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Abstract  

In this thesis, we combine copulas with the variational mode decomposition (VMD) method to 

explore the dependence structure between real estate and stock market in three countries, 

namely China, U.S. and Australia. We explore the static and dynamic symmetric and 

asymmetric copulas, and investigate the time-varying dependence structures in the short-term 

and long-term time horizons. Our empirical results provide strong evidence of tail dependence 

between the stock market and real estate market in all countries. Furthermore, lower tail 

dependence is generally higher than upper dependence in all time horizons. We then quantify 

risk measures, namely value at risk (VaR), conditional VaR (CoVaR) and the delta CoVaR 

(∆CoVaR) to analyze both upside and downside risk spillovers at different time horizons for 

each country. We find significant bidirectional risk spillovers between the stock market and 

the real estate market. The risk spillover effect between real estate-stock pair is the strongest 

in U.S and the weakest in Australia. In addition, we observe that downside risk spillovers are 

significantly stronger than the upside spillovers, and the systemic risk contribution of real estate 

to stock markets is larger than that of its opposite direction in all three countries. 
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1.Introduction 

Real estate is important not only for homebuyers, but also constitutes an important asset class 

for mutual funds both locally and internationally (Higgins, 2007). Hudson et al. (2003), point 

out that one of the primary benefits of including real estate assets in a portfolio is the reduction 

on the overall risk of the portfolio due to its low correlation with other assets. Because of these 

diversification gains, real estate has already become an attractive investment choice as a part 

of a mixed-asset portfolio (Worzala and Sirmans, 2003). Thus, studying the linkages between 

real estate returns and other asset returns especially stock returns is beneficial for asset 

allocation and portfolio risk management. 

There are three main mechanisms that interpret the linkages between the stock market and 

the real estate market. The first mechanism is the ‘wealth effect’, which is a unidirectional 

relationship from the stock market to the real estate market. This theory suggests that a rise in 

stock prices increases the wealth of investors, and thus boosts real estate consumption and 

prices (Okunev and Wilson, 1997; Okunev et al., 2000). The second mechanism is the ‘credit 

price effect’. It states that a rise in real estate prices can lead to an increase in the credibility of 

the firms and thereafter allows them to increase investment and profits, which will in turn lead 

to a rise in the firms’ stock prices (Kapopoulos and Siokis, 2005). The last mechanism called 

‘substitution effect’ describes a bidirectional relationship between the two markets. It arises 

from the modern portfolio theory (Markowitz, 1952) and suggests that investors adjust their 

allocation in real estate and stock when their respective market values change. The existing 

literature has studied a lot on the linkages between the two markets, but whether the 

transmission mechanism is unidirectional or bidirectional is still inconclusive.  

A large amount of the empirical literature models the linkages between the stock market 

and the real estate market by applying cointegration test and dependence analysis, but little is 

known about how the two markets co-move at different market conditions and at different 

investment horizons. Based on the concept of a range of symmetric and asymmetric copulas, 

we utilize Conditional Value at Risk (CoVaR) and delta Conditional Value at Risk (∆CoVaR) 

risk measures to quantify the upside and downside risk spillover effects from the stock market 

to the real estate market and vice versa. By applying time-varying copulas in addition to the 

static ones, we are able to investigate the dynamic dependence structure of the two markets. 

To distinguish the stock and real estate co-movements at different time horizons, we apply an 

advanced multiresolution decomposition method called variational mode decomposition 

(VMD) to decompose the time series into short and long-term components. The dependence in 
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different time horizons is thus captured by using time-varying copulas on the decomposed 

components. 

In our study, we use the performance of REITs to represent the performance of real estate 

market. A real estate investment trust (REIT) is a company that owns or finances income-

producing real estate. Unlike direct investment in private real estate market to own properties, 

REITs are more accessible to individuals and institutions, with lower capital requirement, 

higher liquidity, and a wide range of property types. As tradable financial products, REITs 

have constant price discovery mechanism and daily liquidity, which are essential 

characteristics for our study. Last but not least, REITs co-move with the private real estate 

market under most situations, as they are exposed to similar commercial, residential, public or 

other types of real estate assets. 

We focus on three countries in total, namely China, U.S. and Australia. The rapid growth 

of China's economy and the continuous rise in real estate asset prices over the past decade have 

attracted investors’ interest. The policy and regulation changes are in favor of the growth of 

rental market. Within the next one or two years, China is likely to launch the first authentic real 

estate investment trust (REIT), which might open the way for an estimated $1.9 trillion worth 

of issuance (Wildau and Jia, 2018). Moreover, Chinese stock market is seeing more investment 

opportunities as well. In June 2017, MSCI, a leading provider of global equity indexes, 

announced that it would include China A shares into the MSCI Frontier Emerging Markets 

Index and the MSCI ACWI index beginning in June 2018. As more institutions and individuals 

would leverage REITs to diversify their portfolios and invest in real estate markets, it is worth 

studying the dynamic dependence between the Chinese securitized real estate and stock market.  

On the other hand, United States and Australia have a long history of REITs market and 

are probably the two most mature public real estate markets in the world. The co-movement of 

their stock and real estate markets often gathers the world's attention. In United States, REITs 

were established in 1960 and by the end of 2017, there were 222 listed REITs with market 

capitalization of more than $1.1 trillion. With its first REIT introduced in 1971, Australian 

REITs market is also very mature. REITs offer a good degree of diversification in terms of 

tenant diversity, geographic diversification and diversification by property asset class. The 

difference between the mature financial markets and developing markets concerning the real 

estate-stock relationship deserve our attention.  
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To the best of our knowledge, our paper is the first study to investigate the cross-country 

difference in time-varying dependence between real estate and stock markets at different time 

horizons. By combining VMD and copula methods and utilizing risk measures including VaR, 

CoVaR and ∆CoVaR, we contribute to the literature by adding strong evidence of time-varying 

tail dependence between the real estate market and stock market. We find that lower tail 

dependence is in general higher than upper tail dependence, and both dependence increase 

sharply during crisis. We find strong evidence of bidirectional risk spillovers both from the 

stock market to the real estate market and vice versa, but the credit price effect is higher in 

those three countries. Moreover, U.S. has the largest risk spillover effects, and its short-term 

systemic risk effect is significantly stronger than its long-term counterpart. 

This paper is organized as follows. Section 2 presents the literature related to this study. 

Section 3 describes the methodology used. Section 4 presents the data and descriptive statistics. 

Section 5 shows the empirical results obtained. Section 6 presents the risk implications. Section 

7 presents the robustness tests and Section 8 concludes the paper.
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2. Literature review 

The linkages between real estate and stock markets are important for asset allocation and 

portfolio management. A large volume of empirical literature has examined the linkages 

between those two markets, using different methods such as correlation tests, vector 

autoregressive (VAR) model and copulas. However, they don’t always draw the same 

conclusions. 

Okunev and Wilson (1997) use a non-linear cointegration test to REITs and the S&P 500 

indices and conclude that real estate and local stock markets are fractionally integrated. Maurer 

et al. (2004) perform a multivariate correlation analysis and conclude that German open-end 

real estate funds returns show more correlation with bond and money markets than with the 

stock market. The financial characteristics of open-end real estate funds are in many aspects 

similar to those reported for direct real estate investments.  

Liow and Yang (2005) implement a fractional integrated vector error correction model 

(FIVECM) on the securitized real estate and stock markets of Singapore. Their study implies 

that securitized real estate and stocks in Singapore are fairly substitutable assets over the long 

run and those assets may not be held together in a portfolio for diversification purpose. Also 

by focusing on cointegration and partial cointegration relations, Lin and Lin (2011) show that 

real estate investment and stocks are substitutable in China, Hong Kong, Japan, and Taiwan, 

while providing diversification potential for investment portfolios in South Korea and 

Singapore. Using quantile causality tests, Ding et al., (2014) find a significant causal 

relationship between real estate and stock markets in China, especially in the tail quantile.  

Employing vector autoregressive models, Glascock et al., (2000) explore the causality and 

long run linkages between REIT and stock returns. Their study points out that REITs behave 

more like stocks and less like bonds after the structural changes in the early 1990s. Sim and 

Chang (2006) apply a vector autoregressive model on Korean market data, but find no evidence 

of converse causation from stock to real estate markets, indicating no wealth effect between 

the two markets. Using threshold error-correction model, Su (2011) finds the existence of both 

wealth and credit price effects in the real estate markets and stock markets of Western European 

countries. 

Simon and Ng (2009) analyze the diversification effect of REITs in U.S. market by 

applying a mixed-copula framework to measure the asymmetric tail dependence. They find 

that investing in REITs provides better protection against severe downturns of the U.S. stock 
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market than by investing in a foreign common stock index. Using different models including 

the Gaussian, Student-t, Clayton and Gumbel copulas in their work, Rong and Trück, (2010) 

show that copula functions provide a powerful tool for modelling the dependence structure 

between financial asset variables and accurate measurement of the Value-at-Risk (VaR) for 

portfolios that contain investment in real estate. Chang et al., (2011) apply various static 

copulas to study portfolio Value-at-Risk for estimations of joint distribution of a portfolio 

consisted of REITs and Russell 2000 in different time periods. They find that time-varying risk 

is a more important driver in the results than model specification. Chen et al., (2014) find that 

among their estimated static copulas in their study of the co-movement among financial 

markets, static SJC copula performs best and is able to capture asymmetric characteristics of 

the tail dependence structure.  

Even though the studies cited above have mainly focused on the static correlation between 

real estate markets and stock markets, various other literature addresses the importance of 

examining the dynamic aspect of the links by applying more advanced tools such as time 

varying regression analysis and dynamic copulas. 

By using time-varying regression techniques called flexible least squares, Clayton and 

MacKinnon, (2001) show that the relationship between REIT returns and returns to bonds, 

small cap stocks, large cap stocks and unsecuritized real estate has changed over time. The 

authors show further that variance decomposition for REIT returns can be separated into 

components directly related to major stock, bond, and real estate-related return indices, as well 

as idiosyncratic or sector-specific effects. 

Based on U.S data from 1999 to 2003, Cotter and Stevenson (2006) examine the time‐

varying conditional volatilities and correlations in the daily REITs and equity return series 

using multivariate VAR‐GARCH techniques. Their study recommends investors to incorporate 

time-varying volatilities and correlations in portfolio selection. 

Huang and Zhong (2006) apply Engle’s (2002) Dynamic Conditional Correlation (DCC) 

model to portfolio constructing with REITS.  They find that the DCC model, outperforms other 

correlation structures such as rolling, historical and constant correlations. Case et al., (2011) 

use the Dynamic Conditional Correlation model with Generalized Autoregressive Conditional 

Heteroskedasticity (DCC-GARCH) to examine dynamics in the correlation of returns between 

REITs and non-REIT stocks. Their results suggest that REIT-stock correlations form three 

distinct periods over year 1972 to 2008. Liow (2012) uses the Asymmetric Dynamic 
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Conditional Correlation (ADCC) model, which allows for asymmetric and time varying effects 

in estimating dynamic market conditions, on data from eight Asian securitized real estate 

markets over year 1995 to 2009. He finds that conditional correlations between real estate 

markets and stock markets are subject to regime changes caused by the global financial crisis. 

Heaney and Sriananthakumar, (2012) find that conditional correlations between Australia 

REITs and share market returns are quite high and increased further during both the Wall Street 

Crash and the global financial crisis. The authors argue that A-REITs behave more like shares 

than the underlying assets that they purport to mimic. 

Liow et al., (2011) analyze the dynamics and transmission of conditional volatilities 

across five major securitized real estate markets, by developing a multivariate regime-

dependent asymmetric dynamic covariance model that allows the conditional matrix to be both 

time- and state-varying. They point out that it is likely the optimal portfolio for the long-term 

would be different from that of the short term given different volatility dynamics. 

Li et al., (2015) examine the relationship between the U.S. housing and stock markets by 

considering a wavelet analysis, which allows the simultaneous examination of co-movement 

and causality between the two markets in both the time and frequency domains. Their findings 

provide robust evidence that co-movement and causality vary across frequencies and evolve 

over time. 

Utilizing an ARMA-GARCH model for the marginal distributions and a copula for the 

joint distribution, Sun et al., (2009) analyze the co-movement of global stock markets. Among 

the alternative models investigated their study, they find that Student-t copula ARMA(1, 1)-

GARCH(1, 1) is good at capture the long-run dependence and tail dependence between global 

capital markets.  

Hoesli and Reka (2011) apply time varying SJC copula on U.S., U.K. and Australia 

markets and state that rather important tail dependence coefficients are observed. And they also 

point out that the strongest volatility spillovers between the stock and the securitized real estate 

markets are found in the U.S. Mensi et al., (2017) add to the evidence that time-varying SJC 

copula and the CoVaR based on SJC copula is the best among their estimated time-varying 

copulas in estimating the dependence structure and tail dependence for financial markets. By 

applying Variational Mode Decomposition (VMD) method, they further point out dependence 

changes over different time horizons. 
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Kiohos et al., (2017) examine the long co-memory process between real estate and stock 

market returns in U.K. and Germany. Their error correction auto regressive fractionally 

integrated moving average (ECM-ARFIMA) model capture the fractional difference and the 

long-term error effect of the initial non-linear fractional integration model in Germany and the 

short–term effects (ARMA coefficients) in the UK. Their results provide support to the ‘wealth 

effect’ and to the fractional integration process in both countries.  

Our study complements the existing literature by adding evidence of time-varying tail 

dependence between regional real estate markets and stock markets in China, U.S. and 

Australia. We also add further discussions about dependence variation and risk spillovers in 

different time horizons. By quantifying the risk measures, we analyze the asymmetric systemic 

risk effect for short and long positions in short-term and long-term. 
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3. Methodology 

3.1. The marginal distribution model 

We estimate the parameters of the marginal distribution models and copula models following 

a two-step procedure, proposed by Joe and Xu (1996). We first estimate a marginal model for 

the stock return and real estate return series respectively by applying the maximum likelihood 

(ML) method. We then transform the standardized residuals of the marginal models into their 

uniform marginal through probability integral transform. Using the transformed residuals pair, 

the copula models can be finally estimated by ML method. 

