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Abstract

Pairs trading is a statistical arbitrage strategy that offers appealing properties for the so-

phisticated investor. The concept relies on the creation of a mean-reverting spread between

two assets, where there is assumed to exist a long-term equilibrium relationship. This pa-

per applies cointegration testing to model such equilibrium relationships between differ-

ent pairs of 27 European equity indices. A selection algorithm based on the Engle-Granger

two-step procedure picks the five most mean-reverting pairs in a formation period that are

consequently traded in a trading period. The process is shifted in time in a rolling window

fashion to obtain out-of-sample results for the period January 2006 to December 2017. Per-

formance measures after transaction costs are encouraging with annualized excess returns

between 3.9% and 13.3%, as well as information ratios between 0.52 and 1.29 for different

parameter sets. The returns do not load on a conventional systematic risk-factor, but are

almost completely beta neutral during the entire sample period.
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1. Introduction

Hedge funds, proprietary trading firms and Commodity Trading Advisors (CTAs) have

long been trying to "beat-the-market" on a risk-adjusted basis. One strategy to potentially

achieve this is particularly appealing, namely pairs trading. There is now substantial evi-

dence on the profitability of relative value strategies on a daily time-frame, and that these

strategies do not load on well-known risk-factors. Pairs trading is a trading or investment

strategy used to exploit financial markets that are out of equilibrium as described by El-

liott et al., (2005) and Litterman, (2004). Markets may not be in equilibrium all the time,

but over time they move to a rational equilibrium, and the arbitrageur will exploit these

dislocations. The equilibria we refer to here are not directly observable, but can be seen as

hidden stochastic relationships between certain assets. More formally, these relationships

are often referred to as common stochastic trends.

The pairs trading strategy was first introduced by Nunzio Tartaglia, working at Mor-

gan Stanley in 1987 (Vidyamurthy, 2004). Tartaglia and his group utilized a systematic

investment approach and developed what is believed to be some of the very first auto-

mated trading systems for pairs trading. The process of a pairs trade is conceptually very

simple, where one first identifies a pair of assets (traditionally stocks) that seem to move

together. When there is a relative mispricing in the relationship, one would bet on the

mean-reversion of this mispricing given the assumption of a common long-term trend.

These relative mispricings are described as the spread between two assets in the literature.

The practical implementation would require a long position in the stock that has relatively

underperformed and a short position of equal nominal value in the stock that has rela-

tively overperformed. We construct a mean-reverting synthetic asset (the spread) that is

effectively market-neutral. The prospect of using a zero-cost portfolio to harvest excess re-

turns has been particularly appealing even to academia since it does not rely on directional
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trading. During the last two decades, there has emerged a substantial academic literature

documenting the profitability of pairs trading which has fallen under the category of what

is often called statistical arbitrage. This wording is somewhat misleading since we are in

fact not dealing with a real arbitrage opportunity, but a risky bet given a statistical "edge".

Vidyamurthy, (2004) is the most cited work for cointegration based pairs-trading uti-

lizing a Engle-Granger two-step approach to formally test for cointegration between pairs.

Somewhat simplified, the spread in this case can be thought of as the difference in log-

price levels between two assets, where one asset is scaled by a cointegration coefficient.

The spread can then be normalized and used as a trading signal. This technique has been

extensively studied in a defined universe of stocks (Dunis et al., 2010; Rad et al., 2016).

However, there has not been much research on applying these concepts across markets.

The work that has been done is mostly related to "Siamese Twin" companies as described

by Froot and Dabora, (1999), and dual listed companies (DLCs) as described by Hong and

Hong and Susmel, (2012).1 Only Burgess, (2000) presents a short case study of pairs trading

between the French CAC index and the German DAX index.

This paper applies the cointegration approach of pairs trading to 27 European equity

indices using a robust backtesting procedure on daily spot prices for the period 2006-01-01

to 2017-12-31. We also make use of a rolling OLS model and the Kalman filter to estimate

cointegrating relationships, similarly to Dunis et al., (2010). The empirical results suggest

that our strategy outperforms its benchmark across all parameterisations. We observe high

information ratios between 0.52 and 1.29, even after transaction costs. We also find that the

strategy is inherently less risky than a buy-and-hold strategy, with a standard deviation

less than half of the benchmark portfolio. Our results also suggest that the performance of

the strategy is positively related to volatility.

We now proceed to a brief review of the relevant literature in section 2, describe our

methodology in section 3, and our empirical results in section 4. Section 5 concludes the

paper by presenting the most important findings.

1Dual listings comprise of a primary listings and a second listing as an ADR. This is commonplace with
Asian stocks, that often have a secondary listing in the U.S.
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2. Literature Review

2.1 Cointegration of International Stock Markets

2.1.1 Common Stochastic Trends

Common stochastic trends in international stock markets can have important implications

for the international investor. If systematic risk is priced similarly in different markets,

the result is a common stochastic trend. The trend is then driven by some unobservable

risk factor that is common across markets (Burgess, 2000). Evidence of a single common

stochastic trend that drives the long-run comovement of the equity markets in the U.S.,

Japan, England, Germany and Canada is presented by Kasa, (1992). Interestingly, the pres-

ence of a single common stochastic trend would imply that these markets are highly cor-

related over long time horizons. Consequently, a investor holding only a small portfolio

of international equity indices will not reap the full benefits of diversification. There also

seems to be an increasing integration of European markets in particular (Mylonidis and

Kollias, 2010). This is not surprising given the growing rate of economic integration in

the European Union, with many countries adopting a common currency in the euro and

monetary policy largely driven by the European Central Bank.

2.1.2 Volatility Spillover Effects

Volatility spillovers effects are prominent across markets both internally within Europe, but

also between Europe and the United States. These effects vary in strength over time and can

be triggered by both scheduled and unscheduled news events in the short run (Baele, 2005;

Jiang et al., 2012). A study on ex-ante measures of integration of higher order moments

using options data find that there is strong interdependence in variance across different

markets, although the interdependencies are not as strong when it comes to skewness and
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kurtosis (Gagnon et al., 2016). The results also show that these interdependencies increased

in persistence and in the speed of adjustment during the financial crisis of 2007-2009 for all

four moments. The implication being that we will see more spillover effects across markets

in the event of market turmoil.

2.1.3 The Case for Relative Value Strategies

Given that there is substantial evidence that many international stock markets are driven

by the same fundamental risk factors, forming long-short pairs of cointegrated equity in-

dices should cancel out the exposure to such common risk factors (Burgess, 2000). The

relative magnitude of the assets’ idiosyncratic components should be enhanced in such a

portfolio. Assuming that a common stochastic trend between two equity indices follows

a random walk process, and that the asset specific components exhibit mean reverting

characteristics (i.e. predictable behavior), we could trade this mean reverting relative price

series using a pairs trading strategy. The idiosyncratic and mean-reverting component here

could be the cyclical earnings of a industry in a certain country, exchange rate fluctuations,

or even an underwhelming earnings report by a heavily weighted company in an equity

index. Regardless of what drives dislocations in relative value between two cointegrated

markets, such dislocations tend to eventually revert back to some long term mean. The

variance ratio test is proposed by Burgess, (2000) as a worthwhile exercise to truly under-

stand how a relative price series might be inherently mean-reverting. This is important

since it highlights the exact behavior which we are trying to harvest by building a pairs

trading strategy. The test is presented in Appendix A.1 for the interested reader.

2.2 Pairs Trading

We have now presented the theoretical motivation for the underlying dynamic of a mean-

revering spread. This section briefly describes the different approaches to pairs trading

currently present in the academic literature, without claiming completeness or exhaustive-

ness. All methods build on similar fundamental principles and have mainly evolved from

the logic of the more rudimentary but surprisingly effective distance approach.

We identify four main categories of pairs trading literature directly or indirectly rel-

evant for this study, the distance approach, the cointegration approach, the stochastic spread
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approach and the copula approach, listed below in conjunction with relevant papers (Krauss,

2017). Novel and less well studied approaches as well as approaches not directly relevant

to our study are only covered briefly under a separate section.

• Distance Approach (Do and Faff, 2010, 2012; Gatev et al., 2006)

• Cointegration Approach (Rad et al., 2016; Vidyamurthy, 2004)

• Stochastic Spread Approach (Cummins and Bucca, 2012; Elliott et al., 2005)

• Copula Approach (Krauss and Stübinger, 2017; Rad et al., 2016)

• Other Approaches: Stochastic Control, Machine Learning, PCA (Avellaneda and Lee,

2010; Huck, 2009, 2010; Jurek and Yang, 2007)

2.2.1 Distance Approach

The most influential and cited paper in the pairs trading domain of academic research is

Gatev et al., (2006). The authors use a simple distance approach where they identify pairs

that have prices that move together historically in a formation period. This is measured as

the distance between normalized prices, forming a mean reverting series of distances (the

spread). The top 20 pairs with minimum historic sum of squared distances (SSD) are picked

for trading. Their trading rules automatically takes bets in the spread when it diverges by

more than two standard deviations from its mean and closes the position when the spread

reverts to the mean, at the end of the trading period, or when a delisting occurs. This

simple trading strategy achieves an average annualized excess return of 11%. The profit

persists even when accounting for conservative transaction cost estimates. The authors also

show that their results are robust to alternative explanations such as reversals (Jegadeesh,

1990) and momentum (Jegadeesh and Titman, 1993) using a bootstrapping approach. An

obvious advantage with this approach is that it is model-free, making it robust to model

misspecifications.

The findings of Gatev et al., (2006) is confirmed by Do and Faff, (2010, 2012), although

they note that profitability has decreased due to an increasing share of non-converging

pairs and that the strategy is largely unprofitable after transaction costs. They also refine

the selection criteria for pairs selection, only allowing for matching pairs within the same
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industry, potentially reducing the amount of spurious correlations. After this refinement,

the trading strategy is again slightly profitable even after transaction costs.

2.2.2 Cointegration Approach

The most cited work for cointegration based pairs-trading is Vidyamurthy, (2004), mainly

targeted for practitioners rather than for academics. The author proposes the Engle-Granger

two-step approach to formally test for cointegration between pairs, which has not been the

case in studies using the distance approach. An economic (regression) model is now intro-

duced and defined as:

ln(PA
t )− γln(PB

t ) = µ + εt (2.1)

where ln(PA
t ) and ln(PB

t ) represents the I(1)-nonstationary log-price series of stocks

A and B. In this case, γ is the cointegration coefficient, µ is the long-run equilibrium,

and εt is the spread (the residuals of the regression model). The residuals are tested for

stationarity using a unit-root test and the price series are formally tested for cointegration

in a second stage. Regular t-statistics of the cointegration coefficients are sufficient to test

for cointegration in the second stage. The spread is then normalized by subtracting the

mean and dividing by the standard deviation, and subsequently used as a trading signal.

The most comprehensive empirical study is performed by Rad et al., (2016), testing the

strategy on the entire U.S. equity market from 1962 to 2014 reporting a mean monthly ex-

cess return of 0.85% before transaction costs and 0.33% after transaction costs. The authors

also test other strategies such as the distance approach and the copula approach (covered

later) and find that all methods produce significant alphas after accounting for various

risk factors. The cointegration method is found to perform best during turbulent market

conditions.

Huck, (2015) and Huck and Afawubo, (2015) show that the cointegration approach

is superior in selecting effective pairs for trading, compared to other methods such as the

distance approach. This holds true both for the S&P 500 and Nikkei 225 stock universe. The

papers also make the same observation as Rad et al., (2016), that pairs trading strategies

seem to have produced impressive performance during the 2007-2009 financial crisis.
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An improved selection algorithm for pairs is proposed by Caldeira and Moura, (2013)

based on in-sample performance measures such as the Sharpe Ratio. The authors report

annualized excess returns of 16.38% and a Sharpe ratio of 1.34 using their selection algo-

rithm in conjunction with the cointegration approach on the Brazilian stock market.

2.2.3 Stochastic Spread Approach

The Stochastic Spread approach, first proposed by Elliott et al., (2005) sets out to model the

spread as a stochastic process. The spread in this case is defined as the difference in log-

price levels between two assets. The spread is modeled using a mean reverting Gaussian

Markov chain model that is observed in Gaussian noise. Specifically, the spread is defined

by the state equation where xk is the state variable following a mean reverting process:

xk+1 − xk = (a− bxk)τ + σ
√

τεk+1 (2.2)

where a, b, and σ are constant values and εk+1 is a standardised Gaussian noise term.

The mean can be defined as µ = a
b where b is the mean reversion strength. Equation 2.2

can be rewritten as:

xk+1 = A + Bxk + Cεk+1 (2.3)

where A = aτ, B = 1 − bτ and C = σ
√

τ. In a continuous time setting, we can

describe the state process as a Ornstein-Uhlenbeck (OU) procees that satisfies the following

stochastic differential equation:

dXt = ρ(µ− Xt)dt + σdWt (2.4)

where Wt is a standard Wiener process, µ = a
b denoting the mean and ρ = b describing

the mean reversion strength. We now define the observation process (yk) as the sum of the

state variable and some standardised Gaussian noise:

yk = xk + Dωk, D > 0 (2.5)

The parameters A, B and C in equation 2.3 can now be estimated using the recursive

Kalman filter algorithm. The Kalman filter will be discussed in more detail in section 3.4.2,
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although with a slightly different application. The algorithm essentially takes a series of

noise measurements and returns a optimal estimate for the unobservable true value. The

estimate is a weighted average of the prediction by the state equation (given the obser-

vation in the previous period) and the observation in the current period. When we have

estimated the model, we can enter trades at certain thresholds defined by the fixed param-

eter c, e.g. when yk ≥ µ + c( σ√
2ρ
) or when yk ≤ µ− c( σ√

2ρ
). The paper does not define

any fixed exit thresholds but assumes that the trade will be unwound at a certain time T

later. No empirical results are provided in the paper, only a remark that experiments with

real data has been performed with a hedge fund.

Do et al., (2006) criticize the method (as they do with the distance approach) with re-

gards to the fact that it assumes return parity - meaning that in the long-run the two stocks

must provide the same return, to the extent that any departure from it is expected to be

corrected in the future. In practice it is rare to find two such stocks, the only possible

candidates being companies that adopt a dual listed company structure. This critique is

largely only valid for stocks. In other asset classes such as commodity derivatives we can

find pairs that have a strong fundamental relationship and where short term deviations

will almost certainly correct given enough time. Such pairs could be formed for instance

between crude oil futures and refined products such as gasoline and heating oil futures

(Cummins and Bucca, 2012; Girma and Paulson, 1999).

