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1 Introduction

Each year, the Stockholm School of Economics has a fixed number of exchange

seats to be allocated among its Master students. Students willing to partici-

pate in the program are required to apply, submitting a motivation letter and

a list of preferences. The school elaborates a priority ranking of students and

then, based on this ranking and the students’ preferences, some students are

offered a seat and some are not. This apparently simple procedure, carried on

by most universities in the world, is in reality a delicate optimization problem,

with several stakeholders involved. Students constitute the first category. They

are ultimately going to accept or reject the seats proposed to them and, in case

they accept, they are going to commit a semester of their student life to their

destination university. Second, SSE, which faces a tradeoff over two goals: to

satisfy its students as much as possible, and to select the best possible students

to represent it. Third, partner universities, which might have specific require-

ments.

In this thesis, we will try to answer the following research question:

Is is possible to find implementable improvements on the current system used

by SSE to allocate exchange seats?

We will search potential areas of improvement by analyzing the system in use.

When making our suggestions, we will try to be as little invasive as possible.

As specified in the research question, implementability will be key for us. This

will bear consequences, posing several constraints. First, we will not change the

format of the applications required to the students. Second, we will make sure

that the school’s administrative staff will not be required additional work. To

this point, we will also write a software to compute the allocations, effectively

relieving the staff from the burden of computation. Overall, we believe that it

is possible to improve the system for the school, making sure that it reaches

its goals effectively, and for the students, allowing them to report their true

preferences more freely and obtain better allocations.

The theoretical part of this thesis makes use of concepts from matching theory,

which belongs to the field of mechanism and market design. Mechanism and

market design is a field of economics that takes an engineering approach to the

design of mechanisms and incentives in strategic settings where the players act
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rationally. This approach consists of formulating a theoretical problem, which

we will call the student exchange problem, to model the analyzed situation.

Within this framework, we will define some desirable theoretical properties,

and then check if the current system possesses them. Later, we will propose two

modifications that would help the current mechanism satisfy such properties.

Finally, we will present a more ambitious and articulated proposal.

In practice, matching theory investigates how to match agents from two sides

of a nonmonetary market, based on each agent’s preference rankings over the

agents on the other side of the market. Here is a practical example, in which

students represent one side of the market and schools represent the other. There

are two students (i1, i2) and two destinations (s1, s2), each with one available

seat. Simply put, a matching assigns students to schools in an operable way:

a student is assigned to maximum one seat, no school is assigned more than

its available seats and students can be assigned to no school. For example, a

possible matching is ((i1 s2), (i2 s1)). In the situation considered, there are

seven valid matchings possible. However, two matchings are not necessarily

qualitatively equivalent. For instance, intuitively, a matching in which one or

more seats go unassigned is a waste. Or again, suppose that both students

prefer s1 to s2, and that the schools have a shared priority ranking, in which

i1 has priority over i2. Then, a matching which assigns i1 to s1 will be fair

given the priority ranking, and consequently more desirable than a matching

that assigns i2 to s1. In this example, we have used the words waste and fair

according to their conventional meaning, in order to convey the intuition. Later,

(non)wastefulness and fairness will be defined formally.

Since it is not possible to model all aspects of the problem theoretically, our

mechanism design approach will be complemented by practical considerations.

For what concerns the rankingformation procedure, for example, we will analyze

data from the past year to show how effective tiebreaking criteria are, and how

well they serve the school’s purposes.

The remainder of this thesis is organized as follows. In the next section, we

will review the literature concerning similar applications of matching theory. In

Section 3, we will introduce our model. In Section 4, we will analyze the system

currently in use. In Section 5, we will make our proposals. In Section 6, we will

conclude.
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2 Literature review

This work, finalized to a practical implementation, builds on wellestablished

theoretical foundations in a delimited field. For this reason, we drew deeply

from the three categories of matching problems defined in the following para-

graphs. Due to the specificity of the field, all our references come from it.

The student exchange problem defined and analyzed in this thesis is closely re-

lated to three other categories of matching problems present in the literature.

The first one is the college admission problem, defined by David Gale and Lloyd

Shapley (Gale & Shapley, 1962). In it, each college is an agent, with a strict

preference list over students. This problem has received a lot of attention in

the literature. For example, Roth & Sotomayor, 1989, Gale & Sotomayor, 1985

and Dubins & Freedman, 1981 expand Gale and Shapley’s results theoretically.

Moreover, Gale and Shapley’s findings have been successfully applied to a num-

ber of entry level job markets, such as that for medical interns in the United

States. Roth’s work (1984, 1991) is central in such research. Another significant

application is that to kidney exchange (Roth, Sönmez, & Ünver, 2004; Roth,

Sönmez, & Ünver, 2005)

The second related framework is the school choice problem (Abdulkadiroğlu

& Sönmez, 2003), which differs from the college admission problem in that it

models the schools’ seats as mere objects to be consumed by students. The

authors applied their framework to the public school districts in New York

City (Abdulkadiroğlu, Pathak, & Roth, 2005) and in Boston (Abdulkadiroğlu,

Pathak, Roth, & Sönmez, 2005).

The third category is that of student placement problems, introduced by Balinski

& Sönmez (1999). This model is similar to that of the school choice problem,

but internalizes the formation of the schools’ priority rankings (Gale & Shapley,

1962). Our analysis does take this step into consideration, but separately from

the matching model.

The analysis of SSE’s current matching mechanism draws on the literature on

the specific mechanism, sequential priority (also called serial dictatorship), and

on the topic of truncation. Such mechanism has been most notably analyzed

with regards to housing allocation problems (Abdulkadiroğlu & Sönmez, 1998).
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In Balinski & Sönmez (1999) a variant of the mechanism, multicategorical serial

dictatorship, is analyzed in the student placement problem.

For what concerns truncation, the main contribution comes from Roth & Roth-

blum (1999), in which the authors prove that in a lowinformation environment,

it is never profitable to state preferences that reverse the true priority order-

ing. The subject of constrained school choice has also been openly analyzed by

Haeringer & Klijn (2009), with an equilibrium approach.

