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1 Introduction

The asset pricing field is in a state of turmoil with hungry practitioners con-

stantly striving to find the optimal framework. In particular, the uncondi-

tional CAPM has for long been the workhorse of empirical finance. However,

lots of studies have unveiled serious empirical deficiencies against this con-

stant beta model that are so forceful that it has been widely argued that a re-

placement model is needed (see for instance Fama and French (1996a)). With

the field under such strenuous attack, the common response has been either

to improve already established models, propose alternative pricing frame-

works or introduce multi-factor extensions. The Fama and French (1993)

three factor model (hereafter FF-3F) represents a measure taken with re-

gard to the latter category and is undisputedly regarded the most prominent

asset pricing model to date. Despite numerous positive documentations, sev-

eral empirical shortcomings have been shown to persist. For instance, the

inability of the FF-3F model in its unconditional form to correctly price

the momentum anomaly is widely documented and an unresolved issue in

many cases (FF (1996b) and (2012)). Still, several authors uncover evidence

that suggest that the static FF-3F fails miserably to capture the dynamic

behaviour of asset returns.

Given the strong flood of negative empirical documentations on uncondi-

tional model performance, numerous studies have been targeted at exploring

the roots and causes thereof. In particular, several studies argue that the

ignorance of time-variability of betas and their associated asset pricing im-

plications serve as important sources in explaining poor model performance.

As such, conditional asset pricing models that allow for improved empirical

efficiency by accounting for these crucially important aspects have become

focal points of investigation. In line with this, Dybvig and Ingersoll (1982)

among others have shown that the conditional CAPM can hold perfectly

regardless of its unconditional counterpart exhibiting significant mispricing.

When modelling risk dynamics by incorporating conditioning information

in the stochastic discount factor (hereafter SDF), the econometrician faces

several technical challenges. To reduce the inherent complexity pertaining

to the modeling procedure, it has become common practice to impose lin-

earity restrictions whereby it is assumed that conditional expected returns
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on an asset is a linear function of one or more conditional betas. While

the convenient linearity assumption still makes dynamic models intuitively

appealing, its imposition might come at a significant cost as there is no

theoretical guidance on how betas and risk premia comove with state vari-

ables that represent conditioning information. In other words, the empirical

results can be shaped by inappropriate modelling assumptions imposed by

the econometrician, which can lead to devastating empirical consequences.

This can be highly important if betas are not well approximated by linear

relationships and it is difficult to capture nonlinear beta functions. In line

with this, Ghyssels (1998) among others demonstrate that several popular

dynamic beta models are so severely misspecified that they are outperformed

by their static counterparts because of the linearity assumption.

In this paper, we resurrect the hope for asset pricing with conditioning

information by being the very first, to the best of our knowledge, to introduce

the notion of a nonlinear SDF (or pricing kernel) in the Swedish equity mar-

ket. Our study builds on the flexible nonparametric testing methodology of

Wang (2002, 2003) that completely avoids functional form (mis)specifications

of risk dynamics and the stochastic discount factor. This is achieved by de-

riving a nonparametric presentation of restrictions on the SDF implied by a

conditional linear factor pricing model. Thanks to Wang (2002, 2003), we

provide a novel view on the empirical performance of the conditional CAPM

and FF-3F models for Sweden. In particular, the conditional CAPM and

the fully non-parametric FF-3F model that we consider are the most general

versions considered to date for the Swedish equity market.

By implementing sophisticated econometric techniques, we extensively

show that convenient linear approximations of beta functions indeed are em-

pirically inadequate. Rather, our findings reveal that nonlinearity in the first

two conditional moments of the market return is highly present and that a

nonparametric SDF that captures this feature is a solution that can bring

significant value.

Our empirical results on the model performance of the conditional asset

pricing models are striking. For the nonparametric version of the conditional

CAPM, we find that it significantly outperforms the unconditional CAPM

and that the magnitude of improvement is large. More specifically, the stan-

dard deviations of Jensen’s alphas are lower across each and every of the 25
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size-BE/ME test portfolios, and this largely holds for average pricing errors

as well. While the conditional CAPM is statistically rejected at the 10%

significance level, it seems to price risky assets very well: The intercepts, or

average pricing errors, are economically small and statistically insignificant.

For the conditional FF-3F model, we find that the nonparametric version

generates even more favourable empirical conclusions. It is statistically as

well as economically significant and captures the most prominent pricing

error deviations from the conditional CAPM. By jointly adding the size and

book-to-market factors, pricing error measures are reduced with more than

80%! In sum, the model performs very well and conditional alphas are small.

Ghyssels (1998) and Wang (2003) argue that once dynamics of beta risk

are correctly specified, one can expect time-varying beta models to beat

static models. Consistent with this argument, we find that nonparametric

versions of conditional asset pricing models outperform their constant beta

counterparts significantly. These findings differ from several empirical results

produced by conditional asset pricing models with functional form restric-

tions on betas (see for instance Hodrick and Zhang (2001), Ferson et al.

(2009) as well as Petkova and Zhang (2005)). This contrast indeed reinforces

the finding that nonlinearity in the first and second moment of the market

return is an important consideration in the specification of dynamic asset

pricing models. By being the first out-of-sample country check, we show

that a nonparametric SDF that successfully incorporates the dynamic be-

haviour of returns generates significant payoffs in the study of asset pricing

models with conditioning information in the Swedish equity market.

The remainder of this paper is structured as follows: Section 2 reviews

previous research findings on the topic and identifies how our study uniquely

contributes to the literature. Section 3 extensively describes the data em-

ployed to estimate and evaluate conditional asset pricing models. Section

4 introduces the nonparametric methodology to test for conditional mean-

variance efficiency. Section 5 presents and thoroughly analyses empirical

results. Finally, Section 6 concludes the paper and briefly aggregates the

most important contributions as well as their implications for dynamic asset

pricing in Sweden.
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2 Previous Literature

This section reviews prior literature on asset pricing with conditioning infor-

mation and identifies how our study uniquely contributes to previous findings.

First, the topic is motivated in light of empirical manifestations providing

harsh critique against static models. Then, several common estimation meth-

ods and their implications for the dynamics of conditional asset pricing are

described. Finally, documentations on the pricing power ability pertaining

to the conditional CAPM and the FF-3F are presented.

2.1 Motivation for Conditional Asset Pricing

The failure of the capital asset pricing model (CAPM) to explain not only

the cross-sectional, but also the time-series of average equity returns is well

demonstrated in the empirical asset pricing literature. The evidence against

this static, i.e. constant beta model are so strong that practitioners argue

that a replacement model is needed. FF(1992, 1996a), Banz (1981) and

Basu (1983) only represent a few of the early authors who document that the

univariate relationship between the single-factor and average returns is weak.

More recently, FF (2004, 2006, 2012) verify and revisit trading strategies that

are anomalous to the static CAPM, showing that the empirical results remain

robust to a wide range of re-specifications and that they are not sample (i.e.

country) specific.

A natural response to the criticism has been to propose either extensions

or new models that lead to superior empirical performance (For example; FF

(1993), Jagganathan and Wang (1996); Lettau and Ludvigsson (2001); Chen

and Zhang (2011); Savov (2011); Koijen et al. (2017)). With the FF-3F

model counting towards the most powerful asset pricing frameworks to date,

the model cast in its unconditional form does not explain the momentum ef-

fect (FF(1996b), (2012)). Despite its history of having successfully addressed

several shortcomings, the empirical record of the FF-3F model is still sub-

ject to a lot of controversy even when challenged against the static CAPM.

For instance, Bartholdy and Peare (2005) bring into question the empirical

adequacy of either models.

In light of the severe critique aimed at unconditional models and the re-

lated asset pricing anomalies identified against them, numerous studies have
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been aimed at investigating potential reasons for the poor performance. A

prominent explanation is that time-variability of betas, risk premia and their

asset pricing implications have been largely ignored. Such an explanation is

based on several time-series predictability literature papers having evidenced

the dynamic nature of risk premia (See Campbell and Shiller (1988); Ferson

and Harvey (1991); Ferson and Korajczyk (1995); Li and Yang (2011); Engle

(2016))

With the field under such strenuous attack, another reaction to the empir-

ical deficiencies of constant models has given rise to a literature series directed

at improving already established models by incorporating time-variability of

risk premia. As a result, conditional versions of classical asset pricing mod-

els that allow for improved empirical efficiency by capturing beta-dynamics

have become focal points of investigation. Dybvig and Ross (1985) as well

as Hansen and Richard (1987) all show that conditional asset pricing mod-

els that account for these desirable features can hold perfectly, regardless of

the unconditional CAPM exhibiting significant mispricing. As such, asset

pricing models incorporating conditioning information have become popular

objects at the forefront of empirical asset pricing (Cochrane, 2009). Given

the suggested pervasive influence of these models, they remain interesting to

study.

2.2 The SDF and Conditioning Information

Given the first-order importance of appropriately modelling betas once dy-

namic specifications have been introduced, a range of different statistical im-

plementations are available for the econometrician. Our review mainly con-

cerns, but is not limited to the stochastic discount factor (SDF) approach1.

With the SDF representation of whichever asset pricing model, time-

variability of betas can successfully be accounted for by incorporating con-

ditioning information. This is achieved by expressing the parameters of the

SDF as functions of lagged state variables (Cochrane (2009) extensively dis-

1Other methodologies have been suggested: For instance, time variation in conditional
covariances has been modelled with M-GARCH (See Bollerslev et al. (1988); Ng (1991))
A disadvantage of this popular procedure is the strong assumption about the functional
form of second moments. Furthermore, ARCH processes do not necessarily aggregate: In
particular, if asset returns follow a specific ARCH process, it does not necessarily follow
that a portfolio of assets follow that ARCH process (Harvey, 1989).
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cusses this in his book). The most widely applied methodology makes use of

a result that shows that the parameters of the SDF can be expressed as affine

linear functions of instruments2. By imposing the linearity restriction on the

functional form of conditional betas and the associated conditional moments,

the econometrician can circumvent several technical modelling challenges.

When the SDF is a fully specified parametric function of data, the model is

usually estimated and tested by the generalized method of moments (GMM)

of either Hansen and Jaggannathan (1997) or Hansen (1982). The former is

usually implemented when the purpose is to run a horse race among different

linear models, using the second moment matrix of returns as the weighting

matrix3. Some of the first authors that pursue tests of conditional mean-

variance efficiency in the linearized-GMM manner are Cochrane (1996), Har-

vey (1989) and He et al. (1996). More recently, Ferson et al. (2009) and

Smith (2007) pursue such an application, where the latter relates to the SDF

indirectly. Similarly, it has been popular to make use of conditional linear

market regression models. Petkova and Zhang (2005), Ho and Hung (2009),

Hyunh and Smith (2014) as well as Lewellen and Nagel (2006) count to this

group.

While convenient linearity assumptions make dynamic models intuitively

appealing, it has been demonstrated that it might come at a significant cost.

These models imply that the conditional expected portfolio return is linearly

related to conditional betas that measure the portfolio’s sensitivity to sys-

tematic risk. However, there is no theoretical guidance on how betas and risk

premia vary with state variables that reflect conditioning information. By im-

posing linear restrictions on the parameters of the SDF, empirical result can

be shaped by the modelling assumptions imposed by the econometrician. An

author strongly highlighting this issue is Ghyssels (1998). The author demon-

strates that several popular dynamic beta models are so severely misspecified

to the extent that they are outperformed by their static counterparts4.

2This approach is sometimes referred to as multiplicative, as it amounts to forming
dynamic models whose factors and returns are multiplied/scaled by the lagged instruments.

3For strong critique against the Hansen and Jaggannathan (HJ) version and the asso-
ciated testing procedure, see Ferson and Siegel (2003), who detect striking finite-sample
biases in the HJ bounds.

4The inherent problem pertaining to the linearity assumption is also acknowledged by
for instance He et al. (1996) as well as Nagel and Singleton (2001). In contrast, Harvey
(2001) provides a rationale for linearity in several conditional asset pricing applications.
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Given the debatable empirical adequacy of assuming linear relationships

between conditional expected returns and betas, Wang (2002, 2003) proposes

a flexible nonparametric methodology constructed within the SDF framework

that is completely free from functional form misspecification about beta dy-

namics, risk premia and the SDF. With Ghyssels well-motivated critique

(1998) as the source of inspiration for a nonparametric SDF, the author res-

urrects the hope for asset pricing models with conditioning information by

providing a novel view about their empirical performance.

Other authors that may have been influenced by Wang (2003) are Li

and Yang (2011) as well as Ang and Kristensen (2012). On the one hand,

they are related to Wang (2003) by the application of nonparametric tests of

conditional mean-variance efficiency. On the other hand, these authors differ

significantly in several aspects: They use local information to approximate

betas and conditional alphas rather than using conditioning information,

whereby it is assumed that information is stable within short windows. Li

and Yang (2011) consider high frequency tests designed to optimally select

the right amount of local data in their GLS regression windows, whereas Ang

and Kristensen (2012) consider kernel-weighted OLS regressions. The latter

provide that their conditional alpha estimators in general are inconsistent.

The concept of a nonparametric SDF has previously been suggested:

Bansal et al. (1993) as well as Bansal and Viswanathan (1993) are per-

haps the pioneers to advocate the usage of a flexible SDF in empirical asset

pricing5. Unlike Wang (2003), these authors focus on nonlinear APT models

and propose a series (polynomial) expansion approach combined with the

standard GMM for estimating and testing. The drawback with this method-

ology is that it is problematic to derive a distribution theory and an effective

assessment of finite sample performance. However, nor are fully nonparamet-

ric econometric methodologies in general free from drawbacks. Yet, Wang

(2003) successfully circumvents many of the disadvantages aimed at such

econometric methods by carefully designing the asset pricing tests accord-

ingly (further discussed in the Methodology section).