For the marginal distribution models, we employ the ARMA-GARCH model on the return 

series and use statistical tests to choose the best fitted models. The autoregressive moving 

average mean equation is expressed as ARMA(p, q): 

 𝑦𝑡 = 𝛿 + ∑ 𝜙𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞
𝑗=1 + 𝜀𝑡 ,  (1) 

where δ is a constant term, 𝜙𝑖  is the i-th autoregressive coefficient, 𝜃𝑗  is the j-th moving 

average coefficient, and 𝜀𝑡 is the independently distributed error term at time t. p and q are the 

orders of autoregressive and moving average terms, respectively.  

The GARCH variance model addresses the heteroskedastic effects of the time series. The 

Generalized Autoregressive Conditional Heteroskedastic (GARCH) function models the 𝜀𝑡 

terms in the ARMA mean equation, or alternatively, the innovations of the time series process. 

Flowing Bollerslev (1986), a GARCH(p, q) process is expressed as: 

𝜀𝑡 =  𝑧𝑡 𝜎𝑡 

𝑧𝑡  ~ 𝐷𝜗(0, 1) 

 𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑖𝜀𝑡

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡

2,𝑞
𝑖=1    (2) 

where 𝜎𝑡
2  is the conditional variance, and 𝑧𝑡 is an i.i.d. process with zero mean and unit 

variance. 

Considering the possibility of long memory in the return series, we also test ARFIMA-

GARCH models. Introduced by Granger and Joyeux (1980), fractional integrated 

autoregressive moving average model is appropriate for the statistical analysis of a univariate 

time series with long memory. Fractionally integrated series are slowly mean-reverting and 

display significant persistence in the long term. Mathematically, Granger and Joyeux (1980) 

define a time series 𝑟𝑡 is said to follow an ARFIMA (p, d, q) process if 
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Φ(𝐿)(1 − 𝐿)𝑑(𝑟𝑡 − 𝜇) = Θ(𝐿)𝜀𝑡 

 𝜀𝑡 =  𝑧𝑡 𝜎𝑡 ,  (3) 

where 𝜀𝑡 is the independently distributed error term with variance 𝜎𝑡 at time t as explained in 

the GARCH variance model, d is the fractional differencing parameter that measures the degree 

of long memory, and L is the lag operator. For the autoregressive (AR) part, Φ(𝐿) = 1 −

𝜙1𝐿 − 𝜙2𝐿2 − ⋯ − 𝜙𝑝𝐿𝑝. And for the moving average part, Θ(𝐿) = 1 + Θ1𝐿 + Θ2𝐿2 + ⋯ +

Θ𝑝𝐿𝑝 . 

The usefulness of a fractional filter (1 − 𝐿)𝑑  is that it produces hyperbolic decaying 

autocorrelations, the long memory property. If d < 0.5, the process is covariance stationary and 

we can process with the ARFIMA model. When 0 < d < 0.5, the process demonstrates a long 

memory. When d=0, the process demonstrates a short memory and it becomes an ARMA 

process. 

For GARCH model, we consider three different distribution for the innovation process 𝑧𝑡 , 

namely Gaussian distribution, Student-t distribution and skewed Student’s t distribution. The 

GARCH model was initially combined with normal distributed errors by Bollerslev (1986), 

and later combined with Student distributed errors by Bollerslev (1987). The Bollerslev (1987) 

Student-t distribution has the probability density function given by: 

 ℊ𝑣(𝑦) =
Γ(

𝑣+1

2
) 

√𝑣𝜋 Γ(
𝑣

2
)

(1 −
𝑦2

𝑣
)

−
𝑣+1

2
,  (4) 

where 𝑣 is the degrees of freedom parameter and Γ( ) is the gamma function. When 𝑣 → ∞, it 

specializes to the standard normal distribution. 

The skewed Student’s t distribution innovation is based on the transformations introduced 

by Fernandez and Steel (1998) and developed by Lambert and Laurent (2000). Following their 

studies, the skewed Student-t density distribution is expressed as: 

 𝑓(𝑧𝑡ξ, 𝑣) = {

2

ξ+1/ξ
ℊ𝑣(ξ(𝑠𝑧𝑡 + 𝑚)) ,   𝑧𝑡 <  −

𝑚

𝑠

2

ξ+1/ξ
ℊ𝑣((𝑠𝑧𝑡 + 𝑚)/ξ) ,   𝑧𝑡 ≥  −

𝑚

𝑠

 ,  (5) 

where ℊ𝑣( )  is the symmetric Student-t density distribution function with the degrees of 

freedom parameter 𝑣, and ξ is the asymmetry parameter (ξ > 0). And the parameter 𝑚 and 𝑠2 

are respectively the mean and variance of the skewed Student-t distribution, described in 

Fernandez and Steel (1998) as follows: 
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 𝑚(ξ, γ) =
Γ(

γ−1

2
) √γ−2

√𝜋 Γ(
γ

2
)

(ξ −
1

ξ
); 𝑠2 = (ξ2 +

1

ξ2 − 1) − 𝑚2. 

If ξ = 1 , This skewed Student-t distribution specializes to symmetric Student-t 

distribution. In order to get the true skewness of the skewed Student-t distribution, we need to 

take the log of the parameter ξ. 

 

3.2 Copula approach 

In order to examine the average and tail dependence between the real estate and stock markets, 

we employ different copulas to the pseudo-sample observations given by the probability 

integral transformation of the standardized residuals for each marginal model. According to 

Sklar’s (1995) theorem, a joint distribution can be written as univariate marginal 

distribution functions of the variables and a copula that describes the dependence structure 

between the variables:  

 𝐹𝑟𝑡
𝑠 ,𝑟𝑡

𝑟(𝑟𝑡
𝑠, 𝑟𝑡

𝑟) = 𝐶( 𝐹𝑟𝑡
𝑠(𝑟𝑡

𝑠), 𝐹𝑟𝑡
𝑟(𝑟𝑡

𝑟) ),   (6) 

where 𝑢 = 𝐹𝑟𝑡
𝑠(𝑟𝑡

𝑠) and 𝑣 = 𝐹𝑟𝑡
𝑟(𝑟𝑡

𝑟), which are the marginal distribution functions for stock return 

and real estate return respectively, and 𝐹𝑟𝑡
𝑠,𝑟𝑡

𝑟 (𝑟𝑡
𝑠 , 𝑟𝑡

𝑟) is their joint distribution.  

The joint probability density function of stock return and real estate return can be derived 

from Eq. (6), 𝑐(𝑢, 𝑣) =  
𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
, as 

 𝑓𝑟𝑡
𝑠 ,𝑟𝑡

𝑟(𝑟𝑡
𝑠, 𝑟𝑡

𝑟) = 𝑐( 𝑢, 𝑣) 𝑓𝑟𝑡
𝑠(𝑟𝑡

𝑠) 𝑓𝑟𝑡
𝑟(𝑟𝑡

𝑟),   (7) 

where 𝑓𝑟𝑡
𝑠 (𝑟𝑡

𝑠)  and 𝑓𝑟𝑡
𝑟(𝑟𝑡

𝑟)  are the marginal density functions of stock return and real estate 

return, respectively.  

Copulas offer more flexibility in separate modelling the marginal distribution and 

dependence. We employ different copula specifications with different dependence structures 

as shown in Table 1. Restrictions for the parameters and the functions of tail dependence are 

also reported in the table. The symmetric copulas include the Gaussian copula, the Frank copula. 

The asymmetric copulas are the Gumbel copula with an upper tail dependence, the Clayton 

copula with a lower tail dependence, and the symmetrized Joe-Clayton copula (SJC), which is 

modified by Patton (2006) from the original Joe-Clayton copula. SJC copula is flexible at 

asymmetric dependence in either direction and nests symmetric dependence as a special case, 

https://en.wikipedia.org/wiki/Cumulative_distribution_function#Multivariate_case
https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Marginal_distribution
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that is when 𝜆𝑈 = 𝜆𝐿. One feature of SJC is that even though it can nest symmetric dependence 

as a special case, it does not impose symmetric dependence restriction like the Gaussian copula.  

Table 1 Bivariate copula functions 

Copula Name Formula Parameter Tail dependence 

Gaussian (N) 𝐶𝑁(𝑢, 𝑣, 𝜌) = ϕ(ϕ−1(𝑢), ϕ−1(𝑣)) 𝜌 𝜖[−1, 1] 
Zero tail dependence: 

𝜆𝐿 = 𝜆𝑈 = 0 

Gumbel (G) 𝐶𝐺(𝑢, 𝑣, 𝛿) = exp(−[(− log 𝑢)𝛿 + (− log 𝑣)𝛿]1/𝛿) 𝛿 𝜖[1, ∞) 
Asymmetric tail dependence: 

𝜆𝐿 = 0, 𝜆𝑈 = 2 − 21/𝛿 

Clayton (C) 𝐶𝐶(𝑢, 𝑣, 𝛿) = max {(𝑢−𝛿 + 𝑣−𝛿 − 1)
−

1
𝛿 , 0} 

𝛿 𝜖[1, ∞)

\{0} 

Asymmetric tail dependence: 

𝜆𝐿 = 2−1/𝛿, 𝜆𝑈 = 0 

Frank (F) 𝐶𝐹(𝑢, 𝑣, 𝛿) = −
1

𝛿
log (

(1 − 𝑒−𝛿) − (1 − 𝑒−𝛿𝑢)(1 − 𝑒−𝛿𝑣)

(1 − 𝑒−𝛿)
) 

𝛿 𝜖(−∞, ∞)

\{0} 

Zero tail dependence: 

𝜆𝐿 = 𝜆𝑈 = 0 

SJC 

𝐶𝑆𝐽𝐶(𝑢, 𝑣, 𝜆𝑈, 𝜆𝐿) = 0.5(𝐶𝐽𝐶(𝑢, 𝑣;  𝜆𝑈 , 𝜆𝐿)

+ 𝐶𝐽𝐶(1 − 𝑢, 1 − 𝑣; 𝜆𝐿 , 𝜆𝑈) + 𝑢 + 𝑣 − 1) 

where 𝐶𝐽𝐶(𝑢, 𝑣, 𝜆𝐿, 𝜆𝑈)denotes the Joe-Clayton copula 

defined as: 𝐶𝐽𝐶(𝑢, 𝑣, 𝜆𝑈, 𝜆𝐿) = 1 − (1 − {[1 − (1 − 𝑢)𝑘]−𝛾 +

[1 − (1 − 𝑣)𝑘]−𝛾 − 1}−1/γ)
1/𝑘

 

where 𝑘 =
1

𝑙𝑜𝑔2(2−𝜆𝑈)
, 𝛾 = −

1

𝑙𝑜𝑔2(𝜆𝐿)
 

𝜆𝑈 𝜖(0, 1) 

𝜆𝐿 𝜖(0, 1) 

𝜆𝐿 = 2−1/𝛾 

𝜆𝑈 = 2 − 21/𝑘 

 

In order to capture the time variation in the dependence structure, we construct time 

varying copulas by varying the parameters of the copulas according to some evolution equation, 

while fixing the functional form over the sample. Alternatively, we can use a switching-

parameter copula model proposed by Rodriguez (2003) to introduce time variation in the 

functional form. We do not explore the latter time varying copulas here.  

We estimate the time varying Gumbel, Clayton and SJC copulas in our study. Following 

the practice of the previous literature such as Patton (2006), Mensi et al., (2017), we assume 

that copula parameters are evolving in an ARMA(1,q)-type pattern. The current-period 

parameter is affected by one-period lagged parameter and the average difference between the 

transformed residuals of the stock and real estate marginal models. The time varying tail 

dependence parameters of Gumbel and Clayton copulas are as follows: 
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 𝛿𝑡 = 𝜔 + 𝛽𝛿𝑡−1 + 𝛼
1

𝑞
∑ |𝑢𝑡−𝑗 − 𝑣𝑡−𝑗|𝑞

𝑗=1 ,  (8) 

where 𝛿𝑡 is the copula parameter, 𝜔, 𝛽 , 𝛼 are the parameters of the evolution function, u and 

v are the transformed residuals from marginal models. Following the common practice, we 

assume that the copula parameters follow a restricted ARMA(1, 10) process and thus take q=10 

in the equation. 

According to Patton (2006), the time varying tail dependence parameters of SJC copula 

follow a similar evolution function: 

𝜆𝑡
𝑈 = ∆ (𝜔𝑈 + 𝛽𝑈𝜆𝑡−1

𝑈 + 𝛼𝑈

1

10
∑|𝑢𝑡−𝑗 − 𝑣𝑡−𝑗|

10

𝑗=1

) 

 𝜆𝑡
𝐿 = ∆ (𝜔𝐿 + 𝛽𝐿𝜆𝑡−1

𝐿 + 𝛼𝐿
1

10
∑ |𝑢𝑡−𝑗 − 𝑣𝑡−𝑗|10

𝑗=1 ),  (9) 

where𝜆𝑡
𝑈and 𝜆𝑡

𝐿  are the copula parameters of SJC, representing the upper tail dependence and 

lower tail dependence respectively, 𝜔𝑈 , 𝛽𝑈  ,  𝛼𝑈  are the parameters of the upper tail 

dependence evolution function, 𝜔𝐿, 𝛽𝐿 , 𝛼𝐿 are the parameters of the lower tail dependence 

evolution function, u and v are the transformed residuals from marginal models. ∆(𝑥) =

(1 + 𝑒−𝑥)−1 is the modified logistic transformation used to keep 𝜆𝑡
𝑈 and 𝜆𝑡

𝐿 in (0, 1).  

 

3.3 Variational mode decomposition (VMD) 

To distinguish between short- and long-term variations of the time series that we study, we use 

a non-recursive decomposition technique known as the Variational Mode Decomposition 

(VMD), proposed by Dragomiretskiy and Zosso (2014), to decompose the returns series. The 

low (high) frequency modes obtained through VMD represent the long (short) term dynamics 

of the original time series. Thus, this mode-by-mode decomposition technique enables us to 

examine the change in real estate markets and stock markets dependence on different scales. 

