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1 Introduction and motivation

1.1 Overview

In a survey among the Linux community, Hertel et al. (2003) study the motivations and

determinants for collaboration on the Linux system. The authors of the study find that

programmers contribute more effort to the project when they believe that they have the

same goals as their team members. This leads them to conclude that the belief in having

the same valuation for a project within a work group is a crucial factor for programmers’

motivation. In general, collaboration on the production of public goods is an essential

part of the modern economy. Especially in the digital space, people working together on

a project without direct compensation and without knowing each other has become an

important feature. In investigating what determines contribution levels it has been found

numerous times that people contribute conditionally on who they are working with.

In this thesis we ask: Can this kind of conditional cooperation be used to increase con-

tribution levels in public goods production under different mechanisms? Our approach

employs an information design model that works by changing players’ beliefs. Information

design is a relatively nascent field that explains how and when a principal can persuade

agents to take a certain action by giving them action recommendations. As opposed

to mechanism design, which takes the information structure of a game as given, it en-

dogenizes the information structure while keeping the game constant. Importantly, the

"information designer" can commit to the signal structure that she will provide the players

with before the types of players and the state of the world have realized (Bergemann and

Morris, 2018). In information design, there is a general trade-off for the designer between

recommending the players to take a desirable action and satisfying their incentive com-

patibility constraints.

We compare an information designer’s ability to influence contribution probabilities across

two different one-shot voluntary contribution mechanisms (VCMs) and an entry fee mech-

anism where free-riding is not possible. We treat a two-player game in all cases. The

preference structure is based around the idea of conditional cooperation, where players

prefer to collaborate with certain types over others. This can, for example, be interpreted

as different valuations for the goals of a group, as it has been shown to be a factor in

determining contribution levels to the Linux system by Hertel et al. (2003).
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So far, applications for information design have been found, for instance, in lobbying

and advertising (Kamenica and Gentzkow, 2011). This thesis explores the potential for

information design in public goods provision. We find that an information designer can

increase the probabilities for contribution in a two-player game with heterogeneous types,

where payoffs depend on the collaborator’s type, which is uncertain. Our main game

specification is a type of VCM where it is possible to free-ride on the other player’s con-

tribution. We compare this to information design in a game where the good is excludable

such that only contributors can gain from the good. Lastly, we analyze a VCM where

only the high type is able to produce the good on his own.

Many applications rely on these public goods mechanisms and this thesis contributes to

the literature by suggesting a starting point for improving the amount of contributions

via signals to the players. This is relevant for digital applications as discussed in the case

of the Linux system, but can also be transferred to in-person team collaborating efforts

where it is a priori unclear whether members share the same valuations for a goal.

This thesis is structured as follows: The remainder of Chapter 1 motivates our informa-

tion design model for public goods provision by introducing public goods mechanisms and

giving some background on the empirical public goods literature. Chapter 2 is dedicated

to presenting the theory of information design and reviewing the literature on this topic.

Finally, Chapter 3 presents, analyzes, and discusses our model. The thesis concludes with

some directions for future research and a brief summary.

1.2 Contributions to public goods

The "zero contribution thesis" predicts that a rational actor with self-regarding prefer-

ences will not contribute to a public good unless the group of players is rather small or

there are external devices to incentivize contributions (Olson, 1965; Ostrom, 2000). The

incentive to free-ride for each individual will cause the project to be unsuccessful on the

whole. On the one hand, this prediction largely fails in reality: We observe charitable

giving, contributions to political campaigns, collaboration on open source software and

countless other instances where people decide to put in effort and/or money to produce

what can be regarded as a public good. On the other hand, free-riding and thus the ineffi-

cient provision of public goods can also be widely observed from experimental laboratory

studies to teamwork settings.

2



This free-rider problem stems from non-excludability, which is one of the two character-

istics that define a pure public good (Cowen, 1992, p.3). The second feature is that it

is non-rivalrous in consumption. A good that is non-rivalrous but excludable is called

a club good.1 This distinction will become important when picking a mechanism which

produces the good.

1.2.1 Mechanisms in public goods provision

This section briefly introduces different mechanisms that can be used in the provision

of public goods. A crucial aspect in this context is whether the good is a pure public

good in the sense that it is both non-rival and non-excludable. Since different options

are possible when a good is excludable, the choice of mechanism will largely be based on

these characteristics. Note that when a good is fully non-rival, the act of exclusion creates

inefficiencies: Once the good has been provided, it is costless to admit more agents to the

use of the good, who could then derive utility from it. Gailmard and Palfrey (2005) call

these exclusionary inefficiencies.

A substantial number of mechanisms meant to elicit efficient public goods provision has

been derived. Largely, they are based on transfer functions that incentivize truthful re-

porting of one’s type. This includes the famous Vickrey-Clarke-Groves (VCG) mechanism

that is based on the principle that all players pay their own externality.2 Another example

is the Ledyard-Groves mechanism which sets up transfers such that payments are made

according to the deviation from the average promised payment of all players (Groves and

Ledyard, 1977). Alternatively, the provision point mechanism requires that the public

good is binary, i.e. it is either provided or not provided. It collects contributions from

players but returns them if the total amount of contributions is below the threshold needed

to provide the good. Clearly, this can only be done with monetary contributions, not, for

example, time.

A classic VCM is based on the utility function:

ei − xi +m

N∑
j=1

xj

1We do not attempt to analyze rivalrous goods in this thesis. These would either be private goods
(excludable) or common-pool resources (non-excludable).

2See for example Jehle and Reny (2001) for a textbook treatment
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where ei is the endowment, xi the contribution and m represents the marginal return to

capital, i.e. the benefit from the public good (see for example Fischbacher et al., 2001).

This setup can often be observed in experimental studies, some of which we mention in

the next section. The unique Nash equilibrium for m < 1 is xi = 0 for all i, which is

where the zero contribution thesis originates from. In the main part of our model, we use

an implicit version of a VCM but add payoffs from social preferences that can make it

desirable for players to contribute to the good from a theoretical perspective.

When the good is non-rival but excludable, a club good, it is possible to use an entry

fee mechanism. A simple example for this would be a park that charges a fee to be able

to enter it (Diamantaras et al., 2009, p.235). Since we attempt to compare information

design under different mechanisms, we choose a version of the entry fee mechanism for

our model that only allows players to benefit from the good if they choose to contribute

(with a binary action space, i.e. contribute or not contribute).

While we compare a voluntary contribution game with an entry fee mechanism, we do

not change the amount of the transfer in any game. We are going to assume a fixed cost

of contribution in all games. One reason why we do not directly manipulate transfers

is because it has been shown that intrinsic motivations may potentially be crowded out,

for instance when agents are paid for their efforts. These types of state-dependent or en-

dogenous preferences are the subject of Reeson and Tisdell (2008) (empirical) and Bowles

and Hwang (2008) (theoretical), where the policy relevance of motivational crowding out

is emphasized. One reason why we think it is beneficial to examine information design

in the public goods context is that mechanism design can have unintended effects on the

belief structure of players by changing transfers. Information design directly tackles the

belief structure and can thus help to achieve a better understanding of decision making

in a cooperational context.

1.2.2 Incentives in public goods provision

Our model on public goods provision is motivated by the results from empirical literature

in this section. On the one hand, we present papers that investigate the relationship

between contributions to public goods and the information structure of the game. These

show that signals that increase contributions are not only something that comes from our

theoretical model, but are also observed in reality. On the other hand, we provide some
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motivation for the preference structure of our model using research that states that agents

want to contribute depending on who they are cooperating with.

Several studies have examined the effect of varying the players’ information structure on

contributions to public goods. One part of the literature investigates how social compar-

ison interacts with contributions by providing the players with social information. Frey

and Meier (2004) conduct a field experiment using voluntary donations by students. They

find that when students receive information indicating that a large amount of other stu-

dents has made a donation, they are more likely to contribute themselves. A different

field experiment conducted by Chen et al. (2010) examines contributions to an online

movie rating platform. Users are provided with information about how their contribu-

tions, i.e. the number of ratings, range compared to others. This leads to a large increase

in contributions from users who are initially below the median and a decrease in ratings

submitted by users who are told that they are above the median. The authors interpret

this as evidence that personalized social information can increase contributions to public

goods. This is in line with an earlier laboratory study by Sell and Wilson (1991) who find

that individualized information has the largest positive impact on contributions compared

to an aggregate information or no information environment.

An earlier work is a series of laboratory experiments conducted by McCabe et al. (1996).

They vary matching protocols, payoffs, and payoff information and find evidence in favor

of cooperation under complete information, against game theoretic predictions. Also in

a laboratory setting Shang and Croson (2009), investigate whether the contributions of

others are complements or substitutes for a player’s own contribution. Their findings

indicate that players give more when they know that others make high contributions, im-

plying that players’ contributions are complements.3 Thus, it has repeatedly been shown

that the players’ information structure is a factor in determining contributions, both in

field and laboratory experiments.

Further, we present the findings that motivate the preference structure in our model. One

factor that has repeatedly been established to be important in determining contributions

to public goods is conditional cooperation. Fischbacher et al. (2001) were the first ones to

find that the largest fraction of their subjects were conditional cooperators who adjusted

the amount contributed to a public good upwards if others gave more.
3This partially contradicts Chen et al. (2010) since they find that others’ contribution are substitutes

for players above the median.
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Other literature shows that behavior is not only conditioned on the amount of contribu-

tions made but also on the identity of the other players. This group identity condition

implies that players make a distinction between in-group and out-group members.4 A

meta-analysis of psychology literature by Balliet et al. (2014) finds that while the evi-

dence on this effect is not entirely consistent, overall there is a moderately sized positive

effect on collaboration when cooperating with in-group members compared to out-group

members. The effect is found to be especially large when the player’s own payoff is af-

fected by the other players’ actions.

Economic papers that conduct experiments on this issue include for instance Keser and

Van Winden (2000), who observe contributions in a repeated public goods game when the

group members remain the same (partner condition) and when the composition changes

in every round (strangers condition). Their result is that the stranger treatment shows

the usual declining pattern over time, while the partner treatment exhibits high contri-

butions throughout the experiment. Eckel and Grossman (2005) also examine a repeated

public goods game which is framed as a team production problem. Thus, they are specif-

ically interested in whether a team identity can prevent shirking and free-riding behavior.

They find that random assignment of team identities does not increase cooperation, while

factors like common goals do increase team production. In Chen and Li (2009), subjects

execute different tasks to enhance team identity. They observe the effect of in-group

membership on different social preferences and find that participants matched with an

in-group member show higher charity concerns and less envy. Furthermore, they are more

likely to reward good behavior toward other team members and are less likely to punish

them for misbehavior. Guala and Filippin (2016) examine whether established favorable

behavior towards in-group members is the manifestation of actual preferences or merely

a heuristic that boundedly rational agents use to simplify decision-making. Their finding

is that while there may be a group identity effect in a simple dictator game with two

allocation options, this effect disappears when the environment becomes more complex

by adding more options.5

Akerlof and Kranton (2010 and 2000) have been cultivating the idea that identity mat-

ters in group production and that in-group versus out-group identification can greatly
4In some experiments they are called "partners" and "strangers".
5While these are mostly experiments in repeated games, our model will treat a one-shot game. We

thus do not tackle the development of group identity, but assume that there already is a preference for
working with a certain type.
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change agents’ incentives. Akerlof and Kranton (2010) list examples from different com-

panies where it has been shown that a shared identity in the form of norms and goals can

increase effort levels.