Finally, our last proposal aims to enable students to reveal their preferences

openly and, separately, allows them to signal their preference intensities, via a

motivation letter. A similar mechanism was proposed in Abdulkadiroğlu, Che,

& Yasuda (2015). In this paper’s proposed mechanism, students simply named

one school; such signal will give them an advantage in the final tiebreaking pro-

cess, so to avoid randomness at that step. Conversely, in our solution the signal

comes into play before the final tiebreaking. In fact, we do not even consider it

part of the matching mechanism, but rather as part of the ranking formation

procedure.

Along with this procedure, we propose the adoption of the deferred acceptance

algorithm, proposed in (Gale & Shapley, 1962). When selecting the mechanism

to propose, one faces a tradeoff between stability, efficiency and strategyproof-

ness. This tradeoff has been researched deeply, as in Abdulkadiroğlu, Pathak,

& Roth (2009), or in the discussion in Balinski & Sönmez (1999).

5



3 The model

In this section, we will introduce the theoretical framework that will be applied

to answer our research question: the student exchange model. First, we will

present the environment: students, exchange destination, their attributes and

preference relations. Then, we will define formally what we mean by match-

ing and mechanism in this context. Finally, we will define some properties of

matchings and mechanisms.

3.1 Environment

A student exchange problem consists of:

1. A set of students I = {i1, i2, ..., in}.

2. A set of exchange partner universities S = {s1, s2, ..., sm}. We will indicate

the outside option being assigned no destination as s0. For convenience,

we also define Ŝ = S ∪ {s0}, the union of S and the outside option.

3. A capacity vector q = (qs0 , qs1 , qs2 , ..., qsm). Each qs is a natural number

indicating how many students can be accepted by destination s, how many

available seats s has: qs ∈ N. For the outside option, qs0 = |I| because

virtually every student in I could be assigned to it.

4. A list of strict (not allowing ties) student rankings over exchange destina-

tions P = (Pi1 , Pi2 , ..., Pin). Each Pi is a complete, transitive and acyclical

binary relation over Ŝ × Ŝ.

5. A list of strict (not allowing ties) priority rankings over students, one for

each partner university: �= (�s1 ,�s2 , ...,�sm). Each �i is a complete,

transitive and acyclical binary relation over I × I.

Both n and m are natural numbers and there is no specific relation among them.

We will use Ri for students and �s for schools to indicate a weak preference

(least as good). We will use Pi for students and �s for schools to indicate a

strict preference. To indicate the set of rankings by all students except student i

( i.e. P \Pi), we will use the notation P−i. Here follows an example to introduce

the usage of such notation.
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Example 1. Student i has a weak preference for s1 over s2: s1Ris2.

Student j has a strict preference for s1 over s2: s1Pjs2.

School s1 has a weak preference for student i over student j: i �s1 j.

School s2 has a strict preference for student j over student i: j �s2 i.

A tuple of (I, S, q, P,�) is a student exchange problem. In our analysis, I, S, q

and � are fixed; thus, each problem corresponds to a profile of preferences P .

3.2 Matchings, mechanisms and their properties

The concept of matching is central for our analysis. In essence, a matching is an

allocation of resources, such that no more resources are allocated than there are

available, and that no agent is allocated more resources than she can actually

consume. In most applied cases, including the one that we analyze, a given

procedure is used to create a matching: such procedure is a mechanism.

Formally, a matching µ is a function that maps I to Ŝ (which includes s0), so

that each student is assigned at most one partner university and each school is

assigned a number of students less than or equal to its capacity. In mathemat-

ical notation: µ : I → Ŝ such that |µ−1| ≤ qs,∀s ∈ Ŝ .

A mechanism ϕ is a function that selects a matching for each student exchange

problem. Therefore, it maps the set of all possible student exchange problems

to the set of all possible matchings. The space of all possible student exchange

problems equals the set of all possible preference profiles, which we will indi-

cate with P. We will indicate the set of all possible µ with M . In notation,

ϕ : P →M : a mechanism is a mapping from P to M .

To complete the model, we define five fundamental properties of matchings and

mechanisms.

1. A matching µ is individually rational if µ(i)Pis0, for all i in I.

The condition for individual rationality is that no student is matched to a des-

tination to which she prefers being unmatched. In other words, that at an

individual level it is rational to accept the matching.
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2. A matching µ is nonwasteful if, for all s ∈ S such that sPiµ(i) for some

i, it holds that |µ−1(s)| = qs.

Nonwastefulness requires that no seat preferred by at least one student to her

current matching is unassigned. If a student prefers a destination s to the one

she is matched with, s needs to have no free seats. We define wasteful a

matching that does not satisfy nonwastefulness.

3. A matching µ is fair if there is no pair (i, s) ∈ I × S such that: sPiµ(i)

and i �s j for some j ∈ µ−1(s).

Fairness requires that if two or more students compete for one seat, that seat is

assigned to the student with the higher priority. If a student i prefers a school s

to her current matching, it must be that all students assigned to s have higher

priority than i. If there is a student j assigned to s despite having lower priority

than i, we say there is justified envy (of student i towards student j).

Properties 1 to 3 allow us to define stability.

4. A matching µ is stable if and only if it is individually rational, nonwasteful

and fair.

Stability of a matching is a fundamental concept in the literature, because it

reflects the likelihood for the matching to be successful in practice. It has been

proved (Roth & Rothblum, 1999; Alcalde, 1996) that mechanisms implementing

stable matchings succeed much more often than those that do not. RomeroMe-

dina (1998) presents a similar finding applied to college admission.

In the marriage model (Gale and Shapley, 1962), stability ensures that no coali-

tion of agents with the power of altering the matching has an incentive to do

so. In our context, the meaning is similar, although less direct. In our context,

SSE overlooks the process, as destinations are not active agents (unlike individ-

uals in the marriage model, or colleges in college admission models). In other

words, one side of the market is controlled by a social planner, and it is this

social planner alone who has the possibility to alter the matching (with the only

exception of matchings that do not satisfy individual rationality, in which the

student simply drops out). Still, the social planner has an incentive to propose

stable matchings, which avoid wastes and eliminate justified envy.

