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Abstract

This paper explores the comparative merits of two different machine learning algorithms for
variable selection in an instrumental variables (IV) setting with many weak instruments. We
apply a new method, post-L2boosting, to Angrist and Krueger’s (1991) classical paper about
the effect of schooling on earnings. We compare the performance of the post-L2boosting with
another recently suggested method, post-LASSO estimation, on the same data. Among the
methods used in this paper, post-LASSO is superior for increasing the first stage F-statistic
of the IV estimation, implying that it more effectively reduces finite sample bias. However,
our findings are not conclusive as further research is needed regarding the effects of different
tuning techniques for the hyper parameters.
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1 Introduction

One of the major conundrums of economic research is the distinction between correlation and
causation. Unlike the natural sciences, the social sciences are often unable to abstract away com-
plexities of reality by laboratory experiments. Instead, various techniques such as instrumental
variables estimation provide an avenue to establish causal effects from observational data.

The developments in machine learning may at a first glance not appear to be directly related to
the pursuit of causality however, machine learning algorithms can be useful tools in an economist’s
toolbox. While the goal of inference remains the same, in an age of big data, researches may need
to use unconventional methods to handle the size and complexity of modern economic data (Varian
2014, Athey 2017).

In the context of instrumental variables, ‘the finite-sample biases in instrumental variables are
a consequence of overfitting’(Mullainathan & Spiess 2017, p. 100). The problem of overfitting is
a central concept in machine learning and relates to how a model of sufficient complexity can
perfectly estimate a set of data points in a sample but fail to hold any predictive abilities when
applied to data out of sample. One specific way in which machine learning could be used in
conjunction with econometrics is by mitigating this finite sample bias.

In this paper, we investigate if some prominent machine learning algorithms can be helpful in
resolving econometric problems arising from weak instruments. These methods could be useful
when there is an abundance of potential instruments and the researcher needs to make a choice
as to which instruments to include when constructing an IV estimator (Belloni et al. 2011, p. 1).
The machine learning algorithms we investigate include a variant of gradient boosting, known
as post-L2boosting and post-LASSO. We also consider a practice commonly used by machine
learning practitioners which involves testing a model’s predictive abilities out of sample. This is
useful for understanding if too many variables have been used that does little in capturing the true
relationship.

Under the assumption of constant causal effects, our results show that both post-LASSO and
post-L2boosting can substantially increase the first stage F -statistic that tests for weak instruments
over naïvely including all of the instruments. We posit that post-LASSO is the more suitable
method, as it produces a larger increase in the F-statistic.

This paper is organised as follows: Section 2 provides some background to machine learning
and its relevance for economics. We begin with an overview of what machine learning is and how
its applications differ from the search for causality, before providing the inspiration for this thesis
as well as some examples of where machine learning has been used by economists in the past.

Section 3 introduces relevant theory and Section 4 provides a brief overview of previous research
related to machine learning approaches to instrumental variables selection. Here we also introduce
the uninitialised reader to Angrist’s and Krueger’s paper Does Compulsory Schooling Attendance
Affect Schooling and Earnings?.

Section 5 outlines the research focus of this paper; comparing variable selection methods. In
Section 6 and 7 we describe the the method and the data used, and in Section 8 we present our
results.

In the final Sections 9 and 10 we discuss how our results in relation to previous research findings.
We also provide an avenue for how the analysis in this paper may be improved by future research.
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2 Background

Machine learning generally refers to some computer programme that improves its performance -
learning - of a given task with experience (Mitchell 1997). This learning can be supervised, meaning
that both predictors, (x), and outcomes, (y), are pre specified, or unsupervised, in which case the
computer programme is fed an input and then independently produces an output. Supervised
and unsupervised learning can be applied to a range of tasks such as prediction, classification,
clustering, and dimensionality reduction.

While econometrics is mostly concerned with establishing causal relationships, not simply pre-
dictions, there are elements of inference suitable for application of machine learning (Ludwig et al.
2017, Athey & Imbens 2016, Hartford et al. 2017). Furthermore, machine learning has the poten-
tial to influence econometrics by automating model selection through a data-driven and systematic
approach. ‘This approach constrasts with economics, where (in principle, though rarely in reality)
the researcher picks a model based on principles and estimates it once’ (Athey 2017, p. 2).

Inspired by Athey (2017), Belloni et al. (2011) and Luo & Spindler (2017), we examine machine
learning algorithms that can be used for instrument selection assuming there is no a priori infor-
mation of what instruments to include in the first stage of an IV estimation. We investigate an
empirical paper, Angrist & Krueger (1991), which has been scrutinised and declared to be suffering
from bias related to weak instruments. It is worth noting that for datasets such as this: ‘even when
there appears to be only a few instruments, the problem is effectively high-dimensional because
there are many degrees of freedom in how instruments are actually constructed’ (Mullainathan &
Spiess 2017, p. 101).

One could argue that the application of machine learning methods in econometrics is not new.
Within the field of machine learning it is best practice to split the data into different samples:
one that is used to train the model and the other to evaluate its performance. Angrist & Krueger
(1995) and Angrist et al. (1999) use similar techniques to remedy bias in instrumental variables
estimation. Indeed the first stage of a two-stage least squares (2SLS) is essentially a prediction task
(Mullainathan & Spiess 2017) and machine learning can be used for instrument selection (Belloni
et al. 2011, Luo & Spindler 2017).
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3 Theory

In this section we review relevant theory related to instrumental variables and machine learning.
We begin by examining the problems associated with weak instruments before providing a brief
overview of the fundamentals of machine learning and some central concepts. We then describe
the specific machine learning methods used in this thesis: post-LASSO and postL2boosting.

3.1 Instrumental variables estimation

Instrumental variables (IV) estimation is a method for establishing causal inference that exploits
exogenous variation in the instrument(s) to enable measurement of the effects of an, otherwise
endogenous, explanatory variable on some outcome. It was first used by Wright (1928) and was
later developed by Theil (1953), who introduced the two-stage least squares (2SLS).

Using this method, Angrist & Krueger (1991) explored the relationship between educational
attainment and earnings. Equation (1), the first stage equation, establishes the relationship be-
tween the instrument and the endogenous variable of interest and is a regression of educational
attainment on quarter of birth. Equation (2), the structural equation, describes the relationship
of interest, the effect of education on earnings, and therefore regresses the log weekly wage on
educational attainment.

Ei = Xiπ +
∑
c

Yicδc +
∑
c

∑
j

YicQijθjc + εi (1)

lnWi = Xiβ +
∑
c

Yicξc + ρEi + µi (2)

Ei is the individual i’s educational attainment, measured as years of schooling, Xi is a vector
of covariates, and Yic and Qij are dummy variables indicating whether the individual was born in
a specific year c or quarter j, respectively. Wi is weekly wage and ρ is the return on education.

In order to obtain valid instruments for the endogenous variable which can be used to construct
consistent estimators, two conditions need to be met.

• Instrument exogeneity: cov(z, u) = 0

The instrument (z) has no partial effect on the dependent variable, conditional on the en-
dogenous variable (x) and the controls (K).

• Relevance: cov(z, x) 6= 0

The instrument explains part of the variance in the endogenous variable of interest.

In practice, it is difficult to find instruments that perfectly satisfy these criteria, and some
deviations may be permitted. Yet, even small violations of the above stated criteria can cause
significant problems. These problems were largely overlooked by researchers until Bound et al.
(1995) drew attention to them.

3.2 Weak instruments

There are two problems with weak instruments: inconsistency and finite sample bias. These arise
from the instruments being only mildly correlated with the endogenous variable. This does not
violate the assumption of relevance, but is nevertheless cause for concern. Bound et al. (1995)
showed that the results in Angrist & Krueger (1991) may suffer from problems related to weak
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instruments by demonstrating how similar results could be obtained by replacing the instruments
with simulated, random data reflecting the basic irrelevance of the instruments.

Bound et al. (1995) showed that any inconsistency arising from imperfectly exogenous instru-
ments was amplified by weak instruments. Furthermore, they considered the relative inconsistency
of the 2SLS estimate to the OLS estimate which is given by Equation (3):

plimβ̂IV − β
plimβ̂OLS − β

=
σx̂,u/σx,u
R2
x,z

(3)

In Equation (3), R2
x,z refers to the population partial R2 from regressing x on the instruments

z after the controls have been partialled out. A low R2
x,z means the relative inconsistency of the

2SLS is sensitive to any deviations from the assumption of instrument exogeneity, cov(z, u) = 0.
Therefore, a small violation of the exclusion restriction may cause a large asymptotic bias.

Building on Sawa (1969), Bound et al. (1995) further posited that 2SLS estimates are biased
in the direction of OLS estimates in finite samples. Furthermore, the probability distribution of
an IV estimation is the same as the corresponding biased OLS estimate, except for the degrees of
freedom. This means that the bias of the IV estimator is close to the bias of OLS, when the sample
size is small. The bias of the IV estimator occurs despite having perfectly exogenous instruments
and is of the same magnitude as the OLS estimate in the limit as R2

x,z goes to zero. Consider the
IV estimator for a single instrument that is given by the Equation (4):

βIV =
cov(zi, yi)

cov(zi, xi)
(4)

When cov(zi, xi) = 0, the IV estimator is undefined. In a finite sample, however, there will
inevitably exist some random correlation between zi and xi which is not helpful in detecting any
causal relationship from x to y.

Through their simulation, Bound et al. (1995) showed that the estimates for returns to school-
ing remain similar, despite exchanging the quarter of birth variables to a randomised quarter of
birth (that is: population R2

x,z = 0, but not the finite sample partial correlation). The results
demonstrate how the seemingly enormous sample size of n > 300, 000 in Angrist & Krueger (1991)
is not enough to evade the finite sample bias, as a result of weak instruments.

