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Abstract 

While there has been extensive research trying to explain the variability in the cross-section of expected 

stock returns, the predictability of other shape characteristics of the future return distribution is a less studied 

subject. This thesis investigates the relationship between the size and value-growth orientation of stocks (as 

measured according to Morningstar) and the shape parameters of their future returns. Two particularly 

interesting results stand out: (i) future volatility tends to be higher for both deep-value and high-growth 

stocks compared to more moderately valued stocks; (ii) skewness of future returns becomes more negative 

with stock size. To our knowledge, these empirical findings are not adequately explained by existing 

theories and therefore highlight the need for further research in this field. Additionally, the predictive model 

developed in this thesis is tested in a portfolio application exercise. Across different size- and value-growth-

specific stock universes, the model correctly identifies portfolios of stocks whose realized performance is 

consistent with their forecasted risk profile. The results of this exercise suggest the potential practical 

importance of our empirical findings for portfolio and risk management.  
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1 Introduction 

There has been extensive research into explaining the variability observed in the cross-section of expected 

stock returns. Indeed, by 2012, 316 factors had been identified as having explanatory power for this purpose 

(Harvey, Liu, & Zhu, 2016). However, there has been less research seeking to explain the variability in 

higher order moments of the distribution of stock returns. This is despite the fact that there is a large 

literature documenting the asymmetry of the distribution of stock returns (see, for example, Chen et al. 

(2001), Hueng and McDonald (2005), Silvennoinen et al. (2005)). Several explanations have been put 

forward to explain this observation, including the leverage effect, funding liquidity and liquidity spirals, 

and stochastic rational bubbles. However, it has not been fully addressed. Understanding the factors that 

determine this asymmetry is therefore a pertinent and important line of inquiry in academia. Moreover, it 

has significant implications for portfolio and risk management, as an understanding of what determines 

higher order moments of stock returns may enable more precise estimation of risk measures such as 

volatility and Value at Risk (VaR).  

In this thesis, we investigate how stock style influences the shape of the predictive return 

distribution. To do this, we take inspiration from Morningstar’s Style Box, which is a tool used for 

evaluating a stock or portfolio investment style. The Morningstar Style Box considers a company’s size, 

value orientation and growth orientation, and assigns scores that allow stocks to be classified according to 

these criteria. We use the Morningstar methodology to classify stocks in our dataset accordingly, and so 

construct scores for size and value-growth orientation with which we then seek to explain the asymmetry 

in the distribution of future stock returns. Our consideration of size and value-growth orientation is also 

influenced by the seminal three-factor model introduced by Fama and French (1992). 

To this end, we use data on all US listed companies from 1962-2018. We consider US companies 

for two reasons related to the availability of data. Firstly, a sample period should be sufficiently long to 

attain significant results. Secondly, we need to have a large number of companies in our sample with 

sufficient variation in size and value-growth orientation. US data satisfies these requirements due to the 

good availability of historic stock price and accounting data. 

To construct the dependent variables for our analysis, we look at the distribution of future (12-

month) returns. In order to allow for enough flexibility to capture the skewness and fat tails present in stock 

returns, we fit returns data using the skew-t distribution of Azzalini (2014). In this way, we can account for 

both of these features. As we separately demonstrate, the alternative normal fit on the returns data is strongly 

rejected whereas assumed skew-t consistently fails to be statistically rejected, which strengthens the 
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argument for the chosen skew-t framework. The parameters from the fitted skew-t distributions are further 

used as the dependent variables. 

Our analysis of the relationships between company size and value-growth orientation and the 

distribution parameters of future returns is conducted in a predictive econometric framework, an approach 

influenced by Halling and Giordani (2018). Scores for size and value-growth orientation measured 

according to the methodology of the Morningstar Style Box are used to create size- and value-growth-

specific portfolios of stocks in each month. Returns of these portfolios are calculated over time and skew-t 

distributions are fitted on the portfolio returns series. Each of the resulting skew-t parameters is regressed 

on the size and value-growth scores of the portfolios using standard OLS. By doing so, we test the 

hypothesis that company size and value-growth orientation have a significant impact on the shape 

parameters of the distribution of future 12-month returns. The resulting coefficients indicate strong 

relationships and thus enable us to accept above hypothesis. Two particularly interesting regression results 

stand out. Firstly, that both deep-value and high-growth stocks exhibit heightened future volatility; 

secondly, that skewness of future returns becomes more negative with company size.  

Finally, the regression results are tested by applying our estimated models to portfolio construction 

from 2004-2018. In doing so, we test the hypothesis that our regression model has predictive power. More 

specifically, we test that the regression model incorporating the relationships between size and value-

growth orientation and the shape of the future return distribution can identify portfolios of stocks whose 

realized future performance exhibits certain forecasted risk and risk-reward characteristics. In order to 

incorporate the model’s ability to predict higher order moments of the return distribution, we select stocks 

using two criteria. Firstly, we select stocks with the bottom quartile forecasted VaR and compare their 

realized VaR with that of stocks with the top quartile forecasted VaR. Secondly, we select stocks with the 

top quartile forecasted Reward-to-VaR (defined as return per unit of tail risk) and compare their realized 

Reward-to-VaR with that of stocks with the bottom quartile forecasted Reward-to-VaR. We find that our 

model has good predictive power for both of these criteria, particularly in the case of VaR. For illustrative 

purposes, we also compare the performance of portfolios selected using these criteria to that of relevant 

benchmark indices. 

The thesis continues as follows. Section 2 outlines the theoretical and empirical research on this topic 

and places the thesis within that literature. Section 3 describes the dataset used. Section 4 provides a detailed 

description of the methodology used in our empirical analysis and portfolio application. Section 5 presents 

the results. Section 6 offers concluding remarks and recommendations for future research. 
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2 Literature Review 

Several theories have sought to rationalize the negative asymmetry observed in stock returns, beginning 

with Black (1976) and Christie (1982) who introduced the notion of leverage effects. In this framework, a 

drop in market valuations leads to an increase in operating and financial leverage, which in turn increases 

the volatility of subsequent returns. As this effect only takes place when valuations fall, it leads to a negative 

asymmetry in stock returns. However, Schwert (1989) and Bekaert and Wu (2000) found that this 

explanation lacks the quantitative power to explain the data, particularly in the case of high frequency 

returns.  

As an alternative to this, the “volatility feedback” mechanism was proposed by Pindyck (1984), 

French et al. (1987) and Campbell and Hentschel (1992). The idea of this mechanisms is that when good 

news is made available, this signals an increase in market volatility which in turn increases the risk 

premium. The increased risk premium offsets the direct effect of the good news. When bad news is made 

available, however, the two forces work in the same direction, and so the increase in the risk premium 

amplifies the direct effect of the bad news. This asymmetry leads to overall negative skewness in stock 

returns. Once again, however, there is a lack of supporting quantitative evidence for this theory. In 

particular, Poterba and Summers (1986) find that the shocks to market volatility are generally so short-lived 

that they cannot reasonably be expected to have a large effect on risk premia. 

A third explanation for the asymmetry in stock returns comes in the form of stochastic rational 

bubbles, as laid out by Blanchard and Watson (1982). This model proposes that at any given time, stock 

returns are composed of a rational and a bubble component. This bubble component is in turn dependent 

on valuation levels. At high valuations, when the bubble component is incorporated, the return distribution 

is blend of the symmetric rational component and a bubble component. At low valuations the distribution 

of stock returns is made up only of the symmetric, rational component. This leads to the conclusion that the 

distribution of stock returns should become more negatively skewed at higher valuation levels, in agreement 

with our results. 

Brunnermeier and Pedersen (2009) offer a fourth explanation. Here, assets in which speculators 

invest can exhibit negative skewness resulting from funding constraints and consequent liquidity spirals. 

When speculators face losses they can encounter funding constraints, i.e. margin calls, that can in turn lead 

them to unwind their positions. This can further depress prices and raise additional funding constraints, 

leading to a liquidity spiral. Speculators’ gains, on the contrary, are not amplified by this mechanism, 

resulting in an asymmetry in returns. Brunnermeier et al. (2008) find supporting evidence for this in 

currency markets, where crash risk is associated with funding constraints for carry traders. 
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Finally, there is the theory put forward by Hong and Stein (2003) that investor heterogeneity and 

differences of opinion generate negatively skewed stock returns. Key to this theory is the idea that investors 

have differences of opinion about fundamental value, and some of those investors face short-sale 

constraints. When bearish investors face short-sale constraints, they will be forced to sit out of the market. 

As a consequence, their information will not be fully incorporated in prices. If previously bullish investors 

have a change of opinion and exit the market, leading to a fall in price, bearish investors may enter the 

market at a lower price. This revelation of hidden information tends to occur during market declines, 

generating negative skewness. However, Hueng and McDonald (2005) find no evidence to support this 

theory in the case of aggregate stock market returns. 

Empirical evidence of the dependence of the distribution of stock returns on value and size 

characteristics is relatively limited, mainly due to a lack of research on this topic. However, there are several 

studies, which provide evidence that size and value characteristics influence not only expected returns, but 

also higher order moments of the return distribution. Chen et al. (2001) investigate daily returns of 

individual stocks and find that return skewness becomes more negative with firm size, i.e. market 

capitalization. Size in this paper is included only as a control variable, so no strong theoretical interpretation 

of this result is made. Similarly, Dennis and Mayhew (2002) find evidence from stock options that skewness 

becomes more negative with firm size. Once again, however, size is included only as a control variable. 

Despite this, the repeated finding that size influences higher order moments of stock return distributions 

justifies our decision to include this characteristic as an explanatory variable in our analysis.  

Evidence that the return distribution of stocks is dependent on valuation is stronger. Gormsen and 

Jensen (2017) look at higher-order moments of quarterly and monthly returns using option data. They find 

that higher-order moments increase in good times, i.e. when returns are high, which qualitatively 

corroborates the theory that valuation affects not only the expected return of stocks, but volatility and 

skewness as well. This finding is, however, limited by the lack of availability of data on long-horizon stock 

options and the small sample used. Similarly, Greenwood et al. (2017) find that a large increase in stock 

prices significantly increases the probability of a crash. This, again, provides qualitative evidence to support 

the notion that the shape of the return distribution is influenced by valuation, and that crash risk (i.e. 

negative skewness) increases with valuation. 

The paper most closely related to our thesis is by Halling and Giordani (2018). In this, they investigate 

how the distribution of returns on the S&P 500 depends on Shiller’s cyclically adjusted price-earnings ratio. 

They find that at high valuations returns are more negatively skewed. This goes some way to explaining 

the mean-reversion behaviour of stock prices, which are commonly observed to go “up the stairs, down the 

elevator”. We broadly follow their methodology, extending it in two ways. Firstly, we base our analysis on 
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individual stocks rather than aggregate stock indices. Secondly, we include size and value-growth 

orientation, rather than simple valuation ratio, as factors determining the distribution of stock returns.  

 

3 Data 

Two types of data are needed in our analysis:  

1) Stock Return Data (data necessary to calculate future 12-month returns);  

2) Accounting Data (data necessary to calculate value and growth characteristics). 

We use the CRSP/Compustat Merged Database provided by Wharton Research Data Services (WRDS) 

for both return and accounting data. The data is for all US traded companies from January 1962 to December 

2018. 

 

3.1 Stock Return Data 

The following variables are collected on a monthly basis: 

Table 1. Variables from price dataset 

 

 

The following adjustments and data cleaning are necessary. Firstly, we consider only primary issues 

of stocks, meaning that only observations corresponding to LINKPRIM = J or N are selected. This was done 

in order to obtain a one-to-one match between each security and company (each PERMNO). 

Secondly, we adjust prices and dividends for stock splits in order to correctly measure the returns 

over time. For that purpose, AJEXM variable was used. AJEXM is equal to 1 for the most recent price 

datapoint for a given company, and for historical datapoints incorporates the cumulative split ratio. For 

example, if a given company made the most recent stock split with ratio 2:1 in February 2014 (2 new shares 

for 1 old share), earlier made another stock split with ratio 3:1 in June 2010 (3 new shares for 1 old share), 

CRSP name Description Units

      - Company Name -

PERMNO Company Identifier -

LINKPRIM Primary Issue Marker -

PRCCM Close Price USD

CSHOQ Common Shares Outstanding (quarterly data) million

AJEXM Cumulative Adjustment Factor (ex-distribution date) Units

DVPSXM Dividends per Share (ex-distribution date) USD
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and made no more stock splits, the factor AJEXM then equals 1 for the period from February 2014 until the 

most recent observation, equals 2 for the period between June 2010 until January 2014, and equals 6 for the 

period between the first price observation until May 2010. Price adjusted for stock splits is therefore 

calculated as 

𝑃𝑅𝐶𝐶𝑀 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝑃𝑅𝐶𝐶𝑀

𝐴𝐽𝐸𝑋𝑀 
.    ( 1 ) 

Prices adjusted in this way enable us to correctly compute capital gains of stocks over time. We 

adjust dividends (DVPSXM) in a similar way in order to correctly compute dividend returns over time: 

𝐷𝑉𝑃𝑆𝑋𝑀 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝐷𝑉𝑃𝑆𝑋𝑀 

𝐴𝐽𝐸𝑋𝑀 
.    ( 2 ) 

Adjustment for common shares outstanding (CSHOQ) is inversely related to the adjustment of per-

share values and, therefore, implies multiplication: 

𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐶𝑆𝐻𝑂𝑄 ×  𝐴𝐽𝐸𝑋𝑀.             ( 3 ) 

Since, according to CRSP methodology, split events are applied on the ex-distribution date, we used 

the ex-date convention for dividends. This means that information on dividends in a given quarter for a 

given company is recorded at the ex-date rather than on the pay-date.  

We use adjusted prices and dividends to calculate 1-month and cumulative 12-month returns, as 

explained in greater detail in the Methodology section. 

 

3.2 Accounting Data 

The following variables were collected on an annual basis: 

Table 2. Variables from accounting dataset 

 

 

Compustat 

name
Description Units

CSHO Common Shares Outstanding million

BKVLPS Book Value per Share USD

DVC Dividends Common/Ordinary mUSD

DVP Dividends – Preferred/Preference mUSD

EBITDA
Earnings Before Interest, Tax, 

Depreciation, and Amortization
mUSD

NI Net Income (Loss) mUSD

REVT Revenue – Total mUSD

OANCF Operating Activities Net Cash Flow mUSD
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Although we obtain common shares outstanding from the most recent quarter in the price dataset, 

we also need shares outstanding as of the end of fiscal year (CSHO) for the purpose of re-calculating the 

book value per share, which is discussed later. 