Bertram, (2010) use a mean-reverting Ornstein-Uhlenbeck process to model the spread,

and finds analytical solutions to optimal entry and exit levels by maximising the expected

return per unit of time. Cummins and Bucca, (2012) apply this approach empirically on

Energy derivatives and find Sharpe Ratios consistently above two for each year between

2003 and 2010.

The stochastic spread approach does not offer any method for pairs selection, but as-

sumes that one has already identified suitable pairs for trading. This could be done by

one of the previously mentioned methods for pairs selection. Another disadvantage with

the method is the Gaussian nature of a OU-process, given that financial data tends to be

leptokurtic.
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2.2.4 Copula Approach

The copula method deals with some of the problems inherent in dealing with Gaussian

assumptions in the cointegration and stochastic spread approach. Several new papers has

been added during the last few years as this is a rather new approach to the literature

(Krauss and Stübinger, 2017; Liew and Wu, 2013; Rad et al., 2016; Stander et al., 2013; Xie

and Wu, 2013). First, pairs are selected according to a correlation or cointegration criteria.

Log-returns are calculated and the marginal distributions FRA and FRB for the two assets

A and B are obtained using either a parametric or non-parametric approach as described

in Stander et al., (2013). The returns are plugged in to their own distribution functions to

obtain uniform variables UA = FRA(RA) and UB = FRB(RB), after which an appropriate

copula function C(uA, uB) can be selected. The copula is then used to calculate the condi-

tional marginal distribution functions using first derivatives of the copula function as seen

below.

h(uA | uB) = P(UA ≤ uA | UB = uB) =
∂C(uA, uB)

∂uB
(2.6)

h(uB | uA) = P(UB ≤ uB | UA = uA) =
∂C(uA, uB)

∂uA
(2.7)

When the conditional probability is greater (less) than 0.5, an asset would be considered

relatively overvalued (undervalued). However, trades will be triggered well in the tail

regions of the conditional probabilities, e.g. below the 5% and above the 95% confidence

level. Formally speaking when P(UA ≤ uA | UB = uB) = 0.05 and P(UA ≤ uA | UB =

uB) = 0.95.
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2.2.5 Other Approaches

The following methods are only covered conceptually without going in to much technical

detail.

Stochastic Control Approach

Jurek and Yang, (2007) model their spread using a Ornstein-Uhlenbeck process, and make

use of stochastic control theory to develop a new methodology for pairs trading. The au-

thors apply their approach empirically to two pairs of Siamese twin shares, the Royal Dutch

- Shell pair as well as the Unilever PLC - Unilever N.V. pair. They compare their results to

the distance approach proposed by Gatev et al., (2006) and find that the stochastic con-

trol method delivers a significant improvement in realized Sharpe ratio as well as terminal

wealth when applied to the same pairs. One important conclusion from their paper is that

there is a critical level of mispricing where arbitrageurs will decrease their position due to

negative wealth effects. This finding could be seen as a formal argument for the limits to

arbitrage argument found in the behavioral finance literature.

Liu and Timmermann, (2013) build on the method proposed by Jurek and Yang, (2007)

but allow for non-delta-neutral positions. The significant finding of the paper is that it can

be optimal to hold both assets long or short at the same time under some circumstances. It

can also be optimal to only hold one of the two assets. This is an interesting finding since

it is hard to reconcile with the standard definition of a pair trade.

Machine Learning

Huck, (2009, 2010) uses Elman neural networks to generate return forecast for the upcom-

ing week conditional on past return data. These forecasts are then compared pairwise in

a ranking step and relative performance evaluated, the relative performance being the dif-

ference in the return forecasts. The most undervalued stocks are bought and the most over-

valued stocks are sold in a trading step. This approach is different from other pair trading

models in that there is no long run equilibrium model. The trades are instead determined

by the final ranking of the assets.
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PCA

Avellaneda and Lee, (2010) decompose stock returns into systematic and idiosyncratic

components by regressing the return of each stock on their respective sector ETF. This

concept is then extended to a multifactor model with m factors. They then use principal

component analysis (PCA) to create m eigenportfolios, in line with the multifactor model,

that can be traded relative to the sector ETFs. The idiosyncratic components can thus be

traded separately from the systematic components.
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3. Methodology

3.1 Data

3.1.1 European Equity Indices

The data set is comprised by daily closing prices of 27 European equity price indices as

listed in table C.1 in Appendix C. The programming language used for data handling and

analysis in this paper is R. The data is fetched using the https://stooq.com/ API for the

period 2004-01-01 to 2017-12-31 and complemented with manually downloaded data from

https://finance.yahoo.com/ since the Yahoo finance API is no longer supported. The out

of sample period spans from 2006-01-01 to 2017-12-31. This period is selected considering

the fact that some indices do not have data dating further back in time. Furthermore, we

have to consider a possibly important structural break in the data during the decimaliza-

tion of stock markets in the early 2000s.

Spot data is used for the analysis to simplify the process of forming a dataset. Imple-

menting a trading strategy on equity indices would generally be done using index futures

or ETFs rather than buying/selling the underlying basket of stocks. This holds true con-

sidering transaction costs and capital efficiency (margin requirements vs owning outright).

Futures data generally are available on a per-contract basis and would thus have to be

merged into a longer time-series, a non-trivial task prone to some error. ETFs do not have

data available for all the markets in our sample for the chosen period. Spot data has the

advantage that one does not have to account for roll-over periods and data is more readily

available for longer periods and more indices. Using spot data as a proxy for the price a

trader could expect to receive is not an unreasonable assumption given that we use daily

data. If one wishes to use data of a higher frequency, using spot data is certainly not opti-

mal.

https://stooq.com/
https://finance.yahoo.com/
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The dataset is comprised of price indices, meaning that dividends are not incorporated

in the index values. When the stocks go ex-dividend however, the index will be affected

and fall. Since futures prices factor in this drop, there will be a slight difference between

futures prices and spot prices ahead of the ex-dividend date. This problem is however

not a great concern, and the price index can be considered a good proxy for the return we

would expect to receive from any given trade.

One problem that is eliminated by using indices as opposed to stocks is survivorship

bias. Since stocks are continuously replaced when their market cap becomes too small,

holding the index will weed out companies that are not performing naturally.

3.1.2 Time-zone Differences and Holidays

Time-zone differences and different opening hours across exchanges presents an apparent

problem with cross-market trading given only daily observations. There is however some

homogeneity in trading hours across Europe as can be seen in table C.2 (Appendix C), list-

ing the exchanges included in the sample. All the countries in the sample are captured by

the time zones UTC, UTC+1, UTC+2 and UTC+3. The opening hours mostly conform to

the London trading session (08:00-16:30 UTC), although there are some local variations, es-

pecially in closing hours. The biggest discrepancy is with regards to the Baltic countries, all

closing at 14:00 UTC, 2.5 hours before the end of the London session. Moreover, the DAX is

formally open until 19:00 UTC, although trading after the London session is generally very

quiet. The morning opening hours are very homogeneous, where all exchanges except the

Bratislava Stock exchange and Iceland Stock Exchange are open at 08:00 UTC when the

London session starts. The varying closing hours are a problem that is hard to eliminate

completely given the frequency of the data, as closing prices will inevitably represent dif-

ferent times of the day in some indices. Given this, one could not be certain to receive

the daily closing prices for both assets when entering the long and short leg simultane-

ously (opening a pair). A practical solution could be to enter all trades at 14:00 UTC when

the Baltic exchanges close, and treat that time as our closing price across all exchanges.

Running a backtest with this specification is however not possible using only daily closing

prices (intra-day data is needed in this case). The reader should keep this shortcoming in

mind when interpreting the results. Lacking access to intra-day data, this problem could

be greatly reduced by implementing the strategy on a weekly time-frame. A few hours in
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between data points will almost certainly not affect returns measured on a weekly time-

frame substantially. While the primary backtest is conducted using daily observations, the

strategy is also tested on a weekly time-frame for this reason as a robustness test.

National holidays have not been removed from the sample but simply appear as a

missing value in the raw dataset. Common holidays such as Christmas and Easter will be

missing across most of the countries, meaning that no new trades can be initiated since

there is no movement in price. In both cases the closing price from the last day will simply

be carried forward to the missing value, i.e. the return will appear as zero. This is common

practice in the literature and could only cause problems if there is a national holiday in one

country but not in the other, in which case a cross-market spread trade could potentially

be hindered. This is however a small source of bias, and not likely to affect the results

significantly.

3.1.3 Foreign Exchange Risk

Foreign exchange risk is another important issue to consider in cross-market trading. In-

dices are denoted in local currency, meaning that a cross-market spread will be affected by

currency fluctuations if the long and short leg are denoted in different currencies. One so-

lution to this would be to recalculate all index prices to the same currency using time series

of daily exchange rates. We opted against this method since a cointegrating relationship is

primarily a statistical relationship generally performed without any type of currency con-

version. This relationship will be altered by introducing new variables that are allowed to

interact with the data. The pairs trading strategy presented in this paper is consequently

exposed to foreign exchange risk, and the possibility that results are driven by currency

fluctuations has to be addressed. A spread could converge only due to an appreciation or

depreciation of a certain currency against another. To test this hypothesis, we run the strat-

egy only on a subset of the 15 indices denoted in EUR in table C.1 (Appendix C), instead of

the 27 in our original sample. If results persist even after this restriction, it is reasonable to

assume that the results are not primarily driven by currency fluctuations.
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3.2 Overview of the Trading Strategy

The trading strategy can be described by three main processes that run in tandem but with

different purposes: (1) pairs selection, (2) continuous estimation of the cointegrating relation-

ship using time-varying models and (3) continuous tracking of the normalized spread to

trigger trades.

The first process, pairs selection, is described in detail in section 3.3. It is performed

semiannually using data from the past year (the formation period) and then moved forward

through the sample by six months at the time using a rolling window approach. This pro-

cess decides which pairs that will be traded during the following six months (the trading

period). The choice of a formation period of one year and a trading period of six months

follows the standard practice in the literature of a formation period twice as long as the

trading period and is the proposed window sizes by Gatev et al., (2006). A one year for-

mation period is also shown to have better performance than a two year formation period

sometimes used (Huck and Afawubo, 2015).

The second process is the continuous estimation of the cointegration coefficient and

calculation of the spread, as described in detail in section 3.4. We utilize a time-varying

model that updates the cointegration coefficient each day similarly to Dunis et al., (2010).

This is done using two different methods that will be compared in the results section, a

rolling OLS regression and a Kalman filter approach.

The third process is tightly linked to the second. We now normalize the spread using a

Z-score as described in section 3.5. The Z-score defines deviations from the average spread

in terms of standard deviations.

The entire backtesting procedure can be seen in figure 3.1 and is designed to eliminate

lookahead bias, so that the rules could be applied in real-time as a trading strategy without

modification. Step (2) and (3) as described above are illustrated together in the bottom of

the figure as a continuous process occurring every day.
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FIGURE 3.1: Backtesting procedure with periodic pairs-selection,
continuous estimation of the cointegrating relationship

and tracking of the normalized spread

The procedure of periodically shifting a formation and trading period forward in time

as seen in 3.1 is commonly known as walk-forward analysis among practitioners. This is

a cross-validation technique that has gained traction among practitioners as-well as aca-

demics since one can obtain robust out-of-sample results even when the amount of data

is limited. The end result is a long vector of returns comprising of all the trading periods

combined together. Performed correctly, these returns will be truly out-of-sample. In our

case, we end up with a return vector built by combining 24 trading periods between Jan-

uary 2006 and December 2017 to obtain a out-of-sample time series of 12 years. This is the

return series that is presented in the results section.

3.3 Pairs Selection

The process described below is the pairs selection procedure and is performed semiannu-

ally using a rolling window approach.

3.3.1 Engle-Granger Two-Step Method

The Engle and Granger, (1987) two-step methodology is preferred in financial applications

as noted by Alexander, (2001) and Dunis et al., (2010) due to its simplicity and and lower

variance compared to the Johansen, (1988) method. Since we are only concerned with pairs
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of assets in this paper, the former method is chosen. The Johansen method has some in-

teresting applications when there is more than one cointegrating vector and the synthetic

asset is comprised of more than two assets (Dunis and Ho, 2005). This application is how-

ever outside the scope of this paper.

Step 1

The first step of the Engle-Granger method is to test that the log-price series of all the assets

in the sample are indeed integrated of order one and thus contain a unit root. That the

price series are nonstationary might seem obvious, but nevertheless this has to be formally

tested. This is traditionally done using a unit root test such as the Augmented Dickey-

Fuller (ADF) test or Phillips-Perron (PP) test. The ADF test and PP test is known to perform

poorly when there are structural breaks in the data and the sample is small, both conditions

that will be present given our chosen method. Structural breaks can certainly occur when a

cointegrating relationship "breaks" and our sample size for each individual test will only be

one year as defined by the formation period. Considering these shortcomings, we decide

to use another unit root test based upon the weighted symmetric estimator of Pantula,

Gonzales-Farias and Fuller (PGF) defined in equation 3.1 (Pantula et al., 1994):

ρ̂WS =
∑n

t=2 Yt−1Yt

∑n−1
t=2 Y2

t + n−1 ∑n
t=1 Y2

t
(3.1)

where Y is the time-series to be tested for a unit root and n is the length of the vector.

The distribution of ρ̂WS are then determined through simulation and table lookup is used

to determine the p-value associated with the test statistic. This test has been shown to

perform better than both the ADF test and PP test in simulation studies (Pantula et al.,

1994). Specifically, it rejects the null hypothesis of a unit root more accurately in small

samples than the ADF test and PP test.

After confirming that the price series are indeed nonstationary, all assets are combined

into pairs. A universe of 27 assets means that there are 351 potential pairs available to trade.

The log-price levels of one asset A will be regressed on the log-price levels of the other asset

B in the pair according to the specification in equation 3.2 using a OLS regression. This is

sometimes called the cointegrating regression or the static regression (Do et al., 2006).
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ln(PA
t ) = µ + γln(PB

t ) + εt (3.2)

The relationship is often rewritten as in equation 3.3 to highlight the fact that the coin-

tegrating relationship contains a long-run mean µ and a residual term εt sometimes called

the error correction term. Equation 3.3 implies that if εt is stationary, then the combination

ln(PA
t )− γln(PB

t ) must also be stationary.

ln(PA
t )− γln(PB

t ) = µ + εt (3.3)

The constant µ can also be thought of as a "premium" in one asset versus another as

described by Vidyamurthy, (2004) and Do et al., (2006). Vidyamurthy, (2004) discusses

possible reasons for such a premium between two stocks, such as a a relative liquidity

premium, takeover potential or pure charisma. These explanations are not directly trans-

ferable to stock indices, although there might exist other reasons for a premium in equity

indices such as perceived political risk or an unstable currency.