Bound et al. (1995), Buse (1992), Staiger & Stock (1994) conclude that the finite sample bias is
inversely proportional to the number of instruments when the instruments are weak. In addition,
Staiger & Stock (1994) find that 1/F approximates the magnitude of the finite sample bias of IV
estimates relative to OLS estimates. Where F is the F -statistic that tests for joint significance of
the instruments from the first stage regression of the endogenous variable on the instruments and
the covariates. This F -statistic is given by:

F =
(
∑

(x̂r − x)2 −
∑

(x̂ur − x)2)/q∑
(x̂ur − x)2/(n− k − 1)

(5)

Where the restricted model (subscript r) only consists of controls and the unrestricted model
(subscript ur) consists of both excluded instruments and controls, q is the number of excluded
instruments and k is the number of excluded instruments and controls. In essence, the F -statistic
indicates whether adding the instruments provide any additional explanatory power by testing for
joint significance. Practically, a higher F -statistic indicate a stronger first stage and less problems
related to having weak variable bias. As Bound et al. (1995) point out, the finite sample F -statistic
tends to be an upward biased estimator of the population F -statistic. For this reason, Stock & Yogo
(2005) suggested that the F -statistic should be above 10 (well above what is normally required
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of an F -statistic to indicate significance). Having a first stage F -statistic exceeding 10 is now a
widely used rule of thumb. However, in general, a larger F -statistic indicates less concerns for bias.

3.3 Supervised machine learning

The underlying principles of supervised machine learning is to obtain high predictive accuracy
by modelling a function of independent variables that explains dependent variables. In order to
obtain high predictive accuracy, supervised learning modelling takes a data driven approach that
does not require rigid assumptions of the underlying relationships of the data. What is important
is that there exist correlations, or other non-linear relationships, within the data which can serve to
predict an outcome of interest. This approach is fundamentally different from statistical inference
and econometrics (Athey & Imbens 2017, p. 22). For instance, when performing prediction tasks,
omitted variables are not necessarily a problem in machine learning. In fact, it might be beneficial
to exclude variables and obtain bias in order to achieve better predictions. This is not the case for
econometric purposes as biased parameters do not lend themselves to interpretation.

We next discuss some more specific concepts and introduce machine learning algorithms that
we use in our analysis.

3.4 Bias-variance trade-off

As discussed by Wooldridge (2009, p. 91) the bias of an estimator refers to the difference between
the expected value of the estimator and the true value of what is being estimated. Often, this is
induced by expressing a complex real world phenomenon with a too simple model that do not take
into account crucial aspects. Likewise, a supervised learning model can be biased if the expected
predicted values from the model (depending on the data used to estimate the model) are not the
same as the actual values. The richer, or the more complex, a model is made, the less biased it
becomes. However, simpler models have the virtue of being more robust to the set of data they
were estimated with. This means that such models are less dependent on the random sample and
will be more general in the sense that they will appear similar in a broader set of contexts. Such
models are said to have a low variance.

A model that exhibits low bias but high variance is referred to as being overfitted. For example,
if too many variables are used to explain a small set of observations, the explanatory power in
sample rise as a result of adjusting or interpolating the model to noise present in the data. Such
a model will fail to generalise to other data sets and exhibits large discrepancies between model
accuracy in sample versus out of sample. Likewise, a model that includes too few variables will
not be able to capture important variance and result in a simple model with biased estimators.
A model that lacks crucial variables is referred to as being underfitted. Due to the conflicting
natures of over- and underfitted models, there is an inherent bias-variance trade-off. Bias increases
whenever there are missing variables from the analysis whereas variance increase when too many
variables are used on too little data. In other words, the more situation specific a model is made,
the more accurate it will be on a particular data set, without necessarily extending its precision to
other samples from similar populations.

It can be shown that the expected mean squared error (MSE) for a given data point x0 out of
sample is given by:

E(y0 − f̂(x0))2 = V ar(f̂(x0)) + [Bias(f̂(x0))]2 + V ar(ε). (6)

Unlike economists who often strive for zero bias of the estimated parameters at a tolerable level
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of variance (i.e. statistical significance), machine learning would be concerned with minimising
the quantity in Equation (6). The way a machine learning model is evaluated is typically done by
fitting a model, f̂(x), on a training set (typically an 80% sub sample of the data at hand). This
model fit is then tested on a remaining, held out, test set by plugging in independent observational
data, (x), to obtain estimated values f̂(x) that is then compared to the actual data (y) using a
loss function, typically the MSE.

3.5 Cross validation

Econometric practice favours simpler models over complex ones (given that bias has been dealt
with) to prevent overfitting. Supervised machine learning, on the other hand, often relies on a
data driven approach to balance bias against variance. One of the more common methods include
k fold cross validation.1 Cross validation works by splitting the data systematically into k folds of
equal size. It is an iterative process where all folds but one, (k − 1), are used to fit a model that
is then validated against the one remaining fold. The process is repeated until each fold has been
left out and tested against once for all different model specifications.2 This results in k different
estimates of the loss function for each model specification (Ei in the figure below).

These k estimates are then averaged to obtain an averaged score for each model specification.
The model specification that is associated with the lowest average value of the loss function is the
model specification deemed to be best by the cross validation.

Both bias and variance of the test error depend on the choice of k. Small values of k are typically
associated with a high bias, especially for small sample sizes. Large values of k become less biased
but induce more variance. Following a simulation study, Kohavi et al. (1995) recommend setting
k = 10, on the basis that it achieves a good trade-off between bias and variance.

Figure 1: Illustration of 10-fold cross validation. Image from Buhagiar (2017, p. 6).

3.6 LASSO

The least absolute shrinkage and selection operator (LASSO) was first introduced by Tibshirani
(1996) and is an instance of regularisation, which refers to a process of reducing overfitting. The

1cross validation has previously been used in economics, in the context of kernel regressions (Athey 2017).
2An example of what is meant by different model specifications could be a model that can take on different values

of a hyper parameter λ. When the hyper parameter λ is varied, different model specifications are obtained. The
optimal level of λ, say λ∗, can be determined by cross validation.
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LASSO can thereby reduce model variance by inducing more bias. It is also useful for variable
selection. Another method that is closely related to LASSO is the ridge regression.

The way LASSO and ridge regression perform regularisation is by adding a penalty term to the
loss function, usually the residual sum of squares (RSS). The penalty term added to the LASSO,
λ ≥ 0 is proportional to the absolute value of the estimated parameters and LASSO thereby pulls
any coefficients toward 0. Ridge regression works in a similar way but adds λ times the square of
the coefficients as a penalty.

The ridge regression minimises the following equation:

RSS + λ

p∑
j=1

β2
j , λ ≥ 0. (7)

The LASSO only differs from the ridge regression by using the absolute values of the coefficients
instead of the squared terms:

RSS + λ

p∑
j=1

|βj |, λ ≥ 0. (8)

For the minimisation problems (7) and (8), any reduction in the RSS must be large enough to
offset the increase induced by the penalty term. The λ in the formulas is a hyper parameter that
can be tuned using cross validation, and it determines the sensitivity of the penalty term.

An advantage of LASSO over ridge regression is the fact that it can set some coefficients to
0 whereas the ridge regression will not. Therefore, the LASSO can be a useful tool for selecting
variables. To illustrate this feature of LASSO in comparison to the ridge regression, we consider
the case of a model containing two coefficients, β1 and β2. The ridge regression and the LASSO
solve the following minimisation problems, respectively (James et al. 2013, p. 220):

min
β


n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2

 subject to
p∑
j=1

|β2
j | ≤ s (9)

min
β


n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2

 subject to
p∑
j=1

|βj | ≤ s (10)

Where there exists an s for each λ such that the problems in Equations (7) and (8) yield
the same solutions as Equations (9) and (10) respectively. In Figure 2, β̂ represents the least
squares estimates that is subject to the LASSO’s constraint and the ridge regression’s constraint.
The LASSO’s constraint is illustrated by the blue diamond in the figure and defined by the L1

norm: s ≤ |β1 + β2|. The blue circle is the ridge regression’s constraint s, defined by the L2

norm: s ≤
√
β2
1 + β2

2 . The ellipses around the β̂ represent different levels of RSS, the function
we intend to minimise in Equations (9) and (10). The solution will be the intersection between
the constraint and the ellipse that represents the lowest RSS. Note that with sufficiently relaxed
constraints (represented by a larger diamond and a larger circle), both the LASSO and the ridge
regressions equal the least squares estimate β̂.

The shape of the constraints is what gives LASSO its variable selection property. Because the
LASSO’s loss function has vertices due to its constraint being subject to the L1 norm, coefficients
that result from a LASSO estimation will sometimes be set to zero. In Figure 2, the LASSO’s
estimate of β1 = 0 whereas the ridge regressions estimate of β1 > 0. The figure shows the intuition
for two dimensions, but the same logic applies as the dimensionality is increased.
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Figure 2: Illustration of the error and constraint functions for LASSO (to the left) and the ridge regression
(to the right). Image from Tibshirani (1996, p. 6).

The parameter λ in Equations (9) and (10) is a hyper-parameter. Intuitively, when λ = 0, the
ridge and LASSO estimations become the same as the OLS estimates and a high values of λ are
associated with more strict regularisation. The value of λ is ideally set to a value that minimises
the loss function out of sample. For this reason, it can be determined by cross validation.

3.6.1 Post-LASSO

The post-LASSO estimator uses LASSO for variable selection, and then proceeds by adding the
selected variables to an OLS estimation with the full set of pre-specified controls. The point of
using post-LASSO instead of using the coefficients directly obtained from the LASSO estimation
is that the LASSO does not guarantee that all desired control variables are included. However,
the post-LASSO guarantees that all controls are included in the final model. In this way, post-
LASSO avoids potential bias caused by not including all the control variables while exploiting a
subset of highly predictive variables, thereby limiting both bias and variance. Belloni et al. (2011)
take advantage of this bias-variance trade-off by using the LASSO to select variables before the
first stage of an IV regression in order to select relevant instruments from a long list of candidate
instruments. This is will be explored further in subsection 6.1.1.

