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Abstract

Proxy means tests are a widely used approach in development programs where the
beneficiaries need to be determined through targeting. These tests apply a stan-
dard econometric method, ordinary least squares, to predict consumption levels
using household characteristics as input variables. Yet, they still exhibit substan-
tial misclassification rates when it comes to determining whether a household is
poor or not. In this thesis, we investigate whether three alternative statistical ap-
proaches, penalized regressions, random forests or neural networks, could be applied
to decrease these misclassification rates. For this purpose, we use two multi-topic
household panel surveys from India and Indonesia and apply an out-of-sample vali-
dation procedure. Additionally, we evaluate how good the different methods predict
poverty over time. While neural networks yield the lowest misclassification rates
for most of our analyses, overall, we conclude that the precision of the methods
does not differ from each other both from a statistical and economic perspective.
These results are robust for important subgroups, a different set of input variables
and a lower poverty line. Additionally, we find that the targeting accuracy of all
methods is very stable over time.
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1 Introduction

Many developing countries employ large scale cash transfer programs to fight poverty.

Prominent programs are Oportunidades in Mexico, Familias en Acción in Colombia or

the Bantuan Langsung Tunai (BLT) program in Indonesia. While these programs vary

in exact set-up and size, they all use targeting mechanisms and thus only aim at a

certain segment of the population. Targeting has become popular in the 1980s when

fiscal constraints of public budgets became more pronounced. Additionally, ideological

shifts contributed to a tendency away from universalistic towards targeted social policies,

claiming that public resources should be devoted only to the most vulnerable members

of society (Mkandawire, 2005). Consequently, the success of such targeted development

programs critically depends on identifying the right beneficiaries. For them, the decision

who becomes eligible and who does not is crucial, as it can hugely influence their ability

to make a living, receive basic medical care or provide their children with enough food

(Daly and Fane, 2002; Gertler, 2004; Schultz, 2004).

In developed countries, this targeting process is usually based on the income and assets

of a household. The government analyses current and previous earnings and assesses the

value of assets to determine who is eligible for social security. However, as households in

developing countries are often self-employed, work in informal sectors or in agriculture,

it is often unclear to the government which households are the poorest (Deaton, 1997).

Hence, different processes have been put in place to decide which households will become

beneficiaries of social programs. Governments can, for example, define simple rules based

on the households’ demographics or location, or ask local leaders to agree on who should

receive the benefits in a community (Coady et al., 2004a). Alternatively, governments can

also assess the welfare levels of individual households through extensive surveys called

means tests.

Another class of methods that governments apply are proxy means tests (PMTs) (Grosh

and Baker, 1995). PMTs utilize detailed surveys on consumption for a representative

subpopulation to calibrate statistical models that, in turn, predict consumption based on

observable household characteristics. This allows governments to avoid conducting the

more expensive surveys on consumption for the whole population. The characteristics

usually include easily observable, objective information on the household such as the type

of dwelling and regional characteristics like the access of the local community to med-

ical services. After developing a precise model, the government only needs to conduct

short surveys on observables to obtain consumption estimates for the remaining majority

of households. Hence, PMTs represent a compromise, as they empirically target poor

households better than simple geographic or demographic targeting and are at the same

time cheaper than means tests (Coady et al., 2004b).

Yet, PMTs have significant shortcomings which are discussed both in practice and the aca-

demic community (Bennett, 2017). One objection is that proxy means tests are difficult

to communicate and are thus not always perceived as fair by the respective communities
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compared to other targeting mechanisms (Alatas et al., 2012). Additionally, PMTs do not

target perfectly and current practice may result in 18 to 22 percent of households being

misclassified (McBride and Nichols, 2016). Misclassification occurs when a poor house-

hold is classified as non-poor by the targeting mechanism, or vice versa. While a variety

of statistical approaches can be used for a PMT, program directors mostly rely on ordi-

nary least squares (OLS) to establish correlations between household characteristics and

consumption. However, due to their functional form, OLS regressions only establish lin-

ear relationships. Thus, they might not be the optimal approach to predict consumption

if more complex relationships, such as non-linear ones or interactions of characteristics,

are important predictors of consumption. Other statistical prediction methods such as

penalized regressions or machine learning techniques could be used to overcome these

limitations. Due to the continuous increase in data availability and computation power,

these methods now can be applied in econometrics (Varian, 2014), making them promis-

ing tools to reduce the misclassification rates of proxy means tests.

The purpose of this thesis is to assess the prediction accuracy of different statistical meth-

ods in the context of poverty targeting. We compare four methods in total. While OLS

serves as our benchmark, penalized regressions are used as an alternative econometric

method. To evaluate the potential of machine learning tools, we also apply neural net-

works and random forests. Our analysis is conducted using two multi-topic surveys from

India and Indonesia, the India Human Development Survey and the Indonesian Family

Life Survey. We choose these surveys because they are panels and contain data represen-

tative for a large share of the respective population. In addition, India and Indonesia are

among the four most populous countries in the world and have undergone rapid growth

during the last decades (The World Bank, 2019).

When evaluating the prediction methods, we analyze three different facets. First, there

are aggregate misclassification rates. We look at the total share of households misclas-

sified, which we denote as the total error rate. We also differentiate between the share

of households that are wrongly included in an anti-poverty program, the inclusion error

rate, and those that are wrongly excluded from the program, the exclusion error rate. As

including non-poor households represents a misallocation of public funds and excluding

poor households contradicts the program’s objective, analyzing these errors separately is a

necessity. Second, we evaluate how the methods classify different consumption percentiles

and whether there are heterogeneous targeting outcomes for important subgroups. Third,

we study the stability of the consumption predictions over time. In practice, censuses are

only conducted with significant time gaps and the underlying relationships captured by

the proxy means test can change as societies develop in the meantime.

Our research relates to the literature on social safety nets, poverty targeting and machine

learning. Social safety nets have been implemented for poverty alleviation in developing

countries since the 1970s (Litvack, 2011; Subbarao and Smith, 2003). In the following

decades, the focus shifted from broader public work schemes or food subsidies towards

conditional cash transfers and other targeted approaches (Subbarao and Smith, 2003).
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Coady et al. (2004b) assess different targeting methods for those programs; another,

narrower analysis of proxy means tests is conducted by Alatas et al. (2012). The authors

compare the targeting performance and local reception of proxy means tests, community

targeting methods and a hybrid version through a field experiment in Indonesia. They

find that proxy means tests most accurately identify the poor when using per capita

consumption as the measure of poverty. Yet, they state that the differences are small

in an economic sense. Therefore, we consider it worthwhile examining whether the mis-

classification rates of PMTs can be further reduced. McBride and Nichols (2016) explore

this idea by applying random forests, a machine learning algorithm, on different USAID

data sets and argue that such tools have the potential to improve proxy means tests.

While their analysis makes a strong case for further exploring machine learning methods

in the context of PMTs, the study falls short on some dimensions. Namely, they rely on

comparatively small datasets, consider only one machine learning method and use only

a small set of variables for prediction.

With our thesis, we make three contributions to the existing literature. First, we inves-

tigate alternative statistical methods for PMTs in a very different setting than McBride

and Nichols (2016). With India and Indonesia, we study two large and heterogeneous

countries, allowing us to investigate whether the methods discriminate against important

subgroups. Also, we use larger data sets and a bigger set of variables. Second, we are,

to the best of our knowledge, the first to apply neural networks for proxy means tests.

Third, we test the stability of the predictions over time and thus assess the suitability

of the different methods for environments in which new consumption surveys cannot be

conducted frequently.

Our study reveals that the prediction accuracy of the four methods does not differ

strongly. While the neural network achieves the lowest total error rate in most of our

analyses, the differences between the methods are statistically significant only in few of

them. The differences to OLS are always less than one percentage point and thus econom-

ically small compared to total error rates of around 17 percent in the baseline analysis.