Finally, we use CRSP Monthly Stock database to obtain Share Code variable, which is a two-digit 

code describing the type of security traded. For the purpose of studying only ordinary common shares, we 

select only the observations with corresponding share codes – code 10 (ordinary common shares, which 

have not been further defined) and code 11 (ordinary common shares, which need not be further defined).  

 

3.3 Dataset Summary 

The resulting dataset comprises monthly price observations and annual accounting data observations for all 

companies traded in the US since January 1962 until December 2018, for which at least both prices and 

common shares outstanding were available. In total, there are 19,456 companies in the dataset. Comparing 

the total market capitalization of the companies from the dataset to the statistics from the World Bank on 

all US traded companies1, we conclude that the completeness of the dataset is sufficient: 

 

Figure 1. Total market capitalization of US traded companies 

 

                                                      
1 Source: https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?locations=US 

https://data.worldbank.org/indicator/CM.MKT.LCAP.CD?locations=US
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4 Methodology 

The methodological part of the thesis continues as follows: 

1) Introducing the Morningstar Style Box framework (section Morningstar Style Box); 

2) Determining the size, value, and growth characteristics of the stocks (sections Size, Value 

Orientation, and Growth Orientation, respectively) 

3) Determining the shape characteristics of the future 12-month return distribution using the skew-t 

distribution fit (section Shape of Future Returns Distribution) 

4) Determining the relationship between the size, value and growth characteristics and the shape of 

future 12-month return distribution (section Relationship Between Size/VCG Characteristics and 

Future Returns); 

5) Applying the resulting relationships from 4) to the size- and value-growth-specific portfolios 

(section Portfolio Application). 

 

4.1 Morningstar Style Box 

Developed by Morningstar in 1992, the Morningstar Style Box is a nine-square grid that classifies securities 

by size along the vertical axis and by value and growth characteristics along the horizontal axis: 

 

 
Figure 2. Illustration of the Morningstar Style Box 

 

According to Morningstar, different investment styles often have different levels of risk and these 

differences can lead to differences in returns. Indeed, Schadler and Eakins (2001) find that the risk of cells 

in the Morningstar Style Box is consistent with the risk expectations published by Morningstar.  

 



9 

 

The most common use of the Morningstar Style Box is to measure overall portfolio or fund style. The 

style (size and value-growth orientation) is first determined at the stock level, and stock attributes can be 

then “rolled up” to determine the overall investment style of a fund or portfolio. For the purpose of this 

thesis, we consider the style of individual stocks and aggregate portfolios of stocks from different style 

categories. 

 The Morningstar Style Box captures three of the major considerations in equity investing: size, 

security valuation and security growth. First, the size of the stock is measured. Next, the value- and growth-

orientation of a stock are measured. In short, a stock’s value orientation reflects the price that investors are 

willing to pay for the stock’s anticipated per-share earnings, book value, revenues, cash flow, and dividends. 

A high price relative to these measures indicates that a stock’s value orientation is weak. A stock’s growth 

orientation is independent of its price and reflects the growth rates of fundamental variables such as 

earnings, book value, revenues, and cash flow.  

With the Morningstar Style Box methodology, a stock can be classified into a size category (small-

cap, mid-cap, and large-cap) and a value-growth category (value, core, and growth). Identification of 

categories uses certain numerical measurements, which we call the “scores”. As explained in the sections 

below, the definitions of scores in this thesis differ from those offered by the Morningstar Style Box but 

are nevertheless closely related to the latter.  

 

4.2 Size 

4.2.1 Size Category 

There are three size categories according to the Morningstar Style Box: small-cap, mid-cap, and large-cap. 

In each month, all stocks are ordered in descending order by their market capitalization. For the resulting 

ordered sample, the cumulative capitalization is calculated as a percentage of total sample capitalization as 

each stock is added to the list. The stock that causes cumulative capitalization to equal or exceed 70% of 

the total cap is the final one assigned to the large-cap category. The largest of the remaining stocks are 

assigned to the mid-cap category until the cumulative capitalization equals or exceeds 90%. The remaining 

stocks are assigned to the small-cap category.  

This procedure is performed every month for the period between January 1962 and December 2018. 

The above split by size categories results in 70% of total market cap represented by large-cap stocks, 20% 

by mid-cap stocks, and 10% by small-cap stocks every month: 
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Figure 3. Total market capitalization of companies from the dataset 

 

To understand the size of the small-cap, mid-cap, and large-cap stocks, the graph below shows the log 

market cap of the largest stock within each size category over time. As of December 2018, market 

capitalization of small-cap stocks is approximately equal or below USD 4.7bn, mid-cap stocks’ market cap 

is between USD 4.7bn and USD 24.5bn, and large-cap stocks’ market cap is between USD 24.5bn and USD 

780bn. 

 

Figure 4. Log market capitalization of the largest stocks within respective size 

categories 

 

We acknowledge that there are different definitions of small-cap, mid-cap, and large-cap stocks. 

For example, large-caps are sometimes considered companies with market capitalization above USD 10bn 

(versus USD 24.5bn in December 2018 as defined according to the methodology), small-caps are often 

considered companies with market cap below USD 2bn (versus USD 4.7bn in December 2018 as defined 
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according to the methodology). We do not claim the method chosen in the thesis to be better than other 

ways of determining the size categories but believe that it reflects the overall size characteristic of stocks 

sufficiently well.  

 

4.2.2 Size Scores 

In order to investigate the relationship between size characteristics and return distributions, we define the 

size score in such a way that it satisfies several criteria. The size score should be stock-specific and easily 

interpretable. It should also have a sufficient range of values and should not be heavily concentrated around 

a certain value. Finally, the selected size measure should be universal over time meaning that it should not 

be tied to the size of the market at any given point in time.  

Considering these three criteria, we define the size score as the natural logarithm of the share of a 

stock’s market cap in the total market cap – or, in other words, the log of a stock’s market share. We use 

this measure for three reasons. Firstly, market share is the most straightforward and easily interpretable way 

to define the size of a specific company. Secondly, although for almost all companies (especially for the 

smallest ones) the market share is very close to zero and only for the largest stocks like Apple, the share in 

the total market can reach up to 3%, taking logarithm of the market share helps solve two problems. Namely, 

it helps reduce the concentration of the score values around 0 thus widening the distribution (see Figure 5 

below) and enables us to interpret the market share in terms of percentage changes rather than absolute 

changes, which will be important for the purposes of interpretation in the following regression analysis. 

Thirdly, although the natural logarithm of dollar market cap would also satisfy the requirement of having a 

sufficiently wide distribution, this measure would be tied to the size of the market and thus, given 

exponential growth of the market, as shown in Figure 3, is inadequate for using across time. Hence the 

chosen measure of size satisfies the three criteria.  
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Figure 5. Histograms of stocks’ market shares and log market shares as of 

December 2018 

 

A potential disadvantage of the chosen definition of the size score is that it is not directly related to 

the size categories defined using the cumulative market capitalization. However, size score based on 

cumulative market capitalization and the changes in such score would be more difficult to interpret. 

Moreover, cumulative market capitalization is not readily available for a company and requires the 

information on all traded companies smaller than the given company to calculate.  

The Morningstar Style Box methodology offers another definition of the size score (raw Y score) 

using the following formula for the stock i: 

𝑟𝑎𝑤 𝑌𝑖 = 100 × (1 +
𝑙𝑜𝑔(𝑐𝑎𝑝𝑖)−𝑙𝑜𝑔(𝑐𝑎𝑝1)

𝑙𝑜 𝑔(𝑐𝑎𝑝2)−𝑙𝑜𝑔(𝑐𝑎𝑝1)
),       ( 4 ) 

 

where 𝑐𝑎𝑝𝑖  is the market capitalization of stock i, 𝑐𝑎𝑝1 is the market capitalization that corresponds to the 

breakpoint value between mid-cap and small-cap stocks, and 𝑐𝑎𝑝2 is the market capitalization that 

corresponds to the breakpoint between large-cap and mid-cap stocks. Defined in this way, size scores range 

between 100 and 200 for mid-cap stocks, between −∞ and 100 for small-cap stocks, and between 200 and 

+∞ for large-cap stocks. This scaled score has an advantage over size score defined as a market share in 

that it incorporates the size categories. However, the disadvantage of difficult interpretability of such a 

score and of the changes in such a score, in our view, outweighs that benefit. 
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4.3 Value Orientation 

4.3.1 Notation and Caveats 

A stock’s value orientation reflects the price investors are willing to pay for a share of some combination 

of the stock’s prospective earnings, book value, revenue, cash flow, and dividends. Morningstar measures 

a stock’s value orientation in relation to its size category as defined in the previous section. The 

methodology works with the fundamentals expressed per share. Earnings per share, book value per share, 

revenue per share, cash flow per share, and dividends per share are denoted e, b, r, c, and d, respectively. 

All values needed to calculate e, b, r, c, and d, are taken from the price and accounting datasets 

described above in the respective sections and, where needed, we perform adjustments as described below 

using the notation introduced in Table 1 and Table 2. 

Earnings per share e is calculated as 

𝑒 =
𝑁𝐼−𝐷𝑉𝑃

𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
,           ( 5 ) 

where 𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is the most recent available quarterly observation. 

 

Book value per share b is calculated as 

𝑏 =
𝐵𝐾𝑉𝐿𝑃𝑆×𝐶𝑆𝐻𝑂

𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
.            ( 6 ) 

 

Revenue per share r is calculated as  

𝑟 =
𝑅𝐸𝑉𝑇

𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
.           ( 7 ) 

 

As availability of operating cash flow data is poor prior to June 1986, for all previous months we 

approximate this with EBITDA. It has to be noted that EBITDA does not account for changes in net working 

capital and other non-cash items compared to operating cash flow, but we assume that it serves a reasonable 

proxy for the latter. Hence, we calculate cash flow per share in and after June 1986 as  

𝑐 =
𝑂𝐴𝑁𝐶𝐹 

𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
,            ( 8 ) 

and before June 1986 approximate as 

𝑐 ≈
𝐸𝐵𝐼𝑇𝐷𝐴

𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
.           ( 9 ) 
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Dividends per share are calculated as 

𝑑 =
𝐷𝑉𝐶 

𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
.         ( 10 ) 

 

Certain details and caveats must be discussed. For a given company in a given month, all values 

from the accounting dataset (NI, DVP, BKVLPS, REVT, OANCF, and EBITDA) are the values from the 

most recent fiscal year end. For example, a fiscal year 2014 for MICROSOFT CORP is from June 2013 to 

June 2014, and fiscal year 2015 is from June 2014 to June 2015. Therefore, in 2015 for January to May, the 

fundamentals data are taken from fiscal year 2014, and starting from June 2015 – from fiscal year 2015. 

This approach implies that only the most recent available accounting data are considered in the given month. 

At the same time, it also assumes that as soon as the fiscal year ends (for example, FY2014 ends in June 

2015), the data for that fiscal year are instantly available. Typically, it would take several months before 

the numbers for the last fiscal year are released after the fiscal year ended. However, we continued with the 

above approach for several reasons. Firstly, we do not know exactly how long the period between the fiscal 

year end and corresponding numbers release for different companies lasts. Secondly, shifting data 

accordingly would be difficult to perform given the large size of the dataset. Finally, considering accounting 

data from the last fiscal year as soon as that fiscal year ends realistically implies that market participants 

have some expectations about them even a few months before their release. Implicitly, this approach 

assumes that those expectations are correct on average. 

Dividends per share are calculated based on the last fiscal year’s dividends (DVC) rather than the 

annual sum of most recent quarterly dividend amounts (sum of DVPSXM). Although the latter approach 

would be a better reflection of the current dividends per share, for consistency reasons we consider last 

fiscal year’s values (DVC), as is done for per-share transformations of other accounting variables.  

Value orientation is based on historical as well as prospective per-share accounting fundamentals. 

The formulas introduced above are discussed as the per-share values for the most recently finished fiscal 

year (year 0), and later notation for them will be e0, b0, r0, c0, and d0. Earnings per share values for the fiscal 

year prior to year 0 (year -1) is denoted e-1, for the fiscal year prior to year -1 (year -2) is denoted e-2, for 

the fiscal year prior to year -2 (year -3) is denoted e-3, and for the fiscal year prior to year -3 (year -4) is 

denoted e-4. Forecasted earnings per share for the current fiscal year (year 1) is denoted e1. The method to 

determine the forecasted values is discussed later. The same notation applies for b, r, c, and d. 
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4.3.2 Steps to Determine Value Orientation 

A stock’s value orientation is determined using the following steps:  

1) Calculate up to five prospective yields (e1/p, b1/p, r1/p, c1/p, and d1/p: as many as are available) for 

each stock; 

2) Calculate a market-cap-weighted2 percentile score (0-100) for each available yield factor for each 

stock within each size category; 

3) Calculate the overall value score (0-100) for each stock. This is a weighted average of the individual 

percentile scores for each of the five value factors. The overall value score represents the strength 

of the stock’s value orientation. 

 

The above steps are described in detail below. 

4.3.3 Prospective Yields 

Yield factors are calculated by dividing forecasted per share values (e1, b1, r1, c1, and d1) by the month-end 

stock price p. Price p corresponds to 𝑃𝑅𝐶𝐶𝑀 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 taken from the price dataset and adjusted for 

stock splits.  

According to Morningstar’s methodology, the forecasted value e1 is based on both third-party 

forecasts and historical dynamics of e. Since third-party estimates in our case are not available for the 

majority of stocks and years, our forecasts for e1 are based only on historical values of e. For that purpose, 

Morningstar determines growth measure g(e1), which is applied to e0, in the following way. First, calculate 

as many as possible of four periodic growth rates: 

𝑔(𝑒)−4 = (
𝑒0

𝑒−4
)

1

4
− 1                   ( 11 ) 

𝑔(𝑒)−3 = (
𝑒0

𝑒−3
)

1

3
− 1  

𝑔(𝑒)−2 = (
𝑒0

𝑒−2
)

1

2
− 1  

𝑔(𝑒)−1 = (
𝑒0

𝑒−1
) − 1  

If e-1, e-2, e-3, or e-4 is negative, no periodic growth rate is calculated using that data point. A 

minimum of one periodic growth rate must be available to determine g(e1). Because this growth rate is used 

                                                      
2 Morningstar uses float-weighted percentile scores. Due to the lack of information on free float, we approximate the 

original approach with market-cap-weighted approach. 
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to estimate the current year earnings per share, e0 must be positive and e0 serves as the numerator for 

calculating growth.  

When all available growth rates have been calculated, average the results to arrive at g(e1): 

𝑔(𝑒1) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒[𝑔(𝑒)−4,  𝑔(𝑒)−3,  𝑔(𝑒)−2,  𝑔(𝑒)−1].   ( 12 ) 

 
As can be noted, in calculating g(e1), recent growth rates are included in more of the averaged terms 

than are older growth rates; recent growth rates are therefore weighted more heavily than older growth 

rates. 