The residuals εt are tested for stationarity using the PGF test described above, although

the condition now is that the regression residuals are I(0)-stationary. If the null hypothesis

of a unit root is rejected, we can proceed to step two with the pair. It is important to

note that it is not possible to perform any hypothesis testing about the actual cointegrating

relationship at this stage or make any inferences.

Step 2

An Error Correction Model (ECM) can now be specified as in equation 3.4 containing the

differenced price series as well as the error correction term, being the lagged residuals from

the previous step. The ECM should now account for both a short-term relationship in the

differenced series and a long-term relationship in the error correction term.

ln(
PA

t

PA
t−1

) = c + αln(
PB

t

PB
t−1

) + βεt−1 + vt (3.4)

The t-statistics of the coefficient β can now be used to test for cointegration. The param-

eter β will now represent the mean-reverting behavior of the cointegrating relationship,

where a negative value will predict convergence towards the long-run mean in in the next
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period when the spread is high or low in the current period. The higher the magnitude of

β, i.e. the absolute value | β | for a negative coefficient, the more mean reverting behavior

is expected.

AR(1) Model for the Error Correction Term

While an ECM is the traditional way to represent the cointegrating relationship, we elect to

use another specification. We model the spread as a AR(1)-process as in equation 3.5 sim-

ilarly to the stochastic spread approach described above, but in discrete time. As Moura

et al., (2016) notes, ARMA dynamics can always be considered as valid attempts for model-

ing the spread, given their mean reverting behavior. The AR(1)-process could be thought

of as the discrete time counterpart to the Ornstein-Uhlenbeck process used in the stochastic

spread approach (Moura et al., 2016; Neumaier and Schneider, 1998).

εt = ρεt−1 + ηt (3.5)

The process we use can thus be described by estimating parameters µ, γ and ρ using

equations 3.2 and 3.5. If | ρ |< 1 and significant, then ln(PA
t ) and ln(PB

t ) are cointegrated.

The parameter ρ will now give us a measure of the mean reversion if the spread can ad-

equately be modeled by a AR(1)-process, which is tested using a Ljung-Box test of the

residual series (Ljung and Box, 1978). The Ljung-Box test is a portmanteau test for the

"overall" randomness of a time series based on not one specific lag but many lags. The

null hypothesis is clearly defined as: H0 : r1 = r2 = ... = rk = 0, whilst the alternative

hypothesis is defined less clearly as: H1 : not all rj = 0. A rejection of the null hypothesis

thus only tells us that there is some non-random component in the time series. The speci-

fication in 3.5 has the advantage of fewer parameters to estimate and the interpretation of

ρ is somewhat more intuitive than β in the ECM.

3.3.2 Selection Algorithm

The selection algorithm for which pairs to trade is based on the Engle-Granger procedure,

and performed for all 351 combinations of possible pairs. The process is described in a

stepwise fashion below:
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1. Check that the two individual price series are integrated of order one using a unit-

root test such as the PGF test.

2. Run the cointegrating regression and test the residuals for stationarity (again using a

unit root test), proceed to next step if stationary.

3. Form a AR(1)-model of the spread, if the residuals can be described by a AR(1)-

process and | ρ |< 1 in equation 3.5, pair is cointegrated.

4. Sort cointegrated pairs on ρ (lower values are better, since more mean reverting), and

trade the five best pairs.

3.4 Time-Varying Equilibrium Models

We now proceed to describe the second process occurring continuously and in tandem with

the pairs selection, namely estimating the cointegrating relationship using a time-varying

model.

To see the benefit of an adaptive model for the long run equilibrium, we present two ex-

amples, starting by describing a static model where the cointegrating relationship is stable

through time. Figure 3.2 uses a static regression between the log-prices of BEL 20 and FTSE

250 estimated over two years in 2005-2006, and then applied for the period 2005-2010. We

can clearly see how there seems to be a common trend throughout the sample, although

the level defined by γ and µ in the relationship has changed after 2007, "breaking" the static

relationship. As noted by Burgess, (2000), there is every reason to believe that the markets

opinion as to what constitutes a "fair price" of one asset relative to another will change over

time. This effect can also be observed as a downward drift in the spread (figure 3.2), i.e. the

relationship has not disappeared but persists in a modified form. The mean-reversion dy-

namics now exists around a drift of the spread, creating a type of "channel" effect (Burgess,

2000). The persistence of a mean reverting behavior between the two assets can also be

confirmed by the variance ratio function (VRF) described in A.1 (Appendix A) and plotted

in figure B.1 (Appendix B).

Although the traditional static relationship can be sufficient in some cases such as an in-

sample cointegration test as described in the pairs selection, it is not optimal when we need

the best possible estimate in real-time trading out-of-sample. The cointegration analysis is
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done ex post, meaning that it would contain lookahead bias if we used the information to

backtest a trading strategy within the same time-window we have estimated the model

on. We thus need to form a estimate for γ and µ that only is estimated on past data, and

preferably able to adapt to a changing long-run equilibrium. This can be achieved using a

time-varying model such as a rolling OLS regression or a dynamic linear model estimated

using the recursive Kalman filter algorithm. Figure 3.3 depicts a rolling OLS model applied

on the same pair as before, and we observe that the relationship is more well behaved.

Figure 3.4 plots the rolling estimates of γ and µ adjusting the long-run equilibrium level of

the relationship as time goes by.

FIGURE 3.2: Static cointegrating regression estimated over 2005-2006,
BEL 20 and FTSE 250
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FIGURE 3.3: Dynamic cointegrating regression with a lookback
period of 250 Days, BEL 20 and FTSE 250

FIGURE 3.4: Time-varying cointegration coefficient and premium estimated
using rolling OLS regression with 250-days lookback period,

BEL 20 and FTSE 250
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3.4.1 Rolling OLS

Given the benefits of adaptive models, we utilize a rolling OLS regression that is estimated

in each period (daily) using data from the last year (250 trading days). The lookback pe-

riod for the regression is consistent with the length of our static regression in the pairs

selection. For each time-step, we estimate the regression in equation 3.2 and can obtain the

de-trended residuals εt by rewriting 3.2 as 3.6. We add time subscripts to the cointegra-

tion coefficient γ and the premium µ since they are continuously estimated as previously

illustrated in figure 3.4.

εt = ln(PA
t )− γtln(PB

t )− µt (3.6)

Estimating the model completely without an intercept µ is sometimes done when im-

plementing short term strategies (Dunis et al., 2010; Krauss, 2017). This simplifies the

interpretation of the cointegration coefficient if one uses non-log-prices in the model. The

coefficient is then also the hedge-ratio - i.e. the ratio one must sell (buy) asset B to offset the

long (short) position in asset A. In this case, the spread will include the premium compo-

nent µ which is not significant in short-term trading but can be important in longer-term

strategies.

3.4.2 Kalman Filter

We define a state space regression model, also known as a dynamic linear model in the

equation system 3.7:

ln(PA
t ) = µt + γtln(PB

t ) + vt, vt ∼ N(0, σ2
v )

µt = µt−1 + wµ,t, wµ,t ∼ N(0, σ2
µ)

γt = γt−1 + wγ,t, wγ,t ∼ N(0, σ2
γ)

(3.7)

where ln(PA
t ) is the dependent variable and log-price level of asset A and ln(PB

t ) is

the independent variable and log-price level of asset B. As previously, µt is the premium

and γt is the cointegration coefficient. The error terms vt, wµ,t and wγ,t are assumed to be

uncorrelated with variances σ2
v , σ2

µ and σ2
γ respectively. The first equation in system 3.7 is

known as the measurement equation, and the two latter equations are the state equations. The

states evolve according to a random walk model which is called the prediction step, and the
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estimates are then revised in the updating step where the predictions are compared to the

noisy measurements (realizations of ln(PA
t )). The updated values of µt and γt (and some

noise) will then be our prediction in the next time-step when the process is iterated. This

recursive process is known as the Kalman filter and is used to obtain optimal estimates for

the parameters of the model. For details on the Kalman filter algorithm, see Appendix A.2.

The specification in 3.7 is in many ways very similar to our previous definition in 3.2

and 3.6, although the premium µt and cointegration coefficient γt are now estimated using

the Kalman filter. The spread is defined exactly as before but vt now denotes the spread:

vt = ln(PA
t )− γtln(PB

t )− µt (3.8)

The Kalman filter is generally preferred over the rolling OLS approach since it provides

more accurate and less volatile estimates of the actual parameters as proved by simulation

studies where the data generating process is known in advance (Das and Ghoshal, 2010).

The advantage of the Kalman filter is its ability to adjust quickly to new information and

converge towards the true value without introducing higher uncertainty into the estimates.

Figure 3.5 illustrates this phenomenon visually, where the Kalman filtered estimates are

obviously less sporadic around the "true" parameter values. The true values are of course

unobservable in the case of real market data, but it seems as though the OLS estimate fits

to noise when the premium turns negative for a few months and then suddenly becomes

positive again.

Another benefit of the Kalman filter is the fact that no lookback window has to be cho-

sen. A lookback window is unfortunately reintroduced when we normalize the spread

later, so the benefit in our application is rather limited. What we have to chose is a noise-

ratio defined as S =
σ2

µ,γ

σ2
vt

, being the ratio between the state noise and the measurement

noise.1 The noise-ratio regulates how adaptive the Kalman filter will be to noisy obser-

vations. We chose estimates for σ2
µ,γ and σ2

vt
yielding a noise ratio of S = 10−5 that has

been showed to be in optimal territory for pairs trading in simulation studies (Burgess,

2000). This is where the correlation between estimated and true deviations from the com-

mon trend are close to their maximum. We do not optimize the noise-ratio for each pair

separately but use this estimate for all pairs.

1The state noise σ2
µ and σ2

γ have the same value and are thus denoted as σ2
µ,γ.



3. Methodology 25

FIGURE 3.5: Time-varying estimates of cointegrating relationship, rolling
OLS vs Kalman filter

Although the Kalman filter is regarded a superior method to estimate cointegrating

relationships, one has to keep in mind that there is still a trade-off between adaption and

over-sensitivity, and that this is largely governed by the choice of noise-ratio.

3.5 Trading

The third process of the strategy, running in parallel to the pairs selection and time-adaptive

modeling, is described below. When the spread is calculated according to equation 3.6 or

3.8 we normalize it to be able to generate consistent trading signals.

3.5.1 Tracking the Normalized Spread

A Z-score is computed using the calculated spread εt as described in Caldeira and Moura,

(2013). The Z-score is dimensionless and measures the distance to the mean of the spread

in units of standard deviations, as seen in equation 3.9.

zt =
εt − µε

σε
(3.9)
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Our trading signal is generated when the normalized spread (Z-score) reaches certain

thresholds where we enter and exit trades, as seen in figure 3.6. The signal can be seen as

a vector where 1 means that we are long the spread, -1 that we are short the spread and 0

that we do not have any position, also seen in figure 3.6. This signal is then lagged (one or

two days) and multiplied with the return vectors for the corresponding assets in the pair.

Lagging the signal vector is done to make sure that the trading strategy is viable in practice,

i.e. that we do not use contemporaneous information in our trading rules. The Z-score is

tracked for all individual pairs separately.

The mean µε and the standard deviation σε of the spread determines if the spread is

in disequilibrium. This poses the question of what n-period window to measure µε and

σε over to normalize the spread, and if the two measures should be static or time-varying.

One common approach is to simply use the static mean (µε = µ from equation 3.2) and

corresponding standard deviation of the formation period where cointegration testing is

performed as in Dunis et al., (2010). Another approach is to use a rolling estimate with the

same lookback period as the length of the formation period (µε = µt from equation 3.6 or

3.8). I.e. we assume that the estimated long-term mean from the cointegrating regression is

also the average spread we will measure deviations from. While these two methods make

most theoretical sense, they lead to either completely static or very slowly adapting esti-

mates of µε and σε, which could lead to unnecessary losses when spreads do not converge

as expected (Girma and Paulson, 1999). The phenomenon of non-converging spreads can

be clearly observed in our previous example in section 3.4 (figure 3.2 and 3.3). Given a

static or slow dynamic estimate of the long-run mean the mean reversion might take sev-

eral months or not converge at all before the trading period has ended, which would be

clearly suboptimal. However, we can relax this restriction on our Z-score and let µε be

different from the long-term mean in the cointegrating regression.

To see why this relaxation might be useful, recall the "channel" effect described earlier,

which implies that a spread identified by cointegration testing can have inherent mean

reverting properties on different time-frames. Specifically, a spread can be mean revert-

ing towards a long-run mean for several months, but also fluctuate around a "short-run"

mean. Put differently, the spread can drift away from its long-run mean, but still exhibit a

clearly mean reverting behavior. In line with these observations, Girma and Paulson, (1999)

propose a significantly shorter and adaptive lookback period for µε and σε and propose a
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5-day and 10-day rolling window. This allows the strategy to exploit short term deviations

that consequently revert to the average spread more efficiently. The number of potential

trades are increased and unprofitable trades are closed out earlier. This implementation

also largely removes the need for a stop-loss used in many papers that utilize a static or

slowly adapting long-term estimate for the mean. Intuitively, a shorter lookback period

can be described as a moving average following the spread more closely, representing a

"short-run" mean.

We decide to try rolling windows of 20, 60 and 250 days for µε and σε in equation

3.9, where the two shorter windows are in line with the discussion in Girma and Paulson,

(1999) and the longer window in line with other literature in the field using the size of the

formation period to build the normalized Z-score.