Thus, we can see that agents behave depending on who they collaborate with. In reality, it

will not always be clear who their counterpart is and how much players identify with each

others’ goals and conceptions of the project. In this case, the players’ beliefs are a crucial

factor in the efficient provision of public goods since they will determine whether and/or

how much they will contribute. This implies that with conditional cooperators, there

is support for the possibility to design optimal cooperation beyond providing monetary

incentives, as in classical mechanism design. By changing the players’ beliefs, the outcome

can be changed, as we will show in the next chapter, where we present the theory of

information design.
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2 The information design approach: Theory and lit-

erature

The theory of information design analyzes how a game of incomplete information can be

influenced by changing the beliefs of the players. It is an emerging field that is related

to mechanism design. However, one can make a distinction between the two: Mechanism

design is about optimally setting the rules of a game while taking its information structure

as given. Information design, on the other hand, endogenously determines the optimal

information structure, but takes the rules of the game as given (Bergemann and Morris,

2018).

In a game of incomplete information, players are uncertain about the state of the world,

which determines their payoffs. The information designer can provide them with strate-

gic signals to influence their actions. A crucial feature of the information design problem

which distinguishes it from a classical game of incomplete information with communica-

tion is that the principal has an informational advantage over the players. Depending on

the information designer’s objective, she will use this advantage optimally to maximize

her expected payoff. This is done by giving action recommendations conditional on the

state of the world. This approach is used to analyze the model on public goods provision

in Chapter 3.

To clarify the notation, assumptions, and procedure, this section provides a general de-

scription of information design. The concepts introduced here will be used throughout the

thesis. Sections 2.1 and 2.2 describe the problem and deal with the theoretical background

of the problem, while Section 2.3 gives an overview of the information design literature

to this date.

2.1 The information design problem

2.1.1 Introduction and an example

Information design refers to a game in which an information designer ("sender") has the

option to provide player(s) ("receiver(s)") with information in addition to the one the

receivers may or may not already have. This is possible since the sender has an infor-

mational advantage over the receivers. She wishes to achieve a certain objective and her

payoffs are dependent on the actions that the players take. Therefore, the sender will
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want to influence these actions, that is, to persuade the receivers to take their actions in

her favor. If the interests of the sender and the receiver do not align, it is usually optimal

for the information designer to not fully disclose all information, but rather to obfuscate

some information.

To illustrate this principle, we use a simple example from Bergemann and Morris (2018).

Suppose there is a government and a firm. Furthermore, there are two states of the world:

good and bad. The government wants to maximize the probability that the firm invests,

irrespective of the state. The firm, on the other hand, only finds it profitable to invest

when the state is good and will otherwise prefer to do nothing. Thus, there is a conflict of

interest between the two actors. The government knows whether the state is good or bad

and can send the firm signals about the state to increase the probability of investment. We

can see that there is a constraint: For the government, it would be optimal to always tell

the firm that the state is good such that the firm follows this recommendation and always

invests. However, the firm would then know that the government’s advice is not valuable

and would not follow the investment recommendation. Thus, the sender is constrained

by the fact that the firm has to want to follow the government’s recommendation, i.e. the

firm should not lose from being obedient. It is intuitive to realize that in the good state,

the actors’ interests are aligned: Both will want the investment to take place. Thus, the

government will fully disclose the correct state in this case. The situation is different in

the bad state: The government will try to obfuscate some of the information that it has,

so that the firm will still invest. Table 1 gives the firm’s payoffs in each state where the

payoff in the good state is 0 < x < 1. Table 2 shows the signal structure on which the

government has to decide depending on the state, σ(a|θ). pB is the probability with which

the government recommends the firm to invest despite being in the bad state.

bad state B good state G
invest −1 x

not invest 0 0

Table 1: Example: The firm’s payoff in the investment game

Under the assumption that the firm’s prior belief is that each state is equally likely, the

firm would not invest without signals from the government as its expected payoff from

this is negative. When the government sends a signal to invest, this translates into the

9



bad state B good state G
invest pB 1

not invest 1− pB 0

Table 2: Example: The signal structure σ(a|θ) for the investment game

following incentive constraint for the firm:

1
2pB(−1) + 1

2x ≥ 0 ⇔ pB ≤ x

Since the government wants to set the probability of investment as high as possible, the

constraint will be satisfied with equality, and thus pB = x. Thus, the government will give

an investment recommendation with probability x in the bad state, which the firm will

follow so that the probability of investment is now positive. This concludes the example.

Bergemann and Morris (2018) use a linear programming approach to find the optimal

information structure. In the first step, they identify the feasible set of outcomes by

setting up obedience constraints and then, in the second step pick the most-preferred out-

come by the sender among the feasible set. Apart from this two-step procedure, one can

also employ the concavification approach. This uses a geometric analysis to concavify the

payoff function as shown by Kamenica and Gentzkow (2011).6 In short, the designer in-

creases her expected payoff by sending signals to the receiver such that her payoff function

becomes concave. This procedure is called Bayesian persuasion in the case when there is

only one sender and one receiver.7 However, extending the concavification approach to a

game of multiple players is not straightforward, so that the linear programming approach

is generally less complex in these cases. The solution that we reach via the latter pro-

cedure will still correspond to concavifying the designer’s objective function (Bergemann

and Morris, 2018, Section 4.3).

Having outlined the general idea of information design and how to solve a problem of this

type in principle, we proceed to describe its formal representation.
6With seminal work done previously by Aumann et al. (1995).
7We follow Bergemann and Morris (2018) in their definition of Bayesian persuasion.
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2.1.2 A formal representation

Following Bergemann and Morris (2018), we present the general information design prob-

lem and introduce the relevant notation for the remainder of the thesis.

Basic game G

There is a finite number of players, 1, 2, ..., I, who can take a finite set of possible actions

Ai. Furthermore, there are Θ payoff states of the world with θi as one individual realization

from the state space. The players share the same full support prior Ψ ∈ ∆(Θ) about the

probability that each state will occur.

Thus, we can write the utility function for each player i as:

ui : A×Θ→ R

where A = A1 × ...× AI and a = (a1, ..., aI) is a typical element of A.

The information designer has an objective function: v : A×Θ→ R.

Information structure S

As common for incomplete information games, we define the information structure S in

addition to the basic game G. The belief structure consists of the set of types ti ∈ Ti and

the signal distribution that is a mapping from the payoff state space to the players’ type

space:

π : Θ→ ∆(T )

where T = T1 × ...× TI .

The basic game G and the information structure S =
(
(Ti)Ii=1, π

)
together make up the

incomplete information game (G,S).

Timing

A crucial feature of the information design problem is that the designer picks and commits

to a rule that specifies how to provide the players with additional information before the

state and the types are realized. This commitment to the decision rule σ is the first step,

and only afterwards the state θ is realized and the players learn their types ti.

Knowing their types, the players receive additional information from the designer and
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pick their action based on all the information available to them now. The payoffs are

then realized.

Revelation principle

Under certain assumptions, we can evoke the revelation principle in analogy to mechanism

design: This implies that the signal space will be equal to the action space. The idea

behind this is that any message will induce an action in equilibrium, so we label messages

according to the actions they give rise to. Thus, the decision rule chosen by the designer

will give "action recommendations". This principle implicitly makes use of the assumption

that the designer is able to choose the equilibrium that is played. Furthermore, all infor-

mation structures must be feasible, the cost of using information is zero, there is a single

information designer and the setting is static (Bergemann and Morris, 2018, Section 1).

That the designer can pick the equilibrium may not be realistic and we will comment on

this issue later on. For now, as is common in the literature, we maintain this claim and

thus make use of the revelation principle.

Decision rule

Based on the revelation principle discussed above, the designer selects the decision rule

which can condition on the true state and the type vector:

σ : T ×Θ→ ∆(A)

This rule gives the players information about the state of the world, thus influencing the

action profile a.

Obedience constraints

The decision rule is constructed to maximize the designer’s objective function. However, it

is restricted by incentive constraints, or obedience constraints, as Bergemann and Morris

(2018) coin it: The players have to want to follow the action recommendations that

the designer gives in all cases. In other words, their expected utility from following the

recommendation must be higher than taking a different action. Formally, this translates

into the following expression from an ex ante perspective (Bergemann and Morris, 2018,

12



Definition 1):

Decision rule σ is obedient for (G,S) if, for each i = 1, ..., I, ti ∈ Ti, and ai ∈ Ai, we have:

Σa−i,t−i,θΨ(θ)π((ti, t−i)|θ)σ((ai, a−i)|(ti, t−i), θ)ui((ai, a−i), θ)

≥

Σa−i,t−i,θΨ(θ)π((ti, t−i)|θ)σ((ai, a−i)|(ti, t−i), θ)ui((a′i, a−i), θ)

for all a′i ∈ Ai.

This can also be written in terms of the interim beliefs with Bayes’ rule. However, the

resulting inequality then has the same denominator on both sides such that it cancels out,

again yielding the expression above. We make use of this fact in our model, which will

be written from an interim perspective, i.e. the players know their own type, but not the

other player’s type.

Solution concept: Bayes Correlated Equilibrium

Bergemann and Morris (2016a) define the solution concept of Bayes correlated equilib-

rium: It is a version of the correlated equilibrium introduced by Aumann (1974) for

incomplete information environments.

Let us first explain the concept of a correlated equilibrium in a complete information

setting. We illustrate it with an example of the classic coordination game.

Player 2
A B

Player 1 A 3, 1 0, 0
B 0, 0 1, 3

Table 3: Coordination game

The game has three Nash equilibria: (A,A), (B,B) and a mixed equilibrium where A is

played with probability p = 1
4 . The expected payoff from the last strategy is 1

4×3+ 3
4×1 =

3
2 . Now suppose that there is a correlation device that helps players coordinate on one

equilibrium. For example, one might think of the flip of a fair coin: When Head comes

up, both players shall play strategy A. With Tail, both play B. Both players now have

an expected payoff of 1
2 × 3 + 1

2 × 1 = 2, which is higher than under the mixed strategy.

Unilateral deviation from adhering to the correlation device can only lead to a lower
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expected payoff. Thus, this is a correlated equilibrium in a complete information setting.

Bergemann and Morris (2016a, p. 493) define a Bayes correlated equilibrium as follows:

A decision rule σ is a Bayes correlated equilibrium (BCE) of (G,S) if it is obedient for

(G,S).

Again, G is the basic game and S the information structure and obedience is defined as in

the previous subsection. This means that for a decision rule to be a BCE, it must induce

action recommendations from which the players will not want to deviate unilaterally.

2.2 Information design literature

Overview

Having described the basic concept of information design and its components, we now

proceed to review some of the literature on the topic. Bergemann and Morris (2018) offer

an extensive overview of the current information design literature. In this section we only

attempt to summarize some seminal concepts and papers that have the most relevance

for our model on public goods provision.

There are multiple different scenarios where information design is relevant. We have al-

ready mentioned the most basic scenario developed by Kamenica and Gentzkow (2011)

where there is only one sender and one receiver without prior information. There are

obvious extensions to this both in terms of the basic structure of the game and the in-

formation structure. As Figure 1 shows, one can go from a single-player situation to a

multi-player game and from a binary action space to a richer action space.

Of course, there are many options to vary the information structure, as Figure 1 also

presents. In particular, the players can have either no prior information about the re-

alization of the state of the world apart from the designer’s signal; or their type ti can

induce some additional signal that lets them update their prior about the state. Moreover,

the information designer can have different degrees of information about players’ types

(Bergemann and Morris, 2016b, p. 588):

• Omniscient: The sender knows the receivers types and can therefore condition di-

rectly on them.

