
STOCKHOLM SCHOOL OF ECONOMICS 

Department of Economics 

5350 - Master’s Thesis in Economics 

Academic Year 2018-2019 

 

 

Catch-Up with Me if You Can 

An empirical analysis of convergence of carbon emission intensity in the 

EU power sector 

 

Karl Sundblad (41197) and Sean Tay (41194) 

 

Abstract 
The anthropogenic impact on climate change is discernible and the power sector is known to be 

one of the main contributors of greenhouse gas emissions. This thesis takes a cross-country 

sectoral approach with the overall objective of analyzing convergence of carbon emission intensity 

in electricity generation across the power sectors in the EU. A univariate time-series approach is 

used to study stochastic convergence and a fixed effects estimator is applied to investigate beta-

convergence. We employ a panel dataset of the current 28 EU member states spanning from 

1995 to 2015. The results from three different panel unit root tests consistently provide support 

for the existence of stochastic convergence. The results provide strong support for the existence 

of beta-convergence and we conclude that more carbon intensive countries are catching up with 

the less carbon intensive countries. The results suggest that countries with a more stringent 

energy tax converge toward a lower path of carbon intensity, whilst wealthier countries tend to 

converge toward a higher path of carbon intensity. The speed of convergence is not found to be 

conditional on the development of the EU ETS carbon prices or the price of fossil fuels.  
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1. Introduction 

Climate change is an intensively discussed topic and is undoubtedly one of the major challenges 

that this planet faces. The lion share of evidence suggests that anthropogenic emissions of 

greenhouse gases (GHGs) – of which carbon dioxide is the most significant – has a considerable 

and discernible impact on climate change (Intergovernmental Panel on Climate Change [IPCC], 

2018). 

The power sector is one of the largest contributors of GHGs in the European Union (EU), 

contributing approximately 30% of total carbon emissions in 2015 (European Environment Agency 

[EEA], 2018). As it has been recognized to have a high ability to reduce emissions, the power 

sector is considered to play a key role in reaching the EU reduction target of 20% from 1990 levels 

by 2020 (European Union [EU] directive, 2009) as well as the long-term goal of EU climate 

neutrality by 2050.  

A commonly applied concept within environmental economics is carbon intensity. Within 

the context of the power sector, carbon intensity relates to the ratio of carbon emissions1 from 

electricity generation to gross electricity generation. This study investigates convergence of 

carbon intensity between countries in the EU power sector. It is relevant because the power sector 

is one of the biggest contributors of carbon emissions and the EU has implemented policies 

explicitly targeting the power sector. The high degree of integration, comprehensive 

environmental standards and common climate policy makes the 28 EU member countries2 (EU28 

henceforth) a unique and interesting case to study. As a political bloc, the EU requires all 

members to adopt, implement and enforce all EU rules. EU climate policy was to a great extent 

initiated during the early 1990’s and the signing of the Kyoto Protocol in 1997 initiated the combat 

against climate change. With this in mind, we study the time period from 1995 to 2015.  

Studying convergence of carbon intensity is important because it yield valuable insight into 

future carbon emissions and is useful for policy making. Further, the power sector is particularly 

well suited for cross-country comparison with regards to the carbon intensity as it produces a 

completely homogeneous good - electricity.   

This study targets three main research questions: 

                                                 
1 As is standard practice, when measuring carbon emissions, we refer to the carbon equivalent of all 

greenhouse gases (mainly carbon dioxide, methane and nitrous oxide) released. This signifies the amount 
of CO2 emissions that would have the equivalent impact on global warming and provides GHG emissions 
a common unit of measurement. 
2 The EU28 is defined as the 28 member states of the European Union as of 2013. See Appendix A for a 

complete list of countries. 
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1) How has carbon intensity in the EU power sector evolved from 1995 to 2015? 

2) Is the EU power sector converging toward a common path of carbon intensity or to 

different paths dependent on country characteristics?  

3) Is the speed of convergence toward the path of carbon intensity different between 

countries? 

 

To answer these questions, we utilize a panel dataset of the EU28’s power sector from 1995 to 

2015. We answer the first research question by studying descriptive statistics and visualizing the 

data. To study convergence of the path of carbon intensity, we focus on two established 

convergence concepts; stochastic convergence and beta-convergence. Stochastic convergence 

is investigated by taking a time-series approach to test for a unit root in order to determine whether 

the time-series resembles a stationary process. The presence of stationarity supports stochastic 

convergence and implies that a shock to a carbon intensity time-series is only temporary and that 

the time-series reverts back to the mean. Empirically, we test if the time series resembles a unit 

root or stationary process. Within economic theory one might intuitively expect the carbon 

intensity series to be stationary over time. However, as this has not yet been tested, we examine 

this empirically. It is standard practice to conduct multiple unit root tests to ensure robustness of 

results, hence we employ the IPS test (Im, Pesaran & Shin, 2003), the Cross-sectionally 

augmented Dickey-Fuller (Pesaran, 2007) and the Hadri Lagrange Multiplier (Hadri, 2000) panel 

unit root tests. Stochastic convergence is a necessary but not sufficient condition for beta-

convergence, thus if stochastic convergence persists, there can also be beta-convergence.  

Beta-convergence has a foundation in neoclassical growth theory (Pettersson et al., 2014) 

and in the context of carbon intensity, it occurs when a country with high carbon intensity improves 

faster relative to a country with low carbon intensity. Beta-convergence can in turn be split into 

absolute and conditional convergence. Absolute convergence implies that the long-run path of 

carbon intensity is the same for all countries and conditional convergence allows for country 

differences in the path of carbon intensity. Economic theory would posit that absolute 

convergence indicates that all countries converge to the same level of carbon intensity in the long 

run, we test this explicitly in our regressions.  In order to allow for cross-country variation in the 

path of carbon intensity, convergence can be made conditional on exogenous variables that are 

hypothesized to have an impact on the growth path of carbon intensity (Strazicich & List, 2003). 

In line with economic theory, conditional convergence indicates that the path of carbon intensity 

can differ considerably between countries due to differing country-specific structural 
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characteristics. In this study, a fixed effects estimator is used to investigate beta-convergence, 

and EU membership, energy tax intensity and GDP per capita are included to test for conditional 

convergence. Further, we analyze if the price of emission allowances (carbon price) and the price 

of fossil fuels impact the rate at which countries approach their path of carbon intensity. 

The results present convincing support for the existence of both stochastic and beta-

convergence of carbon intensity in the EU power sector. Beta-convergence is found to be 

conditional on the energy tax of a country as well as on GDP per capita. This suggests that the 

studied countries converge to individual paths of carbon intensity.  Countries with higher energy 

taxes tend to follow a lower path of carbon intensity, while countries with a higher GDP per capita 

follow a higher path. The speed of convergence does not appear to be affected by the carbon 

price and prices of fossil fuel.  

The remainder of the thesis is organized as follows. Section 2 provide an introduction to 

the EU power sector and a background to the development of the EU climate policy. A theoretical 

framework is introduced in section 3 and a literature review of environmental convergence 

research is presented in section 4. Section 5 introduces the variables used, the data sources and 

descriptive statistics. Subsequently, section 6 presents the empirical framework employed to 

study stochastic and beta-convergence and is followed by the results in section 7. In section 8 we 

discuss the internal validity of the study as well as some policy implications of the results. Lastly, 

in section 9, our main conclusions are presented together with suggestions for further research.  

2. Background 

The section that follows provides a brief introduction to the EU power sector and the EU climate 

policy related to it. Both are essential in grasping the context in which this study is placed.  

2.1. The EU Power Sector  

A power sector is defined as the collection of all active installments contributing to total gross 

electricity generation3. This includes generation from combustion of fossil fuels such as coal, oil 

and gas, as well as generation from other energy sources such as nuclear and renewables. 

Carbon emissions from electricity generation arises from the combustion of fossil fuels, where a 

                                                 
3 Defined as the gross electricity generation in all types of power plants, including the electricity used within 

the plant auxiliaries and in the transformers (European Commission [EC]], 2019a). 
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higher share of electricity from fossil fuels is associated with higher carbon intensity. Note that the 

carbon emissions do not include emissions from primary energy production4.  

From 1995 to 2015, annual carbon emissions from electricity generation within the EU28 

decreased by 18% from 1,242 to 1,018 million tonne (Mt) CO2 and electricity generation increased 

by 18,6% from 2,744 TWh5 in 1995 to 3,255 TWh in 2015 (International Energy Agency [IEA], 

2019a). In 2015, almost half of the electricity generated (44%) stemmed from fossil fuels, 26% 

was from nuclear and the remainder was generated from renewable energy sources, primarily 

hydro and wind (IEA, 2019a). There is significant variation regarding the relative importance of 

fossil fuels in electricity generation among the EU28. Hence, there is also considerable variation 

in the amount of carbon dioxide emitted as a by-product of electricity generation. 

 

 

Figure 1: Carbon intensity (gCO2/kWh) of power sectors in the EU, 1995 and 2015.  

Source: Author’s rendering of data from IEA (2019a). 

                                                 
4 Emissions from the extraction process of energy products from natural resources (for example coal mines 

or crude oil fields)(EC, 2019a).  
5 One terawatt hour (TWh) is equal to one billion kWh. To grasp this magnitude, relate it to the average 4-

person household living in a house in Sweden consuming approximately 25 000 kWh annually for heating, 
electrical appliances and warm water.  
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Figure 1 presents carbon intensity in the power sector of the EU28 in 1995 and in 2015. In 1995, 

we observe a greater dispersion of carbon intensities, ranging from 22 gCO2/kWh in Sweden to 

1,094 gCO2/kWh in Estonia. Almost all countries have improved their carbon intensity between 

1995 to 2015. There are two main mechanisms by which a country can improve its carbon 

intensity: Firstly, by technological advancements improving the efficiency in electricity generation. 

This applies not only in generation from fossil fuels but also developments in the ability to extract 

energy from renewable energy sources such as solar and wind. Research and development in 

renewables is currently attracting an absolute majority of the attention and capital in this sector. 

Some important factors that determine the rate at which a country improves its carbon intensity 

include endowment of primary energy sources, past and current national policies and economic 

wealth. 

Figure 2 presents the gross change in electricity generation from various energy sources6 

between 1995 and 2015. The EU power sectors’ dependency on solid fuels (i.e. primarily coal), 

oil and nuclear has declined, with a reduced electricity generation from respective source of about 

250, 170 and 40 TWh respectively. Gas as a source of electricity generation has increased the 

most by about 350 TWh. This is partly due to the reduction in gas prices following the 

developments in fracking7 and shale gas. Note that gas has a lower carbon factor compared to 

solid fuels and oil8, thus a switch from other fossil fuels to gas leads to a reduction in carbon 

intensity. Generation from renewable energy sources (i.e. hydro, wind and solar) have also 

increased, wind mostly so.  

                                                 
6 Non-exclusive list of energy sources; change in geothermal, tidal and wave for example are negligible and 

excluded from the graph.  
7 The process of injecting liquids at high pressures into subterranean rocks, often shale, to cause micro 

cracks by which natural gases escape and can be extracted.  
8 This does not account for emissions in the extraction process of respective fuel, where for example 

fracking has been shown to produce excessive amounts of methane emissions.  
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Figure 2: Gross change in energy sources in total gross electricity generation, 1995-

2015.  
Note: The solid bars correspond to the total EU electricity generation in 1995 and 2015 respectively. 

The dashed bars show the change in electricity generation from each energy source, where the red 

bars indicate a decrease and the green an increase. Source: Author’s rendering of data from Eurostat 

(2018). 

 

The European Commission also has a goal of integrating the European power market in order to 

produce a pan-European power market. This is considered to be most cost-effective way to 

secure a future power supply in the EU. Such a revision of the electricity market is believed to 

increase cross-border competition, improve energy flows and prepare the power grids for a higher 

share of intermittent renewable energy (European Commission [EC], 2019c). These are all 

considered factors which are vital in creating conditions for a sustainable and climate neutral 

power sector. An example of how such integration is occurring is the North Sea Link; a 1,400 MW 

power line connecting the UK with Norway and allowing the UK to buy electricity from the southern 

parts of Norway. 