By building upon the empirical success of Wang (2002, 2003), our paper

is the very first, to the best of our knowledge, to introduce the notion of a

5See Lustig and Van Nieuwerburgh (2005) for a compromise; they specify a semi-
parametric SDF in conditional asset pricing.
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nonparametric SDF in asset pricing with conditioning information in Sweden.

The restrictions implied by this nonlinear pricing kernel give rise to the most

general versions of the CAPM and the FF-3F models ever considered in the

Swedish equity market.

2.3 Empirical Manifestations

Although asset pricing with conditioning information provides the founda-

tion for the reestablishment of the backbone CAPM, the literature has not

reached full consensus regarding whether the conditional model explains av-

erage returns. Strong modelling assumptions and functional form restrictions

on the first and second moment of returns do not necessarily ensure empirical

success all the way: When allowing the parameters of the SDF to fluctuate

linearly with the business cycle, Hodrick and Zhang (2001) lend support in

favour of some conditional CAPM specifications. However, some of the mod-

els fail to pass Ghyssel’s (1998) parameter stability test, strongly suggest-

ing the occurrence of potential misspecification of betas. Similarly, Harvey

(1989) and He et al. (1996) demonstrate that time-varying conditional co-

variances scaled by instrumental variables in the CAPM do not suffice in

explaining the dynamic behaviour of returns. These documentations are fur-

ther reinforced by Petkova and Zhang (2005), who further investigate the

conditional CAPM and conclude that the magnitude of the value premium

remains mostly significant even after controlling for time-varying risk. The

empirical evidence of Ang and Kristensen (2012) as well as Li and Yang

(2011) point in the same direction: Their optimal window regression meth-

ods based on OLS and GLS nonparametric estimators indicate that neither

the conditional CAPM, nor the conditional FF-3F model is able to correctly

price the momentum and value premium. This failure could be due to the

assumption that short windows provide local information that is sufficient

for accurate pricing power.

On the contrary, Lettau and Ludvigsson (2001) consider the log-consumption

to wealth-ratio as a conditioning variable, whereby they demonstrate clearly

improved empirical performance of the conditional consumption-CAPM. Sim-

ilarly, Santos and Veronesi (2006) shows that the fraction of total income

funded by total labor income improves the CAPM. Other authors that pro-

duce positive conclusions on the CAPM with conditioning information are
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Bali and Engle (2014), Ho and Hung (2009) as well as Duffee (2005)6.

Turning to the FF-3F model, it is possible to highlight that albeit its

largely undisputable superiority relative to the CAPM, authors still uncover

empirical evidence at odds with the framework once the model is set in its

conditional form. Harvey and Ferson (1999) demonstrate that even the con-

ditional version of the FF-3F does not offer an improvement large enough

to justify significant pricing error patterns7. Similarly, Ferson et al. (2009)

produce negative empirical conclusions on the FF-3F performance, although

the authors make the claim that their test uses conditioning information

efficiently. Nonetheless, these authors reject conditional mean-variance effi-

ciency of both all static or time-varying combinations of the FF-3F model.

However, the authors do not abandon linear restrictions on the SDF, which

might have an important bearing on their empirical conclusions. For docu-

mentations that indicate improved efficiency on the FF-3F, see Hong and Hu

(2009) as well as Huynh and Smith (2014).

Moving to the nonparametric tests of conditional mean-variance efficiency

used in this study, Wang (2002, 2003) is able to demonstrate significant im-

provements relative to previous research. He attributes the empirical success

to his flexible approach which relaxes linearity assumptions and functional

restrictions on the parameters of the SDF. For the conditional CAPM, the

author finds that the nonparametric version offers substantially improved

performance compared to its unconditional counterpart. Although the model

is statistically rejected, the author demonstrates that the patterns of pricing

errors are interesting: They exhibit a prominent size pattern in volatility but

not in time-series averages. At the same time, the pricing errors have a strong

book-to-market pattern in time-series averages but not in volatility. Put dif-

ferently, Wang (2003) suggests that the size and book-to-market effects tend

to occur across different channels. Furthermore, the author evidences that

6Lewellen and Nagel (2006) assert that several of the cross-sectional specifications don’t
provide a full test of the CAPM, arguing that the results should be subject to further rein-
vestigation. However, Boguth et al. (2010) argue that the regression method of Lewellen
and Nagel (2006), which leads to rejection of the conditional CAPM, potentially suffers
from biased estimates of alphas.

7Petkova (2006) claims that the FF-3F model is not successful at capturing the effect
of conditioning information. Yet, the author argues that the parts of HML and SMB that
are important for pricing risky assets proxy for innovations in state variables that predict
the excess market return and the yield curve.
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the conditional FF-3F model performs well in contrast to several previous

documentations. More specifically, the model is able to capture the most

significant features of pricing error deviations from the conditional CAPM.

Once challenging the models with momentum portfolios, the author is able

to demonstrate that the conditional FF-3F successfully captures the perhaps

most debated asset pricing anomaly - the momentum effect.

Even though asset pricing with conditioning information is acknowledged

to have pervasive influence on empirical performance, previous research on

the topic remains strikingly scarce and out-dated for the Swedish equity

market. This seems to apply for the whole conditional asset pricing field as

well. Hansson and Hördahl (1998), who are among the few to test the con-

ditional CAPM, consider the time-period 1977-1990 by using a multivariate

GARCH-M process for the conditional covariance matrix of asset returns.

The authors provide strong support for the conditional CAPM. Given the

significant shortage of literature covering conditional asset pricing in Swe-

den, our study seeks to not only fill the research room, but also provide an

important link to other related asset pricing fields.

Besides from being the pioneers in introducing a nonparametric SDF in

asset pricing with conditioning information, we provide a refined view of

the empirical performance of conditional asset pricing models in the Swedish

equity market.
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3 Data

This section aims to give the reader an overview of the data used to evaluate

and estimate conditional asset pricing models. We first provide further details

on the construction of both benchmark portfolios as well as risk factors and

then discuss the conditioning instruments that are considered in empirical

tests.

3.1 Test Portfolios and Fama-French Three Factors

This study considers 25 Swedish stock portfolios: These are the size and

book-to-market sorted portfolios of FF (1993). The usage of portfolios as

test assets as opposed to individual stocks follows from a couple of natural

considerations. First and foremost, we would like to comply with established

common practice within the conditional empirical asset pricing literature.

Second, we would like to maximize comparability across previous research

documentations. Third, we would like to avoid the errors-in-variables prob-

lem as discussed by Jagannathan et al. (2010). Additionally, by including

the test portfolios we would like to circumvent any potential methodologi-

cal shortcomings in the empirical testing procedure, such as those brought

forward by Lewellen et al. (2010).

Since currently the 25 FF-3F portfolios are not available for Sweden, we

construct them ourselves. We adopt the methodology proposed in the seminal

papers by FF (1992, 1993). The firm market and book data is collected on

a monthly frequency spanning the period July 1994 to December 2016 from

Finbas, which is free from firm survivorship bias8.

To begin with, we remove all firms with negative BE/ME (book-to-market

equity divided by market equity) values to mitigate any concerns with erro-

neous interpretation. Furthermore, all financial firms are exempt from the

analysis since high leverage for these firms in general does not have the same

meaning as for nonfinancial firms, for which high leverage more likely is linked

to distress. In addition to removing any duplicate observations, we also mold

8Another popular choice is the Compustat database. However, due to its prominent
exclusion bias of firms and several incorrect firm observations, we use Finbas. Similarly,
another alternative would be to use Datastream, but it contains a significant portion of
errors.
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our sample by excluding firms for which no consecutive trading data for the

last 24 months is reported. Last but not least, for a firm to be included in the

tests we require it to have a stock price for December of year t− 1, June of

t and book common equity for year t− 1. The full sample contains monthly

observations of 996 unique firms, stretching over a time period of 270 trading

months, yielding a total number of 88529 observations. The sample period is

chosen as to maximize the data quality while ensuring a satisfactory amount

of observations in each test portfolio. Table 1 reports some statistics for the

monthly number of stocks included in the sample.

Table 1:
Summary Statistics of the Monthly Number of Stocks

Full Sample
Total 996
Min 147
Max 471
Mean 307
Median 320

In June of each year t from 1994 to 2016, all stocks are ranked on size

(market equity or ME). The median of ME is used to split stocks into two

groups; referred to as small and big (S and B). The stocks are also divided

into three book-to-market equity groups (BE/ME) based on three different

breakpoints: The bottom 30 % (Low or L), middle 40% (Middle or M) and

top 30 % (High or H). In order to establish the correct lead-lag relationship

between accounting variables and returns, BE/ME is calculated based on

book common equity for the fiscal year ending in calendar year t− 1 divided

by ME at the end of December of t − 1. Thus, it is assumed that the

accounting variables are known before the returns they are used to explain.

Next, we apply a 2×3 sorting schedule and construct six intersecting port-

folios based on the two ME and the three BE/ME groups: S/L, S/M, S/H,

B/L, B/M and B/H9. For instance, the B/H contains the big-ME stocks that

have high BE/ME. Having obtained the portfolios, monthly value-weighted

returns are calculated from July of year t to June of t + 1. The portfolios

9According to FF (1993), the usage of three BE/ME and only two size groups is moti-
vated by a stronger role of the former in average stock returns.
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are rebalanced every June of t + 1. We commence with return calculations

in July of year t to ensure that book values for the year t − 1 is known.

We ensure that the portfolio returns are stationary by applying a unit root

(ADF) test, the results of which are not reported for brevity.

The return on the size portfolio SMB (small minus big) is meant to

mimic the risk factor in returns related to size. It is defined as the difference

each month between the equally-weighted return on the three small-stock

portfolios (S/L, S/M and S/H) and the three big-stock portfolios (B/L, B/M

and B/H):

SMBt =
RS/L,t +RS/M,t +RS/H,t

3
−
RB/L,t +RB/M,t +RB/H,t

3
(1)

Similarly, the return on the HML (high minus low) portfolio aims to

mimic the risk factor in returns related to book-to-market equity. It is defined

as the difference each month between the equally-weighted return on the two

high BE/ME portfolios (S/H, B/H) and the return on the two low BE/ME

portfolios (S/L, B/L)

HMLt =
RS/H,t +RB/H,t

2
−
RS/L,t +RB/L,t

2
(2)

The market factor (MRKT ) is derived by subtracting the monthly return

on 1-month Swedish treasury bills from the monthly excess market return:

MRKTt = Rm,t − rf,t (3)

The treasury bill data is obtained from the Swedish Riksbank’s website and

is deannualized prior to usage10. The return on the market portfolio is cal-

culated as the value-weighted returns of the stocks in the six size-BE/ME

portfolios, including any firms with negative BE/ME.

In a similar fashion to what has been stated previously, we form a larger

sample of test portfolios for the purpose of empirical model evaluation by

conducting further independent sortings. In the original study, Fama and

French (1993) construct 25 portfolios (5x5 sorting scheme). In several ap-

10The deannualized rate is computed as rf,t = (1 + T-bill rate)1/n − 1 assuming 252
trading days and 12 trading months.
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plications, we use this number of portfolios. However, in line with Wang

(2003), it is worthwhile to reduce the number of test portfolios in some ap-

plications as the the test otherwise becomes computationally demanding11.

Thus, reducing the number of portfolios while keeping a good representation

of the size/BE-ME patterns is worthwile. As such, we consider the following

five size-BE/ME quintile combinations in some empirical tests: SZ1/BM1,

SZ1/BM5, SZ3/BM3, SZ5/BM1 and SZ5/BM5. Table 2 presents summary

statistics of the FF-3F test portfolios and the factor returns.

Table 2:
Summary Statistics of the Fama and French Size-BE/ME Portfolios and

Factors
Panel A presents means and standard deviations of average monthly excess returns
of the 25 Fama and French (1993) Size-BE/ME portfolios. The return measures are
arithmetic rates of return, measured in percent (multiplied by 100). The sample period
is from July 1994 to December 2016. The variable SZ1 refers to the bottom quintile
(20%) firms with regard to size (market capitalization). The same logic applies to
book-to-market (book-value of equity divided by market value of equity), where BM1
through BM5 stands for the five quintiles (from low to high). Tabulated in Panel B
are summary statistics for the Fama and French (1993) three factors. For more details
on the factors and the factor mimicking portfolios, see Fama and French (1992, 1993).

Panel A: The Fama and French Size-BE/ME Portfolios
Means Standard Deviations

BM1 BM2 BM3 BM4 BM5 BM1 BM2 BM3 BM4 BM5
SZ1 0.90 1.42 1.98 0.29 0.81 12.86 11.33 15.69 9.84 8.91
SZ2 0.25 −0.30 0.27 0.45 0.19 9.04 9.01 7.50 8.43 6.60
SZ3 0.12 0.98 0.61 0.52 0.22 9.66 7.38 6.44 5.83 5.55
SZ4 −0.04 0.90 0.63 1.05 0.84 8.54 7.09 7.19 6.17 6.38
SZ5 0.77 0.78 0.88 0.94 1.40 8.57 6.51 5.65 6.34 6.95

Panel B: The Fama and French Three Factors
Variable Mean Std. dev. First auto. Cross Correlations

MKT 0.87 5.56 0.12
SMB -0.04 5.42 -0.02 -0.01
HML 0.14 5.13 0.36 -0.23 -0.42

In line with the findings of Fama and French (1992,1993), both the MKT

and HML factors earn positive returns (see Panel B of Table 2). However,

11If using 25 portfolios, the test would depend on the inverse of a 125 × 125 matrix in
several applications.
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the SMB factor is slightly negative. At odds with FF, it seems that there are

no pronounced size and BE/ME patterns in the Swedish equity market (see

Panel A of Table 2)12. This holds for the underlying six portfolios that are

used to create the factors as well (not reported for brevity). Yet, these results

are not unexpected due to a several number of reasons. First and foremost,

even the averages of the monthly U.S and European factor returns provided

by Kenneth Frenchs’s website are also negative during the corresponding and

similarly defined periods of our data sample. Second of all, various authors

demonstrate that several developed capital markets do not exhibit any size

patterns: Schrimpf et al. (2006) and Ziegler et al. (2007) even find that

there is a reversed size pattern in the German stock market. Similarly, Malin

and Veeraghavan (2004) as well as Eraslan (2013) document that the SMB

factors in the UK and the Turkish markets earn negative average returns.