• With elicitation/private persuasion: The sender does not know the receivers types

but can elicit them by asking to report them. This introduces additional truth-
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telling constraints and strictly decreases the set of attainable outcomes compared

to the omniscient case.

• Without elicitation/public persuasion: Again, the sender does not know the receivers

types and in this case cannot elicit them either. Kolotilin et al. (2017) show that

under certain conditions, private and public persuasion are equivalent.

In our model, we stick to the assumption of an omniscient designer who has thus perfect

information about the social type of the players. This simplifies the analysis significantly,

but of course limits the scope of applying the model to reality. We elaborate on this in

the discussion.

Furthermore, there may be restrictions on the signals that the designer is able to send.

Depending on what degree of correlation between the players’ actions the designer wants

to induce, she may either want to send private signals or public signals. In some circum-

stances, private signals may not be possible, thus restricting the set of feasible outcomes

when the designer has to stick to signals that are common to all players.

Lastly, the information design problem can be examined in a dynamic setting rather than

a static one, which is especially important for long-run processes where experimentation

matters (see Hörner and Skrzypacz, 2016).

Having established the variations that are possible in principle, we will examine the liter-

ature more closely. Note that we divide papers into rough categories, even though some

of the literature may fit into multiple of these baskets. However, we attempt to associate

each paper with the category that it focuses on.

As we have already established, the current research on information design builds on the

seminal paper by Kamenica and Gentzkow (2011) that found a geometric solution, con-

cavification, to solve the information design problem with a single sender and receiver

without private information. Other important conceptual contributions were made in a

series of papers by Bergemann and Morris (2018, 2016b, 2016a). They find an approach

to categorize new and already existing work on information design that not only includes

Bayesian Persuasion, but also the more traditional literature on communication in games

(Bergemann and Morris, 2018).8

Bergemann and Morris (2016a) define "Bayes correlated equilibria", the set of outcomes
8In which the sender is not able to commit to the signal structure before types are realized.
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Figure 1: An overview of information design

that can arise in Bayes Nash equilibrium if players observe the given information struc-

ture but potentially also additional signals. In this process, they find a definition for what

it means to have "more information": Additional information on the side of the players

imposes more incentive constraints that decrease the set of possible outcomes. Berge-

mann and Morris find conditions under which this is the case. Their analysis extends the

framework to a many-player structure.

Taneva (2015) follows Bergemann and Morris’ methodology and construct the set of BCE

under the assumption that agents have no information beyond their prior beliefs. In this

manner, she finds the set of all Bayes Nash equilibria without explicitly using information

structures.

Alonso and Câmara (2016a) characterize the information problem when sender and re-

ceiver have different priors. They find that with heterogeneous priors, full information

disclosure can be suboptimal even when preferences are aligned. Gentzkow and Kamenica

(2014) and Hedlund (2015) extend the original Bayesian Persuasion framework to a sit-

uation where sending signals is costly. This affects the sender’s payoff and thus also the

optimal information structure. The former paper characterizes cost functions that are
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compatible with the concavification approach.

More conceptual contributions were made by a number of papers following Kamenica

and Gentzkow (2011): Gentzkow and Kamenica (2016) extend the work, characterizing

all feasible distributions of the posterior mean. Kolotilin (2015) imposes more structure

on the information design problem and derive necessary and sufficient conditions for the

sender’s and receiver’s welfare to be monotonic in information. This paper finds that the

sender’s welfare increases with the precision of the sender’s information and decreases

with the precision of public information. Under a different set of assumptions and with a

linear programming approach, Kolotilin (2016) shows that the expected utilities are not

monotonic in the precision of the receiver’s private information. Kolotilin et al. (2017)

establish the equivalence of persuasion mechanisms and experiments when the receiver

is privately informed and the sender cannot directly observe the receiver’s type. This

means that the sender is indifferent between asking the receiver to report his type and

then sending a private signal (persuasion mechanism) and giving a public signal which is

observed by all receivers equally (experiment).

Gentzkow and Kamenica (2017a) and Gentzkow and Kamenica (2017b) examine the ef-

fects of having multiple senders (and one receiver) who thus are in a competition with

each other.

Multi-agent games

We now move on to review the literature on many-player frameworks in information de-

sign. Our main reference papers Bergemann and Morris (2016b) and Bergemann and

Morris (2018), have their focus on BCEs and information structures in games. In partic-

ular, they characterize what it means for players to have "more information": "[...] [A]n

information structure giving rise to a smaller set of Bayes correlated equilibria in all games

corresponds to a more informed information structure" (Bergemann and Morris, 2016b,

p. 502). They find that a richer information structure on the side of the players actually

leads to a lesser amount of attainable outcomes for the designer. This is because more

information leads to more constraints on behavior.

As mentioned in Section 2.1.2, Mathevet et al. (2017) also examine games and information

design. In a setting with more than one player, there are now not only beliefs about the

state, but also higher-order beliefs. That is, beliefs that players have about each others’
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beliefs (about each others’ beliefs and so on). They show that every optimal information

structure can be decomposed into a public and a private component in the form of sig-

nals to the agents. An important feature of their analysis that distinguishes it from, for

instance Bergemann and Morris (2018), is that they do not invoke the revelation princi-

ple. They stress that while the revelation principle applies very generally in single-player

settings, this may often not be the case in multi-player games. Their approach is also

robust to different solution concepts, as for example level-k reasoning.

Arieli and Babichenko (2016) also extend the single player situation to multiple receivers.

They investigate the information design problem under different types of payoff functions.

Compared to Bergemann and Morris (2016b), their setup is more concrete, so that Arieli

and Babichenko are able to characterize the optimal revenue and information disclosure

explicitly.

While we present some primarily conceptual papers in this section, more research on

many-player information design problem is reviewed under "Applications" since they have

a more applied focus.

Dynamic information design

While it is beyond the scope of this thesis, there is also an emerging literature on dy-

namic information design that gives implications about optimal information disclosure

under learning and experimentation. We still mention some of these papers here, since a

dynamic setup can easily be justified in public goods provision where a good is produced

repeatedly or has to be sustained over time. Dynamic information design is especially

relevant for long-run environments where agents may act differently in later periods de-

pending on what happened in earlier periods. A survey containing much of this literature

can be found in Hörner and Skrzypacz (2016). Sequential information design in games

(i.e. multi-player settings) is examined by Doval and Ely (2016). Incidentally, they use a

public goods game as an example to show that outcomes can be improved with sequential

information design compared to a static action recommendation from the designer. Their

set-up is a classic public goods game where free-riding is possible and there are no social

preferences. The uncertainty stems from the value of the public good as opposed to our

model, where players are uncertain about their collaborators’ types. The idea is that the

designer not only determines the release of the information on the state, but also fixes the
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timing of play. It is found in the example that as the number of stages goes to infinity,

the number of attainable contributions goes to an upper bound value.

Other papers study situations where the designer observes a stochastic process or has the

option to experiment (privately). Ely (2017) states that because of the evolving state,

the agents’ beliefs will evolve even without additional information from the designer. The

designer has the possibility to shape the path of belief evolution but finds that there is a

trade-off between current persuasion and persuasion in the future. An interesting appli-

cation is found by Ely et al. (2015): Drawing from the idea that people derive utility from

suspense and surprise in entertainment, they model the demand for information over time.

They solve for the optimal information revelation that maximizes expected suspense or

surprise for Bayesian subjects.

Che and Hörner (2018) note the increasing importance of recommender systems in the

digital space and derive optimal information design for a situation where users learn col-

laboratively about a product. Here, the designer’s trade-off is between full disclosure and

over-recommending a product whose quality has not been explored yet. On the one hand

there is a risk to derive disutility from this new product (thus decreasing the users trust

in the platform), on the other hand the product’s quality needs to be explored for the

community. The optimal mechanism finds a balance between these effects.

The optimal information disclosure policy in a setting where the principal wants to maxi-

mize social welfare within a recommender system is characterized in Kremer et al. (2014).

Agents’ incentives to explore and generate new information are affected by the information

structure. They assume agents to be self-interested and myopic and find that a threshold

policy maximizes welfare, while neither no disclosure nor full disclosure is optimal.

This section provides evidence on dynamic information design. One can see that this

research is primarily very recent and there are a lot of powerful applications to be discov-

ered. We emphasize the potential for public goods provision with social preferences, but

leave this extension for future research.

Applications

Having reviewed the primarily conceptual side of the literature, we now present papers

that apply the general conceptual results to a more specific environment. Coordination

games and their application to a potential regime change are examined in Goldstein and
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Huang (2016). Goldstein and Huang present a model where the designer is a policy-

maker who would like to keep the current regime, while the agents potentially prefer to

abandon the regime depending on fundamentals. In this setup, it is optimal for the pol-

icymaker to sometimes abandon the regime themselves to decrease the probability that

agents will attack. Ostrovsky and Schwarz (2010) analyze the phenomenon that universi-

ties intentionally hold back information on their students’ achievements towards potential

employers. This obfuscation can, according to their findings, prevent unraveling in the

market, i.e. students getting hired in increasingly earlier semesters.

Furthermore, a few papers examine information design in the context of voting, which is

another relevant application. One can think of a politician (or multiple candidates) trying

to convey signals to voters that make it the most likely to achieve the politician’s preferred

outcome. The most notable study on this subject is Alonso and Câmara (2016b).

Several studies focus on auctions and information design: Bergemann et al. (2016), Berge-

mann and Hörner (2018), Bergemann and Wambach (2015) all treat information design

in auctions, while Zhang and Zhou (2016) study information design in contests. Perhaps

unexpectedly, there are not only applications of information design in microeconomics,

but even on a macroeconomic level: In a simple stylized economy, Bergemann et al. (2015)

examine aggregate volatility and the effect of agents’ information structure on volatility.

They consider a setting with symmetric agents with linear best responses. The result is

that maximum aggregate volatility is obtained in an information structure where agents

are uncertain about the size of the shock to the economy. This leads to overreaction and

thus maximum volatility.

Providing optimal information to consumers from the seller’s perspective is another ap-

plication that has warranted some attention. For instance, Li and Shi (2017) show that

disclosing different signals to different buyer types dominates a full disclosure policy in a

setting where the buyer has incomplete knowledge about his own type.

Little work has been done on combining the mechanism and the information design prob-

lem such that the allocation mechanism and the belief structure can be altered simulta-

neously. Bergemann and Pesendorfer (2007) investigate the optimal choice of information

structure and auction format. They find a trade-off between the minimization of infor-

mation rent and the maximization of allocational efficiency, which is balanced by the

optimal information structure. As opposed to Bergemann and Pesendorfer (2007) who
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assume that the bidders initially have no private information, Daskalakis et al. (2016)

analyze the optimal auction and information design when both the seller and the bidders

have private information about the object’s value.

A strand of the literature on team production examines information sharing in the team

production process. A trade-off has been noted between information sharing and adapta-

tion, as for instance Blanes i Vidal and Möller (2016) have described it: Sharing additional

information may have detrimental effects on the motivation of the players, but may on

the other hand increase the likelihood of adaptation. Thus, some information can inten-

tionally be held back and groups fail to aggregate information efficiently. The mechanism

developed in Blanes i Vidal and Möller (2016) determines how much information is to be

shared in the optimum, when there is a noncontractible agreement on a project between

the players.

Celik and Peters (2016) examine collaboration agreements with reciprocal relationships

between players. This means that each player can make commitments based on the other

players’ commitments while they form a contract among themselves. They find that par-

tial revelation of information at the contracting stage increases the set of supportable

outcomes compared to a centralized mechanism.

