗∗ 0.3312

(0.0013) (0.0016) (0.0018)
out degrees1× -0.0007∗∗∗ -0.0328 -0.0004∗ -0.0195 -0.0001 -0.0055
distc1,c2 (0.0001) (0.0002) (0.0002)

out degrees1
0.0138∗∗∗ 0.0815 0.0101∗∗∗ 0.0578 0.0085∗∗∗ 0.0489
(0.0004) (0.0006) (0.0006)

avg dists1
-0.0001∗∗∗ -0.0514 -0.0001∗∗∗ -0.0613 -0.0000∗∗∗ -0.0319
(0.0000) (0.0000) (0.0000)

Dc1=c2
2.1985∗∗∗ 0.1027 2.3317∗∗∗ 0.1051 2.3571∗∗∗ 0.1076
(0.0382) (0.0498) (0.0534)

α
-2.8817∗∗∗ -6.5745∗∗∗ -6.9873∗∗∗

(0.0731) (0.4369) (0.5278)

Fixed Effects No Yes Yes
Additional Controls No No Yes

Adoption Events 10,417 10,417 9,988
Observations 3,721,547 3,721,547 3,466,419
Pseudo R2 0.282 0.328 0.338

Table 5.3: Rolling Average Estimation. The table reports results of re-estimated model
using trade series smoother with a 3-year window rolling average. Here column (1)-(3)
correspond to column (2)-(4) in Table 5.1. Column βlogit reports logit coefficients. Terms
in the brackets are robust standard errors. Column β̂ report fully standardised coefficients.
Symbols * indicate statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

this procedure is to check whether the results are not driven by one-off noisy increases in

trade. In order to maintain that the values are consistent across the years, the trade data

was deflated using industry level intermediate input deflators. Estimations results with the

new series are reported in Table 5.3.

In comparison with baseline results, even though the number of adoption events is lower,

the impact of most variables is preserved, i.e. the sign, significance and relative magnitude

of the coefficients is similar. On the other hand, it can also be seen that standardised

coefficients are estimated consistently higher in contrast to baseline specification. Altogether

these results suggest that the baseline results are not driven by spurious trade relationships.

An additional set of robustness checks related to using different cut-off thresholds. Specif-

ically, adoption events and relationships between sectors were recalculated using more con-

strained or relax definitions of what constitutes an economically significant relationship.

Formally, a relationship between sectors exists if from importing sectors point of view, the

input imports are at least 5% (strict conditions) of total intermediate inputs or at least

0.1% (relaxed condition). The result using new definitions are presented in Table 5.4. The

comparison models are estimated using fixed effect and isolation controls.
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Baseline 5prc. 0.1prc

P (Adopts1,s2 |X) βlogit β̂ βlogit β̂ βlogit β̂

net dists1,s2
-0.7365∗∗∗ -0.4876 -0.1476∗∗∗ -0.2629 -1.7435∗∗∗ -0.5057
(0.0159) (0.0170) (0.0118)

distc1,c2
-0.3224∗∗∗ -0.4966 -0.5819∗∗∗ -0.5097 -0.3153∗∗∗ -0.4751
(0.0195) (0.1596) (0.0052)

dist2c1,c2
0.0153∗∗∗ 0.3316 0.0210 0.1712 0.0133∗∗∗ 0.2793
(0.0013) (0.0114) (0.0003)

out degrees1× -0.0005∗∗∗ -0.0260 -0.0018 -0.0217 0.0000∗∗∗ 0.0047
g(distc1,c2) (0.0001) (0.0013) (0.0000)

out degrees1
0.0092∗∗∗ 0.0566 0.0281∗∗∗ 0.0576 0.0017∗∗∗ 0.0440
(0.0005) (0.0042) (0.0000)

avg dists1
-0.0001∗∗∗ -0.0861 -0.0001∗∗∗ -0.0618 -0.0006∗∗∗ -0.1561
(0.0000) (0.0000) (0.0000)

Dc1=c2
2.3295∗∗∗ 0.1123 3.0612∗∗∗ 0.2971 2.0298∗∗∗ 0.0569
(0.0414) (0.2560) (0.0213)

α
-6.3960∗∗∗ -9.7137∗∗ 0.1876
(0.3594) (2.6350) (0.1334)