Thirdly, it seems that the global economic recession that took place during

the sample period has a large bearing on the results: An exclusion of the tech

bubble (year 2000) and the financial crisis (2008) alters the factor returns a

lot. As a testimony to form Size-BE/ME portfolios that are largely free of the

return behaviour influence of each other, FF (1992) reports low correlations

between the factors. While this is successfully the case for the MKT factor,

the correlation between SMB and HML is noteworthy. Last but not least, the

spread between average excess returns for different portfolios are quite large:

the smallest excess return amounts to -0.30% while the largest is roughly 2%.

3.2 Conditioning Variables

In this paper we select a number of conditioning instruments from a larger

set of five variables that represent conditioning information. All the state

variables are standard in the conditional asset pricing literature and are col-

lected on a monthly frequency over the sample period from July 1994 to

December 2016. The first conditioning variable considered is OMXS30, the

OMX Stockholm 30 index. It is a price return index constructed with the

objective of creating a measure, which develops in close correlation with the

stocks listed on NASDAQ Stockholm. The index comprises the 30 shares

that have the largest volume of trading on NASDAQ Stockholm during a

12However, there are indications of SMB patterns and reversed value patterns in return
volatilities.
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certain period. The inclusion of an index aimed at mirroring the average

development of stocks as a conditioning variable is common practice (see

for instance Wang (2003) and Harvey (1989)). We collect the data from

Datastream, a Thomson Reuters Software Application.

The second conditioning variable is the Swedish total government debt,

TGD. Its usage is motivated by several authors having demonstrated that

sovereign budget deficits bear a close relationship with the development of

the economy (see for instance Abdullah et al. (1993)). Similarly, the trade

deficit, i.e. the balance of trade or net exports, is another instrument that

comoves with the aggregate economy (see for instance Flannery and Pro-

topapadakis (2002)). Therefore, we have included exports, EXP , in the

pool of conditioning instruments. We retrieve the data on exports and total

government debt from Statistics Sweden.

This paper also considers the industrial production index, IPI, which

is perhaps one of the most widely included variables in conditional asset

pricing models that aim to capture beta dynamics. It serves as a proxy

for aggregate business conditions in the Swedish economy and is designed

to mirror the development of Swedish industrial production. Last but not

least, the 1 month short-term interest rate, TB, represents an instrumental

variable that has gained increased attention in the literature (see for instance

Ferson and Harvey (1999)). The IPI and short-term interest rate data are

downloaded from Statistics Sweden and the Swedish Riksbank, respectively.

Summary statistics of the conditioning variables employed in this study are

tabulated in Table 3.

To test for the predictive power of our set of conditioning variables and

narrow down the number of instruments used to the largest possible extent,

we run the following regression

Ri,t+1 = a+ b′zt + εt+1 (4)

where zt = (TGDt, OMXS30t, EXPt, IPIt, TBt) is the vector of condition-

ing variables. Gross returns of the market portfolio proxy are denoted Ri,t+1.

To test the hypothesis that the coefficients on the predictive variables are

jointly equal to zero (H0 : b = 0), the Wald statistics are computed. The re-

sults show that the joint use of the three popular forecasters TGD, OMXS30

and EXP drive out the other conditioning variables in predicting the mar-
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ket. These results are excluded for brevity, but are available upon further

request. We limit the choice to these variables in applications, letting other

variables be used in robustness checks.

Table 3:
Summary Statistics of Conditioning Variables

This table presents summary statistics of monthly observations from July 1994 to
December 2016 of changes in five conditioning variables: Swedish Total Government
Debt (TGD), The return on the OMXS30 index (OMXS30), Swedish aggregate exports
(EXP), the industrial production index (IPI) and the annualized return on 1-month
treasury bills (TB). All the measures are percentages.

Conditioning variables
Variable Mean Std. dev. First auto. Cross correlations

TGD 0.07 2.25 0.004 1.000
OMXS30 0.79 5.85 0.099 −0.012 1.00

EXP 0.96 10.91 −0.206 −0.108 −0.058 1.00
IPI 2.78 2.24 0.984 0.012 −0.038 0.012 1.00
TB 0.13 2.03 −0.268 0.011 0.047 0.213 0.029 1.00
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4 Methodology

In the following section, we in detail explain the different methodologies

employed in estimating as well as evaluating both single and multi-factor

conditional asset pricing models. More specifically, we begin with presenting

a nonparametric test of conditional mean-variance efficiency for the CAPM,

whose inference methodology is constructed within the SDF framework. To

further set the stage for our methodology, we introduce a wide range of struc-

tural change tests to thoroughly examine the degree of nonlinearity. Next,

we introduce the procedure according to which statistical inference about

mispricing is made. Finally, we extend the testing procedure by considering

the conditional FF-3F model.

4.1 The Stochastic Discount Factor

All asset pricing models can be conveniently expressed through the SDF

representation. The flexibility of the SDF to present a general theory of

asset pricing is now widely recognized, due to its universality and intuitive

interpretation. Given the law of one price and the absence of any arbitrage

opportunities, each and every asset pricing model delivers a simple pricing

equation

Et[mt+1Ri,t+1] = 1 (5)

that holds for all assets i in the economy (i = 1, ..., n). In particular, Ri,t+1

denotes the gross return of asset i at time t + 1. The SDF, also known as

the pricing kernel, is denoted by mt+1 and takes a particular form depending

on different asset pricing model specifications. Given an investable riskless

asset paying a return of Rf , equation (5) can be expressed in terms of excess

returns

Et[mt+1ri,t+1] = 0 (6)

where ri,t+1 is the excess return (i.e the risk-free rate subtracted from the

gross return) on the ith of n assets.
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4.2 The Nonparametric Conditional CAPM

In what follows, we will demonstrate how the relationship between returns

and beta can be reduced into a non-parametric restriction on the stochastic

discount factor mt+1 in accordance with equation (6). With a nonparametric

expression of the SDF implied by the conditional CAPM, we have the fun-

damental base for establishing the statistical inference approach. As such,

the procedure is designed to test the model and its restriction on the SDF,

without assuming any auxiliary functional form.

In a similar fashion to the unconditional version, the conditional CAPM

states that the market portfolio is conditionally mean-variance efficient by

satisfying the following equation for t = 1, ..., N ,

E[ri,t+1|It] = E[rp,t+1|It]
cov[ri,t+1, rp,t+1|It]

var[rp,t+1|It]
(7)

where ri,t+1 is the excess return on the ith asset in excess of the risk-free

rate rf,t. Similarly, rp,t+1 denotes the excess return of the market portfolio

and Et[·|It] represents the conditional expectation given the agent’s informa-

tion set It at t. With the use of simple algebra, the well-known covariance

representation (7) can be translated into a cross-moment expression13:

E[ri,t+1|It] = E[rp,t+1|It]
E[ri,t+1rp,t+1|It]
E[r2p,t+1|It]

(8)

This formulation of the CAPM rather than the former serves as the basis for

our econometric tests14. In equation (8), the moment conditions are based

on the agent’s entire information set It, which is not directly available in a

data-set for the econometrician. As a consequence, he has to consider xt,

which is a k × 1 vector of strictly stationary conditioning or instrumental

13By multiplying both sides of the covariance representation (7) with var[rp,t+1|It], we
end up with E[ri,t+1|It]var[rp,t+1|It] = E[rp,t+1]cov[ri,t+1, rp,t+1|It]. Next, exchange both
cov[ri,t+1, rp,t+1|It] and var[rp,t+1|It] with E[ri,t+1rp,t+1|It] − E[ri,t+1|It]E[rp,t+1|It] and
E[r2p,t+1|It]− (E[rp,t+1|It])2, respectively. After removing the common term on both sides
of the equation, it is easy to see that the covariance representation implies the cross-
moment representation and vice versa.

14Wang (2003) shows that the nonparametric test based on the cross-moment represen-
tation (8) is simpler and performs better in Monte Carlo simulation than (7).
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variables such that15

E[rp,t+1|It] = E[rp,t+1|xt] (9)

E[r2p,t+1|It] = E[r2p,t+1|xt] (10)

Next, we define

gp(xt) = E[rp,t+1|xt] (11)

gpp(xt) = E[r2p,t+1|xt] (12)

b(xt) =
gp(xt)

gpp(xt)
(13)

Assuming that equations (9) and (10) hold, Jensen’s alphas (i.e. conditional

pricing errors) can be conveniently formulated as

E[ri,t+1|It]− E[rp,t+1|It]
E[ri,t+1rp,t+1|It]
E[r2p,t+1|It]

= E[mt+1ri,t+1|It] (14)

Given the cross-moment representation equation (8), it is possible to solve

for the implied SDF as

mt+1 = 1− b(xt)rp,t+1 (15)

As such, equation (8) is congruent with the SDF representation in (6)

Et[mt+1ri,t+1|It] = 0 (16)

Hence it is possible to verify that the stochastic discount factor mt+1 implied

by the conditional version of the single-factor CAPM is a function of the first

two conditional moments of the market portfolio.

15Using xt for the conditional asset pricing tests is weaker than using the full characteri-
zation of the information set It. Furthermore, note that the eqs. (9) and (10) pertain to the
market portfolio p. These equations are sufficient for the development of nonparametric
tests.
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4.2.1 Non-parametric Estimation of the Implied SDF

With a non-parametric representation of the stochastic discount factor, one

can replace it with an estimate

m̂t+1 = 1− b̂(xt)rp,t+1 (17)

where

b̂(xt) =
ĝp(xt)

ĝpp(xt)
(18)

For this task, we use a range of sophisticated non-parametric tools at our

disposal

f̂(x) =
1

Nhk

N∑
s=1

K

(
x−Xs

h

)
(19)

ĝp(x) =
1

Nhk
f̂(x)−1

N∑
s=1

K

(
x−Xs

h

)
rp,s+1 (20)

ĝpp(x) =
1

Nhk
f̂(x)−1

N∑
s=1

K

(
x−Xs

h

)
r2p,s+1 (21)

All of the nonparametric estimators above (19), (20) and (21) are widely

popular and standard. The first estimator f̂(x) is a multivariate version

of the kernel density estimator (KDE) and represents a nonparametric ap-

proach to estimate the probability density function of a random variable.

It is also known as the Rosenblatt-Parzen estimator (1962) and has kernel

function K(·) and bandwidth parameter h. In general, but not in our case

(as explained in Appendix D), the choice of h is the most important factor

affecting the accuracy of the KDE, since it governs the orientation and degree

of smoothing induced by its user. The reader should be aware of the wide

range of different bandwidth operators available and that optimal bandwidth

selection still remains a topic subject to debate in the econometric literature.

The estimator ĝp(x) and ĝpp(x) is a multivariate kernel regression esti-

mator, known as the Nadaraya-Watson kernel estimator (1964). It makes

use of the KDE (19) as a weighting function. While (19) and (20) are linear

smoothers, the estimator does not imply a linear regression. Rather, the

objective is to let the data speak for itself by potentially revealing any non-

linear relationships. This helps us bring to light the underlying structure of

21



the regression data when estimating conditional expected returns. As such,

nonparametric methods not imposing any stringent parametric assumptions

on the underlying probability of the model associated with the data generat-

ing process have the ability to expose the dynamic structure of data, which

would be completely missed by usual parametric methods. Put differently:

Given that an assumed parametric model is not appropriate, the erroneous

statistical inference associated with it can lead to seriously misleading inter-

pretations of empirical results. However, nonparametric methods are com-

putationally complex. Moreover, it is crucial to ensure that samples are of

satisfactory size, since the motivation of nonparametric methods typically

rely on asymptotic distribution theory. As such, ensuring good statistical

power in finite sample applications is essential. This can be challenging,

since the perhaps most prominent issue faced by nonparametric estimators

is the rate at which they converge; typically, the convergence rate is signifi-

cantly slower compared to parametric estimators. This problem is called the

”curse of dimensionality” and is in depth discussed by Silvermann (1986),

Pritsker (1998) as well as Chapman and Pearson (2000). In the following

sections, we demonstrate how the design of Wang’s nonparametric (2003)

test successfully addresses and largely eliminates any of these issues.

While the conditional CAPM does not imply a fully specified parametric

SDF, it is congruent with an SDF of particular structure: The SDF here is

not necessarily positive. This does neither imply any arbitrage opportunities,

nor the violation of the law of one price, because there is at least one strictly

positive SDF of the CAPM in a discrete time finite asset setting, as discussed

by Dybvig and Ingersoll (1982). Furthermore, statisticians have raised the

issue that a positive SDF is troublesome in the design of empirical tests,

simultaneously as the imposition of such a restriction does not necessarily

lead to any distinct advantages in econometric analysis. Hence, this strict

specification is often relaxed in tests of asset pricing models (see for example

Cochrane (1996)).