This section shows that there is a wide range of potential applications where information

design can play a role in designing optimal policies. We add to this literature in the next

chapter by presenting a model based on a public goods game.
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3 Model

This analysis treats the optimal design of information in public goods games. Our main

focus is on public goods provision in games that rely on voluntary contributions. Since we

cannot or do not want to change this mechanism in many instances, classical mechanism

design theory does not generally seem fit for improving contribution levels. There is still

scope for information design, however, when the information structure can be optimally

adjusted. For instance, this can be the case in digital applications: A platform designer

would usually have a lot of power about what users know about each other and could use

this flexibility to optimally adjust players’ beliefs. However, the notion of an information

designer need not necessarily be literal, as we discuss in Section 3.6.

We choose to compare the information design problem under different mechanisms. This

allows us to compare combined mechanism design and information design problems when

the designer has the option to influence both the payoffs and the belief structure. The

following sections first treat the information design problem in the VCM in detail and

then proceed to consider an entry fee mechanism where free-riding is not possible and a

mechanism where the ability to produce the good is asymmetrically distributed between

the players. Lastly, we compare the designer’s utility across these cases. The analysis is

based on the procedure developed by Bergemann and Morris (2018 and 2016a). The main

difference is that in our model, the players’ types directly determine the state of the world.

In the original model, the state is not directly related to the players. This change implies

four different possible states and thus a higher-dimensional problem. Furthermore, the

payoff structure that we impose varies from the model by Bergemann and Morris.

This model has possible applications in collaboration processes. For instance, Hertel

et al. (2003) find in their survey on participation motives to the Linux kernel that team

activities are determined by team goals. They observe that some projects are conducted

with a team on subsystems. Within these subsystems, developers are more willing to

spend time when they have higher subjective evaluation of the subsystem’s goals. That

is, contribution activity is determined by how highly individual participants value the

teams’ goals. Of course, there is some uncertainty involved in this subjective evaluation,

since the programmers may not know these objectives perfectly a priori. Thus, their

decision to contribute will be shaped by their beliefs about the team’s goals. If they value

these expected goals highly, they will contribute more.
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However, this models’ applications are not limited to the digital space. One may also think

of a situation in a more general team production process. For example, in a group project

where individual members can potentially have different valuations of the outcome, it

may be uncertain before the project is executed whether the goals are shared or not. This

becomes clear only during the project and team members gain more utility from having

worked with someone with the same valuation.

3.1 Information design with a VCM

3.1.1 Payoffs under a VCM

The first scenario consists of a simplified VCM with a nonexcludable good. Players can

either contribute ("C") or not contribute ("NC"). The good is produced whenever there

is at least one contribution. There are two players of type θ = {θ, θ} which implies that

they have either low or high valuation for the good. Both players incur a cost c when

they decide to contribute. The players have a preference for collaborating with their own

type, but not with the type that has a different valuation. This assumption represents

the feature that people like to be part of a like-minded community. Thus, they receive

a premium z when contributing together with the same type but a penalty y when they

contribute together with a different type. We call the different situations the social (θθ,θθ)

and the asocial state (θθ,θθ). Furthermore, when only player contributes on their own,

they also incur a penalty (x) since they see the other player free-riding. They achieve the

payoffs depicted in Table 4.9

The information designer is omniscient in the sense that she knows the players’ type

with certainty. Furthermore, it is possible to send private signals to each player. The

parameters are such that:

• 0 < θ < θ.

• (x, y, z, c) > 0.

• z > c: This implies that free-riding is not a best response in the social state.

• From the points above it follows that θ− c+ z > θ > 0 (and thus θ− c+ z > θ > 0).

• θ − c− y < 0 (and thus θ − c− y < 0).
9Nash equilibria are marked in color throughout the thesis.
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θ, θ C NC

C θ − c+ z,θ − c+ z θ − c− x,θ

NC θ,θ − c− x 0,0

θ, θ C NC

C θ − c− y,θ − c− y θ − c− x,θ

NC θ,θ − c− x 0,0

θ, θ C NC

C θ − c− y,θ − c− y θ − c− x,θ

NC θ,θ − c− x 0,0

θ, θ C NC

C θ − c+ z,θ − c+ z θ − c− x,θ

NC θ,θ − c− x 0,0

Table 4: Payoffs in VCM

• θ−c−x < 0 and θ−c−x > 0: In the asocial state, it is a best response for the high

type to contribute when the other player does not contribute. For the low type, it

is a dominant strategy not to contribute against a high type in the asocial state.

This implies that both players prefer (C,C) in the social states. However, (C,C) is the

worst outcome in the asocial state. The high type would still like to contribute since

he gets a positive payoff (despite the penalty x), but only when the low type does not

contribute.

3.1.2 Signal distribution

In addition to knowing their own types, the players get a signal ti with i ∈ {s, a} which

gives them information about being either in the social or asocial state. According to the

signal distribution below, the players will always observe the same signal and will know

with certainty that they are in the asocial state when they observe the signal ta. This

distribution follows Bergemann and Morris (2016a).

The common prior probability for the social and asocial state is Ψ and 1−Ψ, respectively.

(θ, θ) and (θ, θ) are equally likely, as are the states (θ, θ) and (θ, θ). For example, the

probability for (θ, θ) is then 1
2Ψ.

This signal distribution can, of course, be varied. For example, it is possible that players

observe asymmetric signals or that they never know for sure what state they are in

after observing the signals. For now, we keep this signal distribution constant across the

different public goods games.
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π(·|θ,θ) (ts, θ) (ta, θ)
(ts, θ) 1 0
(ta, θ) 0 0

π(·|θ,θ) (ts, θ) (ta, θ)
(ts, θ) 1− q 0
(ta, θ) 0 q

π(·|θ,θ) (ts, θ) (ta, θ)
(ts, θ) 1− q 0
(ta, θ) 0 q

π(·|θ,θ) (ts, θ) (ta, θ)
(ts, θ) 1 0
(ta, θ) 0 0

Table 5: Signal distribution

3.1.3 Decision rule

The decision rule determines the contribution probabilities in each state and depends on

which signal has been observed by the players. Here, we restrict attention to the case

when ts has been observed since only then the players are still unsure about the actual

state. This leads the designer to setting up four different decision rules, one for each state.

Clearly, though, the two asocial states are completely symmetric, so that the parameters

will be the same in (θ, θ) and (θ, θ). In the case of the two social states, we can also

find symmetry: While the payoffs differ in (θ, θ) and (θ, θ), the desirable equilibrium is

(C,C) in both cases, and so we can say that the social states are equivalent in terms of

the decision rule. Thus, there are only five parameters to solve for (see Table 6).

γi is the probability that both players contribute in the high state, while αi is the probabil-

ity that an individual player contributes. The probability that only one player contributes

is then αi−γi. There is only one value for individual contributions (αs) in the social state

since the two players are symmetric. In the asocial state, there is a probability that the

high type contributes (α1) and a probability that the low type contributes (α2).10

3.1.4 Obedience constraints

The designer’s recommendations are constrained by the requirement that the players will

want to follow her action recommendation. That is, their expected payoff from obeying

the designer must be at least as large as the expected payoff from taking the opposite
10The notation for the decision rule again follows Bergemann and Morris (2018).
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σ(θ,θ,ts) C NC
C γs αs − γs
NC αs − γs 1 + γs − 2αs

σ(θ,θ,ts) C NC
C γa α2 − γa
NC α1 − γa 1 + γa − α1 − α2

σ(θ,θ,ts) C NC
C γa α1 − γa
NC α2 − γa 1− γa − α1 − α2

σ(θ,θ,ts) C NC
C γs αs − γs
NC αs − γs 1 + γs − 2αs

Table 6: Decision rule

action. These incentive constraints are written out below for each type and each action

recommendation. The LHS depicts the expected payoff from contributing while the RHS

gives the expected payoff from not contributing.

For type θ:

• When the action recommendation is C

Ψ
(
γs(θ − c+ z) + (αs − γs)(θ − c− x)

)
+

+ (1−Ψ)(1− q)
(
γa(θ − c− y) + (α1 − γa)(θ − c− x)

)
≥ Ψ(γsθ) + (1−Ψ)(1− q)(γaθ) (1)

• When the action recommendation is NC

Ψ
(
(αs − γs)(θ − c+ z) + (1 + γs − 2αs)(θ − c− x)

)
+

+ (1−Ψ)(1− q)
(
(α2 − γa)(θ − c− y) + (1 + γa − α1 − α2)(θ − c− x)

)
≤ Ψ((αs − γs)θ) + (1−Ψ)(1− q)((α2 − γa)θ) (2)

Symmetrically, the obedience constraints for type θ are:

• When the action recommendation is C

Ψ (γs(θ − c+ z) + (αs − γs)(θ − c− x)) +

+ (1−Ψ)(1− q) (γa(θ − c− y) + (α2 − γa)(θ − c− x))

≥ Ψ(γsθ) + (1−Ψ)(1− q)(γaθ) (3)
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• When the action recommendation is NC

Ψ ((αs − γs)(θ − c+ z) + (1 + γs − 2αs)(θ − c− x)) +

+ (1−Ψ)(1− q) ((α1 − γa)(θ − c− y) + (1 + γa − α1 − α2)(θ − c− x))

≤ Ψ((αs − γs)θ) + (1−Ψ)(1− q)((α1 − γa)θ) (4)

When these constraints are satisfied, the players will want to follow the information

designer’s action recommendation. The probabilities that do fulfill these constraints are

classified as Bayes Correlated Equilibria (BCE) (Bergemann and Morris, 2016a). This is

therefore the set of outcomes that can be attained. In the next section, the designer picks

the most preferred outcome according to her utility function.

3.1.5 Analysis of optimal contribution probabilities

In principle, the information designer can have different objective functions that determine

how she will optimally pick the decision rule giving the contribution probabilities. In this

section, we look at two different objectives: Firstly, we analyze the optimal solution for a

designer that wants to maximize the number of contributions by the players, no matter

what state they are in. In the second part, the designer would like to obtain a socially

optimal outcome by maximizing the sum of players’ utilities.

Maximize the number of contributions A designer who wants to maximize the

number of contributions has the following utility function:

V = 1{a1=C} + 1{a2=C}

The designer’s expected utility in this case is:

E[V ] = Ψ
(

1
2(2γs + 2(αs − γs)) + 1

2(2γs + 2(αs − γs))
)

+

(1−Ψ)(1
2 (q · 1 + (1− q)(2γa + (α1 − γa) + (α2 − γa)) +

1
2 (q · 1 + (1− q)(2γa + (α1 − γa) + (α2 − γa)))

= 2Ψαs + (1−Ψ) (q + (1− q)(α1 + α2)) (5)
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With signal ta in the asocial state, there will be exactly one contribution: The high type

will contribute, while the low type will not. Signal ts is observed with probability 1 − q

in the two asocial states.

Thus, the designer maximizes her utility by maximizing ai, the probabilities that the

individual players contribute. Note that while her priority is actually to maximize γi (the

probability for joint contribution), this is done by maximizing αi since γi must be smaller

or equal to the individual contribution probabilities (see Table 6).

We first analyze the probabilities for the social state.

Proposition 1. In the state where the designer and the players prefer the same equi-

librium outcome, it is optimal not to obfuscate information. The designer thus sets

γ∗s = α∗s = 1.

Proof. The designer wants to induce (C,C) and therefore set γs as high as possible.