3.7 L2boosting

Boosting algorithms refer to a family of algorithms for sequential model building that was developed
by Friedman (2001). Boosting combines many weak predictors, called base learners, into a single,
stronger, predictor. These algorithms learn slowly and have proven successful in reducing both
bias and variance, which has made them popular statistical learning algorithms.

Further developments in boosting algorithms have added the L2 (least squares) penalty function
(Bühlmann & Yu 2003), and showed its usefulness in economic applications by using it for variable
selection in an IV settling (Luo & Spindler 2017).

This thesis uses the following specification of the boosting algorithm for variable selection:

1. Start/ Initialization: β0 = 0 (p-dimensional vector), f0 = 0, set maximum number of itera-
tions mstop and set iteration index to 0.
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2. At the (m+ 1)th step, calculate the residuals Umi = yi − x
′

iβ
m.

3. For each predictor variable j = 1, ..., p calculate the correlation with the residuals:

γmj :=

∑n
i=1 U

m
i xi,j∑n

i=1 x
2
i,j

Select the variable jm this is the most correlated with the residuals, i.e.,max1≤j≤p|corr(Um, xj)|1.

4. Update the estimator: βm+1 := βm + ηγmjmejm where ejm is the jmth index vector and
fm+1 := fm + ηγmjmxjm . 0 < η ≤ 1.

5. Increase m by one. If m < mstop, continue with 2; otherwise stop.

(Luo & Spindler 2017, p. 2)

Where mstop is the number of iterations the algorithm runs to reduce the residuals. Akin
to LASSO, the L2boosting in a high-dimensional setting, can be prevented from over-fitting by
introducing regularisation. In this case, the regularisation parameter takes the form of stopping
the algorithm early by limiting the number of iterations to something less than mstop, e.g. m∗.
Obtaining an appropriate value for m∗, can be achieved by using k fold cross validation or a data
dependent stopping rule. If k fold cross validation is used, the value of m∗ is set to the m that
minimises the loss function, such as the RSS, over the k folds.

A data dependent stopping rule proposed by Luo & Spindler (2016) works by finding the first
m for which the following inequality holds:

||Um||22,n
||Um−1||22,n

=
σ̂2
m,n

σ̂2
m−1,n

> (1− C ∗ log(p)/n) (11)

Where ||Um||22,n and ||Um−1||22,n are the RSS at iteration m and m − 1 respectively. The
number of variables (or predictors) are denoted by p and the number of observations is captured
by the variable n. The interpretation of this rule is that optimal stopping is reached when the
estimated variance of the residuals (σ̂2

m,n) in one step, relative to the variance of the residuals in
the previous step (σ̂2

m−1,n), has not been reduced more than the specified threshold (to the right
of the inequality sign).

Every boosting algorithm has a base learner, which refers to the function used to reduce the
loss function. The L2boosting described in the algorithm above uses a linear base learner, but it
is more common to use a tree based learner that reduces the loss function by fitting a regression
tree on the residuals at every step. The benefits of using a linear base learner over a tree based
learner is that the final model at m∗ takes the form of a linear regression. In contrast, the tree
based method becomes more of a black box as the sequential tree building leaves no such simple
formula. However, trees will often be better at detecting non linear relationships.

The rate of convergence for L2boosting is determined by the shrinkage parameter 0 < η ≤ 1.
Luo & Spindler (2017) investigated the simple case where η = 1. By only updating the residuals
with a fraction η < 1 of the estimated model at every step, the algorithm was able to potentially
discern more information from the data set. To see why, consider themth step where the algorithm
uses ηxj to explain the residuals. If we continue to find that xj is best at explaining the residuals
for the following 1/η steps for each variable, the estimation with the smaller η become the same
as the estimation when η = 1. If not, the 0 < η < 1 estimation was able to find a pattern that
the η = 1 estimation was unable to find and have hence built a more predictive model. In general,
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a smaller value of η will require more iterations (a higher m∗), but yields better predictions in
return.

3.7.1 Post-L2Boosting

The post-L2Boosting follows the same principle as the post-LASSO but uses L2Boosting instead
of LASSO for variable selection. The selected variables are those with non-zero coefficients in the
L2boosting model.

3.8 Contrasts to other dimension reduction methods

Using LASSO and gradient boosting is not the only way to reduce the dimensionality of a data set.
Other methods include factor analysis and Principal Components Analysis (PCA). Such methods
aim to reduce dimensionality by identifying factors or components that summarise the original set
of variables using fewer dimensions by exploiting correlations in the data set, i.e. the variables used
in the regression estimation is a smaller set of variables that are defined as linear combinations of
the original variables. As a result, some dimensions that otherwise would have been included in a
regular estimation are excluded if they contain only a small amount of proper variance.

A crucial contrast between dimension reduction models and variable selection using post-
LASSO or post-L2boosting is that the reduction of dimensions by a PCA may result in non
interpretable models where the dimensions are few but inexplicable. In contrast, the variables
selected using LASSO or L2boosting will be the same variables that enter the analysis.

There are other data driven model selection procedures such as forward and backward selection.
Such algorithms perform model selection by adding/withdrawing variables to/from a model. It
should be noted that a forward selection procedure that builds a model by taking the RSS as a
loss function in the setting of a multiple linear regression proceed in a similar way to L2boosting
with a linear base learner having η = 1.
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4 Previous research

This section is dedicated to the previous research this thesis builds upon. First, we review Angrist
and Krueger’s seminal paper on the returns to education. Next we cover the work by Belloni et al.
(2011) who demonstrate how the LASSO can be applied for variable selection on the example
of returns to education. Lastly, we cover the work by Luo & Spindler (2017), which brought
L2boosting to econometrics.

4.1 Angrist and Krueger (1991)

In Does Compulsory School Attendance Affect Schooling and Earnings? Angrist & Krueger (1991)
estimate returns to schooling using exogenously determined variability in compulsory school at-
tendance as an instrument for education. In the first-stage of the 2SLS the authors predict years
of schooling for an individual using the following equation:

Ei = Xiπ +
∑
c

Yicδc +
∑
c

∑
j

YicQijθjc + εi

Where variable Ei is education of individual i in number of years, Xi is a vector of covariates, Qij
is a dummy variable indicating if the ith individual was born in quarter j, j ∈ {1, 2, 3} and Yic

indicates whether the ith individual was born in year c, c ∈ {0, 1, 2...9}
They motivate the first stage by establishing that individuals born relatively early in a year

will be older when they start school and hence reach the legal drop out age with less schooling
than individuals born later in the year. In addition, they argue that quarter of birth is determined
exogenously, and does not influence earnings in any other way than through schooling.

In their original paper, Angrist and Krueger used two sets of instruments. The first estimate
used 27 instruments, three quarter of birth dummies interacted with nine year of birth dummies.
The second set includes additional interactions of quarter of birth with state of birth, producing a
total of 177 instruments. They also alluded to the possibility of introducing instruments composed
of interactions between all three variables; quarter of birth, year of birth, and state of birth. This
implied that the total number of possible instruments was 1530 (including quarter of birth without
interactions).

There is now wide consensus that the use of this many instruments is not good practice and
can be misleading due to inconsistency and finite sample bias (Bound et al. 1995). Bound et al.
(1995) provide that the F -statistics and R2 from the first stage regression can be informative when
determining the validity of the instruments.

The results in Angrist & Krueger (1991) have since been re-examined on several occasions. A
few examples, which do not concern variable selection but are nevertheless worth mentioning as they
are of interest in the context of machine learning include Angrist & Krueger (1995), Carrasco (2012),
Hansen & Kozbur (2014). The first study used split-sample instrumental variables (SSIV), which
exhibits a characteristic of machine learning: sample splitting. The other two studies employed
the ridge regression, explained in Subsection 3.6, to improve the IV estimation.
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4.2 Belloni, Chernozhukov & Hansen (2011)

Belloni et al. (2011) looked at a high-dimensional, sparse setting to employ a LASSO based method
called post-LASSO to eliminate weak and redundant instruments. High-dimensionality refers to a
setting where the number of observations n can potentially be larger than the number of available
predictors p. The sparsity condition implies that only a few of the available predictors are useful in
predicting the endogenous variable, i.e. only a few variables have coefficients significantly different
from zero. The post-LASSO estimator is an ordinary least squares (OLS) estimator but with an
additional step where the LASSO has been used for variable selection, beforehand. For detailed
description of the LASSO please refer to Subsection 3.6.

Belloni et al. (2011) demonstrated the merits of the post-LASSO first on simulated data and
on application to Angrist & Krueger (1991). The post-LASSO, with cross validation, successfully
selected 12 instruments among the full set of 1530 potential instruments. The most important in-
struments (quarter of birth, without interactions) were included. This is reassuring as the algorithm
independently selected these instruments without any previous ‘knowledge’ of which instruments
would be preferable from a theoretical point of view.

4.3 Luo & Spindler (2017)

Luo & Spindler (2017) presented the post-L2boosting as an underutilised and competitive alter-
native to the post-LASSO for variable selection among many variables in a sparse scenario. Here,
‘post’ refers to the same variable selection function as in the LASSO case and ‘L2’ refers to the
penalty term, which is the squared errors. Luo & Spindler (2017) illustrate their findings on both
simulated data, and an empirical example. In both cases, the data is relatively small and the
number of variables is large relative to the number of observations.

The simulated data has 100 observations and includes 200 variables with diminishing predic-
tive power. The post-L2boosting yields a slightly lower bias than estimates from the post-LASSO
algorithm. The empirical example is an IV estimation of the the relationship between GDP and ap-
pellate court decisions. Their dataset included 90 countries and 60 variables. The post-L2boosting
estimates ‘replicate the Lasso estimates but with smaller standard errors’ (Luo & Spindler 2017,
p. 3). The two findings seem to suggest that post-L2boosting outperforms post-LASSO in terms
of precision, whilst not inducing any larger bias.