Fixed Effects Yes Yes Yes
Additional Controls No No No

Adoption Events 14,493 2,244 81,955
Observations 3,720,405 275,049 4,800,254
Pseudo R2 0.324 0.339 0.256

Table 5.4: Changing Threshold Estimation. The table reports results of re-estimated
model using different definition of cut-off for significant trade relationship between sectors.
In all cases models with all explanatory variables, fixed effects and isolation control were
estimated. Column βlogit reports logit coefficients. Terms in the brackets are robust stan-
dard errors. Column β̂ report fully standardised coefficients. Symbols * indicate statistical
significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

Focusing on the contrast between the baseline 1% definition and 5% it can be seen that

while the impact of network proximity is preserved, the impact of distance is much less

pronounced. This suggests that for economically stronger relationships, network proximity

may be more relevant. It should be also mentioned that 5% threshold limits the sample

considerably since this leads to a much greater number of sectors that become isolated in

the network. By contrasting baseline definition with the 0.1% impact, it can be seen that all

measures are significant as in the baseline. However, differences do come from the distance

coefficients as the more relaxed cut-off estimates a stronger impact. Overall, these set of

robustness checks support the claim that the key results are not driven by the definitions

that were used in the baseline specification. On the other hand, the changing importance of

network proximity and distance depending on the strength of the relationship may point to

a more nuanced effect.
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5.4 Summary of Results

Overall, the empirical analysis using the WIOD supports Hypotheses H1 and H3, whereas

evidence for H2 is mixed. As was seen in section 4.2 the distribution of sectors by the

number of outward linkages is skewed and exhibits a fat-tail in support of Hypothesis H1.

Furthermore, by focusing on the econometric specification, the network proximity measure

and the impact of distance are significant and in line with model prediction and Hypothesis

H3. This result is robust to changes in the way geographic distance enters the empirical

model and under alternative characterisations of trade relationships. On the other hand,

when it comes to theoretical predictions that suggest that the negative impact of distance is

smaller the more customers a sector has or the further away the customers are, the estimation

results do not provide supporting evidence. The effects are in line only when considering

alternative distance specification, or when the cut-off threshold is relaxed to 0.1%, hence the

support for Hypothesis H2 is inconclusive.

5.5 Limitations

While the results of the empirical investigation support some of the theoretical predictions

of the model, limitations need to be kept in mind when interpreting these results. First of

all, the results of the theoretical framework rely on symmetry assumptions. In particular,

the assumption that all type of firms defined by their set of essential inputs simultaneously

exist in all locations does not seem plausible. As it was mentioned before, a more plausible

interpretation of this idea would be to look at the set It as set of production recipes and

locations differ in the extent of utilisation of these recipes. However, future works may

consider relaxing this assumption and allowing for greater heterogeneity across locations.

In addition to symmetry assumptions, the behaviour behind new connection formation is

mechanical rather than driven by economic considerations. This limits the direct application

of this model to studying trade flows. On the other hand, it allows focusing on an understud-

ied aspect relating to informational frictions and how they can be overcome. Hence, while

this model does not provide explanations on the intensive margin of sectoral trade, it points

to a potential way that the extensive margin may be modelled.

Another limitation of the theoretical framework is that while outward linkages change

dynamically and firms acquire new customers over time, the set of inputs that the firm selects

is static and is determined when the firm is born. This feature does not capture the fact that

in the real world it is more likely that firms are searching for new inputs dynamically. This

limitation is also a potential area where extensions of the framework may look to introduce

optimising behaviour. For example, firms might continue to draw sets Ni and Ki over time,

and choose the optimal input set by profit maximization.

With regards to the econometric estimation of the model, there are also limitations that

need to be kept in mind. First of all, as it was mentioned above, yearly trade data may

be noisy. Hence for defining binary relationships a cut-off is introduced which constitutes

that a relationship exists if from the point of view of input receiving sector, the imports

constitute at least 1% of total intermediate input use. While this definition is one that has
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been used in the literature before (Carvalho, 2010), a more appealing definition would be to

take absolute values in trade as in Carvalho and Voigtländer (2014). In this case, however,

countries that enter the WIOD sample are not consistent in their sizes, level of development

and engagement in international trade. Hence, a relative measure is more appropriate in this

setting.