We observe that the players’ contribution constraints are slackened by simultaneously

increasing γs and αs. This is because a positive payoff is attached to contributing together

in the social state, which is larger than the payoff from free-riding. We can see this by

rewriting Equation (3):

Ψ (γs(−c+ z) + (αs − γs)(θ − c− x)) +

+ (1−Ψ)(1− q) (γa(−c− y) + (α2 − γa)(θ − c− x)) ≥ 0

Independent of the decision rules in the asocial state, increasing γs and minimizing the

difference between γs and αs slackens the constraint since c < z. This holds analogously

for the high type. Therefore, the designer can pick her most preferred decision rule,

that is always recommending to contribute to both of them in the social state by setting

γ∗s = α∗s = 1.

With the observation that the interests of the designer and the players are aligned in

the social state, we use the result from Proposition 1. With some rearrangements, the
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obedience constraints from the former section then become:

Ψ(−c+ z) + (1−Ψ)(1− q)
(
γa(−c− y) + (α1 − γa)(θ − c− x)

)
≥ 0 (6)

(1−Ψ)(1− q)
(
(α2 − γa)(−c− y) + (1 + γa − α1 − α2)(θ − c− x)

)
≤ 0 (7)

Ψ(−c+ z) + (1−Ψ)(1− q) (γa(−c− y) + (α2 − γa)(θ − c− x)) ≥ 0 (8)

(1−Ψ)(1− q) ((α2 − γa)(−c− y) + (1 + γa − α1 − α2)(θ − c− x)) ≤ 0 (9)

Note that Equation (9) is satisfied for all probabilities, since θ − c − x is negative. Fur-

thermore, when Equation (8) is satisfied, then (6) automatically holds, which we show in

the Appendix.

The first-best solution from the designer’s perspective would be to also set γa = α1 = α2 =

1. However, this is not always attainable, since the players can get negative utility from

contributing in the asocial state. The obedience constraints are therefore potentially not

satisfied. The following proposition states the condition such that the first-best outcome

is feasible:

Proposition 2. A designer maximizing the number of contributions can implement the

first-best decision rule γs = γa = 1 if q ≥ 1− Ψ(c−z)
(1−Ψ)(−c−y) , that is if the signal is accurate

enough.

Proof. For making the contribution probabilities in the asocial state as large as possi-

ble, the relevant binding constraint is the obedience constraint for the low type when

told to contribute. We know that the high type’s contribution constraint will then be

automatically satisfied. Setting all parameters equal to one and solving for q yields:

Ψ(−c+ z) + (1−Ψ)(1− q)(−c− y) ≥ 0 (10)

⇒ q ≥ 1− Ψ(c− z)
(1−Ψ)(−c− y)

Note that the threshold value is independent of the players’ types. This is because their

valuations enter both RHS and the LHS of the obedience constraints so that they cancel

out when solving for the cut-off values.

We now analyze the case where the first-best outcome is not attainable: If q is below the
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threshold, the contribution constraint for the low type is binding and the designer has to

choose γa < 1. To maximize the probability that both will contribute, she sets γa = α2

and solves the low type’s contribution constraint (Equation (8)) as an equality:

Ψ(−c+ z) + (1−Ψ)(1− q) (α2(−c− y)) = 0

⇒ α∗2 = γ∗a = Ψ(c− z)
(1−Ψ)(1− q)(−c− y) (11)

Again, note that the low type’s valuation does not enter this expression. Regarding α∗1,

the designer will now both want and have to set it equal to 1:

• After maximizing the common contribution probability, the designer sets the indi-

vidual contribution probabilities as large as possible.

• The no contribution constraint (7) for the high type is only satisfied for the value

α1 = 1 when α2 = γa. To see this examine the constraint and plug in the results

just obtained:

(1−Ψ)(1− q)
(
(α2 − γa)(−c− y) + (1 + γa − α1 − α2)(θ − c− x)

)
≤ 0

(1 + α2 − α1 − α2)(θ − c− x) ≤ 0

(1− α1)(θ − c− x) ≤ 0

The last equation is only satisfied when 1− α1 = 0, since θ − c− x > 0.

This concludes the search for the optimal contribution probabilities and we can see the

decision rule in Table 7. Under these probabilities, the expected utility of the designer is:

E[V ] = 2Ψ + (1−Ψ) (q + (1− q)(1 + α∗2)) = 2Ψ + (1−Ψ)
(

1 + Ψ(c− z)
(1−Ψ)(−c− y)

)
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σ(θ,θ,ts) C NC
C 1 0
NC 0 0

σ(θ,θ,ts) C NC
C α∗2 0
NC 1− α∗2 0

σ(θ,θ,ts) C NC
C α∗2 1− α∗2
NC 0 0

σ(θ,θ,ts) C NC
C 1 0
NC 0 0

Table 7: Optimal decision rule

Maximize the sum of utilities Now suppose that the designer’s utility function is de-

termined by the sum of the players’ utilities, i.e. the designer cares about social efficiency.

This translates into the objective function:

E[V ] =Ψ[12 (2γs(θ − c+ z) + (αs − γs)(2θ − c− x)) +

+ 1
2
(
2γs(θ − c+ z) + (αs − γs)(2θ − c− x)

)
]

+ (1−Ψ)[q(θ + θ − c− x) + (1− q)(γa(θ + θ − 2c− 2z)+

+ (α1 − γa)(θ + θ − c− x) + (α2 − γa)(θ + θ − c− x))] (12)

Again, the players never contribute after observing ta, which implies that there is no

utility for the designer in this case. We can see from this that the designer would like

to maximize γs, αs, α1, α2, while minimizing γa. To see this intuitively, let us have a look

at the payoff matrices: In the social states, maximizing the utilities means making both

players contribute. In the asocial states, (C,C) is the worst possible outcome. The de-

signer prefers (NC,C) or (C,NC). She is indifferent between which type contributes,

since the sum of the utilities is the same regardless of who contributes.

Note that the obedience constraints remain unchanged. In other words, the set of attain-

able outcomes is still the same, but the designer picks a different optimal solution. Again,

the interests of the designer align in the social state, where they agree that (C,C) is the

preferred equilibrium. This implies that setting γ∗s = α∗s = 1 is optimal in this state, as

we have observed in Proposition 1.

Secondly, the designer sets γ∗a = 0 to minimize the probability of the socially inefficient

equilibrium in the asocial state that both players contribute. Thus, she wants to achieve

α1 + α2 = 1 such that there is always exactly one player that contributes in the asocial

state.

31



Proposition 3. A designer maximizing the sum of player’s utilities can always achieve

the first-best payoff.

Proof. Since the obedience constraints are unchanged, we can use the cut-off value for q

from Proposition 2 and distinguish between cases:

• q < 1− Ψ(c−z)
(1−Ψ)(−c−y) :

– Set α2 = 0 and α1 = 1: Since θ − c− x > 0, α1 can be made arbitrarily large

and the contribution constraint for the high type will still be satisfied.

– 0 < α2 <
Ψ(−c+z)

(1−Ψ)(1−q)(θ−c−x) : The designer can set the contribution probability

of the low type to any number between the two bounds that we established

above. Naturally, α1 is set to 1− α2 in all cases.

– Set α2 = Ψ(−c+z)
(1−Ψ)(1−q)(θ−c−x) and α1 = 1 − α2: From the designer’s utility func-

tion, it is equivalent whether the high type or the low type contributes, even

though the low type incurs a negative payoff from contributing on their own.

If the designer decides to put a positive probability on the contribution of the

low type, the upper bound for this probability is given by the contribution

constraint of the low type.11

All these options lead to the same expected utility for the designer since the sum of

the individual contribution probabilities is always 1.

• q ≥ 1− −Ψ(−c+z)
(1−Ψ)(−c−y) :

– None of the contribution constraints is binding as long as α1 + α2 = 1, which

also maximizes the designer’s utility.

The no contribution constraints are easily satisfied because the probability for no one to

invest is zero: (1 + γa − α1 − α2) = (1 + 0− (1− α2)− α2) = 0.

In either case, the designer sets the joint contribution probability γ∗a to zero and the sum

of individual contribution probabilities to 1.

Thus, the designer can achieve the maximal payoff attainable regardless of the signal

precision and by shuffling around the individual contribution probabilities depending on
11This puts the same requirement on the precision of q as in the previous section.

32



the situation. While the precision of q potentially limits α2, α1 can be set very freely

since the high type can gain positive utility even when contributing on his own.

This section shows that a designer who (in some states) works against the interests of the

players will find it more difficult to maximize her utility, since the incentive constraints

are binding more often. Even though the designer may obfuscate information such that

players get negative utility under some outcomes, overall they cannot be worse off than

without information design, which is ensured by the obedience constraints.

3.2 Excludable good

We have found an optimal information design solution in the case where all players con-

tribute voluntarily and where free-riding on someone’s contribution is possible. In this

section, we answer the question of how this information design solution changes if a dif-

ferent mechanism can be used. The game that is now considered is not about a pure

public good, but a club good. This means that the good is excludable such that free-

riding is not possible since only the players who choose to contribute are able to benefit

from the good’s value. Depending on the application, it may be a valid option to exclude

participants based on low activity, so that this scenario will be relevant.

θ, θ C NC

C θ − c+ z,θ − c+ z θ − c− x,0

NC 0,θ − c− x 0,0

θ, θ C NC

C θ − c− y,θ − c− y θ − c− x,0

NC 0,θ − c− x 0,0

θ, θ C NC

C θ − c− y,θ − c− y θ − c− x,0

NC 0,θ − c− x 0,0

θ, θ C NC

C θ − c+ z,θ − c+ z θ − c− x,0

NC 0,θ − c− x 0,0

Table 8: Payoffs in entry fee mechanism

As before, we make the following assumptions about the parameters:

• 0 < θ < θ.
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• (x, y, z, c) > 0.

• z > c: This implies that free-riding is not a best response in the social state.

• From the points above it follows that θ− c+ z > θ > 0 (and thus θ− c+ z > θ > 0).

• θ−c−x < 0 and θ−c−x > 0: In the asocial state, it is a best response for the high

type to contribute when the other player does not contribute. For the low type, it

is a dominant strategy not to contribute against a high type in the asocial state.

• θ − c− y < 0 (and thus θ − c− y < 0).

We use the same signal distribution as in the previous section (see Table 5) and the

parameters for the decision rule also follow the same reasoning as under the VCM (Table

6).

3.2.1 Obedience constraints

Again, we start by identifying the set of BCE. The obedience constraints for this payoff

structure follow the same logic as in the previous section. We write the payoff from

contributing on the LHS for the cases when the type is high or low and when the designer

recommends to contribute or not to contribute. Note that not contributing always implies

a payoff of 0 with certainty so that the RHS of the constraints is always zero. Thus, the

payoff from contributing must be positive for both types when told to contribute and

negative when they are told not to contribute.

For type θ:

• When the action recommendation is C

Ψ
(
γs(θ − c+ z) + (αs − γs)(θ − c− x)

)
+

+ (1−Ψ)(1− q)
(
γa(θ − c− y) + (α1 − γa)(θ − c− x)

)
≥ 0 (13)

• When the action recommendation is NC

Ψ
(
(αs − γs)(θ − c+ z) + (1 + γs − 2αs)(θ − c− x)

)
+

+ (1−Ψ)(1− q)
(
(α2 − γa)(θ − c− y) + (1 + γa − α1 − α2)(θ − c− x)

)
≤ 0 (14)
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The obedience constraints for type θ are:

• When the action recommendation is C

Ψ (γs(θ − c+ z) + (αs − γs)(θ − c− x)) +

+ (1−Ψ)(1− q) (γa(θ − c− y) + (α2 − γa)(θ − c− x)) ≥ 0 (15)

• When the action recommendation is NC

Ψ ((αs − γs)(θ − c+ z) + (1 + γs − 2αs)(θ − c− x)) +

+ (1−Ψ)(1− q) ((α1 − γa)(θ − c− y) + (1 + γa − α1 − α2)(θ − c− x)) ≤ 0 (16)

3.2.2 Analysis

We go through the same procedure as in the previous section, with the designer maximiz-

ing the number of contributions.