FIGURE 3.6: Trading signal generated from Z-score entry thresholds
± 1.5 SD (blue outer lines) and exit thresholds ± 0.5 SD (green inner lines)

An obvious problem with the use of a normalized Z-score is the assumption that the

spread is approximately normally distributed, and that we must define what constitutes an

extreme spread by defining our thresholds as seen in figure 3.6. This is a strong assumption

given that financial time-series often exhibit fat-tails. These limitations have lead to the

development of new approaches such as the copula method as described above.
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3.5.2 Trading Thresholds

The choice of threshold levels for the Z-Score is an important aspect of the strategy and tells

our algorithm what constitutes an extreme observation of the spread. There is a trade-off

between trade quality and number of trades when increasing or decreasing the thresh-

old. A high threshold will generally yield trades of good quality and low drawdowns, but

reduce the amount of trades significantly and possibly overall returns. A low threshold

will generate trades off worse quality and higher drawdowns, but increase the amount of

trades drastically and possibly overall returns. We elect to use three different thresholds

commonly used in the literature ± 1.0SD, ± 1.5SD and ± 2.0SD. We chose a permanent

exit threshold of ± 0.5SD which is also a commonly adopted threshold in the literature

(Caldeira and Moura, 2013). Our trading rules for the ± 1.5SD threshold (as seen in figure

3.6) are thus defined as:

Open Long spread if zt < −1.5SD

Open Short spread if zt > 1.5SD

Close long spread if zt > −0.5SD

Close short spread if zt < 0.5SD

with equivalent trading rules for the ± 2SD and ± 1.0SD specifications, where only

opening thresholds are changed. The closing thresholds remain the same at ± 0.5SD. It

is regarded as suboptimal to wait until the deviation from the equilibrium is completely

closed, even if it might do so eventually. Considering that the mean-reverting dynamics

are at their max when the deviation is high, they are also likely to be low ± 0.5SD around

the mean. Positions are also closed if they have not converged before the trading period has

ended. Figure 3.7 depicts the equity curve of two different pairs during a trading period

of 6 months. Our portfolio consists of five such pairs at each time, and one can easily see

when trades are opened and closed in the figure.
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FIGURE 3.7: Example of equity curves of two pairs in a trading period

3.6 Returns and Performance Measures

3.6.1 Calculation of Returns

The asset returns are calculated as first differences of log-prices, and the return of a pair is

calculated as described by Dunis et al., (2010), and seen in equation 3.10:

rit = ln(
PL

t

PL
t−1

)− ln(
PS

t

PS
t−1

) (3.10)

where rit is the return for pair i in period t, PL
t is the price of the index we are long in

period t and PS
t is the price of the index we are short in period t. The returns and volatility

can be annualized using equations A.14 and A.15 (Appendix A).

After performing the backtest using log-returns (rit), we transform these to simple re-

turns (Rit) using the formula in Appendix A.16. Aggregating returns across a portfolio of

K pairs requires simple returns, and we use equation 3.11 to obtain daily simple returns

(Rst) for our strategy, where wit is the weight ( 1
K ) of each pair.
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Rst =
K

∑
i=1

witRit (3.11)

Since our equity curves are presented using geometric chaining of simple returns, we

elect to present all performance measures in the results section using simple returns for

consistency. Although log-returns are time additive, they are less suitable to use when

producing equity curves over long time-horizons since log-returns are only negligibly close

to simple returns over short horizons such as days.

3.6.2 Transaction Costs

Transaction costs are included of 5 basis points one-way for one asset, meaning that trans-

action costs for one pair is 10 bp one-way and 20 bp for a round-trip trade. This is in line

with the middle estimate of Bowen et al., (2010). The transaction costs are subtracted from

the returns in the period when the trade is initiated and when it is closed. Naturally the

number of pairs traded affects the total transaction costs of the portfolio, why we chose to

settle with five pairs (10 assets in total) as proposed by Dunis et al., (2010). The total cost

for opening and closing five pairs once is thus 100 bp (1% from total returns) and has to be

considered a moderate estimate for transaction costs.

3.6.3 Information Ratio

In quantitative finance, the information ratio has started to gain traction compared to the

more traditional Sharpe Ratio. The definition gets rid of the risk-free rate and defines the

excess returns Re relative to a relevant benchmark in the numerator. The estimated stan-

dard deviation of the excess returns is the denominator. The ex-post information ratio is

then defined in equation 3.12 for any given period as described by Goodwin, (1998).

IR =
Re

σ̂e (3.12)

Since our returns are from a long-short strategy and thus are excess returns by defi-

nition, we can simply use the mean of the return series in the numerator and the sample

standard deviation in the denominator. This redefinition removes some of the ambiguity

of including the risk-free rate in the calculations. For example, questions arise on how we



3. Methodology 31

treat negative risk-free rates in Sharpe Ratio calculations, and if the risk-free rate is in-fact

the relevant benchmark.

3.6.4 Single Factor Model

We define a single factor model as follows:

Rs = αs + βs(Rb − R f ) (3.13)

where Rs is the return of the strategy, Rb the return of the benchmark, R f is a constant

risk-free rate at 2% (daily R f =
2%
252 ), αs is the part of the strategy returns not explained by

the specification and βs the factor loading on the benchmark excess returns.2 There is no

need to include the risk-free rate in front of the alpha since we are dealing with a long-

short strategy and thus dealing with excess returns by definition as mentioned before. The

benchmark is however a long-only return stream why we have to subtract the risk-free rate

to obtain excess returns.

3.6.5 Drawdown Measures

The maximum drawdown (MDD) is defined as the maximum loss from a peak to a bot-

tom defined over a specific period of time. More formally, we can define the maximum

drawdown in percentage terms over the time period T as:

MDDT = max
τ∈(0,T)

[
max

t∈(0,τ)

Xt − Xτ

Xt

]
(3.14)

where X is defined as the equity of the strategy, Xt is a local peak in equity and Xτ is a

local bottom. The MDD can be seen as a proxy for how much "risk" investors tolerate before

withdrawing their money, and thus is a very important industry measure. For example, a

hedge fund with a 50% drawdown is unlikely to survive, due to client withdrawals and

possible margin calls on leveraged positions.

We can also define the drawdown (D) at time τ in equation 3.15 and the average draw-

down (ADD) over time T in equation 3.16 where Dj is the j :th drawdown of a total of d

number of drawdowns.
2The risk-free rate of 2% is a constant and chosen as a conservative proxy. A better estimate derived from

real data will not provide any added value to our analysis, as we are interested in the pattern of alpha and
beta.
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D(τ) = max
[

0, max
t∈(0,τ)

Xt − Xτ

Xt

]
(3.15)

ADD(T) =
|∑d

j=1 Dj|
d

(3.16)

Finally, we define the Risk-Return-Ratio as defined by Johnsson, (2010). This ratio puts

the raw return of a strategy in relation to its maximum drawdown as seen in equation 3.17.

RRR =
RT

MDDT
(3.17)

This definition has gained popularity due to its simplicity and intuitive interpretation.

3.6.6 Value at Risk

In addition to the risk-measures above, we report 1-month (1% and 5%) value at risk (VaR)

and expected shortfall (ES) measures for the return series as proposed by Clegg and Krauss,

(2018) and Krauss and Stübinger, (2017). We report the historical VaR and ES suggested by

Mina and Xiao, (2001), instead of relying on assumptions about the underlying distribu-

tion. If our returns are significantly non-normal (skewed and/or kurtotic), using a Gaus-

sian assumption and traditional Monte Carlo methods will underestimate the VaR and ES

estimates. A better option is then to let the historical data dictate the shape of the distri-

bution given the frequency that they have been observed in the past. This is a simple yet

transparent method that seems to be a preferred method among practitioners as well as

academics.
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4. Results

4.1 Backtesting Results

We perform a rigorous performance evaluation of our strategy. Specifically, we examine

the annualized performance metrics such as the information ratio, risk-return-ratio and

maximum drawdown measures as discussed in section 3.6. We also compute exposure of

the strategy to systematic risk using the single factor specification in 3.13. We then proceed

to look at monthly return distributions for the strategy and corresponding historical value-

at-risk (VaR) and expected shortfall (ES) measures.

4.1.1 Equity Graphs and Performance

The out-of-sample performance of the long term backtest for all parameterisations can be

seen in tables 4.1 and 4.2. The equity graph for one parameter set is plotted in figure 4.1

and compared to a benchmark portfolio. The benchmark portfolio is a equal weighted buy-

and-hold portfolio of the 27 indices in the sample.1 The strategy is tested with a 1-day and

2-day lag on the signal as mentioned previously. The 1-day lag means that the trades are

entered at the close the day of the signal (i.e. without delay), and the 2-day lag translates

to a "wait one period" delay sometimes used in the literature.2

For the rolling OLS specification seen in table 4.1, we can observe annualized returns

of 4.6% and 16.2% before transaction costs and 3.9% to 11.8% after transaction costs. In-

formation ratios are between 0.62 and 1.54 before transaction costs and between 0.52 and

1.13 after transaction costs. For the Kalman filter specification seen in table 4.2, we can ob-

serve annualized returns of 5.4% and 19.3% before transaction costs and 4.7% to 13.3% after
1This portfolio aims to proxy the broad market portfolio in Europe and is confirmed to be an almost a

perfect mirror of the STOXX Europe 600, a index comprising of 600 European equities in 17 European markets.
2The "wait one period" approach can be regarded as overly conservative from a practical standpoint when

using daily data.
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FIGURE 4.1: Out-of-sample strategy performance. Threshold ± 1.5 SD and
60 period lookback. A 1-day lag is imposed on the signal.

transaction costs. Information ratios are between 0.77 and 1.87 before transaction costs and

between 0.66 and 1.29 after transaction costs. Consequently, the strategy clearly outper-

forms its benchmark portfolio that has a information ratio of 0.09 over the same period and

an annualized return of 1.8%. We can also conclude that the Kalman filter appears to be

superior in estimating the cointegrating relationship, yielding higher returns and informa-

tion ratios. This is not surprising given its ability to adapt to new data without over-fitting

to the noise as discussed previously.

The volatility of the strategy is between 7.1% and 10.5% for all parameterisations and

methods in table 4.1 and 4.2, less than half of the volatility of the benchmark at 21.2%.

Similarly, maximum drawdown for the strategy is between 8.9% and 19.1% for all cases and

less than a third of the drawdown of the benchmark at 64.5%. A similar picture appears

when comparing the average drawdown and the risk-return-ratio to that of the benchmark.

Clearly, the strategy seems to have favorable characteristics for the risk-averse investor.

Analyzing the different parameter sets in table 4.1, we find that performance seems to

decline when using the longer lookback period (250 days) using the OLS method, sup-

porting the use of shorter lookback periods as discussion in section 3.5.1. The average
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drawdown length is significantly shorter when we use the shorter lookback periods, indi-

cating that loosing positions are closed out earlier. Our results thus point in favor of using

shorter lookback windows to normalize the spread in line with Girma and Paulson, (1999).

The pattern for threshold levels are less clear cut for the OLS method. While returns in-

crease before transaction costs using a lower threshold, the number of trades increase and

the quality of trades decrease. After transaction costs, the returns and information ratios

are similar across all threshold levels. The state space specification in table 4.2 does not

seem to be equally sensitive to the choice of lookback period, especially when the thresh-

old is at a lower level (±1SD). The choice of threshold level appears important before

transaction costs, but less important after transaction costs. What is clear, is that the num-

ber of trades (and thus returns) increase with a shorter lookback window and lower entry

thresholds. However, more trades also mean more transaction costs, offsetting part of the

higher returns. It is evident that the less selective parameter sets are much more sensitive

to transaction costs comparing the performance before and after transaction costs. In the

case where we have most trades (1538 in total) as seen in table 4.2, we note that returns

fall from 19.3% to 13.3% after inclusion of transaction costs. The implication is that optimal

parameters depend heavily on the assumptions regarding transaction costs.

Figure 4.2 depicts the rolling beta and alpha of one parameterisation according to the

single factor specification in equation 3.13. The rolling beta tells us that we indeed seem to

have created a strategy that is very close to market-neutral. The pattern is very similar for

all parameterisations with regards to both beta and alpha. Looking at the rolling alpha we

note that the performance of the strategy seems to have declined quite dramatically over

recent years. Curiously, the most alpha is produced during the financial crisis in 2007-2009

indicating that the strategy seems to perform better in turbulent market environments, and

that the performance is positively related to volatility. A clear pattern emerges when we

see that the alpha increases during the Greek debt crises in 2012 and during the increased

volatility in early 2015. This positive relationship between performance and volatility may

seem counterintuitive, but makes sense given that we are harvesting alpha from relative

mispricings, likely to be at their peak level in a volatile market environment. The pattern in

figure 4.2 is recurring when we plot the annualized return, volatility and information ratio

over time in Appendix B.3. We note that the standard deviation of the strategy increases

to close to 15% during turbulent times, although returns increase even more, yielding high
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FIGURE 4.2: 250-Day rolling beta and alpha of strategy.
A 1-day lag is imposed on the signal

information ratios during these times.

We lastly turn to the case where we impose a 2-day lag on the signal, as seen in tables

C.3 and C.4 in Appendix C. We note that this restriction significantly reduces the perfor-

mance of the strategy, much in line with what previous literature has found regarding

time-delays in execution (Bowen et al., 2010; Gatev et al., 2006). Despite the significantly

lower annualized returns, the strategy still beats the benchmark comfortably after trans-

action costs with information ratios between 0.25 and 0.62 for the OLS specification and

between 0.37 and 0.75 for the Kalman filter specification. The higher information ratios

compared to the benchmark seem to be primarily driven by lower standard deviations for

the strategy. We can thus conclude that while profits are significantly reduced by a "wait-

one-period" restriction, the inherently lower risk in a long-short strategy is still present.
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TABLE 4.1: Out of Sample Results 2006-2017, Rolling OLS & 1-day signal lag

Rolling OLS Excl. TC Incl. TC
Lookback
Z-Score

Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Annualized Returns 0.107 0.085 0.046 0.082 0.072 0.039 0.018

Annualized SD 0.080 0.080 0.074 0.079 0.080 0.074 0.211
Maximum Drawdown 0.089 0.107 0.109 0.122 0.108 0.113 0.645
Average Drawdown 0.011 0.010 0.011 0.010 0.010 0.012 0.036
Annualized IR 1.345 1.070 0.622 1.038 0.902 0.524 0.085
Risk-Return-Ratio 1.204 0.797 0.423 0.673 0.664 0.343 0.028
Avg. DD Length (days) 19 14 28 21 15 32 88
Nr Trades 648 369 193 648 369 193 NA

1.5 Annualized Return 0.123 0.119 0.070 0.085 0.099 0.058 0.018
Annualized SD 0.095 0.094 0.090 0.094 0.094 0.090 0.211
Maximum Drawdown 0.114 0.121 0.107 0.152 0.132 0.108 0.645
Average Drawdown 0.012 0.011 0.014 0.014 0.011 0.013 0.036
Annualized IR 1.296 1.264 0.771 0.898 1.057 0.643 0.085
Risk-Return-Ratio 1.071 0.981 0.648 0.555 0.749 0.535 0.028
Avg. DD Length (days) 17 14 24 22 16 26 88
Nr Trades 1010 538 304 1010 538 304 NA