After g(e1) has been obtained, it is applied to positive e0 to obtain the forecast e1: 

𝑒1 = 𝑒0 × (1 + 𝑔(𝑒1)).     ( 13 ) 

In this way the prospective earnings yield e1/p can be obtained. Prospective book value, revenue, 

cash flow, and dividend yields are calculated in the same way. 

For stocks that do not pay dividends (d0 = 0), dividend yield is still calculated and thus 0% dividend 

yield (d1/p = 0%) is considered a valid data point. 

If the stock has value factor data available only for forecasted dividend yield or no information at 

all, the stock is eliminated from the scoring group for calculating value factor percentile scores. 

 

4.3.4 Percentile Scores for Each Value Factor 

Once we have calculated one or more of e1/p, b1/p, r1/p and c1/p values, with or without d1/p, each stock is 

assigned a market-cap-weighted percentile score for each relevant factor. The percentile scores are 

calculated within each stock’s size category. 

To calculate an earnings yield score (0-100) for each stock in a size category: 

1) Rank all stocks in the size category by e1/p yields in ascending order.  

2) Determine the total market capitalization of all stocks in the category.  

3) Starting with the lowest observations, trim all stocks that sum up to 5% of total market 

capitalization. Then, trim 5% of the market capitalization from the highest observations. When a 

stock “straddles” the 5th percentile point or 95th percentile point, remove it from the sample. 

4) Calculate the market-cap-weighted average e1/p for the remaining stocks. 
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5) Add the trimmed stocks back to the sample. Calculate the ratio of each stock’s e1/p to the market-

cap-weighted average e1/p. 

6) Assign each stock to an e/p “bucket” as follows: 

a. If the stock’s e1/p is equal to or less than 0.75 times the market-cap-weighted average e1/p 

(“the lower value cutoff”), the stock is assigned to the low e/p bucket. 

b. Or, if the stock’s e1/p is equal to or less than the market-cap-weighted average e1/p, the 

stock is assigned to the mid-minus e/p bucket. 

c. Or, if the stock’s e1/p is equal to or less than 1.25 (“the upper value cutoff”) times the 

market-cap-weighted average e1/p, the stock is assigned to the mid-plus e/p bucket. 

d. Or, the stock is assigned to the high e/p bucket. 

 

 

When each stock has been assigned to an e/p bucket, it is then scaled relative to other stocks in the same 

bucket. The low e/p bucket is used as an example here:  

1) Order the stocks within the low e/p bucket by their raw e1/p scores, from lowest to highest.  

2) Within the low e/p bucket, assign each stock a value equal to the cumulative market capitalization 

represented by that stock and all stocks with a lower e1/p. Thus, the stocks in the low e/p bucket 

have values ranging from 0.00+ (the stock with the lowest e1/p in the low e/p bucket) to 100 (the 

stock with the highest e1/p in the low e/p bucket). 

3) Where two or more stocks have the same e1/p, they are assigned a value that represents the 

cumulative float of all stocks with a lower e1/p plus one-half of the total float of the stocks that 

share the same e1/p.  

4) Re-scale the scores in the low e/p bucket between 0.00+ and 33.33. 

 

Repeat the four steps immediately above for each of the mid-minus, mid-plus and high e/p buckets; and 

re-scale the values as follows: 

Table 3. Ranges of e/p scores for different e/p buckets 

Bucket Minimum Score Maximum Score 

Low e/p 0.00+ 33.33 

Mid-minus e/p 33.34 50.00 

Mid-plus e/p 50.01 66.66 

High e/p 66.67 100.00 
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All the steps in this section are then repeated for each of b1/p, r1/p, c1/p and d1/p. For stocks that do 

not pay dividends, 0% dividend yield is considered a valid data point and is given a dividend yield score. 

Repeat all the steps above for each size category. 

For financial stocks, price-to-cash flow is not used for the value factor calculation because cash 

flow from operations data is not meaningful for banks and insurance companies. To identify financial 

stocks, we use variable GSECTOR from the CRSP/Compustat Merged Database – Fundamentals Annual 

database, which is the item representing the first level in the hierarchy of the Global Industry Classification 

Standard (GICS). The Sector is represented by the leftmost 2 digits of the total GICS code. Value 40 of 

GSECTOR corresponds to the financial companies. 

 

4.3.5 Overall Value Scores 

Once all of the five value factors have been scored from 0-100, we calculate a weighted average overall 

value score for each stock. If available, e/p scores are assigned a weight of 50% in the overall value score; 

each of the other value factors is assigned an equal share of the remaining weight (either 50% or, if e/p is 

unavailable, 100%). 

For example, if all five value factors are available, the weights are: 

Table 4. Assigning weights to components of overall value score: all factors present 

 

Or, for example, if b/p is missing, the weights are: 

Table 5. Assigning weights to components of overall value score: one factor missing 

Scores e/p b/p r/p c/p d/p 

Weights 50% - 16.7% 16.7% 16.7% 

 

Or, for example, if e/p and b/p are both missing, the weights are: 

Table 6. Assigning weights to components of overall value score: two factors missing 

Scores e/p b/p r/p c/p d/p 

Weights - - 33.3% 33.3% 33.3% 

 

Scores e/p b/p r/p c/p d/p
Overall Value 

Score

Weights 50% 12.50% 12.50% 12.50% 12.50%

Stock A 41 78 73 88 81 61
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If only forecasted dividend yield, or no information, is available for a given stock, the stock is not 

given an overall value score. However, the stock may still receive an overall growth score, which is 

discussed in the next section. 

The procedure of calculating overall value score is performed for all stocks in the dataset for each 

month. More value-oriented stocks, whose valuation in terms of earnings, book value, revenue cash flow, 

and dividend is low (and thus corresponding yields are high), have higher overall value scores.  

 

4.4 Growth Orientation 

A stock’s growth orientation reflects the rate at which its earnings, book value, revenue, and cash flow are 

expected to grow. Dividend growth rates are not used in determining a stock’s growth orientation. A stock’s 

growth orientation is measured in relation to stocks in its size category.  

Growth orientation is determined using the following three steps:  

1) Calculate up to four average growth rates g΄(e), g΄(b), g΄(r) and g΄(c) for each stock, using the 

process described in the next section3.  

2) Calculate a market-cap-weighted percentile score (0-100) for each available growth rate for each 

stock within each size category. 

3) Calculate the overall growth score (0-100) for each stock. This is a weighted average of the 

individual percentile scores for each of the five growth factors. The weighting scheme is described 

below. The weighted average score represents the strength of the stock’s growth orientation.  

 

Details of each of these steps are provided below. 

 

4.4.1 Calculating Stock Growth Rates 

We calculate as many as possible of g΄(e), g΄(b), g΄(r) and g΄(c) for each stock. The example historical 

growth rate calculation below uses g΄(e), but the process is identical for g΄(b), g΄(r) and g΄(c).  

If e0 and e-1 are both negative, then g΄(e) is not calculated. If e0 or e-1 is positive, then g΄(e) is 

calculated as follows. 

                                                      
3 According to Morningstar methodology, in addition, third-party estimates for long-term projected earnings growth 

rate g(e5) should also be collected. Due to lack of such information for most stocks, we omit this step and use g΄(e), 

g΄(b), g΄(r) and g΄(c) based only on historical data. 
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First, we calculate as many as possible of four periodic growth rates: 

𝑔΄(𝑒)−4 = (
𝑒𝑛

𝑒−4
)

1

𝑛+4
− 1                     ( 14 ) 

𝑔΄(𝑒)−3 = (
𝑒𝑛

𝑒−3
)

1

𝑛+3
− 1  

𝑔΄(𝑒)−2 = (
𝑒𝑛

𝑒−2
)

1

𝑛+2
− 1  

𝑔΄(𝑒)−1 = (
𝑒𝑛

𝑒−1
)

1

𝑛+1
− 1  

where n is the most recent period (0 or -1) in which e is positive. 

If e-1, e-2, e-3 or e-4 is negative, no periodic growth rate is calculated using that data point. A 

minimum of two periodic growth rates must be available to determine g΄(e). If n = 0, up to four rates are 

calculated; and if n = -1, up to three growth rates are calculated. 

When all available growth rates have been calculated, we average the results: 

𝑔΄(𝑒) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒[𝑔΄(𝑒)−4, 𝑔΄(𝑒)−3, 𝑔΄(𝑒)−2, 𝑔΄(𝑒)−1].               ( 15 ) 

If n = 0, g΄(e) is the same as the growth rate used in the calculation of the stock’s value orientation, 

g(e1).  

Book value, revenue, and cash flow growth rates are calculated in the same way.  

If the stock has no growth factor data available, we eliminate the stock from the size category when 

calculating growth factor percentile scores. 

 

4.4.2 Percentile Scores for Each Growth Factor 

As with the value factors, percentile scores are assigned to each of the five growth factors. The percentile 

scores are calculated within each stock’s scoring group. 

To calculate an earnings growth rate score (0-100) for each stock within a scoring group:  

 

1) Rank all stocks in the scoring group by their g΄(e) growth rates in ascending order.  

2) Determine the total market capitalization of all stocks in the group.  

3) Starting with the lowest observations, trim all stocks that sum up to 5% of the total market 

capitalization of all stocks in the group. Then, trim 5% of the float from the highest observations. 
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When a stock “straddles” the 5th percentile point or 95th percentile point, remove it from the 

sample. 

4) Calculate the share-weighted4 average growth rate for the remaining stocks. See Appendix A for a 

description of the share-weighted average. 

5) Add the trimmed stocks back to the sample. Calculate the ratio of each stock’s g΄(e) to the share-

weighted average g΄(e). 

6) Assign each stock to a g΄(e) “bucket” as follows: 

a. If the stock’s g΄(e) is equal to or less than 0.75 times the share-weighted average g΄(e) (“the 

lower growth cutoff”), the stock is assigned to the low g΄(e) bucket. 

b. Or, if the stock’s g΄(e) is equal to or less than the share-weighted average g΄(e), the stock 

is assigned to the mid-minus g΄(e) bucket. 

c. Or, if the stock’s g΄(e) is equal to or less than 1.25 times the share-weighted average g΄(e) 

(“the upper growth cutoff”), the stock is assigned to the mid-plus bucket. 

d. Or, the stock is assigned to the high g΄(e) bucket. 

 

 

When each stock has been assigned to a g΄(e) bucket, it is then scaled relative to other stocks in the 

same bucket. The low g΄(e) bucket is used as an example here:  

1) Order the stocks within each bucket by raw g΄(e) score, from lowest to highest.  

2) Within the low g΄(e) bucket, assign each stock a value equal to the cumulative market capitalization 

represented by that stock and all stocks with a lower g΄(e). Thus, the stocks in the low g΄(e) bucket 

have values ranging from 0.00+ (the stock with the lowest g΄(e) in the low g΄(e) bucket) to 100 (the 

stock with the highest g΄(e) in the low g΄(e) bucket). 

3) Where two or more stocks have the same g΄(e), they are assigned a value which represents the 

cumulative float of all stocks with a lower g΄(e), plus one-half of the total float of the stocks that 

share the same g΄(e). 

4) Re-scale the scores in the low g΄(e) bucket between 0.00+ and 33.33. 

 

Repeat the four steps immediately above for each of the mid-minus, mid-plus and high g΄(e) buckets; 

and re-scale the values as follows: 

                                                      
4 Share-weighted approach is used in the growth rate calculation instead of market-cap-weighted approach because 

the growth orientation should not reflect the price characteristics of stocks.  
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Table 7. Ranges of g΄(e) scores for different g΄(e) buckets in calculating growth scores 

 

 

All of the steps in this section are then repeated for the other four growth orientation factors. Repeat 

all of the steps above for each size category.  

For financial stocks, cash flow growth is not used for the growth factor calculation because cash 

flow from operations data is not meaningful for banks and insurance companies. 

 

4.4.3 Overall Growth Scores 

When all of the five growth factors have been scored from 0-100, we calculate a weighted average overall 

growth score for each stock. In the overall growth score calculation, we do not consider g(e5), as 

Morningstar methodology suggests. Growth rate g(e5) is a projected long-term (5-year) growth rate for 

earnings per share (the same applies to b, r, c, and d). These rates should be the third-party estimates, which 

are not available for majority of stocks and years in our dataset and therefore are not used. Growth rate 

g(e5), if available, would be assigned weight 50% with remaining growth rates (g΄(e), g΄(b), g΄(r), and g΄(c)) 

having equal weights. Instead, we assign 50% weight to g΄(e) in the overall value score; each of the other 

value factors is assigned an equal share of the remaining weight (either 50% or, if g΄(e) is unavailable, 

100%). 

For example, if all four growth factors are available, the weights are: 

Table 8. Assigning weights to components of overall growth score 

Scores g΄(e) g΄(b) g΄(r) g΄(c) 

Weights 50% 16.7% 16.7% 16.7% 

 

In this way, we consistently overweigh the earnings yield (in overall value score) and the growth in 

earnings per share (in overall growth score) over other factors and other factors’ growth rates, respectively. 

The same overweighting of earnings is also imbedded in the Morningstar methodology because both e/p 

and g(e5) constitute the largest weights in the calculation for respective overall scores.  

Bucket
Minimum 

Score

Maximum 

Score

Low g΄(e) 0.00+ 33.33

Mid-minus g΄(e) 33.34 50

Mid-plus g΄(e) 50.01 66.66

High g΄(e) 66.67 100
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If no growth rates are available for a given stock, the stock is not given an overall growth score or a 

net VCG style score (discussed in the next section). 

 

4.5 Value-Core-Growth (VCG) Score and Orientation 

Each stock now has an overall value score and an overall growth score; both of these range from 0 to 100. 

Following Morningstar’s methodology, we calculate a final value-core-growth (VCG) score for each stock 

by subtracting the stock’s overall value score from its overall growth score.  

As to value and growth orientation, value-oriented stocks (later called value stocks), growth-

oriented stocks (later called growth stocks), and core stocks are each assumed to account for one-third of 

the total capitalization of each scoring group. Hence assignment of value, core, and growth orientation is 

based on the percentiles of cumulative market capitalization of stocks ranked in ascending order by VCG 

score at the given date: stocks below 1/3 of the cumulative market capitalization are assigned value 

orientation, stocks between 1/3 and 2/3 of cumulative market capitalization are assigned core orientation, 

and the remaining stocks are assigned growth orientation.  

We directly consider the VCG score as the score measuring the stock’s value-growth orientation. 