The last property we define is Pareto efficiency:
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5. A matching µ Pareto dominates another matching µ′ if: µRiµ
′ for all i ∈ I

and µPjµ
′ for some j ∈ I. A matching µ is Pareto efficient if it is not

Pareto dominated by any other matching.

In a Student Exchange Problem, Pareto efficiency implies individual rationality

and non wastefulness. However, the converse is not true.

Lemma 1. Any Pareto efficient matching is individually rational and non-

wasteful.

Proof. Consider a matching µ that is not individually rational because a student

i does not find µ(i) acceptable. Let us call µ′ the allocation in which i is

unmatched and all other students in I have the same matching as in µ. Trivially,

those students will have the same utility in the two matchings. Student i,

however, will be better off in µ′; hence, µ′ dominates µ, that cannot be Pareto

efficient. Similarly, consider a matching µ which is wasteful because student i

prefers the unassigned seat s to µ(i). Let us call µ′ the allocation in which i is

assigned s and all other agents keep their matchings: µ′ dominates µ. Those

examples show how a violation of individual rationality or non wastefulness

entails a violation of Pareto efficiency. This happens because if nonwastefulness

is violated, a student can be made better off by assigning her a previously

unassigned seat. All other students keep their matchings, so they will not be

worse off: the wasteful matching is Pareto dominated by its nonwasteful version

and therefore it is not efficient.

Our definition of Pareto efficiency considers only the students’ utility, an imple-

mentation which is generally associated with the other side of the market (in

our case, exchange seats) being objects to consume. This raises a question: why

worrying about something else than efficiency? In fact, since efficiency implies

individual rationality and non wastefulness, this question corresponds to: why

worrying about fairness? Should fairness be discarded, in case it contrasts with

efficiency? Our answer is that fairness has indeed a place in the model, for

two reasons. The first reason is that, as argued by Abdulkadiroğlu and Sönmez

(2003), fairness eliminates justified envy. Justified envy is not captured by ef-

ficiency because it is related to students whose assigned destination does not

change when switching from a matching µ to the matching µ′ which Pareto

dominates it, but it does affect students’ perception of their allocated seats.

Therefore, it is desirable to eliminate it, although it does not affect utility as

we define it. The second reason is that SSE has an interest in choosing the
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best possible representation for the school, and the ranking reflects this. So, an

unfair assignment is a loss from this point of view.

Individual rationality, non wastefulness and fairness are also properties of mech-

anisms; so is stability.

6. A mechanism ϕ is individually rational if, for any P ∈P, it selects an

individually rational allocation µ ∈M .

7. A mechanism ϕ is nonwasteful if, for any P ∈P, it selects a non wasteful

allocation µ ∈M .

8. A mechanism ϕ is fair if, for any P ∈P, it selects a fair allocation µ ∈M .

9. A mechanism ϕ is stable if, for any P ∈ P, it selects a stable matching

µ ∈M .

Similarly, we define efficient a mechanism that always selects a Pareto efficient

matching.

10. A mechanism ϕ is efficient if, for any P ∈P, it selects a Pareto efficient

allocation µ ∈M .

Finally, a mechanism is strategyproof if, under any circumstances, no student

can ever make herself better off by misreporting her true preferences. We will

refer to such behaviour as strategic behavior or as strategizing. Formally:

11. Consider a matching mechanism ϕ. Let ϕi(P ) be i’s matching in the al-

location induced by preference profile P . ϕ is strategyproof if for all Pi ∈
Pi, for all P−i ∈P−i and for all i ∈ I, it holds that ϕi(Pi, P−i)Riϕi(P

′
i , P−i).

Strategyproofness is a desirable property for three reasons. The first one is

that its absence introduces an element of randomness, since players are forced

to strategize based on incomplete information. Secondly, it could bring about

potential unfairness, because the ability to play strategically becomes a factor.

This has been empirically observed in several cases. One of them is the well-

known case of the Boston school system, in which organized groups of parents

suggested strategies, giving an advantage to their members (Pathak & Sönmez,

2008). The third reason is that SSE might be interested in knowing its students’

true preferences, in order to collect reliable data and possibly expand or modify

the program in the future.
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4 The system in use at the Stockholm School of

Economics

This section will be dedicated to describing and analyzing the system used by

the Stockholm School of Economics to allocate seats for the student exchange

program. Such system does not correspond to a mechanism as we defined it

before, because it does not just generate an allocation. Rather, it has a first

part whose purpose is to generate a priority ranking of students. We will call this

part priority formation procedure. The priority formation procedure takes some

attributes of students and creates a priority ranking � of students according

to them. The second part is the proper mechanism: ϕSSE . Such mechanism

selects an allocation for each student exchange problem and �, product of the

ranking formation procedure, is one of its inputs. The other inputs to ϕSSE

are the students’ shortlists of 5 preferences and the schools’ capacities. The

two parts of the system will be described in order: then we will move on to

the analysis. Finally, we will compare ϕSSE to a similar mechanism defined in

the literature (Abdulkadiroğlu & Sönmez, 1998; Svensson, 1999), the sequential

priority mechanism 1 (ϕ�).

4.1 Priority formation procedure

Students apply by submitting a motivation letter, along with their preference

list which is not considered at this step. Additionally, the school observes the

students’ study pace and grades. First, motivation letters are graded on a scale

from 1 to 5. The priority ranking is then formed by taking into account study

pace (as number of courses passed, 0 to 4), motivation letter’s score (1 to 5) and

grades (which can give 0 to 3 bonus points). We will refer to these as raw points.

Let us clarify straight away a possible source of confusion: the students’ study

pace score and motivation letter score are used twice. The first time, they

are used in steps 3 and 4 respectively. Then, they are used a second time in

step 5, jointly and along with bonus points given by grades. Here is a formal

description of the algorithm used to generate the priority ordering of students �:

1Also called serial dictatorship mechanism

11



Step 0: Each student submits an application: a motivation letter and an

ordered list of 5 destinations (his preferences). His study pace (number of

courses passed) and GRE/GMAT/GPA are observable by the school.