The general idea of VMD is to decompose a time series f into k discrete number of sub-

series (known as modes) 𝑢𝑘 , which has limited bandwidth in the spectral domain. Each 

decomposed mode k is required to be compressed around a center pulsation 𝜔𝑘 , which is 

determined along with the decomposition. The algorithm to determine the bandwidth of a time 

series requires the following steps: (i) obtain a unilateral frequency spectrum for each mode 

𝑢𝑘  by computing associated analytic series through Hilbert transform; (ii) for each mode 𝑢𝑘, 

shift the mode’s frequency spectrum to a baseband by mixing with an exponential tuned to the 
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respective estimated center frequency; (iii) compute the bandwidth of the demodulated series 

through Gaussian smoothness (Dragomiretskiy and Zosso, 2014) 

Then, the constrained variational problem is given as: 

 𝑚𝑖𝑛{𝑢𝑘},{𝜔𝑘}= {∑ ‖𝜕𝑡 [(𝛿(𝑡) + 
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘 }  (10) 

𝑠. 𝑡.  ∑ 𝑢𝑘𝑘 = 𝑓, 

where f is the time series and 𝑢 is its mode while 𝜔, δ, and ∗ represent the frequency, the Dirac 

distribution and convolution, respectively. The mode 𝑢  with high-order k represents low 

frequency components. Thus, {𝑢𝑘} ≔ {𝑢1, … , 𝑢𝑘} and {𝜔𝑘} ≔ {𝜔1, … , 𝜔𝑘} are the sets of all 

variational modes and their central frequency, respectively. The solution to Eq. (10) is the 

saddle point of the following augmented Lagrange (ℒ) expression: 

 ℒ(𝑢𝑘 , 𝜔𝑘 , 𝜆) =  𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +  
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)]‖

2

2

𝑘 + ‖𝑓 − ∑ 𝑢𝑘‖2
2 + 〈𝜆, 𝑓 − ∑ 𝑢𝑘〉,   (11) 

where ℒ is the Lagrange multiplier, α denotes the balancing parameter of the data-fidelity 

constraint, and ⟦ . ⟧𝑝 denotes the usual vector ℓ𝑝 norm where p=2. The solution to Eq. 

(11) is found in a sequence of k iterative sub-optimizations. Finally, the solutions for 𝑢 

and 𝜔 are found in Fourier domain and are given by:  

𝑢𝑘
𝑛+1 = (𝑓 − ∑ 𝑢𝑖 +

𝜆

2
𝑗≠𝑘

) (1 + 2𝛼(𝜔 − 𝜔𝑘)2)⁄  

 𝜔𝑘
𝑛+1 = (∫ 𝜔|𝑢𝑘(𝜔)|2∞

0
𝑑𝜔) (∫ |𝑢𝑘(𝜔)|2∞

0
𝑑𝜔)⁄ ,  (12) 

where n is the number of iterations. 

And for λ it's updated as 

 λ̂𝑛+1 ← λ̂𝑛 + 𝜏(𝑓 − ∑ 𝑢̂𝑘
𝑛+1

𝑘 )  (13) 

until convergence: ∑ ‖𝑢̂𝑘
𝑛+1 − 𝑢̂𝑘

𝑛‖2
2

𝑘 /‖𝑢̂𝑘
𝑛‖2

2. 

Following Lahmiri (2015), Shahzad et al., (2016), Mensi et al., (2017) etc., we set the 

number of modes k to ten. 
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3.4 VaR risk measure 

The value at risk (VaR) is one of the most common and widely employed risk measures in risk 

management. The q%-VaR is the maximum loss within a specific time horizon and with the 

q%-confidence interval. In our study, we quantify both the downside and upside VaRs.  

The downside VaR is the maximum loss that an investor may incur by holding a long 

position in the underlying market for a confidence level 1- and a time horizon t. In other 

words, it measures the  quantile of the return series 𝑟𝑡 that Pr(𝑟𝑡  ≤  𝑉𝑎𝑅𝛼,𝑡
𝐷 )= . Assuming a 

skewed Student-t distribution for the return series, one-day-downside VaR can be computed 

from the marginal models as  

 𝑉𝑎𝑅𝛼,𝑡
𝐷 = 𝜇𝑡 + 𝑡η,λ  

−1 (𝛼)𝜎𝑡,  (14) 

where 𝜇𝑡  and 𝜎𝑡  are the conditional mean and standard deviation of the ARFIMA-GARCH 

model chosen for the return series, and 𝑡η,λ
−1(𝛼)  is the  quantile of the skewed Student-t 

distribution expressed as Eq. (5).  

Similarly, the one-day-upside VaR quantifies the maximum loss that an investor may 

incur by holding a short position in the underlying market and it is expressed by Pr(𝑟𝑡  ≥

 𝑉𝑎𝑅1−𝛼,𝑡
𝑈 )= , which could be calculated by  

 𝑉𝑎𝑅1−𝛼,𝑡
𝑈 = 𝜇𝑡 + 𝑡η,λ

−1(1 − 𝛼)𝜎𝑡. (15) 

After obtaining the time varying value at risk series, we use backtesting technique to 

determine the accuracy of the predicted VaR model. Backtesting in value at risk compares the 

predicted losses from the calculated VaR with the actual losses realized at the end of the 

specified time horizon. It is called a breach of VaR when the actual loss is greater than the 

estimated VaR loss. The acceptable frequency of breaches is decided by the confidence level 

for VaR. We use two-sided backtesting, which means that for a 95% VaR, the frequency of 

breaches should neither be significantly more or less than 5%. In other words, the value of VaR 

is neither underestimated or overestimated. 

 

3.5 CoVaR and CoVaR risk measures 

VaR measures the risk of one market, but fails to consider the potential spillover effects that 

its financial distress may have on other markets. In order to study the possible risk spillovers 
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between the real estate market and stock market, we further estimate the conditional VaR 

(CoVaR) developed by Girardi and Ergün (2013) and Adrian and Brunnermeier (2016). The 

CoVaR of the underlying market is the VaR of that market conditional on the fact that a given 

market experiences financial distress. 

We quantify CoVaR both from stock market to real estate market (wealth effect) and from 

real estate to stock market (credit price effect). CoVaR from real estate market to stock market 

measures the VaR of stock market conditional on the distressed state of real estate market. 

Mathematically, this concept requires calculating the quantile of a conditional distribution. 

Following Girardi and Ergün (2013) and Adrian and Brunnermeier (2016), for a confidence 

level 1-, downside conditional VaR , denoted as 𝐶𝑜𝑉𝑎𝑅𝛽,𝑡
𝑠,𝐷, could be expressed as 

 Pr (𝑟𝑡
𝑠 ≤  𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑠,𝐷 𝑟𝑡
𝑟 ≤  𝑉𝑎𝑅𝛼,𝑡

𝑟,𝐷) = ,  (16) 

where 𝑟𝑡
𝑠 and 𝑟𝑡

𝑟 stand for return for stock and return for real estate respectively, and 𝑉𝑎𝑅𝛼,𝑡
𝑟,𝐷

 

represents the downside VaR for real estate return for a confidence level 1-𝛼 and a specific 

time horizon t.  

From the conditional probability concept, we could derive the quantile of the 

unconditional bivariate distribution: 

Pr (𝑟𝑡
𝑠≤ 𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑠,𝐷,𝑟𝑡
𝑟≤ 𝑉𝑎𝑅𝛼,𝑡

𝑟,𝐷)

Pr (𝑟𝑡
𝑟≤ 𝑉𝑎𝑅𝛼,𝑡

𝑟,𝐷)
 =  

Given that Pr (𝑟𝑡
𝑟 ≤  𝑉𝑎𝑅𝛼,𝑡

𝑟,𝐷) = , we can get: 

 Pr (𝑟𝑡
𝑠 ≤  𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑠,𝐷, 𝑟𝑡
𝑟 ≤  𝑉𝑎𝑅𝛼,𝑡

𝑟,𝐷) =   (17) 

As explained in the copula part, we can describe the joint distribution of 𝑟𝑡
𝑠 and 𝑟𝑡

𝑟 by their 

marginal models and the copula C, as: 

 C ( 𝐹𝑟𝑡
𝑠(𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑠,𝐷), 𝐹𝑟𝑡
𝑟(𝑉𝑎𝑅𝛼,𝑡

𝑟,𝐷)) = ,  (18) 

where 𝐹𝑟𝑡
𝑠 and 𝐹𝑟𝑡

𝑟  are the marginal models for stock return and real estate return respectively.  

Similarly, the upside CoVaR for stock return (𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡
𝑠,𝑈

) could be expressed as: 

 Pr (𝑟𝑡
𝑠 ≥  𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈  𝑟𝑡
𝑟 ≥  𝑉𝑎𝑅1−𝛼,𝑡

𝑟 ) = ,  (19) 

where 𝑉𝑎𝑅1−𝛼,𝑡
𝑟  represents the upside VaR for real estate return for a confidence level 1-𝛼 and 

a specific time horizon t. 
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Then we could derive the quantile of the unconditional bivariate distribution for upside 

CoVaR as: 

 Pr (𝑟𝑡
𝑠 ≥  𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈 , 𝑟𝑡
𝑟 ≥  𝑉𝑎𝑅1−𝛼,𝑡

𝑟 ) =   (20) 

And its corresponding copula form would be: 

 1 - 𝐹𝑟𝑡
𝑠(𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈 )- 𝐹𝑟𝑡
𝑟(𝑉𝑎𝑅1−𝛼,𝑡

𝑟,𝑈 )+ C( 𝐹𝑟𝑡
𝑠(𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈 ), 𝐹𝑟𝑡
𝑟(𝑉𝑎𝑅1−𝛼,𝑡

𝑟,𝑈 )) =,    (21) 

where 𝐹𝑟𝑡
𝑠 and 𝐹𝑟𝑡

𝑟  are the marginal models for stock return and real estate return respectively.  

We follow a two-step procedure to compute CoVaR proposed by Reboredo and Ugolini 

(2015). Firstly, given a copula function, and a confidence level of 1- for CoVaR of stock 

returns, we could obtain the value of 𝐹𝑟𝑡
𝑠(𝐶𝑜𝑉𝑎𝑅𝛽,𝑡

𝑠,𝐷) and 𝐹𝑟𝑡
𝑠(𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈 ) by solving Eq. (16) and 

Eq. (17) respectively, as we know that 𝐹𝑟𝑡
𝑟(𝑉𝑎𝑅𝛼,𝑡

𝑟,𝐷) =  and 𝐹𝑟𝑡
𝑟(𝑉𝑎𝑅1−𝛼,𝑡

𝑟,𝑈 ) = 1-. Secondly, we 

could obtain the value of 𝐶𝑜𝑉𝑎𝑅𝛽,𝑡
𝑠,𝐷 and 𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈  by inversing the marginal distribution 𝐹𝑟𝑡
𝑠, 

after computing the cumulative probability from step one. 

We use the Kolmogorov–Smirnov boot strapping test (KS test) proposed by Abadie(2002) 

to test for the significance of risk spillover between real estate market and stock market.  

 𝐾𝑆𝑚𝑛 = (
𝑚𝑛

𝑚+𝑛
)1/2 𝑠𝑢𝑝𝑥|𝐹𝑚(𝑥) − 𝐺𝑛(𝑥)| ,  (22) 

where 𝐹𝑚(𝑥)  and 𝐺𝑛(𝑥)  are the cumulative CoVaR and VaR distribution functions, 

respectively, and m and n are the size of the two return series samples. Here, we test the null 

hypothesis of no risk spillovers between real estate and stock market in both upside and 

downside tail, respectively. The null hypothesis for the stock market can be written as 

𝐶𝑜𝑉𝑎𝑅𝛽,𝑡
𝑠,𝐷
  𝑉𝑎𝑅,𝑡

𝑠,𝐷
 , 𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈
  𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈   respectively and the alternative is 𝐶𝑜𝑉𝑎𝑅𝛽,𝑡
𝑠,𝐷 ≠ 𝑉𝑎𝑅 ,𝑡

𝑠,𝐷
 , 

𝐶𝑜𝑉𝑎𝑅1−𝛽,𝑡
𝑠,𝑈 ≠ 𝑉𝑎𝑅1−𝛽,𝑡

𝑠,𝑈  respectively. And the null hypothesis and alternative are similar for real 

estate market. 

In addition, the systemic risk contribution of a particular market can be described by delta 

conditional value-at-risk (CoVaR) proposed by Adrian and Brunnermeier (2016) and Girardi 

and Ergün (2013). The delta CoVaR of real estate market represents the difference between the 

VaR of the stock market conditional on the distressed state of real estate market, expressed as 

CoVaR𝛽,𝑡
𝑠r, and the VaR of the stock market conditional on the median state of real estate market 

(that is the VaR value when =0.5), expressed as CoVaR𝛽,𝑡
𝑠r,=0.5. Thus, the delta CoVaR of real 

estate to stock market, expressed as CoVaR𝛽,𝑡
𝑠r, can be written as: 
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 CoVaR𝛽,𝑡
𝑠r = (CoVaR𝛽,𝑡

𝑠r - CoVaR𝛽,𝑡
𝑠r,=0.5

) / CoVaR𝛽,𝑡
𝑠r,=0.5

  (23) 

Thus, CoVaR could be used to capture the marginal contribution of real estate market to 

the stock market, and vice versa. 

 

3.6 Implementation R packages 

In our paper, we use “rugarch” package which is an R package developed by Alexios 

Ghalanos (2014) to estimate our marginal ARMA-GARCH models. The “rugarch” package 

supports a range of univariate distributions including the Normal, Student and their skew 

variants based on the transformations described in Fernandez and Steel (1998) and Ferreira and 

Steel (2006). When estimating VMD model, we use “VMD” package developed by Nicholas 

Hamilton (2017) who ports and extents the original Matlab code developed by Dragomiretskiy 

& Zosso (2013). We fit static copulas using the “VineCopula” package developed by Ulf 

Schepsmeier et al., (2016). “BiCopSelect” function gives the maximum Likelihood Estimation 

of Bivariate Copula Families. 
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4. Data and descriptive statistics 

The daily indices of the stock and real estate markets from December 2007 to March 2018, 

covering the 2008-2009 global financial crisis and 2015-2016 Chinese stock market turbulence, 

were collected from Yahoo finance. Given that China has not introduced real estate investment 

trusts (REITs) yet, and thus we look for a substitute, which is ideally a passively managed fund 

that follows the performance of Chinese real estate index and is accessible to international 

investors. We use the Guggenheim China Real Estate ETF (ticker: TAO), which tracks the 

AlphaShares China Real Estate Index, to represent the real estate prices. Accordingly, we use 

SPDR® S&P® China ETF (ticker: GXC), which follows the S&P® China BMI Index, to 

represent the stock market performance. We use all the data available and the time range of the 

data is from 12.18.2007 to 26.03.2018. 