There is no need to take the natural logarithm of VCG score values because their distribution is already 

sufficiently wide for the purposes of further analysis. As an illustration of this distribution property, below 

is the histogram of VCG scores calculated according to above steps for the stocks in December 2017.  

 

Figure 6. Histogram of VCG scores for all companies as of December 2017 

Although for different months in different years, the shape of VCG scores distribution will vary 

somewhat with the overall market being more or less value- or growth-oriented depending on the business 

cycle, the overall property of VCG scores being sufficiently disperse holds.  
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As the assignment of size scores (log of market share) and VCG scores is completed, the next step is 

to determine the parameters explaining the shape of the future return distributions and estimate the 

relationships between the latter and the two types of scores. These next steps are discussed in the following 

sections. 

 

4.6 Shape of Future Returns Distribution 

4.6.1 Defining Future Returns 

Since the goal is to study how well size and VCG characteristics predict the shape of the return distribution, 

for each stock in month t we measure the current value of size and VCG scores and future realized 12-

month return. In our thesis, we use the log convention in determining stock returns and thus further in the 

text use the term “returns” meaning the log returns. For a company with 𝑃𝐸𝑅𝑀𝑁𝑂 = 𝑝 in month t, we 

define future 1-month total return 𝑙𝑜𝑔𝑟𝑒𝑡1𝑚𝑡
𝑝
 as  

𝑙𝑜𝑔𝑟𝑒𝑡1𝑚𝑡
𝑝

= 𝑙𝑜𝑔 (
𝑃𝑡+1

𝑝
+𝐷𝑡+1

𝑝

𝑃𝑡
𝑝 ),         ( 16 ) 

where P corresponds to the split-adjusted price of the stock 𝑃𝑅𝐶𝐶𝑀 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 and D corresponds to 

split-adjusted dividend per share 𝐷𝑉𝑃𝑆𝑋𝑀 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑. Then the corresponding future 12-month 

return 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡
𝑝
 is defined as 

𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡
𝑝

= ∑ 𝑙𝑜𝑔 (
𝑃𝑡+𝑚+1

𝑝
+𝐷𝑡+𝑚+1

𝑝

𝑃𝑡+𝑚
𝑝 )11

𝑚=0 .       ( 17 ) 

 

4.6.2 Skew-t Distribution Fit 

As opposed to the large finance literature investigating the predictability of expected return (first moment 

of the distribution), in this thesis, apart from distribution mean, we also focus on higher order moments. To 

account for the asymmetry and fat tails present in financial data, we use the skew-t distribution. Below, the 

theory behind skew-t distribution is described in detail.  

We use a theoretical framework for skew-t distribution from Azzalini (2014). The derivation of 

the skew-t distribution starts with the usual symmetrical Student’s t-distribution whose density function is 

𝑡(𝑥; 𝜈) =
𝛤(

1

2
(𝜈+1))

√𝜋𝜈𝛤(
1

2
𝜈)

(1 +
𝑥2

𝜈
)

−
1

2
(𝜈+1)

, 𝑥 ∈ ℝ,         ( 18 ) 

where 𝜈 > 0 denotes degrees of freedom, and 𝛤 denotes gamma function  

𝛤(𝑧) =  ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
∞

0
.    ( 19 ) 
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It can be shown that the following transformation of this density function produces the density of 

the asymmetric version of the Student’s t-distribution 

2𝑡(𝑥; 𝜈)𝑇(𝛼𝑥; 𝜈),           ( 20 ) 

where T(. ; ν) denotes symmetrical Student’s t-distribution function, and α is a slant parameter. Define Z as 

𝑍 =  
𝑍0

√𝑉
 ,               ( 21 ) 

where 𝑍0 = 𝑆𝑁(0, 1, 𝛼) and 𝑉 = 𝜒𝜈
2/𝜈 are independent variates. SN denotes skew-normal distribution 

𝑆𝑁(𝜉, 𝜔2, 𝛼), where 𝜉 denotes location parameter, and 𝜔 denotes dispersion parameter5. 𝜒𝜈
2 denotes Chi-

Square distribution with 𝜈 degrees of freedom. In this case, if ℎ(∙) denotes the density function of V, then 

it can be shown that density function of Z is 

𝑡(𝑥; 𝛼, 𝜈) = 2𝑡(𝑥; 𝜈)𝑇 (𝛼𝑥√
𝜈+1

𝜈+𝑥2 ; 𝜈 + 1).   ( 22 ) 

If 𝛼 = 0, (22) reduces to the usual Student’s density (18). If 𝜈 → ∞, then (22) converges to 

the 𝑆𝑁(0, 1, 𝛼) density. 

From the graphical representation below we can see how Student’s skew-t density function behaves 

given different values for degrees of freedom 𝜈 and slant parameter α: 

 

Figure 7. Shape of skew-t density for different values of slant parameter (𝜶) and 

degrees of freedom (𝝂) 

 

Low values of 𝜈 correspond to heavier tails while greater (more negative) 𝛼 correspond to a higher 

probability that observations fall to the right (left) side from the mode, respectively.  

                                                      
5 Details of the derivation of the skew-normal distribution can be found in Azzalini (2014). 
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The distribution family represented by (22) is further extended to include the location and scale 

parameter.  

Consider 𝑌 = 𝜉 + 𝜔𝑍, leading to a four-parameter family of distributions whose density function 

at x is 𝜔−1𝑡(𝑧; 𝛼, 𝜈), where 𝑧 = 𝜔−1(𝑥 − 𝜉).  

Hence, we can say that Y follows a skew-t distribution and write 

𝑌~𝑆𝑇(𝜉, 𝜔2, 𝛼, 𝜈).     ( 23 ) 

The skew-t distribution in (23) is the final version of the distribution used in the thesis for further 

empirical analysis. The parameters describe the shape of the distribution and are discussed in greater detail 

in the next section. 

To fit the skew-t distributions on the returns from our dataset, we use the function “st.mple” from 

package “sn” in R developed by Azzalini (2018) based on the theory described above. The algorithm of 

fitting skew-t uses maximum likelihood for parameter estimation and is described in detail by Azzalini 

(2014). As the output, estimates of parameters of the fitted skew-t are obtained (𝜉, 𝜔2, 𝛼, 𝜈).  

 

4.6.3 Skew-t Parameters of Interest 

After fitting the skew-t distribution, a set of parameters (𝜉, 𝜔2, 𝛼, 𝜈) is obtained. Below we discuss what 

exactly each of the parameters says about the shape of the distribution.  

The location parameter 𝜉, as it is defined by Azzalini (2014), very closely approximates the 

distribution mode, or most likely value of the distribution. In other words, it shows where the peak of the 

distribution is located and is used in our further analysis as one of the four parameters of interest.  

The second parameter used in our further analysis is the dispersion parameter 𝜔, which measures 

the volatility of the variable.  

The slant parameter 𝛼 indicates to which side and to what extent the distribution is skewed. A 

drawback of this measure, as discussed by Halling and Giordani (2018), is that its estimates may be rather 

unstable. For this reason, we instead use a different measure of skewness, namely, the percentage of area 

below the density function located to the left of the location parameter, further denoted as 𝜋. The higher the 

𝜋, the more negatively skewed the distribution is. Estimates of this measure of skewness are expected to be 

more stable. In addition, 𝜋 has a rather intuitive interpretation: it indicates the percentage probability that 

the future returns will fall below the most likely future return.  
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Finally, the fourth parameter of interest is degrees of freedom 𝜈, which indicates how heavy-tailed 

the distribution is. The higher the 𝜈, the less leptokurtic a distribution is. In extreme case, when 𝜈 → ∞, the 

skew-t distribution converges to the skew-normal distribution with no leptokurtosis. 

Based on above, for the purposes of further analysis, we select four parameters of the skew-t 

distribution that describe different features of its shape – location 𝜉, dispersion 𝜔, skewness as percentage 

𝜋, and degrees of freedom 𝜈. It should be noted that the parameters of the skew-t distribution 

𝑆𝑇(𝜉, 𝜔2, 𝛼, 𝜈), or direct distribution parameters, can be used to calculate so called centered parameters. 

These are the mean 𝜇 (first central moment), variance 𝜎2 (second central moment), skewness 𝛾1 (third 

central moment), and excess kurtosis 𝛾2 (fourth central moment minus 3). On the one hand, central moments 

may seem to be more intuitive measures of the distribution shape. On the other hand, as can be seen from 

the formulas6, each centered parameter is dependent on the whole set of direct parameters. In other words, 

using the centered parameters instead of direct ones, we would not be able to disentangle different features 

that determine the distribution shape.  

 

4.7 Testing Goodness of Skew-t Fit 

In order to test the goodness of skew-t fits used in the thesis, we perform Chi-Square goodness of fit test. 

This test is widely used to find out whether the observed value of given phenomena is significantly different 

from the expected value. The term “goodness of fit” is used to compare the observed sample distribution 

with the expected probability distribution and determines how well theoretical distribution fits the empirical 

distribution. In the Chi-Square goodness of fit test, sample data is divided into intervals. Then the numbers 

of points that fall into the interval are compared with the expected numbers of points in each interval. 

The null hypothesis (H0) of this test states that, at a given significance level, there is no significant 

difference between the observed sample distribution and the expected, or assumed, probability distribution. 

The alternative hypothesis (H1) states that there is significant difference between the observed sample 

distribution and the expected, or assumed, probability distribution. The p-value of the test helps indicate 

whether the null hypothesis can or cannot be rejected. 

In Section 5.1, for resulting series of returns, we test the goodness of skew-t fit and compare it to the 

goodness of the alternative normal fit in order to demonstrate that the former fit is superior to the latter one 

and to have more confidence that the parameter estimates of the fitted skew-t distributions are reliable. In 

Section 5.3, we test the goodness of skew-t fits and find that those cannot be rejected for vast majority of 

                                                      
6 Formulas for calculating the centered parameters can be found in Appendix B. 
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the return series used. The alternative normal fit is already strongly rejected in Section 5.1 and there is 

clearly no need to confirm these results again. In the portfolio application part of the thesis, Chi-Square test 

is not performed because skew-t fits used there are based on the same returns that have been tested in the 

previous sections and are hence also assumed to be “good”. 

 

4.8 Relationship Between Size/VCG Characteristics and Future Returns  

Previous sections describe how to measure the size and VCG characteristics of stocks (explanatory 

variables), how to identify the main parameters explaining the shape of future return distributions 

(dependent variables), and how to make sure these parameters are reliable, i.e. the corresponding skew-t 

distribution fits are “good”. The current section explains the framework used to measure the relationships 

between these explanatory and dependent variables. As the first step, we consider the issue from the broader 

perspective of size and VCG categories based on the Morningstar Style Box. 

 

4.8.1 Size and VCG Category Perspective 

This part of analysis aims to provide a broader view of the relationship between size/VCG characteristics 

and the shape of future returns. In each month, stocks are split into nine size/VCG categories based on the 

Morningstar Style Box (large value, large core, etc.). For each category c, we consider an equally weighted 

portfolio of stocks and in each month t of the period between January 1962 and December 2017 obtain 

future 12-month portfolio returns 

𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡
𝑐 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒[𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡

𝑝
],                   ( 24 ) 

where p denotes the stocks from category c in month t, and 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡
𝑝
 is calculated as in (17). After the 

series of future returns are obtained for all categories, estimate parameters of interest for the corresponding 

nine portfolio return distributions – 𝜉𝑐 , 𝜔𝑐 , 𝜋𝑐 and 𝜈𝑐. 

A market-cap-weighted approach delivers essentially very similar results and therefore is not 

considered in the results section. This part of analysis based on the category perspective provides a 

convenient way to demonstrate the resulting distributions graphically and gives a more general idea about 

the relationships, which are analyzed in greater detail later within the regression framework.   
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4.8.2 Regression Analysis 

The size of the dataset (56 years of monthly observations, ~8000 companies as of December 2018, in total 

~2.4m observations) enables us to make use of both time-series and cross-sectional dimensions to conduct 

deeper analysis of the relationships between size/VCG characteristics and shape of future return 

distributions.  

Sufficient cross-sectional variation in stocks’ size scores achieved by log transformation and in 

stocks’ VCG scores enables us to consider different portfolios of stocks based on their size and VCG scores. 

In each month, we split the companies cross-sectionally into 10 equally sized portfolios by size score. The 

borderline values of the size score (size scores splitting the 10 size-score-based portfolios) vary over time. 

However, this variance is sufficiently low, and therefore, in order to obtain single values of borderline size 

scores applicable to all months, we calculate the time-series median of borderline size scores. These median 

values determine the ends of the size intervals 𝑖, where 𝑖 = 1,2, … ,10. We apply the same procedure to 

VCG and thus VCG intervals are defined as 𝑗, where 𝑗 = 1,2, … ,10. In each month, we assign stocks to 

100 portfolios based on different combinations of i and j. It should be noted that size and VCG intervals 

must be fixed over time to make sure that stocks falling into resulting portfolios in all periods have size and 

VCG characteristics from exact known size and VCG ranges. 

After assigning stocks to portfolios based on size and VCG intervals, we calculate the equally 

weighted average cross-sectional future return within each portfolio. Then, 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡
𝑖,𝑗

 is the average 

12-month future return of stocks from portfolio corresponding to size interval i and VCG interval j. We 

consider simple average returns instead of market-cap-weighted average returns because the latter would 

overweight returns of larger stocks, which is not desirable given that we assume stocks within a given 

portfolio to be homogenous by size. 

After calculating 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡
𝑖,𝑗

 for all t, i and j, we make use of the time-series dimension and obtain 100 

series of future average 12-month returns of the portfolios based on size and VCG intervals. The table 

below illustrates this idea. 
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Table 9. Portfolio forward-looking 12-month returns for different combinations of size intervals i 

and VCG intervals j 

 Portfolio returns 

Month (t) i = 1; j = 1 i = 1; j = 2 … i = 10; j = 9 i = 10; j = 10 

Jan 1962 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐽𝑎𝑛 1962
1,1

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐽𝑎𝑛 1962
1,2

 … 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐽𝑎𝑛 1962
10,9

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐽𝑎𝑛 1962
10,10

 

Feb 1962 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐹𝑒𝑏 1962
1,1

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐹𝑒𝑏 1962
1,2

 … 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐹𝑒𝑏 1962
10,9

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐹𝑒𝑏 1962
10,10

 

… … … … … … 

Nov 2017 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑁𝑜𝑣 2017
1,1

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑁𝑜𝑣 2017
1,2

 … 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑁𝑜𝑣 2017
10,9

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑁𝑜𝑣 2017
10,10

 

Dec 2017 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐷𝑒𝑐 2017
1,1

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐷𝑒𝑐 2017
1,2

 … 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐷𝑒𝑐 2017
10,9

 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝐷𝑒𝑐 2017
10,10

 

      

 

It should be noted that for certain combinations of size and VCG intervals in some months 

portfolios are empty. This issue mostly appears in the earliest years (1960s and 1970s), when the number 

of companies present in the dataset is not large enough to contain stocks from all 100 combinations of i and 

j. Therefore, further we consider only those months t at which returns 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡
𝑖,𝑗

 are present for all 100 

portfolios. In this way, we make sure that return series for each of the 100 portfolios contains returns strictly 

from the same months. The resulting returns series start and contain almost no gaps from December 1982.  