This pattern holds for the inclusion and exclusion error rates. Looking at the gender

of the head of household, urban vs. rural households and households living in different

states, we do not find any systematic differences in targeting accuracy either. We confirm

these results using a smaller set of variables and a poverty line at half the levels of the

official ones.

One important finding is that all methods predict well over time in the fast-growing

economies India and Indonesia. Calibrating the methods on the first and predicting on

the second survey round increases the total error rates by less than two percentage points,

even though the data has been collected more than five years later. However, we cannot

distinguish any large differences between the methods in this analysis either.

The rest of this thesis is organized as follows. Section 2 provides background information

on poverty targeting, proxy means tests and machine learning. In Section 3, we give a
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detailed overview of the data sets and the variables selected for the PMT1. Section 4

describes our methodology and the application of each method in greater detail, with

a focus on the penalized regressions, random forests and neural networks. Section 5

presents our main results and is followed by robustness checks in Section 6. Section 7

contains motivation, approach and results for our investigation of stability over time. A

discussion follows in Section 8, before Section 9 concludes.

2 Background

2.1 Measuring Poverty

Although difficult, measuring living standards and welfare is integral for social policies

and informs the debate on poverty and inequality. Consequently, the discussion among

economists how to measure poverty has been going on for decades. While there seems to

be agreement that poverty is not unidimensional, evaluating social policies often requires

a single metric (Atkinson and Bourguignon, 1982). Thus, the two monetary indicators

income and consumption have been suggested as they aggregate different dimensions such

as the ability of a household to buy enough food or fund the education of children (Gillis

et al., 2001). Which of the two to use has been subject to another debate as it depends

on the development status of the respective country.

Deaton (1997) suggests using consumption as the welfare measure in developing coun-

tries as theory implies that an agent’s consumption is her smoothed representation of

lifetime income. Income might accrue at certain periods within a year, for instance in

the season when farmers sell their crops. Thus, using income from that period would

overestimate their welfare, while taking income from other periods would underestimate

it. Consumption, on the other hand, would likely not differ too much between the pe-

riods and is therefore a less volatile measure of actual living standards. Additionally,

rural households in developing countries tend to source large parts of their incomes from

self-employment which makes them hard to observe from a practical standpoint.

The question follows what constitutes the consumption of a household. Deaton and

Zaidi (2002) refer to this as the consumption aggregate and split the components into

four classes. The first of these classes are food items which are usually split in purchased

and non-purchased food, the latter representing homegrown food. The second class refers

to non-food consumption such as expenditures dedicated to health and education, but

also daily purchases like clothing, petrol and recreational expenses. Consumer durables

such as appliances or vehicles represent the third class in the consumption aggregate,

housing costs the last.

The data to construct these consumption aggregates is usually collected through house-

1In the regression context, these are called independent variables or regressors. This differs from the
machine learning literature where they are called predictors or features (Varian, 2014). For consistency,
we use the term (independent) variables throughout this thesis.
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hold surveys. Grosh and Glewwe (2000) have compiled a guideline for designing household

surveys in developing countries, building on extensive experiences with the World Bank’s

Living Standard Measurement Surveys and other multi-topic household surveys in the de-

veloping world. But even with a perfectly designed survey, misreporting will occur. One

reason for this is limited ability to recall (Deaton, 1997), while conscious misreporting

poses a problem as well. Martinelli and Parker (2009) investigate the extent of misreport-

ing in household surveys used in Mexico’s Oportunidades program and find systematic

and widespread misreporting, which gets worse with increasing program benefits. Addi-

tionally, they uncover systematic overreporting of goods and home characteristics linked

to social status. Nevertheless, gathering consumption data through household surveys

and interviews is best practice to assess living standards in the developing world (Deaton,

1997).

With consumption as the welfare metric, measuring poverty still is not straightforward.

Notably, one can adopt notions that define poverty either in relative or absolute terms.

Sen (1973) has argued to perceive poverty as the inability to properly function in society

which implies a relative assessment of consumption. Alternatively, absolute definitions

of poverty have been adopted by many countries such as India or the United States

(Orshansky, 1963; Subramanian and Deaton, 1996). In developing countries, paying for

the minimum nutritional intake will constitute an important part of that consumption

threshold. However, these thresholds should be viewed with caution, as they are unlikely

to be measured precisely and as it is debatable whether a sharp cut-off between the poor

and non-poor exists (Atkinson, 1987; Deaton, 1997).

Defining and measuring poverty is not a focus of our thesis, but it is important to keep

the ambiguity and limitations of these definitions in mind when looking into anti-poverty

programs. Even in a world where we would be able to perfectly record unbiased con-

sumption data through household surveys and were entirely certain about the position

of a sensible poverty line, we would not be able to use surveys to accurately assess the

poverty status of each single household. Interviewing households represents an exercise

that cannot not be undertaken for the whole population in practice as it is expensive

and time consuming. Hence, approaches have been developed and implemented that are

more feasible in such contexts.

2.2 Anti-Poverty Programs and Targeting Mechanisms

Despite disagreement on the exact definition of poverty, economists and politicians agree

that there is still enormous poverty in the world, particularly so in large parts of Africa,

South America and Asia. Consensus is growing that further economic growth will not

be sufficient to eradicate poverty and additional measures are required to tackle the is-

sue (Hanna and Olken, 2018). Governments can employ different kinds of anti-poverty

programs, some of which are universalistic, others targeted. Universalistic programs such

as food subsidies or schooling programs fight poverty indirectly through better nutrition

or education (Daly and Fane, 2002; Duflo, 2001), while targeted anti-poverty programs
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tackle poverty by directly supporting the households in need and are often designed as

national transfer schemes. However, this comes with the challenge of correctly identifying

those households. This can be illustrated with Brazil’s Bolsa Familia program, a condi-

tional cash transfer program, which accounted for 0.7 percent of the national spending

in 2009 (calculations based on Berg, 2010; World Bank Group, 2018). At the same time,

Dutrey (2007) shows that the undercoverage ratio, the share of poor households that have

not been reached by the program, amounts up to 73 percent. As the targeting mechanism

has a big impact on the effectiveness of any anti-poverty program, it needs to be chosen

carefully.

Coady et al. (2004b) classifies these mechanisms into three broader categories. First,

there is targeting that involves the assessment of individual households, which can be

done with means tests. They assess through detailed consumption or income surveys

whether a household is eligible for an anti-poverty program. To reduce administrative

costs, proxy means tests have been developed in which a smaller number of household

characteristics is collected in order to assess program eligibility. Also, community tar-

geting falls into the category of individual household assessments. In this case, members

of the community rank all households directly by compiling a poverty-ranking based on

which program participation is decided. Another class of targeting approaches is categori-

cal targeting such as geographic targeting where households are selected based on poverty

maps. Alternatively, sometimes simple demographics like age, gender or ethnic origin are

used to target households. This is called demographic targeting. Finally, self-targeting

methods constitute an own category. They involve a self-selection into a program, which

might require a household member to go to an office and file an application (Alatas et al.,

2016). In practice, these different targeting mechanism are often combined.

Program directors face a trade-off between costs and precision when deciding on which tar-

geting mechanism to use. While precision refers to identifying poor households correctly

as poor or non-poor and is easily understood, costs require a more detailed consideration.

Bennett (2017) breaks them down into four types. First, there are design costs that are

incurred to prepare, develop and test a targeting method. Second, there are operational

costs once the targeting system is up and running, like staffing or communication. Third,

there are external costs such as transportation costs to travel to an office and finally, there

are opportunity costs that are incurred when filing an application. Usually, the better a

method is at targeting the poor, the less practicable and more costly it is (Bennett, 2017).