An additional concern that may be raised is that relative to the number of possible

relationships, the actual observed base rate of input adoptions is not high. While for the

econometric estimation the number of observations is sufficient for obtaining estimates, there

still remains a puzzle why the WIOD sample is sparsely connected. This may be a relevant

issue to study in the future and also indicates that longer samples may be needed for a more

comprehensive empirical study. Specifically, given that network proximity measures may

reflect technological compatibility, which corresponds to more secular, supply-side features a

longer sample might be necessary to observe sufficient amount of variation. Related to this

issue, while the WIOD contains 54 distinct sectors within each country, a larger variation

in sectors is desired to capture present heterogeneity in the types of firms and technologies

that are observed these days.

Finally, an important aspect which limits the strength of the conclusions is that the pro-

posed mechanisms that underline theoretical framework are defined at the firm level. Hence,

empirical validation of these mechanisms will be limited, given that emergent outcomes are

studied, but the firm level behaviour is not directly observed. To causally claim that the

proposed mechanisms are at play, future studies should consider using firm level data to

study input-output relationships and trade destination choices.
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6 Conclusion

The study aimed to develop a framework that could help explain international sectoral

network formation. The proposed model includes elements of input-output structure and

geographic variation of linkages. The developed model exhibits properties such as: (i) the

distribution of firms and sectors by number of linkages is skewed and fat-tailed; (ii) the

average distance of connections increases with the higher number of outward linkages; (iii)

the likelihood of new link formation depends on network proximity and geographical distance

between sectors. From these theoretical predictions we formulated hypotheses which were

then tested empirically using the WIOD. Empirical analysis showed that the WIOD features

skewed and fat-tailed sector distribution of outward linkages. Furthermore, econometric

estimation finds supporting evidence that network proximity and geographic distances impact

the likelihood of input adoption. These results are consistent and significant under various

robustness checks. Finally, the empirical results of the study do not find conclusive evidence

for the prediction that as sectors accumulate more outward linkages, new links are connected

at further distances.

Concerning previous studies, the present work is in line with existing evidence of how

sectoral networks form. However, conceptually one of the primary driving mechanisms of

the model were information barriers. In this setup geographic distances acted as a proxy for

these barriers. While this simplified the characterisation of the model and correspondence

with the data, in reality, information barriers may be associated with a much broader set

of factors. Specifically, it may be better captured by the previously discussed “extended

gravity” effect, brought forward by Morales et al. (2017), who argue that in addition to

geographic distances, accounting for languages and income per capita levels is important.

Introducing these elements to the presented framework may be a potential avenue for further

research.

In addition, such network-based approaches may be used in extending existing interna-

tional trade models. While the presented model is limited in focusing only on the extensive

margin of trade, it could characterise the mechanism behind how available sets of buyers and

suppliers change over time. For example, Bernard and Moxnes (2018) in reviewing existing

literature of networks in international trade, point to the fact that firm level asymmetries

are directly related to the number of contacts the firms have.

Moreover, defining sectors by their input use may be a useful approach for linking ex-

isting frameworks. This could allow uncovering micro-level behaviour of firms by measuring

whether predicted emergent properties are observed in sectoral data. For example, the elas-

ticity of input substitution which has been proposed as a key element for the degree of

sectoral shock propagation (Atalay, 2017), may, in fact, reflect firm level inefficiencies in

searching for new relationships given the presence of informational barriers.
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A Appendix

A.1 Customer Acquisition Process Independence

The starting point of the derivation is the customer acquisition equation:

fi,t+1(c)− fi,t(c) = γmK · g(cd, c) +
γmN

m

∑
cd∈C

fi,t(cd) · g(cd, c) (A.1.1)

To see that the results do not depend on the location matching probability function g(., .),

consider adding up both the left-hand side and the right-hand side of Equation (A.1.1) across

the location set C. First, consider the left-hand side:

∑
c∈C

[
fi,t+1(c)− fi,t(c)

]
=
∑
c∈C

[
fi,t+1(c)

]
−
∑
c∈C

[
fi,t(c)

]
= di(t+ 1)− di(t) (A.1.2)

Hence, the left-hand side becomes the change in total number of customers over time.