1.0 Annualized Returns 0.162 0.150 0.075 0.106 0.118 0.058 0.018
Annualized SD 0.105 0.105 0.102 0.104 0.105 0.101 0.211
Maximum Drawdown 0.156 0.130 0.117 0.191 0.143 0.128 0.645
Average Drawdown 0.013 0.013 0.015 0.015 0.014 0.014 0.036
Annualized IR 1.544 1.428 0.740 1.013 1.130 0.577 0.085
Risk-Return-Ratio 1.041 1.153 0.645 0.554 0.825 0.456 0.028
Avg. DD Length (days) 15 15 19 20 16 22 88
Nr Trades 1470 830 483 1470 830 483 NA

Results of the 24 (six-month) combined out-of-sample trading periods between January 01, 2006
and December 31, 2017. A rolling OLS regression is used to estimate the cointegrating relationship
and a 1-day lag is imposed on the signal.
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TABLE 4.2: Out of Sample Results 2006-2017, Kalman Filter & 1-day signal
lag

Kalman Filter Excl. TC Incl. TC
Lookback
Z-Score

Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Annualized Returns 0.106 0.092 0.054 0.081 0.078 0.047 0.018

Annualized SD 0.078 0.079 0.071 0.078 0.079 0.071 0.211
Maximum Drawdown 0.116 0.124 0.108 0.136 0.134 0.119 0.645
Average Drawdown 0.010 0.009 0.012 0.009 0.009 0.011 0.036
Annualized IR 1.352 1.163 0.766 1.040 0.993 0.663 0.085
Risk-Return-Ratio 0.915 0.742 0.505 0.598 0.584 0.394 0.028
Avg. DD Length (days) 17 14 27 20 16 30 88
Nr Trades 653 385 227 653 385 227 NA

1.5 Annualized Return 0.149 0.122 0.084 0.109 0.102 0.070 0.018
Annualized SD 0.095 0.093 0.083 0.094 0.093 0.083 0.211
Maximum Drawdown 0.109 0.118 0.108 0.135 0.132 0.122 0.645
Average Drawdown 0.012 0.010 0.010 0.011 0.010 0.010 0.036
Annualized IR 1.570 1.307 1.008 1.161 1.097 0.845 0.085
Risk-Return-Ratio 1.361 1.036 0.782 0.811 0.773 0.575 0.028
Avg. DD Length (days) 16 15 18 18 17 21 88
Nr Trades 1073 582 387 1073 582 387 NA

1.0 Annualized Returns 0.193 0.164 0.141 0.133 0.129 0.116 0.018
Annualized SD 0.103 0.104 0.100 0.103 0.104 0.099 0.211
Maximum Drawdown 0.109 0.141 0.093 0.135 0.164 0.104 0.645
Average Drawdown 0.012 0.011 0.011 0.014 0.013 0.011 0.036
Annualized IR 1.872 1.567 1.421 1.298 1.238 1.173 0.085
Risk-Return-Ratio 1.774 1.159 1.514 0.986 0.784 1.122 0.028
Avg. DD Length (days) 14 13 13 17 17 14 88
Nr Trades 1538 923 667 1538 923 667 NA

Results of the 24 (six-month) combined out-of-sample trading periods between January 01, 2006
and December 31, 2017. A state space regression model is defined and the Kalman filter algorithm
is used to estimate the cointegrating relationship. A 1-day lag is imposed on the signal.
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4.1.2 Return Distributions

We present descriptive statistics of the monthly return distributions of the strategy in ta-

ble 4.3 and 4.4. For the rolling OLS specification, the mean return for the different pa-

rameterisations varies between 0.40% and 1.38% before transaction costs and 0.34% and

1.03% after transaction costs. For the Kalman filter specification, the mean return for the

different parameterisations varies between 0.47% and 1.61% before transaction costs and

0.40% and 1.16% after transaction costs. These numbers can be compared to the bench-

mark with an average monthly return of 0.26%. We compute Newey-West (NW) standard

errors of the means to account for autocorrelation and heteroskedasticity in the return se-

ries as proposed by Clegg and Krauss, (2018) and Krauss and Stübinger, (2017). We observe

t-statistics well above 2 and often around 3 and 4 for all the parameterisations of the strat-

egy, as opposed to a t-statistic of 0.53 for the benchmark. We note that the worst month

(minimum) is between -4% and -7% for the strategy, while the worst month is -19.7% for

the benchmark. This finding confirms that the biggest benefit of our strategy is the limited

downside risk. Positive skewness of the returns are found to be between 0.56 and 2.87 for

the OLS approach, and between 1.15 and 3.83 for the Kalman filter approach. This can

be compared to a negative skewness of the benchmark of -1.01 over the period. The high

kurtosis observed in the strategy returns suggests leptokurtic distributions, especially for

the Kalman filter approach, where we can see values as high as 27. At face value, this

would imply heavier tail risk in the strategy compared to the benchmark. However, when

we plot QQ-plots (figure 4.3) of the strategy returns and the benchmark returns a more

nuanced picture appears. The high leptokurtic tendencies in the strategy are driven by

large positive outliers affecting the kurtosis heavily in some parameterisations, caused by

the 4th power term in the definition (see equation A.18 in Appendix A). In contrast, gen-

eral leptokurtic tendencies in the benchmark and normal financial returns are driven by

negative outliers. As noted by Auer, (2018), outliers in a sample may potentially massively

increase the kurtosis and drive a behavior where the kurtosis fluctuates quite radically be-

tween cases even if the underlying distribution is similar. This is exactly what we observe

in our different parameterisations. We also report a Skewness-kurtosis ratio as proposed

by Bacon, (2011), where higher values here are better. All our strategy parameterisations

have positive values between 0.10 and 0.20, while the benchmark has a negative value of
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-0.18. Finally we report the share positive months ranging from 0.62 to 0.70 before transac-

tion costs and from 0.61 to 0.66 after transaction costs for the strategy. This can be compared

to the benchmark where the share positive months is 0.59.

FIGURE 4.3: QQ-plot of Strategy vs Benchmark,
blue line is the normal distribution

Looking at tables C.5 and C.6 (Appendix C), where we impose a 2-day lag on the sig-

nal, we note once again that returns are significantly reduced. The t-statistics remain high

for most of the parameterisations due to a low standard deviation and consequently low

standard errors compared to the benchmark. Once again the interpretation is that we are

reducing downside risk rather than producing high excess returns in the case of a 2-day

signal lag, resulting in a risk adjusted outperformance.
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TABLE 4.3: Out of Sample Monthly Return Distributions 2006-2017,
Rolling OLS & 1-day signal lag

Rolling OLS Excl. TC Incl. TC
Lookback

Z-Score
Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Mean return 0.0092 0.0073 0.0040 0.0073 0.0062 0.0034 0.0026

SE (NW) 0.0024 0.0015 0.0012 0.0024 0.0015 0.0012 0.0050
t-stat. (NW) 3.7772 4.9358 3.3937 3.0279 4.2745 2.8648 0.5316
Minimum -0.0419 -0.0395 -0.0467 -0.0429 -0.0401 -0.0479 -0.1971
Quartile 1 -0.0028 -0.0018 -0.0048 -0.0043 -0.0026 -0.0052 -0.0227
Median 0.0063 0.0044 0.0029 0.0044 0.0032 0.0022 0.0102
Quartile 3 0.0183 0.0170 0.0122 0.0170 0.0155 0.0115 0.0321
Maximum 0.1153 0.0811 0.0725 0.1117 0.0785 0.0721 0.1123
SD 0.0210 0.0187 0.0162 0.0207 0.0184 0.0158 0.0504
Skewness 1.1314 0.5750 0.6626 1.1199 0.5737 0.6034 -1.0089
Kurtosis 4.1314 1.5000 2.6650 4.1816 1.5687 2.7312 2.7179
Sk-Ku Ratio 0.1581 0.1273 0.1166 0.1554 0.1251 0.1049 -0.1758
Share Pos. 0.6923 0.6763 0.6377 0.6364 0.6643 0.6259 0.5874

1.5 Mean return 0.0107 0.0101 0.0061 0.0076 0.0085 0.0051 0.0026
SE (NW) 0.0027 0.0023 0.0021 0.0027 0.0023 0.0020 0.0050
t-stat. (NW) 3.8955 4.3531 2.9668 2.8521 3.7077 2.5666 0.5316
Minimum -0.0501 -0.0520 -0.0681 -0.0526 -0.0525 -0.0683 -0.1971
Quartile 1 -0.0025 -0.0031 -0.0079 -0.0051 -0.0040 -0.0083 -0.0227
Median 0.0081 0.0088 0.0054 0.0037 0.0061 0.0048 0.0102
Quartile 3 0.0204 0.0189 0.0167 0.0180 0.0171 0.0157 0.0321
Maximum 0.1517 0.1509 0.1144 0.1469 0.1475 0.1117 0.1123
SD 0.0263 0.0252 0.0236 0.0257 0.0251 0.0229 0.0504
Skewness 1.4412 1.4041 0.7944 1.4612 1.3943 0.7542 -1.0089
Kurtosis 5.3609 6.7089 3.2995 5.5911 6.4688 3.4574 2.7179
Sk-Ku Ratio 0.1718 0.1441 0.1257 0.1695 0.1467 0.1164 -0.1758
Share Pos. 0.6853 0.6901 0.6294 0.6084 0.6364 0.6154 0.5874

1.0 Mean return 0.0138 0.0127 0.0067 0.0094 0.0103 0.0053 0.0026
SE (NW) 0.0036 0.0032 0.0021 0.0035 0.0032 0.0020 0.0050
t-stat. (NW) 3.8251 3.9360 3.1929 2.7062 3.2419 2.6283 0.5316
Minimum -0.0514 -0.0558 -0.0706 -0.0534 -0.0563 -0.0710 -0.1971
Quartile 1 -0.0050 -0.0052 -0.0068 -0.0086 -0.0074 -0.0069 -0.0227
Median 0.0086 0.0099 0.0067 0.0028 0.0071 0.0053 0.0102
Quartile 3 0.0249 0.0241 0.0189 0.0209 0.0206 0.0171 0.0321
Maximum 0.1693 0.2503 0.1137 0.1628 0.2435 0.1106 0.1123
SD 0.0315 0.0327 0.0248 0.0307 0.0322 0.0241 0.0504
Skewness 1.3453 2.8880 0.5995 1.3457 2.8658 0.5592 -1.0089
Kurtosis 3.5977 18.2851 2.6530 3.7399 17.9017 2.8178 2.7179
Sk-Ku Ratio 0.2032 0.1352 0.1057 0.1990 0.1366 0.0958 -0.1758
Share Pos. 0.6853 0.6643 0.6224 0.6154 0.6294 0.6154 0.5874

Monthly Returns of the 24 (six-month) combined out-of-sample trading periods between January
01, 2006 and December 31, 2017. A rolling OLS regression is used to estimate the cointegrating
relationship and a 1-day lag is imposed on the signal. Newey-West Standard Errors are used since
return distributions are non-normal.
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TABLE 4.4: Out of Sample Monthly Return Distributions 2006-2017,
Kalman Filter & 1-day signal lag

Kalman Filter Excl. TC Incl. TC
Lookback

Z-Score
Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Mean return 0.0091 0.0078 0.0047 0.0072 0.0067 0.0040 0.0026

SE (NW) 0.0024 0.0016 0.0018 0.0024 0.0015 0.0018 0.0050
t-stat. (NW) 3.7505 5.0245 2.5723 3.0036 4.3546 2.3012 0.5316
Minimum -0.0626 -0.0448 -0.0395 -0.0636 -0.0458 -0.0401 -0.1971
Quartile 1 -0.0023 -0.0028 -0.0018 -0.0040 -0.0041 -0.0021 -0.0227
Median 0.0063 0.0054 0.0019 0.0042 0.0048 0.0013 0.0102
Quartile 3 0.0187 0.0153 0.0090 0.0170 0.0141 0.0083 0.0321
Maximum 0.1296 0.1188 0.1548 0.1258 0.1154 0.1507 0.1123
SD 0.0227 0.0193 0.0188 0.0225 0.0192 0.0184 0.0504
Skewness 1.1934 1.4848 3.8518 1.1526 1.4442 3.8281 -1.0089
Kurtosis 6.1620 6.9595 27.7758 5.9447 6.5655 27.6858 2.7179
Sk-Ku Ratio 0.1298 0.1486 0.1247 0.1284 0.1504 0.1243 -0.1758
Share Pos. 0.6643 0.6835 0.6357 0.6224 0.6525 0.6279 0.5874

1.5 Mean return 0.0127 0.0104 0.0072 0.0097 0.0088 0.0061 0.0026
SE (NW) 0.0033 0.0024 0.0023 0.0032 0.0024 0.0022 0.0050
t-stat. (NW) 3.9021 4.3872 3.1338 3.0556 3.7250 2.7288 0.5316
Minimum -0.0618 -0.0448 -0.0427 -0.0629 -0.0458 -0.0438 -0.1971
Quartile 1 -0.0037 -0.0051 -0.0036 -0.0062 -0.0066 -0.0047 -0.0227
Median 0.0086 0.0062 0.0052 0.0068 0.0048 0.0040 0.0102
Quartile 3 0.0262 0.0194 0.0162 0.0206 0.0175 0.0150 0.0321
Maximum 0.1672 0.1804 0.1735 0.1618 0.1764 0.1682 0.1123
SD 0.0287 0.0258 0.0226 0.0283 0.0255 0.0221 0.0504
Skewness 1.4609 2.3579 2.8468 1.4511 2.3474 2.8049 -1.0089
Kurtosis 5.7909 12.0400 19.1450 5.8223 11.8608 18.7579 2.7179
Sk-Ku Ratio 0.1656 0.1562 0.1281 0.1639 0.1574 0.1285 -0.1758
Share Pos. 0.6783 0.6620 0.6596 0.6294 0.6084 0.6241 0.5874

1.0 Mean return 0.0161 0.0137 0.0118 0.0116 0.0110 0.0099 0.0026
SE (NW) 0.0039 0.0034 0.0027 0.0038 0.0033 0.0026 0.0050
t-stat. (NW) 4.1056 4.0083 4.4158 3.0720 3.2962 3.8040 0.5316
Minimum -0.0567 -0.0497 -0.0480 -0.0578 -0.0506 -0.0490 -0.1971
Quartile 1 -0.0038 -0.0050 -0.0029 -0.0078 -0.0076 -0.0052 -0.0227
Median 0.0102 0.0097 0.0115 0.0064 0.0067 0.0076 0.0102
Quartile 3 0.0317 0.0229 0.0210 0.0281 0.0203 0.0185 0.0321
Maximum 0.1924 0.2016 0.2016 0.1865 0.1964 0.1942 0.1123
SD 0.0331 0.0311 0.0275 0.0323 0.0306 0.0268 0.0504
Skewness 1.3948 1.9953 2.4496 1.3998 2.0032 2.4375 -1.0089
Kurtosis 4.7722 8.6738 14.4275 5.0649 8.6405 14.3992 2.7179
Sk-Ku Ratio 0.1788 0.1703 0.1401 0.1730 0.1715 0.1396 -0.1758
Share Pos. 0.6993 0.6434 0.6993 0.6434 0.6014 0.6643 0.5874

Monthly Returns of the 24 (six-month) combined out-of-sample trading periods between January
01, 2006 and December 31, 2017. A state space regression model is defined and the Kalman filter
algorithm is used to estimate the cointegrating relationship. A 1-day lag is imposed on the signal
and Newey-West Standard Errors are used since return distributions are non-normal.
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4.1.3 Value at Risk Measures

We also present monthly historical value at risk (VaR) and expected shortfall (ES) measures

for our strategy compared to the benchmark in tables 4.5 and 4.6. This analysis confirms

our findings from the two previous sections that the tail risk on the downside is actually

lower for our pairs trading strategy than for the benchmark. Looking at the monthly 95%

VaR for our strategy, we get values ranging from -1% to -3%, compared to -7% for the

benchmark. This pattern is even more pronounced in the case of historical ES, where the

monthly 95% ES for our strategy is consistently between -2% and -4%, while the corre-

sponding value for the benchmark is -13%. A very similar pattern, although even more

pronounced, appears in the case of the 99% VaR and ES. These results once again confirm

that the strategy seems to have inherently lower risk than a buy-and-hold strategy of the

benchmark, not surprising given that the strategy is close to beta neutral over the entire

sample period.