Again, interests are aligned in the social state, which implies that there is no restriction

on maximizing γs. The designer chooses γs = αs = 1:

Ψ(θ − c+ z) + (1−Ψ)(1− q)
(
γa((θ − c− y) + (α1 − γa)(θ − c− x)

)
≥ 0 (17)

(1−Ψ)(1− q)
(
(α2 − γa)(θ − c− y) + (1 + γa − α1 − α2)(θ − c− x)

)
≤ 0 (18)

Ψ(θ − c+ z) + (1−Ψ)(1− q) (γa(θ − c− y) + (α2 − γa)(θ − c− x)) ≥ 0 (19)

(1−Ψ)(1− q) ((α2 − γa)(θ − c− y) + (1 + γa − α1 − α2)(θ − c− x)) ≤ 0 (20)

The derivation of the optimal decision rule in the asocial state is very similar to the

previous section. Again, we note that (20) is always satisfied and that (17) holds when

(8) is satisfied.

The threshold value of q for the first-best solution is derived exactly as before by setting

all parameters equal to 1 and solving the contribution constraint of the low type for q,

which gives the value 1− −Ψ(θ−c+z)
(1−Ψ)(θ−c−y) .

Under the condition that q is below this threshold value, the designer chooses the second-

best solution, which implies that the contribution constraint of the low type is solved with
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equality:

α∗2 = γ∗a = −Ψ(θ − c+ z)
(1−Ψ)(1− q)(θ − c− y) (21)

while α∗1 = 1 with the same reasoning as in the previous case. The decision rule then

looks like the one in Table 7, but with a different value for α∗2.

A designer that cares about the sum of utilities instead of maximizing contribution proba-

bilities can simply employ a full disclosure policy. This will be such that γ∗s = α∗s = 1 and

γ∗a = α∗2 = 0, α∗1 = 1. The designer can therefore always achieve (C,C) in the social state

and (NC,C), (C,NC) in the states (θ, θ),(θ, θ), respectively. Since the payers have the

same preferred outcomes, the obedience constraints are satisfied with these probabilities

and all parties profit from this action recommendation.

3.3 Only the high type can produce the good on his own

Thirdly, we now consider a situation where the high type has the ability to produce the

good on his own, while the low type can only produce it with the help of the other player

(high or low type). Depending on the application, this may either be the case because

the designer determines the mechanism to be this way or because of the nature of the

good, which requires at least one player with a high type (e.g. high expertise). The payoff

matrix is depicted in Table 9.

θ, θ C NC

C θ − c+ z,θ − c+ z −c,0

NC 0, −c 0,0

θ, θ C NC

C θ − c− y,θ − c− y −c,0

NC θ,θ − c− x 0,0

θ, θ C NC

C θ − c− y,θ − c− y θ − c− x,θ

NC 0, −c 0,0

θ, θ C NC

C θ − c+ z,θ − c+ z θ − c− x,θ

NC θ,θ − c− x 0,0

Table 9: Payoffs with asymmetric abilities to produce the good
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The payoffs have the same characteristics as in the previous cases:

• 0 < θ < θ.

• (x, y, z, c) > 0.

• z > c: This implies that free-riding is not a best response in the social state.

• It follows that θ − c+ z > θ > 0 (and thus θ − c+ z > θ > 0).

• θ − c− y < 0 (and thus θ − c− y < 0).

• θ−c−x > 0: In the asocial state, it is a best response for the high type to contribute

when the other player does not contribute.

The low type simply incurs the cost c when he contributes on his own since the good is

not produced (and there is thus no free-riding, i.e. no penalty x). We again keep the

same signal distribution as in the previous cases to make the mechanisms comparable.

3.3.1 Obedience constraints

In principle, the obedience constraints are set up as before. However, types now face

asymmetric payoffs that are not only due to their differing valuations:

For type θ:

• When the action recommendation is C

Ψ
(
γs(θ − c+ z) + (αs − γs)(θ − c− x)

)
+

+ (1−Ψ)(1− q)
(
γa(θ − c− y) + (α1 − γa)(θ − c− x)

)
≥ Ψ(γsθ) (22)

• When the action recommendation is NC

Ψ
(
(αs − γs)(θ − c+ z) + (1 + γs − 2αs)(θ − c− x)

)
+

+ (1−Ψ)(1− q)
(
(α2 − γa)(θ − c− y) + (1 + γa − α1 − α2)(θ − c− x)

)
≤ Ψ((αs − γs)θ) (23)
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The obedience constraints for type θ are:

• When the action recommendation is C

Ψ (γs(θ − c+ z) + (αs − γs)(−c)) +

+ (1−Ψ)(1− q) (γa(θ − c− y) + (α2 − γa)(−c)) ≥ (1−Ψ)(1− q)(γaθ) (24)

• When the action recommendation is NC

Ψ ((αs − γs)(θ − c+ z) + (1 + γs − 2αs)(−c)) +

+ (1−Ψ)(1− q) ((α1 − γa)(θ − c− y) + (1 + γa − α1 − α2)(−c))

≤ (1−Ψ)(1− q)((α1 − γa)θ) (25)

These constraints give us the set of BCE.

3.3.2 Analysis

The analysis of the optimal decision rule is along the lines of the previous games. Again,

the optimal policy in the social state is always recommending to contribute to both play-

ers because designer and player principles are aligned in this case (see Proposition 1).

The designer that maximizes the number of contributions will again find that the contri-

bution constraint for the low type is binding if q is sufficiently imprecise. The threshold

value for q to be able to attain the first-best outcome in this case is 1 − −Ψ(θ−c+z)
(1−Ψ)(−c−y) . If

q < 1 − −Ψ(θ−c+z)
(1−Ψ)(−c−y) , the designer solves for the second-best outcome by solving the low

type’s contribution constraint as an equality. This yields:

α∗2 = γ∗a = −Ψ(θ − c+ z)
(1−Ψ)(1− q)(−c− y) (26)

Once again, α∗1 = 1 is optimal and satisfies the constraints.

If the designer cared about social efficiency, she could simply set γ∗s = α∗s = 1, γ∗a = α∗2 = 0

and α∗1 = 1 because the players prefer the same outcomes as the designer so that the

obedience constraints are easily satisfied.

38



3.4 Comparison of the designer’s payoffs

We now proceed to compare the designer’s expected payoffs under the VCM, the mecha-

nism with an entry fee, and in the case where only the high valuation player can produce

the good. Recall that the utility function is as follows when the designer gets utility from

the number of contributions:

E[V ] = 2Ψαs + (1−Ψ)(1− q)(α1 + α2)

Since α∗s = α∗1 = 1 in all cases, we need to compare the contribution probabilities of the

low type in the asocial state, α∗2.

Proposition 4. The expected payoff for the designer maximizing contributions is highest

in a mechanism with an entry fee when a first-best solution is not feasible. This is followed

by the mechanism where only the high type can produce the good on his own, while the

expected utility from the VCM is lowest.

Proof. We first compare the VCM and the entry fee mechanism:

α∗2,V CM ≷ α∗2,EF

−Ψ(−c+ z)
(1−Ψ)(1− q)(−c− y) ≷

−Ψ(θ − c+ z)
(1−Ψ)(1− q)(θ − c− y)

−c+ z

−c− y
≷
θ − c+ z

θ − c− y

(−c+ z)(θ − c− y) ≷ (−c− y)(θ − c+ z)

θz ≷ −θy

z > −y

Since both z and y are positive numbers, we conclude that α∗2,V CM > α∗2,EF and therefore

that the utility from the entry fee mechanism is larger than from the VCM.12 Now compare

the entry fee mechanism to the situation where only high valuation players can produce

the good on their own:
12For θ > 0. If θ = 0, then the mechanisms are equivalent.
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α∗2,HT ≷ α∗2,EF

−Ψ(θ − c+ z)
(1−Ψ)(1− q)(−c− y) ≷

−Ψ(θ − c+ z)
(1−Ψ)(1− q)(θ − c− y)

−c− y < θ − c− y

We can see that as long as θ > 0, the contribution probability is higher in the entry fee

mechanism.

Furthermore, note that the threshold values for the signal precision q is closely related to

a∗2. The higher a∗2, the lower the threshold will be. With a lower precision threshold, for a

given q it will be more likely that the designer can implement the first-best decision rule

and therefore obtain a higher payoff.

Proposition 5. The likelihood that the first-best decision rule (from the perspective of a

contribution maximizing designer) can be implemented is largest in the entry fee mecha-

nism, followed by the mechanism where only the high type produces the good on his own

and lastly the VCM.

Thus, not only does the VCM yield the lowest expected payoff under the second-best

decision rule, it is also most likely to make the second-best decision rule necessary in the

first place since it has a higher threshold value than the other mechanisms examined here.

Proof. The threshold values are:

qV CM ≥ 1− −Ψ(−c+ z)
(1−Ψ)(−c− y)

qEF ≥ 1− −Ψ(θ − c+ z)
(1−Ψ)(θ − c− y)

qHT ≥ 1− −Ψ(θ − c+ z)
(1−Ψ)(−c− y)

We observe that the second term on the RHS side corresponds to the contribution proba-

bilities of the low type, α2. Drawing on the result from the previous proof, we can state:

qV CM > qHT > qEF
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This section has shown that from an information designer’s perspective, the VCMmakes it

the most difficult to achieve the first best solution compared to the two other mechanisms.

This is the case because the VCM makes it easiest to free-ride: The expected payoff from

not contributing is larger, which constrains the LHS of the obedience constraints more.

In the entry fee mechanism the RHS is always 0, and in the asymmetric mechanism, only

games against a high type make free-riding possible.

Thus, a designer that would like to manipulate not only the information structure, but

also the game, should consider the entry-fee mechanism when the good is excludable.

Alternatively, she could also "raise" the bar for contributions and only provide the good

when either high valuation types provide it or enough players of the low valuation type.

Transferring this back to our open source example would mean that programmers with

lower valuation (and potentially lower ability) can not provide code that is accepted on

their own.

However, if the mechanism cannot or is not supposed to be changed, we show with an

example in the next section that the designer can still improve the outcome only using

action recommendations.

3.5 Example

We now proceed to calculate the set of BCE with specific parameter values and depict

them as figures. We choose the parameter values as in Table 10. Note that the precision

of the signal q is flexible for now.

Parameter Value
θ 1
θ 2
c 1
z 2
y 2
x 0.5
Ψ 1

3

Table 10: Parameter values for example
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θ, θ C NC

C 2, 2 −0.5,1

NC 1,−0.5 0,0

θ, θ C NC

C −2, −1 −0.5,2

NC 1,0.5 0,0

θ, θ C NC

C −1, −2 0.5,1

NC 2,−0.5 0,0

θ, θ C NC

C 3, 3 0.5,2

NC 2,0.5 0,0

Table 11: Example: Payoffs in VCM

VCM

We start with the VCM game described under Section 4.1, which now has the payoffs

depicted in Table 11. The first step is to calculate the Bayesian Nash Equilibrium (BNE)

that would arise without any correlation device, i.e. without the designer. This is done to

be able to calculate the benefit that arises from being able to employ information design

compared to a case where this is not done.