Next, consider the first term of the right-hand side. Remember that g(c0, c) is a distribution

function. Furthermore, if we fix location c0, then sum of g(c0, c) of all possible values of

c ∈ C is equal to 1. This implies:

∑
c∈C

γmK · g(c0, c) = γmK

∑
c∈C

g(c0, c) = γmK (A.1.3)

The next summation term requires more attention. Note that the expression is:

∑
c∈C

[γmN

m

∑
cd∈C

fi,t(cd) · g(cd, c)
]

=
γmN

m

∑
c∈C

∑
cd∈C

[
fi,t(cd) · g(cd, c)

]
(A.1.4)

When adding the first sum with respect to cd, both fi,t(.) and g(., .) are varying, which

does not directly converge to a useful result. On the other hand, given that both summations

are discrete, but infinite (C = Z), and that all the components of the sum are always greater

than zero, but finite, we can reverse the order of summation. In which case, when c is varied,

but cd is kept fixed, the term g(cd, c) reduces to 1, due to the same probability distribution

feature. This leads to:

γmN

m

∑
cd∈C

∑
c∈C

[
fi,t(cd) · g(cd, c)

]
=
γmN

m

∑
cd∈C

fi,t(cd) =
γmN

m
· di(t) (A.1.5)

The second step of the summation directly follows from the definition in Equation (3.2.1).

Combining Equations (A.1.2), (A.1.3), and (A.1.5) we get:

di(t+ 1)− di(t) = γmK + di(t) ·
γmN

m
(A.1.6)

As we can see from Equation (A.1.6), the total number of customers that a firm has is

independent from location matching probability function g(., .).
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A.2 Solution to Customer Acquisition Difference Equation

Equation (3.2.5) is a linear first-order autonomous difference equation, with initial condition

di(t0) = 0:

di(t+ 1)− di(t) = γmK + di(t) ·
γmN

m
(A.2.1)

First, we find the steady-state value (d̄i) by setting di(t+ 1) = di(t):

0 = γmK + d̄i
γmN

m
(A.2.2)

d̄i = −mmK

mN
(A.2.3)

(A.2.4)

To simplify notation we define r = mK
mN

. This can also be shown to imply: m
mN

=
mN+mK
mN

= 1 + r. This leads to the steady-state solution:

d̄i = −rm (A.2.5)

Next, we solve for the general form (d̃i) by setting all arguments not relating to di to

zero:

di(t+ 1)− di(t) = di(t)
γmN

m
(A.2.6)

di(t+ 1) = di(t)

[
1 +

γmN

m

]
(A.2.7)

d̃i = C ·
[
1 +

γmN

m

]t
(A.2.8)

d̃i = C ·
[
1 +

γ

1 + r

]t
(A.2.9)

Combining steady-state and general solutions (di = d̄i + d̃i) results in:

di(t) = C ·
[
1 +

γ

1 + r

]t
− rm (A.2.10)

Using the initial condition, which states that di(t0) = 0, we can find the constant C:

0 = C ·
[
1 +

γ

1 + r

]t0
− rm (A.2.11)

C =
rm[

1 + γ
1+r

]t0 (A.2.12)
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Using the solution of C, the final solution of the difference equation takes the form:

di(t) =
rm[

1 + γ
1+r

]t0 [1 +
γ

1 + r

]t
− rm (A.2.13)

di(t) = rm

[(
1 +

γ

1 + r

)t−t0
− 1

]
(A.2.14)

A.3 Analytical Features of Firm Distribution

Re-arranging Equation (3.3.11) for the counter-cumulative distribution and applying the

logarithmic function to both sides results in:

log[1− Ft(d)] = log

[( rm

d+ rm

)log(1+γ)·( log(1+ γ
1+r

)
)−1]

(A.3.1)

=
log(1 + γ)

log(1 + γ
1+r )

· log

[
rm

d+ rm

]
(A.3.2)

=
log(1 + γ)

log(1 + γ
1+r )

·
[

log(rm)− log(d+ rm)

]
(A.3.3)

Define Zt(d) = log[1 − Ft(d)]. Next, focus on how Zt(d) changes with respect to log(d).

This can be obtained by applying the chain rule:

∂Zt(d)

∂ log(d)
=

∂Zt(d)

∂ log(d)

∂d

∂d
=
∂Zt(d)

∂d

(
∂ log(d)

∂d

)−1
=
∂Zt(d)

∂d
· d (A.3.4)

Hence the derivative is equal to:

∂Zt(d)

∂ log(d)
= − log(1 + γ)

log(1 + γ
1+r )

· 1

d+ rm
· d (A.3.5)

The first things that can be observed is what happens when d becomes large (d → ∞).