Step 1: Each student’s motivation letter is graded, from 1 to 5.

Step 2 : Each student i’s score, ξi, is initialized to a value of 0.

Step 3 : For each student i, 50 points are added to ξi if she passed 3 or 4

courses, 0 if she passed 2. If i passed less than 2 courses, she is not eligible for

exchange.

Step 4 : For each student i, 10 to 40 points are added to ξi, according to the

student’s motivation letter score, as follows: - 40 points if the motivation letter

was awarded 4 to 5 points. - 30 points if the motivation letter was awarded 3

points - 20 points if the motivation letter was awarded 2 points - 10 points if

the motivation letter was awarded 1 point.

Step 5 : For each student, the total of raw points is added to the previous

subtotal ξi. These raw points are: number of courses passed, motivation letter

score, and a bonus in case their bachelor’s GPA (for students who did their

bachelor at SSE) or GMAT/GRE score (for students from other universities)

qualifies them as top 25% students. This bonus ranges from 0 to 3 raw points.

In total, 3 to 12 points are added.

Step 6 : A unique priority ranking �s (valid for all s ∈ S) is constructed by

ranking students according to their total score ξ, in descending order. If two

students have the same total score, the tie is broken randomly. Formally, given

any two students i and j ranked in �s, it holds that i �s j if and only if ξi ≥ ξj .

This procedure produces one priority ranking �, which will be valid for all

schools s ∈ S. We call it unique to emphasize this, which is not required by

our model. In fact, as defined in Section 3, the model accounts for a priority

ranking �s for each destination s.

Let us note that at steps 3, 4, 5 and 6 a sequential tiebreaking operation is done.
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At step 3, students are divided in two main tiers. No student from the bottom

tier could ever end up ranked above any student from the top tier, for simple

numerical reasons. Then, step 4 divides in four tiers the two main tiers of step 3.

Step 5 ranks the students within each tier based on their total score. 2 Finally,

step 6 randomly breaks the remaining ties. Here is a visual representation of

the procedure.

3 – 4 passed
courses

+ 50 points

2 passed courses

+ 0 points

4 -5 ML + 40 pts

3 ML + 30 pts

2 ML + 20 pts

1 ML + 10 pts

4 -5 ML + 40 pts

3 ML+ 30 pts

2 ML + 20 pts

1 ML + 10 pts

Each tier is
sorted by each
student’s total
of raw points

Ranking is
formed by 
listing 
students
top down. 
Random 
tie-
breaking is
applied
when
necessary

STEP 3 STEP 5STEP 4 STEP 6

4.1.1 An example

Consider students i1, i2, i3, i4, i5, who have the following raw points.

Student Study pace Motivation Letter GPA/GMAT/GRE
Courses passed score 05 03 bonus points

i1 3 5 1
i2 4 3 3
i3 2 5 1
i4 2 3 0
i5 3 4 0

Step 3 : Students are split into those who have passed 3 or more courses, who

2It is very important to note that step 5 can never subvert the ordering established by the
previous steps. After step 4, we are left with eight tiers; any two of them are separated by at
least 10 points. Now, as the maximum number of points addable in step 5 is 12, one could
think that it is indeed possible for a student to end up above another who is in a superior
tier. But one should remember that there is also a minimum number of addable points, that
is 3. So, the maximum possible difference, 9, is not big enough to subvert the tier hierarchy.
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will end up forming the upper part of the ranking, and those who have passed

2. i1, i2 and i5, having passed 3 or more courses, are assigned 50 points. i3 and

i4’s scores remain 0.

Step 4 : Now, in each of those groups, students are ranked according to their

total score. i1, i5 and i3 whose motivation letter was graded 4 or higher are

assigned 40 points. i2 and i4 are assigned 30 points. Note that the maximum

amount of points receivable at this step is 40, so that it could never overturn

the partial ordering created in the previous one.

Step 5 : For each student, the sum of scores is added to the points received in

the first two steps: 9 for i1, 10 for i2, 8 for i3, 5 for i4 and 7 for i5.

The resulting ranking (total score in parentheses) will be: i1(99), i5(97), i2(90),

i3(48), i4(35). Formally, �= (i1, i5, i2, i3, i4).

4.2 Allocation of seats

This second part has the first as starting point. In the first part, students were

asked to submit a shortlist of 5 schools. We define quota this maximum number

of rankable destinations. In this analysis, we will consider the generic case with

a quota k, as the exact value of k makes no difference. We will call the shortlist

of schools Ai. An untruthful report will be indicated by A′i. By truthful we

mean that Ai reports elements 1 to k of Pi, in the same order.

The algorithm’s functioning is simple: each student starting from the topranked

one in � is simply assigned her most preferred destination among those ranked

in her shortlist. Formally:

Step 0 The unique priority ranking �s is considered, along with each student

i’s shortlist Ai.

Step 1 The topranked student i1 in the ordering �s is assigned her preferred

available seat, according to Ai1 .

Step h The student i ranked hth in the ordering �s is assigned his preferred

available seat, according to Ai. If no seat in Ai is available, the student is

assigned no seat (that is s0).
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Let us note that this mechanism, just as a sequential priority mechanism without

a quota, requires that there is one unique priority ranking for all schools. In

other words, schools are not allowed to have different preferences.

4.3 Properties of the mechanism

We will now analyze ϕSSE using the framework presented in Section 2. Of the

five properties presented, the mechanism satisfies one, individual rationality.

The proof is selfexplanatory.

Proposition 1. The mechanism ϕSSE is individually rational.

Proof. A student can only be assigned to a seat in a university he ranked in Ai.

If a student prefers s0 to a given destination, he never includes that destination

in his list, and hence he is never assigned to it.

On the other hand, ϕSSE lacks all other desirable properties. Here follows

a brief explanation of the intuition. Everything stems from the fact that a

student, having to truncate her preference list, might end up excluding her first

achievable matching. If that seat goes unassigned, there is a waste, and a loss in

efficiency. If it does not go unassigned, but goes to a student with lower priority,

fairness is violated. In any of these cases, our student would have benefited

from including this destination, which is strategic behavior: strategyproofness

is violated. Formal proofs can be found below.