4.2.2 Nonlinearity Tests

As a rationale for our nonparametric tests, we begin with investigating the

degree of significance of nonlinearity extensively. First, we turn to the sug-

gestiveness of nonparametric conditional beta plots. Then, we inspect the
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presence of nonlinearity by conducting parameter instability and structural

change tests by applying the supF test suggested by Andrews (1993) as well

as Andrews and Ploberger (1994). To further set the stage for our tests,

we compare cross-sectional forecasts generated by the nonparametric SDF

versus those implied from an SDF based on linear conditional moments.

A. SupF Test for Structural Change and Parameter Stability

The supF test is described in Appendix B. The testing approach is based on

the following standard linear regression model for all test assets (i = 1, ..., n)

across each period (t = 1, ..., N)

ri,t = rp,tβi,t + ui,t (22)

where rp,t denotes the time-series vector of excess returns on the market

portfolio, βi,t represents the regression coefficient and ri,t is the excess return

on the test portfolios. To test for any structural changes across any potential

change points, one can compute a series of F statistic estimates based on

the linear regression model fit. As a next step, these are aggregated into a

single test statistic, the supF , which can reveal any nonlinear relationships

between conditional betas and excess returns on the assets.

B. Cross-sectional Forecasts

First, the sample is split into two parts of equal lengths, where τ denotes the

time points in the second half of the sample. Making use of data up to τ −1,

we estimate the SDF

mt = 1− gp(xt−1)

gpp(xt−1)
rp,t (23)

where gp(xt−1) = E(rp,t|xt−1), gpp(xt−1) = E(r2p,t|xt−1) and rp is the excess

market return. We first use linear and then nonparametric regressions to

estimate the conditional moments gp and gpp. After computing a parametric

and nonparametric SDF, we compare performances, i.e. average pricing er-

rors, of the one-step ahead forecasts generated by the different SDFs. These

are computed as in Cochrane (2009). The average forecast error of an SDF

m̂τ for the ith asset is
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1
N−N0

N∑
τ=N0+1

m̂τri,τ

1
N−N0

N∑
τ=N0+1

m̂τ

(24)

where N0 is the last observation in the first half of the data sample.

4.3 Empirical Evaluation of Mispricing

The statistical inference about the degree of mispricing builds upon the no-

tion that conditionally discounted excess returns implied by the nonparamet-

ric SDF follow

E[ei,t+1|It] = 0 (25)

where ei,t+1 = mt+1ri,t+1. Since ei,t+1 is not predictable by conditioning

information It, a simple way of testing is by running a weighted least squares

regression (hereafter WLS regression)

ei,t+1 = z′tδi + ui,t+1 (26)

where zt is a q×1 vector of instrumental variables observed in the information

set It
16. As standard practice and an implication of (25), E[ui,t+1|It] = 0

for all i = 1, 2..., n. Intuitively, the regression coefficients are expected to be

zero as a manifestation of the moment condition (16). Put differently: δ = 0,

where δN = (δ′1δ
′
2...δ

′
n)′.

For econometric evaluation of pricing errors, we nonparametically esti-

mate the SDF m̂t+1 according to (17) and then derive the parameter vector

of coefficients δi for all i = 1, ..., n.

δ̂i =

(
1

N

N∑
t=1

ŵtztz
′
t

)−1(
1

N

N∑
t=1

ŵtztêi,t+1

)
(27)

The weighting function is ŵt = f̂(xt)ĝpp(xt), the choice of which is moti-

vated purely by the technicality to establish the large sample theory. In

16The reader should be made aware that with a one period lag behind mt+1, zt can be
whichever vector included in the information set It. The choice of zt = xt is a natural
choice in several testing approaches.
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other words, 1
N

N∑
t=1

ŵtztz
′
t and 1

N

N∑
t=1

ŵtztêi,t+1 can be expressed as seconder-

order generalized U-statistics, enabling empirical investigation of large sam-

ple properties of δ̂i. If the weighting functions do not resemble U-statistics,

the econometrician faces complex issues in developing the distribution the-

ory17. The weighting function employed in (27) represents the easiest of those

implying U-statistics structures. Based on the comfortability of this partic-

ular weighting function, Robinson (1989) and Powell et al. (1989) among

others apply density weighting in their empirical studies as well.

The test, according to which we make statistical inference, is based on

the WLS estimator δ̂N in equation (27) above

δ̂N = (δ′1δ
′
2...δ

′
n)′ (28)

The WLS estimator gives the test a simple and nice interpretation: In case of

conditional mean-variance efficiency of the market portfolio p, the estimator

δ̂N converges to zero. If mean-variance efficiency is violated, the estimator

rather converges to a non-zero limit (unless ei,t+1 is orthogonal to the com-

ponents in zt for all i). Naturally, one can test whether the distance of the

estimator is zero and thus quantify the degree of mispricing by using asymp-

totic distribution theory to look into sampling errors. Furthermore, the test

is designed to spot any time series variation in pricing errors: since a sig-

nificant component of the estimator δN indicates that returns are correlated

with the corresponding predictive variables, the test implies a view upon the

time-variation of mispricing. This is clearly demonstrated if the user applies

(26) to model pricing errors, letting z′tδi proxy for E[ei,t|It], the conditional

pricing errors from equation (8).

The test developed by Wang (2002, 2003) has very appealing statistical

properties that successfully address and circumvent the otherwise prominent

drawbacks of nonparametric methods. The estimator δ̂N demonstrates char-

acteristics of its parametric counterpart by exhibiting the fast parametric

convergence rate (
√
N convergence rate), no matter how many conditioning

variables are used. This is implied by a statistical fact that the average of

slowly converging nonparametric kernel density estimates can lead to para-

metric convergence rates (More on this fact in Hardle and Stoker (1989),

17We choose not to set ŵt = 1, since it does not imply U -statistic structures.
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Powell et al. (1989), Robinson (1989) and Lee (1992))18. Given this desirable

feature, the test may result in good power in statistical settings. Further-

more, if h→ 0, Nh2k →∞ and Nh2k+2 → 0, the WLS estimator δ̂N is such

that
√
N(δ̂N − δ) has limiting multivariate normal distribution with mean 0

and variance-covariance matrix Ω. Using a consistent estimator Ω̂N of the

variance-covariance matrix, the following test statistic is proposed by Wang

(2002)

Tδ = Nδ̂′N Ω̂−1N δ̂N (29)

The test statistic can be shown to have a limiting chi-squared distribution

with qn degrees of freedom given that the conditional CAPM holds. Un-

derstanding the desirable features of the test is of crucial importance in

motivating the methodology employed in this study. Therefore, derivations

of proofs and detailed test mechanics as brought forward in Wang (2002) are

presented in Appendix A. In particular, the reader can find details on the

asymptotic variance-covariance matrix Ω and the test statistic calculation

under the Appendix A.3 Section given the notation in A.2.

4.3.1 Estimation and Measurement of Pricing Errors

In applications, we have to estimate the conditional Jensen’s alphas (i.e.

pricing errors) related to Et(ri,t+1) for all t = 1, ..., N across all test assets

i = 1, ..., n. Letting εi,t represent the pricing error series, we run

ε̂i,t = z′tδ̂i (30)

where the vector of regressors is zt = (1tx
′
t)
′ and the WLS δ̂i is defined in (27).

Then, we use three summary measures to evaluate the degree of mispricing.

The first is the average absolute bias (AAB), which simply measures the

average pricing error or bias of the model. The second is the average standard

deviation (ASD) and is aimed at the volatility of the pricing errors. The third

is the average root mean squared error (ARMSE), which represents a measure

that accounts for both bias and volatility of the conditional alphas. These

measures are used to evaluate the cross-sectional degree of mispricing of the

18Wang(2002) even finds that the nonparametric tests have better power than the stan-
dard GMM approach.
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n pricing errors series as follows

AAB =
1

n

n∑
i=1

|Bi| (31)

ASD =
1

n

n∑
i=1

SDi (32)

ARMSE =
1

n

n∑
i=1

RMSEi (33)

whereBi, SDi andRMSEi are the sample mean, standard deviation and root

mean squared error of the pricing error series εi,1, εi,2, ..., εi,N , respectively.

4.4 The Nonparametric Conditional FF-3F Model

This subsection aims to describe an application of multi-factor extensions,

which is used to estimate and evaluate the conditional FF-3F model. Specif-

ically, no parametric assumptions about excess returns on the benchmark

portfolio p are made. Given a parameter vector θ, we investigate the follow-

ing case:

The Conditional FF-3F: θk,t are nonparametric for k factors

To the best of our knowledge, this version of the FF-3F model is the most

general ever considered in the Swedish asset pricing literature19. The hy-

pothesis of mean-variance efficiency implied by the conditional FF-3F model

with nonparametric excess returns can be expressed

rp,t+1 = MKTt+1 + θ1,tSMBt+1 + θ2,tHMLt+1 (34)

where the proportions of the size and book-to-market portfolios in the bench-

mark are not fixed constants, but instead are time-varying. This approach

allows us to test the hypothesis in absence of any functional form restric-

tions. Furthermore, both the l × 1 parameter vectors θ1,t and θ2,t are fully

19By publication of his article, Wang (2003) made the claim that ”The three-factor
model in such a general form has never been examined in the literature”.
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nonparametric for time (t + 1) excess returns. This is clearly emphasised

by the definition (34), where the dependent variable is formulated as rp,t+1

rather than rp,t+1(θ).

Given that the benchmark portfolio is conditionally mean-variance effi-

cient, the conditional FF-3F is congruent with a SDF of the following type20

mt+1 = 1− b0,tMKTt+1 − b1,tSMBt+1 − b2,tHMLt+1 (35)

As such, the econometrician can solve for the coefficients b0,t, b1,t and b2,t
by imposing the following system of pricing equations, where it is implicitly

assumed that the SDF prices the three factors correctly.

Et[mt+1MKTt+1] = 0 (36)

Et[mt+1SMBt+1] = 0 (37)

Et[mt+1HMLt+1] = 0 (38)

This SDF fully conforms with that of the beta-pricing equation. The above

equations can conveniently be expressed in the set of equations with matrix

notation

Atbt = ct (39)

where

At =

 Et[MKT 2
t+1] Et[MKTt+1SMBt+1] Et[MKTt+1HMLt+1]

Et[MKTt+1SMBt+1] Et[SMB2
t+1] Et[SMBt+1HMLt+1]

Et[MKTt+1HMLt+1] Et[SMBt+1HMLt+1] Et[HML2
t+1]


(40)

and bt = [b0,t, b1,t, b2,t]
′ and ct = [Et[MKTt+1], Et[SMBt+1], Et[HMLt+1]]

′.

Next, we replace the SDF in (35) with

m̂t+1 = 1− b̂0,tMKTt+1 − b̂1,tSMBt+1 − b̂2,tHMLt+1 (41)

20To demonstrate this, one can start with the basic idea of the SDF (i.e.
Et[mt+1ri,t+1] = 0) and then show that Et(ri,t+1) is a linear function of the conditional be-
tas with the three factors. The reader is directed to Cochrane (2001) for more information
on general equivalence pertaining to beta representations and the SDF.
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where b̂t = Â−1t ĉt and Ât as well as ĉt are derived by replacing At and ct with

each element using the kernel density estimate in the previously outlined

equations (20) and (21) above. As an example: to obtain the kernel estimate

for Et[MKTt+1HMLt+1], just replace rp,s+1 with MKTt+1HMLt+1 in (20).

Given the estimates of the SDF, we reiterate the aforementioned process

in the section above to derive the test statistic

Tδ = Nδ̂′N Ω̂−1N δ̂N (42)

To investigate the pricing power of the conditional multifactor FF-3F model,

we implement the Politis and Romano (1994) stationary bootstrap, the tech-

nicalities of which are more in detail explained in Appendix C. In general,

there are several block bootstrap methods available for the econometrician.

The specific methodology by Politis and Romano (1994) makes use of over-

lapping blocks with lengths that are randomly sampled from the geometric

distribution. The procedure is well suited for stationary and weakly depen-

dent data. In brief, the stationary bootstrap is characterised by dividing

the data into different blocks with random resampling of the blocks with

replacement. A significant advantage with randomized block lengths is the

implied stationarity, which is not necessarily obtained when using blocks

with fixed lengths. In our case, we resample the data and get a number of

Nb bootstrapped values of δ̂N , which are referred to as δ̂∗N,j with j denoting

the indexes pertaining to Nb. Then, we derive the following test statistic

T ∗δ,j = N(δ̂∗N,j − δ̂N)′(Ω̂∗N,j)
−1(δ̂∗N,j − δ̂N) (43)

Intuitively, the statistical inference is based on comparing the T ∗δ,j quantiles

with Tδ. More specifically, making use of T ∗δ,j for j = 1, ..., Nb, we approximate

the distribution of N(δ̂N − δ)′Ω̂−1N (δ̂N − δ), which is the statistic Tδ under

the H0 that the weighted least squares estimator δ is zero. This approach

avoids any auxiliary functional form assumptions21. Furthermore, by using a

time series bootstrap method it is possible to avoid the limiting distribution

theory.

21Given this methodology, the econometrician circumvents several technicalities pertain-
ing to asymptotic results for the FF-3F model. More specifically, the econometrician has
to cope with generalized U-statistics of order k + 1 for a conditional k factor model.
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5 Empirical Results

In this section, we present and thoroughly analyse the empirical results.

First, we describe the evidence on nonlinearity and its implications for a

nonparametric SDF. As a next step, we turn to the investigation of the con-

ditional CAPM and discuss its empirical performance on both a stand-alone

basis and when compared to its unconditional counterpart. In a similar fash-

ion, we proceed with the dynamic version of the FF-3F. In Appendix E, we

elaborate on the robustness of the empirical results under several method-

ological re-specifications.