2.2. Climate Policy 

The EU is committed to combating climate change, and climate policy is amongst the top priorities 

on both EU and national level. The EU climate debate was initiated following the IPCC9 report in 

1990, which was used in the preparation for the UNFCCC10 negotiations later in 1990. In the same 

                                                 
9 Intergovernmental Panel of Climate Change (IPCC). 
10 United Nations Framework Convention on Climate Change (UNFCCC). 
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year, EU leaders agreed on the first common EU climate goal; to stabilize the GHG emissions by 

2000. Three main focus areas were identified: Reducing GHGs, promoting renewable energy 

sources and improving energy efficiency, all of which remain relevant areas in current EU climate 

policy. Note the distinction between an EU regulation – a binding legislation which must be applied 

across the EU; and an EU directive – a legislative act that sets out a goal for all EU countries to 

achieve, but implementation of achieving these goals are left to each state.  

By 1997, various programmes (e.g. SAVE and ALTENER)11 had been introduced but no 

reduction targets had yet been quantified. The Kyoto Protocol was adopted in 1997 and it 

identified developed countries (including the EU28) to have been historically responsible for the 

high GHG levels and to possess particular capabilities to combat climate change. As a 

consequence, binding reduction targets were assigned to EU countries. To fulfill these reduction 

targets, the European Commission launched the European Climate Change Programme (ECCP) 

in 2000 to examine and implement a range of policy instruments. One of the regulations 

implemented by the ECCP was to establish the EU Emission Trading System (EU ETS), in which 

emissions allowances are bought and traded. The EU ETS is a cap-and-trade system that 

regulates over 11,000 energy-intensive installations12 in 31 countries13 (EC, 2016). All regulated 

installations must surrender enough allowances to cover all of its annual emissions, otherwise 

fines are imposed. Generally, a sector is endowed a share of its allowances (via free allocation of 

allowances through a process known as grandfathering) and obliged to buy the excess demand 

at auction or in the secondary market. The price at which these allowances are bought in the 

secondary market is referred to as the carbon price. Since 2013, the power sector has been 

exempted from grandfathering and is required to buy all of its allowances. This is because the 

European Commission (EC) recognizes the EU power sector as a major contributor to EU’s GHG 

emissions. Simultaneously, the EC motivates imposing more stringent policy targeted at power 

generators with the sector’s high potential to lower emissions in cost efficient ways (EU, 2003) 

and its ability to pass-through increased costs from carbon abatement (EU, 2009) to end-users. 

Beyond the reduction targets implemented by the Kyoto Protocol, the EU has set its own 

climate change mitigation targets. These include GHG reduction targets relative to 1990 emission 

levels of; 20% by 2020, 40% by 2030 and 80% by 2050. The 20% reduction by 2020 is part of the 

“20-20-20 by 2020 objective” in which the additional targets are a 20% increase in energy 

                                                 
11 Specific Actions for Vigorous Energy Efficiency (SAVE) and ALTENER for promotion of renewable 

energy.  
12 These include power stations, industry, manufacturing and airlines operating within the EU. 
13 The EU28 plus Lichtenstein, Norway and Iceland. 
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efficiency as well as increasing renewables share of total EU electricity consumption of 20%. To 

meet these goals the Climate and Energy Package. The new package contained revisions to the 

EU ETS, and in 2008 the number of allowances in the EU ETS were reduced by 6,5% and have 

since 2013 been reduced annually by 1,74%. The intent is to gradually decrease the cap on 

emissions, thereby decreasing supply and increasing carbon prices to further incentivize 

installments to transition to fossil-free energy sources and limiting emissions of carbon dioxide.    

To meet reduction targets set by the EU climate policy directives, most countries have 

implemented national climate policies. These national policies vary from subsidizing renewable 

energy sources by feed-in-tariffs, feed-in-premiums and investment aid to banning coal plants. 

For example, Germany has subsidized residential, commercial and centralized solar power with 

feed-in-tariffs and significant investment aid. As a result, the share of total electricity consumption 

from solar energy has gone from 0% to almost 7% in less than 20 years, placing Germany 

amongst the most solar power intense countries in the world. Consequently, this has contributed 

to an increased demand for solar components leading to a plunging price of solar components, 

something many EU countries have benefited from. Another example is Sweden, Poland and 

Romania, which have implemented quotas such that a minimum share of electricity supply has to 

be generated from renewable sources (Klessmann, 2014). 

As part of the EU polluter pays principle, the EU has introduced an Energy Taxation 

directive14 (EU, 2003), which encompass energy production and products for both transport and 

stationary purposes. Taxes are levied on fossil fuels, natural gas, coal, electricity and contains 

carbon dioxide taxes. The Energy Taxation directive outlines the structure and minimum tax 

levels; however, the implementation of the tax regimes is left to national governments.  

3. Theoretical Framework 

The following section introduces a detailed description of the main convergence concepts applied 

in this study. The empirical research on environmental convergence has grown extensively and 

two of the main convergence concepts that have emerged are stochastic convergence and beta-

convergence. Beta-convergence can in turn be split into absolute and conditional convergence. 

If beta-convergence exists, one can also study the speed at which the country converges towards 

its path of carbon intensity.  

                                                 
14 The energy taxation directive is formally known as the Council Directive 2003/96/EC of 27 October 2003, 
restructuring the Community framework for the taxation of energy products and electricity.  
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3.1. Stochastic Convergence 

Carlino and Mills (1993) introduce the notion of stochastic convergence. If a set of economies 

exhibit stochastic convergence, it implies that shocks to carbon intensity in a country are only 

temporary and that carbon intensity will revert back to the sample mean. Econometrically, this 

means that if no unit root is detected when investigating univariate time-series, then the series 

are stationary and there is evidence of stochastic convergence. Carlino and Mills (1993) note that 

stochastic convergence is a relatively weak form of convergence. However, it is worthwhile 

investigating as it is a necessary, but not sufficient, condition for the beta-convergence. 

3.2. Beta-Convergence 

The concept of beta-convergence was initially introduced by Baumol (1986) and was first adopted 

in the context of environmental convergence by List and Gallet (1999). Beta-convergence occurs 

when a country with high carbon intensity decreases its carbon intensity faster relative to a country 

with low carbon intensity. This results in a so-called Catch-up Effect where countries converge in 

emission intensity in terms of growth rates.  

The first type of beta-convergence, absolute convergence suggests that all countries 

converge toward the same path of carbon intensity, independent of country-specific 

characteristics15 (Pettersson, Maddison, Acar & Söderholm, 2014). As illustrated in figure 3, 

countries A and B starts at different levels of carbon intensity, but A catch up with B and they 

converge towards a common path P.    

On the other hand, there is conditional convergence, which allows for countries to 

converge to different paths of carbon intensity based on country-specific characteristics. As 

illustrated in figure 3, country C and country D converge toward individual paths P1 and P2. 

Conditional convergence is studied by making convergence conditional on exogenous variables 

believed to have an impact on the path of carbon intensity (Strazicich & List, 2003). Consequently, 

a set of countries will only converge to the same path conditional on them sharing similar 

characteristics, elsewise they converge to different paths of carbon intensity.  

 

                                                 
15 Country characteristics such as for example wealth, endowment of natural resources or topographical 

conditions favoring for example hydro-generation as in the case of Sweden or Norway. 
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Figure 3. Illustration of convergence concepts.  
Note: Absolute convergence (left), conditional convergence (middle) and speed of convergence (right).  
Source: Author’s illustration.  

 

Based on these definitions of absolute and conditional convergence, it is not possible for a set of 

countries to exhibit absolute convergence (along the same path) whilst simultaneously converging 

conditionally (along individual paths), hence we define them as mutually exclusive.  

Another concept that will be discussed is speed of convergence. This refers to the speed 

at which a country converges towards the long run path; a slower speed implies that it takes 

longer, whilst a faster speed implies the opposite. In figure 3, the speed of convergence of country 

E indicates whether it converges faster (along F) or slower (along S). Note that the speed of 

convergence can also differ in conditional convergence, between countries exemplified by country 

C and D in the same figure.   

The Catch-up Theory paints an appealing picture of growth theory, especially for the more 

carbon intensive countries. However, there are extensions to growth theory emphasizing that a 

country does not necessarily have to catch-up just because it is lagging behind. For one, 

Abramovitz’ (1986) argues that in order for a country to catch up, it has to be capable of adopting 

the more efficient technology employed by better performing countries. This requires establishing 

relationships with more developed countries to enable such technological spill-over, something 

that is likely facilitated by the common membership of the EU. However, it is important to note 

that generation technologies might not be completely transferable across all states due to different 

geographical conditions and resource endowment. For example, the flat topography of The 

Netherlands provides limited benefits of adopting hydro-related technology from Sweden, but 

perhaps larger gains from advancements in wind power from Denmark.  

The various convergence concepts have been applied to a wide array of research topics, 

and over the past 20 years they have also begun to gain popularity among environmental 

economists. A brief introduction and review of this body of research follows. 
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4. Literature Review 

In the following section, we present an overview of the relevant literature of stochastic and beta-

convergence. We highlight how our study places in the context of previous literature and what our 

main contributions are.  

Environmental convergence is gaining popularity as a field of research. Some of the most 

commonly studied measures are carbon emissions per capita (Brock & Taylor, 2010; Jobert, 

Karanfil & Tykhonenko, 2010; Strazicich & List, 2003), carbon intensity of GDP (Hao, Liao & Wei, 

2015) and carbon intensity of output (Brännlund, Lundgren & Söderholm, 2015). This study is 

most closely related to the field investigating carbon intensity of output, with electricity generation 

being the output good. Methodological approaches and conclusions can to a great extent be 

extrapolated and adopted from previous studies to our own, hence the following literature review 

will cover studies utilizing different measures.  

4.1. Stochastic Convergence 

Strazicich and List (2003) is one of the first papers to explicitly study stochastic convergence in 

the context of environmental economics and do so by studying emission per capita. As they define 

it, finding that the time-series are stationary suggests stochastic convergence. This means that 

shocks are only temporary and that the time-series reverts back to the sample mean. In general, 

results support stochastic convergence of emissions per capita among developed countries such 

as the OECD and the EU (e.g. Romero-Ávila, 2008; Westerlund & Basher, 2008; Strazicich & 

List, 2003), whilst the results for developing and global samples tend to suggest divergence.  

Stochastic convergence is commonly tested for by taking a time-series approach and 

employing unit root tests. Researchers have not agreed on a preferred unit root test when 

investigating stochastic convergence, and standard procedure has become to employ a set of 

different unit root tests to ensure the robustness of the results. Conflicting results from various 

studies (see Strazicich and List (2003) vs Barassi, Cole and Elliott (2008)) indicate that the 

adoption of several unit root tests is warranted to ensure validity of the results. Commonly used 

tests include the augmented Dickey Fuller (ADF), the Cross-sectionally augmented ADF 

(Pesaran, 2007), the Hadri-LM (Hadri, 2000) and the Im, Pesaran and Shin (2003) unit root test.  

Different properties of the respective tests refer to higher or lower power to reject the null 

hypothesis depending on the characteristics of the data. For example, the Hadri-LM unit root test 

tests the null of stationarity instead of the unit root null as the other tests do. This gives it a higher 
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power to reject the null in the event that a series follows a non-stationary process. The use of 

different unit root tests is further discussed in section 6.1.  

4.2. Beta-Convergence 

In the empirical literature, there are differing definitions of absolute and conditional beta-

convergence. Brock and Taylor (2010) and Jobert et al. (2010) claim to find both absolute and 

conditional convergence. Another set of literature defines absolute and conditional convergence 

as mutually exclusive; if a set of countries are conditionally converging to their individual paths, 

then cannot simultaneously converge toward a common path (Strazicich & List, 2003; Brännlund 

et al., 2015). In this thesis, we have adopted the latter interpretation of absolute and conditional 

convergence, as outlined in section 3. 

Pettersson et al. (2014) reviewed the existing literature on carbon emissions per capita 

between different sets of countries and across different time spans. Whether one investigates 

carbon emissions per capita or utilizes an intensity measure, results tend to be sensitive to the 

set of countries investigated and time span studied. As Pettersson et al. (2014) and Strazicich 

and List (2003) argue, more encompassing samples (such as global samples), often show 

divergence in per capita emissions. This might be due to significant differences in levels of 

development, natural resource endowments, dysfunctional governmental regulatory bodies or 

industry structures. The fact that more similar subsets of countries, or subsets of industries, 

demonstrate convergence could also be explained by spillover effects and countries mimicking 

each other’s environmental policies (Brännlund et al., 2015). Multiple studies investigate 

conditional convergence in the OECD (Brock & Taylor, 2010; Strazicich & List, 2003) and 

emissions per capita have been found to be conditional on for example the price of fuel as well 

as on average winter temperatures.  