For example, geographical targeting is conducted very cheaply, as program directors only

need to select the target areas. However, as everybody in this area will benefit, likely

also non-poor households are included in the program. On the other hand, means tests

are expected to be very precise, but at the same time costly to conduct.

2.3 Proxy Means Tests

As they offer a good balance between precision and costs, famous anti-poverty programs

such as Mexico’s Oportunidades use proxy means tests to target their beneficiaries. The
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general idea of a proxy means test is to indirectly assess the household’s means through

a number of observable characteristics that are indicative of the household’s economic

welfare.

The mechanism can be explained in three steps. First, the relationships between house-

hold characteristics and per capita consumption levels are captured via statistical methods

for a small, representative sub-sample of the population. As of today, this is done mostly

by running stepwise OLS regressions, often at the state level to capture different local

effects (Coady et al., 2004a). In a first regression, all available household characteris-

tics are used as independent variables and regressed on per capita consumption. Then,

all variables that are not significantly correlated with consumption are removed from

the equation and the regressions are re-run. Second, using these patterns, consumption

for the remainder of the population, the out-of-sample households for which only the

characteristics are collected, is predicted. In the final step, households get classified as

poor or non-poor using official poverty lines. Thus, while proxy means tests rely on lin-

ear regressions to predict consumption, a binary decision on eligibility is made eventually.

However, this approach still does not perfectly classify households. To assess targeting

performance some authors look at the total error rate, defined as the ratio of all house-

holds that are misclassified (Alatas et al., 2012). A household counts as misclassified if

its per capita consumption level is below the poverty line and it was not deemed eligible

or vice versa. It is important to understand that predicting consumption well on average

correctly is not sufficient, as those predictions are used to determine legal entitlements

that have crucial economic impact for an individual household. There are other measures

for targeting performance that we will not discuss in our thesis. We recommend the

World Bank report by Coady et al. (2004a) for a detailed discussion on these measures

and we elaborate further on our metrics in Section 4.

Besides misclassification, there are other shortcomings of proxy means tests. One impor-

tant drawback is that econometric methods must be used to predict consumption. This

makes it difficult to communicate or justify in detail how eligibility decisions are deter-

mined, which might inhibit local participation and acceptance of the targeting method

(Cameron and Shah, 2013). Even though less so than means tests, proxy means tests still

require significant administrative sophistication and capacity, making them not suitable

to every type of environment (Mkandawire, 2005).

2.4 Machine Learning

Nowadays, machine learning tools are widely used for prediction purposes in our daily

life. Search queries in the internet, language translation as well as image recognition are

largely driven by machine learning techniques (LeCun et al., 2015). The statistical meth-

ods behind those tools have already been developed and applied for different research

purposes in the 20th century. For example, Tu (1996) discusses the advantages of neural

networks over logistic regression to predict medical outcomes and Desai et al. (1996) find
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that neural networks outperform linear scoring models in classifying bad loans for credit

unions. Since then, exponentially more data has become available for analysis and better

hardware allows researchers and practitioners to train more complex models on larger

data sets (Varian, 2014).

As economic research is often concerned with inference rather than prediction tasks, the

adoption of machine learning methods has been relatively slow in the field (Einav and

Levin, 2014). For instance, approaches that combine the high prediction power of ma-

chine learning with econometric methods to determine causality are being developed.

Hartford et al. (2017) show how neural networks can be used in the first stage of instru-

mental variables regression to minimize the counterfactual prediction error of the first

stage. Mullainathan and Spiess (2017) provide a more general overview on how machine

learning methods can be used to supplement the econometricians’ toolbox, as does Varian

(2014). As one example, he mentions a situation where there are more potential predic-

tors than appropriate for estimation. In that case, the variable selection can be efficiently

conducted by machine learning tools.

For targeted anti-poverty programs, the major statistical challenge is to determine which

household is poor, based on individual household characteristics. As outlined in the pre-

vious paragraphs, this usually is a task of predicting household consumption, making it a

promising field to explore the use of machine learning tools. Both their ability to capture

non-linear relationships and their strong performance in predicting out-of-sample (Mul-

lainathan and Spiess, 2017) makes them particularly well suited for the task at hand.

McBride and Nichols (2016) explore this for random forests using data sets from Bolivia,

Malawi and East Timor and find that they can increase the precision of poverty targeting

compared to more traditional approaches.

3 Data Strategy

3.1 Data Sources

In this thesis, we rely on two multi-topic surveys as our main data sources, the India Hu-

man Development Survey (IHDS) and the Indonesian Family Life Survey (IFLS). Using

these specific data sets entails significant advantages. Both sets have panel character and

we analyze data from two rounds of each survey. They are also publicly available and

contain a large number of observations. And finally, India and Indonesia offer character-

istics that make them an optimal fit for our research question. With the BLT, Indonesia

has already designed a social policy based on proxy means tests and India’s opposi-

tion Congress Party recently suggested a targeted minimum income for the poor during

their campaign for the national elections (Biswas, 2019). Both countries are democra-

cies with big differences in income across states and provinces (Asra, 2000; Deaton and

Dreze, 2002). Additionally, they have experienced high average GDP growth rates of 5.5

(Indonesia) and 6.7 (India) percent in the last decade and analyzing how the different

methods perform over time therefore becomes crucial to assess the potential and limita-
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tions of proxy means tests in practice (The World Bank, 2019).

The IHDS is supervised by the University of Maryland and India’s National Council of

Applied Economic Research. It compiles information on 41,488 households in the first sur-

vey round from 2005 and 41,491 households in the second survey round from 2011/2012

(Desai et al., 2010; 2015). Most of the households were interviewed in both survey

rounds and thus represent a panel, while 2,134 households were included as replacement

for households where contact was lost. The sample of households is nationally represen-

tative and covers all states and union territories of India besides Andaman and Nicobar

Islands, and Lakshadweep. The data is collected through two one-hour interviews in each

household and covers topics like health, education, employment and socio-economic sta-

tus. Additional information on the village such as the availability and quality of schools

and medical facilities is compiled as well.

The IFLS is organized by the RAND corporation and the Center for Population and Policy

studies of the University of Gadjah Mada. We utilize the IFLS4 survey from 2007/2008

providing information on 11,631 households and the IFLS52 survey from 2014/2015 con-

taining 14,056 households. 9,744 households are included in both survey rounds (Strauss

et al., 2009; 2016). The IFLS rounds are based on a sample from 1993, representative for

83 percent of the Indonesian population, and covering households living in 16 out of the

26 provinces of the country3. Completing the household surveys often takes several hours

but can mostly be completed in one visit, sometimes more than one visit is required. The

Indonesian data set also covers information on housing condition, household economy

and local characteristics.

3.2 Data Preparation

Given both data sets contain several hundred variables, we must choose those that we

consider most useful to predict consumption before running the proxy means tests. Our

selection of variables follows the literature and includes most of the variables that are

covered by Alatas et al. (2012), Brown et al. (2016) or McBride and Nichols (2016). Also,

we rely on Glewwe et al. (1989) who have explored which variables are best suited to

predict consumption.

The variables we choose can be summarized in four dimensions. First, demographics

provide basic information on household consumption. For instance, the number of young

children in a household gives information on the amount of people that need to be sup-

ported by the income earners. Second, housing conditions are good predictors for con-

sumption levels as the quality of the floor or whether a private toilet exists proxy the

household’s welfare. Third, assets and household financials are highly relevant to predict

2For our purposes, we will refer to IFLS4 as the first survey round and to IFLS5 as the second survey
round to have a notation that is easily interpretable and consistent with the Indian data sets.