It should be noted that for any given portfolio, there is most likely a large variation in companies 

across time. We do not consider this as a serious problem because the main principle for portfolio 

construction is based on the size/VCG scores, and so the persistence of companies within portfolios over 

time is not crucial. 

For all 100 resulting series of returns, we fit skew-t distributions and obtain 100 sets of parameters 

of interest (𝜉𝑖,𝑗, 𝜔𝑖,𝑗, 𝜋𝑖,𝑗,𝜈𝑖,𝑗). These portfolio-specific values of the distribution parameters are the 

dependent variables for the four regression equations discussed later.  

In order to obtain portfolio-specific explanatory variables capturing the portfolio’s size 

characteristics, we consider a median size score (across time and stocks) denoted further as 𝑠𝑖𝑧𝑒𝑖,𝑗: 

𝑠𝑖𝑧𝑒𝑖,𝑗 = 𝑀𝑒𝑑𝑖𝑎𝑛[𝑠𝑖𝑧𝑒 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘𝑠 𝑓𝑟𝑜𝑚 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑖, 𝑗 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡𝑖𝑚𝑒].     ( 25 ) 

For example, 𝑠𝑖𝑧𝑒1,1 represents a single estimate of the size score for the companies with the 

smallest size and VCG scores. Similar interpretation applies for 𝑖, 𝑗 = 2,3, … ,10. The same procedure is 

performed for VCG scores and hence 𝑉𝐶𝐺1,1 is obtained as a single estimate of the VCG score for the 

companies with the smallest size and VCG scores, with similar interpretation for 𝑗 = 2,3, … ,10:  

𝑉𝐶𝐺𝑖,𝑗 = 𝑀𝑒𝑑𝑖𝑎𝑛[𝑉𝐶𝐺 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘𝑠 𝑓𝑟𝑜𝑚 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑖, 𝑗 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡𝑖𝑚𝑒].       ( 26 ) 
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Taking median instead of averaging the scores is justified by the fact that for the portfolios of the 

smallest stocks (when i = 1), averaging the size scores would lead to significantly lower estimates of 𝑠𝑖𝑧𝑒1,𝑗 

compared to the case if median-based approach is used. This is because averaging the scores would imply 

assigning unreasonably high weight to companies with extremely low size scores. Such companies in turn 

are heavily underrepresented in the sample. Thus, median-based approach helps obtain estimates of 𝑠𝑖𝑧𝑒1,𝑗 

more adequately representing the size score of companies from respective portfolios. Above issue also 

concerns portfolios of largest stocks (when i = 10). 

Firstly, to obtain a more general understanding of the relationships between portfolio-specific 

size/VCG scores and distribution parameters of the portfolios, we estimate the simple linear OLS models 

shown below. Each equation is estimated using 100 portfolio-specific observations.  

𝜉𝑖,𝑗 = 𝛽0 + 𝛽𝑠𝑖𝑧𝑒𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺𝑉𝐶𝐺𝑖,𝑗 + 휀𝑖,𝑗        ( 27 )  

𝜔𝑖,𝑗 = 𝛽0 + 𝛽𝑠𝑖𝑧𝑒𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺𝑉𝐶𝐺𝑖,𝑗 + 휀𝑖,𝑗        ( 28 ) 

𝜋𝑖,𝑗 = 𝛽0 + 𝛽𝑠𝑖𝑧𝑒𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺𝑉𝐶𝐺𝑖,𝑗 + 휀𝑖,𝑗       ( 29 ) 

𝜈𝑖,𝑗 = 𝛽0 + 𝛽𝑠𝑖𝑧𝑒𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺𝑉𝐶𝐺𝑖,𝑗 + 휀𝑖,𝑗       ( 30 ) 

 

Secondly, some adjustments to the regression specifications are made. In particular, for cases when 

location parameter and dispersion parameter are dependent variables, a visual inspection of the 

corresponding scatterplots motivates the addition of quadratic terms, as discussed in more detail in the 

Results section. Moreover, the lack of clear relationships between size/VCG and degrees of freedom 

motivates the exclusion of explanatory variables for 𝜈𝑖,𝑗 . The resulting final regression specifications have 

the following functional form: 

𝜉𝑖,𝑗 = 𝛽0 + 𝛽𝑠𝑖𝑧𝑒𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑠𝑖𝑧𝑒2𝑠𝑖𝑧𝑒𝑖,𝑗
2 + 𝛽𝑉𝐶𝐺𝑉𝐶𝐺𝑖,𝑗 + 휀𝑖,𝑗                   ( 31 ) 

𝜔𝑖,𝑗 = 𝛽0 + 𝛽𝑠𝑖𝑧𝑒𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺𝑉𝐶𝐺𝑖,𝑗 + 𝛽𝑉𝐺𝐶2𝑉𝐺𝐶𝑖,𝑗
2 + 휀𝑖,𝑗        ( 32 ) 

𝜋𝑖,𝑗 = 𝛽0 + 𝛽𝑠𝑖𝑧𝑒𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺𝑉𝐶𝐺𝑖,𝑗 + 휀𝑖,𝑗                          ( 33 ) 

𝜈𝑖,𝑗 = 𝛽0 + 휀𝑖,𝑗                             ( 34 ) 

 

It should be emphasized that even though size and VCG scores are available for every individual 

stock, the dependent variables (distribution parameters) are only available for 100 obtained portfolios. 

Therefore, we consider medians of the size and VCG scores of stocks within these portfolios across time in 

order to obtain 100 values of portfolio-specific explanatory variables – 𝑠𝑖𝑧𝑒𝑖,𝑗 and 𝑉𝐶𝐺𝑖,𝑗. An alternative 
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approach would be to consider the number of observations in the regressions equal to the number of all 

available stocks in the dataset, consider stock-specific size and VCG scores as explanatory variables, and, 

as before, 100 portfolio-specific values of dependent variables 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖,𝑗. In this case, every stock from 

portfolio i,j would be assigned the same value of 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖,𝑗. Even though such an approach would 

considerably increase the number of observations, it would not help add value in identifying the 

relationships between size/VCG and future return. The variability in dependent variables would still be the 

same as in the case of portfolio-based regressions. In other words, the resulting relationships would be 

essentially the same but the t-statistics for the coefficients would be artificially inflated due to the large 

number of observations. This, in turn, would make it difficult to judge the “true” significance of the 

relationships. 

Overall, by performing the regression analysis described above, we test the following hypothesis: 

Hypothesis 1: Size and value-growth orientation measured in month t have a significant impact on the 

shape parameters of the distribution of future 12-month returns.  

Results from the regression analysis are further used in the application part of the thesis, which is 

discussed in the next section.   

 

4.9 Portfolio Application 

The goal of this section of the thesis is to test whether the regression model described in the previous section 

has the predictive power. By this we mean testing whether the model can identify portfolios of stocks whose 

future performance exhibits certain forecasted risk and risk-reward characteristics. The general idea of this 

test is to construct “best” and “worst” portfolios of stocks based on the estimated criteria (VaR and Reward-

to-VaR), rebalance the portfolios every period based on the re-estimated criteria values, and compare the 

realized risk characteristics (in case of VaR used as criterion) and risk-reward characteristics (in case of 

Reward-to-VaR used as criterion) of portfolios’ performance. For illustrative purposes, we also investigate 

how the performance of such portfolios compares to the performance of the benchmark indices. 

The methodological steps of this test are as follows: 

1) Determine the test period (see section Test Period); 

2) Re-estimate distribution parameters of stocks every month over the test period (see section Re-

estimation of Distribution Parameters) 

3) Determine and calculate the criteria for stock selection (see section Criteria for Stock Selection); 
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4) Select portfolios of “best” and “worst” stocks every month based on these criteria and compare the 

risk and risk-reward characteristics of the performance of the selected portfolios (see section 

Portfolio Construction). 

5) Compare the cumulative performance of the “best” and “worst” stocks with the cumulative 

performance of the benchmark market indices. 

Each of these steps is discussed in greater detail below. 

 

4.9.1 Test Period 

In choosing a test period, it is important to consider a sufficiently long timeframe that contains both periods 

when the market was growing and periods when it was declining. According to the National Bureau of 

Economic Research7, the trough following the 2001 recession in the United States was registered in 

November 2001. However, the economic cycle in that period did not coincide with the cycle of the stock 

market, which in 2001 continued to decline as the dotcom bubble was bursting. October 2002 is believed 

to mark the end of the dotcom bubble as the US stock market reached the bottom, however fluctuations 

continued well into 2003. Therefore, we choose January 2004 as the beginning of the test period, when the 

stock market was generally in the upturn, as can be seen in Figure 1. Thus, we consider the period from 

January 2004 to December 2018 (180 months) including the steady growth of early and mid-2000’s, crisis 

of 2008-2009, and following growth until 2018. 

 

4.9.2 Re-estimation of Distribution Parameters 

Before determining the criteria for stock selection, we first discuss how the parameters of the future return 

distributions are re-estimated every month within the test period. Essentially, re-estimation of parameters 

implies performing the Regression Analysis described in the previous section for every month t of the test 

period, as is explained in greater detail below.  

Firstly, in each month t of the test period, we re-estimate the coefficients of the regression equations 

based on the portfolio returns from Table 9 considering only months before month t. For example, when t 

is January 2004, in Table 9 we consider returns of 100 portfolios until January 20038, fit 100 skew-t 

distributions on returns from these months, obtain estimates of distribution parameters (𝜉𝑖,𝑗
𝑡 , 𝜔𝑖,𝑗

𝑡 , 𝛼𝑖,𝑗
𝑡 , and 

                                                      
7 Source: https://www.nber.org/cycles.html  
8 One-year lag relative to January 2004 comes from the fact that 𝑙𝑜𝑔𝑟𝑒𝑡12𝑚𝑡

𝑖,𝑗
 are 12-month future returns, so the 

last available future 12-month return observable in January 2004 is the one from January 2003. 

https://www.nber.org/cycles.html
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𝜈𝑖,𝑗
𝑡 ) and estimate regressions. The total of 180 sets (equal to the number of months t) of 4 regressions (for 

four skew-t parameters) are re-estimated: 

𝜉𝑖,𝑗
𝑡 = 𝛽0

𝑡 + 𝛽𝑠𝑖𝑧𝑒
𝑡 𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑠𝑖𝑧𝑒2

𝑡 𝑠𝑖𝑧𝑒𝑖,𝑗
2 + 휀𝑖,𝑗   ( 35 ) 

𝜔𝑖,𝑗
𝑡 = 𝛽0

𝑡 + 𝛽𝑠𝑖𝑧𝑒
𝑡 𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺

𝑡 𝑉𝐶𝐺𝑖,𝑗 + 𝛽𝑉𝐶𝐺2
𝑡 𝑉𝐶𝐺𝑖,𝑗

2 + 휀𝑖,𝑗  ( 36 ) 

𝛼𝑖,𝑗
𝑡 = 𝛽0

𝑡 + 𝛽𝑠𝑖𝑧𝑒
𝑡 𝑠𝑖𝑧𝑒𝑖,𝑗 + 𝛽𝑉𝐶𝐺

𝑡 𝑉𝐶𝐺𝑖,𝑗 + 휀𝑖,𝑗   ( 37 ) 

𝜈𝑖,𝑗
𝑡 = 𝛽0

𝑡 + 휀𝑖,𝑗         ( 38 ) 

There are two differences between above regression specifications and those from the full sample 

fit described in the previous section. The first is that we do not include the coefficient for VCG in the 

equation for 𝜉𝑖,𝑗
𝑡 . This is because the relationship between VCG and location parameter is not found to be 

significant in the full sample fit and, when tested, is generally not significant when re-estimated over the 

test period. Secondly, we use the slant parameter 𝛼𝑖,𝑗
𝑡  as the measure of skewness instead of skewness as 

percentage 𝜋𝑖,𝑗
𝑡  used in the full sample fit. The reason is that 𝛼𝑖,𝑗

𝑡  and 𝜋𝑖,𝑗
𝑡  behave in the identical way, and 

for the purposes of calculating the criteria values for stock selection, as is described further in this section, 

it is more convenient to obtain estimates of 𝛼𝑖,𝑗
𝑡 , which is the direct parameter of the skew-t distribution.  

The significance of the regression specifications from (35) – (38) holds firmly over time, which is 

separately tested (for details see Appendix C). 

The obtained portfolio-based coefficients are applied to size and VCG scores of every individual 

stock p in month t and hence estimates of stock-specific distribution parameters are estimated as 𝜉𝑝
𝑡 , 𝜔𝑝

𝑡 , 

𝛼𝑝
𝑡 , and 𝜈𝑝

𝑡 . We apply portfolio-specific coefficients to stock-specific size and VCG scores assuming that 

relationships between distribution parameters and size and VCG characteristics are the same in case of both 

size/VCG-specific portfolios and individual stocks. The estimated stock-specific distribution parameters 

form the basis to compute the values of criteria for stock selection, which is discussed in the next section.  

We apply the above procedure to all stocks in month t and, in the same way, to all remaining months 

of the test period until December 2018. 

 

4.9.3 Criteria for Stock Selection 

For stock selection we introduce two criteria:  

• Value at Risk (VaR), which captures the risk characteristics of stocks; 

• Reward-to-VaR (RtVaR), which captures the risk-reward characteristics of stocks. 
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Value at Risk is a standard measure used to assess tail risk. It estimates the potential loss in value of a 

stock over defined period for a given confidence level. We prefer this measure of risk over volatility or 

dispersion because VaR better captures both the negative skewness and leptokurtosis of returns. Both these 

phenomena are evident in our data, as shown in the Regression Results of this thesis. In our case, 12-month 

forward-looking 5% VaR for stock p in month t is estimated as 

𝑉𝑎𝑅𝑝
𝑡 = −𝑞𝑠𝑡(0.05, 𝜉𝑝

𝑡 , 𝜔𝑝
𝑡 , 𝛼𝑝

𝑡 , 𝜈𝑝
𝑡  ).    ( 39 ) 

In other words, 𝑉𝑎𝑅𝑝
𝑡  is a 5% (0.05) quantile (applied using function “qst” in R) implied by skew-

t distribution with parameters 𝜉𝑝
𝑡 , 𝜔𝑝

𝑡 , 𝛼𝑝
𝑡  and 𝜈𝑝

𝑡 . We add the negative sign in order for 𝑉𝑎𝑅𝑝
𝑡  to be a positive 

number. 