Jobert et al. (2010) study EU countries to find that they converge conditional on industry 

share of GDP, but that GDP per capita is not an important factor. They also find that there are 

differences in the speed of convergence at which each country moves towards the path of carbon 

intensity. They conclude that the decline in carbon emission per capita is due to the efforts of new 

EU member countries and not the efforts of older members. Jobert el al. (2010) argue that the 

disparities in the carbon emissions convergence path makes a clear case as to why a “one size 

fits all” climate policy for the EU countries is unfounded. Hao et al. (2015) study stochastic 

convergence of carbon intensity as a measure of carbon emissions relative to GDP in a panel 

dataset of 29 Chinese provinces from 1995 to 2011. They assert that beta-convergence suggests 

that policy makers should set a higher reduction target for provinces with high carbon intensities 
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as they would reduce emissions even without an explicitly set reduction target. In their studied 

sample of Chinese provinces, they also find that richer provinces are more likely to exhibit rapid 

convergence than their poorer counterparts. This suggests that policy makers may have to 

differentiate not only based on a province’s carbon intensity but also on their relative wealth.  

One of the few papers that has studied convergence of carbon intensity relative to output 

is Brännlund et al. (2015). They investigate carbon emission intensity among 14 Swedish 

industries and find that the industries are converging. The results suggest that industries converge 

conditional on price of fossil fuels. Brännlund et al. (2015) do not find convergence across sectors 

to be conditional on them being regulated by the EU ETS. This is tested for by including a dummy 

variable taking on the value of 1 if more than 10% of the firms in a sector are regulated by the EU 

ETS.  

Investigating environmental convergence presents several methodological and 

econometrical difficulties. Empirical results have been shown to not only be sensitive to the data 

and time period studied, but also to the choice of econometric approach (Pettersson et al., 2014). 

Within the beta-convergence literature, cross-sectional and panel data approaches are commonly 

adopted. List and Gallet (1999) and Strazicich and List (2003) are two of the novel papers in 

environmental economics to focus on beta-convergence and both utilize the cross-sectional 

approach originally proposed by Baumol (1986) to test for convergence in per capita emissions. 

The cross-sectional approach regresses the logged growth rate of emissions between the initial 

and current period on the initial level of emissions. In the cross-sectional approach, beta-

convergence is determined by testing for significance of the coefficient on the initial logged per 

capita emissions level, and tests the hypothesis that countries converge depending on their initial 

levels of intensity. 

Islam (1995) proposes a panel data approach to test for beta-convergence. Using a fixed 

effects model is desirable as it allows us to control for unobserved country or year fixed effects. 

This approach is adopted by Van (2005) and Brännlund et al. (2014). When utilizing a panel data 

approach, beta-convergence16 is determined by testing for significance of the coefficient on the 

independent variables of interest17. In the panel-data approach, a negative and significant beta 

coefficient would indicate convergence to a common path of carbon intensity; countries with 

higher carbon intensities would, on average, reduce their carbon intensity more than countries 

with a lower carbon intensity. In addition, conditional beta-convergence is investigated by 

                                                 
16 This is often referred to as the beta-coefficient, hence the notion of beta-convergence. 
17 Brännlund et al (2014) utilizes lagged carbon intensity as the main variable of interest while Van (2005) 

investigates lagged carbon emissions per capita. 
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including a set of exogenous control variables capturing heterogeneity in country-specific 

characteristics. This means that the null of absolute convergence is expressed as: 𝐻0: 𝛽 <

0 𝑎𝑛𝑑 𝛾 = 0, with an alternative hypothesis of conditional convergence specified as: 𝐻1: 𝛽 <

0 𝑎𝑛𝑑 𝛾 ≠ 0, where 𝛾 is a vector of the control variables coefficients. 

Both the cross-sectional and panel data approach has been criticized to produce biased 

results due to the independent variables possibly being correlated with past and current 

realizations of the error term (Baltalgi, 2008). Using an exogenous Instrumental Variable (IV) or 

the Generalized Methods of Moments (GMM) have been argued to be an alternative approach 

that resolves such issues (Arellano & Bond, 1991; Blundell & Bond, 1998). Jobert et al. (2010) 

applies yet another approach; the Bayesian shrinkage estimator. They argue that the Bayesian 

shrinkage estimator lies between the extreme assumptions of cross-sectional homogeneity and 

heterogeneity of the slope coefficients made by cross-sectional or panel data approaches 

respectively. They describe it as “a weighted average of the overall pooled estimate and the 

separate time series estimates based on each cross-section” (Jobert et al. 2010).  

In summary, previous research uses a variety of techniques to investigate environmental 

convergence across countries, or sectors within a country. Carbon emissions per capita or 

emission intensity by GDP are the most commonly analyzed variables.  

4.3. Placement in Literature 

With a foundation in economic theory and previous research, our contributions are summarized 

as follows:  

 

● We extend the state of knowledge regarding environmental convergence by investigating 

carbon intensity in the EU power sector. This cross-country sectoral approach is novel 

within convergence studies and provides an important step in understanding the evolution 

of the EU power sector. 

 

● Our findings provide a useful tool for EU and national policy makers in the design and 

evaluation of climate policies for the power sector. 

 

● We evaluate how the path of carbon intensity is influenced by EU membership, energy 

taxes intensity and GDP per capita. Additionally, we provide insight into the role of fossil 

fuel prices and carbon price fluctuations impact speed of convergence. 
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5. Data  

In this following section, we describe the main carbon intensity variable and five other variables 

that will be used in the study. Each measure is explained, and their respective data source is 

accounted for. A motivation and discussion of each variable follows in section 6. The section ends 

with some descriptive statistics of the data employed.  

5.1. Description of Variables and Data 

The group of countries investigated in this study is the current set of 28 EU member states and 

the time period we study is between 1995 and 2015. (See appendix A for a full list of countries 

studied) 

Carbon Intensity (I). Carbon intensity is a measure of the amount of greenhouse gases 

(GHG) released as a by-product of electricity generation. As such, we define carbon intensity as 

the ratio of carbon emissions produced in electricity generation over total gross electricity 

generated:   

 

𝐼𝑖𝑡 =  
𝐶𝑎𝑟𝑏𝑜𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖𝑡

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑖𝑡
=

𝑔 𝐶𝑂2𝑖𝑡

𝑘𝑊ℎ𝑖𝑡
                 (1) 

 

where i refers to a country and t to the year of the observation. Carbon emissions is the GHG 

emissions measured in grams of carbon equivalents (gCO2) and electricity is measured in kilowatt 

hours (kWh). Data for carbon intensity is obtained from the International Energy Agency (IEA, 

2019a)18. The IEA uses a bottom up Tier 119 approach to estimate carbon emissions from the 

power sector, as suggested by the IPCC (2006). The carbon emissions attributed to electricity 

generation are estimated by multiplying the fuel inputs by their respective carbon factor (see 

Appendix B). The IEA obtain the quantity of electricity generated from national records and these 

encompass all electricity generated in a country. 

EU Membership (EU). We create an EU dummy variable capturing whether a country is 

an EU member or not in any given year. It takes the value zero for years when a country is not an 

                                                 
18 Observations for carbon intensity for Luxembourg 1995 to 1997 are missing. Calculations were made 

based on the total carbon emissions from electricity and heat divided by total electricity generated. The 
emissions for the electricity sector were isolated by multiplying total emissions from electricity and heat (the 
numerator) by the average factor of CO2 emissions produced by the electricity compared to heat sector in 
Luxembourg from 1998 to 2015. 
19 See Appendix B for detail on the Tier 1 approach. 
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EU member and the value of one when it is. It is based on a country’s year of entry into the EU 

as reported by the European Commission (2019b), see Appendix A.  

GDP per capita (GDPpc). The data of GDP per capita for the EU28 are collected from 

the World Bank (2019). It encompasses the sum of gross domestic production each year, divided 

by the midyear population. The data is in constant 2010 U.S. dollars. It is first converted from 

national currencies into euros and then converted into U.S. dollars. For GDP per capita data prior 

to the introduction of the euro in 199920, all historical values are irrevocably translated to euro 

using a fixed euro conversion rate21. The GDP data is adjusted using the European Union 

Harmonized Index Consumer Price (HICP), a consumer price index representing the 

developments in the prices of all goods and services in the EU (European Central Bank [ECB], 

2019).   

Energy tax intensity (ETI). The ETI variable is computed by dividing total energy tax 

revenue22 by the total carbon emissions from the energy sector. ETI is defined as follows: 

 

𝐸𝑇𝐼𝑖𝑡 =
𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑎𝑥 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑡(€)

𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑒𝑐𝑡𝑜𝑟(𝑘𝑔 𝐶𝑂2𝑖𝑡)
       (2) 

 

where i and t refers to country i and year t. The unit on ETI is € / kg CO2. The numerator is the 

energy tax revenue, taken from Eurostat (2019) and is available from 1995 to 2015. Energy tax 

revenue encompasses taxes paid to national governments by all sectors of the economy, 

including producers and households. The tax base includes taxes imposed on energy production 

and on energy products used for transport and stationary purposes. Importantly, revenues from 

carbon emission allowances as part of the EU ETS are also included in energy tax revenues. The 

denominator of total carbon emissions from the energy sector23 is estimated using a Tier 1 

approach and adopts IPCC sectoral definition for the energy sector (IEA, 2018). The data was 

obtained from the IEA (2019b) database. The main reason we develop an intensity measure is 

for cross-country comparability. One should note that the definitions of the energy sectors adopted 

                                                 
20 With the exception of Greece who adopted the euro in 2001.  
21 The approach chosen by the OECD to compute pre-1999 GDP is based on a (moving) weighted average 
of a country’s value change in GDP in USD. This approach excludes exchange rate effects and therefore 
also price movements. See Schreyer and Suyker (2002) for further details.  
22 Note that the EU definition of the energy sector is not equivalent to a tax on the power / electricity 

generation sector. The energy sector encompasses energy products for transport, stationary purposes 
(including the carbon content of fuels and emissions of greenhouse gases). 
23 Carbon emissions from energy sector is defined by the IPCC as carbon dioxide released from fuel 
combustion activity by the energy industry, manufacturing industry, construction, transport and other 
sectors. (IPCC, 2006). 
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by the EU and the IPCC are different. Hence the ETI measure should not be understood as the 

tax rate on carbon emissions, but as a proxy for a country’s commitment to utilizing market 

measures to combat climate change (see section 6.3.1.2 for more details). 

Carbon Price (CP). Carbon price is the explicit price paid for an EU ETS emission 

allowance. A power generator in the EU is required to supply one such allowance for every tonne 

of CO2 equivalent emissions produced. Data on daily carbon prices is collected from the EEA 

(2019) and the annual average of the daily settlement prices is computed. The unit of measure is 

2015 euro per allowance (€/EUA) after deflation using the HICP. Prior to the introduction of the 

EU ETS, there was no explicit carbon price and hence, we set the carbon price equal to zero for 

the period 1995-2005. 

Weighted Price of Fossil Fuels (WPF). WPF is defined as the price of oil, gas and coal, 

weighted by their respective share in total gross electricity generation of the EU24:    

 

𝑊𝑃𝐹𝑡 = ∑
𝑒𝑓𝑡

𝐸𝑡

𝐹
𝑓=1 ∗ 𝑃𝑓𝑡           (3) 

 

Where the subscripts t and f denote the year and type of fossil fuel respectively. 𝑒𝑓𝑡 and 𝐸𝑡 is the 

electricity generated from fuel f in year t and the total electricity generated in period t respectively. 

Finally, 𝑃𝑓𝑡  is the price of fuel f in period t. To create WPF, data on fossil fuel prices are gathered 

from British Petroleum (2019). The price of oil is proxied by the price of Brent Oil, a benchmark 

oil price used worldwide. The price of coal is equated with the Northwest Europe Coal Marker 

Price, and gas price is proxied by the Average Import German Price. For comparability, all fuel 

prices are presented in 2015 US dollar per megawatt hour ($/MWh). Prices are adjusted for 

inflation using the EU HICP. Electricity generation from each respective fuel source as well as 

total EU electricity generation is collected from Eurostat (2018).  