For U.S. market, we use the daily closing prices of S&P 500 and S&P United States REIT. 

For Australian market, we use the daily closing prices of ASX-Australian stock exchange All 

Ordinaries and S&P/ASX 200 REIT. The data were sourced from investment.com. The U.S. 

data is from 3.31.2008 to 26.03.2018 due to data availability. The Australian data has the same 

time rage as that of Chinses data. 

Fig. 1 depicts the daily level series over the sample period in Chinese market, United 

States market and Australian market, respectively. We could see that Australian real estate 

market is the worst among all series, with its value not recovering back to its pre-crisis level 

yet.  Australian stock market is recovering very slowly, with value slightly above the pre-crisis 

level. On the other hand, Chinese real estate market and stock market are reaching a new high 

recently. Uniquely, Chinese real estate market’s performance matches very closely with stock 

market and sometimes outperforms the stock market. U.S. stock market has climbed up steadily 

from 2009. Its real estate market follows and becomes relatively stable in recent years. The 

data period is marked by some global events. We can see all series slump badly during the 

2008 global financial crisis and slip when the European debt crisis worsened in the end of 2011. 

2015 Chinese stock market turbulence, which begins with popping of stock market bubble in 

June 2015, can also be seen clearly from the graph. During this turbulence, stock market starts 

to recover at the end of 2015, but tumbles again at the beginning of 2016 after the introduction 

of the circuit-breaker mechanism by the China Securities Regulatory Commission. The circuit-

breaker mechanism was aimed to halt losses and help stabilize stocks, but the market responded 

to this mechanism by triggering the break two days in the first four trading days and the 
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Shanghai Composite fell 13.8 percent. As a result, the China Securities Regulatory 

Commission had to give up this mechanism due to the concern of the volatility. 

 

Fig. 1. Daily price series in Chinese market, United States market and Australian market 

 

We then calculate the continuously compounded daily returns of each series by taking the 

difference in the natural logarithm of two consecutive prices, and multiply them by 100. Fig. 

2 depicts the daily return series of stock market and real estate market for each country. All 

series have similar patterns with daily returns fluctuate around zero. We could also see 

volatility clustering in all series and returns become especially volatile during the 2008 

financial crisis. Among the three countries, Australia has the lowest volatilities in both stock 

market and real estate market during the crisis. 

 

 Chinese real estate return Chinese stock return 
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 U.S. real estate return  U.S. stock return 

 

 Australian real estate return  Australian stock return  

  

Fig. 2. Daily return series in Chinese market, United States market and Australian market. 

 

Table 2 shows the descriptive statistics of stock and real estate return series (expressed 

in %) in three regional markets. The average daily returns are slightly positive for all the series 

except for Australian series which has a -0.0178% return in real estate market an -0.0024% 

return in stock market. This relatively bad performance may due to Australia’s slow pace in 

recovering the drop happened in the financial crisis. Australian real estate market, however, is 

the least volatile among the three real estate markets, which does not experience extreme upper 

and lower values as Chinese and U.S. do. Australian stock market, in the same time, is the least 

volatile among all series.  Sharpe (1994) ratio, which is calculated under the assumption of a 

zero-return risk-free asset, characterizes how well the return of the underlying asset 

compensates the investor for the risk taken. It shows that U.S. stock market (0.0217) is the best 

choice to invest in, while Australian real estate market (-0.0122) is the worst. Moreover, only 

Chinese real estate market has a higher Sharpe ratio (0.0104) than that of its stock market’s 

(0.0083), suggesting the unique opportunity in Chinese market. Unlike U.S. and Australian 

markets, Chinese real estate and stock market exhibit positive skewness, which might be a 

favorable feature from an investment point of view. US real estate return series has the highest 
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standard deviation and kurtosis, which might be caused by the extreme values during the 

financial crisis. 

Serial correlation is found in return series and squared return series by LjungBox test, 

suggesting the use of ARMA and GARCH models. The ARCH test also indicates strong ARCH 

effects in all series. Both Shapiro-Wilk test and KPSS test reject the null of Gaussian 

distribution for all the series, suggesting that return series do not follow simple normal 

distributions as what are usually simplified in the textbook. ADF tests shows that all the series 

are stationary and thus ARMA model without differencing can be implemented.  

Table 2 

Descriptive analysis of stock and real estate return series 

  

CHN real 
estate 

U.S. real 
estate 

AUS real 
estate 

CHN stock 
market 

U.S. stock 
market 

AUS stock 
market 

Mean 0.0201 0.0061 -0.0178 0.0174 0.0277 -0.0024 

Std. Dev. 1.9381 2.2726 1.4633 2.1014 1.2794 1.0702 

Sharpe ratio 0.0104 0.0027 -0.0122 0.0083 0.0217 -0.0022 

Median 0.0000 0.0688 0.0027 0.0453 0.0602 0.0435 

Minimum -11.8137 -21.9450 -10.8489 -16.7112 -9.4695 -8.5536 

Maximum 14.9745 17.1235 8.0506 17.6152 10.9572 5.3601 

Skewness 0.1723 -0.2084 -0.5823 0.2198 -0.3787 -0.5061 

Kurtosis 6.5100 15.0938 7.1481 10.2998 11.3457 5.4611 

Ljung-Box 89.54*** 218.21*** 105.26*** 193.03*** 112.34*** 30.615* 

Ljung-Box^2 3384.2*** 6075.5*** 4692.8*** 5500.3*** 4106.4*** 3051*** 

ARCH 3381*** 6048*** 4677*** 5489*** 4098*** 3039*** 

ShapiroWilk 0.9219*** 0.784*** 0.905*** 0.8817*** 0.8635*** 0.9427*** 

KPSS  0.101 0.123 1.14 0.0851 0.424 0.26 

ADF  -10.1***  -10.6*** -11.7*** -10.7*** -11.2*** -12.3*** 

Notes: Returns in all series are % log returns.  Ljung-Box and Ljung-Box^2 are the Ljung-Box 
autocorrelation test statistics for return series and squared return series, respectively, computed 
with 20 lags.  ARCH is the test statistics of Portmanteau-Q test for the ARCH effect, computed 
with 20 lags. Shapiro-Wilk and KPSS are the test statistics of the Shapiro Wilk (1965) normality 
test and Kwiatkowski et al., (1992) unit root test for no drift and no trend type. ADF is Augmented 
Dickey Fuller (1979) stationarity test statistics for no drift and no trend type, setting lag equal 20. 
***, ** and * denote 1%, 5% and 10% significance levels, respectively. 
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5. Empirical results 

5.1 Marginal model results 

This analysis estimates the ARMA-GARCH or ARFIMA-GARCH models for each return 

series, using Gaussian, Student-t and skewed Student-t distribution respectively. When 

choosing the most adequate model, we consider the Ljung-Box, Hosking and ARCH test results 

of the residuals, the value of Akaike Information Criteria (AIC), and the significance of each 

parameter. We found that the fitted models with skewed Student-t distribution or Student-t 

distribution tend to have the minimum value of AIC, while fitted models with normal 

distribution pass all the diagnostic tests except for Australian real estate return series. 

Considering the descriptive statistics described above, which indicates that the return series are 

skewed with excess kurtosis and fail to pass the normality tests, we choose the most adequate 

models with skewed Student-t distribution. We also estimate the fractional integrated 

parameters in the ARFIMA model, and found d=0 most of the time, which indicates a short 

memory as ARMA model instead of a long range memory. 

Following Sun et al., (2009) and Mensi et al., (2017), we consider different combinations 

of the lag parameters for ARMA and GARCH ranging from zero to maximum 2. The most 

adequate model with skewed Student-t distribution is shown in Table 3, while the fitted models 

with normal distribution and Student-t distribution could be found in the appendix. Specifically, 

ARMA(1,1)-GARCH(1,2) model is the best model for US and Australian real estate return 

series, while ARMA(1,0)-GARCH(2,2) model is the best for Chinese real estate return series. 

For stock market, the best model for China, United States and Australia are ARMA(2,2)-

GARCH(2,2), ARMA(2,1)-GARCH(2,1) and ARMA(1,1)-GARCH(1,2) respectively. These 

fitted models are compatible with those in Sun et al., (2009) and Mensi et al., (2017). 

From the table, we could see that the ARCH components for almost all the series are 

significant at the 5% level, meaning that one-period lagged squared innovations affect the 

current-period volatility. Meanwhile, current-period volatility is related to the variance of the 

previous innovations, as indicated by the GARCH components significant at the 1% level for 

almost all the series are.  

It can also be seen that all the series exhibit significant skew and shape parameters at the 

1% significant level, suggesting that the fat tails of skewed Student-t distribution characterize 

the distribution of stock and real estate return series, and all the return series are negatively 

skewed. It justifies the use of skewed t distribution for the innovation process in the GARCH 
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model. It also shows the possibility of tail dependence, which would be discussed in the later 

section.  

Table 3 

Marginal model estimations ARFIMA-GARCH with skewed t innovations 

  
CHN real estate U.S. real estate AUS real estate 

CHN stock 
market 

U.S. stock 
market 

AUS stock 
market 

Cst(M) 0.054411* 0.040197** 0.027824* 0.067084*** 0.065364*** 0.0267* 

 (0.029882) (0.016937) (0.014719) (0.024318) (0.011493) (0.015108) 

AR(1) 0.032059* 0.721844* 0.723662*** 0.46105 0.778038*** -0.603452*** 

 (0.019451) (0.422386) (0.116117) (0.028672) (0.08507) (0.182985) 

AR(2)       0.248683 0.024055   

 
   (0.110972) (0.02761)  

MA(1)   -0.771257** -0.777163*** -0.496332 -0.867285*** 0.590437*** 

 
 (0.386701) (0.107216) (0.025725) (0.080248) (0.184168) 

MA(2)       -0.26252     

 
   (0.101899)   

Cst(V) 0.043292*** 0.012959** 0.014463*** 0.037873*** 0.017847*** 0.007909** 

 (0.016087) (0.005905) (0.005299) (0.012812) (0.006556) (0.003717) 

Alpha1 0.069265*** 0.104683 0.091719*** 0.040863** 0.06686** 0.080666*** 

 (0.025101) (0.025859) (0.01767) (0.017755) (0.028528) (0.017959) 

Alpha2 0.039083    0.062572** 0.090918**   

 (0.028525)   (0.020884) (0.043472)  

Beta1 0.545755*** 0.762107*** 0.515795*** 0.509434* 0.838014*** 0.912395*** 

 (0.103776) (0.097287) (0.073917) (0.149617) (0.031803) (0.010619) 

Beta2 0.332273*** 0.129701* 0.38221*** 0.376228   0.000196 

 (0.094806) (0.073567) (0.07119) (0.136444)  (0.008579) 

Skewness -0.00151*** -0.14591*** -0.04082*** -0.06001*** -0.14352*** -0.12146*** 

 (0.028157) (0.025556) (0.02708) (0.027323) (0.030629) (0.022853) 

Shape 9.207612*** 8.962336*** 12.294875*** 7.71313*** 5.509945*** 10.878683*** 

 (1.463394) (1.410321) (2.466515) (1.090988) (0.646272) (2.057582) 

AIC 3.7031 3.2989 3.0213 3.7329 2.6148 2.5865 

Ljung-Box 21.135 19.894 23.214 24.174 27.324 20.149 

Ljung-Box^2 29.16* 31.228 32.069* 32.007* 23.559 19.076 

Hosking 21.1182607 19.877832 23.197178 24.155301 27.302506 20.133755 

Hosking^2 28.0381156 30.17253* 30.967547 30.736868* 22.875028 17.726458 

ARCH 28 30.1* 30.9 30.63* 22.78 17.66 
Notes: This table reports the ML estimates and the robust standard deviations in parenthesis for the parameters of the marginal 
distribution model. Ljung-Box and Ljung-Box^2 are Ljung-Box autocorrelation test statistics for standardized residuals and 
squared standardized residuals, respectively, computed with 20 lags. Hosking and Hosking^2 are the Hosking (1980) 
autocorrelation test statistics standardized residuals and squared standardized residuals, respectively, computed with 20 lags. 
ARCH is the test statistics of Portmanteau-Q test for the ARCH effect in the standardized residuals, computed with 20 lags.  
***, ** and * denote 1%, 5% and 10% significance levels, respectively. 
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Concerning the diagnostic test, the values of the Hosking (1980) tests for serial correlation 

in the standardized residuals and the squared standardized residuals do not reject the null of no 

serial correlation for Chinese and Australian real estate return series, and U.S. and Australian 

stock return series. And the four series show no ARCH effects in the standardized residuals. 

On the other hand, the standardized residuals of Chinese stock return and U.S. real estate return 

fitted models with skewed Student-t distribution demonstrate slight ARCH effects, while 

models with normal distribution accept the null of no ARCH effects. Thus, we would continue 

with those models and discuss the effect of different distribution models on our later analysis. 

 

5.2 Copula model results 

Table 4 presents the estimation of static copulas for each market pair using the probability 

integral transform of the standardized residuals from the marginal models. Based on the AIC 

values, our results show that static SJC copulas offer a good fit for the U.S and Australian pairs, 

the choice of SJC copula is agree with Chen et al., (2014). Static Gaussian copula only offers 

a good fit for Chinese pair. Gaussian copula indicates that tail independence to some extent 

exists between the Chinese stock market and real estate market. Nevertheless, static Gumbel 

and Joe Clayton copulas have very similar AICs with the Gaussian copula. This table indicates 

that all real estate markets and stock markets co-move in the same direction.  