Proposition 2. The mechanism ϕSSE is wasteful.

Proof. Consider a student i and a destination s, which is acceptable to the

student, and namely her sixth favourite option. The student does not report s

in Ai. Now consider matching µ, selected by ϕSSE in which i is assigned s0, and

not all the seats at s are assigned; this is possible since we posed no constraints

on the other agents’ preferences and on i’s position in �. Non wastefulness is

violated because sPiµ(i) and |µ−1(s)| < qs.

Proposition 3. The mechanism ϕSSE is not efficient

Proof. Given that ϕSSE is wasteful, this follows from Lemma 1 in Section 2.

Proposition 4. The mechanism ϕSSE is not fair
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Proof. Consider i, s and µ from the examples above. Now take an agent j that

is ranked below i in �, but ranks s as first choice, and thus reports it in Aj .

Following the same assumptions as above, j will be assigned s, whereas i will be

assigned s0. This represents a violation of fairness, because it holds that i �s j,

s = µ(j) , and sPiµ(i).

Proposition 5. The mechanism ϕSSE is not strategyproof

Proof. Let us take, once again, student i and school s from the examples above.

If i had reported s in his shortlist, it would have been assigned s and would be

better off. In formal terms, there is a A′i s.t. ϕSSE(A′i, P−i)Piϕ
SSE(Ai, P−i).

4.4 Discussion on truncation

So far, we have analyzed the sequential priority mechanism with fixed quotas,

pointing out its limits. However, it is worth noting that such limits are not

inherent to the mechanism itself, but are a consequence of imposing a quota

on the preferences that it is possible for students to list. This imposes a trade-

off between the attractiveness of a destination and the expectation that it is

achievable. If a student fails to strategize effectively, there is a potential waste,

which implies a loss in efficiency. A pure sequential priority mechanism would

indeed be stable, strategyproof, and efficient. Here are all the properties of a

pure sequential priority mechanism without quotas. We will refer to it as ϕ�.

Proposition 6. The mechanism ϕ� is individually rational.

Proof. Similarly to what happens in ϕSSE , in ϕ� a student can only be assigned

to a seat in a university he ranked in Ai. If a student prefers s0 to a given

destination, he never includes that destination in his list, and hence he is never

assigned to it.

Proposition 7. The mechanism ϕ� is nonwasteful.

Proof. Let us suppose that ϕ� selects an allocation for which nonwastefulness

is violated: some student i is not matched to any destination, although school

s, which she finds acceptable, has a free seat. In ϕ�, student i, who ranks k-th

in �, is assigned his topranked available destination at step k. So, if i is not

assigned s, given that s has a free seat, it must be that i has not ranked s. This

contradicts the fact that she finds it acceptable.
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Proposition 8. The mechanism ϕ� is efficient.

Proof. Let us suppose that ϕ� selects an allocation µ that is not Paretoefficient:

µ is Paretodominated by µ′. This means that some student i is better off under

allocation µ′, while all other students are at least as well off. However, if student

i is better off under µ′, it means that she is assigned a destination, which we will

call s, that was not available when she was assigned µ(i) by ϕ�. If s was not

available, it is because it was the best available one for some student j ranked

above i. Student j can either be worse off, which would be a contradiction, or

be better off by being assigned a destination that she prefers to s and that was

unavailable because assigned to a third student: in any case, when the cycle

ends, a contradiction is reached.

Proposition 9. The mechanism ϕ� is fair.

Proof. Suppose that fairness is violated in the allocation selected by ϕ�. Namely,

suppose that there are two students i and j and a school s such that i has higher

priority than j, j is matched to s, i is matched to a destination to which he

strictly prefers s. Since i has higher priority, ϕ� assigns her the highestranked

available choice before j. If s is not available at the step when i was allocated

her matching, it cannot be available later, when j is allocated hers: this is a

contradiction.

Proposition 10. The mechanism ϕ� is strategyproof.

Proof. Each student is assigned her matching at a step independent from what

she reports. At that step, the student is assigned her topranked available op-

tion. A student could misreport her true preferences by omitting one or more

destinations or by changing their ordering. Omitting a destination can never be

profitable. If the student is matched with a betterranked destination, or if the

destination would not be available anyway, it has no consequence. On the other

hand, if the destination would have been the matching, omitting it leads to the

student being assigned a less preferred destination. Changing the ordering of

preferences can only be harmful too. If it affects the allocation, it needs to be

because the student is assigned to a less preferred destination which has been

put before a better one, with a loss in utility.

As we have shown, imposing a quota deprives the sequential priority mech-

anism of four desirable properties. However, this mechanism is not alone. All

the most common ones lose such properties under this condition: an example
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is the deferred acceptance algorithm (Gale & Shapley, 1962). Generally speak-

ing, most mechanisms require to scan the whole list of preferences to guarantee

fairness and nonwastefulness, and consequently efficiency. Also, to reduce a

preference list implies making choices that can affect a player’s final outcome,

at the expenses of strategyproofness.
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5 Alternative mechanisms

In this section, we will present and analyze some alternatives to the current

system. The first two are tweaks that can be applied to the ranking formation

procedure, also jointly, without changing the substance of the system. A more

articulate proposal will follow, allowing each destination to have its own ranking

over students. This aims to enable SSE to account for the fact that a student

might be a better fit for a destination than for another.

5.1 Longer list

We have seen before (see Section 3.4, Discussion on truncation) that the se-

quential priority mechanism has several desirable properties which go lost when

students are required to submit a truncated list of preferences: strategyproof-

ness, fairness, nonwastefulness and efficiency. Truncating preferences creates

the need for strategizing, balancing a tradeoff between attractiveness of a des-

tination and the expectation that it is achievable. Also, it makes the resulting

matching potentially wasteful and inefficient. The intuition for this is that a

student i, when reporting her preferences, might miscalculate and exclude his

first achievable destination s, listing five unachievable ones. If this happens and

at least one seat at s remains unassigned, there is a violation of nonwastefulness

and (consequently) of efficiency. If the seat is assigned to a student with lower

priority than i, there is a violation of fairness.