Belloni et al. (2011) and Luo & Spindler (2017) propose methods for application in similar,
sparse situations. Luo & Spindler (2017) wrote their paper after Belloni et al. (2011) and claimed
that post-L2boosting match the performance of the post-LASSO for IV estimation. Thus, it
seems reasonable to expect that the proposed post-L2boosting algorithm should do equally well
on the empirical example chosen by Belloni et al. (2011). To the best of our knowledge, no such
comparison on this particular dataset has been made. It is also of interest to see how well the
L2boosting performs with increased observations and variables. Furthermore, we are curious to
study the behaviour of the F -statistic, as neither study reports them. This paper will explore this
in Sections 8 and 9.
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5 Specification of detailed research focus

When the choice of appropriate instruments is not obvious, the machine learning algorithms pre-
viously suggested by Belloni et al. (2011) and Luo & Spindler (2017) can guide the extraction of
instruments with a high predictive power. But which algorithm is the better of the two?

To test the usefulness of these methods we use data from Angrist & Krueger (1991). This is akin
to Belloni et al. (2011), but we extend the analysis to include the the post-L2boosting algorithm
proposed by Luo & Spindler (2017). This serves two purposes. First, we explore if post-L2boosting
is helpful in selecting among many variables when the data set is moderately big and includes only
a weak relationship between the target variable and the potential instruments. Secondly, we bridge
existing research by collectively linking LASSO and L2boosting to a classical data set and thereby
obtain useful comparisons on a well known benchmark. We hope to contribute to establishing the
merits (or lack thereof) of a data driven approach to variable selection.

In addition, we investigate how well the different approaches predict data out of sample. The
point of doing this is to see if more restrictive sets of variables chosen by the LASSO and the
L2boosting may be able to predict the data better than the more complex specification used in
Angrist & Krueger (1991).

It should be emphasised that we perform our analyses under the assumption of constant causal
effects, implying that those assigned the treatment (possibility of dropping out of school earlier) will
also comply with this, regardless of their unobserved individual characteristics. Reality, however,
may exhibit heterogeneous treatment effects; Angrist & Krueger (2001, p. 77) observed ‘the quarter-
of-birth instrument is most relevant for those who are at high probability of quitting school as soon
as possible, with little or no effect on those who are likely to proceed on to college’.

Our research question:

In the case of Angrist and Krueger (1991) under the assumption of constant causal effects,
which variable selection method is better, post-LASSO or post-L2boosting, in terms of mitigating
finite sample bias and inconsistency arising from many weak instruments?
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6 Method

In this section we describe the methods applied to the data in order to answer the research question.
By applying machine learning algorithms for variable selection we strive to reduce the number of
excluded instruments in an IV estimation which suffers from weak instruments.

6.1 Variable selection methods

Two variable selection algorithms from the machine learning literature are used: post-LASSO and
post-L2boosting. Both have been proposed as useful algorithms to filter out weak instruments and
were introduced in Section 3. For the post-LASSO, we use two variants for selecting the hyper
parameter λ. For the post-L2boosting, we use four variants based on two different criteria for
selecting the hyper parameter m.

6.1.1 Variable selection using post-LASSO

The first algorithm we implement for variable selection is the post-LASSO. As described above,
the post-LASSO consists of two step: one LASSO regression that shrinks the number of variables
and one subsequent OLS regression that represent the first stage of an IV estimation. Had we
used only the LASSO, there would be a risk of not all controls being selected. We need all the
controls in order to compare the different first stages of the IV regression produced by the different
methods. Had we used fewer control variables for some regressions, more would differ than just
the set of instruments. Hence, we use the post-LASSO, which allows us to add unselected control
variables from the first (LASSO) step to the second (OLS) step.

In the first step of the post-LASSO, a regular LASSO is used to predict the endogenous variable
x using variables in K ∪M , where K denotes the full set of control variables and M the full set
of instruments. We regress x on K and M using LASSO for our model specifications, allowing
the LASSO to set some coefficients to zero, thereby reducing the dimensionality of the data. The
instruments in M having non zero coefficients are then included in a set of qualified instruments,
Z, that we use to regress x on K and Z using OLS. The equations below illustrate how these two
steps of the post-LASSO relate to the two stages of the IV regression. The second stage of the
post-LASSO is the one later used for evaluation.

First step post-LASSO: xi = α′1Mi + α′2Ki + wi

Second step post-LASSO = First stage IV: xi = π′1Zi + π′2Ki + vi

Second stage IV: yi = β1x̂i + β′2Ki + ui

Like Belloni et al. (2011) we use 10-fold cross validation to determine the regularisation hyper
parameter λ, see Equation (8). The 10-fold cross validation then selects a λmin, which produces
the lowest value of the sum of squares loss function.

As can be seen in Equation (12), minimising the squared error loss function
∑n
i=1(yi − ŷi)2 is

intrinsically linked to keeping the R2 high by penalising coefficients toward 0 for variables that do
not predict well out of sample.

R2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(12)

Keeping the overall R2 high while selecting among instruments is analogous to keeping the
partial R2

x,z high, as only the weakest instruments are discarded. Thereby the issue of inconsistency
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arising from the partial R2
x,z in Equation (3) being reduced by the variable selection is considered.

As a result the variable selection has the potential to decrease finite sample bias while not worsening
inconsistency.

Belloni et al. (2011) include an additional, more conservative, plug-in rule that we do not im-
plement. Instead, we apply another method that induces more regularisation than λmin (Friedman
et al. 2001, p. 80). This method uses the same cross validation, but rather than choosing λmin, it
elects the most regularised λ that yields an error within one standard error from the minimum of
observed values in the cross validated loss-function, call this value λ1se. As λ1se is chosen to regu-
larise more, this value is expected to yield a more sparse solution to the variable selection problem
than λmin while remaining reasonably close to the estimated lowest level of the loss function.

6.1.2 Variable selection using post-L2boosting

As with the post-LASSO, the post-L2boosting algorithm consists of two steps, where the first
step involves selecting the variables and the second step involves OLS estimation. The variable
selection step in this case is performed by gradient boosting with a linear base learner. The linear
base learner assures that the output from the boosting is a linear function of a subset of variables
used to explain x. This subset of instruments Z, which have been selected by the boosting, enter
the last part of the post-L2boosting estimation. This is akin to the OLS estimation in the last
part of the post-LASSO, the only difference being what Z were chosen by the different algorithms.

We let the gradient boosting have an L2 loss function which gives a model optimised to reduce
the RSS. Each iteration seeks to minimize the loss function by finding the variable most correlated
with the residuals. We set the slowing parameter η = 1. A lower η would be helpful in discerning
a relationship between x, M , and K that does well in predicting x by allowing more iteration
steps without overfitting. However, the task is to do variable selection and tolerate that not all
explanatory power is accounted for. This is also the implementation used by Luo & Spindler
(2017).

Special care needs to be taken when setting the maximum number of iterations (mstop) per-
formed in the first step of the post-L2boosting. Ideally, this number is as small as possible for
computing reasons. Yet, it needs to be larger than the optimal number of iterations (m∗).3 As
mstop is set before knowing m∗, it has to be guessed or set by calibration. We reason that, if all
variables had been independent, the algorithm would have had a total of m = K + Z iterations.
This occurs because each variable can only be chosen once, as all variance related to that variable
is accounted for in the first inclusion and not updated by subsequent contributions. Setting all
variables to be independent before applying gradient boosting is called orthogonal gradient boost-
ing. We do not use orthogonal boosting, but it is helpful for understanding the regular L2boosting
(which we do use) and it helps us select mstop.

In order to prevent the first part of the post-L2boosting from overfitting, the optimal number
of iterations, m∗, needs to be determined. We first apply a k-fold cross validation to determine
the optimal number of iterations m∗. We let k = 10 as this is recommended in the literature
(Kohavi et al. 1995), and use the cross validation to find the number of iterations that minimises
the loss function. Specifically, data from 9 folds are used to train a model that is then evaluated
against data in the remaining fold by calculating the squared error loss function for each integer
m, 0 < m ≤ mstop. This process is repeated 10 times (until each fold has been left out once).
Hence, this process is demanding in terms of hardware requirements.

3Note the difference between the maximum number of iterations mstop, which is an arbitrary number selected
by the researcher and the optimal number of iterations m∗, which is selected through by the algorithm.
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As with the LASSO, a cross validated m∗ has the benefit of keeping the first stage R2 high
while discarding variables that do not predict well out of sample. Since at most one additional
variable is chosen at each iteration step, the stopping criteria results in a variable selection that
excludes variables that are unable to further reduce the

∑n
i=1(yi − ŷ)2, assuming not all variables

predict well out of sample.
However, minimising the loss function will not penalise based on the amount of variables in the

model. As long as the variables hold predictive power, the variables will be included. Since the
F -statistic is inversely related to the number of variables, we want the number of variables to be
reduced. Hence, minimising the loss function might therefore not be optimal in order to increase
the F statistic. Therefore, we also implement the data driven rule (Luo & Spindler 2016, p. 18).
According to this rule, optimal stopping is reached at m∗, which is the first iteration when the
following inequality holds:

σ̂2
m,n

σ̂2
m−1,n

> 1− C log(p)

n
(13)

Where σ̂2 is the estimated variance, m denotes the mth iteration, n is the sample size and C
is some constant and p is the number of variables. We report results for C = 0.25, C = 0.5 and
C = 0.75. In general, a larger value of C will be associated with earlier stopping.

6.2 Evaluation of chosen models

Mitigating finite sample bias, in the presence of weak instruments, is obtained by strengthening the
relationship between the instruments and the endogenous variable of interest. This thesis focuses
on how to strengthen this relationship by selecting only the strongest instruments. As suggested by
Bound et al. (1995), to evaluate the strength of the first stage, and therefore our variable selection
methods, two metrics are considered: the first stage R2, and the F -statistic. Both measures relate
to the relevance condition that is necessary for valid instruments. The F -statistic has a direct
relationship with the finite sample bias, as the bias is proportional to 1/F , while the R2 is more
related to inconsistency. By reporting both, we may appreciate how the overall bias may be affected
by the variable selection procedures.