5.2. Descriptive Statistics 

Table 1 presents the descriptive statistics of carbon intensity, GDP per capita and energy tax 

intensity. From 1995 to 2015, the average carbon intensity in electricity generation, decreased 

32,8% from 530 gCO2/kWh to 356 gCO2/kWh. The standard deviations indicate a large spread 

across the member countries. We note a large variation within the EU28 with regard to GDP per 

capita and energy tax intensity. Comparing 1995 to 2015, the mean and median GDP per capita 

and energy tax intensity increased while carbon intensity decreased. With regard to energy tax 

                                                 
24 EU common prices are used in this study. A discussion of this follows in section 6.2.1.3. 
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intensity, there are no data available for Croatia (prior to 2003), Hungary (prior to 2004) and 

Cyprus (prior to 2007). 

 

Table 1. Descriptive statistics 

 

 

Note: The constant 2010 USD and € are deflated with an EU HICP with 2015=100.  

 

The time-series for carbon intensity (figure 4) and in time series of weighted price of fossil fuels 

and carbon price (figure 5) are presented above. Studying carbon intensity in figure 4 allows for 

some preliminary observations. Firstly, we observe a general downward trend, which is consistent 

with the reduced average carbon intensity (indicated by dashed blue line). However, two countries 

display a slight increase in carbon intensity, namely Lithuania and Latvia. From figure 5, we notice 

considerable variation in both carbon price and weighted price of fossil fuels over the study period. 

For carbon price, it was the highest at 20,24€ when it was first introduced in 2006 before falling 

to almost 0€ in 2008 during the financial crisis.  
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Figure 4. Carbon intensity (gCO2/kWh) for each country as well as the EU28 average from 

1995 to 2015. Source: Author’s renderings of data from IEA (2019a)  

 

 

Figure 5. Weighted price of fossil fuels (WPF) and Carbon price (CP)  
Note: WPF is in 2010 USD on the left axis and CP in 2015 Euro on the right axis. Both are deflated using 

HICP. Source: Author’s renderings of data from BP (2018) and EEA (2019). 
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The time series for our other variables: carbon price, energy tax intensity and GDP per capita are 

illustrated in Appendix C. 

6. Empirical Framework 

In the following section, we motivate why it is relevant to investigate carbon intensity, outline the 

empirical approach adopted to investigate stochastic convergence, beta-convergence and the 

speed of convergence. Stochastic convergence is a necessary condition for beta-convergence; 

hence we start by introducing the empirical approach utilized to study stochastic convergence 

and then move on to beta-convergence.  

6.1. Carbon Intensity 

This study concerns carbon intensity in electricity generation in the EU28. Carbon intensity is a 

suitable measure when investigating the supply side of electricity as it is a fair basis of comparison 

across countries and provides an actionable standard for power generators to work toward. Given 

the important role of the power sector in meeting international emission reduction targets and the 

direct measure of a negative by-product (carbon emissions) from a desirable output (electricity), 

it is interesting to study the time path of carbon intensity in electricity production. Further, with the 

continued integration of the EU power sector, it is important to study convergence of carbon 

intensity as the presence of divergence could potentially lead to substantial transfers through 

trading of EU ETS emission allowances and relocation of power generation.  

6.2. Stochastic Convergence 

We investigate stochastic convergence of carbon intensity of the EU28 based on univariate time-

series analysis by adopting the approach proposed by Carlino and Mills (2013). We create a 

yearly relative carbon intensity variable (RI) by taking the logarithm of the ratio of each country’s 

carbon intensity relative to the EU average as follows: 

 

𝑅𝐼𝑖𝑡 =  𝑙𝑛(
𝐼𝑖𝑡

𝐼�̅�
)       (4) 

 

where 𝑅𝐼𝑖𝑡 refers to the carbon intensity of country i in year t, and 𝐼�̅� is the EU28 average carbon 

intensity in year t. A unit root in the above log ratio would indicate a non-stationary time-series 

and that shocks to carbon intensity are permanent. Rejection of a unit root would suggest 

stationarity and stochastic convergence (Strazicich & List, 2003). Note that creating the relative 
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carbon intensity variable also serves to demean the data for common time effects across the 

countries, such as a global shock to fuel supply or prices. 

Within the stochastic convergence literature, there is no agreement on which the ideal unit 

root tests to apply is (Hao et al., 2015). Hence, in line with what has become standard practice, 

we present three unit root tests with different asymptotic assumptions and null hypothesis. Firstly, 

in line with current convergence literature, the IPS panel unit root test presented by Im, Pesaran 

and Shin (2002) is utilized. The assumption of cross-sectional independence in the IPS test has 

received critiqued as being unrealistic as many studies find that macro time-series tend to exhibit 

significant cross-sectional correlation (Baltagi, 2008). Failing to account for cross-sectional 

dependence would result in considerably biased results. Cross sectional-dependance between 

the EU28 is likely due to the high degree of integration, common legislative framework and 

significant trade-intensity. This potentially leads to a degree of innovation and technological 

spread that could in theory cause a correlation between development of the carbon intensity of 

respective country’s power sector. Hence, we employ the Cross-sectionally augmented ADF 

(CADF) unit root test suggested by Pesaran (2007) which is able to account for cross-sectional 

dependance. 

Both the IPS and CADF consider the null hypothesis of a unit root. This is the standard 

approach to test for stationarity in a panel, but as Hadri (2000) asserts, these standard unit root 

tests lack power to accurately test for relevant alternative hypotheses. These tests sometimes 

erroneously fail to reject the unit root null for many economic series that are actually stationary 

processes. With this in mind, as a complement to the IPS and CADF unit root tests, we employ 

the Hadri Lagrange Multiplier (Hadri-LM)(Hadri, 2000) test to investigate the null that time-series 

are stationary versus the alternative that at least one time-series contains a unit root. Utilizing the 

IPS and CADF unit root tests limits us to test whether at least one time-series contains a unit root 

whilst the Hadri-LM test allows us to investigate whether all time-series are stationary and thereby 

whether the prerequisites for beta-convergence are fulfilled. 

6.2.1. Im, Pesaran and Shin (IPS) Panel Unit Root Test 

The IPS (Im et al., 2003) pools separate time-series estimates and tests the pooled value for a 

unit root, this results in a higher power to detect stationarity (Chatfield, 2016). 

 As a first step, the IPS performs an Augmented Dickey Fuller (ADF) test on each country’s 

RI time-series and then executes a testing procedure based on an average of each country’s ADF 

test statistics. To correct for possible higher-order serial correlation we include the first-difference 

lagged terms (i.e. augmentations), 𝛥𝑅𝐼𝑖,𝑡−𝑗. The number of augmented terms is allowed to vary 
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across the sampled countries and the optimal number of augmented terms is determined by 

employing a general-to-specific approach as suggested by Philips and Perron (1988) (see section 

table 10a in appendix F). For each time-series, the ADF test takes the form:   

 

𝛥𝑅𝐼𝑖𝑡 = 𝛼𝑖 +  𝛽𝑖𝑅𝐼𝑖,𝑡−1 + 𝜃𝑖𝑡 + ∑ 𝛾𝑖𝑗
𝜌𝑖
𝑗=1  

𝛥𝑅𝐼𝑖,𝑡−𝑗 + 휀𝑖𝑡    (5) 

 

where 𝛥𝑅𝐼𝑖𝑡=𝑅𝐼𝑖𝑡 − 𝑅𝐼𝑖,𝑡−1 is the difference in relative carbon intensity in two subsequent periods, 

𝛼𝑖  is the country-specific constant term and 𝜃𝑖𝑡 is a linear time trend. 𝛽𝑖 is the coefficient of interest 

and tests for the presence of a unit root in the specific time-series, 𝜌𝑖 is the number of 

augmentations for country i and 𝛾𝑖𝑗 is the estimated coefficient for each of the first-differenced 

augmentations. Lastly, 휀𝑖𝑡 is the contemporaneous error term assumed to be independently and 

identically distributed with a mean of zero and finite variance. After conducting the ADF regression 

test for each country, the IPS statistic is calculated as: 

 

𝐼𝑃𝑆 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  √𝑁 
�̅�𝑁𝑇−𝐸(𝑡𝑖𝑇|𝛽𝑖=0)

√𝑉𝑎𝑟(𝑡𝑖𝑇|𝛽𝑖=0)
          (6) 

 

𝑡�̅�𝑇 = 𝑁−1 ∑ 𝑡𝑖𝑇
𝑁
𝑖=1        (7) 

 

where N refers to the number of countries and T is the number of years. 𝑡̅ is the average t-statistic 

of estimates of 𝛽𝑖 across all countries and periods and E is the expectation operator. IPS test 

report the critical values of 𝐸(𝑡𝑖𝑇 | 𝛽𝑖 = 0) and 𝑉𝑎𝑟(𝑡𝑖𝑇 | 𝛽𝑖 = 0) for different values of T and k, where 

T is the number of years, and k is the number of augmented terms included in each equation. The 

expectation, variances and critical values for t-statistics can be found in Appendix D. The 

hypotheses tested in the IPS panel unit root is: 

 

𝐻0: 𝛽𝑖 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖         (8) 

 

𝐻1: 𝛽𝑖 < 0 𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑁1 𝑎𝑛𝑑 𝛽𝑖 = 0 𝑓𝑜𝑟 𝑖 = 𝑁1 + 1, 𝑁1 + 2, . . . , 𝑁      (9) 

 

Failure to reject the unit root null hypothesis would indicate that carbon intensity of all individual 

time-series resembles a non-stationary series with shocks having permanent effects. Conversely, 

rejecting the null would suggests that at least one country’s carbon intensity time-series 

resembles a stationary series. 
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6.2.2. Cross-sectionally Augmented ADF Panel Unit Root Test 

To account for cross-sectional dependence, we proceed with performing the Cross-sectionally 

augmented ADF (CADF) panel unit root test suggested by Pesaran (2007). This approach 

augments the traditional ADF unit root test with cross-sectional averages of lagged levels and 

first-differences of the individual time-series. These terms are included in the CADF to account 

for cross-sectional dependence. The CADF is a single common factor model, which imposes the 

restriction that the countries possess one common unobserved factor25. The test is based on a 

dynamic linear heterogeneous panel data model is specified as follows:  

 

𝑅𝐼𝑖𝑡 = (1 − 𝜙𝑖)𝑢𝑖 +  𝜙𝑖𝑅𝐼𝑖,𝑡−1 + 𝑢𝑖𝑡          (10) 

 

𝑢𝑖𝑡 = 𝛾𝑖𝑓𝑡 + 휀𝑖𝑡                   (11) 

 

Where (1 − 𝜙𝑖)𝑢𝑖  is a country-specific intercept and 𝑢𝑖𝑡 is the error term containing a common 

factor component capturing the cross-sectional dependence. 𝑓𝑡 refers to the unobserved common 

factor and 휀𝑖𝑡 is the idiosyncratic error term. This means that 𝑓𝑡 captures the cross-sectional 

dependance. By first-differencing 𝑅𝐼𝑖𝑡, we can combine and express equations 10 and 11 into the 

expression: 

 

𝛥𝑅𝐼𝑖𝑡 = 𝛼𝑖 +  𝛽𝑖𝑅𝐼𝑖,𝑡−1 + 𝛾𝑖𝑓𝑡 + 휀𝑖𝑡     (12) 

 

Where 𝛼𝑖 = (1 − 𝜙𝑖)𝑢𝑖  , 𝛽𝑖  =  −(1 − 𝜙𝑖) and 𝛥𝑅𝐼𝑖𝑡 = 𝑅𝐼𝑖𝑡 − 𝑅𝐼𝑖,𝑡−1.The unit root null hypothesis 

(where 𝜙𝑖 = 1) and alternative hypothesis test are identical to the IPS and as follows:  

 

𝐻0: 𝛽𝑖 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖           (13) 

 

𝐻1: 𝛽𝑖 < 0 𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑁1 𝑎𝑛𝑑 𝛽𝑖 = 0 𝑓𝑜𝑟 𝑖 = 𝑁1 + 1, 𝑁1 + 2, . . . , 𝑁       (14) 

 

The simple CADF regression is as follows:  

 

                                                 
25In this study, we do not extend our analysis to encompasses several factors for simplicity reasons. We 

propose that future research investigate stochastic convergence with unit root tests that account for multiple 
factors. 
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𝛥𝑅𝐼𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑅𝐼𝑖,𝑡−1 + 𝑑0𝑅𝐼̅̅
�̅�−1 + 𝑑1𝛥𝑅𝐼̅̅

�̅� + 휀𝑖𝑡     (15) 

 

where 𝑅𝐼̅̅
�̅�−1 refers to the lagged cross-sectional average at time t-1 of all N observations and 𝛥𝑅𝐼̅̅

�̅� 

refers to the difference in averages between time t and t-1. These are included to capture the 

effects of cross-sectional dependance. Pesaran (2007) argues that including these terms 

sufficiently proxy the unobserved common factor (𝑓𝑡). 