Since lim
d→∞

d
d+rm = 1 the Equation (A.3.5) becomes a constant, and the distribution in the

log-log case is approximately linear when d is large (right-tail).

Next we can focus on what happens when d is small (left-tail). However, since lim
d→0

d
d+rm =

0 to obtain a descriptive property we focus on the concavity of the left-tail. In particular,

since the functional form in Equation (A.3.3) of the distribution is differentiable for d > rm,

we can test the concavity of the function by second-order partial derivative. First denote

the result of Equation (A.3.5) as Z ′t(d). Then we can use the previous chain rule to get the

result:
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∂Z ′t(d)

∂ log(d)
=
∂Z ′t(d)

∂d
· d (A.3.6)

∂Z ′t(d)

∂ log(d)
= − log(1 + γ)

log(1 + γ
1+r )

· (d+ rm− d)

(d+ rm)2
· d (A.3.7)

= − log(1 + γ)

log(1 + γ
1+r )

· rm · d
(d+ rm)2

< 0 (A.3.8)

Hence the distribution is concave in the left-tail when d is small.

A.4 Solution for Difference Equation of f̂t(ω)

This part covers the solution of the difference equation of Fourier transformed variable f̂t(ω):

f̂t(ω) = rm ·
[(

1 +
γĝ(ω)

1 + r

)t−t0 − 1

]
(A.4.1)

First, solving for steady-state by setting f̂t(ω) = f̂t+1(ω) we get:

0 = γmK · ĝ(ω) +
γmN

m
f̂t(ω) · ĝ(ω) (A.4.2)

f̂t(ω) = −rm (A.4.3)

Next, solving for general form by setting all components not related to f̂t(ω) to zero:

f̂t+1(ω)− f̂t(ω) =
γmN

m
f̂t(ω) · ĝ(ω) (A.4.4)

f̂t+1(ω) = f̂t(ω)

[
1 +

γmN

m
· ĝ(ω)

]
(A.4.5)

f̂t(ω) = C

[
1 +

γmN

m
· ĝ(ω)

]
(A.4.6)

f̂t(ω) = C ·
[
1 +

γĝ(ω)

1 + r

]t
(A.4.7)

Combining Equations (A.4.3) and (A.4.7) the solution leads to:

f̂t(ω) = −rm+ C ·
[
1 +

γĝ(ω)

1 + r

]t
(A.4.8)

Since f̂t=t0 = 0, i.e. number of customers in a specific location when a firm is born is

zero, we get:
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0 = −rm+ C ·
[
1 +

γĝ(ω)

1 + r

]t0
(A.4.9)

C =
rm[

1 + γĝ(ω)
1+r

]t0 (A.4.10)

Using the combined expression the final solution is:

f̂t(ω) = rm ·
[
1 +

γĝ(ω)

1 + r

]t−t0
− rm (A.4.11)

f̂t(ω) = rm ·
[(

1 +
γĝ(ω)

1 + r

)t−t0 − 1

]
(A.4.12)

A.5 Solution For Average Distance of Customers

First we find the first and second derivatives of the Fourier transformed variable ĝt:

ĝt
′(ω) =

γĝ′(ω)

1 + r
(t− t0) · (1 +

γĝ(ω)

1 + r
)t−t0−1 ·

[
(1 +

γ

1 + r
)t−t0 − 1

]−1
(A.5.1)

ĝt
′′(ω) =

(t− t0)γĝ′′(ω)

1 + r

(
1 +

γĝ(ω)

1 + r

)t−t0−1 +
(γĝ′(ω)

1 + r

)2 · (t− t0) · (t− t0 − 1)[
1 +

γĝ(ω)

1 + r

]t−t0−2 · [(1 +
γ

1 + r
)t−t0 − 1

]−1
(A.5.2)

=

[
ĝ′′(ω)

(
1 +

γĝ(ω)

1 + r

)t−t0−1 +
(t− t0)γ

1 + r
· (ĝ′(ω))2 · (t− t0 − 2) ·

(
1 +

γĝ(ω)

1 + r

)t−t0−2]
[
(1 +

γ

1 + r
)t−t0 − 1

]−1 · (t− t0)γ
1 + r

(A.5.3)