6.2.1 Comparison based on the weak instruments F -statistics

The F -statistic is the joint significance test of all the instruments in the first stage. It has the null
hypothesis that the variables do not explain the endogenous variable x. Model specifications with
higher F -statistics are better in the sense that the risk of finite sample bias is lower (Bound et al.
1995) and may also lead to less biased estimates of the effect of x explaining y. Therefore, higher
values are preferable to lower values when interpreting this statistic. For an absolute comparison
of the merits of a single F -statistic, the ‘F > 10’ rule of thumb gives a useful indication. The
formula for the statistic testing for weak instruments was given in Equation (5).

Removing weak instruments could increase the F -statistic, especially if the removed instruments
are poor predictors of x, as the number of instruments, q, enter the denominator of Equation (5)
directly.
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6.2.2 Comparison based on the first stage R2

Due to its relatedness with inconsistency, Bound et al. (1995) suggested looking at the partial R2

for an indication of the strength of the excluded instruments in the first stage. We investigate this
in addition to the overall first stage R2 with the motivation that, given the same control variables
K, it is straightforward to make comparisons between different selections of instruments as the
controls do not change between different specifications.

To get a sense of the population first stage R2, we investigate how well the methods perform
out of sample. We expect more restrictive approaches to have a higher out of sample R2 if the
model is overfitted. A benefit of comparing out of sample R2 is that we get around the problem of
R2 always increasing with more variables, even if these variables do not have any true explanatory
power. We use the out of sample R2 instead of reporting the adjusted R2 on the basis that the
adjusted R2 is a biased estimator of the population R2. The second stage R2 is not reported as it
is irrelevant for our analysis.

If there are problems with overfitting, we would expect the out of sample R2 to increase for
models with a more restrictive choice of instruments. As mentioned before, increasing the R2

decreases inconsistency, as it enters the denominator of Equation (3). We note that this does
not evaluate the violation of instrumental exogeneity directly but does remedy the problems of
inconsistency if the R2 increases.

To estimate the out of sample R2, the data is first randomly split into an 80% training set that
is used to train the post-LASSO and post-L2boosting model fits. These trained models are then
used to make predictions on the withheld 20% of the data, the test set. The out of sample R2 is
calculated using:

R2 =

∑
(x̂i,test − xtrain)2∑
(xi,test − xtrain)2

(14)

Equation (14) is the proportion of explained variance to the proportion of total variance. The
reason for using xtrain rather than xtest is because both are estimators of the same quantity, namely
the population mean of x, and xtrain is a better estimator because it was estimated with more
data.
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7 Data

For implementing our method, we work with the same data as Angrist & Krueger (1991). This is
a publicly available sample from the US population census conducted on 1 April 1980. The data
set includes 329,509 observations, with data on the log of weekly wages, years of education, year
of birth, quarter of birth, and state of residence at the time of the census. The studied population
is white males, born 1930–1939.

7.1 Potential instruments

In their original paper, Angrist & Krueger (1991) used quarter of birth (QOB) interacted with year
of birth (YOB) to identify variations of educational attainment within a given year. They also used
quarter of birth interacted with state of birth to allow for seasonal patterns within states.

We chose to include pure quarter of birth dummy variables in addition to the variables used by
Angrist & Krueger (1991). This, is in accordance with Belloni et al. (2011). Note that including
these three dummy variables means that we need to exclude three (QOB)*(YOB) dummies.

Belloni et al. (2011) use post-LASSO to select amongst a total of 1530 potential instruments.
Due to the computational complexities of cross validating the L2boosting algorithm, we restrict
ourselves to a set of 180 potential instruments. Selection among these variables also constitute a
more direct comparison to the original set of instruments used by Angrist & Krueger (1991).

Type of instrument Number of instruments
Quarter of birth 3
Quarter of birth * Year of birth 27
Quarter of birth * State of birth 150
Total 180

Table 1: Overview of potential instruments

We analyse two different model specifications, found in columns 1 through 4 of Table VII in
Angrist & Krueger (1991). These specifications were chosen because they include the maximum
number of instruments, for which we have available data. The first model, hereafter referred to as
age excluded, is an IV estimate of the returns to schooling and includes control variables for year
of birth and state of birth. The equation for age excluded is:

Ei = Xiπ +

3∑
j=1

Qijωj +

8∑
c=0

3∑
j=1

YicQijθjc +

50∑
s=1

3∑
j=1

SisQijτsj + εi (15)

Where Xi is a vector of covariates, with π being the vector coefficients related to the variables.
The three summations refer to the different instruments; quarter of birth Q, quarter of birth
interacted with year of birth Y , and quarter of birth interacted with state of birth S, one for each
of the 50 states.

The second model, hereafter referred to as age included, includes covariates for age and age2,
in addition to the covariates in the previous model. Since age and age2 are measured in quarters,
two instruments must be removed from age included to avoid perfect multicollinearity. This leaves
us with 178 potential instruments for the age included replication.

7.2 Data preparation

We load and prepare the data in the statistical computations program R (R Core Team 2017). The
quarter of birth, year of birth, and state of birth variables are redefined as dummy variables, with
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one dummy per category. We create the interaction terms for quarter of birth (QOB) multiplied by
year of birth (YOB), and quarter of birth multiplied by state of birth (State).

We remove all variables for being born in 1939 or in the fourth quarter, the dummy variables
and their interaction terms. For the age included specification, which includes two age variables,
we remove the dummy variable for being born in the third quarter of 1938 (QOBYOB.38) and the
dummy variable for being born in the third quarter and the state of Wisconsin (QOBState.3_55).

To facilitate the model specifications, we name the total set of potential instruments M, the set
of control variables for replicating age excluded K.2, and the set of control variables for replicating
age included as K.4. Table 2 serves as a control to verify that everything is prepared in accordance
with the study we replicate.

Table 2: Replication of table VII in Angrist & Krueger (1991)

Dependent variable:
Return to education Return to education Return to education Return to education

OLS instrumental OLS instrumental
variable variable

(1) (2) (3) (4)
Years of education 0.067∗∗∗ 0.093∗∗∗ 0.067∗∗∗ 0.091∗∗∗

(0.0003) (0.009) (0.0003) (0.011)
age and age2 Excluded Excluded Included Included

Observations 329,509 329,509 329,509 329,509
R2 0.129 0.114 0.129 0.117
Adjusted R2 0.129 0.114 0.129 0.117
Residual Std. Error 0.634 (df = 329268) 0.639 (df = 329448) 0.634 (df = 329268) 0.638 (df = 329446)
F Statistic (df = 240; 329268) 203.631∗∗∗ 203.631∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

7.2.1 Parallelisation and random seed

Our calculations involve parallelisation for cross validating the L2boosting in order to facilitate
faster calculations. This makes use of a method called forking which is only possible on Unix
based computers. In order to reproduce the results on a computer running on Windows, the
parameter papply (in the function cvrisk in the package mboost by Hothorn et al. (2017)) needs
to be changed from mclapply to lapply. Because the involvement of several computing cores
means the standard seed setting in R will not suffice to reproduce any results, we use the random
number generator developed in L’ecuyer et al. (2002) by setting the R random number generator
RNGkind to ‘L’Ecuyer-CMRG’.

7.3 Programming the LASSO

In order to perform the LASSO, we use the R package glmnet and the function cv.glmnet. The
function does k-fold cross validation (we set k = 10) over 100 automatically generated values of
λ and returns both λmin and λ1se (see Subsection 6.1.1) based on the MSE loss function. λmin
and λ1se returned by the cross validation are indicated in Figure 3 by the dashed lines. The left
dashed line in each graph indicate λmin and the right dashed line in each graph indicate λ1se. The
left graph represents the age excluded specification and the graph to the right represents the age
included specification. Values above the graph show how many variables are associated with each
value of log(λ), measured on the bottom axis.

In glmnet, we set the parameter alpha to 1, meaning that the penalty term should only include
the absolute value of the parameters, and no squared functions thereof. (If we had set alpha=0
we would have had a ridge regression, and for any value 0< alpha <1 we have a combination of
LASSO and the ridge regression (an elastic net).)
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Figure 3: Cross validated λ
The left and the right graphs show the cross validated λ with corresponding MSE for model specifications
age excluded and age included respectively. The values above the graphs indicate the number of chosen
variables. Note that the right dashed line intersects the red curve at the same height as the upper standard
error by the left dashed line.

7.4 Programming the boosting

We use the R-package mboost by Hothorn et al. (2017) to implement the L2boosting and use the
function glmboost which we give a least squares (L2) loss function by setting the family argument
to GaussReg(). We also allow the function to centre the variables for quicker convergence.

Despite the variables in our data set being correlated (and we do not implement orthogonal
gradient boosting) the idea of keeping the number of iterations in the region of K+M is used and
we set the maximum number of iterations at 250 (see 6.1.2).

Figure 4 shows the 10-fold cross validated estimations of out of sample MSE in thin grey, and
the average estimated out of sample MSE in black produced by the function cvrisk. The point
where the cross validated average MSE is the lowest occurs for the optimal number of iterations
(m∗). 250 turned out to be sufficiently large maximum number of iterations, surpassing the optimal
number of iterations; m∗excl = 213 and m∗incl = 247. These parameters are relatively high, meaning
that many instruments were selected. We also see that the curve showing the squared errors is
relatively flat after about 40 iterations. This suggests that reducing the number of instruments
by earlier stopping would not increase the MSE substantially. We should also note the spread
between the different cross validation curves (in thin grey). The spread indicates a high variance
and that the stopping could have occurred after much fewer iterations, depending on chance.
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Figure 4: Cross validated m∗

The figure shows the 10-fold cross validation (one value of the squared error for each fold and every value
of m). The black line is the average squared error associated with each 0 < m ≤ 250. The cross validation
finds that m∗

excl = 213 and m∗
incl = 247.

We report the optimal number of iterations associated with different values of C in Table 3.
The data dependent stopping rule stops earlier for higher values of C, and earlier than the cross
validated (cv) stopping criterion for any value of C.