3This representative sample was drawn for IFLS1. Since then, resampling has been conducted, split-
off households (e.g. children) have been included in the sample as well and some provinces have been
split. As a result, the IFLS5 data includes households from 23 out of Indonesia’s now 34 provinces.
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Table 1: Overview of Selected Variables

Country Data Set Year Obs. Category Selected Variables Count

India IHDS1

IHDS2

2005 -

First Round

2011/2012 -
Second Round

41,488

41,491

Demographics # of persons, persons sq, dep. ratio,

age hh head, age sq, education hh head,

education oldest adult, married, widow,
caste, # of children, children in school,

disabled hh members, gov relation,

sex hh head

42

Housing ownership type, # of rooms, electricity,

solid floor, solid roof, private toilet,

type water access, type kitchen,
solid wall, wood for cooking

Assets size of loans, farm income, # buffalos

type occup. hh head, # cows, fridge,
motorbike, fan, telephone, cellphone,

# of persons farming, bike, tv

Local features urban, region, state, access to doctor

Indonesia IFLS4

IFLS5

2007/2008 -
First Round

2013/2014
Second Round

11,631

14,056

Demographics # of persons, persons sq, sex hh head,
age sq, # of children, children in school,

dep. ratio missing, level education
hh head, level education oldest male,

age hh head, dep. ratio, marital status

35

Housing type ownership, solid floor, solid wall,

type toilet, type water used, type cooking
fuel, size per capita, electricity

Assets tv, fridge owned, fridge used, loans,

type occup. hh head, work type hh head,
farm activity, size of farm

Local features urban, region, province, clinic distance,

aware of clinic, posyandu
distance, aware of posyandu

consumption. For example, we include a dummy on whether the household owns some

land for farming (Narayan and Yoshida, 2005). Also, the ability to purchase assets such

as a motorbike or a fridge points towards a higher consumption level of a household.

Finally, local characteristics provide insights about the healthcare infrastructure which is

expected to be better for high-income areas.

After selecting the variables, we merge individual survey data with household survey

data. In order to construct a consumption per capita variable for the Indonesian data

set, we transform all relevant expenditures into monthly per capita values and aggregate

them. For India, per capita consumption values are already in the data set. This includes

food as well as non-food expenditures and education expenses. To make the remaining

variables usable for analysis in a regression or the machine learning tools, we process

categorical variables. As one example, for India, we find a categorical variable contain-

ing information on the ownership type of the accommodation, containing three different

values. Either the dwelling is owned, rented or the ownership situation is unspecified

which we translate into three dummy variables. Finally, metrics like the dependency ra-

tio are not available in the raw data and thus we compute them. This process results in 42
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characteristics for India and 35 characteristics for Indonesia which are depicted in Table 1.

There are only few data points missing in both data sets which we deal with following

Papageorgiou et al. (2018). In a first step, we check each variable for a sizeable number of

missing values. For variables where this is the case, we assess the reason why the data is

missing. In the Indian data set, for many assets the value “valid blank” is recorded. For

example, for the variable capturing the number of cows, we interpret this as households

not engaging in farm activity and thus owning no cows. Another example is represented

by the dependency ratio in the Indonesian data sets. If a household has no member that

worked in the last 12 months, the denominator equals zero and the dependency ratio

cannot be calculated. To capture this without dropping the observation, we assign the

household the mean and create a new dummy variable that captures whether the depen-

dency ratio was set manually to be the mean or not. In this way, we do not skew our

regressions and do not lose observations. Finally, we drop all observations for which we

do not have information on consumption.

To categorize households into poor and non-poor, we use the official, national poverty

lines. In the case of India, we rely on the publications of the Planning Commission of

the Indian government which defines the poverty lines (Government of India Planning

Commission, 2009; 2013). Poverty lines are reported separately for urban and rural

households. For Indonesia, we refer to Priebe (2014) who published an extensive review

on the poverty measurement by Indonesia’s statistical agency BPS.

4 Methodology

The aim of this thesis is to evaluate different methods in econometrics and machine learn-

ing in their performance in poverty targeting. The two econometric methods applied are

OLS, which serves as the benchmark used in practice, and penalized regressions. The

machine learning tools that we explore are neural networks and random forests. We mo-

tivate the selection of each method in their respective subchapters.

To simulate the setting in practice, we randomly split our data sets into a training and

a test set, which both contain household characteristics and consumption data. Only

the training set is then used for the calibration of the models, while we use the test set

to assess the out-of-sample targeting performance of the different methods. Throughout

this thesis, we follow Friedman et al. (2001) and chose a 75/25 split, meaning we de-

fine a training set with 75 percent of all households and a test set with 25 percent of

the households. To ensure that the results are unskewed, we split the data before the

calibration process and assess the targeting performance of the methods with the same

test set. Table A1 and A2 in the Appendix show the means for the first round data sets

as well as a difference-in-means test for the training and test set and confirm that they

are balanced. The data is also balanced for the second round which we do not report here.

We follow the procedure for the proxy means test as described in Section 2.3 to assess
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the targeting performance of the models. We mainly analyze the share of households in

the population that are misclassified, which we illustrate with Figure 1. Based on the

actual consumption of the households and the predictions by the different models, we

categorize the households in three different categories. Households with a predicted con-

sumption above the poverty line whose actual consumption is also above the poverty line

are correctly classified. In the example, this refers to 70 percent of the households in the

green box in the lower right. Also correctly classified are households that actually poor

and that are also predicted with a consumption lower than the poverty line, represented

by the 15 percent in the green box in the upper left.

Figure 1: Illustration of Error Rates

Households that have an actual consumption below the poverty line but are predicted to

have a consumption above, represent an exclusion error. Based on their actual status,

they should have become eligible for the program, but the prediction tells us otherwise.

In the example, this refers to the 10 percent of the households in the red box in the lower

left. Finally, households that are actually non-poor but are predicted to have a consump-

tion level below the poverty line, represent an inclusion error. These households should

not have become eligible for the program, but they were predicted to be eligible. In the

example, this refers to the 5 percent of the households in the red box in the upper right.

Finally, we define the total error rate as the sum of the two rates, which is the total share

of households that are misclassified by a method. In the example, this number would

amount to 15 percent. For each method, we choose the model specification that yields

the lowest total error rate on the training set and then calculate our evaluation metrics.

In a more extensive analysis, we compare the error rates across major subgroups such as

different regions or urban vs. rural households. We provide an overview of all analyses

conducted in this thesis in Table 2.

In Sections 4.1 to 4.4, we motivate each method, describe how it establishes the rela-

tionship between household characteristics and consumption and how it is optimized to
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Table 2: Overview of Analyses

Dimensions

Analysis Data Set Round Variable Set Poverty Threshold Section

Baseline First Long (∼40 characteristics) Nat. Poverty Lines (NPL) 5.1

Second Round Second Long (∼40 characteristics) Nat. Poverty Lines (NPL) 5.2

RC: Half Poverty Line First Long (∼40 characteristics) 50% of NPL 6.1

RC: Short Vector First Short (∼15 characteristics) Nat. Poverty Lines (NPL) 6.2

Time Stability First & Second Long (∼40 characteristics) Nat. Poverty Lines (NPL) 7

Note: RC: Robustness Check

improve the targeting performance. Then, in Section 4.5, we discuss differences between

the methods.

4.1 Ordinary Least Squares (OLS)

Proxy means tests based on OLS regressions have been used widely in practice and

consequently represent our benchmark we compare all the following methods against

(Brown et al., 2016). For OLS, we follow the estimation approach of Alatas et al. (2012).