 

Table 4 

Bivariate static copula estimates 

Copulas CHN   US   AUS 

Gaussian      

𝛒 0.8203  0.6770  0.6318 

 (.0018)  (.0038)  (.0042) 

AIC -2874.1  -1542.6  -1360.5 

Clayton      

𝛼 2.1908  1.2782  1.0903 

 (.1082)  (.0989)  (.1569) 

AIC -2459.0  -1283.2  -1131.5 

Gumbel      

𝛼 2.4976  1.8618  1.7128 

 (.0515)  (.0344)  (.0292) 

AIC -2870.9  -1543.5  -1331.0 

Frank      

𝛿 8.3334  5.5331  4.7227 

 (1.3853)  (.4488)  (.3229) 

AIC -2664.3  -1484.6  -1258.7 
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Table 4 (continued) 

Copulas CHN US AUS 

SJC 

𝜆u 2.0837  1.6765  1.5106 

 (.0604)  (.0465)  (.0404) 

𝜆l 1.7614  0.9601  0.8456 

 (.07)  (.0512)  (.0451) 

AIC -2862.9   -1577.7   -1361.8 

Note: This table reports the ML estimates for the parameters of different 
static copulas as well as their respective AICs. Standard errors are reported 
in the parentheses. 

Considering that the average and tail dependence may changes over time reacting to 

dynamic market condition, we further examine time-varying parameter (TVP) copulas on the 

return series of each country. Table 5 shows the estimation of time-varying copulas we use. 

The time-varying Gumbel and Clayton copulas reflect dynamic upper tail and lower tail 

dependence respectively, while time-varying SJC copula reflects both upper and lower tail 

dependence. We find that time-varying copulas are generally doing better than their static 

copula peers, suggesting that the dependence structure between the real estate-stock pair is time 

varying. Our result is consistent with studies by Huang & Zhong, (2006), Case et al., (2011), 

Mensi et al., (2017) etc., who suggest dynamic dependence models outperform the others. 

Moreover, the dependence is well captured by SJC copulas, indicating to evidence of both 

upper tail and lower tail dependence in each pair. This finding is consistent with the finding 

from Hoesli and Reka (2011), Han et al., (2016) who evidence the better performance of SJC 

copula in estimating tail dependence.  

Table 5 

Bivariate time varying copula estimates 

Copulas CHN US AUS 

TVP Gumbel    

𝞈 0.1805 0.3952 0.1443 

 (.0576) (.1373) (.058) 

𝝱 0.9470 0.8421 0.8915 

 (.0188) (.063) (.0622) 

𝝰 -0.8191 -1.8412 -0.6533 

 (.2509) (.6104) (.2413) 

AIC -2750.75 -1622.34 -1261.69 

TVP Clayton    

𝞈 0.2629 0.1811 0.7970 

 (.2032) (.0531) (.2494) 

𝝱 0.8818 0.9186 -0.5123 

 (.0612) (.0286) (.2728) 

𝝰 -1.2039 -0.9914 -5.0000 

 (1.4214) (.2848) (1.341) 

AIC -2525.26 -1450.19 -1154.08 
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Table 5 (continued) 

Copulas CHN US AUS 

TVP SJC    

𝞈u 0.0568 0.0962 0.0302 

 (.0308) (.0288) (.0171) 

𝝱u 0.9770 0.9583 0.9857 

 (.0153) (.0119) (.0084) 

𝝰u -0.3601 -0.6218 -0.1944 

 (.1876) (.1899) (.1081) 

𝞈l 1.0420 0.4612 1.2446 

 (.5307) (.1693) (.3546) 

𝝱l 0.4272 0.7433 -0.7076 

 (.3065) (.0984) (.1361) 

𝝰l -4.5812 -2.5967 -7.8437 

 (2.3074) (.9842) (1.9622) 

AIC -2953.59 -1754.13 -1383.37 

Note: This table reports the ML estimates for the parameters of different 
static copulas as well as their respective AICs. Standard errors are reported 
in the parentheses. 

 

Fig. 3. offers graphical insights into dynamic tail dependence values obtained through 

time-varying SJC copulas for each pair. Tail dependence formulas are represented in Table 1. 

in Section 3.2. The dependence trajectory for all countries differs in terms of the time, 

suggesting the time varying nature of dependence. Especially, lower tail dependence is in 

general higher than upper tail dependence and dependence level quickly rises to a high level 

during the 2008 global financial crisis, consistent with the findings from the existing literature 

(e.g. Knight et al., (2006), Liow (2012), Heaney and Sriananthakumar, (2012)). 

 For Chinese market, we observe strong and high tail dependence levels, which complies 

with the findings of Ding et al., (2014).  To be more detailed, there is a greater variation in the 

lower tail than upper tail dependence between the stock market and the real estate market. Tail 

dependence rise quickly during the global financial crisis and they remain quite high even after 

the stock market starts to recovery in the Spring of 2009. From 2011 to 2012, tail dependence 

especially the upper tail dependence, increase steadily as stock and real estate markets fall. 

From the start of February 2016 to the beginning of 2018, Chinese stock market experienced a 

bull market. CSI 300 stock market index was up from around 2900 to above 4000. Upper 

dependence, however, has a descending trend in this period. The major dip in the upper tail 

dependence from 2017 corresponds to the stock market surge. Throughout this data period, we 

see a generally inverse relation between tail dependence and market conditions. Tail 

dependence increase when the market conditions deteriorate and vice versa. 
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On the other hand, both upper tail and lower tail dependence for U.S. have a downward 

trend after the financial crisis, pointing to a declining dependence for the real estate-stock pair 

as the market conditions for real estate and stocks improve. This downward trend in 

dependence suggests a potential for increasing portfolio diversification. However, we need to 

point out that tail dependence remains at a high level during the financial crisis and dependence 

tends to increase when there are turbulences in the markets. For Australia, lower tail 

dependence remains relatively stable around 0.45, while upper tail dependence fluctuates in a 

range of 0.6 to 0.2. Moreover, Australian pair’s dependence level is the lowest among the three 

countries.  

 

Panel A: Tail dependence and price level of real estate-stock pair for China 

 

Panel B: Tail dependence and price level of real estate-stock pair for United States 
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Panel C: Tail dependence and price level of real estate-stock pair for Australia 

 

Fig. 3. SJC Time-varying copula tail dependence of real estate-stock market. Notes: The time-varying tail 

dependence is based on the fitted copula parameters 𝜆𝑈 , 𝜆𝐿 . For better comparative analysis with the market 

condition, the level graph for each country is combined with its tail dependence graph. 

 

5.3 Variational mode decomposition results 

In order to further analyze the short-term and long-term dependence structure and risk 

spillovers between real estate and stock market, we apply the mode-by-mode VMD 

decomposition on the standardized residuals of the fitted marginal models. Panel A and B of 

Fig. 4 demonstrates the VMD for mode 1 (long-term) and 10 (short-term) for Chinese stock 

and real estate series. VMD decomposition graphs for other series are included in the appendix. 

For both the stock series and real estate series, the VMD figures show a volatility 

clustering and short term volatility is larger. For the long-term (mode 1) stock series, we find 

asymmetry with more downside extreme values. We also observe a clear upside peak in the 

mid 2015 which reflects the 2015 Chinese stock market crash. In the short-term (mode 10), we 

observe more extreme values in 2011 which reflects the European debt crisis.  

For the real estate series, we observe more downside extreme values during the sample 

period in the long-term (mode 1), with upside peaks at the start of 2015 and 2018 and the lowest 

value at the start of 2016. In the short-term (mode 10), we observe more extreme values in 

2011 as in the stock series. 
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Panel A: Variational mode decomposition for the stock return series 

                              VMD 1                                                                  VMD 10 

    

Panel B: Variational mode decomposition for the real estate return series 

                              VMD 1                                                                  VMD 10 

    

Fig. 4 Variational mode decomposition for mode 1 (long-term) and mode 10 (short-term) for Chinese stock and 

real estate series. Note: Following the common practice from the finance literature, we set the maximum 

variational models equal to 10. 

 

5.4 Long term and short term dependence 

Panel A and B of Fig. 5 show the time-varying short-term and long-term tail dependence 

using SJC copulas for each market, respectively. For space saving, estimation for copula 

parameters are shown in Table 14 in the appendix. For Chinese market, there are not many 

difference between upper tail and lower tail dependence in the short-term and they both have 

a lot of variation. In the long-term horizon, however, there are a lot more variations in the upper 

tail dependence, while the lower tail dependence is high and smooth. We see no big difference 

in the pattern between the long-term and short-term tail dependence for U.S., except for the 

drop in long-term tail dependence from 2013 to 2016. For Australia, there are a lot more 

variations in the lower tail dependence than in the upper tail dependence both in the short- and 

long-term, and the lower tail dependence is more volatile in the short-term. Also, the short-

term upper tail dependence is much lower than its long-term counterpart since 2013. 
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Panel A: SJC Time varying copula short-term tail dependence 

 China United States 

 

 Australia 

 

Panel B: SJC Time varying copula long-term tail dependence  

 China    United States 

 

  Australia 

 

Fig. 5. SJC Time varying copula short-term and long-term tail dependence of real estate-stock market. Notes: The 

time-varying tail dependence is based on the fitted copula parameters 𝜆𝑈 , 𝜆𝐿 from each short-term and long-term 

series, which is obtained through the VMD decomposition. 
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6. Risk implications 

6.1 Value at Risk analysis 

We first examine the upside and downside 95% VaRs of real estate-stock pairs presented in 

Fig. 6. It is shown that during financial distress period, Chinese stock market has significantly 

higher absolute values of downside and upside VaRs than their counterparts of Chinese real 

estate market. But for U.S. and Australian markets, the absolute values of downside and upside 

VaRs for real estate are significant higher than those for stock.  

Panel A: Upside and downside VaR for China 

 

Panel B: Upside and downside VaR for United States 

 

Panel C: Upside and downside VaR for Australia 

 

Fig. 6. Upside and downside VaR for real estate markets and stock markets. Notes: Downside and Upside VaRs 

are calculated using Eqs. (14) and (15), respectively. 
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The descriptive statistics shown in Table 6 also indicates higher average and standard 

deviations of both upside and downside VaRs for Chinese stock market than its real estate 

market, suggesting that real estate investment is safer than equity investment in China. On the 

contrary, U.S. and Australian real estate markets have significantly higher average and standard 

deviations of VaRs than those of their stock markets’. When comparing across regions, we find 

that Australian stock market and real estate markets are significantly safer than other markets, 

with the lowest average and standard deviations of VaRs among the three countries. In general, 

the maximum possible one-day loss with 5% possibility is the largest in Chinese stock markets, 

indicating high risk for investors. 

Table 6      

Descriptive statistics of value at risk (VaR) and conditional value at risk (CoVaR) 

 Upside   Downside  

 VaR CoVaR   VaR CoVaR 

Panel A: VaR of stock markets and CoVaR from real estate to stock market 

CHN 2.8517 5.6928  -2.8345 -6.0734 

 (1.7097) (3.4355)  (1.7639) (3.7323) 

US 1.6635 3.3769  -1.7015 -4.1149 

 (1.1513) (2.4121)  (1.1823) (2.9073) 

AUS 1.5197 2.7467  -1.6085 -3.2111 

 (.7232) (1.3308)  (.7915) (1.5871) 
      

Panel B: VaR of real estate markets and CoVaR from stock to real estate market 

CHN 2.8077 5.5423  -2.7044 -5.4661 

 (1.4474) (2.8799)  (1.4477) (2.8958) 

US 2.5282 4.7022  -2.7296 -5.7018 

 (2.3609) (4.525)  (2.606) (5.4942) 

AUS 2.0193 3.6812  -2.0000 -3.8467 

 (1.2226) (2.2191)  (1.203) (2.31) 

Notes: This table presents the mean and the standard deviation (in parenthesis) 
of the VaR calculated using all the data, upside and downside CoVaRs.  

 

We then conduct backtesting on VaR and the results are presented in Table 7. The upside 

and downside VaRs for the return series do not reject the null of correct exceedances except 

for the downside VaR for U.S. stock return series. It suggests that in general, the VaR models 

and the marginal distribution models are well designed and efficient. The excessive number of 

downside VaRs breaches for the U.S. stock market is caused by too many uncommon negative 

returns during the global financial crisis, which is hard to model. In times of extreme financial 
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distress, the returns for many financial products may not follow the distribution that they used 

to do. 

Table 7      

Results of value at risk (VaR) backtesting 
 For stock return  For real estate return 

  Upside  Downside    Upside  Downside  

CHN 0.2232 1.1031  0.3706 0.6178 

 (.6366) (.2936)  (.5427) (.4319) 

US 0.1818 9.065***  0.1818 0.0227 

 (.6698) (.0026)  (.6698) (.8802) 

AUS 0.2399 0.6911  0.3358 0.8424 

 (.6243) (.4058)  (.5622) (.3587) 

Notes: This table reports the unconditional coverage test Likelihood Ratio statistics for 
the null hypothesis of correct exceedances. and their corresponding p values in 
parenthesis. ***, ** and * denote 1%, 5% and 10% significance levels, respectively.  

6.2 Asymmetric bidirectional risk spillovers 

Using our time-varying SJC copula relation from Section 5.2, we quantify the downside 

and upside CoVaR value for stock (real estate) returns at the 95% confidence level (ß=0.05) 

conditional on the VaR value for real estate (stock) returns at the 95% confidence level 

(∂ 0.05). Fig. 7. illustrates that the upside and downside VaR and CoVaR series exhibit a 

similar trend with difference in magnitude. And the absolute values of both upside and 

downside CoVaRs are significantly larger than those of their corresponding VaRs. This 

observation is confirmed by the results of the K-S test in Table 8, which indicates significant 

differences between all VaR-CoVaR pairs. It implies that there are significant risk spillovers 

both from stock to real estate and from real estate to stock in all markets. To be more specific, 

an extreme upside (downside) movement in the real estate market would have a positive 

(negative) impact on stock market, and vice versa. This finding is similar with Su (2011) who 

finds the bidirectional effects in Western European countries, while different with Chang (2006) 

who finds no wealth effect in Korea.  