In order to address potential serial correlation in the error term or in the common factor, 

the regression is augmented with lagged first differences of 𝑅𝐼𝑖𝑡 and 𝑅𝐼̅̅
�̅� where the degree of 

augmentation is chosen by the SBC (see table 10b in Appendix F). This yields the regressions:  

 

𝛥𝑅𝐼𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑅𝐼𝑖,𝑡−1 + 𝑑0𝑅𝐼̅̅
�̅�−1 + ∑ 𝑑𝑗+1

𝑝
𝑗=0 𝛥𝑅𝐼̅̅

�̅�−𝑗 + ∑ 𝑐𝑘
𝑝
𝑘=1 Δ𝑅𝐼𝑖,𝑡−𝑘 + 휀𝑖𝑡         (16) 

 

From the augmented regression, the t-statistic of 𝛽𝑖 for each country is referred to as the 𝐶𝐴𝐷𝐹𝑖 . 

The t-statistic based on this regression should be devoid of the unobserved common factor (𝑓𝑡) 

and therefore free of cross-sectional dependence. 𝐶𝐴𝐷𝐹𝑖  is then averaged in order to obtain the 

CIPS statistic: 

𝐶𝐼𝑃𝑆 = 𝑁−1 ∑ 𝐶𝐴𝐷𝐹𝑖
𝑁
𝑖=1          (17) 

 

The resulting CIPS-statistics is in turn compared to the critical values in Appendix D. The null 

hypothesis is that all series are non-stationary while the alternative hypothesis suggests that at 

least one series is stationary. 

6.2.3. Hadri Lagrange-Multiplier Panel Unit Root Test  

Hadri (2000) proposes a residual-based Lagrange Multiplier (LM) test with a null hypothesis of 

stationarity. The alternative hypothesis is that at least one time-series follow a unit root process, 

and thus is non-stationary. Employing the Hadri-LM test brings about two benefits. First, the test 

has more power to reject the null in the event that the series resemble a non-stationary process. 

Second, it allows us to investigate whether all time-series are stationary and thereby fulfilling the 

prerequisites for beta-convergence.  

When applying the Hadri-LM test in the context of stochastic convergence, failure to reject 

the null hypothesis would mean that carbon intensity for all countries resembles a stationary 

series. Rejection of the null would indicate that at least one country has a unit root and that there 

is divergence over time. In accordance with Hadri (2000), we consider the following model: 
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𝑅𝐼𝑖𝑡 = 𝑥𝑖𝑡  + 𝛽𝑖𝑡 + 휀𝑖𝑡             (18) 

 

𝑥𝑖𝑡= 𝑥𝑖,𝑡−1 + 𝜇𝑖𝑡        (19) 

 

Consider that 𝑥𝑖𝑡 is a random walk process and both 휀𝑖𝑡 and 𝜇𝑖𝑡 are idiosyncratic error terms 

following a normal distribution, 𝑁~(0,  𝜎2). Using backward substitution, we find: 

 

𝑅𝐼𝑖𝑡 = 𝑥𝑖0  + 𝛽𝑖𝑡 + ∑ 𝜇𝑖𝑠
𝑡
𝑠=1 + 휀𝑖𝑡       (20) 

   

𝐿𝑒𝑡 𝑣𝑖𝑡 =  ∑ 𝜇𝑖𝑠
𝑡
𝑠=1 + 휀𝑖𝑡             (21) 

 

The Hadri-LM test considers the following hypothesis: 

 

𝐻0 : 
𝜎𝜇

2

𝜎𝜖
2 = 0             (22) 

 

𝐻1:
𝜎𝜇

2

𝜎𝜖
2 > 0             (23) 

 

Under the stationary null hypothesis, 𝜎𝜇
2 (the variance of 𝜇) is zero indicating that 𝜇 is constant 

over time. This means that 휀𝑖𝑡 = 𝑣𝑖𝑡 and 𝑅𝐼𝑖𝑡 would follow a trend stationary process. 

 

The LM-statistic accounts for cross-sectional dependance and is given by: 

 

𝐿�̂� = 𝑁−1 ∑ (𝑇−2 ∑
𝑆𝑖 𝑡

2

𝜎𝜖,𝑖
2

𝑇
𝑡=1 )𝑁

𝑖=1      (24) 

 

where 𝑆𝑖𝑡 is the partial sum of the residuals and 𝜎𝜖,𝑖
2  the variance of the error term 𝜖𝑖  defined as:   

 

𝑆𝑖𝑡 = ∑ 𝜖�̂�𝑗
𝑡
𝑗=1                (25)  

 

�̂�𝜖,𝑖
2 = ∑ 𝜖�̂�𝑡

𝑇
𝑡=1                (26) 

 



 29 

As proposed in Hadri (2000), the test-statistic is given by 𝑍 = √𝑁(𝐿�̂�  − 𝜉1) /𝜍, where 𝜉1  is 
1

6
 and 

𝜍 is 
11

6300
. Large positive values of the Z-statistic would lend support to rejecting the null. The power 

of the test as proposed by Hadri (2000) is presented in Appendix D. 

6.2.4. Selection of Lag Length 

Accurately determining the number of augmented terms for each country is essential to avoid loss 

of power in the IPS and CADF panel unit root test. Including unnecessary lags reduces the power 

of the test and including too few lags inhibits the regression’s ability to capture the error process 

of the coefficient and leads to inaccurate estimation of the standard errors (Chatfield, 2016).  

To identify the optimal number of lags for each country’s time series, we employ the 

Schwarz Bayesian Criteria (SBC). The SBC assists us in selecting the most suitable model out of 

the different number of lags tested. An alternative selection criterion would have been the Akaike 

Information Criteria (AIC). However, we argue that the SBC is a more appropriate measure as we 

ensure that a more parsimonious (restrictive) model is selected. This reduces the risk of overfitting 

the model due to the inclusion of unnecessary lags. In addition, using only the minimal number of 

lags does not reduce the degrees of freedom of the model more than necessary and thereby the 

power of the unit root tests will not be lowered. 

 

Table 2. Overview of tests 

 IPS CADF Hadri-LM 

Country-specific convergence coefficient ✅ ✅ ✅ 

Cross-sectional dependance ❌ ✅ ✅ 

Unit root null hypothesis ✅ ✅ ❌ 

 

Additionally, we utilize the Ljung-Box-Q test to verify that the residuals of the models selected by 

the SBC mimic the properties of a white noise process. In the event that this is not the case, we 

employ a specific-to-general method by adding further augmentations to the models and iterate 

with the Ljung-Box-Q test until the residuals resembles a white noise process. In this manner, we 

ensure that all the serial correlation in the data has been captured within each country-specific 

model. We follow Hyndman and Athanasopoulos (2013) to ensure that we choose a sufficiently 

large number of lags in the Ljung-Box-Q test to capture any troublesome correlations. They 
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suggest a rule-of-thumb to use lags=min(10, T/5), which in our case is lags=min(10, 5)26. We 

present the results of these tests in table 10a-b in Appendix F. 

6.3. Beta-Convergence   

To investigate beta-convergence, we construct a Change in Carbon Intensity (CCI) variable 

tracking the change in carbon intensity by taking the logarithm of the ratio of each country’s carbon 

intensity in period t and t-1 as follows: 

 

𝐶𝐶𝐼𝑖𝑡 =  𝑙𝑛(
𝐼𝑖𝑡

𝐼𝑖,𝑡−1
)      (27) 

 

where 𝐼𝑖𝑡 refers to the carbon intensity of country i at time t. If the 𝐶𝐶𝐼𝑖𝑡  is greater than zero, it 

suggests that the country’s power sector is becoming more carbon intensive and a 𝐶𝐶𝐼𝑖𝑡  smaller 

than zero implies that the country’s power sector is becoming less carbon intensive.   

6.3.1. Empirical Approach 

In investigating beta-convergence, we adopt the panel-data framework suggested by Islam 

(1995). Various specifications of the model will be estimated, including permutations of control 

variables that will be introduced successively. The main model is expressed as: 

 

𝐶𝐶𝐼𝑖𝑡 =  𝑙𝑛(
𝐼𝑖𝑡

𝐼𝑖,𝑡−1
)  = 𝛼 + 𝛽𝑙𝑛(𝐼𝑖,𝑡−1)  +  𝛾𝑿𝑖𝑡 + 𝜆𝒁𝒊𝒕 + 𝜂𝑡+𝛿𝑖 + 𝑣𝑖𝑡        (28) 

 

where 𝐶𝐶𝐼𝑖𝑡  is as defined in equation 27. 𝐼𝑖,𝑡−1 is the lagged carbon intensity and the 𝛽-coefficient 

is the main coefficient of interest in determining beta-convergence. 𝑿𝑖𝑡 is a vector of country-

specific control variables that will be used in investigating conditional convergence and 𝒁𝒊𝒕 is a 

vector of interaction terms used to allow for cross-country heterogeneity in the speed of 

convergence. 𝜂𝑡 and 𝛿𝒊 are year and country fixed effects respectively.  

Equation 28 is estimated on the panel dataset of the EU28 from 1995 to 2015. We 

investigate whether convergence is conditional on EU membership, GDP per capita and the 

energy tax intensity in a country. Further, the weighted price of fossil fuels and the carbon price 

of emission allowances is interacted with the lagged carbon intensity to test if the speed of 

                                                 
26 T=21 hence T/5=4,2 but we round up and use 5 lags to ensure we capture all serial correlation.  
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convergence varies between countries. A motivation and discussion of the choice of variables is 

presented in section 6.3.1.1.  

A two-way fixed effects estimation with country and time fixed effects (FE) is used to 

reduce potential bias from omitted or unobservable variables. The time FE capture variation that 

is constant across countries in any given period, but changes over time. An example of such 

variation is EU common policy or carbon price of emission allowances. The country FE accounts 

for variation between countries that remain constant within a country over time. This could be 

differences in geographical or topographical conditions for solar, hydro or wind power. 

The standard errors are clustered on a country level and robust for heteroskedasticity in 

all the estimated specifications. Clustered standard errors are used as we expect there to be 

within country correlation of the standard errors over time. This choice of standard errors is further 

discussed in section 6.4.2.  

6.3.1.1. Basic Model 

In investigating beta-convergence, the basic model estimates the lagged carbon intensity on the 

change of carbon intensity between two consecutive periods. This approach is suggested by 

Islam (1995) and adopted by Brännlund et al. (2015) to study carbon intensity. To test for beta-

convergence, the null hypothesis of no beta-convergence is tested against the alternative 

hypothesis of beta-convergence27: 

 

𝐻0: 𝛽 = 0            (29) 

 

𝐻1: 𝛽 < 0             (30) 

 

Hence, a negative and significant beta-coefficient suggests that a country with a higher carbon 

intensity in one period is expected to exhibit a greater improvement in carbon intensity in the 

following period.  

6.3.1.2. Conditional Models 

We proceed to investigate whether the EU28 converge toward a common path of carbon intensity 

or if they converge towards individual paths of carbon intensity conditional on country-specific 

characteristics. We do this by appending the basic model with permutations of control variables. 

                                                 
27 Note that we are performing a two-sided hypothesis test and not a one-sided hypothesis test. It is rather 

the conditions for beta-convergence that is one-sided.  
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If a control is found to be significant, it suggests that it has an impact on the path of carbon 

intensity to which a country converges. The null hypothesis of absolute convergence is tested 

against the alternative of conditional convergence as follows: 

 

𝐻0: 𝛽 < 0 𝑎𝑛𝑑 𝛾 = 0         (31) 

 

𝐻1: 𝛽 < 0 𝑎𝑛𝑑 𝛾 ≠ 0         (32) 

 

where 𝛾 is the vector of coefficients on the control variables included: EU Membership, GDP Per 

Capita and energy tax intensity. The selection of control variables is key when investigating 

conditional convergence and the inclusion of different control variables are likely to impact the 

estimation results (Jobert et al., 2010). We motivate our choice of control variables as follows: 

EU Membership (EU). Membership in the EU requires a country to adhere to EU 

environmental regulation and policy. Given the strict policies regulating the power sector, it is 

feasible to hypothesize that joining the EU applies pressure on producers of GHG emissions to 

reduce emissions as implementing the polluter pays principle is part of EU environmental policy. 