That is, we bundle the training set of a country in regional units and run the OLS

regression in equation 1 for each regional unit using all the input variables from Table 1

in the first step. Then, all variables whose coefficients are not significant on a 10%-level

get removed and the regressions are re-run with the smaller set of input variables in a

second step. Finally, we predict the consumption of the households in the test set using

the regional-specific second-step coefficients. The results for the second-step regressions

for the baseline analysis are reported in Tables A3 and A4 in the Appendix.

log(consi) = α+β ∗demographicsi +γ ∗housingi +δ ∗assetsi +θ∗ local featuresi +εi
(1)

4.2 Penalized Regressions (PR)

Penalized regressions differ from OLS by adding penalizing terms to the minimizing func-

tion of the model. The penalizing terms bias the coefficients of the different variables

towards zero, thereby regularizing the model to reduce the influence of possibly unnec-

essary variables. As Mullainathan and Spiess (2017) state, regularization can help to

decrease overfitting and improve out-of-sample predictions of statistical models. Hence,

we explore the possibility that penalized regressions outperform OLS methods on our

data sets.

Varian (2014) illustrates the technical details behind penalized regressions intuitively.

Equation 2 denotes the penalizing term that is added to the formula which OLS regres-

sions use to minimize the sum of squared residuals.

λ

P∑
p=1

[(1− α)|bp|+ α|b2
p|] (2)
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α represents the so-called hyperparameter that can be varied between 0 and 1 to improve

the prediction performance of the method. α = 0 leads to the “least absolute shrinkage

and selection operator” (LASSO), while the case α = 1 represents the so-called ridge

regression. If α is between 0 and 1, the regression is called an elastic net. All three

variations of the penalized regression class lead to smaller coefficients for many input

variables, with LASSO being the strongest version, setting many coefficients to zero. λ,

on the other hand, defines the weight of the penalizing term, with λ = 0 representing

a standard OLS regression. Hence, there are two hyperparameters within the penalized

regression method that can be optimized to obtain the best targeting performance.

Hyperparameters are high-level parameters that are defined before applying a method

on a data set and remain constant throughout the development of the corresponding

model. Each of the methods we use has a set of hyperparameters, which in turn lead to

different predictions. Whilst the respective process of optimizing the hyperparameters is

described in the following paragraphs, it is essential to note that this optimization is only

conducted analyzing the prediction performance of the models on the training set, as we

would otherwise introduce bias. For the optimization, we follow a standard approach in

machine learning that is suggested by Friedman et al. (2001). We split the training set

randomly into a new, smaller training set, two thirds of the size of the original one. This

way, half of all households are in this new training set and the remaining third of the

initial training set becomes the validation set. We conduct the hyperparameter tuning

for the random forests and the neural networks analogously. This procedure promises

models that are well specified for out-of-sample predictions (Varian, 2014).

To optimize the penalized regression method, we apply Stata’s cvlasso package by Ahrens

et al. (2018) and grid search on the small training set. The package automatically opti-

mizes the λ parameter using cross-validation4. To optimize the remaining hyperparameter

α, we conduct grid search, trying out all α parameters between 0 and 1, using 0.1 incre-

ments. In a second step, we evaluate their performance on the validation set and pick the

α that yields the lowest total error rate. To obtain the final predictions for the penalized

regression method, we then train the model with this optimal α on the full training set

and apply it on the test set. The respective optimal levels of α for each analysis are

recorded in Table A7 in the Appendix.

4.3 Random Forests (RF)

Random forests are an extension of regression trees and a popular machine learning al-

gorithm. Varian (2014) provides a concise summary on the advantages of random forests

for classification purposes and attributes a particularly good out-of-sample performance

for non-linear data to random forests, which is why we consider it a method worth ex-

ploring for our research question. Additionally, McBride and Nichols (2016) have already

demonstrated that they perform well for prediction tasks in the context of proxy means

4An explanation of cross validation can be found in Section A.1.2 in the Appendix.
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tests.

A random forest is a recursive splitting algorithm and consists of many regression trees.

The typical procedure to grow a forest can be described in a few steps. First, a random

sample of observations is bootstrapped from the training set and used to grow the first

regression tree. At each node of the tree, a random sample of variables is selected from

the full set and the algorithm then determines for each variable the split point at which

the summed squared distance between the mean predicted outcome and the mean ac-

tual outcome is minimized. Through this, non-linear relationships can be captured. The

variable with the split point that leads to the best predictions gets implemented into the

tree. This process is repeated at each node until the tree is fully grown. We show an

example of a regression tree in Figure 2. These steps are repeated until the forest is fully

grown. As each tree is based on different subsets of the population and looks different

from each other, random forests are expected to capture heterogeneous outcomes quite

well. To calculate the prediction of the forest, the average of the predictions of all trees is

taken. For a more detailed mathematical background, we recommend the original paper

by Breiman (2001) or the textbook by Friedman et al. (2001), which covers both regres-

sion trees and random forests in particular.

Figure 2: Example of a Regression Tree

We implement the random forests in Python using the RandomForestRegressor from the

skicit library (Pedregosa et al., 2011). There is a small number of hyperparameters that

are most relevant to optimize the model, one of them being the maximum size of each

tree. While larger trees are more precise, they tend to overfit if they memorize individual

outcomes rather than patterns. Yet, if the trees are too short, they may not capture

enough information to detect a pattern. For a full list of hyperparameters we optimize

over, see Table A8 in the Appendix.

We follow the same approach of using a smaller training and a validation set, as de-

scribed in Section 4.2 on penalized regressions. However, as there is not only one, but

many hyperparameters to tune, finding the optimal set of hyperparameters becomes more

complex. This optimization process can be conducted in different ways. While trial-and-
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error, where the hyperparameters are picked based on the researcher’s instincts, can work

well, there are more systematic approaches (Bergstra and Bengio, 2012). Especially grid

search, which we use for penalized regressions, and random search have become popular.

In the latter case, the researcher defines a search space for each hyperparameter and the

algorithm randomly picks a combination of hyperparameters and evaluates their perfor-

mance. However, as Francois Chollet (2018) suggests, we apply the hyperas package in

Python, an algorithm that optimizes hyperparameters based on trees of Parzen estima-

tors for both the random forests and the neural networks. Table A8 in the Appendix

also shows the exact specifications of the random forest models that yield the lowest

total error rates on the validation set for each data set. The respective models were then

applied on the test sets to predict consumption and calculate the targeting accuracy.

4.4 Neural Networks (NN)

Neural networks are another class of machine learning algorithms widely used in many

academic and professional applications due to their flexibility and predictionary power

(Haykin, 1994). In this thesis, we use fully-connected, feed-forward neural networks to

predict consumption. Desai, Crook and Overstreet Jr (1996) show, using household char-

acteristics such as age and type of ownership, that those kinds of networks can perform

better than linear models for building credit scoring models.

Figure 3 represents the rough conceptual architecture of such a fully-connected neural

network. Like a linear regression, neural networks start off with the input variables in the

form of a vector and connect them to the outcome variable. But instead of determining

the coefficients of the input variables directly by minimizing the squares of the predic-

tion error with a linear function, the input variables in a neural network pass through

several so-called hidden layers. In each of these layers, there are a number of so-called

neurons which represent the outcome variable of their own regression. These neurons are

connected to all input variables of the previous layer through a combination of a linear

regression and a non-linear activation function. For example, a neuron in the first hidden

layer is connected to all household characteristics and simultaneous represents an input

variable for all neurons in the second hidden layer. The neurons in the final hidden layer

are thus the input variables to predict our outcome, per-capita consumption. Due to

this structure, all input variables, neurons and the outcome variable are connected by

regressions and their respective coefficients.
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Figure 3: Conceptual Structure of a Neural Network

Once the architecture of the neural network is defined, a training epoch can begin. Ini-

tially, all weights get randomly set to be small but non-zero. Then, the household charac-

teristics of a set of observations from the training set are used to create initial predictions

for the households’ consumption levels. A loss function such as mean squared error is

applied afterwards to calculate how far off those initial predictions are. In the next step,

called backpropagation, the derivatives of the loss function with respect to the weights

are calculated. In the last step of such a training epoch, the initially randomly assigned

weights get updated using those derivatives to improve the predictions in the next train-

ing epoch. Intuitively, the network checks in which direction the weights need to change

to decrease the loss function. The whole training process is comprised of several training

epochs and the input variables get normalized to ensure an effective training process.