5.1 Evidence for Nonlinearity

We first present some graphical evidence on nonlinearity to motivate the us-

age of a nonparametric SDF in empirical asset pricing. To do so, we estimate

conditional betas of the Fama and French (1993) size-BE/ME portfolios with

respect to the MKT, SMB and HML factors, respectively. Figure 1 plots the

betas of the SZ5/BM5 portfolio. That is to say, the portfolio that contains

the top 5 quintile book-to-market value and size firms. For conciseness, we

merely report the results for this portfolio, as patterns and empirical conclu-

sions about nonlinearity remain qualitatively robust to the choice of portfolio.

Conditional betas are computed by the aforementioned standard kernel re-

gression estimates (19), (20) and (21) of the first two conditional moments of

returns. The bounds represent the 95% confidence intervals. Furthermore,

to cope with any shortcomings of nonparametric methodologies, we focus on

univariate functions, i.e. the relationships between one instrumental variable

and conditional betas, while keeping the other conditioning variables con-

stant at their averages. By this practice, we successfully focus on areas with

more data points and also avoid the statistical curse of dimensionality.

Several cases in Figure 1 strongly suggest the inappropriateness of as-

suming linear relationships, implying that a nonparametric SDF is fruitful

in empirical analysis. In particular, the MKT factor beta seems to be highly

nonlinear in TGD, while the SMB and HML factors betas demonstrate strong

deviations from linearity with respect to OMXS30. On the other hand, one

could argue that the factor beta functions can be well approximated with

a linear function when examining EXP as a conditioning variable. In sum,
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the conditional beta plots reflect the presence of nonlinearity. These find-

ings reinforce the well established critique against assuming convenient linear

specifications without any prior investigation of its empirical adequacy. The

results in Figure 1 are expected, as there is only little theoretical guidance

about how betas should vary with conditioning variables. By investigating

the Swedish equity market, we augment previous findings by providing a first

out-of-country sample check.

Even though the results reported in Figure 1 suffice in motivating a non-

linear pricing kernel in Swedish asset pricing, some beta estimates are too

noisy in light of their respective confidence intervals. To complement and

verify the results obtained this far, we turn to more sophisticated statistical

tools.

A. SupF Test for Parameter Stability and Structural Change

Panel A in Table 4 reports the results from performing the SupF test for

parameter stability and structural change. We find that the test leads to a

rejection of linearity for most of the portfolios with a varying degree of signifi-

cance. Most rejections either occur at the 5% or 1% significance level. In line

with Wang (2003), our tests lead to strong rejections of linearity between con-

ditional betas and variables that represent conditioning information. These

findings lend further support to the notion that linear modelling assumptions

do not suffice in explaining the dynamic behaviour of returns in the Swedish

market.

B. Cross-sectional Forecasts

Given the strong evidence that a nonparametric SDF can yield significant

benefits in empirical analysis, we proceed our investigation by challenging

the cross-sectional forecasts generated by a parametric SDF with those gen-

erated by a SDF based on nonlinear moments. Panel B in Table 4 presents

the average pricing errors of the one-step ahead forecasts of the two SDFs for

each portfolio. For the 25 size-BE/ME portfolios, the nonparametric SDF

proves to have superior forecasting power than its parametric counterpart in

slightly more than half of the cases with the margin of outperformance be-

ing significant for many portfolios. In particular, it proves to be significantly
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Figure 1: Plots of Conditional Betas

This figure reports the estimated beta functions. The solid lines represent univariate
beta function estimates for the relation between the beta and a single instrumental
variable, holding other instrumental variables fixed at their respective averages. High-
lighted areas represent 95% confidence intervals. The multivariate beta function is
obtained from the standard kernel regression estimates (19) (20) and (21) of the first
two conditional moments of the market return. The plot is constructed as follows:
The horizontal axis corresponds to the interval for the conditioning instrument and
ranges from two standard deviation shocks below and above the mean, respectively.
The intervals are rescaled to a range from 0 to 200, where the value 100 serves as the
location of the mean.
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better for all the SZ5/BM combinations, and almost across all SZ/BM2 com-

binations. Furthermore, when comparing the cross-sectional forecasts, it is

interesting to conclude that the SDFs predict pricing errors with different

signs for about 10 of the portfolios. In sum, the results brought forward this

far strongly evidence that nonlinearity in the first two conditional moments

of the market return is important and that a nonlinear pricing kernel that

captures this feature is valuable.
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Table 4:
Tests for Nonlinearity

This table presents the results from two approaches for examining the significance
of nonlinearity. Panel A tabulates the result from the supF method suggested by
Andrews (1993) as well as Andrews and Ploberger (1994) to test for structural breaks.
The testing procedure is more in detail described in Appendix B. To examine the
suitability of linearity, the test is aimed at the following simple linear regression model:

ri,t = rp,tβi,t + ui,t (44)

where rp,t is the time-series vector of excess returns on the market portfolio. Further-
more, βi,t represents the regression coefficient and ri,t is the excess returns on the test
portfolios. We use the five Fama and French (1993) size-BE/ME portfolios SZ1/BM1,
SZ1/BM5, SZ3/BM3, SZ5/BM1 and SZ5/BM5 as tests assets. The sampling period
is from July 1994 to December 2016. Significance levels for statistical rejections of lin-
earity between conditional betas and market returns at the ten percent level appear in
the table with a single ∗, at five percent with∗∗, and at one percent with ∗∗∗. Panel B
shows the output related to the cross-sectional forecasts generated by a nonparametric
and parametric SDF. Reported are the average forecast errors, i.e. pricing errors, of
the one-step ahead forecasts pertaining to the SDFs. Here, all the 25 size-BE/ME
portfolios serve as test assets.

Panel A: Suprenum F Test Results for Structural Change
BM1 BM2 BM3 BM4 BM5

SZ1 10.12*** 18.50*** 33.78*** 10.14*** 16.52***
SZ2 17.84*** 17.59*** 29.63*** 14.76*** 28.59***
SZ3 18.90*** 20.87*** 14.32*** 17.48*** 13.04***
SZ4 22.34*** 12.41*** 16.23*** 20.31*** 16.86***
SZ5 52.39*** 14.67*** 22.10*** 19.15*** 21.84***

Panel B: Cross-Sectional Forecasts for Fama and French (1993) Test Portfolios
Nonparametric SDF Parametric SDF

BM1 BM2 BM3 BM4 BM5 BM1 BM2 BM3 BM4 BM5
SZ1 −1.28 0.49 −1.65 −3.40 −1.81 0.29 1.08 2.19 −0.81 0.42
SZ2 0.42 0.16 −0.31 0.55 −0.53 −0.29 −0.80 0.00 0.05 -0.49
SZ3 −0.08 1.01 −1.01 0.39 −0.39 −0.73 0.20 −0.20 −0.26 -0.84
SZ4 0.92 −0.27 0.87 0.12 −1.71 −0.33 0.58 0.26 0.39 0.08
SZ5 0.27 0.14 −0.53 0.60 0.21 0.74 1.03 1.18 1.28 1.35
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5.2 The Nonparametric Conditional CAPM

Having motivated the usage of a nonparametric SDF in asset pricing with

conditioning information for the Swedish equity market, we turn to investi-

gating the conditional CAPM. The results reported are based on the previ-

ously motivated conditioning variables: TGD, OMXS30 and EXP. To verify

the robustness of the empirical results, we have conducted a series of sensi-

tivity analyses. The measures taken are further described in Appendix E. In

Appendix E, any limitations pertaining to the study are also acknowledged

and discussed. To a large extent, the empirical findings remain qualitatively

robust to a wide range of model re-specifications. The output from the ro-

bustness checks are excluded in this paper for brevity but are available upon

further request.

Table 5 reports the output for the conditional CAPM. Panel A shows

that conditional mean-variance efficiency is statistically rejected at the 10%

significance level (p-value 0.081). However, all individual regressors includ-

ing the intercept are statistically insignificant when viewed separately. In

particular, OMXS30 produces a low test statistic with a corresponding high

0.94 p-value.

Moving to the output from running WLS regressions, it is possible to look

further into the time-varying mispricing. Because of the specification that

the three regressors are the demeaned conditioning variables, the intercepts

reflect average pricing errors22. In view of this, Panel B shows that the

conditional CAPM seems to price average returns very well: The intercepts

or pricing errors are statistically insignificant. Furthermore, average pricing

errors are in the range of -0.25 to -0.01% and are small in economic terms.

When examining the factor loadings in more detail, it is possible to con-

clude that the magnitudes are very small. In particular, OMXS30 exhibits

the smallest coefficients. In absolute terms, the loadings on OMXS30 and

EXP are always smaller than those on TGD. The same pattern holds for

the standard errors of the regression coefficients as well. Interestingly, TGD

22By letting the regressors be the conditioning variables minus their corresponding av-
erages, neither is the estimation and inference about slopes on time-varying regressors
affected, nor is the joint statistic and pricing errors. With regard to the intercepts, statis-
tical inference is affected. Statistically we do not pay attention to any potential estimation
noise in the sample means of the regressors. This is statistically equivalent to assuming
that the regressors are computed in deviation form.
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Table 5:
Investigating the Conditional CAPM,

This table provides results from testing the conditional CAPM. Panel A provides test
statistics for both individual regressors and a joint test, in which all regressors are
considered. The regressor vector is zt(1x

′
t)
′ in the tests and the vector of condition-

ing variables is xt = (TGDt, OMXS30t, EXPt). In order to investigate whether
Hδ = 0, where H denotes a n × qn matrix, the test statistic is constructed as
N(Hδ̂N )′(HΩ̂NH

′)−1(Hδ̂N ). It has a limiting χ2(n) distribution. The p-value rep-
resents the probability that a draw from the chi-squared distribution exceeds the test
statistic. Panel B tabulates the coefficient estimates obtained from the WLS regression
method explained in Section 4.3. Standard errors appear in parentheses. In both pan-
els, the variable regressors are the demeaned conditioning variables. The following five
size/BE-ME portfolios are considered as test assets: SZ1/BM1, SZ1/BM5, SZ3/BM3,
SZ5/BM1, SZ5/BM5. The sample period is from July 1994 to December 2016.

Panel A: Significance Tests of Regressors
Output Joint Test Individual Regressors

Intercept TGD OMXS30 EXP
Test stat 9.811 5.49 3.46 1.28 3.35
p-value 0.081 0.36 0.63 0.94 0.65

Panel B: The Weighted Least Squares Regression Estimates
Test Portfolios Intercept TGD OMXS30 EXP
SZ1/BM1 -0.247 (0.135) -0.129 (0.122) -0.001 (0.019) -0.018 (0.012)
SZ1/BM5 -0.021 (0.049) -0.028 (0.045) -0.002 (0.007) -0.003 (0.004)
SZ3/BM3 -0.149 (0.077) -0.036 (0.070) -0.002 (0.011) -0.000 (0.007)
SZ5/BM1 -0.160 (0.069) -0.033 (0.063) -0.000 (0.001) -0.001 (0.006)
SZ5/BM5 -0.011 (0.068) -0.050 (0.061) -0.001 (0.001) -0.001 (0.006)

enters with a negative sign in most cases, suggesting a negative correlation

pattern with pricing errors.

Next, we challenge the nonparametric version of the conditional CAPM

against the parametric CAPM to evaluate whether any distinct payoffs are

to be made by studying asset pricing models with conditioning information.

Table 6 reports conditional pricing errors and the associated standard devi-

ations.

The empirical results are striking! The conditional CAPM strongly out-

performs its unconditional counterpart and the margin is substantial. More

specifically, the volatility of the pricing errors are significantly lower for each

and every test portfolio. Furthermore, the nonparametric CAPM outper-

forms the unconditional version for 20 out of the 25 size-BE/ME portfolios
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when investigating average pricing errors. The results are largely consistent

with those of Wang (2003)23. When examining conditional alphas more in

detail, it is interesting to note two things. First and foremost, they are

economically small. In detail, the nonparametric CAPM generates standard

errors and pricing errors who are in the range between 0.34 to 0.02% and -0.33

to 0.16 %, respectively. Second, all the pricing errors are negative except for

two portfolios, implying that the conditional CAPM seems to systematically

underestimate returns to some small extent.

Ghyssels (1998) claims that if the econometrician correctly captures the

time-varying behaviour of risk premia, dynamic beta models are much likely

to be superior than static models. However, the author points out that

beta risk can be severely misspecified by the imposition of functional form

restrictions, which can lead to devastating empirical consequences when in-

vestigating conditional asset pricing models. In line with this, our empirical

findings evidence that a nonparametric version of the conditional CAPM

works well and offers a large improvement over the unconditional CAPM. In

other words, a nonparametric SDF can bring significant value in the study

of conditional asset pricing models.

23Wang (2003) statistically rejects the conditional CAPM at the 1 % significance level.
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Table 6:
The Conditional CAPM versus the Unconditional CAPM

This table presents and plots means and standard deviations of estimated pricing errors of the conditional and unconditional CAPM for the 25 Fama and
French (1993) size-BE/ME test portfolios. The pricing errors for the conditional CAPM are estimated in accordance with the WLS regression approach
described in Section 4.3. The same method applies for the unconditional CAPM as well, where the SDF is mt = 1 − b0MKTt. Panel A tabulates the
estimates, while Panel B and Panel C plots the estimates.