Firstly, note that in the BNE, there are only two contribution probabilities: α and α.

This is because the players cannot distinguish between the social and the asocial state.

Furthermore, the probability for joint contribution (γ) is the product of the two players’

contribution probabilities since they contribute independently. We can reuse the obedi-

ence constraints to find the equilibrium by relabeling the probabilities (and plugging in

the parameters). For the low type:

1
3(2αα− 1

2(α− αα)) + 2
3(1− q)(−2αα− 1

2(α− αα)) ≥ 1
31αα + 2

3(1− q)1αα (27)

It is important to note that the probabilities depend on the state of the types, i.e. whether

the low type is playing against a high type (α) or a low type (α). The constraint for the

high type is now:

1
3(3αα + 1

2(α− αα)) + 2
3(1− q)(−1αα + 1

2(α− αα)) ≥ 1
32αα + 2

3(1− q)2αα (28)
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There is a pure strategy equilibrium in which the players always contribute, α = α = 1,

when q is above a threshold value:

Low type:

1
3(2) + 2

3(1− q)(−2) ≥ 1
3(1) + 2

3(1− q)(1)

⇒ q ≥ 5
6 (29)

For the high type, this translates into the same cut-off value:

1
3(3) + 2

3(1− q)(−1) ≥ 1
3(2) + 2

3(1− q)(2)

⇒ q ≥ 5
6 (30)

Both types have the same threshold because the individual valuations cancel out from

the equation since they are on the right and the left hand side. Thus, if q ≥ 5
6 , there is a

pure strategy BNE where all types always contribute.

Furthermore, there is an equilibrium with α = 1 and α = 0 for all values of q and another

one with α = 0 and α = 1 when q < 11
12 . For the values 11

14 < q < 5
6 , there is also a mixed

strategy BNE.13

There can be no equilibrium α = α = 0: If the low type sets α = 0, then the high

type would always want to contribute, since he then can never obtain a negative pay-

off, even in the asocial state. This is the case even for the low type, who would still

get a positive expected payoff from always contributing against a high type who never

contributes. In other words, the players no contribution constraints would not be satisfied.

Going back to the information design problem, we find the following:

The threshold for being able to implement the first-best solution is q = 5
6 , which is the

same cut-off value as in the BNE. The second-best solution is given by:

α∗2 = γ∗a = 1
6(1− q) (31)

Plugging in q = 1
3 gives α∗2 = γ∗a = 1

4 , which is summarized in Table 12. For the designer,

this implies the payoffs:
13We discuss the BNE for all mechanisms in more detail in the Appendix.
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• Under the BNE:

E[V ] = Ψ
(

1
2(2 · 0) + 1

2(2 · 1)
)

+

+ (1−Ψ)
(

1
2 (q · 1 + (1− q)(1 + 0)) + 1

2 (q · 1 + (1− q)(1 + 0))
)

= 1
3 + 2

3 = 1 (32)

• With information design:

E[V ] = 2 · 1
3 · 1 + (1− 1

3)(q + (1− q)(1 + 1
4)) = 3

2 −
1
6q (33)

This gives E[V ] = 13
9 for q = 1

3 , which is larger than the expected payoff in the

BNE.

Thus, the information design has clearly improved the designer’s payoff.

The set of BCE is depicted in Figures 2 to 4. We hold αs = γs constant at 1 and draw

the points that satisfy the obedience constraints. α1 is displayed on the x-axis, α2 on the

y-axis and γa on the z-axis. Figure 2 gives the set of BCE for q = 1
2 and marks the first-

best action profile as well as the preferred second-best BCE for a contribution maximizing

designer (which is at α2 = γa = 1
4). Figure 3 compares the set of BCE for different values

of q, where it becomes clear that the highest attainable contribution probabilities increase

with q, thus also increasing the designer’s utility. That is, the more accurate the signal,

the higher the designer’s utility. At the threshold value q = 5
6 , the first-best solution can

be achieved, as calculated earlier. In Figure 4, we visualize the possible combinations of

σ(θ,θ,ts) C NC
C 1 0
NC 0 0

σ(θ,θ,ts) C NC
C 1

4 0
NC 3

4 0

σ(θ,θ,ts) C NC
C 1

4
3
4

NC 0 0

σ(θ,θ,ts) C NC
C 1 0
NC 0 0

Table 12: Example: Best attainable decision rule with information design in VCM (q = 1
3)
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α1 and α2 for γa = 0 and the different values of q from Figure 3. (still holding the social

contribution probabilities constant).

Figure 2: Set of BCE in VCM; q = 1
3

Excludable good

We now apply the same principle to the mechanism with an entry fee.

θ, θ C NC

C 2, 2 −0.5,0

NC 0,−0.5 0,0

θ, θ C NC

C −2,−1 −0.5,0

NC 0,0.5 0,0

θ, θ C NC

C −1, −2 0.5,0

NC 0,−0.5 0,0

θ, θ C NC

C 3, 3 0.5,0

NC 0,0.5 0,0

Table 13: Example: Payoffs in entry fee mechanism
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Figure 3: BCE in VCM with varying values of q

The modified obedience constraints to find the BNE are now:

Low type:

1
3(2αα− 1

2(α− αα)) + 2
3(1− q)(−2αα− 1

2(α− αα)) ≥ 0 (34)

High type:

1
3(3αα + 1

2(α− αα)) + 2
3(1− q)(−1αα + 1

2(α− αα)) ≥ 0 (35)

The threshold for both types to always contribute is q = 1
2 in this case. There is also an

equilibrium with α = 1 and α = 0 for q < 3
4 and an equilibrium with α = 1 α = 0 for

all values of q. Note that the threshold value for always contributing is much lower than

in the VCM, since there is no free-riding benefit to be obtained. Now we compare this
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Figure 4: BCE in VCM with varying value of q; 2-D

result to the optimal BCE:

α∗2 = γ∗a = −Ψ(θ − c+ z)
(1−Ψ)(1− q)(θ − c− y) =

−2 · 1
3

−2 · 2
3(1− q)

= 1
2(1− q) (36)

This implies α∗2 = γ∗a = 3
4 for q = 1

3 .

We now proceed to analyze the set of BCE under different precision values q. Firstly,

Figure 5 shows the set of BCE with q = 1
3 . It also displays the first-best solution, which

σ(θ,θ,ts) C NC
C 1 0
NC 0 0

σ(θ,θ,ts) C NC
C 3

4 0
NC 1

4 0

σ(θ,θ,ts) C NC
C 3

4
1
4

NC 0 0

σ(θ,θ,ts) C NC
C 1 0
NC 0 0

Table 14: Example: Best attainable decision rule with information design in entry fee
mechanism (q = 1

3)
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is not attainable in this case, and the second-best BCE. The latter is at α2 = γa = 3
4 in

this case. Comparing this set of BCE to Figure 2, we observe that the best attainable

contribution probabilities are much larger than in the VCM at the same precision q. This

is because without the possibility to free-ride, contribution is relatively more attractive

and therefore the designer is less constrained in her choice.

In Figures 6 and 7, we compare the set of BCE for different values of q. We can again see

that with increased signal precision, the best attainable BCE gets closer to the optimal

solution. As observed earlier, this first-best solution is attainable for q ≥ 1
2 , which is a

much lower threshold than under the VCM.

Figure 5: Set of BCE in entry fee mechanism; q = 1
3
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Figure 6: BCE in entry fee mechanism with varying values of q

Only the high type can produce the good on his own

Lastly, we solve for the equilibria in the game where only the high type can produce the

good on his own with the numbers from Table 10. Once again, we start out by finding

θ, θ C NC

C 2, 2 −1,0

NC 0,1 0,0

θ, θ C NC

C −2,−1 −1,0

NC 1,0.5 0,0

θ, θ C NC

C −1,−2 0.5,1

NC 0,−1 0,0

θ, θ C NC

C 3, 3 0.5,2

NC 2,0.5 0,0

Table 15: Example: Payoffs when only the high type produces good on his own
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Figure 7: BCE in entry fee mechanism with varying values of q; 2-D

the standard BNE. The modified obedience constraints are now:

1
3(2αα− 1(α− αα)) + 2

3(1− q)(−2αα− 1(α− αα)) ≥ 2
3(1− q)1αα (37)

1
3(3αα + 1

2(α− αα)) + 2
3(1− q)(−1αα + 1

2(α− αα)) ≥ 1
32αα (38)

With these constraints, the threshold for always contributing is q > 2
3 . As in the first

mechanism, there can be a mixed equilibrium when q is in a certain range. Here it is
1
2 < q < 15−

√
33

16 . Again, the equilibrium where the high type contributes and the low type

does not exist for all values of q. For values of q below 3
4 , there is also the equilibrium

where the low type contributes and the high type does not.

In the information design problem, the second-best optimal solution (for q < 2
3) can be

computed as follows:

α∗2 = γ∗a = −Ψ(θ − c+ z)
(1−Ψ)(1− q)(−c− y) =

−1
3(2)

(1− 1
3)(1− q)(−3)

= 1
3(1− q) (39)
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σ(θ,θ,ts) C NC
C 1 0
NC 0 0

σ(θ,θ,ts) C NC
C 1

2 0
NC 1

2 0

σ(θ,θ,ts) C NC
C 1

2
1
2

NC 0 0

σ(θ,θ,ts) C NC
C 1 0
NC 0 0

Table 16: Example: Best attainable decision rule with information design with asymmet-
ric abilities to produce the good (q = 1

3)

In Figure 8, we compute the set of BCE for q = 1
3 with the second-best solution α∗2 = γ∗a =

1
2 . In terms of the designer’s utility, this is in between the regular VCM and the entry

fee mechanism. Figures 9 and 10 compare the correlated equilibria and their optimal

solutions for varying values of q, showing a similar picture to before. In fact in Figure 10,

the lower edge of the set for q = 1
3 is equal to the one under the entry fee mechanism (in

Figure 7). This is because when γa = 0, the contribution constraint of the low type in

the last game is equivalent to the one in the entry fee mechanism.

This concludes the analysis of the numerical example. Again, we saw that the best

attainable outcome gets closer to the first-best solution with an increase in q, i.e. the

precision of the signal. Furthermore, the designer can achieve higher utilities for a given

value of q in the entry fee mechanism compared to the VCM as her choice of the signal

distribution is less constrained without free-riding.

3.6 Discussion

The model in this thesis has shown us that an information designer can improve the

outcome of a public goods game by implementing a decision rule that satisfies the partic-

ipants’ incentive compatibility constraints. In the games, we have assumed that players

want to contribute to the public good together with their own type, while they get nega-

tive utility from working with a different type.

Our results imply that a platform designer would want to make action recommendations

to two agents who want to collaborate on a project together. When the designer can ob-

serve their types, she can always tell types who want to contribute together to contribute.
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Figure 8: Set of BCE with only θ producing good; q = 1
3

When they have opposing types, which could mean that they have different goals, then

the designer who would like to maximize contributions still gives both players an action

recommendation with some probability and recommends only the high type to contribute,

who will then work on his own, in all other cases. A designer trying to maximize social

efficiency could simply act as a correlation device by always telling only the high type to

contribute in the asocial state, which maximizes the sum of utilities in each state. Let

us go back to the Linux situation from the introduction, where people work in subteams

(Hertel et al., 2003) and are unsure about their team members’ goals. A central platform

designer could now make action recommendations to the programmers based on their

types to maximize her utility. As discussed earlier, this would imply full transparency

when players have the same valuation for the team’s goals and some potential obfuscation

when they do not have the same goals (depending on the designer’s objective).