The impact of the global financial crisis is reflected in the sudden surge in the absolute 

values of CoVaRs and the gaps between VaR and CoVaR. In the real estate-to-stock direction, 

Chinese stock market is the most affected by the global financial crisis. Its downside CoVaR 

jumps from the average of -6% to near -30% since mid 2008. The absolute values of downside 

and upside CoVaR also increase significantly in mid 2011 and in 2015 when the stock market 

experienced quite some turbulences. 
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In the stock-to-real estate direction, U.S. real estate market is the most affected by the 

extreme movement in the stock market. Its downside CoVaR drops from the average of -5.7% 

to around -28% during the global financial crisis. It also experiences sharp decrease in mid 

2011. The risk spillover effect from U.S. stock to real estate market lessens since then. 

Panel A: Upside and downside VaRs and CoVaRs for China 

      CoVaR from real estate to stock                     CoVaR from stock to real estate 

 

Panel B: Upside and downside VaRs and CoVaRs for United States 

 CoVaR from real estate to stock                     CoVaR from stock to real estate 

 

Panel C: Upside and downside VaRs and CoVaRs for Australia 

 CoVaR from real estate to stock                     CoVaR from stock to real estate 

 

Fig. 7. Upside and downside VaRs and CoVaRs for Chinese stock and real estate market. Notes: For the sake of 

comparative analysis, CoVaRs are illustrated with their VaRs. Downside and Upside VaRs are calculated using 

Eqs. (14) and (15), respectively. Downside and Upside CoVaRs are calculated using Eqs. (16) and (19), 

respectively. 
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In addition, asymmetries in upside and downside risk spillovers exist both in stock and 

real estate market. We use the K-S bootstrapping test (Table 9) and find significant differences 

between the upside CoVaRs normalized by the upside VaRs and the downside CoVaRs 

normalized by the downside VaRs. On average, the downside risk spillovers measured by 

normalized CoVaRs are larger than the upside spillovers. 

Table 8     

Tests of equalities of VaR and CoVaR in upside and downside conditions 

 

CoVaR from real estate markets to 
stock markets  

CoVaR from stock markets to real 
estate markets 

 Upside Downside  Upside Downside 

CHN 0.6792 0.7140  0.7190 0.7187 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

US 0.5472 0.6569  0.4860 0.5756 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

AUS 0.5877 0.6558  0.6502 0.6926 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov (KS) test. The KS 
tests the null hypothesis of no systemic impact between the stock markets and real 
estate markets. The p-values for the KS statistic are in the parentheses.  

 

Table 9 

Upside and downside CoVaR asymmetry from stock markets to real 
estate markets and vice versa 

𝐻0 : 
𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝐷) = 

𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝑈), 𝐻1 : 

𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝐷) > 

𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝑈) 

 
from real estate markets 

to stock markets 

 
from stock markets to 

real estate markets 

CHN 0.9706  0.7837 

 (0.0000)  (0.0000) 

US 0.9199  0.9139 

 (0.0000)  (0.0000) 

AUS 0.9981  0.7245 

  (0.0000)  (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov (KS) 
test. The KS tests test the null hypothesis of no difference between the 
downside and upside systemic risk contribution. The p-values for the KS 
statistic are in the parentheses.  

 

6.3 ∆CoVaR and systemic risk  

To further study the risk spillover effect and systemic risk contribution of the stock and real 

estate markets, we compute the time varying delta conditional value-at-risk (∆CoVaR) from 
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real estate to stock market and from stock to real estate market, as shown in Fig. 8. The averages 

and standard deviations of ∆CoVaR are displayed in Table 10. 

Considering the bidirectional effect, U.S. stock and real estate markets are the most 

correlated under both upside and downside market conditions. The average downside and 

upside ∆CoVaRs from real estate to stock market are 0.88 and 0.69, respectively, and those of 

the opposite direction are 0.67 and 0.56, respectively. This observation is in line with the 

studies by Hoesli & Reka (2011) and Hui & Chan (2014), who suggest that contagion between 

U.S. equity and real estate markets is most significant among the countries they observe. 

Meanwhile, Australian stock and real estate markets are the least correlated among the three. 

And the systemic risk contribution of real estate-stock pair in China is the most stable one.  

Panel A: Upside and downside VaRs and CoVaRs for China 

 ∆CoVaR from real estate to stock market ∆CoVaR from stock to real estate market 

 

Panel B: Upside and downside VaRs and CoVaRs for United States 

 ∆CoVaR from real estate to stock market                      ∆CoVaR from stock to real estate market 

 

Panel C: Upside and downside VaRs and CoVaRs for Australia  

 ∆CoVaR from real estate to stock market                ∆CoVaR from stock to real estate market 

 

Fig. 8. Upside and downside delta conditional value-at-risk (∆CoVaR). Notes: ∆CoVaRs are calculated using Eqs. 

(23). 
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Table 10 

Descriptive statistics of ∆CoVaR  

 

∆CoVaR from real estate markets to 
stock markets 

  
∆CoVaR from stock markets to real 

estate markets  

  Upside Downside  Upside Downside 

CHN 0.6304 0.7635  0.6100 0.6369 

 (.0187) (.0227)  (.0112) (.0107) 

US 0.6890 0.8840  0.5581 0.6728 

 (.0499) (.0667)  (.0286) (.0347) 

AUS 0.5341 0.6868  0.5432 0.5820 

 (.007) (.0146)  (.0205) (.0245) 

Notes: This table presents the mean and the standard deviation (in parenthesis) of the ∆CoVaR. 
Panel A presents ∆CoVaR from real estate markets to stock markets, and Panel B presents 
∆CoVaR from stock markets to real estate markets.  

 

Regarding the systemic risk contribution of real estate markets to stock markets, the 

average and standard deviations for the downside ∆CoVaRs are much larger than their 

counterparts for the upside ∆CoVaRs. It implies that stock markets react more strongly to 

extreme downside movement than to extreme upside movement in the real estate markets. 

Specifically, U.S. stock market is highly affected by the extreme movement in the real estate 

market, with few drops in ∆CoVaR in 2015 and at the start of 2018. 

Similarly, concerning the systemic risk contribution of stock markets to real estate 

markets, the average and standard deviations for the downside ∆CoVaRs are much larger than 

those of the upside ∆CoVaRs. The gap is the largest in the U.S market. This observation is 

confirmed by the K-S test results in Table 11. 

Table 11 

Upside and downside ∆CoVaR asymmetry  

 𝐻0: Downside ∆CoVaR = Upside ∆CoVaR 

 𝐻1: Downside ∆CoVaR ≠ Upside ∆CoVaR  

 

from real estate markets to stock markets  from stock markets to real estate markets 

CHN 0.9737  0.7678 

 (0.0000)  (0.0000) 

US 0.9439  0.9526 

 (0.0000)  (0.0000) 

AUS 0.9989  0.6286 

  (0.0000)  (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov (KS) test. The KS tests test the 
null hypothesis of no difference between the downside and upside systemic risk contribution. 
The p-values for the KS statistic are in the parentheses.  

 

We also observe stronger risk contribution of the real estate to stock market than the risk 

contribution of the stock to real estate market, except for the downside risk spillover in 
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Australian markets. Considering the results mentioned above, the downside risk contribution 

of real estate to stock market is worth extra attention. 

6.4 Short-term and long-term risk spillovers 

In order to distinguish between the short-term and long-term risk spillovers, we employ the 

VMD results to re-estimate CoVaR and ∆CoVaR risk measures. The averages and standard 

deviations of the CoVaRs based on all, short-term and long-term data are presented in Table 

12. As indicated by the KS test in Table 13, there are significant differences between long-

term and short-term downside and upside CoVaRs in the U.S. markets, and between long-term 

and short-term downside CoVaRs in Chinese markets. However, the U.S. and Chinese markets 

have opposite results at different time horizons. The bidirectional long-run risk spillovers are 

significantly higher than short-run risk spillovers in the U.S. markets. On the contrary, the 

downside risk spillover effect is stronger in the short-term for Chinese markets, as Su et al. 

(2018) suggest that Chinese stock and real estate markets are generally segmented in the short 

run but are integrated in the long run. 

Table 12 

Descriptive statistics of raw, short-term and long-term CoVaR 

  Upside   Downside 

  

CoVaR        
(all data) 

CoVaR      
(short term) 

CoVaR    
(long 
term) 

  
CoVaR       

(all data) 
CoVaR       

(short term) 

CoVaR         
(long 
term) 

Panel A: VaR of stock markets and CoVaR from stock markets to real estate markets  

CHN 5.6928 5.5968 5.6508  -6.0734 -5.9389 -6.0823 

 (3.4355) (3.4101) (3.4872)  (3.7417) (3.6868) (3.7445) 

US 3.3769 3.2767 3.2234  -4.1149 -3.9840 -3.9346 

 (2.4121) (2.3515) (2.4315)  (2.9073) (2.814) (2.9483) 

AUS 2.7467 2.7356 2.7488  -3.2111 -3.1940 -3.1962 

 (1.3308) (1.3569) (1.3346)  (1.5871) (1.5692) (1.5884) 

 
       

Panel B: VaR of real estate markets and CoVaR from real estate markets to stock markets 

CHN 5.5423 5.4521 5.4980  -5.4661 -5.3548 -5.4729 

 (2.8799) (2.8651) (2.9239)  (2.8958) (2.8692) (2.902) 

US 4.7022 4.5946 4.5654  -5.7018 -5.5719 -5.5389 

 (4.525) (4.4524) (4.565)  (5.4942) (5.4257) (5.5296) 

AUS 3.6812 3.6706 3.6962  -3.8467 -3.8258 -3.8335 

  (2.2191) (2.2613) (2.268)  (2.31) (2.2907) (2.3319) 

Notes: This table presents the mean and the standard deviation (in parenthesis) of the CoVaR 
calculated using all data, short-term and long-term data. CoVaR (short term) and CoVaR (long term) 
represent CoVaR in the short term and long term, respectively. 
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Table 13 

Tests of equalities of long-term and short-term CoVaR      

H0: Long-term CoVaR = short-term CoVaR 

H1: Long-term CoVaR ≠ short-term CoVaR 

 

CoVaR from real estate markets to stock 
markets 

 CoVaR from stock markets to real 
estate markets  

  Upside Downside  Upside Downside 

CHN 0.0163 0.0503  0.0190 0.0484 

 (.8844) (.0029)  (.7416) (.0047) 

US 0.0580 0.0454  0.0640 0.0604 

 (.0004) (.0108)  (.0001) (.0002) 

AUS 0.0335 0.0178  0.0223 0.0086 

  (.0985) (.7852)   (.5151) (1.0) 

Notes: This table presents the results of the Kolmogorov–Smirnov (KS) test. The KS tests the 
hypothesis of no difference between the long-term and short-term CoVaR. The p-values for the KS 
statistic are in the parentheses.  

 

Given that U.S. has both different upside and downside CoVaRs  at different time horizons, 

we continue to explore its ∆CoVaR at different horizons. Fig. 9. presents the comparison 

between long-term and short-term ∆CoVaR from real estate to stock market and vice versa. 

For the U.S. market, we could observe stronger systemic risk contribution of real estate to stock 

market than that of the opposite direction despite different time horizons. In the long-run, the 

bidirectional systemic risk spillovers decrease with increasing volatility since 2012, but it only 

happens after 2016 in the short-run horizon. 

short-run ∆CoVaR from real estate to stock market     short-run ∆CoVaR from stock to real estate market 

 

long-run ∆CoVaR from real estate to stock market     long-run ∆CoVaR from stock to real estate market 

 

Fig .9. Short-term and long-term upside and downside delta conditional value-at-risk (∆CoVaR) from U.S. real 

estate to U.S. stock market and vice versa. Notes: ∆CoVaRs are calculated using Eqs. (23).  
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7. Robustness tests 

7.1 Alternative copulas for risk spillovers 

We calculate upside and downside CoVaRs based on the estimated SJC copulas, which are 

capable to capture the upper and lower tail dependence of the data. We check the robustness of 

our findings on the CoVaR by applying time-varying Gumbel and Clayton copulas on the 

marginal models. Gumbel copula only has upper tail dependence while Clayton copula only 

has lower tail dependence. The estimated parameters for these two copulas are already shown 

in Table 5 in Section 5.2, and the dynamic tail dependence is shown in Fig. 12 in the appendix. 

We then rerun the upside and downside CoVaRs as well as ∆CoVaR and their respective K-S 

tests for each country. The results are shown in the Table 15-17 in the appendix. We find very 

similar results with those we get by using SJC copulas. It suggests significant differences 

between the values of VaR-CoVaR pairs in all situations, which indicates significant 

bidirectional upside and downside risk spillovers. We also observe that downside risk 

spillovers are significantly larger than upside spillovers, measured by normalized downside 

and upside CoVaR and ∆CoVaR. From the descriptive statistics of ∆CoVaR in Table 18, we 

also find that risk spillover effect from real estate to stock markets is stronger than that of the 

opposite direction. Those conclusions are in line with what we observe with the CoVaRs and 

∆CoVaR based on SJC copulas.  

 

7.2 Alternative innovation assumptions for marginal models 

In addition to the original assumption that innovations are following a skewed Student-t 

distribution, we further test our models on Student-t distributed and normal distributed 

innovations. The fitted marginal models are included in Table 19 and Table 20 in the appendix. 

Note that, the best fitted model for Australian real estate market is an ARFIMA(1, d, 1)-

GARCH(1, 1) under both Student-t and normal distribution assumptions. Even though the 

fraction terms are larger than zero, indicating the existence of long memory or long-range 

dependence, these terms are not statistically significant. Therefore, we conclude that the 

markets we study do not have apparent fractionally-integrated relationship.   