We also apply cross validation for the neural networks. One important attribute of them

is the combination of linear regressions and non-linear activation functions which allow

them to capture relationships between variables that cannot be represented by a linear

function. For more details on the mathematical architecture behind neural networks, we

again refer to Friedman et al. (2001). Additionally, LeCun et al. (2015) provide a con-

cise overview on neural networks and why they have become a popular machine learning

method for prediction and classification purposes.

Similar to other estimation approaches, neural networks face the challenge of overfitting.

For example, like the size of a tree in a random forest, the number of hidden layers and

neurons influences the model’s tendency to overfit. Large neural networks with many

hidden layers and neurons can fit the training data almost perfectly, but they tend to

memorize the results rather than detecting the patterns. To find the set of hyperparam-

eters that gives us the best out-of-sample prediction performance, we follow the same

approach used to optimize the random forests. This means utilizing the hyperas package
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and a validation set. The selected set of hyperparameters and the corresponding model

get then applied on the test set to evaluate its out-of-sample performance just as for the

other methods. For each analysis, we report the optimal set of hyperparameters in Table

A9 in the Appendix.

4.5 Comparison of Chosen Methods

Above, we have motivated the choice of each single method. Yet, it is important to under-

stand how the methods compare to each other and what advantages and disadvantages

they might imply. A first aspect already mentioned is the ability to capture non-linear

relationships and interactions between variables. Ordinary least squares and penalized

regressions are bound to the functional forms specified by the researcher. Given it is

not clear ex-ante which household characteristics have a potential non-linear relationship

with consumption or should be interacted, a linear specification without interactions is

chosen and thus these methods are not able to capture any other effects. Should there be

any non-linear relationships between consumption and household characteristics, thus,

we would expect random forests and neural networks to perform better, as they can de-

tect such effects without the need of pre-specification by the researcher (Chollet, 2018;

Varian, 2014).

Second, the methods strongly differ in terms of complexity and required computation

power. An advantage of OLS is its easy implementation in statistical tools like STATA

and little computational requirements due to simple matrix calculations. This, in turn,

limits the researcher’s degrees of freedom which are restricted to the confidence level

of the variables selected for the second step in our case. Penalized regressions require

more sophistication and need to be optimized by the researcher. They can still be imple-

mented through STATA but require more computation power than OLS when choosing

the optimal parameter values and performing automatic variable selection (Ahrens et al.,

2018; Varian, 2014). Random forests and neural networks require programming skills

and are often implemented through R or, as in our case, Python (Chollet et al., 2015).

Also, the mathematical foundations of the algorithms are more complex (Breiman, 2001;

Friedman et al., 2001; LeCun et al., 2015). An extensive optimization process is needed

to find the best model, increasing the degrees of freedom of the researcher (Chollet, 2018).

A disadvantage of OLS is the lack of regularization (Zou and Hastie, 2005). Given reg-

ularization decreases the method’s tendency to overfit in a prediction task, penalized

regressions, random forests and neural networks are generally well-suited to perform out-

of-sample prediction tasks, allowing the researcher to reduce overfitting by adjusting the

model parameters.

Finally, there are several aspects distinguishing random forests from neural networks.

The former are based on the easy-to-visualize concept of a regression tree and thus their

predictions can be well communicated to readers familiar with decision trees which are
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applied in many different areas in economics. Also, they are less computationally exten-

sive than neural networks (Friedman et al., 2001). On the other hand, as Chollet (2018)

states, neural networks have recently replaced support vector machines and tree-based

algorithms for many prediction tasks and distinguish themselves from other machine

learning tools by offering a layered representation of the data, which is where the term

deep learning stems from (Chollet, 2018). He argues that by using several transforma-

tions of the data, neural networks can solve complex problems more effectively than other

statistical tools.

5 Main Results

5.1 Baseline Results (First Round of Each Survey)

Table 3 depicts the error rates of the selected models for the baseline analysis. Segment

(1) captures the total error rate, the share of households that have been misclassified in

the respective test set, as well as the corresponding differences to OLS and p-values. Seg-

ment (2) and (3) depict the exclusion and inclusion error rate respectively. The pattern

is the same across all models. For both data sets, the total rate of households being mis-

classified lies between 16 and 18 percent, which is comparable to the results of McBride

and Nichols (2016). Around two thirds of this total error rate represent an exclusion

error, meaning that the models categorize households as non-poor, although their actual

consumption lies below the threshold.

To analyze whether the rates are different across models, we run the following specification

errorim = α +
3∑

m=1

βm ∗methodim + εim (3)

where errorim is a dummy that equals 1 if household i is misclassified by method m, and

0 otherwise. For the regressions on the inclusion and the exclusion error rate, the depen-

dent variable is adjusted accordingly to equal 1 if the household represents an inclusion or

an exclusion error. The βs represent the coefficients of interests, capturing the difference

of each method to OLS, which is the reference method in all regressions. Standard errors

are clustered at the district level.

For India, all total error rates are significantly different from OLS at least at a the 5%

-level. The neural network produces the smallest total error rate, followed by OLS, the

penalized regression and the random forest. However, the differences are very small eco-

nomically. The neural network, misclassifies only 0.63 percentage points less households,

which reduces the OLS error rate by roughly 3.6 percent. The other models target slightly

worse, the differences however remain economically small.

The results for the Indonesian data set are similar. All total error rates are within 1.2

percentage points, with the neural network again being the most precise. The differences
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Table 3: Targeting Error Rates on the Test Set - Baseline

India

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 17.27 - - 11.42 - - 5.85 - -

Penalized Regression 17.74 0.47 0.003 11.96 0.54 0.000 5.79 -0.07 0.507

Neural Network 16.64 -0.63 0.006 10.22 -1.20 0.000 6.42 0.57 0.003

Random Forest 17.84 0.57 0.040 13.40 1.99 0.000 4.44 -1.42 0.000

Note: The test set comprises 10,371 households. Standard errors are clustered at the district level.

Indonesia

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 17.02 - - 13.58 - - 3.44 - -

Penalized Regression 16.54 -0.48 0.126 12.69 -0.89 0.001 3.85 0.41 0.052

Neural Network 16.44 -0.58 0.211 11.93 -1.65 0.000 4.50 1.07 0.001

Random Forest 17.64 0.62 0.195 14.48 0.89 0.035 3.16 -0.28 0.397

Note: The test set comprises 2,908 households. Standard errors are clustered at the district level.

are not statistically significant in the Indonesian data set, probably as the data set con-

tains only little more than a fourth of households compared to India. This pattern holds

when we differentiate between inclusion and exclusion errors.