TABLE 4.5: OOS Monthly Historical VaR and ES estimates 2006-2017,
Rolling OLS & a 1-day signal lag

Rolling OLS Excl. TC Incl. TC
Lookback

Z-Score
Lookback

Z-Score
Entry Measure 20 60 250 20 60 250 Benchmark

2.0 Hist. 95% VaR -0.0206 -0.0215 -0.0209 -0.0222 -0.0223 -0.0211 -0.0734
Hist. 95% ES -0.0304 -0.0287 -0.0269 -0.0321 -0.0295 -0.0272 -0.1323
Hist. 99% VaR -0.0373 -0.0329 -0.0289 -0.0392 -0.0340 -0.0292 -0.1726
Hist. 99% ES -0.0412 -0.0369 -0.0379 -0.0424 -0.0376 -0.0388 -0.1951

1.5 Hist. 95% VaR -0.0260 -0.0256 -0.0245 -0.0292 -0.0274 -0.0253 -0.0734
Hist. 95% ES -0.0345 -0.0373 -0.0379 -0.0369 -0.0384 -0.0385 -0.1323
Hist. 99% VaR -0.0376 -0.0462 -0.0457 -0.0390 -0.0476 -0.0466 -0.1726
Hist. 99% ES -0.0442 -0.0498 -0.0587 -0.0461 -0.0509 -0.0593 -0.1951

1.0 Hist. 95% VaR -0.0287 -0.0273 -0.0294 -0.0325 -0.0293 -0.0294 -0.0734
Hist. 95% ES -0.0355 -0.0388 -0.0423 -0.0387 -0.0401 -0.0432 -0.1323
Hist. 99% VaR -0.0408 -0.0462 -0.0459 -0.0444 -0.0479 -0.0468 -0.1726
Hist. 99% ES -0.0462 -0.0518 -0.0585 -0.0495 -0.0527 -0.0592 -0.1951

Monthly historical VaR and ES estimates of the 24 (six-month) combined out-of-sample trading
periods between January 01, 2006 and December 31, 2017. A rolling OLS regression is used to
estimate the cointegrating relationship and a 1-day lag is imposed on the signal.
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TABLE 4.6: OOS Monthly Historical VaR and ES estimates 2006-2017,
Kalman Filter & a 1-day signal lag

Kalman Filter Excl. TC Incl. TC
Lookback

Z-Score
Lookback

Z-Score
Entry Measure 20 60 250 20 60 250 Benchmark

2.0 Hist. 95% VaR -0.0193 -0.0162 -0.0129 -0.0212 -0.0170 -0.0138 -0.0734
Hist. 95% ES -0.0357 -0.0268 -0.0248 -0.0373 -0.0275 -0.0255 -0.1323
Hist. 99% VaR -0.0466 -0.0319 -0.0330 -0.0480 -0.0322 -0.0330 -0.1726
Hist. 99% ES -0.0579 -0.0391 -0.0368 -0.0593 -0.0397 -0.0371 -0.1951

1.5 Hist. 95% VaR -0.0210 -0.0174 -0.0210 -0.0246 -0.0193 -0.0211 -0.0734
Hist. 95% ES -0.0364 -0.0276 -0.0311 -0.0390 -0.0288 -0.0316 -0.1323
Hist. 99% VaR -0.0496 -0.0324 -0.0350 -0.0521 -0.0336 -0.0355 -0.1726
Hist. 99% ES -0.0612 -0.0394 -0.0391 -0.0628 -0.0403 -0.0402 -0.1951

1.0 Hist. 95% VaR -0.0270 -0.0240 -0.0212 -0.0315 -0.0257 -0.0216 -0.0734
Hist. 95% ES -0.0369 -0.0344 -0.0319 -0.0402 -0.0358 -0.0329 -0.1323
Hist. 99% VaR -0.0460 -0.0411 -0.0431 -0.0485 -0.0425 -0.0439 -0.1726
Hist. 99% ES -0.0551 -0.0473 -0.0470 -0.0570 -0.0483 -0.0479 -0.1951

Monthly historical VaR and ES estimates of the 24 (six-month) combined out-of-sample trading
periods between January 01, 2006 and December 31, 2017. A state space regression model is
defined and the Kalman filter algorithm is used to estimate the cointegrating relationship. A 1-day
lag is imposed on the signal.

4.1.4 Frequently Traded Pairs

We now briefly turn to investigate if there are any patterns in the pairs that are selected by

our pairs-selection algorithm. Figure 4.4 plots the number of occurrences for each index

in a traded pair. The first obvious result is that all 27 indices are included at least once in

a pair selected for trading, and that there is no obvious pattern in the data. The results

are driven by different pairs throughout the sample, indicating that the likelihood of data

snooping is low. The Bulgarian SOFIX index is traded in only one pair, and the Ukrainian

UX index and the Turkish XU 100 is traded in two pairs. We also note that the five pairs

that are traded the most are the Romanian BET, the French CAC, the Swedish OMXS30,

the Slovakian SAX and the British UKX (FTSE250). All these indices are aligned with the

London trading session (08:00 to 16:30 UTC), with the exception of the Slovakian SAX

index opening at 10:00 UTC and closing at 14:30 UTC. The Baltic indices, were the time

discrepancies are most prominent, are some of the least traded. We can thus conclude that

our results are not contingent on differences in trading hours or time-zones.



4. Results 45

FIGURE 4.4: Number of occurrences in a traded pair

4.1.5 Fraction Cointegrated Pairs over Time

Investigating the fraction and number of pairs passing through the pairs-selection algo-

rithm throughout the sample reveals some interesting results (figure 4.5). There is a dis-

tinct pattern of an increased amount of cointegrated pairs during the financial crisis in

2007-2009. A third (120 pairs) of all the pairs are classified as cointegrated during the peak

in this period. The next highest peak (51 pairs) occurs in 2012 during the Greek sovereign

debt crisis. This result would indicate that common stochastic trends are more pronounced

during market crashes. The finding is also in line with the conclusions by Baele, (2005),

Jiang et al., (2012) and Gagnon et al., (2016) regarding volatility spillover effects and inter-

dependencies of higher order moments. Gagnon et al., (2016) note that interdependencies

between markets increased in persistence and speed of adjustment during the financial cri-

sis. Given that the common stochastic trends are stronger and that the speed of adjustment

(of deviations) increase during market turbulence, we have a reasonable explanation as to

why our strategy produces significant alpha during these times.

An apparent issue inherent in our methodology is the multiple hypothesis problem.

The highlighted blue dotted line in figure 4.5 marks the fraction of false positives that we

would expect given the significance level of our cointegration testing. Most of the time, we

have only slightly more cointegrated pairs than we would expect false positives. During

recent years, the fraction has been close to or under the 5% level, which could potentially

explain the decay in alpha we noted earlier. This highlights the importance of ranking the

pairs tested for cointegration according to some criterion. Trading all pairs will likely result

in poor results since many pairs will appear cointegrated by chance alone.
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FIGURE 4.5: Fraction / number of Cointegrated pairs 2006-2017

4.2 Robustness of the Strategy

We have now presented the main results of the long term backtest, and will now perform

a battery of robustness tests to see how sensitive the results are to changes in certain key

assumptions affecting the profitability. We use a entry threshold of± 2.0SD and a lookback

period for the normalized spread of 20 periods for this analysis (with exception for weekly

case when we use a lookback of 10 periods). A condensed performance summary of the

robustness tests can be found in table 4.7.

4.2.1 Random Pairs

To check our results against data snooping as well as to confirm the added value of our

selection algorithm, we test our strategy by feeding it five random pairs for each trading

period, meaning that no cointegration testing is conducted. It is quite obvious by simple

visual inspection of figure B.4 in Appendix B that the strategy breaks when we do not test

our pairs for cointegration before trading them. The annualized returns are negative after

transaction costs and even worse than a buy-and-hold strategy as seen in table 4.7. An

interesting observation however, is that our strategy still seems to have a lower standard
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deviation than the benchmark. This result has been noted before and is not surprising

given that the strategy is still market-neutral, even if pairs are selected at random.

4.2.2 Euro Area Subsample

To examine the possibility that short-term currency fluctuations could be a main driver of

the results we have found, we narrow down the sample to the 15 countries in our sam-

ple that have their indices denominated in euro (see table C.1 in Appendix C). We apply

the strategy in the exact same manner, with a slight practical adjustment. Our selection

algorithm now only performs a test for stationarity on the residuals and then picks the five

pairs with the lowest p-value, i.e. it does not fit a AR(1)-model to the spread as previously

to formally test for cointegration and sort by the AR-coefficient ρ. This simplification is

made since only 15 assets significantly reduces the amount of possible pairs (105) and thus

the number of suitable candidates that passes through our selection algorithm. Even with

this simplification in the selection process, we see that our strategy performs quite well as

seen in figure B.5 in Appendix B. The strategy has a annualized information ratio of 1.03

before transaction costs and 0.77 after transaction costs as seen in table 4.7.

4.2.3 Weekly Returns

Given the sensitivity of the strategy to the time-lag between signal and execution on the

daily time-frame, we transform our data series to weekly observations and run the strat-

egy. On a weekly time-frame it is hard to argue that one would not have time to execute

the trade in a timely manner, and waiting one period simply does not make sense. How-

ever, we still perform the cointegration testing on daily data to make sure that there is

consistency in the pairs that are selected and to make sure that our cointegration tests have

enough statistical power. The lookback periods naturally have to be modified somewhat to

fit our lower frequency data. The year-long 250-day lookback period for the regression is

changed to 52 weeks and the moving average used for the Z-score is changed to 10. Look-

ing at figure B.6 in Appendix B we can conclude that the strategy seems to work just as

well on a weekly time frame as on the daily. The strategy has an annualized information

ratio of 0.81 before transaction costs and 0.70 after transaction costs as seen in table 4.7.
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TABLE 4.7: Robustness tests

Random Pairs EUR Subsample Weekly Returns Benchmark
Measure Excl. TC Incl. TC Excl. TC Incl. TC Excl. TC Incl. TC
Annualized Returns 0.013 -0.007 0.088 0.066 0.048 0.041 0.018
Annualized SD 0.076 0.076 0.086 0.085 0.060 0.059 0.211
Maximum Drawdown 0.191 0.258 0.126 0.142 0.065 0.071 0.644
Annualized IR 0.165 -0.095 1.030 0.774 0.809 0.699 0.088
Risk-Return-Ratio 0.066 -0.028 0.700 0.467 0.742 0.584 0.029
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5. Conclusion

This paper explores the area of cross-market pairs trading using daily observations of 27

European equity indices between 2006 and 2017. The cointegration approach for pairs trad-

ing as first proposed by Vidyamurthy, (2004) is used in the pairs selection and formation of

the spread. The cointegrating relationship is estimated using a rolling OLS approach and a

Kalman filter approach.

High annualized returns (between 3.9% and 13.3%) and information ratios (between

0.52 and 1.29) are observed for all the parameter specifications after transaction costs. The

strategy clearly outperforms the benchmark portfolio - the latter with an annualized return

of 1.8% and information ratio of 0.09. Most notably, risk seems to be inherently lower in

the pairs trading strategy compared to the benchmark. This is not surprising given that

the returns are close to beta-neutral across the entire out-of-sample period. The strategy

also produces significant alpha controlling for a systematic risk factor defined as the excess

returns of the benchmark portfolio. Most alpha is produced during the financial crisis of

2007-2009, and we observe a pattern where outperformance seems to be positively related

to volatility. We find that the number of cointegrated pairs are significantly higher during

this period, potentially indicating that the persistence and strength of a common stochastic

trend is increased during market crashes. If this is the case, we would expect our chosen

pairs to have better performance during such times. The performance of the strategy does

however seem to be decaying during recent years, perhaps as more arbitrageurs employ

similar strategies and markets become more efficient. The monthly return distributions are

positively skewed and leptokurtic, although large positive outliers rather than negative

outliers seem to drive the kurtosis in the sample. Given this fact, historical value at risk and

expected shortfall estimates indicate lower tail risk in the strategy than in the benchmark.

Lastly, the results confirm that pairs trading returns are highly sensitive to the time-lag
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between the signal and the executed trade. We do however show using lower frequency

(weekly) data that the strategy is not contingent on instant execution, and is viable when

trading only once a week.