For real estate market, the best marginal model estimation yields similar results with 

normal distributed errors and with Student-t distributed errors. Specifically, ARMA(1,0)-

GARCH(2,2), ARMA(2,2)-GARCH(1,2), ARMA(1,1)-GARCH(1,2) models are the best 

model for Chinese, U.S. and Australian real estate markets. For the stock market, the best 
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marginal model estimation with normal distributed innovations and with Student-t distributed 

innovations are different. All the shape parameters of the best model with Student-t distributed 

errors are significant at 1% confidence level, indicating significant excess kurtosis. 

Using models with Student-t innovations and models with normal innovations, we re-

conduct our analysis on the copulas and CoVaRs for each country. The SJC time varying 

copula estimates are presented in Table 21 and Fig. 13. The upper and lower tail dependences 

between the stock and real estate market are very similar despite the distribution form of the 

innovations for marginal models. 

Because of the differences in marginal distribution models with normal distributed errors 

and Student-t distributed errors, the VaR and CoVaR results are different as presented in Table 

22-23. The absolute values of upside and downside VaRs are slightly larger with normal 

distributed models, while the absolute values of upside and downside CoVaRs are significantly 

larger with Student-t distributed models, which account for excess kurtosis and stronger tail 

dependence. Taking the negative skewness into accounts, we would get more extreme 

downside values but better upside counterparts, as shown in Section 6.1 with skewed Student-

t distributed models. Based on the VaR backtesting results in Table 24, we reject the null of 

correct exceedances for VaRs in more than half of the cases when applying models with normal 

distributed innovations and Student-t distributed innovations, indicating that those VaR models 

are not convincing.  

K-S test results in Table 25 indicates significant differences between all VaR-CoVaR 

pairs regardless of the marginal models used. It implies that an extreme upside (downside) 

movement in the real estate market would have a positive (negative) impact on stock market, 

and vice versa.  

Fig. 14-15 present the time varying delta CoVaR (∆CoVaR) results for models with 

normal distributed and Student-t distributed innovations. It could be clearly seen that the 

systemic risk effect measured by ∆CoVaR is significantly larger when using Student-t 

distributed models. However, bidirectional systemic risk spillovers can still be observed in 

spite of different scales, and the main conclusions remain unchanged. 

In general, the stock markets react more strongly to extreme downside movement than to 

extreme upside movement in the real estate markets. Specifically, U.S. stock market is highly 

affected by the extreme movement in the real estate market, but there is a declining trend in 

the systemic risk spillovers with high volatility since 2014. Similarly, the real estate markets 
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react more strongly to extreme downside movement than to extreme upside movement in the 

stock markets. Those results are confirmed by the K-S tests in Table 26.  

By comparing the bidirectional systemic impact, we can also conclude that the systemic 

risk contribution of real estate to stock markets are higher than the systemic impact of the 

opposite direction. 
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8. Conclusions and future research 

In this paper, we examine the tail dependence as well as risk spillovers between stock markets 

and real estate markets in three countries. We begin with ARMA-GARCH models which 

capture the dynamics of the return series. We apply both static and time-varying copulas to 

study the co-movements of the real estate markets and stock markets in the short and long term. 

To distinguish the short- and long-term effects, we combine the copula with the variational 

mode decomposition (VMD) method. We obtain the dependence structures from copula 

analysis and utilize them to quantify the upside and downside risk spillovers measured by 

conditional value-at-risk (CoVaR) from real estate to stock markets and vice versa. We also 

assess the systemic risk contribution of real estate-stock pair in each country. 

Our study provides strong evidence of dynamic tail dependence between real estate 

markets and stock markets in China, U.S., and Australia. Real estate markets commove closely 

with stock markets. For China and U.S., upper tail dependence and lower tail dependence 

clearly decrease during bull markets while increase sharply during shocks and crises. These 

results are important for portfolio managers when considering the limitation of risk 

diversification effect from real estate asset. 

By estimating risk measures for each market, we are able to have a deeper discussion on 

the topic of portfolio risk management. We observe that U.S. and Australian real estate markets 

are much riskier than the stock markets in both bearish and bullish market conditions, while 

Chinese real estate markets are not. This difference may due to the fact that Chinese real estate 

market is in a stage of constant growth due to relatively strong economic growth and high speed 

of urbanization.  

The estimate results of CoVaR and ∆CoVaR show that there are significant risk spillovers 

both from stock to real estate and from real estate to stock in all three markets. In general, the 

correlation and risk spillover effect between real estate-stock pair is the strongest for U.S, 

reflecting the fact that U.S. is the center of shock of the mortgage crisis and global financial 

crisis. The risk spillover effect is the weakest in Australia, showing that A-REITs is a relatively 

successful indirect real estate investment vehicle in terms of portfolio risk diversification. 

In addition, we observe asymmetricities in systemic impact between stock and real estate 

markets. First, the risk spillovers, measured by CoVaR, for long positions are significantly 

larger than the risk spillovers for short positions. In other words, stock markets react stronger 

to extreme downside movement in real estate markets than to extreme upside movement, and 



 44 

vice versa. Second, in spite of the bidirectional risk spillovers, the systemic risk effect 

measured by ∆CoVaR from real estate to stock markets is larger than the systemic risk effect 

of the opposite direction in all three markets. It suggests that when investing in both markets, 

investors should remain especially vigilant of the downside risk spillovers from the real estate 

markets. Lastly, by applying the VMD result series, we are able to analyze the difference 

between the short- and long-term systemic risk spillover. For U.S. markets, the bidirectional 

short-run systemic risk effect is significantly stronger than its long-run counterpart, while for 

Chinese markets, the long-run downside risk spillover effect is stronger. No significant 

difference between short- and long-run systemic impact is found for Australian markets.  

There are several implications for individual and institutional investors as well as portfolio 

managers. Investors should be aware of the bidirectional risk spillover effect between the real 

estate and stock market for both long and short positions, especially during the crisis period 

when the tail dependences tend to increase. The credit price effect for long position is the most 

significant compared with wealth effect or credit price effect for short positions. However, 

investors need to take the time horizons into consideration. Long-run and short-run risk 

spillovers have different implications in different markets. Additionally, country specific 

characteristics are also worth attention.  

We suggest that future research should investigate dependence of real estate markets and 

stock markets in a longer time period by including more data. By doing so, structural break test 

can also be implemented to test the effects of extreme events such as subprime mortgage crisis 

and global financial crisis on the dependence structure. In addition to VMD, applying wavelet 

decomposition can provide further examination of co-movement and causality between 

markets in both the time and frequency domains.  

Other marginal models besides ARFIMA-GARCH types models could be employed to 

better capture the characteristics of the return series. For example, various asymmetric GARCH 

models could be explored to capture the asymmetry in the impact of positive shocks and 

negative shocks, as in real world, unexpected bad news often increases conditional volatility 

more than unexpected good news. 

Further research could also address the similarities and differences in risk spillover effect 

of real estate-stock pairs by including more emerging markets and developed markets, to see 

whether the systemic impact varies across regions.  
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Appendix 

Panel A: Variational mode decomposition for U.S. stock return series 

 VMD1 VMD 10 

    

Panel B: Variational mode decomposition for U.S. real estate return series 

 VMD1 VMD 10 

    

Fig. 10. Variational mode decomposition for mode 1 (long-term) and mode 10 (short-term) for U.S. stock and 

real estate return series 

 

Panel A: Variational mode decomposition for Australian stock return series 

 VMD1 VMD 10 

    

Panel B: Variational mode decomposition for Australian real estate return series 

 VMD1 VMD 10 

    
Fig. 11. Variational mode decomposition for mode 1 (long-term) and mode 10 (short-term) for Australian stock 

and real estate return series 
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Table 14 

SJC time varying copula estimates with skewed Student-t distributed models 

 SJC 

Copula 

CHN   US   AUS 

All Short term Long term   All Short term Long term   All Short term Long term 

𝞈u 0.057 2.425 2.160  0.096 1.642 0.939  0.030 1.905 1.561 

 0.031 0.240 0.009  0.029 0.239 0.164  0.017 0.331 0.291 

𝝱u 0.977 -0.877 -0.261  0.958 -0.270 0.186  0.986 -1.001 -0.157 

 0.015 0.076 0.023  0.012 0.176 0.199  0.008 0.209 0.198 

𝝰u -0.360 -13.574 -13.563  -0.622 -10.530 -6.894  -0.194 -14.848 -14.817 

 0.188 1.765 0.022  0.190 1.725 0.126  0.108 2.643 2.591 

𝞈l 1.042 2.723 2.093  0.461 2.395 1.422  1.245 0.831 1.716 

 0.531 0.183 0.046  0.169 0.112 0.005  0.355 0.156 0.275 

𝝱l 0.427 -0.994 -0.685  0.743 -0.654 0.211  -0.708 -0.309 -0.567 

 0.306 0.004 0.045  0.098 0.107 0.004  0.136 0.057 0.234 

𝝰l -4.581 -14.964 -4.534  -2.597 -15.000 -7.067  -7.844 -7.161 -7.763 

 2.307 1.246 0.568  0.984 0.327 0.004  1.962 0.906 1.245 

AIC -2953.6 -2331.6 -3613.2   -1754.1 -1805.2 -1991.0   -1383.4 -1446.5 -2026.5 

Note: This table reports the ML estimates for the parameters of different static copulas as well as their respective 

AICs, based on all, short-term and long-term models. Standard errors are reported in the parentheses. 

 

 

 Tail dependence for Chinese market Tail dependence for U.S. market  

 

 Tail dependence for Australian market 

 
Fig. 12. Gumbel (upper) and Clayton (lower) tail dependence in Chinese, U.S. and Australian markets 
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Table 15 

Tests of equalities of VaR and CoVaR using Gambel and Clayton copulas 

 

 CoVaR from real estate 

markets to stock markets    

CoVaR from stock markets to 

real estate markets  

 Upside Downside  Upside Downside 

CHN 0.6838 0.7167  0.7198 0.7210 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

US 0.5788 0.6668  0.5128 0.5843 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

AUS 0.6078 0.6078  0.6662 0.7015 

  (0.0000) (0.0000)   (0.0000) (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov (KS) 

test. The KS tests the hypothesis of no systemic impact between the stock 

markets and real estate markets. The p-values for the KS statistic are in the 

parentheses.  

 

 

 
Table 16 

Upside and downside CoVaR asymmetry from stock markets to real 

estate markets and vice versa using Gambel and Clayton copulas 

𝐻0 : 
𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝐷) = 

𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝑈), 𝐻1 : 

𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝐷) > 

𝐶𝑜𝑉𝑎𝑅

𝑉𝑎𝑅
 (𝑈) 

 
from real estate markets to 

stock markets 

 
from stock markets to real 

estate markets 

CHN 0.9729  0.7860 

 (0.0000)  (0.0000) 

US 0.9250  0.9364 

 (0.0000)  (0.0000) 

AUS 0.9993  0.7164 

  (0.0000)  (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov 

(KS) test. The KS tests test the null hypothesis of no difference 

between the downside and upside systemic risk contribution. The p-

values for the KS statistic are in the parentheses.  
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Table 17 

Upside and downside ∆CoVaR asymmetry from stock markets to real 

estate markets and vice versa using Gambel and Clayton copulas 

 H0: Downside ∆CoVaR   Upside ∆CoVaR 

 H1: Downside ∆CoVaR ≠ Upside ∆CoVaR  

 

from real estate markets to 

stock markets 
 from stock markets to real 

estate markets 

CHN 0.9737  0.7678 

 (0.0000)  (0.0000) 

US 0.9412  0.9574 

 (0.0000)  (0.0000) 

AUS 0.9996  0.7204 

  (0.0000)  (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov 

(KS) test. The KS tests test the null hypothesis of no difference 

between the downside and upside systemic risk contribution. The p-

values for the KS statistic are in the parentheses.  

 

 

Table 18 

Descriptive statistics of ∆CoVaR using Gambel and Clayton copulas 

 

∆CoVaR from real estate 

markets to stock markets 
  
∆CoVaR from stock markets to 

real estate markets  

  Upside Downside  Upside Downside 

CHN 0.6325 0.7105  0.6120 0.6379 

 (.0198) (.0204)  (.0126) (.0107) 

US 0.6890 0.8811  0.5581 0.5581 

 (.0499) (.0637)  (.0286) (.0286) 

AUS 0.5341 0.6327  0.5432 0.5889 

 (.007) (.0077)  (.0205) (.0224) 

Notes: This table presents the mean and the standard deviation (in parenthesis) 

of the ∆CoVaR. Panel A presents ∆CoVaR from real estate markets to stock 

markets, and Panel B presents ∆CoVaR from stock markets to real estate 

markets.  
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Table 19 

Marginal model estimations ARFIMA-GARCH with normal distribution errors 

  

CHN real 

estate 

U.S. real 

estate 

AUS real 

estate 

CHN stock 

market 

U.S. stock 

market 

AUS stock 

market 

Cst(M) 0.054264** 0.045769*** 0.036883** 0.066968*** 0.069569*** 0.032633** 

 (0.029092) (0.015774) (0.020402) (0.016913) (0.013233) (0.015284) 

AR(1) 0.03556* 0.823158*** 0.688915*** 0.199663*** -0.409993*** -0.660619*** 

 (0.020798) (0.022482) (0.090114) (0.013592) (0.023671) (0.169292) 

AR(2)   0.098914***   0.744327*** 0.559657***   

 
 (0.021914)  (0.014217) (0.017467)  

MA(1) 
 -0.873528*** 

-

0.781095*** 
-0.219688*** 0.349854*** 0.649458*** 

 
 (0.00303) (0.066637) -0.000214 (0.005587) (0.17089) 

MA(2) 
 -0.068259***   -0.74496*** -0.622519***   

 
 (0.001675)  (0.000045) (0.000246)  

Arfima 
  

0.044017 
 

 
 

 
 

 (0.069583) 
   

Cst(V) 0.060359** 0.021866*** 0.013826** 0.050652*** 0.027973*** 0.011984** 

 (0.025175) (0.007956) (0.005456) (0.017689) (0.007952) (0.004888) 

Alpha1 0.077106*** 0.133648*** 0.090336*** 0.04997*** 0.09998** 0.092698*** 

 (0.025718) (0.030099) (0.017738) (0.012107) (0.040934) (0.020201) 