Panel A: Pricing Errors
The Conditional CAPM The Unconditional CAPM

Average Std. Dev Average Std. Dev

BM1 BM2 BM3 BM4 BM5 BM1 BM2 BM3 BM4 BM5 BM1 BM2 BM3 BM4 BM5 BM1 BM2 BM3 BM4 BM5

SZ1 -0.27 -0.04 -0.33 -0.31 -0.16 -0.35 -0.09 -0.09 -0.21 -0.07 -0.17 -0.72 -0.98 -0.36 -0.30 -0.74 -0.64 -0.88 -0.55 -0.51
SZ2 -0.04 -0.07 -0.16 -0.05 -0.07 -0.08 -0.05 -0.25 -0.25 -0.02 -0.44 -1.05 -0.41 -0.24 -0.47 --0.49 -0.47 -0.38 -0.44 -0.31
SZ3 -0.01 -0.02 -0.15 -0.05 -0.11 -0.13 -0.21 -0.08 -0.12 -0.12 -0.83 -0.22 -0.09 -0.04 -0.26 -0.46 -0.34 -0.29 -0.29 -0.29
SZ4 -0.17 -0.08 -0.05 -0.01 -0.19 -0.04 -0.21 -0.08 -0.12 -0.08 -1.02 -0.01 -0.17 -0.32 -0.19 -0.36 -0.25 -0.31 -0.25 -0.30
SZ5 -0.03 -0.06 -0.09 -0.04 -0.01 -0.07 -0.10 -0.10 -0.07 -0.11 -0.34 -0.01 -0.13 -0.23 -0.61 -0.30 -0.25 -0.18 -0.27 -0.30
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5.3 The Nonparametric Conditional FF-3F Model

Next, we consider the most general version of the FF-3F Model examined in

the Swedish equity market. As aforementioned, we investigate conditional

mean-variance efficiency of the benchmark portfolio p with period (t + 1)

excess returns for the following specification

rp,t+1 = MKTt+1 + θ1,tSMBt+1 + θ2,tHMLt+1

where the three factors reflect the excess returns on the market portfolio and

the factor mimicking portfolios for the size and value portfolios, respectively.

In this case, the model is cast in its most general form, without the imposition

of any parametric assumptions about the parameter vectors θ1,t and θ2,t.

Table 8 reports the FF-3F test output.

As a testimony of the empirical success, the nonparametric FF-3F is not

statistically rejected by the stationary bootstrap, which generates a p-value

of 34%. Even more importantly, the conditional FF-3F proves to capture

the most dispersion in the pricing errors of the conditional CAPM. Across

all the three measures, the conditional FF-3F reduces the pricing errors with

more than 80 %! More specifically, AAB and ARMSE are reduced by 83%,

followed by 82% for ASD. Furthermore, all the pricing error measures are

economically small. The empirical findings are in line with those of Wang

(2002). Yet, the pricing error measures are significantly lower for the Swedish

equity market, in some cases about half the magnitude when compared to

Wang’s (2003) investigation of the U.S equity market.

The empirical findings indeed show that the SMB and HML factors sig-

nificantly can lead to improved model performance. To summarize, the fully

nonparametric version of the FF-3F model serves as a prominent contribution

to the Swedish asset pricing literature.

To wrap up, our empirical findings strongly and consistently suggest that

nonlinearity in the first and second moment of the market return is crucially

important. If accounted for correctly, significant payoffs in the study of con-

ditional asset pricing models can be generated. For this purpose, a nonpara-

metric SDF is a solution that provides significant value. Furthermore, the

results that the nonparametric versions of the conditional CAPM and FF-3F

exhibit strong performance contrast several conclusions generated by models
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that assume linear relationships. Taken together, this implies that functional

form mispecifications of betas, risk premia and the SDF can drastically shape

empirical results.

Table 8:
Investigating the Conditional Fama and French (1993) Three Factor Model

This table shows the results obtained when testing the fully nonparametric conditional
Fama and French (1993) model. The following model is hypothesised to be condition-
ally mean-variance efficient for (t+ 1) excess returns

MKTt+1 + θ1,tSMBt+1 + θ2,tHMLt+1

In other words, θ1,t and θ2,t are fully non-parametric. MKTt+1 is the excess re-
turns of the market portfolio and SMBt+1 as well as HMLt+1 are the returns on
the factor mimicking portfolios of the size and value factors, respectively. The regres-
sor vector amounts to zt(1x

′
t)
′ in the tests and the vector of conditioning variables is

xt = (TGDt, OMXS30t, EXPt). The test portfolios are the following 5 Fama and
French (1993) size-BE/ME portfolios combinations: SZ1/BM1, SZ1/BM5, SZ3/BM3,
SZ5/BM1 and SZ5/BM5. The sample period is from January 1994 to December 2016.
The p-value is the probability that a draw from the χ2(n)-distribution exceeds the test
statistic. Additionally, the table tabulates the degree of mispricing as indicated by the
three pricing error measures described in Section 4.3. The pricing errors are calcu-
lated according to the WLS regression method for all the 25 Fama and French (1993)
size-BE/ME portfolios. AAB represents the average absolute bias, whereas ASD is the
average standard deviation and ARMSE is the average root mean squared error.

Test output and Pricing Error Measures
Test statistic p-value AAB ASD ARMSE

Conditional FF-3F Model

θ1,t & θ2,t nonparametric 8.51 0.340 0.018 0.022 0.030

Conditional CAPM

θ1,t = θ2,t = 0 9.81 0.081 0.104 0.124 0.175
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6 Conclusion and Future Research

The main objective of this study is to be the very first in introducing a

nonparametric SDF in asset pricing with conditioning information for the

Swedish equity market. For this purpose, we conduct asset pricing tests

based on the nonparametric methodology proposed by Wang (2002, 2003),

which completely avoids functional form mispecifications of beta dynamics,

risk premia and the SDF. As a result, this paper provides a unique view about

the empirical performance of conditional asset pricing models in Sweden. In

particular, this paper examines the most general versions of the conditional

FF-3F and CAPM in Sweden to date.

With a strong flood of negative empirical documentations on uncondi-

tional model performance, several studies have argued that the ignorance

of time-variability of betas and their associated asset pricing implications

serve as important sources in explaining poor model performance. Ghyssels

(1998) and Wang (2003) among others have emphasized that once beta risk

dynamics are correctly specified, conditional asset pricing models are sure to

outperform their unconditional counterparts. Yet, several dynamic specifica-

tions of asset pricing models have failed miserably with this task. As such,

many authors argue that this failure of conditional asset pricing models to

capture the dynamic nature of returns is due to convenient but econometri-

cally harmful modeling assumptions. In line with this, we use sophisticated

econometric techniques and extensively show that linear approximations of

beta functions are empirically inappropriate. Rather, our empirical results

strongly reflect the presence of nonlinearity in the first two conditional mo-

ments of the market return. This is expected, as there is no theoretical reason

to expect betas to be linear.

The investigation of a nonparametric version of the conditional CAPM

yields strongly positive conclusions. More specifically, the empirical anal-

ysis shows that intercepts, or average pricing errors, are insignificant and

economically quite small. In other words, the conditional CAPM seems to

price stocks well. When challenged against its unconditional counterpart,

the dynamic version based on nonlinear moments offers clearly significant

improvement: For all size-BE/ME test portfolios, the standard deviations of

conditional alphas are distinctly lower for the nonparametric CAPM. Sim-
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ilarly, average pricing errors are significantly reduced across almost all test

portfolios. While the conditional CAPM proves to be economically signifi-

cant, it is statistically rejected at the 10 % level.

The nonparametric version of the conditional FF-3F serves as the most

general asset pricing model of its kind ever considered in the Swedish equity

market. It proves to be very successful in explaining the dynamic behaviour of

equity returns in Sweden. More specifically, it captures the most prominent

deviations of the conditional CAPM, with pricing error reductions in the

range of 80 %! Furthermore, conditional alphas are economically small. This

shows that the joint usage of the size and book-to-market factor is fruitful in

empirical analysis.

Taken together, this study strongly reinforces the findings that nonlinear-

ity in the first and second moment of the market return is a highly important

consideration to account for in dynamic asset pricing model specifications for

the Swedish equity market. In particular, we demonstrate that a nonpara-

metric SDF is a solution that can bring valuable benefits. Last but not least,

by being the first out-of-country sample test, we extend previous findings

showing that functional form specifications of beta dynamics can shape and

have a bearing impact on empirical results.

With these results, we hope to attract more practitioners to engage in

the conditional asset pricing field in Sweden. Dynamic model specifications

achieved through flexible nonparametric methodologies could provide an in-

teresting link to other asset pricing areas by bringing further insights to the

market anomalies literature, for instance through the examination of trading

strategies that are not priced by current models. Wang (2003) for instance

demonstrates that conditional models are far better in explaining short-term

return persistence than unconditional models. Furthermore, performance

evaluation represents a potentially interesting research area where nonpara-

metric methodologies can bring value. Given the wide documentations of the

time-varying behaviour of expected returns, conditional measures have be-

come increasingly adopted in evaluating mutual fund and managed portfolio

performance. In several cases, performance measures that are constructed

by linear functions of state variables have been suggested24. Since perfor-

24For instance, Ferson and Schadt (1996) suggest conditional measures in performance
evaluation.
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mance evaluation outcomes can be highly susceptible to the choice of mea-

sure, further studies with nonparametric methods can be giving. Moreover,

a detailed analysis on optimal variable selection in conditional asset pricing

for the Swedish market could successfully address some of the limitations

brought forward in Appendix E25. Finally, the consideration of other asset

classes beyond stocks seems to be a very interesting research project for the

Swedish market.

25Wang (2004) presents a methodology concerning optimal variable selection in condi-
tional asset pricing.
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A Asymptotic results and proofs

This section in detail derives and discusses the properties of the test as put

forward in Wang (2002). The reader is assumed to be familiar with high-level

statistics and non-parametric econometrics. We have structured the section

so as to maximize and facilitate understanding for the reader.

A.1 Assumptions

Under the following set of assumptions, we provide a large sample justifica-

tion for the WLS regression approach as a testing procedure.

For a matrix of random variables X ≡ (xij), and any positive ρ, denote

||X||ρ ≡ (||xij||ρ) and ||xij||ρ ≡ [E|xij|ρ]
1
ρ . The matrix ||X||ρ is the ρ-norm

of X. Denote |X|ρ with (|xij||ρ). The notations stated are also used for the

vectors, with ||x|| as the Euclidean norm of a vector x. As aforementioned,

the information set It stands for a σ-field which includes the σ-field generated

by a data sequence {yt, yt−1, ...}. Additionally, denote

W1(t, s) ≡ (r2p,s+1 − rp,s+1rp,t+1)rt+1 + (r2p,t+1 − rp,s+1rp,t+1)rs+1

W2(t, s) ≡ r2p,s+1ztz
′
t + r2p,t+1zsz

′
s

A function φ(x) is said to satisfy local Lipschitz conditions for some function

m(x) if

|φ(x+ v)− φ(x)| < m(x)||v||

Denote ∆l1,...,ljφ(x) and let it stand for the partial derivative δjφ(x)
δxl1 ...δxlj

where

xl is the lth element of x.

Assumption 1

The first assumption pertains to the data sequence {yt+1}: It is a strictly

stationary β mixing process and the subvector xt has absolutely continuous

distribution with density f(xt). For ρ > 2 the mixing numbers βn, n =

1, 2, ..., satisfy
∞∑
n=1

nβ
ρ−2
ρ

n <∞.
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Assumption 2

(a) r2p,t+1, rt+1, and rp,t+1rt+1 have finite first moment; (b) ||W1(t, s)||ρ < ∞
and ||W2(t, s)||ρ <∞ for all t < s; (c) ||η(yt+1)||ρ <∞ and ||a(yt+1)||ρ <∞

Assumption 3

fgp, fgpp, fgr, fgpr and fgzz satisfy the local Lipschitz condition for some

m(x), wherem(xt)rt+1, m(xt)rt+1rp,t+1, m(xt)rp,t+1, m(xt)r
2
p,t+1 andm(xt)ztz

′
t

have finite ρ-norm.

Assumption 4

K(u) is a bounded symmetric kernel function with∫
K(u)du = 1∫

|u|j|K(u)|du <∞ if 0 ≤ j ≤ k + 1∫
ul11 ...u

lk
k K(u)du = 0 if 0 < l1 + ...+ lk < k + 1

where uj denotes the element j in the vector u. In other words, K(u) is a

bounded symmetric kernel function with order k + 1.

Assumption 5

(a) The j number of partial derivatives pertaining to the functions fgp, fgpp, fgr, fgpr
and fgzz are given for all j ≤ k + 1

(b) The same applies for expectations E[gpr∇l1,...,lj(fgp)],E[gr∇l1,...lj(fgpp)],E[gpp∇l1,...lj(fgr)],

E[gp∇l1,...lj(fgpr)],E[gpp∇l1,...lj(fgzz)] where the evaluation point for the func-

tions and their partial derivatives is xt.

Assumption 6

Both matrices A and Γ0 are nonsingular and are thus invertible.

The postulated condition given by Assumption 1 represents a limitation on

the degree of dependence in the data and is crucially important as it allows

the application of the central limit theorem. The reader should note that
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processes alike the one stated in Assumption 1 that require the parameter

(i.e. βn) to decrease at the power-of-n-rate is not generally restrictive for

economic data and is widely implemented (See Ait-Sahaila (1995) for an

example). Furthermore, the 1st Assumption interacts with the 2nd Assump-

tion in terms of letting a larger ρ (stronger moment restrictions) allow more

dependence in the data series. This represents a trade-off and is a widely

adopted basis for the establishment of asymptotic results for data that ex-

hibits serial correlations, as discussed by White and Domowitz (1984). The

Lipschitz conditions and kernel assumptions stated in both Assumption 3

and 4 are tools that have been applied in a vast amount of literature, for

instance in Hardle and Stoker (1989). Assumption 5 represents the regular

condition for asymptotic bias correction by using a higher order kernel.