Future studies could further investigate the sensitivity of cross-market pairs trading to

time-related discrepancies such as opening hours and time-zones. Constructing a dataset

that carefully aligns all observations in time would certainly be an improvement. Closer

investigation of how foreign exchange fluctuations affects the results would also be desir-

able. In addition, it is possible to extend the analysis using the Johansen, (1988) method to

a case where we form portfolios rather than pairs to trade, where multiple cointegrating

vectors are present.
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A. Mathematical Appendix

A.1 Variance Ratio Test

We define the most rudimentary relative price series possible for a cointegrated pair, namely
the ratio of log-prices BEL 20 / FTSE 250. A variance ratio test is designed to identify when
a time series deviates from random walk characteristics, i.e. when it does not follow the
non-stationary dynamics where observations are completely uncorrelated. The logic is in
many ways similar to autocorrelation tests such as the Ljung-Box test. In fact, the vari-
ance ratio can be expressed as a linear combination of autocorrelation coefficients in a spe-
cial case (Lo and MacKinlay, 1988). We define the variance ratio statistic in equation A.1
(Cochrane, 1988; Lo and MacKinlay, 1988). The ratio can be seen as the normalized ratio
of long term variance (calculated over period τ) to a one period variance (calculated over
period t) scaled by τ.

VR(τ) =
∑
t
(∆τyt − ∆τy)2

τ ∑
t
(∆yt − ∆y)2

(A.1)

The variance ratio statistics can be viewed collectively using a variance ratio function
(VRF). A positive (negative) gradient of the VRF indicates positive (negative) autocorrela-
tion and trending (mean reverting or cyclical) behavior. For a random walk, variance will
grow linearly with the period τ, giving us a ratio that should be close to one over time.
A trending time series grows at a non-linear rate where the VRF increases above one over
time. A mean-reverting series declines at a non-linear rate where the VRF decreases below
one over time. More intuitively, a variance ratio under one shows us that volatility present
in short-term price dynamics is not reflected in long term volatility, telling us that there
has to be a mean reverting component in the price series. The VRFs in figure B.1 tells us
that the relative log-price series BEL 20 / FTSE 250 indeed exhibits strong mean-reverting
characteristics, and that the two price series individually exhibit trending behavior.

A.2 The Kalman Filter Algorithm

Define θt = (µt, γt)′ as the state vector from equation 3.7. I also define yt = ln(PA
t ) and

xt = ln(PB
t ) for simplicity in the notation. The equation system can then be rewritten as:

yt =
(

1 xt

)
θt + vt (A.2)
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(
µt

γt

)
=

(
1 0
0 1

)(
µt−1

γt−1

)
+

(
wµ,t

wγ,t

)
(A.3)

The system matrices in our state space specification is then:

Ft =
(

1 xt

)
, Vt = σ2

v (A.4)

G = I2 =

(
1 0
0 1

)
, W =

(
σ2

µ 0
0 σ2

γ

)
(A.5)

where Ft is time varying. Our state space model can now be written as:

yt = Ftθt + vt, vt ∼ N(0, Vt)

θt = Gtθt−1 + wt, wt ∼ N(0, Wt)
(A.6)

We also need to defined the initial distribution for θt:

θ0 ∼ N(m0, C0) (A.7)

m0 = 02,1 =

(
0
0

)
, C0 = k · I2, k = 107 (A.8)

In the state space model, the state vector θt is the signal (including µt and γt), and wt is
the measurement noise. Given the noisy observations of y1, y2, ..., yT we want to extract the
optimal signal (estimate of θt) given the information available at t, It = (y1, y2, ..., yT). The
Kalman filter is a recursive algorithm determining the optimal estimates for θt using a set
of prediction equations and a set of updating equations. We first have to define:

mt = E[θt | It] = filtered (optimal) estimate of θt

Ct = E[(θt −mt)(θt −mt)′ | It] = MSE matrix of mt
(A.9)

The prediction equations are presented below in A.10-A.12. Given mt−1 and Ct−1 at
time t− 1, the optimal prediction of θt and its corresponding MSE matrix are:

mt|t−1 = E[θt | It] = Gtmt−1

Ct|t−1 = E[(θt −mt)(θt −mt)′ | It] = GtCt−1G′t + Wt
(A.10)

The associated optimal predictor of yt given information at t− 1 is:

yt|t−1 = E[yt | It−1] = Ftmt|t−1 (A.11)

The prediction error and its MSE matrix are then:

et = yt − yt|t−1 = yt − Ftmt|t−1 = Ft(θt −mt|t−1) + vt

E[ete′t] = Qt = FtCt|t−1F’t + Vt
(A.12)
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The updating equations are presented below in A.13. When an observation yt is avail-
able, the prediction and its MSE matrix can be updated using:

mt = mt|t−1 + Ct|t−1F’tQ−1
t (yt − Ftmt|t−1) = mt|t−1 + Ct|t−1F’tQ−1

t vt

Ct = Ct|t−1 −Ct|t−1F’tQ−1
t FtCt|t−1

(A.13)

The Kalman gain matrix is Kt = Ct|t−1F’tQ−1
t , giving a weight to the new information

et = yt − Ftmt|t−1 to update the equation for mt.

A.3 Formulas

Annualized returns and volatility

rA = 252 ∗ 1
N

N

∑
t=1

rit (A.14)

σ̂A =
√

252 ∗

√√√√ 1
N − 1

∗
N

∑
t=1

(rit − r)2 (A.15)

where N is the total number of periods, 252 scales the daily returns and
√

252 scales the
daily volatility to annualized measures.

Transform log-returns to simple returns

Rit = er
it − 1 (A.16)

Skewness and kurtosis measures

Skewness =
1
n

n

∑
i=1

(
ri − r

σp
)3 (A.17)

Kurtosis =
1
n

n

∑
i=1

(
ri − r

σp
)4 (A.18)

SkewnessKurtosisRatio =
Skewness
Kurtosis

(A.19)
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B. Figures

FIGURE B.1: Variance Ratio Function of BEL 20, FTSE 250 and relative log-
price series BEL 20 / FTSE 250
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FIGURE B.2: Risk-Return characteristics of strategy vs benchmark.
Threshold ± 1.5 SD, 60 period lookback and a 1-day signal lag. Grey lines

represent Information Ratio 1 and 2.

FIGURE B.3: 250-Day rolling performance of strategy.
Threshold ± 1.5 SD, 60 period lookback and a 1-day signal lag.
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FIGURE B.4: Random Pairs: Out-of-sample strategy performance including
transaction costs. Threshold ± 2 SD and 20 period lookback.

A 1-day lag is imposed on the signal

FIGURE B.5: EUR subsample: Out-of-sample strategy performance includ-
ing transaction costs. Threshold ± 2 SD and 20 period lookback.

A 1-day lag is imposed on the signal
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FIGURE B.6: Weekly: Out-of-sample strategy performance including trans-
action costs. Threshold ± 2 SD and 10 period lookback.

A 1-day lag is imposed on the signal
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C. Tables

TABLE C.1: Indices included in the dataset

Full Sample
Nr Symbol Name Country Currency
1 AEX Amsterdam Exchange Index Netherlands EUR
2 ATH ATHEX Composite Index Greece EUR
3 ATX Austrian Traded Index Austria EUR
4 BEL 20 Belgium 20 Belgium EUR
5 BET BET Index Romania RON
6 BUX BUX Index Hungary HUF
7 CAC CAC 40 France EUR
8 DAX DAX Index Germany EUR
9 FMIB FTSE MIB Index Italy EUR
10 FTMC FTSE 250 Index United Kingdom GBP
11 HEX OMX Helsinki Index Finland EUR
12 IBEX IBEX Index Spain EUR
13 ICEX OMX Iceland All Share Index Iceland ISK
14 ISEQ Irish Stock Exchange Overall Index Ireland EUR
15 OMXR OMX Riga Index Latvia EUR
16 OMXS 30 OMX Stockholm 30 Index Sweden SEK
17 OMXT OMX Talinn Index Estonia EUR
18 OMXV OMX Vilnius Index Lithuania EUR
19 OSEAX OSE All Share Index Norway NOK
20 PSI 20 PSI 20 Index Portugal EUR
21 PX PX Index Czech Republic CZK
22 SAX SAX Index Slovakia EUR
23 SMI Swiss Market Index Switzerland CHF
24 SOFIX SOFIX Index Bulgaria BGN
25 UKX FTSE 100 Index United Kingdom GBP
26 UX UX Index Unkraine UAH
27 XU 100 XU 100 Index Turkey TRY
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TABLE C.2: Opening Hours, European Exchanges included in the Sample

Local Time UTC

Name UTC Summer
UTC Open Close Open Close

Turkey Borsa Istanbul +3 Mar–Oct 09:30 17:30 07:30 15:30
Bulgarian Stock Exchange +2 Mar–Oct 10:00 17:00 08:00 15:00
Finland Helsinki Stock Exchange +2 Mar–Oct 10:00 18:30 08:00 16:30
Ukraine Ukrainian Exchange +2 Mar–Oct 10:00 17:30 08:00 15:30
Latvia Riga Stock Exchange +2 Mar–Oct 10:00 16:00 08:00 14:00
Estonia Tallinn Stock Exchange +2 Mar–Oct 10:00 16:00 08:00 14:00
Lithuania NASDAQ OMX Vilnius +2 Mar–Oct 10:00 16:00 08:00 14:00
Greece Athens Stock Exchange +2 Mar–Oct 10:00 17:20 08:00 15:20
Romania Bucharest Stock Exchange +1 Mar–Oct 09:45 18:00 07:45 16:00
Germany Frankfurt Stock Exchange (Xetra) +1 Mar–Oct 08:00 20:00 07:00 19:00
Austria Wiener Börse AG +1 Mar–Oct 08:55 17:35 07:55 16:35
Belgium Euronext Brussels +1 Mar–Oct 09:00 17:30 08:00 16:30
Hungary Budapest Stock Exchange +1 Mar–Oct 09:00 17:00 08:00 16:00
France Euronext Paris +1 Mar–Oct 09:00 17:30 08:00 16:30
Switzerland Swiss Exchange +1 Mar–Oct 09:00 17:30 08:00 16:30
Spain Spanish Stock Exchange +1 Mar–Oct 09:00 17:30 08:00 16:30
Italy Milan Stock Exchange +1 Mar–Oct 09:00 17:35 08:00 16:35
Netherlands Euronext Amsterdam +1 Mar–Oct 09:00 17:40 08:00 16:40
Czech Republic Prague Stock Exchange +1 Mar–Oct 09:00 16:30 08:00 15:30
Sweden Stockholm Stock Exchange +1 Mar–Oct 09:00 17:30 08:00 16:30
Norway Oslo Stock Exchange +1 Mar–Oct 09:00 16:30 08:00 15:30
Slovakia Bratislava Stock Exchange +1 Mar–Oct 11:00 15:30 10:00 14:30
United Kingdom London Stock Exchange 0 Mar–Oct 08:00 16:30 08:00 16:30
Irish Stock Exchange 0 Mar–Oct 08:00 16:30 08:00 16:30
Iceland Stock Exchange 0 No 09:30 15:30 09:30 15:30
Portugal Euronext Lisbon 0 Mar–Oct 08:00 16:30 08:00 16:30
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TABLE C.3: Out of Sample Results 2006-2017, Rolling OLS & 2-day lag

Rolling OLS Excl. TC Incl. TC
Lookback
Z-Score

Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Annualized Returns 0.064 0.054 0.023 0.044 0.043 0.018 0.018

Annualized SD 0.079 0.079 0.072 0.079 0.079 0.072 0.211
Maximum Drawdown 0.103 0.102 0.130 0.142 0.103 0.135 0.645
Average Drawdown 0.012 0.013 0.013 0.012 0.013 0.013 0.036
Annualized IR 0.804 0.686 0.322 0.556 0.549 0.247 0.085
Risk-Return-Ratio 0.618 0.531 0.179 0.309 0.420 0.132 0.028
Avg. DD Length (days) 28 25 48 33 27 51 88
Nr Trades 648 369 193 648 369 193 NA

1.5 Annualized Return 0.071 0.082 0.042 0.038 0.064 0.033 0.018
Annualized SD 0.095 0.096 0.090 0.095 0.095 0.089 0.211
Maximum Drawdown 0.136 0.129 0.124 0.255 0.135 0.132 0.645
Average Drawdown 0.014 0.014 0.015 0.015 0.016 0.016 0.036
Annualized IR 0.743 0.854 0.468 0.403 0.671 0.370 0.085
Risk-Return-Ratio 0.517 0.632 0.338 0.150 0.472 0.251 0.028
Avg. DD Length (days) 26 19 34 33 24 38 88
Nr Trades 1010 538 304 1010 538 304 NA

1.0 Annualized Returns 0.079 0.093 0.048 0.033 0.066 0.033 0.018
Annualized SD 0.104 0.106 0.101 0.103 0.106 0.101 0.211
Maximum Drawdown 0.147 0.137 0.131 0.270 0.149 0.162 0.645
Average Drawdown 0.017 0.017 0.015 0.022 0.020 0.016 0.036
Annualized IR 0.765 0.876 0.472 0.315 0.624 0.330 0.085
Risk-Return-Ratio 0.539 0.676 0.362 0.121 0.442 0.205 0.028
Avg. DD Length (days) 25 23 27 39 31 32 88
Nr Trades 1470 830 483 1470 830 483 NA

Results of the 24 (six-month) combined out-of-sample trading periods between January 01, 2006
and December 31, 2017. A rolling OLS regression is used to estimate the cointegrating relationship
and a 2-day lag is imposed on the signal.
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TABLE C.4: Out of Sample Results 2006-2017, Kalman Filter & 2-day lag

Kalman Filter Excl. TC Incl. TC
Lookback
Z-Score

Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Annualized Returns 0.062 0.064 0.034 0.041 0.052 0.026 0.018

Annualized SD 0.079 0.078 0.072 0.079 0.078 0.072 0.211
Maximum Drawdown 0.154 0.141 0.140 0.179 0.150 0.156 0.645
Average Drawdown 0.012 0.011 0.012 0.012 0.011 0.013 0.036
Annualized IR 0.784 0.813 0.466 0.518 0.662 0.367 0.085
Risk-Return-Ratio 0.402 0.452 0.239 0.228 0.345 0.169 0.028
Avg. DD Length (days) 26 22 40 31 27 51 88
Nr Trades 653 385 227 653 385 227 NA

1.5 Annualized Return 0.097 0.083 0.046 0.064 0.062 0.033 0.018
Annualized SD 0.096 0.091 0.082 0.091 0.096 0.082 0.211
Maximum Drawdown 0.149 0.141 0.134 0.154 0.196 0.161 0.645
Average Drawdown 0.014 0.011 0.011 0.012 0.015 0.012 0.036
Annualized IR 1.013 0.908 0.565 0.708 0.648 0.398 0.085
Risk-Return-Ratio 0.654 0.585 0.344 0.418 0.317 0.202 0.028
Avg. DD Length (days) 20 18 25 25 28 33 88
Nr Trades 1073 582 387 582 1073 387 NA