This problem exists as long as students are not allowed to submit their whole

list of preferences. However, it is evident that the lower k is, the more students

will have to strategize and inefficient or unfair allocations will happen. Our first

suggestion is therefore to raise the quota k, without necessarily eliminating it.

A potential implementation issue for this proposal is that having a longer list of

preferences requires more time and effort to the program administration. With

more options listed, the computation and check of matchings will take more

time. To address this issue, we have built a software to do the computation.

The software takes as input the students’ information, in an Excel file, and

outputs the allocation.
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5.2 Reorganizing priority factors

The priority ranking used to assign seats is computed on the basis of three

factors: study pace, motivation letter and grades from tests such as GMAT or

GRE or, for former SSE students, their BSc’s GPA. These three factors have

decreasing weight, but are not used straightforwardly. The study pace is used as

primary factor, distinguishing between students who passed 3 or 4 courses and

students who passed 2, with all students in the first group (3 or 4 courses passed)

having priority over all students in the second group (2 courses passed). In the

final step, the number of courses passed will contribute to the sum of scores,

so that there will be a distinction between students who passed 3 courses and

students who passed 4, but such distinction will be marginal. A similar thing

happens with the motivation letter. Students with 4 or 5 motivation letter

points are assigned to the same tier. Only later, the number of points will con-

tribute to the sum of scores, so that students with 5 points will get one more

than students with 4 a rather marginal distinction. This system manages to

advantage students with good study pace and motivation letter, without being

too strict on any of them. However, it also introduces significant complexity

and does not get much tiebreaking power in return.

Looking at data from year 2017 (exchange program of academic year 2017/2018),

we find support for this argument. Firstly, out of 165 students, only 5 passed

2 courses, questioning the necessity of the first clustering. The motivation let-

ter clustering seems more effective: among the top tier (students with 3 or 4

courses), 58 people were given five or four points for their motivation letter, 75

people were given three and 25 were given two. So, students are quite balanced

among those clusters, but these are too big to hope for the sum of scores to break

ties effectively. For example, the 58 people in the first tier can have sum of raw

points between 7 and 11. Since there are five potential values and more than 50

students, the best it can be hoped for is tiers with no less than ten students. In

reality, twentyfive of them have a sum of raw points of 8. In the second tier, 33

out of 75 people have a sum of raw points of 7 (the possible range for that group

is from 6 to 10). This seems to be a consequence of the role of grades: they only

allow students in the top percentiles to gain bonus points. As a matter of fact,

when they come to play a role there are less ties. Therefore, extending the bonus

points system to the lower end of the grade distribution might solve the problem.
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Using the same data, we tried a stricter tiebreaking criteria, which directly used

the study pace as primary tiebreaking factor and motivation letter score as

secondary one, with no grouping. Instead of two primary tiers, we have three of

them, each of which is divided into five subtiers, instead of four. Finally, since

all the information on study pace and motivation letter score is accounted for

in the first and second step respectively, only the grades are used in the third

step, instead of the sum of scores. A visual representation can be found below.

4 passed courses

2 passed courses

5 ML points

3 ML points

2 ML points

1 ML point Each tier is
sorted based on 

bonus points 
from grades

Ranking is
formed by 
listing 
students
top down. 
Random 
tie-
breaking is
applied
when
necessary

3 passed courses

4 ML points

… same for all
the tiers

STEP 3 STEP 4 STEP 5 STEP 6

The results are encouraging, and give clear indications. First, the maximum

number of students with a tied score is reduced to 21. Second, in the two tiers

with the most students (21 and 17), they did not receive bonus points for grades.

Namely, the two tiers had students with four passed courses, three motivation

letter points and zero bonus points (430), and four passed courses, four motiva-

tion letter points and zero bonus points (440).
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5.3 Different rankings with composed valuation of moti-

vation letter

In this paragraph we will describe a more articulate proposal. This proposal

targets a specific limit of the current rankingformation procedure: that the mo-

tivation letter contributes to the score for all the destinations. This contradicts

the fact that such letters are used more effectively to state one’s motivation

to go in exchange at one or more specific destinations, rather than a generic

motivation to join the exchange program. Most students apply to the program

to experience a new culture, a new city and a new university. Such desire is

better communicated by discussing one or two destinations, and arguing why

they would be good matches. As a matter of fact, this is what most students

do. Besides, it seems reasonable that a student could be considered a better

match for a destination rather than for another. Possible reasons are language,

background and interest of the student.

With the current system, there is no way for the school to promote a student-

destination matching; it can only be done as a side product of rewarding the

student’s motivation letter. For example, it is virtually impossible to guarantee

that a student is matched with a destination believed to be her perfect fit if

this student ranks it as her second preferred option. The proposed solution

manages to create different rankings for different destinations, requiring virtu-

ally no extra effort by the program administration. It consists of a modification

in the ranking formation procedure, which needs to be followed by one in the

matching mechanism. A new mechanism will be necessary because the serial

priority mechanism requires one unique priority ranking.

5.3.1 New priority formation mechanism

Our proposal is to expand the grading system of the motivation letter. Instead

of giving one unique score, from 1 to 5, in our proposal the letter is assigned

one base score plus some bonus points for specific destinations. For example, a

student with a generally good motivation letter and a wellmotivated preference

for Sciences Po in Paris could be assigned 3 base points plus 2 bonus points for

that destination.

After grading the letter, a priority ranking will be computed for each exchange
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destination in S, using a ranking formation procedure similar to that already

in use. The only difference is that their motivation letter points will possibly

vary from destination to destination. Namely, their motivation letter score will

be the same as their base score for all destinations but the ones for which they

received bonus points, in which case the score will amount to the sum of base

score and bonus points. So, if student i has a base score of 3, plus 2 bonus

points for destination s, when computing priority rankings for s his motivation

letter score will be 5, while for all other destinations it will be 3.