In order to capture the risk-reward characteristics of stocks, as the second criteria we introduce 

Reward-to-VaR (RtVaR), which for stock p in month t determines the stock’s future most likely return per 

unit of future tail risk captured by VaR: 

𝑅𝑡𝑉𝑎𝑅𝑝
𝑡 =

𝜉𝑝
𝑡

𝑉𝑎𝑅𝑝
𝑡  .             ( 40 ) 

We choose most likely future return, or location parameter 𝜉𝑝
𝑡 , in the numerator instead of expected 

return because the estimates of expected returns based on our model are negative for a large number of 

smallest companies. This, in turn, would make the estimates of RtVaR negative, in which case the changes 

in RtVaR lack interpretability. 

 

4.9.4 Portfolio Construction 

Firstly, we determine different stock universes, within which the stock selection is implemented. Since the 

methodology of the thesis is to a large extent based on the Morningstar Style Box, we consider universes 

corresponding to each of the nine combinations of size and VCG categories. Within a certain universe (for 

example, small value stocks) we consider a benchmark portfolio. The most intuitive benchmark portfolio 

is a corresponding market-cap-weighted index, which is a type of benchmark commonly used in practice 

(for example, MSCI US Small Cap Value Index9 for small value stocks). In our case, we compose these 

indices ourselves based on the available dataset and track the cumulative performance on a monthly basis. 

The monthly realized return in month t+1 of every constituent stock p included in the index in month t is 

calculated as 

                                                      
9 Source: https://www.msci.com/documents/10199/25244741-85f5-4851-98f4-872d4fd82423  

https://www.msci.com/documents/10199/25244741-85f5-4851-98f4-872d4fd82423
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𝑟𝑒𝑡1𝑚𝑡
𝑝

= 𝑒𝑙𝑜𝑔𝑟𝑒𝑡1𝑚𝑡
𝑝

− 1,    ( 41 ) 

where 𝑙𝑜𝑔𝑟𝑒𝑡1𝑚𝑡
𝑝
 is calculated as in (16). Market capitalization of stock p in month t, or 𝑚𝑐𝑎𝑝𝑡

𝑝
, is defined 

as 

𝑚𝑐𝑎𝑝𝑡
𝑝

= 𝑃𝑅𝐶𝐶𝑀 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑡

𝑝
× 𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑡

𝑝,  ( 42 ) 

where the price and common shares outstanding are split-adjusted, as defined in (1) and (2). Market-cap-

weighted average return of the index realized in month t+1 is calculated as  

𝑟𝑒𝑡1𝑚𝑡
𝑖𝑛𝑑𝑒𝑥 =

∑ 𝑟𝑒𝑡1𝑚𝑡
𝑝

×𝑚𝑐𝑎𝑝𝑡
𝑝

𝑝 ∈ 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡

∑ 𝑚𝑐𝑎𝑝𝑡
𝑝

𝑝 ∈ 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ 𝑡
.      ( 43 ) 

As the rule for stock selection in month t, we consider the “best” and “worst” quartiles of stocks 

based on the selection criteria determined in section Criteria for Stock Selection. Namely,  

• for Value at Risk criterion, the “best” (“worst”) quartile corresponds to the 25% of stocks with 

the lowest (highest) values of VaR in a given month; 

• for Reward-to-VaR criterion, the “best” (“worst”) quartile corresponds to the 25% of stocks 

with the highest (lowest) values of respective criteria. 

Further, we consider value-weighted portfolios of stocks from the “best” and “worst” quartiles and 

track their performance in the same fashion as is done for the benchmark index. The selection of “best” and 

“worst” stocks implemented in our thesis is essentially equivalent to reducing the value-weighted 

benchmark index by keeping only the constituents within the “best” and “worst” quartiles based on the two 

criteria without any further change of relative weights.  

As the next step, we estimate the risk and risk-reward characteristics implied by the performance 

of the “best” and “worst” stocks. For “best” portfolio and “worst” portfolio based on the VaR criteria, we 

calculate the realized portfolio Value at Risk implied by its performance over the whole test period 

calculated as the 5% percentile of the distribution of annual portfolio returns realized every month. For 

“best” portfolio and “worst” portfolio based on the RtVaR criterion, we calculate the portfolio Reward-to-

VaR implied by its performance over the test period. Realized portfolio RtVaR is calculated as the most 

likely realized portfolio annual return estimated by the skew-t fit divided by the 5% percentile of the 

distribution of annual portfolio returns realized every month. 

The same analysis is conducted for the remaining eight combinations of size and VCG categories. 

In addition, we consider three stock universes based solely on VCG category (value, core and growth), 

three stock universes based solely on size category (small, mid and large), as well as the total stock universe. 

Hence 16 universes are considered in total. 
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As was noted, our stock selection implies a simple exclusion of stocks from the benchmark index 

without any further weights optimization. We choose this simplified approach because a proper 

optimization routine aimed at minimizing or maximizing portfolio VaR or RtVaR of “best” or “worst” 

stocks would be computationally infeasible given the large number of stocks in each of the stock universes. 

Moreover, we admit that correlations between individual stocks should ideally be taken into consideration 

when implementing a proper portfolio optimization routine. In other words, by selecting the “best” and 

“worst” stocks in the criteria-based portfolios, we may not necessarily obtain the “best” and “worst” 

portfolios but can only approximate “best” and “worst” portfolios. However, the goal of this section is to 

test the relationships obtained by analyzing the whole US stock market. For that reason, we find it necessary 

to consider all companies in the portfolio construction. More rigorous portfolio optimization procedure as 

well as incorporating correlations between individual stocks may be suggested as a future line of inquiry.  

If the realized VaR of the portfolios of “best” stocks selected by VaR criterion (stocks with lowest 

forecasted VaR) is consistently below realized VaR of the portfolios of “worst” stocks (stocks with highest 

forecasted VaR) across different stock universes, we can conclude that the VaR criterion incorporating the 

shape of predictive return distributions driven by stocks’ size and value-growth orientation tends to 

correctly identify the stocks with higher or lower forecasted future tail risk. Similarly, if the realized RtVaR 

of the portfolios of “best” stocks selected by RtVaR criterion (stocks with highest forecasted RtVaR) is 

consistently below RtVaR of the portfolios of “worst” stocks (stocks with lowest forecasted RtVaR) across 

different stock universes, we can conclude that the RtVaR criterion incorporating the shape of predictive 

return distributions driven by stocks’ size and value-growth orientation tends to correctly identify the stocks 

with higher or lower implied future reward to tail risk. In other words, if this consistency is observed, it will 

ultimately support the significance of relationships between size/VCG and future return distributions found 

in the regression analysis and enable us to accept the Hypothesis 2 formulated below.  

Hypothesis 2:  If Hypothesis 1 is accepted, the regression model incorporating the relationships between 

size/VCG and the shape of future returns distribution has the predictive power, i.e. it can identify portfolios 

of stocks whose actual future performance exhibits certain forecasted risk and risk-reward characteristics. 

As outlined in the beginning of this section, the secondary goal is to compare the cumulative 

performance of “best” and “worst” portfolios based on VaR and RtVaR with that of benchmark indices for 

the respective stock universes. This goal of the portfolio application has a more illustrative purpose, and 

therefore we do not test any hypothesis. 
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5 Results 

5.1 Testing Goodness of Skew-t Fit from Category Perspective 

It should be highlighted that skew-t indeed provides a much better fit for the empirical future return 

distributions compared to normal fit, as can be seen from Figure 8 below.  

 

Figure 8. Histograms of future 12-month returns of equally weighted portfolios of 

stocks corresponding to different combinations of size and VCG categories. Blue lines 

illustrate skew-t fits, red lines illustrate normal fits. Distributions are fit on monthly 

observations of annual future 12-month log returns from January 1962 to December 2017. 
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The same conclusion about higher accuracy of skew-t fits is obtained by performing the Chi-Square 

goodness of fit test. At 5% significance level, this fails to reject assumed skew-t fits for all 9 portfolios, and 

rejects assumed normal fits for all 9 portfolios (for details see Table 10 below).  

 

Table 10. P-values of Chi-Square test for skew-t and normal distribution fits for future 12-month 

returns of equally weighted portfolios based on size and VCG categories. Goodness of fit is tested using 

the Chi-Square test. H0 hypothesis states that empirical return samples are drawn from the distributions of 

assumed type. At 5% significance level, p-values higher than 0.05 indicate that assumed fit cannot be 

rejected, p-values below 0.05 (highlighted) indicate that assumed fit is rejected. Distributions are fit on 

monthly observations of annual future 12-month log returns from January 1962 to December 2017. 

 

 

Visual comparison of the quality of skew-t and normal fits, as well as output of the Chi-Square test, 

firstly, clearly indicate that skew-t fit is superior to normal fit for returns data in our analysis, and secondly, 

strongly suggest that the estimates of skew-t parameters of the nine distributions are reliable and can be 

used in further analysis. 

 

5.2 Size/VCG Category Perspective Results 

Inspecting Figure 8 further, we see that the distributions show a clear pattern. Namely, moving from small-

caps to large-caps and from growth orientation to value orientation, distributions become significantly more 

peaked and narrower. This suggests that large value stocks are least volatile while small growth stocks are 

most volatile, in agreement with Schadler and Eakins (2001).  

However, based only on visual inspection, it is hard to see any other patterns related to our 

distribution parameters of interest. Therefore, below we consider individual estimates of the parameters for 

respective fitted skew-t future return distributions.   

Value Core Growth Value Core Growth

Large 0.1854 0.7686 0.1774 Large < 0.0005 < 0.0005 < 0.0005

Mid 0.3328 0.5277 0.0555 Mid < 0.0005 < 0.0005 < 0.0005

Small 0.1964 0.0700 0.3408 Small < 0.0005 < 0.0005 < 0.0005

Chi-Square test p-values 

(skew-t fit assumed)

Chi-Square test p-values                    

(normal fit assumed)
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Table 11. Parameters of the fitted skew-t distributions of the future 12-month returns of equally 

weighted portfolios of stocks from different size and VCG categories. Distributions are fit on monthly 

observations of annual future 12-month log returns from January 1962 to December 2017. 

  

 

  

 

 

Looking at the location parameter, we clearly see that more growth-oriented stocks tend to realize 

the highest most likely future returns. Another useful observation is that while growth stocks from all 

categories demonstrate approximately similar most likely future returns, value stocks perform relatively 

well only in case of large-caps.  

The pattern related to varying volatility across categories observed in Figure 8 is also clearly 

reflected in values for dispersion parameter in the table above – dispersion grows consistently as we move 

to the right bottom corner of the Style Box to small growth category.  

Interesting observations can be made by looking at the values of skewness. We can observe that 

the distribution of future returns of smaller and more value-oriented stocks tends to be more symmetric than 

that of larger and more growth-oriented stocks, which exhibit more negative skewness. For the equally 

weighted index of small value stocks, based on the period from 1962 until December 2018, future 12-month 

returns are almost equally likely to exceed or fall behind future most likely return (𝜋 = 53%), while future 

returns of large growth stocks index exceeds its most likely future return only in 29% of cases (𝜋 = 71%) 

implying significantly more negative skewness.  

Finally, the degrees of freedom parameter, determining how heavy-tailed a distribution is, suggests 

that as we move from small to large and from value to growth, distributions tend to become less heavy-

tailed.  

Below we present the summary of the results of this section. 

Value Core Growth

Large 2.1% 3.4% 3.1%

Mid 3.0% 2.8% 3.3%

Small 0.6% 1.7% 3.0%

Location ξ

Value Core Growth

Large 3.7% 4.8% 5.2%

Mid 4.4% 4.6% 5.5%

Small 4.3% 4.6% 6.1%

Dispersion ω

Value Core Growth

Large 64% 73% 71%

Mid 70% 68% 71%

Small 53% 61% 69%

Skewness as percentage π

Value Core Growth

Large 4.29 5.39 4.93

Mid 4.33 4.47 4.54

Small 3.49 3.75 4.72

Degrees of freedom ν
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Table 12. Summary of the results based on size and VCG categories 

Type of parameters Results summary 

Location  • Most likely future returns increase with size  

• Most likely future returns increase with VCG (with growth orientation) 

Dispersion  • Dispersion of future returns decreases with size  

• dispersion of future returns increases with VCG (with growth 

orientation) 

Skewness • Skewness of future returns becomes more negative with size 

• Skewness of future returns becomes more negative with VCG (with 

growth orientation)  

Degrees of freedom  • Future returns tend to become less heavy-tailed with size 

• Future returns tend to become less heavy-tailed with VCG (with growth 

orientation) 

 

5.3 Testing Goodness of Skew-t Fit from Regression Perspective 

The results from the previous section provide useful insights the significance of which should be further 

investigated within a more rigorous regression framework. Firstly, however, as in case of size and VCG 

category perspective, the reliability of the skew-t fits used in the regression analysis has to be separately 

discussed. 

The Chi-Square test performed for the returns series of 100 size/VCG-specific portfolios shows 

that for 84 of them, at the 5% significance level, the hypothesis that returns are drawn from the skew-t 

distributions cannot be rejected (for details see Table 13). 
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Table 13. P-values of Chi-Square test for skew-t distribution fits for future 12-month returns of 

portfolios based on size and VCG intervals. Rows “size i” correspond to size intervals i=1,2,…,10. 

Columns “VCG j” correspond to VCG intervals j=1,2,…,10. Goodness of fit is tested using the Chi-Square 

test. H0 hypothesis states that empirical return samples are drawn from the distributions of assumed type. 

At 5% significance level, p-values higher than 0.05 indicate that assumed fit cannot be rejected, p-values 

below 0.05 (highlighted) indicate that assumed fit is rejected. Distributions are fit on monthly observations 

of annual future 12-month log returns from December 1982 to December 2017. 

 

 

This result indicates that the distributions of future returns of the vast majority of portfolios based on 

size and VCG intervals are accurately enough fitted by the skew-t distribution and overall enables us to rely 

on the estimated skew-t parameters in the further discussion of regression results. 

 

5.4 Regression Results 

Below we present and interpret the main results of the regression analysis for the four distribution 

parameters of interest. 