Next, note that since distance from where the firm is located is symmetric around zero,

the first moment is equal to zero: ĝt
′(0) = 0. Also note that ĝ(0) = 1, since the Fourier

transformation is applied to a probability density function. Using previous definition of ∆t

as the average squared distance of a firm at time t that is of age (t− t0). This would be the

second moment of Ct, which corresponds to:

∆t ≡
∑
c∈C

c2gt(|c|) = E[C2
t ] = ĝt

′′(0) (A.5.4)

= ĝ′′(0) · (t− t0)γ
1 + r

·
(
1 +

γĝ(0)

1 + r

)t−t0−1 · [(1 +
γ

1 + r
)t−t0 − 1

]−1
(A.5.5)

=
[∑
c∈C

c2g(|c|)
]
· (t− t0)γ

1 + r
·
(

1 +
γ

1 + r

)t−t0−1
·
[
(1 +

γ

1 + r
)t−t0 − 1

]−1
(A.5.6)

An important result that can be obtained is how the average squared distance changes

based on the number of customers d. To obtain this, we need to replace all terms containing

(t− t0) with terms that depend on d. To do this, we can use previously obtained results:
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(t− t0) = ln
(d+ rm

rm

)
·
[

ln
(
1 +

γ

1 + r

)]−1
(A.5.7)

(
1 +

γ

1 + r

)t−t0 =
d+ rm

rm
(A.5.8)

(
1 +

γ

1 + r

)t−t0 =
d+ rm

rm
⇒ (A.5.9)(1 + r + γ

1 + r

)t−t0−1 =
d+ rm

rm
· 1 + r

1 + r + γ
(A.5.10)

Applying these expressions to Equation (A.5.6), we get moments with respect to number

of customers ∆d:

∆d =
[∑
c∈C

c2g(|c|)
]
· γ

1 + r
· ln
(d+ rm

rm

)
·
(

ln
(
1 +

γ

1 + r

))−1
· (A.5.11)

d+ rm

rm
· 1 + r

1 + r + γ
·
[
d+ rm

rm
− 1

]−1
(A.5.12)

=
[∑
c∈C

c2g(|c|)
]
· γ

1 + r + γ
·
[

ln
(
1 +

γ

1 + r

)]−1
· ln
(d+ rm

rm

)
· d+ rm

rm
· rm
d

(A.5.13)

=
[∑
c∈C

c2g(|c|)
]
· γ

1 + r + γ
·
[

ln
(
1 +

γ

1 + r

)]−1
· ln
(
1 +

d

rm

)
·
(

1 +
rm

d

)
(A.5.14)

Since the interest of this study is how ∆d, the average squared distance, changes as

we increase number of customers d we can combine all components not containing d to a

constant:

∆d = A · ln
(
1 +

d

rm

)
·
(

1 +
rm

d

)
(A.5.15)

A =
[∑
c∈C

c2g(|c|)
]
· γ

1 + r + γ
·
[

ln
(
1 +

γ

1 + r

)]−1
(A.5.16)

A.6 Sectoral Likelihood of Adoption

To derive results regarding likelihood of sectoral linkage formation, consider the probability

that a firm located in c0, classified into sector sjwould adopt firm i as an input. Note that

since essential inputs are used for classification into sectors, this can only happen via network

search. Hence, this event can occur only if a new firm draws essential inputs, that define

sector sj and from that neighbourhood it chooses firm i. The likelihood of this occurring

can be expressed as the number of firms that define sector sj , that use i (isj (c)), divided by

the total neighbourhood of varieties that define sector sj : x ·m. Since in expectation the

new firm will use ksj inputs of the sector in which it is defined, it will have ksj draws to use
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i as an input. Furthermore, this also needs to be accounted by the probability of matching

in location c, starting the search from c0 (g(c0, c)). The remaining possibility of adoption

would come from previously defined network search process (mK − ksj )
fi,t(c)
nt

. Aggregating

over all locations leads to:

∑
c∈C

g(c0, c) ·
(
ksj

isj (c)

x ·m
+ (mK − ksj )

fi,t(c)

nt

)
(A.6.1)

In expectation we have that values for ksj , x, mK , nt and fi,t(c) are the same for all

sectors sj . Hence, the expression can be rearranged to:

∑
c∈C

ksj
x ·m

· g(c0, c) · isj (c) +
∑
c∈C

g(c0, c)(mK − ksj )
fi,t(c)

nt
= (A.6.2)

ksj
x ·m

∑
c∈C

g(c0, c) · isj (c) +
mK − ksj

nt

∑
c∈C

g(c0, c) · fi,t(c) (A.6.3)

Since the second term does not depend on sj , we can proceed by focusing on the first

term. The above expression relates to a single firm, hence we can extend this to sectors by

taking sector si in country ci and adding up across all firm that define it.