Table 3: Optimal stopping for cross validation and different values of C

Post-L2boosting
age and age2 Excluded Included
C CV 0.25 0.5 0.75 CV 0.25 0.5 0.75
m∗ 213 133 99 89 247 124 86 73

7.5 Programming the IV estimations

The IV estimations are implemented using the function ivreg from the R package AER by Kleiber
& Zeileis (2008). The output provides diagnostics such as the test for weak instruments that is the
first stage F -statistic. The first stage R2 is obtained by regressing years of education (EDUC) on
chosen instruments Z and appropriate controls K, using the standard R function lm. The Tables
8 and 9 in the appendix report what instruments were chosen for each model specification.
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8 Results

Table 4 shows the number of instruments selected by the LASSO and L2boosting for the dif-
ferent stopping criteria; 10-fold cross validation and the data dependent stopping rules specified
in Subsection 3.7. The full tables of chosen instruments can be found in Table 8 and 9 in Ap-
pendix. LASSO with λ1se is the most conservative variable selection method and select the fewest
instruments. On the other end of the spectrum, we have methods with cross validated stopping
criteria. This indicates that many instruments do contain some information and contribute to
explain educational attainment.

Number of instruments selected
age and age2 Excluded Included
Variable selection method
post-LASSO, λ1se 11 9
post-LASSO, λmin 119 113
post-Boosting, CV 111 122
post-Boosting, C = 0.25 61 65
post-Boosting, C = 0.5 40 35
post-Boosting, C = 0.75 32 25

Table 4: Number of instruments selected by the various algorithm specifications.

Tables 5 and 6 show 2SLS estimates on the whole data set for our two model specifications age
excluded and age included respectively. Column 1 uses the full set of 180, or 1784 instruments.
Columns 2 and 3 show estimates for the two versions of the post-LASSO. Column 4 through 7
show estimates for post-L2boosting with different tuning techniques for determining the stopping
rule; 10-fold cross validation, C = 0.25, C = 0.50, and C = 0.75.

In the bottom rows of Tables 5 and 6 we find the first stage ‘F -statistic’. Post-LASSO, with
the conservative stopping rule (λ1se), results in the highest F -statistic for both specifications and
exceeds the F = 10 threshold for the age included specification. The F -statistic differs substantially
for the different versions of the post-L2boosting algorithm, depending on the stopping criteria. We
find that the most conservative stopping rule for post-L2boosting results in the highest F -statistics.
However, no stopping rule produces an F-statistic exceeding the F = 10 threshold.

In comparing the two algorithms tuned by the same technique (cross validation), post-L2boosting
yields slightly higher F -statistics. However, the difference is small considering both algorithms ex-
hibit large variances in the cross validated values of the loss function (see figures 3 and 4). The
large variability between the MSEs for the L2boosting, the broad confidence intervals of the cross
validated errors of the LASSO, and the flat shapes of the estimated MSEs all suggest that the
number of iterations, and selected λ, is sensitive to random seed.

Standard errors are fairly similar across the different methods, and all have a significance level of
1%. This suggests that there is no significant trade-off in precision between the different methods.

4Recall that since two control variables, age and age2, are added in age included two instruments are removed.
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Table 5: Age excluded specification.

Dependent variable:

Log weekly wage
AK91 post-LASSO post-L2boost

λ1se λmin mcv = 213 m.25 = 133 m.5 = 99 m.75 = 89

(1) (2) (3) (4) (5) (6) (7)

Years of education 0.093∗∗∗ 0.105∗∗∗ 0.092∗∗∗ 0.094∗∗∗ 0.086∗∗∗ 0.082∗∗∗ 0.083∗∗∗

(0.009) (0.015) (0.010) (0.010) (0.010) (0.011) (0.012)

Controls
9 Year of birth dummies Y es Y es Y es Y es Y es Y es Y es

50 State of birth dummies Y es Y es Y es Y es Y es Y es Y es

Age and age squared No No No No No No No

Statistics
1st stage R2 0.0582 0.0574 0.0582 0.0581 0.0579 0.0578 0.0577

Partial R2 0.00141 0.00055 0.00133 0.00132 0.00111 0.00097 0.00088

F -statistic 2.582 16.589 3.692 3.911 5.983 7.96 9.02

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
n = 329509. Standard error in parentheses. ‘AK91’ refers to a model with all instruments, ‘λ1se’ denotes
post-LASSO with regularisation parameter set using the 1 standard error rule, ‘λmin’ denotes post-LASSO
with regularisation parameter set using cross validation. mcv denotes L2boosting with number of iterations
set using cross validation. m.25, m.5, and m.75 denotes L2boosting with number of iterations set by the
inequality rule for different values of C indicated by the subscript.

Table 6: Age included specification.

Dependent variable:

Log weekly wage
AK91 post-LASSO post-L2boost

λ1se λmin mcv = 247 m.25 = 124 m.5 = 86 m.75 = 73

(1) (2) (3) (4) (5) (6) (7)

Years of education 0.091∗∗∗ 0.111∗∗∗ 0.089∗∗∗ 0.092∗∗∗ 0.086∗∗∗ 0.075∗∗∗ 0.078∗∗∗

(0.011) (0.024) (0.012) (0.011) (0.012) (0.014) (0.016)

Controls
9 Year of birth dummies Y es Y es Y es Y es Y es Y es Y es

50 State of birth dummies Y es Y es Y es Y es Y es Y es Y es

Age and age squared Y es Y es Y es Y es Y es Y es Y es

Statistics
1st stage R2 0.0582 0.0574 0.058 0.0582 0.058 0.0578 0.0577

Partial R2 0.00106 0.00023 0.00079 0.00101 0.00081 0.00058 0.00046

F -statistic 1.972 8.247 2.292 2.72 4.09 5.424 6.056

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
n = 329509. Standard error in parentheses. ‘AK91’ refers to a model with all instruments, ‘λ1se’ denotes
post-LASSO with regularisation parameter set using the 1 standard error rule, ‘λmin’ denotes post-LASSO
with regularisation parameter set using cross validation. mcv denotes L2boosting with number of iterations
set using cross validation. m.25, m.5, and m.75 denotes L2boosting with number of iterations set by the
inequality rule for different values of C indicated by the subscript.
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Table 7 shows the R2 from the first stage regression, estimated on a test set. The differences
between the different techniques are on the order of less than 10−3 in magnitude. The original
specification obtains the highest out of sample first stage R2. However, any small decrease may
have a large effect on consistency, given that the R2

x,z is already low in the original study (0.00141
and 0.00106). The R2

x,z seems to decrease faster for the model specification age included and is
at its lowest for post-LASSO with λ1se. Furthermore, Table 7 does not indicate that the original
specification in Angrist & Krueger (1991) (AK91) was overfitted, since even the cross validated
tunings of the algorithms had lower out of sample R2 than the original specification. Hence, when
the algorithms select fewer variables we obtain simpler models with higher F -statistics at the
expense of out of sample performance (R2).

Table 7: R2 on a 20 % test set
age and age2 AK91 post-L2boosting post-LASSO

mcv m.25 m.5 m.75 λ1se λmin

Excluded 0.05804 0.05788 0.05768 0.05752 0.05744 0.05718 0.05790
Included 0.05803 0.05791 0.05770 0.05747 0.05735 0.05715 0.05780

This table shows out of sample R2 for the different variable selection methods and their variations,
compared to original model specification in Angrist & Krueger (1991). mcv indicates m∗ selected using
cross validation while m.25, m.5, and m.75 indicate m∗ for different values of C denoted in the subscript.
λ1se indicates λ chosen by the one standard error stopping rule, and λmin indicates the cross validated λ.
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9 Discussion

Both LASSO and boosting are successful to the sense that they select quarter of birth without
any interaction terms, which is ‘the variable that most cleanly satisfies Angrist’s and Krueger’s
argument for the validity of the instrument set’ (Belloni et al. 2011, p. 20). In addition, there
are apparent similarities between the variables chosen by the different variable selection methods.
This is reassuring because if there were no pattern, it would either mean that no instrument was
superior in predicting educational attainment (which we know not to be true); or there would
have been something wrong with one or several of the methods used. Not surprisingly, as shown
in Tables 8 and 9, more restrictive versions of the same algorithm never select instruments not
selected by more relaxed versions.

L2boosting yields promising results when we compare columns 3 and 4 in Tables 8 and 9 where
both hyper parameters were chosen by cross validation. Comparing the F -statistics for post-
L2boosting and post-LASSO show that post-L2boosting achieves slightly higher F -statistics. In
addition, we note that the R2

x,z in Tables 8 and 9 do not differ substantially between the different
models. This means that finite sample bias is further reduced when exchanging post-LASSO for
post-L2boosting (since F increases). Meanwhile, the inconsistency remains roughly constant (since
the R2

x,z differs little). The overall effect is therefore a smaller bias for the L2boosting compared
to the post-LASSO. On the other hand, Figures 3 and 4 indicate high standard errors for the
estimated MSE, suggesting that the results may be sensitive to random seed.

More restrictive criteria than tuning by 10-fold cross validation seem to generally yield more
significant F -statistics. Consequently, using the 1 standard error rule with the L2boosting algo-
rithm to select an m1se < m∗ could be beneficial as such a rule could yield a more restrictive
variable selection. On the other hand, higher F -statistics are also associated with a lower R2

x,z

and test set R2. Therefore, if there is cause for concern regarding the exogeneity assumption,
deviating from the cross validated hyper parameters may be undesirable as this is likely to increase
the inconsistency of the IV estimate. On the other hand, if the concern regards finite sample bias,
being more restrictive in the variable selection process may be preferable as the F -statistics seem
likely to increase.