A.2 Notations

The notations presented in this section are used to present the propositions

in the following section: Define rt+1 as a vector of scaled excess returns

(r1,t+1, ..., rn,t+1)
′⊗zt, where ⊗ denotes the standard Kronecker product. Let

yt+1 = (x′tz
′
trp,t+1r

′
t+1)

′, wt = f(xt)gpp(xt), A = in⊗E[wtztz
′
t] and ÂN = in⊗

N−1
N∑
t=1

ŵtztz
′
t, where in is the n× n identity matrix. Denote δ = (δ′1, ..., δ

′
n)′

with δi = [E(wtztz
′
t)]
−1E[wtztei,t+1] and then define the following equations:

γ(yt+1) = η(yt+1)− [in ⊗ a(yt+1)]δ

η(yt+1) = f(xt)[gpp(xt)rt+1 − gp(xt)rp,t+1rt+1 + gr(xt)r
2
p,t+1 − gpr(xt)rp,t+1]

where gr(xt) = E(rt+1|xt) and gpr(xt) = E(rp,t+1rt+1|xt)

a(yt+1) = f(xt)[gpp(xt)ztz
′
t + r2p,t+1gzz(xt)]

where gzz(xt) = E(ztz
′
t|xt).

Both gp(xt) and gpp(xt) are defined in equation (11) and (12) in the

methodology section above. As aforementioned, they are estimated with

the standard Nadaraya-Watson kernel estimator (1964) as in (20) and (21),

with the usage of f̂(x) in (19) as the weighting function. In a similar fashion:
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ĝr(x) =
1

Nhd
f̂(x)−1

N∑
s=1

K

(
x−Xs

h

)
ri,s+1

ĝpr(x) =
1

Nhd
f̂(x)−1

N∑
s=1

K

(
x−Xs

h

)
rp,s+1ri,s+1

ĝzz(x) =
1

Nhd
f̂(x)−1

N∑
s=1

K

(
x−Xs

h

)
zsz
′
s

In the subsection of this Appendix, a couple of interesting results neces-

sary for stating a couple of propositions are derived: We demonstrate that

the estimator ÂN asymptotically converges in terms of probability to A and

that the limiting distribution of
√
NÂN(δ̂N − δ) equals the same for that

of 1√
N

N∑
t=1

γ(yt+1). Last but not least, it is shown that Eγ(yt+1) is equal to

zero. With the usage of the central limit theorem (which is feasible since

1
N

N∑
t=1

γ(yt+1) is a simple arithmetic mean of stationary random vectors), the

desirable features of the test can be derived in the Propositions section.

A.3 Propositions

Wang (2002) makes two propositions that build upon an application of a

central limit theorem allowed by the assumptions stated above.

Proposition 1

Given the assumptions previously stated above: If h → 0, Nh2k → ∞ and

Nh2k+2 → 0, the weighted least squares estimator δ̂N is of the type that√
N(δ̂N − δ) has a limiting multivariate normal distribution with mean 0

and variance-covariance matrix Ω, where Ω = A−1ΓA−1,Γ =
∞∑
−∞

Γj and

Γj = E[γ(yt+1)γ(yt+j+1)
′].
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Proposition 2

Given that Proposition 1 holds, with the equations (9) and (10): (a) if

the market portfolio p demonstrates mean-variance efficiency in conditional

terms, the test statistic T̂δ has a limiting chi-squared distribution with q × n
degrees of freedom. (b) Moreover, Γ̂j is a consistent estimator of Γj for any

fixed j. The second proposition thus gives the limiting distribution of the test

statistic Tδ.

Proposition 1 demonstrates that δ̂N is congruent with the standard limiting

properties,
√
N -consistency and asymptotic normality to those of parametric

estimators. The convergence conditions Nh2k → ∞ and Nh2k+2 → 0 imply

lower and upper bounds on the convergence rate of the bandwidth parameter

h to zero and are imposed for the WLS estimator δ̂n to establish its appealing

asymptotic statistical properties. Furthermore, the latter convergence con-

dition is motivated by the usage of the higher order kernel (of order k + 1)

in accordance with Assumption 4. As such, the admissible range pertaining

to the convergence rate can be successfully relaxed when allowing the usage

of a kernel of order higher than the order k + 1.

Proposition 2 contributes in the following way: The regression test is de-

signed with a simple estimator of the variance-covariance matrix Ω. The

second proposition also gives inputs (Γj) to obtain the consistent variance-

covariance matrix estimator Ω̂N given general circumstances. The properties

listed have implications for bandwidth selection. We discuss this in further

detail in Appendix.

Estimation of Ω

In order to calculate an estimate of Ω, we replicate the results in Wang

(2002). One should first consider the estimation of γ(yt+1). As an initial

step, substitute; f(x), gp(x), gpp(x), gr(x), gpr(x) and gzz(x) by their estimates

implied by the Nadaraya-Watson kernel estimators. Next, substitute δ by its

weighted least squares estimator counterpart by δ̂N . Taken together, an

approximation for γ(yt+1) is given by

γ̂N(yt+1) = η̂N(yt+1)− [in ⊗ âN(yt+1)]δ̂N

η̂N(yt+1) = f̂(xt)[ĝpp(xt)rt+1 − ĝp(xt)rp,t+1rt+1 + ĝr(xt)r
2
p,t+1 − ĝpr(xt)rp,t+1]
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âN(yt+1) = f̂(xt)[ĝpp(xt)ztz
′
t + r2p,t+1ĝzz(xt)]

The reader should note that gzz(xt) = ztz
′
t when zt is a fixed transformation of

xt. For instance, in the case when zt = (1x′t)
′. Then, kernel estimation is not

needed; By replacing gzz(xt) with ztz
′
t, this gives âN(yt+1) = f̂(xt)[ĝpp(xt) +

r2p,t+1]ztz
′
t. Furthermore, a consistent estimator for Γj is

Γ̂j =
1

N

N−j∑
t=1

γ̂N(yt+1)γ̂N(yt+j+1)
′

This result is further derived in the proofs section. Furthermore Γj = 0

for any j different from zero given eqs. (9) and (10), provided that the

specification of the WLS regression equation in 26 hold. The covariance

matrix estimator that we use in the test Tδ is calculated as follows

Ω̂N = Â−1N Γ̂0Â
−1
N

A.4 Lemmas and Proofs

To prove Proposition 1 and Proposition 2, Wang (2002) applies three lemmas,

which are explained below.

Yoshihara’s fundamental lemma: Lemma 1

Denote {yt}, which is a strictly stationary β mixing process with numbers

βn, n = 1, 2, .... For any given j , 1 ≤ j ≤ m − 1 and t1 < ... < tm, denote

ξj+1, ..., ξm as m− j random vectors that are identical with regard to the joint

distribution ytj+1
, ..., ytm yet independent from yt1 , ..., ytj . Moreover, denote

φ(yt1 , ..., ytm) as the function

E[φ(yt1 , ..., ytjξj+1, ...., ξm)] = 0

and

sup1≤t1<...<tm<∞||φ(yt1 ..., ytm)||ρ1 ≤M
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for ρ1 and M > 0. Then, specify that for nj = tj+1 − tj that,

|Eφ(yt1 , ..., ytm)| ≤ 4Mβ
ρ1−1
ρ1

nj

As a next step, write two generalized second order U-statistics

U1N ≡
1

N(N − 1)

N−1∑
t=1

N∑
s=t+1

qN(yt+1, ys+1)

U2N ≡
1

N(N − 1)

N−1∑
t=1

N∑
s=t+1

κN(yt+1, ys+1)

with

qN(yt+1, ys+1) ≡
1

hk
K

(
xt − xs
h

)
W1(t, s)− [in ⊗W2(t, s)]δ

κN(yt+1, ys+1) ≡
1

hk
K

(
xt − xs
h

)
W2(t, s)

Both κN and qN vary with N through the parameter h and exhibit symme-

try. Then, in order to use the Hoeffding projection technique, the following

equations below are written (where F (ys+1) is the distribution of ys+1)

γN(y) ≡
∫
qN(y, ys+1)dF (ys+1)

Ĥ1N ≡ EγN(yt+1) +
1

N

N∑
t=1

[γN(yt+1)− EγN(yt+1)]

aN(y) ≡
∫
κN(y, ys+1)dF (ys+1)

Ĥ2N ≡
1

2
EaN(yt+1) +

1

N

N∑
t=1

[aN(yt+1)− EaN(yt+1)]
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Hoeffding Composition: Lemma 2

Denote {yt}, which is a strictly stationary β mixing process with numbers

βn, n = 1, 2, ... that satisfies

∞∑
n=1

nβ(ρ−2)/ρ
n <∞

for ρ > 2. Given that BN = o(
√
N) so that ||γN(yt+1)||ρ ≤ BN and

sup1≤t<s<∞||qN(yt+1, ys+1)||ρ ≤ BN

then

NE[(U1N −H1N)(U1N −H1N)′] = o(1)

Lemma 3

Given that the aforementioned assumptions 1-5 hold. Denote

ε1N(yt+1) ≡ γN(yt+1)− γ(yt+1)

ε2N(yt+1) ≡ aN(yt+1)− a(yt+1)

(a) Given the condition h → 0, then ||ε1N(yt+1)||ρ ≤ bN for bN = o(1) and

additionally

1√
N

N∑
t=1

[ε1N(yt+1)− Eε1N(yt+1)] = op(1)

This same result also is the same for ε2N(yt+1)

(b) Given the convergence condition Nh2k+2 → 0, then
√
NE(H1N) = o(1)

Proof 1: Proposition 1

In the weighted least squares (WLS) estimator definition, it is implicit that

ÂN(δ̂N − δ) ≡
(

1− 1

N

)
U1N
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ÂN =

(
1− 1

N

)
in ⊗ U2N

From the assumptions 2 and 4, it follows that an upper bound of M is in

place so that

E

∣∣∣∣K (xt − xsh

)
W (t, s)

∣∣∣∣ρ ≤M

with W (t, s) = W1(t, s)− [in ⊗W2(t, s)]δ. Thus, it can be written that

E|qN(yt+1, ys+1)|ρ =
1

hpk
E

∣∣∣∣K (xt − xsh

)
W (t, s)

∣∣∣∣ρ ≤ M

hpk

Given this equation, it is possible to derive the equation below (because

Nh2k →∞)

||qN(yt+1, ys+1)||2ρ ≤ h−2kM2/ρ = O(h−2k) = O

(
N

Nh2k

)
= o(N)

From the 2nd assumption stated in the section above combined with the

triangular inequality and the 3rd Lemma

||γN(yt+1)||ρ ≤ ||γ(yt+1)||ρ + ||eN(yt+1)||ρ

It is possible to see that ||γN(yt+1)||ρ is consistent with an upper bound that

is constant. Taken together, it is possible to note that the conditions implied

and pertaining to Lemma 2 are satisfied. Namely, Lemma 2 suggests that

√
N(U1N − EH1N) =

√
N(H1N − EH1N) + op(1) (45)

Reiterating the above arguments for both κN and aN to pursue an application

of the second Lemma to U2N , one gets the following result

U2N = H2N + op(1)

Then by the presented ”Lemma 3 (a)”, it can be shown that:

H2N =
1

2
Ea(yt+1) +

1

N

N∑
t=1

[a(yt+1)−Ea(yt+1)] + op(1) =
1

2
Ea(yt+1)) + op(1)
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Since Ea(yt+1) equals 2E(wtztz
′
t), it follows that ÂN →p A

The same Lemma 3 (a) can also be used to demonstrate that

√
N(H1N−EH1N) ≡ 1√

N

N∑
t=1

[γN(yt+1)−EγN(yt+1)] =
1√
N

N∑
t=1

[γ(yt+1)−Eγ(yt+1)]+op(1)

(46)

It follows from ”Lemma 3(b)” as well as eqs. (45) and (46)

√
NU1N =

1√
N

N∑
t=1

[γ(zt+1)− Eγ(zt+1)] + op(1)

The reader can now note that Eγ(yt+1) = 0 since a simple applications

from the Law of Iterated Expectations implies

Eη(yt+1) = 2E(wtet+1)

Ea(yt+1) = 2E(wtztz
′
t)

where the series et+1 = (e1,t+1, ..., en,t+1)
′ ⊗ zt and ⊗ denotes the Kronecker

product.

Hence, it can be demonstrated that

Eη(yt+1)− [in ⊗ Ea(yt+1)]δ = 0

Then, from improvements of the standard central limit theorems of Ibragimov

and Linnik (1971) pertaining to Theorem 18.5.3, Doukhan et al. (1994) have

provided evidence that if 2 < p < ∞, E|X|p < ∞ and
∞∑
n=1

αnn
2/(p−2) <

∞, then 1√
n

n∑
i=1

(Xi − EXi) converges to a centered normal random vector.

Because:
∞∑
n=1

nβ
ρ−2/ρ
n <∞ implies

∞∑
n=1

nβ
ρ/ρ−2
n <∞,both assumptions 1 and

2 imply central limit theorem conditions that are also sufficient for Γ to be

finite. Using this, it can be demonstrated that

1√
N

N∑
t+1

γ(yt+1)→d N (0,Γ)
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where

Γ =
∞∑
−∞

Eγ(yt)γ(yt+j)
′.

Hence, with these equations the proof is demonstrated. Q.E.D

Proof 2: Proposition 2

Proof of part (b)

To begin with, denote

γ̃N(yt+1) = η̂N(yt+1)− [in ⊗ âN(yt+1)]δ

Because of the convergence condition pertaining to the WLS δ̂N →p δ, it is

sufficient to demonstrate

1

N

N−j∑
1

γ̃N(yt+1)γ̃N(yt+j+1)
′ →p Γj

where γ̃N(yt+1) can be written as

γ̃N(yt+1) =
1

N

N∑
s=1

qN(yt+1, ys+1)

Hence,

γ̃N(yt+1)− γN(yt+1) =
1

N

N∑
s=1

JN(t, s)

where

JN(t, s) ≡ qN(yt+1, ys+1)− γN(yt+1)

As has been previously demonstrated: ||qN(yt+1, ys+1)||ρ has an upper bound

in place of the order o(
√
N) . Also: ||γN(yt+1)||ρ has a constant upper bound.