To this end, we introduce a dummy EU variable, taking the value zero for years when a country 

is not an EU member and the value one when it is.  

GDP per capita (GDPpc). A standard measure of wealth is GDP per capita and it has 

repeatedly been considered in convergence studies (Hao et al., 2015; Jobert et al., 2010). We 

hypothesize that wealth is an important determinant of a country’s path of carbon intensity. 

Therefore, we include a measure of GDP per capita to investigate if carbon intensity in the EU 

power sector converges to different paths conditional on wealth.  

Energy tax intensity (ETI). Finally, as a proxy for international climate commitment, an 

energy tax intensity (ETI) measure is included. Such a proxy is appropriate as taxes are one of 

the premier market-based policy tools used to influence the behavior of both producers and 

consumers (Eurostat, 2019). Energy taxes were implemented in response to the EU (2003) 

Energy Taxation directive regarding the taxation of energy products and electricity. As Eurostat 

(2019) clarifies, the energy tax base is on anything that has a proven negative impact on the 

environment. The Energy Taxation directive only sets minimum levels of taxation, member states 

are free to set their national rates in line with their target objectives, hence there is significant 

variation in how individual regimes employ energy taxes. We argue that national stringency of 

energy taxes is a suitable indicator of a country’s national climate commitment. For example, 

Sweden has one of the highest energy and carbon taxes in the world, which Ackva and Hoppe 
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(2018) argues has been highly effective in reducing emissions and has contributed strongly to 

Sweden’s climate leadership.  

6.3.1.3. Speed Models 

Lastly, we control for the carbon price of emission allowances in the EU ETS and the weighted 

price of fossil fuels to investigate if these have an effect on the speed of convergence in the EU28. 

In the basic and conditional models, the speed of convergence is assumed to be homogenous as 

the beta-coefficient is the same for all countries. In the speed models, we allow speed of 

convergence to vary by interacting the carbon price and weighted price of fossil fuel variables with 

lagged carbon intensity. The null of homogenous speed of convergence is tested against the 

alternative of differences in speed of convergence. The tested hypothesis is:   

 

𝐻0: 𝛽 < 0 𝑎𝑛𝑑 𝜆 = 0         (33) 

 

𝐻1: 𝛽 < 0 𝑎𝑛𝑑 𝜆 ≠ 0         (34) 

 

where 𝜆 is the vector of coefficients on the interaction terms. The inclusion of respective 

interaction term is motivated as follows:  

Weighted Price of Fossil Fuels (WPF). WPF is included as it is hypothesized to be an 

important factor determining the speed of convergence. Brännlund et al. (2014) and Strazicich 

and List (2003) claim that higher carbon intensity implies a greater exposure to changes in fuel 

prices, and thus makes more economic sense to undertake abatement measures to reduce 

emissions following an increase in prices.  

Carbon Price (CP). A similar logic is applied to motivate the inclusion of CP. Emission 

allowances is a market-based policy instrument that is implemented with the intention of making 

GHG emissions costly and to incentivize abatement efforts. Emission allowances are traded on 

an EU exchange and hence, the carbon price is the same for all countries. The inclusion of CP is 

to investigate the effect of a change in carbon price on the speed of convergence by interacting it 

with lagged carbon intensity and thereby allowing for heterogeneity between countries.  

Note that since they are common across all countries, the main effects of CP and WPF 

are captured by the time fixed effects and are therefore not explicitly included in the estimated 

models.  
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Figure 6. Summary of convergence concepts and testing procedures.  
Note: If stochastic convergence prevails, there can be beta-convergence. In turn, if beta-

convergence is found, absolute vs conditional and speed of convergence can be 

investigated. Source: Author’s own rendering.  

6.4. Robustness Checks  

6.4.1. OLS to Verify Beta-Convergence 

There have been several concerns with regard to fixed effects estimation in a dynamic panel 

setting. Inherent to this is the concern of endogeneity of the lagged carbon intensity variable and 

the error term. The within transformation of the fixed effect estimator removes the average of the 

independent variable (𝐼𝑖,𝑡−1 − 𝐼�̅�.) and the error term (𝑣𝑖𝑡-�̅�𝑖.) respectively. But because �̅�𝑖. contains 

𝑣𝑖,𝑡−1, which in turn 𝐼𝑖,𝑡−1 is correlated with, 𝐼𝑖,𝑡−1 will still be correlated with the error term through 

�̅�𝑖.
28.  

As Roodman (2009) specifies, the risk is that the coefficient on our lagged carbon intensity 

variable of interest is biased by variation that should actually be attributed to the country’s fixed 

effects. For example, carbon intensity is inherently linked to a country’s dependence on hydro 

energy which is in turn largely determined by its topography. Based on Monte Carlo simulations 

that have been run, the correlation between the lagged carbon intensity variable and the 

transformed error term can be shown to be negative. Hence, fixed effects estimation can lead to 

coefficients being downward biased29 (Bond, 2002; Nickell,1981). 

 Inspired by Bond (2002), we utilize an OLS estimation to, in combination with the fixed 

effects estimation, create an upper and lower bound on the beta-coefficient. This is possible 

because the estimators are likely to be biased in opposite directions. The fixed effects produce a 

lower bound on the true beta-coefficient due to the downward bias explained above. The OLS 

                                                 
28 See Baltalgi (2008), section 8.1. for more details on dynamic panel bias. 
29 Judson and Owen (1999) suggest that even with T=30, the bias on the true value of coefficients could 

be as much as 20%. 
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estimate on the other hand, provides an upper bound due to the correlation of the lagged carbon 

intensity variable with the country-specific fixed effects in the error term, 𝑢𝑖 + 𝑣𝑖𝑡. Bond (2002) 

finds that standard results from OLS estimation with omitted variables tend to indicate an upward 

bias in the produced estimates, thereby producing an upper bound on the beta-coefficient.  

6.4.2. Bootstrapped Standard Errors  

A key assumption when applying clustered standard errors at a country level is that error terms 

are correlated within a country but uncorrelated across countries. Given the nature of common 

EU climate policy and technology spillover, it is plausible to hypothesize that error terms are 

correlated across countries. Further, as a rule of thumb, one should only employ clustering of 

standard errors with 30 or more clusters, but we only have 28 country clusters. Hence, as a 

robustness check, we employ bootstrapped standard errors30 to ensure that our findings are 

robust. 

Bootstrapping standard errors refers to a non-parametric approach to estimating standard 

errors. As we are uncertain about the distribution of the error terms, bootstrapping sidesteps this 

by utilizing random draws with replacement from the entire dataset. The bootstrapped standard 

errors in a sample is the standard error of an estimator across many repeated draws with 

replacement. The non-parametric nature of bootstrapped standard errors allows us to avoid 

making assumptions regarding the distribution of the variables by observing an approximation of 

the sampling distribution of interest. Bootstrapping typically requires the sample to be 

representative of the target population, but as we study the entire target population this is not an 

issue. The approach also requires that a sufficient number of replications are run to estimate 

reliable standard errors. To ensure this, we employ estimations with 100 replications, above which 

there are negligible improvements in estimation (Goodhue, Lewis & Thompson, 2012) 

7. Results 

The empirical results consist of two main sections. In the first, we consider carbon intensity of the 

EU28 power sector by presenting results on both aggregate and country level. The second part 

presents the results from our analysis of stochastic and beta-convergence.  

                                                 
30 Note that standard errors are bootstrapped across the entire population and not bootstrapped in clusters. 

This allows us to account for correlation of the standard errors across countries. 
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7.1 Carbon Intensity at Aggregate and Country Level 

 

Figure 7. EU Index of carbon intensity, aggregate electricity generation and aggregate 

carbon emissions from 1995 to 2015.  
Source: Author’s rendering of data from Eurostat (2018).  

 

Figure 7 displays an index of the total EU28 carbon intensity, total gross electricity generation and 

total CO2 emissions from 1995 to 2015. Across the entire period we observe both relative 

decoupling and absolute decoupling. Relative decoupling refers to the decline in carbon 

emissions per unit of energy produced, this is indicated by a decrease in the carbon intensity 

index. Absolute decoupling means that the absolute level of emissions has decreased despite an 

increase in electricity generation. Relative decoupling is a requirement for an economy to sustain 

growth in electricity generation without having an increasingly negative impact on the 

environment. The two main channels enabling this are improving efficiency in electricity 

generation and transitioning to less carbon intensive energy sources. We interestingly see that 

the decline in carbon emissions was initiated in 2008, whilst the electricity generation grew in 

2008 and did not decline until 2009. From figure 12 in Appendix E, we note that there is a sharp 

increase in oil price relative to the gas price up until mid-2008. Hence, we hypothesize that the 

high oil price incentivized power generators to switch from oil to the relatively cheaper and cleaner 

natural gas, leading to a decrease in carbon emissions. In 2009 we see a drop in gross electricity 

generation following the economic downturn, coupled by a further decline in carbon emissions.   

The box plot in figure 8 depicts the carbon intensity across power sectors of the EU28 

from 1995 to 2015. The graph is consistent with the overall decreasing carbon intensity seen in 

figure 7, but it also reveals that the range of carbon intensities is decreasing over time. This 

suggests that there is indeed an improvement in the carbon intensity in the power sector and is a 



 37 

first indication of that the EU28 are to some extent converging towards a lower level of carbon 

intensity.  

 

Figure 8. Box plot of carbon intensity. 

Note: The box spans between the first and third quartile and the line within it representing the EU28 

median. The whiskers indicate the maximum/minimum for each respective year or extends 1,5 

interquartile ranges (third-first quartile) from the box, with dots representing outliers. Source: Author’s 

rendering of data from Eurostat (2018).  

 

In figure 9, we plot the carbon intensity of each EU28 member state in 1995 and in 2015, as well 

as the EU average (yellow bar). In line with earlier findings, the figure illustrates that most EU 

members decreased their carbon intensity between 1995 and 2015, albeit to different extents. 

Country-level analysis of the changes in carbon intensity from electricity generation reveals some 

interesting findings. Most EU member states, with the exception of Latvia and Lithuania, 

decreased in carbon intensity over the studied period. Countries with a relatively high carbon 

intensity, such as Malta, Romania, Luxembourg and Poland, improved considerably during the 

same period. Sweden and France were the least carbon intensive countries in 1995 and after 

reductions, continue to be the least carbon intensive countries in 2015.  
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Figure 9: C02 intensity of EU member states: 1995, 2015 and changes between the two 

years.  
Note: A green bar indicates a decrease in carbon intensity, while a red bar indicates an increase. The 

reference line for plotting the bars is in ascending order of each country’s carbon intensity in 2015 – 

specifically, these refer to the values to the left of the green bars and to the right of the red bars.  

Source: Author’s rendering of data from Eurostat (2018). 

7.2. Convergence Results 

We find support for both stochastic and beta-convergence of carbon intensity in the EU power 

sector. These findings are robust across the different unit root tests employed for stochastic 

convergence, and for beta-convergence both across specifications and various robustness 

checks. Our findings of stochastic convergence suggest that the entire panel is stationary and 

that each carbon intensity time-series reverts back to the mean of the EU28 after a shock. The 

beta-convergence results suggest that convergence is conditional on GDP per capita and energy 

tax intensity in a country.  

7.2.1. Stochastic Convergence 

The number of lags selected by the SBC and the results of the Ljung-Box-Q for the IPS and CADF 

test are presented in Appendix F.  

Table 3 presents the results from the battery of panel unit root tests performed on the 

dataset. The time-series tested is the logarithm of relative carbon intensity, RI. The tests are 

initially performed by allowing individual intercepts to differ. However, as visual inspection of the 
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time series suggests a downward trend, we also include a specification that allows for a time 

trend. Under the null hypothesis of the IPS and the CADF, the individual time-series have a unit 

root and the alternative hypothesis is that at least one time-series is stationary. The Hadri-LM test 

tests the null that all individual time-series are stationary, with the alternative hypothesis being 

that at least one time-series contains a unit root. The consistent results across the IPS and CADF 

suggest that the results are insensitive to allowing for cross-sectional dependence.   