Concretely, we see that post-LASSO with λ1se is superior in terms of increasing the F -statistic.
The quantitative difference between the best F -statistics from the two algorithms is 16.589 com-
pared to 9.02 for model specification age excluded. This is a substantial, and qualitatively sig-
nificant, difference as the boosting algorithm does not produce an F -statistic above the F = 10

threshold. In practice, therefore, using the wrong method could lead the researcher to incorrectly
conclude that the IV-estimate is insignificant.
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10 Conclusion

We have tried to determine which variable selection method, post-LASSO or post-L2boosting,
works better by tying existing research to a single data set and adding theoretically motivated
evaluation metrics. In doing so, we wish to contribute to bridging the gap between machine
learning and econometrics and show that the two disciplines can be thought of as complementary.

Our approach provides comparable results indicating that variable selection per se is helpful
before an IV estimation when there are many weak instruments to choose from, and the researcher
has no a priori knowledge of what instruments should be included. This is consistent with previous
findings. However, we are unable to declare any algorithm as strictly better than the other, espe-
cially if there is cause for concern regarding instrument endogeneity. If we can assume instrument
exogeneity, post-LASSO with λ1se is the better choice, as it yields the highest F -statistic.

There seems to be a trade-off between inconsistency and finite sample bias that is determined
by the choice of hyper parameters λ and m. However, the fact that our analysis was only made for
a single data set means we only get an indication for how the results might extend to other data
sets.

In conclusion, we recommend the applied researcher to think carefully about the data at hand
before selecting the regularisation hyper parameters. Regarding what algorithm to use, both post-
LASSO and post-L2boosting seem helpful, with the former being easier to implement, faster to
compute, and producing the highest F -statistic in our study. An avenue for further research
could be to apply more homogeneous hyper parameter tuning techniques, such as investigating
the 1 standard error rule for L2boosting, and to perform similar analyses on simulated and other
empirical data sets.
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Appendix

In Tables 8 and 9, x signifies that the instrument has been selected by the variable selection
method, and thus included in the IV regression. QTR.1 is a dummy variable for being born in the
first quarter (of any year), QOBYOB.10 is a dummy variable for being born the first quarter of 1930
and QOBState.1_01 is a dummy variable for being born in the first quarter and in state number
01 (Alabama). The other variables follow the same logic.
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Table 8: For age excluded specification
Instruments λ1se λmin mcv m.25 m.5 m.75

1 QTR.1 X X X X X X
2 QTR.2 . X X X X X
3 QTR.3 . . . . . .
4 QOBYOB.10 X X X X X X
5 QOBYOB.11 . X . . . .
6 QOBYOB.12 . X X X X X
7 QOBYOB.13 . . X X . .
8 QOBYOB.14 . X X X . .
9 QOBYOB.15 . X X X X X

10 QOBYOB.16 . X . . . .
11 QOBYOB.17 . X X X . .
12 QOBYOB.18 . . . . . .
13 QOBYOB.20 . X X X X X
14 QOBYOB.21 X X X X X .
15 QOBYOB.22 . X X . . .
16 QOBYOB.23 . X X . . .
17 QOBYOB.24 . . . . . .
18 QOBYOB.25 . . . . . .
19 QOBYOB.26 . X . . . .
20 QOBYOB.27 . X X X . .
21 QOBYOB.28 . X . . . .
22 QOBYOB.30 . X X X X X
23 QOBYOB.31 . X X . . .
24 QOBYOB.32 . X X X X X
25 QOBYOB.33 . X X . . .
26 QOBYOB.34 . X X X X X
27 QOBYOB.35 . X . . . .
28 QOBYOB.36 . . . . . .
29 QOBYOB.37 . . . . . .
30 QOBYOB.38 . X X X X X
31 QOBState.1_01 . X X X . .
32 QOBState.1_02 . X X . . .
33 QOBState.1_04 . X X . . .
34 QOBState.1_05 . X X . . .
35 QOBState.1_06 . . X X . .
36 QOBState.1_08 . X X X X X
37 QOBState.1_09 . . . . . .
38 QOBState.1_10 . X X . . .
39 QOBState.1_11 . X X X X .
40 QOBState.1_12 . X X . . .
41 QOBState.1_13 . . . . . .
42 QOBState.1_15 . X . . . .
43 QOBState.1_16 . . . . . .
44 QOBState.1_17 . X X X X X
45 QOBState.1_18 . . . . . .
46 QOBState.1_19 . X X . . .
47 QOBState.1_20 . X X X . .
48 QOBState.1_21 X X X X X X
49 QOBState.1_22 . X X . . .
50 QOBState.1_23 . X . . . .
51 QOBState.1_24 X X X X X X
52 QOBState.1_25 . X X . . .
53 QOBState.1_26 . . . . . .
54 QOBState.1_27 . X X X X X
55 QOBState.1_28 . X X . . .
56 QOBState.1_29 . . X . . .
57 QOBState.1_30 . . . . . .
58 QOBState.1_31 . X X X . .
59 QOBState.1_32 . . . . . .
60 QOBState.1_33 . . . . . .
61 QOBState.1_34 . . . . . .
62 QOBState.1_35 . X X . . .
63 QOBState.1_36 . X X X . .
64 QOBState.1_37 . X X X X .
65 QOBState.1_38 . X X X X X
66 QOBState.1_39 . X X . . .
67 QOBState.1_40 . . . . . .
68 QOBState.1_41 . . . . . .
69 QOBState.1_42 . X X . . .
70 QOBState.1_44 . . . . . .
71 QOBState.1_45 . X . . . .
72 QOBState.1_46 . X X X . .
73 QOBState.1_47 . X X X X X
74 QOBState.1_48 . X X . . .
75 QOBState.1_49 . X X . . .
76 QOBState.1_50 . X X . . .
77 QOBState.1_51 . X X X X X
78 QOBState.1_53 . . . . . .
79 QOBState.1_54 . X . . . .
80 QOBState.1_55 . . X X . .
81 QOBState.2_01 . X X X . .
82 QOBState.2_02 . X X X X X
83 QOBState.2_04 . X X X X X
84 QOBState.2_05 X X X X X X
85 QOBState.2_06 . X X X X X
86 QOBState.2_08 . . . . . .
87 QOBState.2_09 . X X X X .
88 QOBState.2_10 . . X . . .
89 QOBState.2_11 . . . . . .
90 QOBState.2_12 . X X X . .
91 QOBState.2_13 X X X X X X

Instruments λ1se λmin mcv m.25 m.5 m.75
92 QOBState.2_15 . X X . . .
93 QOBState.2_16 . X . . . .
94 QOBState.2_17 . X X X X X
95 QOBState.2_18 . . . . . .
96 QOBState.2_19 . . . . . .
97 QOBState.2_20 . X X . . .
98 QOBState.2_21 X X X X X X
99 QOBState.2_22 . X X . . .

100 QOBState.2_23 . X . . . .
101 QOBState.2_24 . . X . . .
102 QOBState.2_25 . . . . . .
103 QOBState.2_26 . X X X . .
104 QOBState.2_27 . . . . . .
105 QOBState.2_28 . X X . . .
106 QOBState.2_29 . X X . . .
107 QOBState.2_30 . . X . . .
108 QOBState.2_31 . . . . . .
109 QOBState.2_32 . X X . . .
110 QOBState.2_33 . X X . . .
111 QOBState.2_34 . . . . . .
112 QOBState.2_35 . X . . . .
113 QOBState.2_36 . X X X X X
114 QOBState.2_37 X X X X X X
115 QOBState.2_38 . X X X . .
116 QOBState.2_39 . X . . . .
117 QOBState.2_40 . X X X . .
118 QOBState.2_41 . X . . . .
119 QOBState.2_42 . . . . . .
120 QOBState.2_44 . X X X X .
121 QOBState.2_45 . X X X X .
122 QOBState.2_46 . . . . . .
123 QOBState.2_47 X X X X X X
124 QOBState.2_48 X X X X X X
125 QOBState.2_49 . X X . . .
126 QOBState.2_50 . X . . . .
127 QOBState.2_51 . X X X X .
128 QOBState.2_53 . X X . . .
129 QOBState.2_54 . X X . . .
130 QOBState.2_55 . X X X X X
131 QOBState.3_01 . X X X X X
132 QOBState.3_02 . X X X . .
133 QOBState.3_04 . . . . . .
134 QOBState.3_05 . X X . . .
135 QOBState.3_06 . X . . . .
136 QOBState.3_08 . X X . . .
137 QOBState.3_09 . . . . . .
138 QOBState.3_10 . X X . . .
139 QOBState.3_11 . . . . . .
140 QOBState.3_12 . X . . . .
141 QOBState.3_13 . . . . . .
142 QOBState.3_15 . X X X X X
143 QOBState.3_16 . . X . . .
144 QOBState.3_17 . X X X . .
145 QOBState.3_18 . . . . . .
146 QOBState.3_19 . . X . . .
147 QOBState.3_20 . X X . . .
148 QOBState.3_21 . X X . . .
149 QOBState.3_22 . . . . . .
150 QOBState.3_23 . X X . . .
151 QOBState.3_24 . . X . . .
152 QOBState.3_25 . . . . . .
153 QOBState.3_26 . . . . . .
154 QOBState.3_27 . . X . . .
155 QOBState.3_28 . X . . . .
156 QOBState.3_29 . . X . . .
157 QOBState.3_30 . . . . . .
158 QOBState.3_31 . . . . . .
159 QOBState.3_32 . . X . . .
160 QOBState.3_33 . . . . . .
161 QOBState.3_34 . X X . . .
162 QOBState.3_35 . X X . . .
163 QOBState.3_36 . X X . . .
164 QOBState.3_37 . X X X . .
165 QOBState.3_38 . . . . . .
166 QOBState.3_39 . . . . . .
167 QOBState.3_40 . . . . . .
168 QOBState.3_41 . . . . . .
169 QOBState.3_42 . X X X . .
170 QOBState.3_44 . X . . . .
171 QOBState.3_45 . X X X . .
172 QOBState.3_46 . . X . . .
173 QOBState.3_47 . X X X X .
174 QOBState.3_48 . X . . . .
175 QOBState.3_49 . . . . . .
176 QOBState.3_50 . . X . . .
177 QOBState.3_51 . . . . . .
178 QOBState.3_53 . X . . . .
179 QOBState.3_54 . X . . . .
180 QOBState.3_55 . X . . . .
181 Count 11 119 111 61 40 32

‘QTR.q’ indicates being born in quarter q. ‘QOBYOB.qy’ means being born in quarter q year y. ‘QOB-
STATE.q_ss’ means being born quarter q in state ss. Marked ‘x’ means the instrument was chosen by
the algorithm in the column. mcv indicates m∗ selected using cross validation while m.25, m.5, and m.75

indicate m∗ for different values of C denoted in the subscript. λ1se indicates λ chosen by the one standard
error stopping rule, and λmin indicates the cross validated λ.
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Table 9: For age included specification
Instruments λ1se λmin mcv m.25 m.5 m.75

1 QTR.1 X X X X X X
2 QTR.2 . . . . . .
3 QTR.3 . X X . . .
4 QOBYOB.10 X X X X X X
5 QOBYOB.11 . . X . . .
6 QOBYOB.12 . X X X . .
7 QOBYOB.13 . X X X X X
8 QOBYOB.14 . X X . . .
9 QOBYOB.15 . X X X X .