∑
i∈si

ksj
x ·m

∑
c∈C

g(c0, c) · isj (c) =
ksj
x ·m

∑
i∈si

∑
c∈C

g(c0, c) · isj (c) (A.6.4)

As before, given that summation terms are all greater than zero, but finite, we can reverse

the sums to get:

ksj
x ·m

∑
c∈C

∑
i∈si

g(c0, c) · isj (c) =
ksj
x ·m

∑
c∈C

g(c0, c)
∑
i∈si

isj (c) =
ksj
x ·m

∑
c∈C

g(c0, c) · ηsi,sj (c)

(A.6.5)

If we take two sectors sj and s′j , located respectively in locations cj and c′j , the only

differences from Equation (A.6.5) would come from the
∑

c∈C g(c0, c) · ηsi,sj (c) term. Specif-

ically, we say that sj , located in cj is more likely to adopt sector si located in ci as input

than s′j located in c′j if:

∑
c∈C

g(cj , c) · ηsi,sj (c) >
∑
c∈C

g(c′j , c) · ηsi,s′j (c) (A.6.6)
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A.7 List of Sample Countries and Industries

ID Industry

1 Crop and animal production, hunting and related service activities
2 Forestry and logging
3 Fishing and aquaculture
4 Mining and quarrying
5 Manufacture of food products, beverages and tobacco products
6 Manufacture of textiles, wearing apparel and leather products
7 Manufacture of products of wood and cork
8 Manufacture of paper and paper products
9 Printing and reproduction of recorded media
10 Manufacture of coke and refined petroleum products
11 Manufacture of chemicals and chemical products
12 Manufacture of basic pharmaceutical products and preparations
13 Manufacture of rubber and plastic products
14 Manufacture of other non-metallic mineral products
15 Manufacture of basic metals
16 Manufacture of fabricated metal products
17 Manufacture of computer, electronic and optical products
18 Manufacture of electrical equipment
19 Manufacture of machinery and equipment n.e.c.
20 Manufacture of motor vehicles, trailers and semi-trailers
21 Manufacture of other transport equipment
22 Manufacture of furniture; other manufacturing
23 Repair and installation of machinery and equipment
24 Electricity, gas, steam and air conditioning supply
25 Water collection, treatment and supply
26 Waste collection, treatment and disposal activities; materials recovery
27 Construction
28 Wholesale and retail trade and repair of motor vehicles and motorcycles
29 Wholesale trade, except of motor vehicles and motorcycles
30 Retail trade, except of motor vehicles and motorcycles
31 Land transport and transport via pipelines
32 Water transport
33 Air transport
34 Warehousing and support activities for transportation
35 Postal and courier activities
36 Accommodation and food service activities
37 Publishing activities
38 Programming and broadcasting activities
39 Telecommunications
40 Computer programming, consultancy and related activities
41 Financial service activities, except insurance and pension funding
42 Insurance, reinsurance and pension funding
43 Activities auxiliary to financial services and insurance activities
44 Real estate activities
45 Legal, consultancy and accounting activities
46 Architectural and engineering activities; technical testing and analysis
47 Scientific research and development
48 Advertising and market research
49 Other professional, scientific and technical activities; veterinary activities
50 Administrative and support service activities
51 Public administration and defence; compulsory social security
52 Education
53 Human health and social work activities
54 Other service activities

Table A.1: Sample Industries. List of industries that were chosen for empirical investiga-
tion of sectoral network formation in WIOD.
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ISO-3 Country

AUS Australia
AUT Austria
BEL Belgium
BGR Bulgaria
BRA Brazil
CAN Canada
CHE Switzerland
CHN China
CYP Cyprus
CZE Czech Republic
DEU Germany
DNK Denmark
ESP Spain
EST Estonia
FIN Finland
FRA France
GBR United Kingdom
GRC Greece
HRV Croatia
HUN Hungary
IDN Indonesia