It follows from ”Minkowski’s inequality” that ||JN(t, s)||ρ also has an upper

bound of the same order o(
√
N). As such, MN = o(N) is such that

||JN(t, s1)JN(t, s2)
′||ρ/2 ≤ ||JN(t, s1)||ρ||JN(t, s2)

′||ρ ≤MN
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Additonally, note that for: s1 < s2∫
JN(t, s1)JN(t, s2)

′dF (zj+1) = 0

with j = s1 if s1 < t, else j = s2.

With the usage of the first Lemma (Yoshihara’s Lemma), one can derive

that:

N2E{[γ̃N(yt+1)− γN(yt+1)][γ̃N(yt+1)γN(yt+1]
′}

≤
N∑

s1=1

|EJN(t, s1)JN(t, s1)
′|+ 2

∑
1≤s1<s2≤N

|EJN(t, s1)JN(t, s2)
′|

≤ NMN + 8NMN

N−1∑
n=1

βρ−2/ρn = o(N2)

So b1,N = o(1) such that E|γ̃N(yt+1)−γN(yt+1)|2 ≤ b1,N . Taking together with

the 3rd Lemma, it is possible to show that E|γ̃N(yt+1) − γN(yt+1)|2 ≤ b2,N
for b2,N = o(1). Because of constant upper bounds for E|γ̃N(yt+1)|2 and

E|γN(yt+1)|2, it is implied that for any fixed j, the b3,N = o(1) is such that

E|γ̃N(yt+1)γ̂N(yt+j+1)
′ − γ(yt+1)γ(yt+j+1)

′| ≤ b3,N

Using the Chebyshev’s inequality in representation, it gives rise to

1

N

N∑
t+1

γ̃N(yt+1)γ̃N(yt+j+1)
′ − 1

N

N−j∑
t=1

γ(yt+1)γ(yt+j+1)
′ = op(1)

Noting the following: βn = o(n−2ρ/(ρ−2)). This is because:

2n∑
j=n

jβ
(ρ−2)/ρ
j ≥ β

(ρ−2)/ρ
2n

2n∑
j=n

j = β
(ρ−2)/ρ
2n O(n2)

and
2n∑
j=n

jβ
(ρ−2)/ρ
j = o(1)

by Assumption 1 above. Hence, large mixing coefficients of the data satisfies
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αn = o(n−r/(r−2)) for 2 < r < ρ. Moreover, from the second assumption,

||γ(yt+1)γ(yt+j+1)
′||ρ/2 < ∞. From Lemma 2.1, Theorem 2.3 and 2.1 by

White and Domowitz (or the theorem 2.10 of McLeish (1975)), thus gives

rise to

1

N

∑
t=1

N − jγ(yt+1)γ(yt+j+1)
′ = E[γ(yt+1)γ(yt+j+1)

′] + op(1)

The above derived equation establishes the theorem that the estimator Γ̂j is

consistent for Γ, i.e. part (b). Q.E.D

Proof of part (a):

Given the equations (9) and (10)

E[η(yt+1)|It] = E(wtet+1|It) + E(wtet+1|xt)

E[a(yt+1)|It] = wtztz
′
t + wtgzz(xt)

where (as before) the series et+1 = (e1,t+1, ..., en,t+1)
′⊗zt. As aforementioned,

the equation (26) leads to

E(wtet+1|It)− [in ⊗ (wtztz
′
t)]δ = 0

E(wtet+1|xt)− [in ⊗ (wtgzz(xt)]δ = 0

Hence, given the regression specification (21)

E[γ(yt+1)|It] = 0

Then, Γj = 0 for j 6= 0. Given the conditional expectations (9) and (10), the

null hypothesis of conditional mean variance efficiency implies (26).

So the convergence: Ω̂N →p Ω. With δ = 0: Proposition 1 thus delivers

the following distributional asymptotic result:

Nδ̂′N Ω̂−1N δ̂N →d χ2(qn)

Q.E.D
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B SupF Test for Structural Change

This section gives a brief overview of the supF test for parameter instability

and structural change26. The standard linear regression model upon which

the statistical test is based can be formulated as follows:

yi = x′iβi + ui (i = 1, ..., n)

where at time i, xi = (1, xi2, ..., xik)
′ denotes a k × 1 vector of independent

variable observations, with the first component equal to unity, and the terms

ui are i.i.d (0, σ2). Furthermore, βi is a k × 1 regression coefficient vector

and yi is the dependent variable observation. Tests on structural change are

concerned with testing the null hypothesis of ”no structural change”

H0 : βi = β0 for (i = 1, ..., n)

The alternative is that the vector of regression coefficients varies over time

H1 : βi = βA for (1 ≤ i ≤ i0)

βB for (i0 < i ≤ n)

where i0 is some change point in the interval (k, n − k). The testing idea is

to fit two separate regressions; a full model and a restricted model. This is

done for two subsamples as defined by i0. Then the econometrician rejects

whenever the following statistic is too large:

Fi0 =
û′û− ê′ê

ê′ê/(n− 2k)

Here, ê = (ûA, ûB)′ denotes the residuals from the full model, where the

regression coefficients in the subsamples are estimated separately. Similarly,

û are the residuals from the restricted model, where the parameters are just

fitted once for all observations. The statistic Fi0 has an asymptotic chi-

squared distribution with k degrees of freedom. Furthermore, given normality

26As background information, the most important classes of tests of structural change
are generally either tests from the generalized fluctuation test framework of Kuan and
Hornik (1995) as well as tests on based on F statistics.
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Fi0/k has an exact F distribution with k and n− 2k degrees of freedom. In

order to test for structural change across every possible change point i0, the

econometrician has to calculate F statistics for all potential change points

within a specified interval [i, i]27. As such, the procedure starts out with

calculating F statistics Fi for k < i ≤ i ≤ i < n − k. The next step is

to aggregate the series of F statistics into a single test statistic. Andrews

(1993) as well as Andrews and Ploberger (1994) propose to use28

supF = sup
i≤i≤i

Fi

The p-values, upon which statistical inference about linearity is made, are

calculated according to Hansen (1997).

C The Stationary Bootstrap

In this section, the application of the stationary bootstrap pertaining to the

fully non-parametric FF-3F model is described.

Denote the data {yt+1} for t = 1, ..., N . The methodology makes use

of the resampled time series {y∗t+1,j} for t = 1, ..., N where j indexes one

of the Nb bootstrapped samples. With the resampled data, one can obtain

resampled counterparts of both δ̂N and Ω̂N through δ̂∗N,j as well as Ω̂∗N,j,

respectively. The following test statistics are used as the tools for statistical

inference related to Tδ.

T ∗δ,j = N(δ̂∗N,j − δ̂N)′(Ω̂∗N,j)
−1(δ̂∗N,j − δ̂N)′ (47)

Across each bootstrapped sample j = 1..., Nb, the data {y∗t+1,j} follows

y∗t+1,j = yξj(t)+1 (48)

27Andrews (1993) proposes several appropriate interval specifications depending on sev-
eral contextual factors. In our applications, we use the following interval; [0.15;0.85], which
is in line with Andrews(1993).

28The authors also provide two other alternative test statistics: aveF = 1
i−i+1

i∑
i=i

Fi and

expF = 1
i−i+1

i∑
i=i

exp(0.5 · Fi), respectively. The test statistics have certain optimality

properties.
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for each t = 1, ..., N with ξj(t) denoting a randomly chosen index. This

index is chosen by the stationary bootstrap algorithm of Politis and Romano

(1994). When facing this implementation, the user needs to set a ”smoothing

parameter” q = qN , such that 0 < qN ≤ 1, qN → 0, and NqN → ∞ as

N → ∞. As a general rule of thumb, a small value of the parameter q is

particularly suitable when the data exhibits strong dependence. On the other

hand, a large value of q is appropriate given limited amount of dependence

demonstrated in the data. We set the parameter q = 0.10 as in Wang (2003),

which corresponds to an average block length of 10.

As a next step, the user proceeds as follows:

1. Draw an independently distributed random variable ξj(1) for t = 1,

which is uniformly distributed over {1, ..., N}

2. As a next step, increase t incrementally by 1. If t > N stop the

procedure. Else, draw a standard uniform and independently uniform

random variable u.

• If u < q, draw ξj(t) as a random variable that is independently

distributed as well as uniformly distributed over {1, ..., N}
• If u ≥ q set ξj(t) = ξj(t− 1) + 1. If ξj(t) > N , set ξj(t) = 1

3. Repeat step 2.

D Bandwidth and Kernel Selection

In this appendix section, we describe and motivate our choice of kernel func-

tion and smoothing parameter based on their respective properties. We also

explain the bandwidth selection problem and the inherent trade-offs pertain-

ing to it. With regard to the choice of kernel function, we limit our choice to

an independent multivariate normal density function (hereafter multivariate

Gaussian Kernel)

K(x) =
k∏
i=1

φi(xi) (49)

The choice of this kernel is due mathematical convenience and its wide

popularity: φi is the density of a univariate normal with mean zero and
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variance σ2
i . Furthermore, we focus on the independent multivariate normal

density function because we want to maximize comparability with the em-

pirical results of Wang (2003). In computation, σ2 is the standard deviation

of the ith state variable and is replaced with the sample estimate.29.

As has been quickly mentioned before, optimal bandwidth selection re-

mains a controversial topic within the nonparametric econometric literature.

Yet, there are in general some selection approaches that are more well-suited

given certain circumstances. We set the bandwidth as

h = cN
−1

(2k+1) (50)

As such, a few remarks should me made: To begin with, the limiting

distribution of the WLS δ̂N is not dependent on the scaling constant c. Such

a desirable feature implies that in contrast to widely used kernel density

regressions and KDEs, the estimate δ̂N becomes less susceptible to the choice

of the scaling constant as the number of observations increases. That is to

say, the bandwidth choice does not become as crucially important as in kernel

density and kernel regression estimation. This property further suggests that

bandwidth issues due to persistence of conditioning variables may not serve

as a prominent challenge to the testing procedure, as discussed by Pritsker

(1998) as well as Chapman and Pearson (2000). However, this attractive

trait comes at a cost; the trade-off is that justification of cross-validation

procedures becomes difficult.

In similarity to Wang (2003), we set the scaling constant c to 1. This

is a practical choice and is widely regarded as an objective starting point

previously implemented by many authors (see Silvermann (1986), Pagan and

Schwert (1990) and Harvey (2001) etc.)

Moreover, regardless of how many conditioning variables are used, the

WLS δ̂N still has parametric convergence rate and standard limiting distri-

29Wang (2003) also makes use of a bias-corrected higher order kernel K∗(x) =

K(x)−
k∑

j=1
ajb

−k
j K(x/bj)

1−
k∑

j=1
aj

in accordance with Powell et al. (1989), where a = B−1e for

a = (ai, ..., ak)′ and B is a k × k matrix. Each component Bij = bij , e is a k × 1 vec-
tor of ones and bj = k+j for j = 1..., k. However, Wang (2003) finds that the higher order
kernel produces more variable estimates than the Gaussian kernel and that with regard
to reducing the bias, it is not satisfactory in a finite sample context. Therefore, we follow
Wang (2003) and only focus on the Gaussian kernel.
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bution. On the other hand, the reader should be aware of that the user has

to pay a price for this appealing property that is related to the variance-

covariance matrix of the WLS δ̂N : In finite samples contexts, it still is ad-

vantageous to exclude redundant conditioning variables.

E Robustness and Limitations

We consider a range of different tests to verify the robustness of our results.

To begin with, the econometrician can choose among a wide range of different

kernels in applications. A very popular choice is the Epanechnikov kernel,

which often is the most efficient in a MSE (mean square error) sense. We

reconsider our results with this kernel. Furthermore, we change the band-

width slightly. The results are not reported for brevity, but are available

upon request. Similarly, we respecify the sample by dividing it in two parts.

However, since the motivation for nonparametric methods are asymptotic,

we take any such measurements with careful consideration. Additionally, we

challenge the conditional asset pricing models by equally-weighted size/BE-

ME portfolios in addition to the value-weighted versions. Li and Yang (2011)

suggest that this might have a bearing on empirical outcomes. Last but not

least, we conduct the tests with the original six size/BE-ME of FF to miti-

gate any concerns that the Swedish equity market has a smaller amount of

firm observations than in the US.

As this study aims to introduce the notion of nonparametric SDF in asset

pricing with conditioning information in the Swedish equity market, a brief

elaboration on any limitations is worthwhile. In this study, we consider five

different conditioning variables, whereof three serve as the main inputs in our

empirical tests and the rest are considered from a robustness perspective. It

could be argued that another set of conditioning instruments would lead to

significantly different conclusions. Furthermore, there are several limitations

pertaining to the choice of the sampling period: Whereas Wang (2002, 2003)

considers the U.S equity market over a longer sample horizon, we consider

the significantly smaller equity market of Sweden. This implies that we have

a much lower number of observations included in each test portfolio, which

can have an impact on the empirical results. Additionally, as the motivation

of nonparametric methods rely on asymptotic distribution theory to ensure
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good statistical power, the collection of a large number of observations is

crucial. Last but not least, empirical findings on the performance of asset

pricing models have been shown to be highly susceptible to the choice of

sample period. As we investigate the Swedish market from July 1994 to

December 2016, it could be argued that a more comprehensively specified

horizon would be fruitful.
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