Table 3 shows that there are no economically significant differences in the targeting pre-

cision of the different models on aggregate. However, it is important to analyze which

household are misclassified. For instance, excluding an extremely poor household will

have more severe consequences than excluding a barely poor one. Hence, we analyze how

well the different models predict poverty across consumption percentiles. Figures 4 and

5 capture this relationship. On the horizontal axis, we plot all households in the test

sets, sorted by consumption and binned into 100 percentiles. The vertical axis depicts

the share of households in the respective percentile categorized as poor by the different

models. The blue line depicts the perfect classification with all households below the

rural poverty line categorized as poor and all households above the urban poverty line

categorized as non-poor. The spikes of this blue line stem from differing shares of urban

and rural households in the respective bins.
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Figure 4: Targeting along Consumption Percentiles - India, Baseline

Figure 5: Targeting along Consumption Percentiles - Indonesia, Baseline

From Figure 4 we draw two conclusions. First, all models are relatively accurate at cate-

gorizing the top quintile as non-poor as well as identifying the poorest 10 percent as poor.
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The misclassification rate is largely driven by households between the 10th and 60th per-

centile in terms of consumption. The biggest difference between perfect allocation and

the predictions of the models occurs close to the rural poverty line, around the 25th per-

centile, where only about 40 percent of all households are classified as poor. Secondly,

the paths of the different models are almost identical. The neural network, the most

precise model on aggregate, seems to systematically classify more households as poor,

which leads to higher inclusion and lower exclusion error rates. However, adding 95%

confidence intervals to the lines of the benchmark, OLS, and the neural network shows

that the models do not systematically target certain consumption percentiles differently.

The respective Figure A1 can be found in the Appendix.

The graph for Indonesia, Figure 5, is slightly different, but does not alter the main

conclusions. As there are lower actual poverty rates based on official poverty lines, it

becomes more difficult for the models to differentiate the very poor from the non-poor.

We elaborate on this in Section 6.1. As a result, already more than 20 percent of the

lowest percentile are classified as non-poor, while almost all households above the 60th

percentile are correctly classified. However, as Figure A2 in the Appendix confirms, OLS

and the neural network do not target certain consumption percentiles differently.

We have established for the baseline of both data sets that the methods do not differ sys-

tematically in their targeting performance across the consumption distribution. However,

there are more dimensions worth considering. As mentioned in Section 2.2, development

programs that rely on proxy means tests to target the beneficiaries often consume signif-

icant public budgets. As a result, program directors choosing between different methods

for a proxy means test, need to ensure that their choice does not discriminate along im-

portant socio-economic dimensions. For this purpose, we examine whether the methods

perform differently for urban vs. rural households, for the different genders of the head

of the household and for households in different states or provinces.

Table 4 and Figure 6 and 7 show the results for those three dimensions, following this

regression specification:

total errorimj = α +
MJ∑
mj=1

βmj ∗methodimj ∗ dimensionimj

+
3∑

m=1

γm ∗methodimj +
J∑

j=1

δj ∗ dimensionimj + εimj (4)

Where the γm capture the method fixed effects and δj the fixed effects of the dimension,

e.g. state or urban fixed effects. The coefficients of interests are βmj which represent the

difference in total error rates for the dimension of interest between the different methods.

In Table 4, we see that there are no statistically significant differences across models

for urban households for India. For households whose head is female however, penalized
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regression and the random forest have statistically significant, but economically negligible

differences in their error rates. To analyze whether one model systematically misclassifies

more households in different states, we show the total error rates for all Indian states and

methods in Figure 6. Visual inspection does not suggest any systematic differences across

methods. For an econometric analysis, we restrict our sample to the six largest states to

have sufficiently large numbers of observations to test for differences in means. We do

not find any robust differences in targeting accuracy and therefore move the discussion

on this to Section A.2.6 in the Appendix.

Table 4: Total Error Rates for Inspected Subgroups - Baseline

India Indonesia

(1) (2) (3) (4)

Urban x PR −0.001 0.006

(0.003) (0.008)

Urban x NN −0.0005 0.008

(0.006) (0.010)

Urban x RF 0.002 −0.009

(0.005) (0.009)

Female x PR 0.012∗∗ −0.003

(0.006) (0.011)

Female x NN 0.013 −0.007

(0.010) (0.007)

Female x RF 0.018∗∗ 0.011

(0.008) (0.010)

Constant 0.188∗∗∗ 0.173∗∗∗ 0.202∗∗∗ 0.157∗∗∗

(0.007) (0.007) (0.013) (0.007)

Method FE Yes Yes Yes Yes

Urban FE Yes No Yes No

Female FE No Yes No Yes

Observations 41,484 41,484 11,632 11,632

Note: Standard errors are clustered at the district level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(1) and (3): Urban vs. Rural Households

(2) and (4): Female vs. Male Head of Household

PR: Penalized Regression, NN: Neural Network, RF: Random Forest
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Figure 6: Total Error Rates across Indian States - Baseline Results

For Indonesia, we do not witness any statistically significant interactions terms for urban

vs. rural households or different genders of the household head. Figure 7 depicts the total

error rates across all provinces included in the data set. We observe some differences for

provinces such as Riau or Lampung. However, running the same econometric analysis

with the six most populated provinces shows no statistically significant differences across

the methods, and we further discuss the results in Section A.2.6 of the Appendix. Over-

all, the small number of significant coefficients in all sub-analyses is most likely driven

by the patterns found in Figures 4 and 5 which stems from the tendency of the neural

networks categorizing more households as poor than OLS.
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Figure 7: Total Error Rates across Indonesian Provinces - Baseline Results

5.2 Second Round Results

We repeat the analysis for the second survey round of both countries. Table 5 provides

the error rates and p-values for the corresponding regressions, which are the same as

equations 3 and 4.

For India, the total error rates are significantly lower across all models compared to the

baseline results. This can be explained by the relatively lower official poverty level of In-

dia in 2011, which means that less households are likely to be subject to misclassification

(see Section 6.1 for an intuition behind this reasoning). Regardless of this, we observe

that the neural network produces the lowest total error rate, followed by the penalized

regression, OLS and the random forest. However, the differences are neither economi-

cally nor statistically significant. The same results are obtained for Indonesia, where, the

total error rates have also decreased compared to the baseline, but not as much as in India.

We observe a similar pattern regarding the inclusion and exclusion error rates for both

data sets. OLS, penalized regressions and neural networks have very similar rates, while

the random forests tend to overestimate the households’ consumption compared to the

other methods. This results in smaller inclusion but also higher exclusion error rates.

This is mirrored in Figures A3 and A4 in the Appendix, where all methods again follow

the same pattern along the consumption distribution with only the random forest cate-

gorizing households systematically as less poor.

Analogously to the first-round surveys, we examine the second-round data sets for dis-

crimination across methods that is not explained by the small overestimation of the
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Table 5: Targeting Error Rates on the Test Set - Second Round

India

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 11.98 - - 8.81 - - 3.16 - -

Penalized Regression 11.89 -0.09 0.382 9.01 0.19 0.006 2.88 -0.28 0.000

Neural Network 11.75 -0.23 0.254 9.73 0.92 0.000 2.02 -1.15 0.000

Random Forest 12.16 0.18 0.449 10.30 1.49 0.000 1.86 -1.30 0.000

Note: The test set comprises 10,370 households. Standard errors are clustered at the district level.

Indonesia

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 14.80 - - 10.50 - - 4.30 - -

Penalized Regression 14.71 -0.09 0.762 10.56 0.06 0.771 4.15 -0.14 0.416

Neural Network 14.37 -0.43 0.379 10.56 0.06 0.850 3.81 -0.48 0.183

Random Forest 15.42 0.63 0.306 12.58 2.08 0.000 2.85 -1.45 0.000

Note: The test set comprises 3,514 households. Standard errors are clustered at the district level.

random forests. As we detect no statistically and economically significant differences, we

refrain from presenting the results here. Instead they can be found in Sections A.2.2 and

A.2.6 of the Appendix.

6 Robustness Checks

6.1 Targeting the Extreme Poor

As mentioned in Section 2.1, poverty lines are hard to estimate precisely (Atkinson, 1987)

which makes it important to assess whether our results are sensitive to the definition of

the poverty line. Hence, we repeat our methodology for the first round of both countries,

now calibrating all models using a poverty line that is half the level of the official ones

used beforehand. This captures the extreme poor and corresponds to the 4th consump-

tion percentile for India and the 5th consumption percentile for Indonesia.