 

 

 

 

 

VCG 1 VCG 2 VCG 3 VCG 4 VCG 5 VCG 6 VCG 7 VCG 8 VCG 9 VCG 10

size 10 0.178 0.158 0.172 0.136 0.018 0.040 0.151 0.021 0.279 0.104

size 9 0.232 0.190 0.568 0.168 0.363 0.042 0.347 0.067 0.056 0.036

size 8 0.141 0.335 0.360 0.137 0.052 0.392 0.008 0.060 0.039 0.039

size 7 0.070 0.263 0.094 0.197 0.082 0.073 0.315 0.123 0.215 0.206

size 6 0.145 0.636 0.083 0.222 0.075 0.096 0.121 0.313 0.182 0.335

size 5 0.226 0.080 0.388 0.102 0.394 0.615 0.127 0.284 0.036 0.304

size 4 0.338 0.046 0.119 0.072 0.340 0.078 0.043 0.076 0.056 0.264

size 3 0.203 0.061 0.107 0.190 0.159 0.143 0.278 0.357 0.205 0.043

size 2 0.063 0.037 0.215 0.299 0.493 0.121 0.004 0.051 0.229 0.284

size 1 0.191 0.039 0.216 0.150 0.005 0.066 0.664 0.158 0.225 0.257

Chi-Square test p-values (skew-t fit assumed)
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5.4.1 Location 

Table 14. Regression results for location parameter. Skew-t location parameters (most likely future 12-

month return) of the 100 size- and VCG-specific portfolios are dependent variables, respective size and 

VCG scores are explanatory variables. Three stars (***) and two stars (**) indicate 0.1% and 1% 

significance level, respectively. VCG denotes value-core-growth orientation score associated with the 

portfolios, size score measures median log market share of the stocks in the portfolios. Distributions are fit 

on monthly observations of annual future 12-month log returns from December 1982 to December 2017. 

 

 

Figure 9. Portfolio size and VCG scores and corresponding location parameters. Black 

dots show the observed location parameters (most likely future 12-month return) 

corresponding to 100 portfolios with respective size score points 𝑠𝑖𝑧𝑒𝑖,𝑗 and VCG score 

points 𝑉𝐶𝐺𝑖,𝑗 as defined in (25) and (26), respectively. Red dots indicate outliers excluded 

from the regression samples. The blue line shows quadratic regression fit and the green 

dashed line indicates linear fit. When plotting a regression curve showing the relationship 

between size (VCG) score and location parameter, VCG (size) score is fixed at the average 

level of 𝑉𝐶𝐺𝑖,𝑗 (𝑠𝑖𝑧𝑒𝑖,𝑗) points. VCG denotes value-core-growth orientation score 

associated with the portfolios, size score measures median log market share of the stocks 

in the portfolios. Distributions are fit on monthly observations of annual future 12-month 

log returns from December 1982 to December 2017. 

Analyzing the relationships between size and location parameter, we observe that most likely future 

returns indeed tend to be higher for larger stocks. However, in addition, the scatterplot suggests that the 

Coefficient t-value Coefficient t-value

(Intercept) 0.053 17.56 *** 0.017 2.89 **

0.004 8.81 *** -0.010 -4.43 ***

-0.001 -6.48 ***

0.00005 1.46 0.00003 1.24

F-test p-value

Linear model Quadratic model

Location ξ

0.4475 0.613

1.586E-13 < 2.2E-16
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increase in location slows down and location even slightly declines for the largest stocks, which is also 

confirmed by a significant quadratic fit. The overall positive relationship between size and location can be 

interpreted using the dashed green linear fit, which also exhibits rather high significance and percentage of 

explained variance. Ceteris paribus, an increase in market share by one percent10 tends to correspond to an 

increase in future 12-month most likely return by 0.4 p.p. It should be noted that the negative coefficients 

for size and size squared in the quadratic model should not be confusing since their direct interpretation is 

not possible. The reason is that the ceteris paribus assumption in this case cannot hold (a change in size 

always leads to a change in size squared and vice versa). 

As to VCG and location, regression analysis does not indicate any significant relationship between 

the two.  

 

5.4.2 Dispersion 

Table 15. Regression results for dispersion parameter. Skew-t dispersion parameters (dispersion of the 

future 12-month returns) of the 100 size- and VCG-specific portfolios are dependent variables, respective 

size and VCG scores are explanatory variables. Three stars (***) indicate 0.1% significance level. VCG 

denotes value-core-growth orientation score associated with the portfolios, size score measures median log 

market share of the stocks in the portfolios. Distributions are fit on monthly observations of annual future 

12-month log returns from December 1982 to December 2017. 

 

                                                      
10 For example, an increase of market share from 0.1% to 0.1% × (1 + 1%) = 0.101%. 

Coefficient t-value Coefficient t-value

(Intercept) 0.042 16.33 *** 0.037 18.15 ***

-0.002 -5.50 *** -0.002 -7.32 ***

0.0001 3.70 *** 0.0001 4.93 ***

0.000005 8.282 ***

F-test p-value

Linear model Quadratic model

0.2892 0.5829

Dispersion ω

2.85E-08 < 2.2E-16
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Figure 10. Portfolio size and VCG scores and corresponding dispersion parameters. 

Black dots show the observed dispersion parameters (dispersion of the future 12-month 

returns) corresponding to 100 portfolios with respective size score points 𝑠𝑖𝑧𝑒𝑖,𝑗 and VCG 

score points 𝑉𝐶𝐺𝑖,𝑗 as defined in (25) and (26), respectively. Red dots indicate outliers 

excluded from the regression samples. Blue line shows optimal quadratic regression fit and 

green dashed lines indicate linear fits. When plotting a regression curve showing the 

relationship between size (VCG) score and dispersion parameter, VCG (size) score is fixed 

at the average level of 𝑉𝐶𝐺𝑖,𝑗 (𝑠𝑖𝑧𝑒𝑖,𝑗) points. VCG denotes value-core-growth orientation 

score associated with the portfolios, size score measures median log market share of the 

stocks in the portfolios. Distributions are fit on monthly observations of annual future 12-

month log returns from December 1982 to December 2017. 

 

A highly significant linear fit for the relationship between size and dispersion indicates a negative 

relationship between the two, as was also observed in the histograms for categories in the previous section. 

Namely, all else equal, a 1 per cent increase in market share corresponds to a decrease in dispersion of 

future 12-month returns by 0.2 p.p.  

We interpret an overall positive relationship between VCG and dispersion in the following way: 

ceteris paribus, an increase in VCG score by 1 unit leads to an increase in future 12-month most likely 

returns by 0.01 p.p. However, significant non-linear fit revealed that these relationships go beyond linearity, 

which is one of the main results of the thesis. Namely, the squared fit indicates that both deep-value and 

high-growth stocks (stocks with lowest and highest VCG scores, respectively) exhibit particularly 

heightened future volatility relative to stocks in the middle of the VCG spectrum. The potential reasons for 

this phenomenon are discussed in the Conclusions section.  
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5.4.3 Skewness 

Table 16. Regression results for skewness as percentage parameter. Skew-t skewness as percentage 

parameters (likelihood of the future 12-month returns to fall behind future 12-month most likely return) of 

the 100 size- and VCG-specific portfolios are dependent variables, respective size and VCG scores are 

explanatory variables. Three stars (***) indicate 0.1% significance level. VCG denotes value-core-growth 

orientation scores. VCG denotes value-core-growth orientation score associated with the portfolios, size 

score measures median log market share of the stocks in the portfolios. Distributions are fit on monthly 

observations of annual future 12-month log returns from December 1982 to December 2017. 

 

 

Figure 11. Portfolio size and VCG scores and corresponding skewness as percentage 

parameters. Skewness as percentage is defined as likelihood of the future 12-month 

returns to fall behind future 12-month most likely return. Black dots show the observed 

skewness parameters corresponding to 100 portfolios with respective size score points 

𝑠𝑖𝑧𝑒𝑖,𝑗 and VCG score points 𝑉𝐶𝐺𝑖,𝑗 as defined in (25) and (26) respectively. Red dots 

indicate outliers excluded from the regression samples. Green dashed lines indicate linear 

fits. When plotting a regression curve showing the relationship between size (VCG) score 

and skewness parameter, VCG (size) score is fixed at the average level of 𝑉𝐶𝐺𝑖,𝑗 (𝑠𝑖𝑧𝑒𝑖,𝑗) 

points. VCG denotes value-core-growth orientation score associated with the portfolios, 

size score measures median log market share of the stocks in the portfolios. Distributions 

are fit on monthly observations of annual future 12-month log returns from December 1982 

to December 2017. 

 

Coefficient t-value

(Intercept) 79.497 62.19 ***

1.564 7.50 ***

0.063 4.72 ***

F-test p-value

Skewness as percentage π

Linear model

0.4509

1.18E-13
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Considering the relationship between size/VCG and skewness, first, it should be noted that 

regression analysis has confirmed a common observation in finance literature that equity returns 

consistently exhibit negative skewness. Indeed, in our case, future return distributions of all 100 portfolios, 

except only one outlying portfolio, are negatively skewed.  

As to size and skewness, we observe the second most significant result of our regression analysis. 

Namely, future returns indeed become more negatively skewed with company size. This is consistent with 

the previous observations from the size and VCG category perspective. We can interpret obtained linear 

regression coefficients in the following way: ceteris paribus, a 1 per cent increase in market share makes 

future 12-month returns 1.564 p.p. more likely to fall behind most likely future return. 

As to relationships between VCG and skewness, as can be seen in the plot on the right in Figure 

11, skewness becomes more negative with VCG (or, increase in growth orientation), This is in agreement 

with the results from the size/VCG category perspective shown in Table 11. The regression fit provides the 

following interpretation: ceteris paribus, an increase in VCG score by 1 unit makes future 12-month returns 

0.063 p.p. less likely to exceed a future mode return. This negative relationship between skewness and VCG 

corroborates the conclusions from Halling and Giordani (2018) in that high valuation levels corresponds to 

more negative skewness of future returns. In our case, more growth-oriented stocks are those with relatively 

high overall growth score (see Growth Orientation section) and relatively low overall value score (for 

details see Value-Core-Growth (VCG) Score and Orientation section). Low value scores imply low yields, 

high multiples (as inverses of yields) and hence high valuation.  

5.4.4 Degrees of Freedom 

Table 17. Regression results for degrees of freedom parameter. Skew-t degrees of freedom of the future 

12-month returns of the 100 size- and VCG-specific portfolios are dependent variables, respective size and 

VCG scores are explanatory variables. Three stars (***) and one star (*) indicate 0.1% and 5% significance 

level, respectively. VCG denotes value-core-growth orientation score associated with the portfolios, size 

score measures median log market share of the stocks in the portfolios. Distributions are fit on monthly 

observations of annual future 12-month log returns from December 1982 to December 2017. 

 

Coefficient t-value Coefficient t-value

(Intercept) 3.770 14.18 *** 4.346 50.13 ***

-0.099 -2.29 *

0.001 0.51

F-test p-value

Degrees of freedom ν

Linear model Constant model

0.0338

0.0702
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Figure 12. Portfolio size and VCG scores and corresponding degrees of freedom 

parameters. Black dots show the observed degrees of freedom of the future 12-month 

returns corresponding to 100 portfolios with respective size score points 𝑠𝑖𝑧𝑒𝑖,𝑗 and VCG 

score points 𝑉𝐶𝐺𝑖,𝑗 as defined in (25) and (26), respectively. Purple dashed lines illustrate 

the fit on constant. VCG denotes value-core-growth orientation score associated with the 

portfolios, size score measures median log market share of the stocks in the portfolios. 

Distributions are fit on monthly observations of annual future 12-month log returns from 

December 1982 to December 2017. 

Finally, as opposed to highly significant results for the previous parameters, we find no strong 

relationships between degrees of freedom and size or VCG. Although the linear fit has revealed some 

significance for the size regressor, a high p-value of the F-test for this linear fit indicates that the simpler 

model on constant cannot be rejected. An extremely low R-squared for the linear model also clearly 

indicates that size and VCG have almost no explanatory power for degrees of freedom parameter. 

Therefore, we consider a model on constant to be optimal, which provides an average estimate of degrees 

of freedom parameter equal to 4.346. This estimate is obviously smaller than infinity highlighting an overall 

propensity of stock returns to exhibit leptokurtosis. 

Below we present the summary of the relationships obtained in the regression analysis.  
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5.4.5 Regression Results Summary 

Table 18. Summary of the regression results. As the basis, the summary from the size/VCG category 

perspective is considered when the same relationships were found to hold. New insights gained thanks to 

the regression analysis are stated in bold.  

Type of parameters Results summary 

Location  • Most likely future returns increase with size but somewhat decline for 

the largest stocks 

• Most likely future returns are not significantly explained by the value-

growth orientation 

Dispersion  • Dispersion of future returns decreases with size  

• Dispersion of future returns increases for both deep-value and high-

growth stocks 

Skewness • Skewness of future returns becomes more negative with size 

• Skewness of future returns becomes more negative with VCG (with 

growth orientation)  

Degrees of freedom  • No significant relationships are found between heavy-tailedness of 

future returns and size or value-growth orientation 

 

Overall, based on the highly significant results of the regression analysis, we accept Hypothesis 1 

that size and value/growth characteristics do explain the shape of the future 12-month return distributions.  

The next section discusses the results of the portfolio application part of the thesis.  

 

5.5 Portfolio Application Results 

The results relating to the first goal of the portfolio application part of the thesis are summarized in the 

following table.  
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Table 19. Comparison of realized risk and risk-reward characteristics of portfolios. The table includes 

the comparison of realized annual VaR of the portfolios of “worst” and “best” stocks selected by VaR 

criterion and comparison of realized annual Reward-to-VaR (RtVaR) of the portfolios of “worst” and “best” 

stocks selected by RtVaR criterion. Realized VaR and RtVaR is based on the performance over the test 

period from January 2004 to December 2018. 