In order to get the best from this system, as we will see later, the letter’s pur-

pose should be twofold. First, it should be to express motivation to participate

in the program. Second, it should be to signal one or two destinations that the

student believes to be a good fit for. A crucial point is that students should

not be supposed to mention their top (or top two) choices in the letter; it is

legitimate to mention any of the ranked destinations. For this reason, we will

not consider doing this as misreporting or strategic behavior.

Moreover, we will adopt the reorganization of priority factors proposed above.

Here is a formal definition of the rankingformation process.
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Step 0 : Each student submits an application: a motivation letter and an

ordered list of all the destinations that she finds acceptable. Her study pace

and GRE/GMAT/GPA are observable by the school.

Step 1 : Each student’s motivation letter is graded as follows. First, it is

assigned a base score from 0 to 3; then, it is assigned 1 or 2 additional points

for zero or more destinations for which she expressed a particularly motivated

interest.

Step 2 : For each student i in I, a score vector ξi is initialized, with m elements.

Each element ξis represents the score of student i for school s. The initial value

for all ξis is zero.

Step 3 For each student i, the number of courses passed, multiplied by a factor

of 100, is added to all ξis . Multiplying it by a factor of 100 gives it priority

over the other tiebreaking factors.

Step 4 : For each student i and destination s, i’s motivation letter base score,

plus possible bonus points for destination s, multiplied by a factor of 10, are

added to ξis .

Step 5 For each student i, the GPA/GMAT/GRE bonus points are added to

all ξis .

Step 6 : For each school s, �s is formed by ranking all students according to

their score ξis .

We will illustrate how the mechanism works via a simple example.
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5.3.2 An example

Let us consider two destinations, s1 and s2, and three students: i1, i2 and i3.

Here are their raw points, collected in steps 0 and 1:

Student Study pace ML s1 ML s2 GPA/GMAT/GRE
Courses passed Base + Bonus Base + Bonus 05 points

i1 3 3 + 1 3 + 0 2
i2 4 2 + 2 2 + 0 4
i3 3 3 + 0 3 + 1 5

The mechanism, starting from step 2, would work as follows:

Step 2 All students start from a score of zero for both destinations. We will

refer to the scores with the notation ξis ; for example, i1’s score for s1 will be

ξi1s1
.

Step 3 To i2’s scores, 400 points are added. To i1 and i3’s scores, 300 points

are added.

Step 4 For each student i, the ML s1 raw points, multiplied by 10, are added

to ξis1 and the ML s2 raw points, multiplied by 10, are added to ξis2. For in-

stance, let us take i2: a score of 40 is added to ξi2s1
, while a score of 20 is added

to ξi2]s2 . After this step,the scores are: ξi2s1
= 440 and ξi2s2

= 420.

Step 5 For each student, their bonus points are added to both scores. For

i2, ξi2]S1 = 444 and ξi2S2 = 424.

Step 6 �S1 is formed considering ξiS1 for all students i; similarly �S2 is

formed considering ξiS2.

At the end of the process, the rankings will look like this (again, scores in

parentheses):

�S1= (i2 (444) , i1 (342) , i3 (335))

�S2= (i2 (424) , i3 (345) , i1 (332))

25



5.3.3 Proposed matching mechanism

The need to introduce a different mechanism arises from the presence of different

priority orderings, not compatible with a sequential priority mechanism. We will

replace it with the StudentProposing Deferred Acceptance (SPDA) algorithm,

in which students and school are tentatively matched repeatedly, following the

students’ preferences, until a matching is reached such that each student either

is assigned to an acceptable destination or does not find acceptable any of the

remaining ones. Here is a formal description.

Step 0 The set of priority rankings � is considered, along with each student i’s

reported preference list Ai.

Step 1 : Each student i is tentatively matched to her preferred destination in

Ai. If a destination s has more students assigned than it can accept (qs), it

keeps the qs which are the highest ranked in �s and rejects the others.

Step h: Each unmatched student i is tentatively matched to her next preferred

destination in Ai, if there is any remaining. If there is no next most preferred

destination, student i is assigned s0. If a destination s has more students as-

signed than it can accept (qs), it keeps the first qs in �s and rejects the others,

regardless of the step at which they were tentatively assigned to it. If there is no

unmatched student with at least one next acceptable destination, the process

terminates.

5.3.4 Analysis

This system creates a priority system that captures the students’ inclinations

better than the current one, and then computes a matching that privileges sta-

bility but also guarantees efficiency among stable matchings. Once again, our

analysis will be split. First, we will present some practical advantages of the

ranking formation procedure. Secondly, we will analyze the theoretical proper-

ties of our mechanism.

We have already explained the main advantages of switching to a composed

valuation of the motivation letter. Namely, it will enable the administration to

reward a student’s motivation to go in exchange to a certain school without the
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side effect of boosting her ranking for others. Now, we would like to focus on

another interesting feature of the proposed rankingformation procedure: that

switching to it would require no commitment or renounces. The administration

would have the option to promote some specific studentdestination matchings,

but would not be obliged in any way to do so. It might decide, for example,

to give bonus points exclusively in outstanding cases, with an only marginal

change in its way of grading motivation letters. In an extremecase scenario, it

could decide not to use bonus points at all. Although we certainly do not hope

for this to happen, in such case the system would still work, and exactly as it

does now, or with some chosen tweaks. Thus, choosing this mechanism would

not require commitment to radically alter the way motivation letters are graded,

or to putting in a given amount of extra time and effort.

The StudentProposing Deferred Acceptance (SPDA) algorithm with no quota

is stable, strategyproof and efficient among stable matchings.

Proposition 11. The SPDA algorithm is individually rational.

Proof. In the SPDA, each student i is tentatively matched to the schools in

her reported preference ranking Ai, starting from the topranked one and de-

scending, if necessary. When the ranking is exhausted, the student is assigned

s0. It is therefore impossible that a student is assigned to a destination not

listed in Ai, and thus by assumption impossible that she is assigned to an un-

acceptable destination. If no student can ever be assigned to a school she finds

unacceptable, individual rationality holds.