Here, it is an exogenously imposed assumption that the players prefer to work with their

own type and derive disutility from working with a different type. One can imagine a
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-

Figure 9: BCE with only θ producing good with varying values of q

situation where conditional cooperators prefer to work with one type rather than another

and they are unsure about their counterpart’s type. This effect has been supported by

previous research as laid out in Chapter 1. However, an interesting extension to this model

would be to endogenize this preference for working with one specific type. This may for

example arise from a game with multiple states where players adjust their reaction to the

outcome from the previous stage.

This dynamic approach would also be insightful from another perspective: Often, public

goods are provided over a long period of time, so that collaboration on these projects

should also be maintained over more than one period. Extending the analysis to a per-

spective where an information designer sets up an optimal decision rule for different types

and states over multiple periods could therefore give relevant results for the design of

public goods provision. This would imply designing the optimal revelation of information

over time. Combined with endogenous types, this could also determine which players an

agent prefers to work with in the first place.
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Figure 10: BCE with only θ producing good with varying values of q; 2-D

A potentially problematic point of this analysis is that it is assumed that the designer is

omniscient in the sense that she knows the players’ types with certainty. Clearly, this may

not always be the case in relevant applications, since players’ types could be imperfectly

observable for the designer. In this case, information design with elicitation would be bet-

ter suited to analyze the situation: In addition to the incentive compatibility constraints,

there would be truth-telling constraints such that the players would truthfully reveal their

type. These additional constraints would decrease the set of feasible BCE.

While we have invoked a version of the revelation principle following Bergemann and

Morris (2018, 2016a, 2016b), as Mathevet et al. (2017) note, it is not evident that the

precondition required to do so is always fulfilled: The designer has to be able to pick the

most-preferred equilibrium in order for the revelation principle to apply. This is usually

not the case in the many-player case. Our results therefore give an upper benchmark that

the designer can achieve in the best case.

As Bergemann and Morris (2018) note, information design, like mechanism design, can

have a literal or a metaphorical interpretation. This means that even in cases where there

is no actual designer sending signals, the set of BCE "is precisely the set of outcomes that
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can arise with extra information for a given basic game and prior information structure"

(Bergemann and Morris, 2018, Section 5). Thus, the results are still informative about

possible outcomes when players receive information in addition to the prior information

structure, even if there is no literal information designer. Bergemann and Morris (2016a)

treat metaphorical information design in more detail by finding an expansion for the in-

formation structure in the form of a larger type space. The expansion lets the players

have the same beliefs that they would have, had they observed actual action recommen-

dations. Therefore, this gives rise to a set of BNE that corresponds to the set of BCE

under explicit information design.

Overall, the model has a few restrictive assumption that are, however, quite common in

the current literature on information design. To be able to make more general statements

about information design in public goods provision, it would be beneficial to generalize

the relatively specific situation that we have analyzed in this situation. One option would

be to vary the players’ signal structure which we have assumed to be of a specific form

here. The distribution could be varied in many ways, for example to accommodate for

asymmetric signals. This would however not change the analytic procedure in princi-

ple. Furthermore, we have seen in the introduction, that cooperation can be a complex

phenomenon that is determined by multiple different factors like reciprocity, altruism,

fairness considerations, group size, communication between players and dynamic aspects.

For future research, it is therefore important to try to identify and incorporate these in-

sights into the information design problem. A deeper analysis would therefore include

a more complex utility function. Thus, this model is one starting point that may give

recommendations for a certain situation.
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4 Conclusion

This thesis has analyzed ways to increase contributions in public goods games compared

to a situation without information design. An information designer is able to increase

expected utility for herself by influencing the players’ beliefs through giving action rec-

ommendations. The players may benefit from this as well, since they are better or at

least not worse off than without information design, otherwise their obedience constraints

would not be satisfied and they would not want to follow the decision rule.

We have established that in states where player and designer preferences are aligned, it

is optimal not to obfuscate information. In states where this is not the case, it depends

on the precision of the players’ prior information what contribution probabilities can be

achieved. If q is above a threshold, then the designer can simply enforce the first-best

solution to her objective. Otherwise, at least one player’s obedience constraint is binding,

such that the contribution probability will be different from the first-best solution. In our

case, it was the contribution constraint of the low type that was binding since this type

derives lower levels of utility from the game overall.

If the designer wanted to change the mechanism as well, she could pick an entry fee mech-

anism that would allow for higher contribution probabilities because of less free-riding

opportunities.

This analysis has shown that the efficiency of public goods provision with social preferences

can be improved without any monetary transfers, only by giving action recommendations.

For future research, it would be interesting to extend this to a framework that includes

other types of social preferences.
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Appendix

Proof that θ’s expected contribution constraint holds when θ’s

contribution constraint is satisfied

We show that, when the low type’s contribution constraint (Equation (8)) is satisfied, then

the high type’s contribution constraint (6) automatically holds. We do this by showing

that the expected utility from contributing for the low type is smaller or equal to the

expected utility from contributing for the high type.

Ψ(−c+ z) + (1−Ψ)(1− q) (γa(−c− y) + (α1 − γa)(vθ − c− x))

≤ Ψ(−c+ z) + (1−Ψ)(1− q) (γa(−c− y) + (α2 − γa)(vθ − c− x))

(1−Ψ)(1− q) (γa(−c− y) + (α1 − γa)(vθ − c− x))

≤ (1−Ψ)(1− q) (γa(−c− y) + (α2 − γa)(vθ − c− x))

γa(−c− y) + (α1 − γa)(vθ − c− x) ≤ γa(−c− y) + (α2 − γa)(vθ − c− x)

⇒ (α1 − γa)︸ ︷︷ ︸
≥0

(vθ − c− x)︸ ︷︷ ︸
<0

≤ (α1 − γa)︸ ︷︷ ︸
≥0

(vθ − c− x)︸ ︷︷ ︸
>0

(40)

Thus, the LHS is negative and the RHS is positive, so the inequality is always satisfied.

We can therefore state that when the decision rule is such that the low type’s expected

utility from contributing is positive, the high type will also have a positive utility from

contributing.
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Remarks on the Bayesian Nash Equilibria

VCM

We have already discussed the threshold for both types always contributing (q = 5
6) in

the main text. The mixed strategy equilibrium is found by setting:

1
3(2α− 1

2(1− α)) + 2
3(1− q)(−2α− 1

2(1− α)) = 1
3α + 2

3(1− q)α

1
3(3α + 1

2(1− α)) + 2
3(1− q)(−1α + 1

2(1− α)) = 2
3α + 4

3(1− q)α

That is, the expected utility from contributing (LHS) must be equal to the expected

utility from not contributing (RHS). Solving this system yields a solution for 11
14 < q < 5

6 :

α = (−3 + 2q)(−9 + 10q)
137 + 140(−2 + q)q

α = −33 + 4(16− 7q)q
137 + 140(−2 + q)q

Pure strategy equilibria can be found as follows:

• Always contribute as a low type, never contribute as a high type: This implies

setting α = 1 and α = 0 in the constraints. The expected payoffs must be such that

the low type gets a higher utility from contributing while the high type gets higher

utility from not contributing for this situation to be an equilibrium.

1
3(2) + 2

3(1− q)(−1
2) ≥ 1

3

1
3(1

2) + 2
3(1− q)(−1) ≤ 4

3(1− q)

Both of these constraints are satisfied for 0 < q < 11
12 .

• Always contribute as a high type, never contribute as a low type: We reverse the
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situation compared to the previous point by setting α = 0 and α = 1:

1
3(−1

2) + 2
3(1− q)(−2) ≤ 2

3(1− q)

1
3(3) + 2

3(1− q)(1
2) ≥ 4

3(1− q)

These conditions are satisfied for 0 < q < 1.

• Both types never contribute: Setting α = 0 and α = 0 requires:

1
3(−1

2) + 2
3(1− q)(−1

2) ≤ 0

1
3(1

2) + 2
3(1− q)(1

2) ≤ 0

Clearly, the second constraint is not satisfied for any possible value of q.

Entry fee

For the entry fee mechanism, we go through the same steps to find the BNE. The mixed

strategy equilibrium is found by setting:

1
3(2α− 1

2(1− α)) + 2
3(1− q)(−2α− 1

2(1− α)) = 0

1
3(3α + 1

2(1− α)) + 2
3(1− q)(−1α + 1

2(1− α)) = 0

In this case, there is no mixed strategy equilibrium for 0 < q < 1. Regarding pure strategy

equilibria we find:

• Always contribute for both types (α = α = 1) is an equilibrium when:

1
3(2) + 2

3(1− q)(−2) ≥ 0
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1
3(3) + 2

3(1− q)(−1) ≥ 0

Thus, we look for the threshold by setting the contribution probabilities to 1 and

solving for q. Both constraints are satisfied for q > 1
2 .

• Always contribute as a low type, never contribute as a high type: This implies

setting α = 1 and α = 0 in the constraints:

1
3(2) + 2

3(1− q)(−1
2) ≥ 0

1
3(1

2) + 2
3(1− q)(−1) ≤ 0

Both of these constraints are satisfied for 0 < q < 3
4 .

• Always contribute as a high type, never contribute as a low type: We reverse the

situation compared to the previous point by setting α = 0 and α = 1:

1
3(−1

2) + 2
3(1− q)(−2) ≤ 0

1
3(3) + 2

3(1− q)(1
2) ≥ 0

These conditions are satisfied for 0 < q < 1.

• Both types never contribute: Again, this is never an equilibrium. Setting α = 0 and

α = 0 requires:

1
3(−1

2) + 2
3(1− q)(−1

2) ≤ 0

1
3(1

2) + 2
3(1− q)(1

2) ≤ 0

This never holds for 0 < q < 1.
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Only θ produces the good on his own

We first find the mixed strategy equilibrium:

1
3(2α− (1− α)) + 2

3(1− q)(−2α− (1− α)) = 2
3(1− q)α

1
3(3α + 1

2(1− α)) + 2
3(1− q)(−1α + 1

2(1− α)) = 2
3α

Solving this system yields a solution for 1
2 < q < 15−

√
33

16 :

α = 9 + 2q(−9 + 4q)
3(7 + 8(−2 + q)q)

α = 1
2(−1 + 1

7 + 8(−2 + q)q )

Pure strategy equilibria:

• Always contribute for both types (α = α = 1) is an equilibrium when:

1
3(2) + 2

3(1− q)(−2) ≥ 2
3(1− q)

1
3(3) + 2

3(1− q)(−1) ≥ 1
3(2)

These constraints both hold for q > 2
3 .

• Always contribute as a low type, never contribute as a high type: Set α = 1 and

α = 0 in the constraints:

1
3(2) + 2

3(1− q)(−1
2) ≥ 0

1
3(1

2) + 2
3(1− q)(−1) ≤ 0

Note that these are the same constraints as in the entry fee mechanism so they are

again satisfied for 0 < q < 3
4 .
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• Always contribute as a high type, never contribute as a low type: We reverse the

situation by setting α = 0 and α = 1:

1
3(−1

2) + 2
3(1− q)(−2) ≤ 2

3(1− q)

1
3(3) + 2

3(1− q)(1
2) ≥ 4

3(1− q)

These conditions are satisfied for 0 < q < 1.

• Both types never contribute: Setting α = 0 and α = 0 requires:

1
3(−1

2) + 2
3(1− q)(−1

2) ≤ 0

1
3(1

2) + 2
3(1− q)(1

2) ≤ 0

Again, this is never satisfied as the high type would have an incentive to deviate in

this case.
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