 

 

Firstly, we consider the results related to portfolios based on the risk measure – VaR. We clearly 

see that within all stock universes, choosing the stocks in each month of the test period from the bottom 

(“best”) quartile based on estimated forward-looking 12-month 5% VaR delivered consistently lower 

realized portfolio VaR than stocks from the top (“worst”) quartile based on estimated forward-looking 12-

month VaR. This means that the regression model incorporating the relationships between size/VCG and 

shape parameters of the future return distribution enabled us to identify portfolios of stocks whose actual 

performance is in agreement with forecasted risk profile. It is of particular interest that the greatest decrease 

in realized VaR for “best” VaR-based quartile of stocks compared to “worst” VaR-based quartile of stocks 

is observed for value-related stock universes – small value (46% decrease), mid value (43% decrease), large 

value (51% decrease), and overall value (63% decrease). This particular observation strongly suggests that 

Stock universe

Realized 

annual VaR of 

stocks from 

high 

forecasted 

VaR ("worst") 

quartile

Realized 

annual VaR of 

stocks from 

low 

forecasted 

VaR ("best") 

quartile

% decrease in 

realized 

annual VaR 

for "best" 

quartile

Realized annual 

RtVaR of stocks 

from low 

forecasted 

RtVaR ("worst") 

quartile

Realized 

annual RtVaR 

of stocks from 

high forecasted 

RtVaR ("best") 

quartile

% increase 

(decrease) in 

realized annual 

RtVaR for 

"best" quartile

Small Value 23% 13% 46% -0.037 0.302 highly positive

Small Core 13% 10% 20% 0.296 0.516 74%

Small Growth 18% 12% 31% 0.427 0.571 34%

Mid Value 19% 11% 43% 0.233 0.431 85%

Mid Core 12% 10% 18% 0.659 0.442 -33%

Mid Growth 16% 11% 33% 0.439 0.585 33%

Large Value 18% 9% 51% 0.358 0.337 -6%

Large Core 11% 8% 30% 0.625 0.462 -26%

Large Growth 13% 8% 34% 0.687 0.613 -11%

Value 31% 12% 63% 0.008 0.328 4250%

Core 13% 9% 33% 0.499 0.464 -7%

Growth 14% 8% 39% 0.458 0.634 39%

Small 14% 11% 25% 0.147 0.466 217%

Mid 12% 10% 15% 0.570 0.450 -21%

Large 11% 10% 12% 0.654 0.410 -37%

Total 12% 9% 22% 0.361 0.446 24%

Median 32% 24%

VaR Reward-to-VaR

Stock selection criteria
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the functional form of the relationships between VCG and distribution parameters, most importantly 

implying the heightened dispersion for deep-value stocks, have been correctly identified. 

Looking at the results related to the portfolios based on the risk-reward measure RtVaR, we do not 

observe as consistent outcomes as in case of VaR. However, several observations stand out. Firstly, for all 

small-related universes, choosing the stocks in each month of the test period from the top (“best”) quartile 

based on estimated forward-looking 12-month RtVaR delivered consistently higher realized portfolio 

RtVaR than stocks from the bottom (“worst”) quartile based on estimated forward-looking 12-month 

RtVaR. This observed consistency for the small-related universes can be explained by the fact that for small 

stocks, the size scores, as they are defined in the thesis, have the greatest variation and thus the relationships 

between size and future return distribution parameters are identified with the highest accuracy compared to 

the case of mid or large stocks. This higher accuracy in estimation of the forecasted parameters, in turn, 

clearly translated into desired actual performance. Even though there is inconsistency in results for RtVaR 

across different universes, for the total market universe overall, we can still see that future risk-reward 

characteristics of stocks from “best” and “worst” portfolios have been correctly identified (24% increase in 

realized RtVaR for stocks with “best” forecasted RtVaR compared to the case of stocks with “worst” 

forecasted RtVaR). 

We can make the conclusions regarding Hypothesis 2, which we raise in the Methodology section. 

The hypothesis assumes that the regression model incorporating the relationships between size/VCG and 

the shape of future returns distribution has the power to identify portfolios of stocks whose realized 

performance exhibits certain forecasted risk and risk-reward characteristics. Based on above results, we can 

conclude that our model identifies stocks with desired future risk characteristics based on VaR consistently 

within all stock universes. This is particularly evident in the case of stocks within value-related universes. 

The model identifies portfolios of stocks with desired future risk-reward characteristics based on RtVaR 

consistently only within small-related universes and for the overall market.  

Finally, for illustrative purposes, we look at the performance of “best” and “worst” portfolios in 

comparison to respective benchmark indices. Two observations particularly stand out. First, the consistency 

in above results for RtVaR observed in case of all small stock universes (overall small, small value, small 

core and small growth) clearly translates into consistently better performance of “best” RtVaR-based stocks 

not only compared to “worst” stocks but also compared to benchmark indices, as shown below in Figure 

13. 
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Figure 13. Performance of value-weighted portfolios in small-related stock universes. 

Namely, following portfolios are considered: the benchmark market portfolio (VW Index), 

“best” stocks from top RtVaR quartile (High RtVaR q.), “worst” stocks from bottom 

RtVaR quartile (Low RtVaR q.), “best” stocks from bottom VaR quartile (Low VaR q.), 

and “worst” stocks from top VaR quartile (High VaR q.). 

 

Secondly, particularly strong results for VaR-based portfolios within value-related universes, as 

highlighted above, translates into consistent outperformance of “best” VaR-based portfolios not only 

relative to “worst” stocks but also relative to benchmark indices. This means that even though VaR as a 

criterion estimates only the future risk, it clearly helps identify “best” or “worst” performing stocks as well. 

This is especially pronounced in case of large value universe, as shown below in Figure 14, which can be 

a particularly useful observation for value investors focusing on large caps given a well-known difficulty 

to succeed in this type of investing. 
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Figure 14. Performance of value-weighted portfolios in value-related stock universes. 

Namely, following portfolios are considered: the benchmark market portfolio (VW Index), 

“best” stocks from top RtVaR quartile (High RtVaR q.), “worst” stocks from bottom 

RtVaR quartile (Low RtVaR q.), “best” stocks from bottom VaR quartile (Low VaR q.), 

and “worst” stocks from top VaR quartile (High VaR q.). 

 

In Appendix D, we present the plots illustrating the performance of the benchmark portfolios and the 

portfolios of “best” and “worst” stocks based on VaR and RtVaR criteria for all stock universes.  



54 

 

6 Conclusions 

In our thesis, we provide evidence to support our two hypotheses that (i) company size and value-growth 

orientation have a significant impact on the shape parameters of the distribution of future 12-month returns 

and that (ii) our model has predictive power, i.e. that the model incorporating the relationships between 

size/VCG and the shape of future returns distribution can identify portfolios of stocks whose realized 

performance exhibits certain forecasted risk and risk-reward characteristics.  

Two particularly striking findings stand out in our regression results. Firstly, the relationship 

between value-growth orientation and dispersion shows clear signs of non-linearity. Specifically, it appears 

to have a quadratic functional form, with future volatility increasing for both deep-value and high-growth 

companies. For high-growth companies, this observation is consistent with the theory of leverage effects 

as proposed by Black (1976) and Christie (1982). Growth stocks are stocks with high valuations relative to 

the rate at which earnings, book value, cash flow and revenue are expected to grow. As such, there is more 

capacity for valuations to drop for growth stocks than for stocks with low valuations. In the framework of 

the leverage effect theory, this drop in valuation would in turn lead to an increase in operating and financial 

leverage, and so an increase in volatility, as we see in our results.  

However, we find no formal theory that rationalizes our result that future volatility increases for 

deep-value companies. We propose the informal hypothesis that there is a “low base” effect in play. Deep-

value stocks, which have very low valuations relative to prospective growth in earnings, book value, 

revenue, cash flow and dividends, are likely those that are performing or expected to perform very poorly 

and are possibly close to bankruptcy. As a result, their stock price may be more sensitive to news, whether 

good or bad. This in turn may explain the increased volatility we see for deep-value stocks.  

Secondly, we find that skewness of future returns becomes more negative with company size. This 

is in agreement with the empirical findings of Chen et al. (2001) and Dennis and Mayhew (2002). However, 

we are also not aware of any formal framework that rationalizes this finding. Chen et al. (2001) offer the 

informal theory that (i) firms tend to be quick to release good news while bad news “dribbles out” and (ii) 

small firms tend to have more capacity to hide bad news. For these reasons, return distributions of larger 

companies become more negatively skewed. This explanation seems reasonable, but further research is 

certainly needed to make a more confident interpretation of this result. 

We also explore an application of our regression analysis that highlights the potential value of our 

findings to portfolio managers and risk management more generally. We find that our model has some 

ability to identify portfolios of stocks whose realized VaR-based risk profile is consistent with that forecast 

by our model. Importantly, this result is obtained for all different stock universes based on the Morningstar 
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Style Box. This suggests our model incorporating the relationship between the shape of the future return 

distribution and company size and value-growth orientation can be of benefit to portfolio construction when 

VaR is an important consideration. Our results indicate that for small caps, the model can also help choose 

stocks whose realized risk-reward profile is consistent with that forecast by our model. Furthermore, by 

identifying stocks that are expected to have low VaR and high Reward-to-VaR according to our model, we 

are able to generate some outperformance over benchmark indices. This is particularly evident for stocks 

within different small size and value-related stock universes. In the latter case, this result can be of particular 

interest for value investors given a well-known difficulty to succeed in this type of investing. 

We measure company value-growth orientation following Morningstar’s value-core-growth score and 

find that this is a powerful explanatory variable for the shape of the future return distribution. However, we 

do not consider alternative measures of value-growth orientation, and this is the first avenue for future 

research that we suggest. Secondly, while we find that value-growth orientation and size are powerful 

variables for explaining the future return distribution for US stocks, we are unaware of any papers analyzing 

this topic for other countries. Thirdly, we did not consider to what extent the relationships we identify are 

industry-specific. Finally, we were unable to explore more sophisticated portfolio optimization techniques 

utilizing the relationships we identified as we lack the computational power to do so. Conducting further 

research with a focus on above issues would provide a valuable contribution to the literature. 
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7 Appendices  
 

Appendix A 

Share-weighted average 

The example below uses earnings, but the procedure is the same for book value, revenue, or cash flow 

growth. 

Step 1: Calculate a 4-year earnings growth rate 

𝑒𝑔𝑟(0, −4) = (
𝑒𝑎𝑟𝑛(0)

𝑒𝑎𝑟𝑛(−4)
)

1

4
− 1,     ( 44 ) 

where 

 egr(0,i) = portfolio earnings growth rate from year i to year 0 

𝑒𝑎𝑟𝑛(𝑖) =  ∑ 𝐶𝑆𝐻𝑂𝑄 𝑠𝑝𝑙𝑖𝑡−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 × 𝑒𝑖𝑗

𝑛

𝑗=1

 

eij = earnings per share for fiscal year-end i for stock j  

n = the number of stocks in the peer group that were not trimmed and for which e0 and e1 are > 0. 

 

Step 2: Calculate a 3-year earnings growth rate 

𝑒𝑔𝑟(0, −3) = (
𝑒𝑎𝑟𝑛(0)

𝑒𝑎𝑟𝑛(−3)
)

1

3
− 1.                ( 45 ) 

 

Step 3: Calculate a 2-year earnings growth rate 

𝑒𝑔𝑟(0, −2) = (
𝑒𝑎𝑟𝑛(0)

𝑒𝑎𝑟𝑛(−2)
)

1

2
− 1.               ( 46 ) 

 

Step 4: Calculate a 1-year earnings growth rate 

𝑒𝑔𝑟(0, −1) =
𝑒𝑎𝑟𝑛(0)

𝑒𝑎𝑟𝑛(−1)
− 1.               ( 47 ) 

 

Step 5: Calculate the historical share-weighted average for this growth factor as 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒[𝑒𝑔𝑟(0, −4), 𝑒𝑔𝑟(0, −3), 𝑒𝑔𝑟(0, −2), 𝑒𝑔𝑟(0, −1) ].   ( 48 ) 
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Appendix B 

Calculating centered parameters of the skew-t distribution based on the direct parameters 

Define 𝑏𝜈 as 

𝑏𝜈 =
√𝜈𝛤(

1

2
(𝜈−1))

√𝜋𝛤(
1

2
𝜈)

,     if  𝜈 > 1,   ( 49 ) 

and 𝛿 as  

𝛿 = 𝛿(𝛼) =
𝛼

√1+𝛼2
,      𝛿 ∈ (−1,1).    ( 50 ) 

 

Define 𝜇 as the mean of Y (first central moment), 𝜎2 as variance of Y (second central moment), 𝛾1 

as skewness of Y (third central moment), and 𝛾2 as excess kurtosis of Y (fourth central moment minus 3). 

It can be shown that convenient closed-form formulas for central moments of skew-t distribution can be 

obtained based on corresponding direct distribution parameters (𝜉, 𝜔2, 𝛼, 𝜈) as follows 

𝜇 = 𝔼{𝑌} = 𝜉 + 𝜔𝑏𝑣𝛿,          if 𝜈 > 1,  ( 51 ) 

          𝜎2 = 𝑉𝑎𝑟{𝑌} = 𝜔2 [
𝜈

𝜈−2
− (𝑏𝜈𝛿)2] = 𝜔2𝜎𝑧

2, say,          if 𝜈 > 2,           ( 52 ) 

          𝛾1 =
𝑏𝜈𝛿

𝜎𝑧
3/2 [

𝜈(3−𝛿2)

𝜈−3
−

3𝜈

𝜈−2
+ 2(𝑏𝜈𝛿)2],          if 𝜈 > 3,           ( 53 ) 

          𝛾2 =
1

𝜎𝑧
4 [

3𝜈2

(𝜈−2)(𝜈−4)
−

4(𝑏𝜈𝛿)2𝜈(3−𝛿2)

𝜈−3
+

6(𝑏𝜈𝛿)2𝜈

𝜈−2
− 3(𝑏𝜈𝛿)4] − 3,  if 𝜈 > 4.           ( 54 ) 
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Appendix C 

Significance of the regression coefficients over the test period for the portfolio application part 

Table 20. Summary of the significance of the regression coefficients over the test period. Average t-

stat measures the average t-statistic for the respective coefficient for regressions (35) – (38) re-estimated 

every month t over the test period. Percentage of months with 5% significance indicates how frequently a 

regression coefficient is significant at 5% significance level when regressions are re-estimated every month 

t  over the test period.  

 

  

Average   

t-stat

% of months with 

5% significance

3.93 100%

-2.53 72%

-4.57 100%

20.61 100%

-6.72 100%

6.88 100%

7.77 100%

-17.23 100%

-8.27 100%

-3.02 92%

47.23 100%

Coefficient
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Appendix D 

Performance of portfolios  

Below is shown the performance of value-weighted portfolios, namely, the benchmark portfolios (VW 

Index), “best” stocks from top Reward-to-VaR quartile (High RtVaR q.), “worst” stocks from bottom 

RtVaR quartile (Low RtVaR q.), “best” stocks from bottom VaR quartile (Low VaR q.), and “worst” stocks 

from top VaR quartile (High VaR q.). 

Both Size- and Value/Growth-Specific Stock Universes 

 

 

 

 

Figure 15. Size and value-growth specific universes 
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Value/Growth-Specific Universes 

   

 

 

 

Figure 16. Value, core, and growth universes 

 

Size-Specific Stock Universes 

 

 

 

 

Figure 17. Small, mid, and large stock universes 
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Total Stock Market Universe 

 

Figure 18. Total stock market universe 
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