Proposition 12. The SPDA algorithm is nonwasteful.

Proof. For a matching µ to be wasteful, it is necessary that a student i is assigned

s0 while a school s that she finds acceptable has a free seat. Suppose this

happens. Since students are assigned s0 only after being tentatively matched to

all their acceptable schools, it must be that i has been tentatively matched to s,

prior to being assigned at s0. So, she had either been rejected in the first place,

or tentatively accepted and rejected later. The first case contradicts the fact

that s has a free seat, as schools reject students only when they are at capacity.

Similarly, a school rejects a student it has tentatively accepted only when there

are enough better qualified students to fill all seats. In all cases, we come to a

contradiction.

Proposition 13. The SPDA algorithm is fair.
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Proof. Suppose that fairness is violated: in a matching µ, a student i prefers

school s to her matching µ(i), while there is a student j, to which is assigned s,

who is lower than i in the priority ranking of s. If i prefers s to µ(i), it must

have been tentatively matched to s before being assigned to µ(i). If she was

rejected immediately, it is because there were already qs betterranked students

matched to s. But then, the same students (or others with ever better ranking)

should have been matched to s when j was tentatively matched to s, which

contradicts the fact that j was accepted. Similarly, if i was tentatively accepted

and rejected at a later step, at that later step there were qs students with a

higher ranking than j, which contradicts the facts that j was assigned s.

Proposition 14. The SPDA algorithm is strategyproof.

Proof. Suppose that a student i profits from reporting an untruthful preference

profile A′i, obtaining a matching µ′(i) which she prefers to the matching µ(i)

that would have been obtained by truthfully reporting Ai. The fact that i gets

a better match via a misreport is selfcontradictory. If µ′(i) is achievable under

a reported preference profile, and we assume it is under A′i, it needs to be under

all reported preference profiles. If it is preferred to µ(i), it needs to be ranked

above it in the truthful one. Therefore, if i truthfully reports her preferences,

it will be tentatively matched to µ′(i) before being matched to µ(i), and since

µ′(i) is achievable, it should be her matching.

Proposition 15. The SPDA algorithm is efficient in the set of stable match-

ings. However, it is not efficient outside of it.

Proof. Suppose that a matching µ, produced by the algorithm, is Paretodomi-

nated by a matching µ′. This could happen for three reasons:

1. a student in µ′ is assigned to s0 instead of an unacceptable destination he

was matched with in µ,

2. a student is µ′ is assigned to a seat that was unassigned in µ,

3. two or more students switch the seats they were assigned in µ.

The first two cases cannot happen because they would violate respectively in-

dividual rationality and non wastefulness, and we have proved that the SPDA

algorithm is individually rational and nonwasteful. It remains to be proved that

if two students switch seats with a gain in efficiency, the resulting matching is

necessarily unstable. Let us take two students i and j, and their matchings in µ,
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µ(i) and µ(j). Since our model admits no indifferences, we need to assume strict

preferences for both students (instead of only one strict preference and all other

weak ones): µ(j)Piµ(i) and µ(i)Pjµ(j). A matching µ′ such that the students

switch their seats (in notation: µ′(i) = µ(j) and µ′(j) = µ(i)) Pareto dominates

µ. Now, both students prefer the other student’s assignment, so, in µ, they

must have been tentatively matched to it before being definitively matched to

their assignment. In other words, i must have been tentatively matched to µ(j)

before being matched to µ(i); the same is true for j. These tentative matchings

must have been blocked by some other student k, so that at least one between

i and j was forced to move on, eventually getting respectively µ(i) or µ(j). If

there was no such student k, i and j would have kept their preferred choices,

without blocking each other’s matching, so k must exist. But if k exists, µ′

is unfair to k, thus unstable. Hence, a matching µ′ can be found to Pareto

dominate µ, proving that the SPDA algorithm is not efficient. However, µ′ can

never be stable: efficiency holds in the set of stable matchings.

As it emerges from the proofs above, we chose stability over efficiency. Efficiency

is granted only if stability allows it; if it does not, then an efficient matching

among the stable ones is chosen. The value of stability has been discussed in

Section 3.2, when defining matchings’ properties. The main points for choos-

ing stability over efficiency are two. First, stability eliminates justified envy,

possibly improving the students’ perception of how the exchange program is

managed. Second, a stabilityprivileging approach gives more weight to the des-

tinations’ rankings over students, eventually selecting students which are better

fits for their matched destinations.
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6 Conclusion

In this thesis, we analyzed the allocation of seats in the Stockholm School of

Economics’s exchange program for Master students. We did so by adopting a

matching theory perspective. Our goal was to suggest some modifications, as

simple as possible, to increase the students’ satisfaction with the program and

the school’s effectiveness in administering it.

Drawing on the literature covering the school choice problem, the student place-

ment problem and the college admission problem, we formulated a student ex-

change problem. This theoretical framework allowed us to assess the mechanism

currently in use, which is individually rational but loses all other desirable prop-

erties because it imposes to the students the truncation of their preferences.

Consequently, our first suggestion is to allow students to report more than five

preferences, and possibly as many as they wish.

On a more practical note, we examined the efficiency of the tiebreaking criteria

adopted by SSE. The school chooses to tiebreak based firstly on study pace and

secondly on motivation letter score. However, it does so in a loose way, keep-

ing students who passed 3 courses and students who passed 4 in the same tier,

and similarly for students with 4 and 5 as motivation letter raw points. The

tiebreaking power of this procedure proves insufficient, leaving a lot to random-

ness. A second suggestion is then to tiebreak with the same hierarchy between

criteria, but more strictly.

In order to facilitate the implementation of these proposals, we built a software

to compute the matchings. Our software takes an Excel file as input, along with

information on column names, scrapes the students’ information and outputs

the allocation, given the chosen criteria.

Finally, we make a proposal that aims to enable the school to rank students

differently for different destinations. This proposal allows the school admin-

istration to create different rankings for different destinations, giving to each

student motivation letter raw points for different destinations. At the same

time, it allows students to report their preferences without the burden of strate-

gizing.

30



References
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