10 QOBYOB.16 . X X . . .
11 QOBYOB.17 . X X X . .
12 QOBYOB.18 . X X . . .
13 QOBYOB.20 . X X . . .
14 QOBYOB.21 . X X . . .
15 QOBYOB.22 . . . . . .
16 QOBYOB.23 . X X . . .
17 QOBYOB.24 . . . . . .
18 QOBYOB.25 . X X . . .
19 QOBYOB.26 . X X . . .
20 QOBYOB.27 . X X X X .
21 QOBYOB.28 . X X . . .
22 QOBYOB.30 . X X X X .
23 QOBYOB.31 . X X X X X
24 QOBYOB.32 . X X . . .
25 QOBYOB.33 . X X X . .
26 QOBYOB.34 . X X . . .
27 QOBYOB.35 . X X X . .
28 QOBYOB.36 . . . . . .
29 QOBYOB.37 . X X . . .
30 QOBState.1_01 . X X X . .
31 QOBState.1_02 . X X . . .
32 QOBState.1_04 . X X X . .
33 QOBState.1_05 . . X . . .
34 QOBState.1_06 . X X X . .
35 QOBState.1_08 . . X X X X
36 QOBState.1_09 . X . . . .
37 QOBState.1_10 . X X . . .
38 QOBState.1_11 . X X X X .
39 QOBState.1_12 . . X . . .
40 QOBState.1_13 . X . . . .
41 QOBState.1_15 . . X . . .
42 QOBState.1_16 . X . . . .
43 QOBState.1_17 . . X X X X
44 QOBState.1_18 . X X . . .
45 QOBState.1_19 . . . . . .
46 QOBState.1_20 . X X X . .
47 QOBState.1_21 X X X X X X
48 QOBState.1_22 . X X . . .
49 QOBState.1_23 . X . . . .
50 QOBState.1_24 X X X X X X
51 QOBState.1_25 . . X . . .
52 QOBState.1_26 . X . . . .
53 QOBState.1_27 . X X X X X
54 QOBState.1_28 . . X . . .
55 QOBState.1_29 . . X . . .
56 QOBState.1_30 . X . . . .
57 QOBState.1_31 . . X X . .
58 QOBState.1_32 . . X . . .
59 QOBState.1_33 . . . . . .
60 QOBState.1_34 . X . . . .
61 QOBState.1_35 . X X . . .
62 QOBState.1_36 . X X X . .
63 QOBState.1_37 . X X X X .
64 QOBState.1_38 . X X X X X
65 QOBState.1_39 . . X X . .
66 QOBState.1_40 . . X . . .
67 QOBState.1_41 . X . . . .
68 QOBState.1_42 . . X . . .
69 QOBState.1_44 . X . . . .
70 QOBState.1_45 . X X . . .
71 QOBState.1_46 . X X X . .
72 QOBState.1_47 . X X X X X
73 QOBState.1_48 . X X X . .
74 QOBState.1_49 . X X X . .
75 QOBState.1_50 . X X . . .
76 QOBState.1_51 . . X X X X
77 QOBState.1_53 . X . . . .
78 QOBState.1_54 . . . . . .
79 QOBState.1_55 . X X X . .
80 QOBState.2_01 . X X X X .
81 QOBState.2_02 . X X X X X
82 QOBState.2_04 . X X X X X
83 QOBState.2_05 X X X X X X
84 QOBState.2_06 . . X X X .
85 QOBState.2_08 . X . . . .
86 QOBState.2_09 . . X X . .
87 QOBState.2_10 . . X . . .
88 QOBState.2_11 . . . . . .
89 QOBState.2_12 . X X . . .
90 QOBState.2_13 X X X X X X

Instruments λ1se λmin mcv m.25 m.5 m.75
91 QOBState.2_15 . X X . . .
92 QOBState.2_16 . X . . . .
93 QOBState.2_17 . . X X X X
94 QOBState.2_18 . . . . . .
95 QOBState.2_19 . X X X . .
96 QOBState.2_20 . X X . . .
97 QOBState.2_21 X X X X X X
98 QOBState.2_22 . X X . . .
99 QOBState.2_23 . . X . . .

100 QOBState.2_24 . . . . . .
101 QOBState.2_25 . X . . . .
102 QOBState.2_26 . . X . . .
103 QOBState.2_27 . X X . . .
104 QOBState.2_28 . X X . . .
105 QOBState.2_29 . . X X . .
106 QOBState.2_30 . . X . . .
107 QOBState.2_31 . . . . . .
108 QOBState.2_32 . X X . . .
109 QOBState.2_33 . . X . . .
110 QOBState.2_34 . . . . . .
111 QOBState.2_35 . X . . . .
112 QOBState.2_36 . X X X . .
113 QOBState.2_37 . X X X X X
114 QOBState.2_38 . X X X . .
115 QOBState.2_39 . X X X . .
116 QOBState.2_40 . X X X . .
117 QOBState.2_41 . . . . . .
118 QOBState.2_42 . X . . . .
119 QOBState.2_44 . X X X X .
120 QOBState.2_45 . . X X X X
121 QOBState.2_46 . X . . . .
122 QOBState.2_47 X X X X X X
123 QOBState.2_48 X X X X X X
124 QOBState.2_49 . X X . . .
125 QOBState.2_50 . X . . . .
126 QOBState.2_51 . X X X X X
127 QOBState.2_53 . X . . . .
128 QOBState.2_54 . X X X . .
129 QOBState.2_55 . . X X X X
130 QOBState.3_01 . X X X X .
131 QOBState.3_02 . . X X . .
132 QOBState.3_04 . X . . . .
133 QOBState.3_05 . X X . . .
134 QOBState.3_06 . X . . . .
135 QOBState.3_08 . . . . . .
136 QOBState.3_09 . X . . . .
137 QOBState.3_10 . . X . . .
138 QOBState.3_11 . X . . . .
139 QOBState.3_12 . . . . . .
140 QOBState.3_13 . X X . . .
141 QOBState.3_15 . . X X X X
142 QOBState.3_16 . X X . . .
143 QOBState.3_17 . . X X . .
144 QOBState.3_18 . . . . . .
145 QOBState.3_19 . X X X . .
146 QOBState.3_20 . X X . . .
147 QOBState.3_21 . . X X . .
148 QOBState.3_22 . X . . . .
149 QOBState.3_23 . . X . . .
150 QOBState.3_24 . . . . . .
151 QOBState.3_25 . . . . . .
152 QOBState.3_26 . . . . . .
153 QOBState.3_27 . X X . . .
154 QOBState.3_28 . . . . . .
155 QOBState.3_29 . . X . . .
156 QOBState.3_30 . . . . . .
157 QOBState.3_31 . . . . . .
158 QOBState.3_32 . . X . . .
159 QOBState.3_33 . . . . . .
160 QOBState.3_34 . X X . . .
161 QOBState.3_35 . X X . . .
162 QOBState.3_36 . X X . . .
163 QOBState.3_37 . . X X . .
164 QOBState.3_38 . . . . . .
165 QOBState.3_39 . . . . . .
166 QOBState.3_40 . . . . . .
167 QOBState.3_41 . X . . . .
168 QOBState.3_42 . X X X . .
169 QOBState.3_44 . X . . . .
170 QOBState.3_45 . . X X . .
171 QOBState.3_46 . X . . . .
172 QOBState.3_47 . X X X X .
173 QOBState.3_48 . . . . . .
174 QOBState.3_49 . . . . . .
175 QOBState.3_50 . . X . . .
176 QOBState.3_51 . X . . . .
177 QOBState.3_53 . X . . . .
178 QOBState.3_54 . . X . . .
179 QOBYOB.38 . X . . . .
180 Count 9 113 122 65 35 25

‘QTR.q’ indicates being born in quarter q. ‘QOBYOB.qy’ means being born in quarter q year y. ‘QOB-
STATE.q_ss’ means being born quarter q in state ss. Marked ‘x’ means the instrument was chosen by
the algorithm in the column. mcv indicates m∗ selected using cross validation while m.25, m.5, and m.75

indicate m∗ for different values of C denoted in the subscript. λ1se indicates λ chosen by the one standard
error stopping rule, and λmin indicates the cross validated λ.

32


	Introduction
	Background
	Theory
	Instrumental variables estimation
	Weak instruments
	Supervised machine learning
	Bias-variance trade-off
	Cross validation
	LASSO
	Post-LASSO

	Lg
	Lg

	Contrasts to other dimension reduction methods

	Previous research
	Angrist and Krueger (1991)
	Belloni, Chernozhukov & Hansen (2011)
	Luo & Spindler (2017)

	Specification of detailed research focus
	Method
	Variable selection methods
	Variable selection using post-LASSO
	Lg

	Evaluation of chosen models
	Lg
	Lg


	Data
	Potential instruments
	Data preparation
	Parallelisation and random seed

	Programming the LASSO
	Programming the boosting
	Programming the IV estimations

	Results
	Discussion
	Conclusion