ISO-3 Country

IRL Ireland
ITA Italy
JPN Japan
KOR South Korea
LTU Lithuania
LUX Luxembourg
LVA Latvia
MEX Mexico
MLT Malta
NLD Netherlands
NOR Norway
POL Poland
PRT Portugal
ROU Romania
RUS Russia
SVK Slovakia
SVN Slovenia
SWE Sweden
TUR Turkey
TWN Taiwan
USA United States of America

Table A.2: Sample Countries. List of countries that were chosen for empirical investigation
of sectoral network formation in WIOD. ISO-3 codes are abbreviations used in plotting the
complete network in Figure 4.1
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A.8 Summary Statistics of Explanatory Variables

Mean S.D. Min. 25% 50% 75% Max.

net dists1,s2 5.35 1.92 2.00 4.00 5.00 6.00 15.00
distc1,c2 5.03 4.46 0.00 1.19 2.64 8.71 18.23
out degrees1 19.78 17.82 1.00 6.00 15.00 28.00 213.00
isolation 4.74 2.57 3.08 3.23 3.40 4.29 13.92
log(EMPs1) 4.40 1.77 0.00 3.09 4.33 5.58 11.36
log(V As1/EMPs1) 0.87 2.17 -4.44 -0.57 0.13 1.78 10.74
log(EMPs2) 3.87 1.97 0.00 2.48 3.81 5.21 11.36
log(V As2/EMPs2) 0.48 2.19 -4.44 -0.87 -0.13 1.48 10.74

Table A.3: Summary Statistics of Explanatory Variables. Different moments of vari-
ables used for explaining the likelihood of input adoption. Note that distc1,c2 and isolation
are measured in thousands of kilometres. Estimated coefficients for isolation and logged
value of employment and labour productivity are not reported, but are part of sets of con-
trols.
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A.9 Linear Probability Model Estimation Results

(1) (2) (3) (4)

P (Adopts1,s2 |X) βOLS β̂ βOLS β̂ βOLS β̂ βOLS β̂

net dists1,s2
-0.0028∗∗∗ -0.0857 -0.0009∗∗∗ -0.0267 -0.0009∗∗∗ -0.0291 -0.0009∗∗∗ -0.0269
(0.0000) (0.0000) (0.0000) (0.0000)

distc1,c2
0.0002∗∗∗ 0.0121 -0.0002∗∗∗ -0.0130 -0.0002∗∗∗ -0.0127
(0.0000) (0.0000) (0.0001)

dist2c1,c2
0.0000∗∗∗ 0.0129 0.0000∗∗∗ 0.0254 0.0000∗∗∗ 0.0243
(0.0000) (0.0000) (0.0000)

out degrees1× -0.0000∗∗∗ -0.0586 -0.0000∗∗∗ -0.0610 -0.0000∗∗∗ -0.0598
distc1,c2 (0.0000) (0.0000) (0.0000)

out degrees1
0.0003∗∗∗ 0.0726 0.0003∗∗∗ 0.0726 0.0002∗∗∗ 0.0692
(0.0000) (0.0000) (0.0000)

avg dists1
-0.0000∗∗∗ -0.0026 -0.0000∗∗∗ -0.0055 -0.0000∗∗∗ -0.0028
(0.0000) (0.0000) (0.0000)

Dc1=c2
0.0875∗∗∗ 0.1960 0.0870∗∗∗ 0.1948 0.0862∗∗∗ 0.1989
(0.0011) (0.0011) (0.0011)

α
0.0188∗∗∗ 0.0030∗∗∗ 0.0032∗∗∗ 0.0029∗∗

(0.0002) (0.0002) (0.0006) (0.0009)

Fixed Effects No No Yes Yes
Additional Controls No No No Yes

Adoption Events 14,493 14,493 14,493 13,837
Observations 3,720,405 3,720,405 3,720,405 3,464,643
R2 0.007 0.044 0.048 0.049

Table A.4: LPM Estimation. Column (1) reports estimates of a model using only network proximity to predict adoption. Columns (2) report
results using all previously described explanatory variables, except for controls. Column (3) reports results with all explanatory variables, fixed
effect and isolation controls, whereas (4) reports results with additional employment and productivity controls. Column βlogit reports OLS
coefficients. Terms in the brackets are robust standard errors. Column β̂ report fully standardised coefficients. Symbols * indicate statistical
significance: * p < 0.05, ** p < 0.01, *** p < 0.001.
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