1.0 Annualized Returns 0.108 0.109 0.102 0.057 0.078 0.079 0.018
Annualized SD 0.104 0.104 0.098 0.103 0.104 0.098 0.211
Maximum Drawdown 0.136 0.171 0.113 0.223 0.221 0.132 0.645
Average Drawdown 0.015 0.013 0.012 0.017 0.015 0.015 0.036
Annualized IR 1.046 1.046 1.039 0.549 0.751 0.811 0.085
Risk-Return-Ratio 0.796 0.640 0.902 0.254 0.354 0.602 0.028
Avg. DD Length (days) 20 19 16 29 25 21 88
Nr Trades 1538 923 667 1538 923 667 NA

Results of the 24 (six-month) combined out-of-sample trading periods between January 01, 2006
and December 31, 2017. A state space regression model is defined and the Kalman filter algorithm
is used to estimate the cointegrating relationship. A 2-day lag is imposed on the signal.
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TABLE C.5: Out of Sample Monthly Return Distributions 2006-2017,
Rolling OLS & 2-day signal lag

Rolling OLS Excl. TC Incl. TC
Lookback

Z-Score
Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Mean return 0.0056 0.0047 0.0021 0.0040 0.0039 0.0016 0.0026

SE (NW) 0.0019 0.0013 0.0012 0.0019 0.0013 0.0011 0.0050
t-stat. (NW) 2.8911 3.5884 1.7942 2.0980 2.9339 1.4200 0.5316
Minimum -0.0484 -0.0430 -0.0427 -0.0501 -0.0436 -0.0436 -0.1971
Quartile 1 -0.0065 -0.0059 -0.0070 -0.0081 -0.0068 -0.0071 -0.0227
Median 0.0033 0.0031 0.0010 0.0022 0.0018 0.0006 0.0102
Quartile 3 0.0138 0.0145 0.0110 0.0118 0.0141 0.0096 0.0321
Maximum 0.0822 0.0675 0.0719 0.0787 0.0664 0.0714 0.1123
SD 0.0193 0.0176 0.0158 0.0190 0.0173 0.0159 0.0504
Skewness 0.7649 0.4415 0.7120 0.7824 0.4227 0.7900 -1.0089
Kurtosis 2.2173 1.1166 2.4990 2.3160 1.1627 2.9336 2.7179
Sk-Ku Ratio 0.1461 0.1069 0.1290 0.1467 0.1012 0.1327 -0.1758
Share Pos. 0.6014 0.5857 0.5612 0.5455 0.5532 0.5468 0.5874

1.5 Mean return 0.0064 0.0072 0.0038 0.0037 0.0057 0.0031 0.0026
SE (NW) 0.0023 0.0020 0.0017 0.0023 0.0019 0.0017 0.0050
t-stat. (NW) 2.7579 3.6369 2.2142 1.6034 2.9644 1.8222 0.5316
Minimum -0.0477 -0.0569 -0.0643 -0.0498 -0.0586 -0.0648 -0.1971
Quartile 1 -0.0057 -0.0054 -0.0091 -0.0076 -0.0067 -0.0097 -0.0227
Median 0.0057 0.0053 0.0025 0.0024 0.0038 0.0019 0.0102
Quartile 3 0.0191 0.0185 0.0144 0.0159 0.0172 0.0128 0.0321
Maximum 0.1043 0.1586 0.0784 0.0995 0.1551 0.0762 0.1123
SD 0.0237 0.0250 0.0221 0.0235 0.0247 0.0219 0.0504
Skewness 0.7588 1.5727 0.4990 0.7712 1.5566 0.4969 -1.0089
Kurtosis 2.3742 8.8844 1.6990 2.3088 8.8126 1.7307 2.7179
Sk-Ku Ratio 0.1407 0.1319 0.1058 0.1448 0.1313 0.1047 -0.1758
Share Pos. 0.6084 0.6364 0.5734 0.5664 0.6154 0.5594 0.5874

1.0 Mean return 0.0071 0.0082 0.0044 0.0033 0.0060 0.0032 0.0026
SE (NW) 0.0023 0.0023 0.0019 0.0022 0.0022 0.0018 0.0050
t-stat. (NW) 3.1250 3.6177 2.3234 1.4605 2.7330 1.7095 0.5316
Minimum -0.0418 -0.0544 -0.0775 -0.0445 -0.0561 -0.0782 -0.1971
Quartile 1 -0.0062 -0.0070 -0.0077 -0.0114 -0.0091 -0.0085 -0.0227
Median 0.0044 0.0063 0.0041 0.0007 0.0035 0.0033 0.0102
Quartile 3 0.0191 0.0204 0.0173 0.0150 0.0180 0.0164 0.0321
Maximum 0.1273 0.1983 0.0877 0.1210 0.1920 0.0846 0.1123
SD 0.0259 0.0295 0.0235 0.0254 0.0289 0.0233 0.0504
Skewness 1.1402 2.0587 0.0762 1.1911 2.0399 0.0815 -1.0089
Kurtosis 3.3248 11.3926 1.7270 3.3020 11.2468 1.7608 2.7179
Sk-Ku Ratio 0.1796 0.1425 0.0161 0.1883 0.1427 0.0171 -0.1758
Share Pos. 0.6154 0.6294 0.5944 0.5245 0.5874 0.5594 0.5874

Monthly Returns of the 24 (six-month) combined out-of-sample trading periods between January
01, 2006 and December 31, 2017. A rolling OLS regression is used to estimate the cointegrating
relationship and a 2-day lag is imposed on the signal. Newey-West Standard Errors are used since
return distributions are non-normal.
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TABLE C.6: Out of Sample Monthly Return Distributions 2006-2017,
Kalman Filter & 2-day signal lag

Kalman Filter Excl. TC Incl. TC
Lookback

Z-Score
Lookback
Z-Score

Entry Measure 20 60 250 20 60 250 Benchmark
2.0 Mean return 0.0054 0.0056 0.0029 0.0037 0.0046 0.0023 0.0026

SE (NW) 0.0020 0.0015 0.0015 0.0019 0.0015 0.0015 0.0050
t-stat. (NW) 2.7691 3.7104 1.9443 1.9115 3.0894 1.5824 0.5316
Minimum -0.0438 -0.0582 -0.0460 -0.0459 -0.0591 -0.0471 -0.1971
Quartile 1 -0.0051 -0.0044 -0.0034 -0.0073 -0.0049 -0.0037 -0.0227
Median 0.0048 0.0024 0.0010 0.0030 0.0017 0.0004 0.0102
Quartile 3 0.0151 0.0121 0.0073 0.0128 0.0116 0.0069 0.0321
Maximum 0.0739 0.1533 0.1146 0.0713 0.1500 0.1104 0.1123
SD 0.0192 0.0213 0.0177 0.0188 0.0211 0.0173 0.0504
Skewness 0.5398 2.4812 2.1778 0.5501 2.4589 2.0734 -1.0089
Kurtosis 1.6868 15.6178 12.2694 1.7393 15.4570 11.7237 2.7179
Sk-Ku Ratio 0.1148 0.1328 0.1421 0.1157 0.1328 0.1403 -0.1758
Share Pos. 0.6224 0.6357 0.5891 0.5734 0.5929 0.5659 0.5874

1.5 Mean return 0.0085 0.0073 0.0040 0.0057 0.0058 0.0029 0.0026
SE (NW) 0.0024 0.0019 0.0017 0.0024 0.0019 0.0016 0.0050
t-stat. (NW) 3.4738 3.8342 2.4201 2.3406 3.0772 1.7859 0.5316
Minimum -0.0457 -0.0582 -0.0534 -0.0487 -0.0591 -0.0552 -0.1971
Quartile 1 -0.0078 -0.0049 -0.0079 -0.0101 -0.0062 -0.0096 -0.0227
Median 0.0059 0.0043 0.0036 0.0027 0.0035 0.0023 0.0102
Quartile 3 0.0171 0.0158 0.0145 0.0141 0.0142 0.0135 0.0321
Maximum 0.1291 0.1940 0.1494 0.1237 0.1899 0.1438 0.1123
SD 0.0265 0.0255 0.0221 0.0258 0.0251 0.0217 0.0504
Skewness 1.3178 2.9590 1.9403 1.3733 2.9509 1.8431 -1.0089
Kurtosis 4.2661 19.0639 12.2006 4.3265 19.2204 11.7072 2.7179
Sk-Ku Ratio 0.1807 0.1336 0.1272 0.1868 0.1323 0.1249 -0.1758
Share Pos. 0.6294 0.6014 0.5816 0.5664 0.5804 0.5603 0.5874

1.0 Mean return 0.0094 0.0096 0.0087 0.0053 0.0072 0.0069 0.0026
SE (NW) 0.0023 0.0026 0.0021 0.0023 0.0026 0.0021 0.0050
t-stat. (NW) 4.1124 3.6547 4.1516 2.3201 2.7383 3.3539 0.5316
Minimum -0.0474 -0.0772 -0.0580 -0.0497 -0.0815 -0.0588 -0.1971
Quartile 1 -0.0058 -0.0077 -0.0073 -0.0099 -0.0100 -0.0088 -0.0227
Median 0.0057 0.0052 0.0075 0.0017 0.0028 0.0051 0.0102
Quartile 3 0.0226 0.0215 0.0208 0.0186 0.0188 0.0189 0.0321
Maximum 0.1265 0.2260 0.1628 0.1204 0.2199 0.1547 0.1123
SD 0.0270 0.0334 0.0269 0.0265 0.0328 0.0264 0.0504
Skewness 0.9073 2.4973 1.3637 0.9522 2.4884 1.2825 -1.0089
Kurtosis 2.4535 13.3171 6.4591 2.4847 13.4771 5.8557 2.7179
Sk-Ku Ratio 0.1658 0.1525 0.1437 0.1730 0.1505 0.1443 -0.1758
Share Pos. 0.6573 0.5874 0.6014 0.5524 0.5455 0.5734 0.5874

Monthly Returns of the 24 (six-month) combined out-of-sample trading periods between January
01, 2006 and December 31, 2017. A state space regression model is defined and the Kalman filter
algorithm is used to estimate the cointegrating relationship. A 2-day lag is imposed on the signal
and Newey-West Standard Errors are used since return distributions are non-normal.
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TABLE C.7: OOS Monthly Historical VaR and ES estimates 2006-2017,
Rolling OLS & a 2-day signal lag

Kalman Filter Excl. TC Incl. TC
Lookback

Z-Score
Lookback

Z-Score
Entry Measure 20 60 250 20 60 250 Benchmark

2.0 Hist. 95% VaR -0.0199 -0.0207 -0.0210 -0.0207 -0.0215 -0.0210 -0.0734
Hist. 95% ES -0.0306 -0.0307 -0.0269 -0.0313 -0.0315 -0.0273 -0.1323
Hist. 99% VaR -0.0383 -0.0353 -0.0287 -0.0395 -0.0364 -0.0292 -0.1726
Hist. 99% ES -0.0446 -0.0398 -0.0358 -0.0460 -0.0408 -0.0366 -0.1951

1.5 Hist. 95% VaR -0.0317 -0.0325 -0.0280 -0.0343 -0.0331 -0.0281 -0.0734
Hist. 95% ES -0.0402 -0.0422 -0.0400 -0.0424 -0.0432 -0.0405 -0.1323
Hist. 99% VaR -0.0432 -0.0465 -0.0466 -0.0447 -0.0475 -0.0474 -0.1726
Hist. 99% ES -0.0458 -0.0530 -0.0567 -0.0475 -0.0542 -0.0574 -0.1951

1.0 Hist. 95% VaR -0.0302 -0.0315 -0.0330 -0.0327 -0.0322 -0.0344 -0.0734
Hist. 95% ES -0.0361 -0.0447 -0.0464 -0.0389 -0.0460 -0.0474 -0.1323
Hist. 99% VaR -0.0390 -0.0510 -0.0509 -0.0418 -0.0527 -0.0520 -0.1726
Hist. 99% ES -0.0406 -0.0535 -0.0649 -0.0434 -0.0554 -0.0659 -0.1951

Monthly historical VaR and ES estimates of the 24 (six-month) combined out-of-sample trading
periods between January 01, 2006 and December 31, 2017. A rolling OLS regression is used to
estimate the cointegrating relationship and a 2-day lag is imposed on the signal.

TABLE C.8: OOS Monthly Historical VaR and ES estimates 2006-2017,
Kalman Filter & a 2-day signal lag

Kalman Filter Excl. TC Incl. TC
Lookback

Z-Score
Lookback

Z-Score
Entry Measure 20 60 250 20 60 250 Benchmark

2.0 Hist. 95% VaR -0.0236 -0.0181 -0.0182 -0.0246 -0.0188 -0.0192 -0.0734
Hist. 95% ES -0.0344 -0.0316 -0.0305 -0.0350 -0.0323 -0.0311 -0.1323
Hist. 99% VaR -0.0389 -0.0346 -0.0375 -0.0398 -0.0349 -0.0378 -0.1726
Hist. 99% ES -0.0418 -0.0467 -0.0429 -0.0433 -0.0472 -0.0438 -0.1951

1.5 Hist. 95% VaR -0.0249 -0.0209 -0.0254 -0.0266 -0.0215 -0.0258 -0.0734
Hist. 95% ES -0.0391 -0.0330 -0.0372 -0.0389 -0.0341 -0.0379 -0.1323
Hist. 99% VaR -0.0435 -0.0364 -0.0472 -0.0453 -0.0381 -0.0481 -0.1726
Hist. 99% ES -0.0448 -0.0491 -0.0530 -0.0473 -0.0499 -0.0543 -0.1951

1.0 Hist. 95% VaR -0.0299 -0.0282 -0.0248 -0.0324 -0.0300 -0.0256 -0.0734
Hist. 95% ES -0.0386 -0.0432 -0.0393 -0.0416 -0.0451 -0.0406 -0.1323
Hist. 99% VaR -0.0451 -0.0535 -0.0503 -0.0480 -0.0547 -0.0522 -0.1726
Hist. 99% ES -0.0471 -0.0682 -0.0557 -0.0491 -0.0709 -0.0573 -0.1951

Monthly historical VaR and ES estimates of the 24 (six-month) combined out-of-sample trading
periods between January 01, 2006 and December 31, 2017. A state space regression model is
defined and the Kalman filter algorithm is used to estimate the cointegrating relationship. A 2-day
lag is imposed on the signal.
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