Alpha2 0.053478     0.092827*** 0.059475   

 (0.036444)   (0.019573) (0.049861)  

Beta1 0.449746 0.701925*** 0.52815*** 0.019535 0.821121*** 0.89697*** 

 (0.223768) (0.161398) (0.066546) (0.027664) (0.031365) (0.021122) 

Beta2 0.400021 0.158309 0.37168*** 0.823418***   

 (0.200095) (0.148947) (0.064277) (0.029174)   

AIC 3.722 3.3337 3.0305 3.7587 2.6868 2.6111 

Ljung-Box 20.764 18.067 23.043 22.295 23.306 20.206 

Ljung-Box 

squared 23.482 23.146 32.481** 25.507 13.127 16.544 

Hosking 20.7476288 18.0530181 23.025723 22.2781661 23.2878591 23.025723 

Hosking squared 22.6326759 22.408046 31.282166 24.9587222 12.626294 31.282166 

ARCH 22.57 22.32 33.2* 24.86 12.56 31.2 

Notes:This table reports the ML estimates and the robust standard deviations in parenthesis for the parameters of the 

marginal distribution model. Ljung-Box and Ljung-Box squared are Ljung-Box autocorrelation test statistics for 

standardized residuals and squared standardized residuals, respectively, computed with 20 lags. Hosking and Hosking 

squared are the Hosking (1980) autocorrelation test statistics standardized residuals and squared standardized residuals, 

respectively, computed with 20 lags. ARCH is the test statistics of Portmanteau-Q test for the ARCH effect in the 

standardized residuals, computed with 20 lags . K–S is the test statistics of Kolmogorov–Smirnov test on the adequacy of 

normal distribution. ***, ** and * denote 1%, 5% and 10% significance levels, respectively. 
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Table 20 

Marginal model estimations ARFIMA-GARCH with Student-t distribution errors 

  

CHN real 

estate 
U.S. real estate AUS real estate 

CHN stock 

market 

U.S. stock 

market 

AUS stock 

market 

Cst(M) 0.054765** 0.058914*** 0.034742* 0.080981*** 0.084169*** 0.040202*** 

 (0.027669) (0.015339) (0.018001) (0.022972) (0.009277) (0.015112) 

AR(1) 0.03209* 0.771036*** 0.697503*** 0.78916*** 0.902257*** -0.425647** 

 (0.019448) (0.021882) (0.106434) (0.11558) (0.01291) (0.178346) 

AR(2) 
 0.13021***     

 
 (0.021231)     

MA(1) 
 -0.818457*** -0.772352*** -0.820671*** -0.974719*** 0.430095** 

 
 (0.002345) (0.085793) (0.107537) (0.009519) (0.179765) 

MA(2) 
 -0.105833***   0.039529*** 0.027897 

 
 (0.001775)   (0.003532) (0.020041) 

Arfima 
  

0.026789 
   

 
 

 (0.063077) 
 

 
 

Cst(V) 0.043279*** 0.014853*** 0.014278*** 0.038587** 0.020702*** 0.008056* 

 (0.015984) (0.005271) (0.005328) (0.014293) (0.007857) (0.004145) 

Alpha1 0.069211*** 0.11492*** 0.092518*** 0.041496** 0.071697** 0.081843*** 

 (0.02503) (0.021316) (0.017985) (0.01818) (0.032134) (0.020082) 

Alpha2 0.039173   0.067392** 0.101793**  

 (0.028717)   (0.023438) (0.047556)  

Beta1 0.54524*** 0.739195*** 0.524641*** 0.456421 0.82551*** 0.903202*** 

 (0.105171) (0.111814) (0.07446) (0.266016) (0.034218) (0.011523) 

Beta2 0.332775*** 0.143111 0.37308*** 0.424645  0.008996 

 (0.095964) (0.106049) (0.071663) (0.245571)  (0.009696) 

Shape 9.200094*** 8.279293*** 12.257666*** 7.450393*** 4.973168*** 9.750381*** 

 (1.491851) (1.215832) (2.467459) (1.019325) (0.490551) (1.745374) 

AIC 3.7024 3.3079 3.0219 3.7324 2.6238 2.5933 

Ljung-Box 21.128 17.856 22.434 22.479 21.741 16.982 

Ljung-Box 

squared 29.169* 28.878 32.02** 30.923* 21.455 19.556 

Hosking 21.1117161 17.8419762 22.417312 22.4614284 21.7237429 16.9695472 

Hosking squared 28.0365237 27.170347 30.880257 29.523485* 20.845328 17.651917 

ARCH 28 27.1 30.8 29.42* 20.76 17.59 

Notes:This table reports the ML estimates and the robust standard deviations in parenthesis for the parameters of 

the marginal distribution model. Ljung-Box and Ljung-Box squared are Ljung-Box autocorrelation test statistics 

for standardized residuals and squared standardized residuals, respectively, computed with 20 lags. Hosking and 

Hosking squared are the Hosking (1980) autocorrelation test statistics standardized residuals and squared 

standardized residuals, respectively, computed with 20 lags. ARCH is the test statistics of Portmanteau-Q test for 

the ARCH effect in the standardized residuals, computed with 20 lags . K–S is the test statistics of Kolmogorov–

Smirnov test on the adequacy of student-t distribution. ***, ** and * denote 1%, 5% and 10% significance levels, 

respectively. 
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Panel A: SJC copulas for Chinese market 

 with normal distributed innovations with Student-t distributed innovations 

  
Panel B: SJC copulas for U.S. market 

 with normal distributed innovations with Student-t distributed innovations 

  
Panel C: SJC copulas for Australian market 

 with normal distributed innovations with Student-t distributed innovations 

  
Fig. 13. SJC time varying copula of models with normal distributed innovations and models with Student-t 

distributed innovations 
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Table 21 

SJC time varying copula estimates with normal distributed models and Student-t distributed models 

Copulas Normal innovations   Student-t innovations 

TVP SJC CHN US AUS  CHN US AUS 

𝞈u 0.0499 0.1539 0.1717  0.0548 0.1570 0.0296 

 (.045) (.0563) (.185)  (.0305) (.0476) (.0178) 

𝝱u 0.9805 0.9172 0.5711  0.9780 0.9240 0.9861 

 (.0222) (.0345) (.3309)  (.0151) (.0253) (.0088) 

𝝰u -0.3174 -0.9754 -1.9136  -0.3473 -1.0037 -0.1895 

 (.2704) (.364) (1.5613)  (.1852) (.3129) (.1129) 

𝞈l 1.2416 0.0154 1.1951  1.0685 0.0166 1.2762 

 (.5353) (.0026) (.3686)  (.5368) (.0032) (.3551) 

𝝱l 0.3053 0.9950 -0.7098  0.4139 0.9946 -0.7168 

 (.3133) (.0007) (.1437)  (.3088) (.0009) (.1328) 

𝝰l -5.5052 -0.0941 -7.5163  -4.7258 -0.1005 -8.0452 

 (2.3784) (.015) (2.0206)  (2.3519) (.018) (1.967) 

AIC -2928.43 -1808.28 -1378.87   -2953.28 -1786.89 -1391.96 

Note: This table reports the ML estimates for the parameters of different static copulas as well as their respective 

AICs. Standard errors are reported in the parentheses. 

 

Table 22      

Descriptive statistics of VaR and CoVaR based on models with normal distributed errors 

 Upside   Downside  

  VaR CoVaR   VaR CoVaR 

Panel A: VaR of stock markets and CoVaR from real estate to stock market 

CHN 3.0068 5.0465  -2.8154 -4.8652 

 (1.8617) (3.121)  (1.7448) (3.01) 

US 1.8137 2.9999  -1.6603 -2.8518 

 (1.1664) (1.9796)  (1.1349) (1.948) 

AUS 1.6229 2.6899  -1.5571 -2.6493 

 (.7615) (1.2773)  (.7608) (1.2873) 

      

Panel B: VaR of real estate markets and CoVaR from stock to real estate market 

CHN 2.8488 4.8077  -2.7428 -4.7115 

 (1.4626) (2.4841)  (1.461) (2.4885) 

US 2.7404 4.5808  -2.6189 -4.4676 

 (2.5645) (4.3554)  (2.4905) (4.2834) 

AUS 2.0672 3.4276  -1.9934 -3.3866 

  (1.2365) (2.0495)  (1.213) (2.0467) 

Notes: This table presents the mean and the standard deviation (in parenthesis) of the 

VaR calculated using all the data, upside and downside CoVaRs.  
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Table 23      
Descriptive statistics of VaR and CoVaR based on models with Student-t distributed errors 

 Upside  Downside 

 VaR CoVaR  VaR CoVaR 

Panel A: VaR of stock markets and CoVaR from real estate to stock market 

CHN 2.9442 6.0309  -2.7601 -5.8682 

 (1.7622) (3.6468)  (1.7367) (3.6349) 

US 1.8045 4.0041  -1.5793 -3.8067 

 (1.2328) (2.8542)  (1.1175) (2.7342) 

AUS 1.6108 3.0611  -1.5322 -3.0247 

 (.7599) (1.4777)  (.7624) (1.4911) 
      

Panel B: VaR of real estate markets and CoVaR from stock to real estate market 

CHN 2.8098 5.5497  -2.7026 -5.4608 

 (1.4484) (2.8838)  (1.447) (2.8934) 

US 2.7176 5.3722  -1.5793 -5.2467 

 (2.5356) (5.1753)  (2.4725) (5.1091) 

AUS 2.0509 3.7820  -1.5322 -3.7571 

 (1.2308) (2.2687)  (1.1991) (2.2686) 

Notes: This table presents the mean and the standard deviation (in parenthesis) of the VaR 

calculated using all the data, upside and downside CoVaRs.  

 

 

Table 24      
Results of value at risk (VaR) backtesting 
 For stock return  For real estate return 

  Upside  Downside    Upside  Downside  

Panel A: models with normal innovations    
CHN 2.8280* 0.9262  0.0263 0.2703 

 (.0926) (.3358)  (.8712) (.6031) 

US 10.3264*** 10.1091***  8.4895*** 1.4344 

 (.0013) (.0015)  (.0036) (.231) 

AUS 15.8242*** 3.1418*  3.4606* 1.0082 

 (.0001) (.0763)  (.0628) (.3153) 
      

Panel B: models with Student-t distribution    
CHN 2.5190 5.5039**  0.3706 0.7644 

 (.1125) (.019)  (.5427) (.382) 

US 12.3642*** 29.1093***  7.3736*** 5.4268** 

 (.0004) (0.0000)  (.0066) (.0198) 

AUS 10.1849*** 5.9717**  2.8036* 2.3043 

 (.0014) (.0145)  (.0941) (.129) 

Notes: This table reports the unconditional coverage test Likelihood Ratio statistics for the null 
hypothesis of correct exceedances. and their corresponding p values in parenthesis. ***, ** and * 

denote 1%, 5% and 10% significance levels, respectively.  
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Table 25     

Tests of equalities of VaR and CoVaR in upside and downside conditions 

 

 CoVaR from real estate markets to 

stock markets    

CoVaR from stock markets to 

real estate markets  

  Upside Downside   Upside Downside 

Panel A: models with normal innovations    

CHN 0.5770 0.5964  0.6188 0.6231 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

US 0.4603 0.4682  0.4323 0.4449 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

AUS 0.5413 0.5509  0.5740 0.6015 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

      

Panel B: models with Student-t distribution    

CHN 0.6935 0.7055  0.7190 0.7187 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

US 0.6076 0.6443  0.5326 0.5515 

 (0.0000) (0.0000)  (0.0000) (0.0000) 

AUS 0.6301 0.6468  0.6561 0.6833 

  (0.0000) (0.0000)   (0.0000) (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov (KS) test. The 

KS tests the null hypothesis of no risk spillovers between the stock markets and 

real estate markets. The p-values for the KS statistic are in the parentheses.  

 

Panel A: ∆CoVaR for China markets with normal distributed models 

∆CoVaR from real estate to stock market          ∆CoVaR from stock to real estate market 

 

Panel B: ∆CoVaR for U.S. markets with normal distributed models 

∆CoVaR from real estate to stock market          ∆CoVaR from stock to real estate market 
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Panel C: ∆CoVaR for Australia markets with normal distributed models 

∆CoVaR from real estate to stock market          ∆CoVaR from stock to real estate market 

 

Fig. 14. Upside and downside delta conditional value-at-risk (∆CoVaR) for models with normal distributed 

innovations 

 

 

 

Panel A: ∆CoVaR for China markets with Student-t distributed models 

∆CoVaR from real estate to stock market          ∆CoVaR from stock to real estate market 

 

Panel B: ∆CoVaR for U.S. markets with Student-t distributed models 

∆CoVaR from real estate to stock market          ∆CoVaR from stock to real estate market 

 
Panel C: ∆CoVaR for Australia markets with Student-t distributed models 

∆CoVaR from real estate to stock market          ∆CoVaR from stock to real estate market 

 

Fig. 15. Upside and downside delta conditional value-at-risk (∆CoVaR) for models with Student-t distributed 

innovations 
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Table 26 

Upside and downside ∆CoVaR asymmetry from stock markets to real estate markets 

and vice versa 

 H0: Downside ∆CoVaR   Upside ∆CoVaR 

 H1: Downside ∆CoVaR > Upside ∆CoVaR  

  

from real estate markets to stock 

markets 
  

from stock markets to real estate 

markets 

Panel A: normal innovations 

CHN 0.7767  0.7217 

 (0.0000)  (0.0000) 

US 0.6621  0.4358 

 (0.0000)  (0.0000) 

AUS 0.9454  0.4595 

 (0.0000)  (0.0000) 

 
   

Panel B: Student-t distribution 

CHN 0.8228  0.7732 

 (0.0000)  (0.0000) 

US 0.6155  0.5026 

 (0.0000)  (0.0000) 

AUS 0.8435  0.5182 

  (0.0000)  (0.0000) 

Notes: This table presents the results of the Kolmogorov–Smirnov (KS) test. The KS 

tests test the null hypothesis of no difference between the downside and upside 

systemic risk contribution. The p-values for the KS statistic are in the parentheses.  
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