 

Table 3. Results from panel unit root tests 

 

Note: P-values are presented in parentheses: *** p < 0,01, ** p < 0,05, * p < 0,1. 

 

The IPS and the CADF panel unit root tests produce highly significant results in both 

specifications. These results reject the unit root null hypothesis at a 1% significance level in favor 

of the alternative hypothesis that at least one time-series is stationary. The third panel unit root 

test, the Hadri-LM, fails to reject the null hypothesis that all the time series are stationary. All 

results are consistent whether or not a time trend is allowed for.  

The Hadri-LM test indicates that there is stochastic convergence among the EU28. This 

is supported by the results of the IPS and CADF that indicate that at least one time series is 

stationary. This consistency provides robustness to the results. Stochastic convergence indicates 

that a shock to carbon intensity of any one of the EU28 is only temporary, and that it converges 

back to the average EU level. The existence of stochastic convergence implies that the necessary 

conditions for beta-convergence are fulfilled. Hence, we move on to investigate absolute and 

conditional convergence as well as the speed of convergence.   

7.2.2. Beta-Convergence  

Table 4 presents the regression results of the specifications that have been estimated using fixed 

effects. The dependent variable is the logarithm of the change in carbon intensity between two 

consecutive periods. In all models, time and country fixed effects are included to control for time 

and country invariant omitted variables that may bias the estimates. The full specifications 

including coefficients on the country and year dummies are presented in Appendix G.   
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Table 4. Regression results  

 

Note: Country level clustered standard errors in parentheses: *** p < 0,01, ** p < 0,05, * p < 0,1. The dependent 

variable being estimated is the change in carbon intensity.   

 

Across all specifications, we note that the coefficient on the lagged carbon intensity variable, 𝐼𝑖,𝑡−1, 

is negative and highly significant at the 1% level31. Its significance across specifications provides 

robustness and yields strong support for the existence of beta-convergence.   

Model 1 is the basic model containing only the lagged carbon intensity variable. The beta-

coefficient is negative and significant, this suggests countries which are more carbon intense 

exhibit a greater improvement in carbon intensity in the following period. The beta-coefficient is 

interpreted as a country with a 1% lower carbon intensity decreasing carbon intensity 0,34% 

slower. Hence, the less carbon intensive a country is, the slower it improves and thereby countries 

still at a higher carbon intensity improves faster and catches up.   

In model 2, the regression is appended with a dummy for EU membership, which is found 

to be insignificant. This indicates that becoming an EU member has not had an impact on the 

path of carbon intensity. In model 3, GDP per capita (GDPpc) is added to the basic model and it 

is found to be significant at the 5% level. Hence, we reject absolute convergence in favor of 

convergence conditional on GDPpc. The significant and positive coefficient on GDPpc suggests 

that the EU28 do not converge along the same path of carbon intensity. Rather, countries with 

higher GDPpc converge toward a higher path of carbon intensity (all else equal). In model 4, both 

the GDPpc variable and the EU dummy are included. The EU dummy remains insignificant while 

                                                 
31 Whilst employing conventional significance levels, we acknowledge their arbitrariness and maintain a 

healthy skepticism in our interpretations.  
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GDPpc is significant only at the 10% level. Energy tax intensity (ETI) is introduced in isolation in 

model 5 and is not found to be significantly different from zero. In model 6, when we also control 

for GDPpc and EU membership, ETI is found to be significant at the 5% level. ETI remains 

significant in model 8 when the interaction of WPF and lagged intensity is included. As the 

coefficient on ETI is negative and significant, countries who employ a more stringent energy tax 

converge along a lower path of carbon intensity. 

The speed of convergence (the magnitude of the beta-coefficient) does not change 

significantly in any of the basic or conditional models (model 1-6). The interaction of WPF with 

the lagged carbon intensity variable is estimated across models 7,8 and 10 to investigate speed 

of convergence. The WPF interaction is only significant when estimated along with carbon price 

in model 10 but is insignificant across all other specifications. This leads us to reject that the speed 

of convergence is influenced by the weighted price of the fossil fuels. In model 9 and 10, carbon 

price (CP) and its interaction with the lagged carbon intensity variable is included to test for 

differences in the speed of convergence. The interaction of CP is significant only in model 10 but 

insignificant in model 9. This inconsistency puts the reliability of the estimated effect under 

question and we reject that the speed of convergence is influenced by CP. CP is not included in 

combination with ETI in any model because CP is a direct component of ETI.   

7.2.3. Robustness Check 

Results from the full set of robustness checks are presented in Appendix H. The results of the 

robustness checks support the findings of conditional beta-convergence presented in our main 

fixed effects estimations. As in our main specification, the beta coefficient is negative and 

significant in most specifications, this supports the finding of beta-convergence. In addition, ETI 

and GDPpc are consistently significant across the bootstrapped specifications; this supports the 

finding of conditional beta-convergence. 

With OLS estimation, we note that in the simple specification, the specification with the 

EU dummy only, and the specification with carbon price (models 1, 2 and 9), the OLS estimate of 

the beta-coefficient is insignificant, this might point to an upper bound which does not support 

beta-convergence. However, when the most relevant controls are included (GDPpc and ETI), the 

beta-coefficient is found to be negative and significant - this supports the existence of conditional 

convergence. In estimating the upper bounds on the beta coefficient utilizing OLS, we note that it 

is considerably smaller in magnitude compared to the fixed effects estimation - however the 

coefficient remains negative and significant.  
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With regard to estimations from bootstrapped standard errors, the magnitude of the 

estimated coefficients is the same as with fixed effects estimation (as is to be expected) while 

standard errors are smaller compared to the clustered standard errors. As the results of the 

estimation with bootstrapping are consistent, the initial concern of having less than 30 country 

clusters is unlikely to have caused considerable bias in the estimation of standard errors in the 

original fixed effects estimation with country clusters. 

8. Discussion 

8.1. Internal Validity and Limitations 

In this section, we discuss the internal validity of our study. This includes a critical reflection of the 

data used, estimation methods adopted and limitations of our study. 

8.1.1. Data 

The carbon intensity measure is obtained from the International Energy Agency (IEA). The 

numerator presents carbon emissions from fossil fuels consumed in electricity generation while 

the denominator presents total gross electricity generated. These values are provided by national 

governments. There is a risk that energy statistics at the national level have been collected using 

different criteria and definitions. This implies that there might be a degree of measurement error 

in our data, which potentially creates a problem for cross-country comparability. It is entirely 

possible that even after standardization and adjustments by the IEA32, that there are unavoidable 

measurement error persists at an individual power plant level. These systematic measurement 

errors can bias results in both stochastic and beta-convergence. 

The IEA estimates carbon emissions by a Tier 1 approach (see Appendix B). The Tier 1 

approach computes carbon emissions by multiplying fuel consumption by a carbon factor that is 

assumed to be constant across the EU28 and time. As the IEA (2018) admits, this assumes that 

there is no change in emission efficiency of the power plants over the entire time period. However, 

the IPCC (2006) concludes that there is limited heterogeneity between various combustion 

technologies with regard to the quantity of CO2 emissions. Therefore, we consider this to be a 

limited source of bias in our results.  

                                                 
32 The IEA has made considerable efforts to ensure that data is in line with the United Nations International 

Recommendations on Energy Statistics (IEA, 2018). It has identified most of differences in national 
definitions and adjusted the data to meet international definitions. 
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8.1.2. Unit Root Tests 

The validity of estimates from the unit root tests rely on certain asymptotic assumptions. In 

practice, this means that the tests perform best for large T and at least moderate N (Phillips & 

Moon, 2000). Whilst “large” and “moderate” lack explicit values, our panel of T=21 and N=28 is in 

the vicinity of what previous literature using the same unit root tests employs (Hao et al., 2015; 

Lee & Chang, 2009; Strazicich & List, 2002), and we consider the asymptotic assumptions to 

have been fulfilled.  

Performing three different panel unit root tests acts as a robustness check, and the results 

all support the same conclusion of stochastic convergence. However, all three tests have certain 

traits in common. Firstly, in all cases the time trends are limited to linear time trends and the 

possibility of a non-linear time trend may reduce the validity of the linear tests. We emphasize 

that we find stochastic convergence when a linear trend is included and leave investigating non-

linear time trends as a point for future research. Secondly, neither of the tests allow for structural 

breaks in the time-series. As we have a relatively limited dataset, it is difficult to allow for a 

structural break while ensuring that there are sufficient observations pre-and-post break to allow 

for robust estimation. 

8.1.3 Beta-Convergence 

In employing fixed effects estimation, endogeneity may lead to estimates being biased and 

inconsistent. This could be due to independent variables being determined within the model, 

omitted variables being correlated with the independent variables or measurement error. The 

fixed effects included in our models account for variables that are time-invariant or country-

invariant. However, a potential source of omitted variable bias are factors that vary across time 

and country and are correlated with any of the independent variables. Such an omitted variable 

could be national climate policy such as coal bans or subsidies for renewables. These country 

specific factors change over time and are thus not controlled for in a fixed effects approach. 

Adopting an Instrumental Variable (IV) approach such as applying an exogenous IV or 

Generalized Methods of Moments (GMM) may be useful to verify our results33 and to address 

some of concerns with omitted variables and reverse causality.  

A potential weakness in the WPF variable is the lack of country variation within the 

variable. Ideally, we would have like to have country specific prices for the respective fossil fuels 

                                                 
33 As Bond (2002) advises, if one uses the GMM estimator to obtain an estimate on the beta-coefficient, 

the estimation should be compared with the bounds created by OLS and fixed effects estimation - this is 
the approach that we have adopted in our robustness checks (see section 7.2.3.). 
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as we suspect that the price of fuels varies across the EU. However, due to data unavailability 

such variation remains unaccounted for. An alternative approach to introduce cross-country 

variation would be to weigh the common fossil fuel price by for example the relative dependency 

on each fossil fuel in a country. This would be desirable as a country with less fossil fuels in their 

energy mix would naturally be less sensitive to changes in fuel prices. However, switching from 

fossil fuels and thereby decreasing fossil fuel dependency is one of the main mechanisms through 

which a country can improve its carbon intensity. Hence, a channel through which carbon intensity 

improves is through the fossil fuel mix component of WPF and if included it would be a bad control. 

Including bad controls could lead to misinterpretation of the estimated beta-coefficient as the 

mechanism through which the independent variable affects the outcome is limited when holding 

the bad control constant (Angrist & Pischke, 2008). 

8.2. Policy Implications of Results 

The main objective of this thesis is to investigate the development and convergence of carbon 

intensity in the EU power sector. In light of our findings, we discuss them in relation to climate and 

energy policy and possible implications for future policy making. Considering the basis of this 

discussion is limited to carbon intensity, we recognize the limitations in our policy implications and 

evaluations to only encompass aspects in regards of carbon intensity related to the power sector. 

Additional criteria such as social impact on for example income or employment is left outside of 

the scope of this paper. 

Regarding stochastic convergence, stationarity means that following a structural change 

or sudden change in the power sector with regards to carbon emissions, the carbon intensity time-

series will revert to the EU average. Importantly, stationarity indicates that it is possible to forecast 

future movements in the carbon intensity series by examining its past behavior. This ability to 

forecast might be helpful for policy makers in target setting and climate negotiations. 

As a result of beta-convergence in carbon intensity, countries with more carbon intensive 

power sectors exhibit a higher rate of improvement compared to less carbon intensive power 

sectors. This conclusion is coherent with the catch-up theory and is useful for consideration in 

climate policy negotiations. Beta-convergence is also an important conclusion considering the 

European Commission's goal to integrate the EU power market and create a pan-European power 

market. If we had found divergence, there could potentially be substantial transfers of resources 

following a trade-deficit of electricity in more carbon intensity countries due to higher cost of 

electricity generation from fossil fuels. However, as the carbon intensity in the EU28 power sector 

is found to converge, this concern is likely to be less important.  



 45 

Convergence of carbon intensity is not found to be conditional on being an EU member. 

Whilst we hypothesized that entering the EU would affect the development of a country’s carbon 

intensity in the power sector, the conditions that have to be satisfied by a country before being 

eligible for membership may bias the estimate. As part of satisfying the Copenhagen Criteria (a 

set of requirements to join the EU), a country has to show that they are willing and able to adopt, 

implement and enforce all current EU rules, the “acquis” (EC, 2019d). These rules cover a set of 

35 policy areas, one of which directly regulates the energy sector. Amongst others, the energy 

acquis regulates state aid to the coal sector as well as requires the country to promote renewable 

energy sources and energy efficiency. Given the adoption and implementation of standards and 

rules of the energy acquis prior to actually becoming an EU country, it is feasible to argue that the 

dummy of EU membership does not provide a discrete break in the country’s climate and energy 

policies.  

Convergence is found to be conditional on GDP per capita. We find an increase in GDP 

per capita to be coupled with a slower rate of change in carbon intensity and convergence toward 

a higher path of carbon intensity. A possible explanation for this is that in practice, an increase in 

GDP per capita is highly correlated with an increased demand for electricity. This in turn, means 

that the electricity generators will have to increase production in order to meet the higher demand. 

The source of this increased generation is likely to come from fossil fuel plants as capacity of 

renewable sources is less flexible and often require additional investments, which due to long 

lead times might not be possible in the short run. In line with Jobert et al. (2010), one should also 

note that given convergence conditional on GPD per capita, a ‘one-size fits all” type of EU 

environmental policy might not be appropriate in the context of carbon emissions reduction 

targets. We also find convergence to be conditional on energy tax intensity (ETI). EU countries 

that demonstrate a higher commitment to combating climate change by enforcing more strict 

environmental tax regimes tend to converge towards a lower path of carbon intensity. This points 

to the usefulness of market-based incentives in reducing carbon emissions and is intuitive as a 

high ETI makes emissions more costly for firms. 

The results on speed of convergence yields mixed results. Carbon price (CP) is found to 

have a negative effect, hence increase the speed of convergence, in one of the specifications. 

This is the intended and hypothesized effect of the EU ETS and it is intuitive as making GHG 

emissions more costly is likely to incentivize power generators to undertake abatement efforts to 

reduce emissions. The weak effect of carbon price could also be due to the distorted price 

development since the introduction of the EU ETS with prices close to zero for some periods. 

Further, the effects of more recent revisions to the EU ETS such as the requirement for power 
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generators to since 2013 buy 100% of their allowances may not yet have been fully realized in 

the studied data. Future development of the EU ETS, like the introduction of the market stability 

reserve34 in 2019, may more efficiently incentivize abatement efforts. WPF and CP would be 

expected to have similar effects on the speed of convergence as they both make usage of fossil 

fuels more costly. As our results regarding speed of convergence are not consistent across 

various specifications, the relationship between carbon intensity and CP/WPF warrants further 

research. 

9. Conclusion 

In this paper, we have analyzed carbon intensity within the EU28 power sector from 1995 to 2015. 

The key empirical issue addressed is whether carbon intensity in the EU power sectors converges 

along the same path or if they converge along individual paths conditional on country 

characteristics. The motivation for studying carbon intensity in the EU power sector is two-fold. 

Firstly, the power sector is responsible for a large share of EU’s carbon emissions, hence, it is 

warranted to conduct a cross-country sectoral analysis of the time path of carbon intensity. 

Secondly, convergence of carbon intensity provides a useful tool for EU and national policy 

makers in the design and evaluation of climate policies for the power sector. The empirical 

approach can be split into an analysis of the evolution of carbon intensity and an investigation of 

stochastic and beta-convergence. 

The analysis of carbon intensity shows that there has been relative decoupling (a 

decreasing carbon intensity in electricity generation) as well as absolute decoupling (a decrease 

of total carbon emissions) in the EU power sector. The average carbon intensity level has 

improved by 40,4% from 1995 to 2015. The dispersion in levels of carbon intensities has 

decreased across the studied period.  

In analyzing stochastic convergence, we construct a relative carbon intensity measure, 

which is each country’s carbon intensity divided by the EU mean. We adopt an univariate time-

series approach and utilize the IPS (Im et al., 2003), CADF (Pesaran, 2007) and Hadri-LM (Hadri, 

2000) panel unit root tests to test for stationarity. We find stationarity across all EU28 carbon 

intensity time-series and thereby conclude the existence of stochastic convergence. One of the 

implications of finding stochastic convergence is that we are able to forecast future developments 

in the carbon intensity series based on its past developments. 

                                                 
34 A market intervention with the purpose to deal with the surplus of allowances and to make the EU ETS 

more resilient to future economic shocks (EC, 2018).  
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In studying beta-convergence, we adopt a panel data approach utilizing a fixed effects 

estimator. The main independent variable is lagged carbon intensity and the main dependent 

variable is the year-on-year change in carbon intensity of electricity generation. Absolute and 

conditional convergence is tested for and assumed to be mutually exclusive. We investigate 

whether convergence is conditional on EU membership, GDP per capita as well as energy tax 

intensity. Further, we test if carbon prices and fossil fuel prices affect the speed of convergence. 

Based on our findings, we reject the absolute convergence hypothesis in favor of conditional 

convergence. We find support for countries converging conditional on GDP per capita and the 

level of energy taxes levied. Conditional convergence based on energy tax intensity means that 

countries that implement a higher energy tax tend to converge toward a lower path of carbon 

intensity. The results suggest that countries with higher GDP per capita converge toward a higher 

path of carbon intensity. We find that becoming an EU member has had no effect on the path of 

carbon intensity. There is some indication of heterogeneity in the speed of convergence across 

countries, but our results are inconclusive. We caution against extrapolating our convergence 

results beyond the context of the EU and the time period we study. However, the importance of 

GDP per capita and energy tax intensity in the path of carbon intensity is likely to translate to 

power sectors outside the studied sample.   

This study is the first to investigate carbon intensity within the power sector and yields 

some interesting insights. As a next step, we suggest that future research further investigate 

convergence within the EU power sector with other techniques or extend this body of research to 

other countries. The previously outlined potential issues with endogeneity call for alternative 

estimation methods such as an Instrumental Variable or GMM approach to verify our beta-

convergence results. The results of our paper also suggest it would be useful to consider other 

variables that might alter the path of carbon intensity within the EU. Future research could also 

extend investigation to other convergence concepts within the EU power sector such as sigma 

convergence which investigate the dispersion within countries or club convergence to investigate 

convergence between different groups of countries. It would also be interesting to investigate 

stochastic and beta-convergence in carbon intensity of electricity generation amongst other sets 

of countries such as the OECD or on a global level in aid in our understanding of effective climate 

change measures.  
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Appendix A: EU28 Member Countries 

Table 5. EU member countries and date of entry 

 

 
Source: Author’s rendering of data from IEA (2019) 
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Appendix B: IPCC Tier 1  

The IPCC Tier 1 approach of calculating total GHG emissions in carbon equivalent is as follows: 

 

First, calculations are based on the quantity of consumed fossil fuel and the respective emission 

factor (a measure of emissions per unit of fuel combusted) as follows: 

 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐺𝐻𝐺,𝑓𝑢𝑒𝑙 = 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐹𝑢𝑒𝑙 ∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟𝐺𝐻𝐺,𝐹𝑢𝑒𝑙  (35) 

 

The quantity of fuel combusted is obtained through national energy statistics and the emission 

factors are average default emission factor. The GHG emissions are the summed up across fuel 

types in order to obtain the total emissions from electricity generation as follows: 

 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐺𝐻𝐺 =  ∑ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐺𝐻𝐺,𝑓𝑢𝑒𝑙𝑓𝑢𝑒𝑙𝑠            (36) 

 

As mentioned in our data, a Tier 1 approach is adopted by the IEA. It has been noted that Tier 1 

approaches fail to consider the efficiencies and combustion technologies of specific power plants. 

In addition, relative to the Tier 3 approach, a Tier 1 estimation does not account for operation 

conditions, quality of maintenance and the age of equipment. These measures are considered in 

Tier 2 and Tier 3 approaches - however, at the time of writing, this data is unavailable on such a 

granular level, and might be an appropriate avenue for future research. However, within the 

scientific literature, combustion technology and operating conditions are regarded to be of 

importance only for methane and nitrous oxide while they are relatively unimportant for carbon 

dioxide (which form the majority of GHGs released) (IPCC, 2006). Hence, in our opinion, our data 

remains reliable.  
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Appendix C: Time-series of variables 

 
 

Figure 10. Energy tax intensity (ETI in 2015 US $ / MWh) from 1995 to 2015.  
Source: Author’s rendering of data from BP (2019) and Eurostat (2018).  

 

 
 

Figure 11. GDP per capita (current USD) from 1995 to 2015.  

Source: Author’s rendering of data from World Bank (2019). 
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Appendix D: Panel Unit Root Tests: Critical Values  

Table 6. IPS panel unit root test - critical values  

 
Source: Im et al. (2003) 
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Table 7. Expectation and variances for t-statistics  

 
Source: Im et al. (2003) 

 

Table 8. Critical values of cross-sectional augmented Dickey-Fuller panel unit root test 

 
 

Table 9. Power of Hadri LM panel unit root test 

 
 

In Hadri (2000), the asymptotic distribution of each test is shown to be normal, the moments of 

the asymptotic tests are derived exactly and do not require previous similar studies, the use of 

moments estimated through Monte Carlo simulation. 
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Appendix E: Price of Fossil Fuels 

 
Figure 12. Price of fossil fuels in 2015 USD per MWh equivalents.  
Source: Author’s rendering of data from BP, 2019. 
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Appendix F: Results Portmanteau White-Noise Test 

 

Table 10a: Results IPS lags - Portmanteau White Noise Test (Ljung-Box-Q)  

 
Note: Column 2 reports the number of lags selected by the SBC and when needed, augmented with additional 

lags following the Portmanteau White Noise Test. The values reported are P-values from the Portmanteau White 

Noise Test (Ljung-Box-Q test). 
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Table 10b: Results CADF Lags - Portmanteau White Noise Test (Ljung-Box-Q)  

 
Note: Column 2 reports the number of lags selected by the SBC and when needed, augmented with additional 

lags following the Portmanteau White Noise Test. The values reported are P-values from the Portmanteau White 

Noise Test (Ljung-Box-Q test). 

 

Table 10a(b) presents the number of lags selected to be used in the IPS(CADF) panel unit root 

test. The lags where selected by firstly regressing each model with various augmentations and 

cross-sectional means in the case of the CADF, then based on the SBC for respective model 

choosing the best model. To ensure that the model captures all significant serial correlation, we 

compute the Portmanteau White Noise Test (also referred to as the Ljung-Box-Q test) with five 

lags to. Column 3-7 report the P-values for the null of no serial correlation with each lag. In each 

case we find insufficient support for a rejection of the null hypothesis and therefore conclude that 

the model sufficiently captures all serial correlation. In the Portmanteau White Noise test, we have 

to specify the number of lags for which we want to test for serial correlation. For non-seasonal 
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data such as the panel used here, Hyndman and Athanasopoulos (2013) recommend the number 

of lags to be selected by: #lags=min(10, T/5), which implies approximately five and we therefore 

check for serial correlation five lags back.  
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Appendix G: Results Beta-Convergence 

Table 11a. Complete regression results (1/2)  

 
Note: Table 11a continues in table 11b. 
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Table 11b. Complete regression results (2/2)  

 
Note: Bootstrapped standard errors in parentheses: *** p < 0,01, ** p < 0,05, * p < 0,1. The dependent variable 

being estimated is the lagged carbon intensity. The reference group is the United Kingdom in 1995.   
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Appendix H. Robustness Check Results 

Table 12a. Regression results OLS vs FE (1/2) 

 

 
Note: Table 12a continues in table 12b. 
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Table 12b. Regression results OLS vs FE (2/2) 

 
Note: Country level standard errors in parentheses: *** p < 0,01, ** p < 0,05, * p < 0,1. The dependent variable being 

estimated is the lagged carbon intensity. The reference group is the United Kingdom in 1995.    
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Table 13a. Regression Results with Bootstrapped Standard Errors (1/2) 

Note: Table 13a continues in table 13b. 
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Table 13b. Bootstrapped Standard Errors (2/2) 

 
Note: Bootstrapped standard errors in parentheses: *** p < 0,01, ** p < 0,05, * p < 0,1. The dependent variable 

being estimated is the lagged carbon intensity. The reference group is the United Kingdom in 1995.   
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