The models now attempt to identify a very small subset of the population, located at

the lower end of the consumption distribution. All methods tend to overestimate con-

sumption at the lower end of the distribution and underestimate it at the upper end. As

a result, our inclusion error becomes negligible while the exclusion error are high com-

pared to total amount of extremely poor households. Table 6 shows the corresponding

results. With the smaller target group, the differences between the methods become even
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smaller, leading to no significant differences, on both the aggregate and the subgroup

levels. Thus, we conclude that our core findings are not sensitive to the poverty line. For

completeness, we report the results of the subgroup analyses in Sections A.2.3 and A.2.6

of the Appendix.

Table 6: Targeting Error Rates on the Test Set - Half Poverty Line

India

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 3.78 - - 3.29 - - 0.49 - -

Penalized Regression 3.76 -0.02 0.725 3.38 0.10 0.015 0.38 -0.12 0.001

Neural Network 3.64 -0.13 0.200 2.90 -0.39 0.000 0.74 0.25 0.001

Random Forest 3.68 -0.10 0.351 3.43 0.14 0.118 0.25 -0.24 0.001

Note: The test set comprises 10,371 households. Standard errors are clustered at the district level.

Indonesia

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 4.61 - - 4.30 - - 0.31 - -

Penalized Regression 4.61 -0.00 1.000 4.26 -0.03 0.708 0.34 0.03 0.740

Neural Network 4.71 0.10 0.623 3.75 -0.55 0.000 0.96 0.65 0.001

Random Forest 4.81 0.21 0.222 4.78 0.48 0.020 0.03 -0.28 0.002

Note: The test set comprises 2,908 households. Standard errors are clustered at the district level.

6.2 Using a Short Vector of Input Variables

So far, we have simulated a setting where around 40 characteristics are used to calibrate

the models and predict consumption. However, in practice, program directors are often

restricted to shorter surveys as the information must be collected for the whole popula-

tion covered by the program. For example, in India, the nationwide census from 2011 was

comprised of only 29 questions in total (Ministry of Home Affairs, Government of India,

2011) and McBride and Nichols (2016) also only use around 20 characteristics for their

comparison of econometric methods and random forests. Shorter questionnaires also lead

to better data quality and less misreporting (Niehaus et al., 2013). Additionally, house-

holds adjust their behavior to become eligible for a given social program (Glewwe et al.,

1989; Martinelli and Parker, 2009). They can, for example, hide their TV when visited by

the interviewers if TV ownership is a determinant for eligibility of said program. Hence,

we create short vectors for the first survey round of both countries to assess whether the

methods perform differently from each other when using a smaller set of input variables.
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To select the variables for the short vector, we follow Varian (2014) and utilize a quan-

titative ranking of the predictive power of the input variables produced by the random

forest. A variable’s importance is determined by computing the average decrease in pre-

diction errors resulting from the introduction of that variable into the forest (Friedman

et al., 2001). We obtain a list of the 25 variables with the highest predictive power for

consumption, according to the random forest. Following the findings of Martinelli and

Parker (2009), we drop variables that are easy to hide for households. For example, for

Indonesia, we exclude the dummy variables that indicate ownership of a fridge or a TV.

Table 7 lists the input variables for the short vector of both data sets.

Table 7: Overview of Variables Used for the Short Vector

Country Data Set Selected Variables Count

India IHDS1 # of persons, persons sq, education hh head,
size loans, dep. ratio, education oldest besides hh head,
age hh head, age sq, number rooms, gov relations,
solid floor, # of kids, # of kids in school,
ownership of house, state, region

16

Indonesia IFLS4 # of persons, persons sq, hh size per capita,
education level hh head, type cooking fuel,
type ownership of house, age hh head, age sq,
dep. ratio, distance to clinic, distance to posyandu,
# of kids in school, education level oldest male,
province, region

15

Table 8 provides the error rates for the two short sets. As expected, we observe higher

total error rates compared to Section 5.1 because the methods have less information avail-

able. Interestingly, however, the error rates in both countries remain below 20 percent

for all models which suggests that the marginal gain in adding more input variables is

small.

For India, OLS, penalized regression and random forest have similar error rates, the

model of the neural network again yields the lowest error rate. However, despite being

statistically significant, the difference is only about 0.8 percentage points. In the case

of Indonesia, the total error rates of the models do not differ significantly. The neural

network yields the lowest error rate, followed by the penalized regression, OLS and the

random forest. In both countries, the neural network tends to predict slightly lower con-

sumption levels. As a result, it has higher inclusion error rates of up to 1.6 percentage

points compared to OLS but even lower exclusion error rates. Analogously to the previ-

ous chapter, we analyze whether there are systematic differences across methods for the

models calibrated on the small set of input variables. As we do not detect such differ-

ences, we report all analyses in Sections A.2.4 and A.2.6 of the Appendix.
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Table 8: Targeting Error Rates on the Test Set - Short Vector

India

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 19.39 - - 12.97 - - 6.42 - -

Penalized Regression 19.60 0.21 0.118 13.40 0.43 0.000 6.20 -0.22 0.027

Neural Network 18.55 -0.84 0.009 10.54 -2.43 0.000 8.01 1.59 0.000

Random Forest 19.28 -0.11 0.668 13.60 0.63 0.004 5.69 -0.73 0.001

Note: The test set comprises 10,371 households. Standard errors are clustered at the district level.

Indonesia

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 18.12 - - 14.20 - - 3.92 - -

Penalized Regression 17.98 -0.14 0.290 14.27 0.07 0.492 3.71 -0.21 0.017

Neural Network 17.54 -0.58 0.092 12.79 -1.41 0.000 4.75 0.83 0.000

Random Forest 18.33 0.21 0.595 14.51 0.31 0.429 3.82 -0.10 0.781

Note: The test set comprises 2,908 households. Standard errors are clustered at the district level.

7 Model Stability over Time

As mentioned in Section 2.1, surveys containing consumption data are expensive and can

therefore not be conducted every year. For example, the two survey rounds for India lie

6 years apart and the surveys for Indonesia are carried out every 7 years. Consequently,

program directors might not be able to re-calibrate their models regularly, forcing them

to rely on the old models when new households need to be assessed. This can become a

problem in countries such as India or Indonesia, where societies have been undergoing a

rapid development process and the underlying relationships between household charac-

teristics and poverty could have changed. For example, between the two survey rounds in

Indonesia, the share of households in the survey that uses gas stoves for cooking went up

from 18 percent in 2007 to 70 percent in 2014, largely due to the government’s Kerosene

to Liquefied Petroleum Gas program (Desai et al., 2010; 2015; Zhang, 2013). A model

that had assigned a significant impact to the characteristic “main fuel used for cooking”

in 2007 would consequently misclassify many households in 2013.

Hence, we analyze whether some methods cope better with these structural changes. To

answer this question, we compare the prediction performance of models that have been

calibrated based on the first survey round data and evaluate their consumption predic-

tions for the subsequent survey round. For this purpose, we slightly adjust our training

and evaluation processes compared to Section 5 and 6. We now train all models on the full
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data set from the first survey but keep the 67/33 split for the hyperparameter tuning for

penalized regressions, neural networks and random forests. However, before we optimize

the models, we need to consider that prices have risen between survey rounds. As our

consumption variables are measured in nominal terms, we inflate the first-round values

using official inflation rates from the World Bank (2019). We consider this a sensible

approach, as inflation data would be available for program directors as well. Finally, we

optimize the methods as described in Section 4 and evaluate their prediction performance

using the second round data as the test set.

Table 9: Targeting Error Rates on the Test Set - Time Stability

India

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 12.37 - - 8.02 - - 4.35 - -

Penalized Regression 12.50 0.13 0.012 8.09 0.07 0.062 4.41 0.06 0.134

Neural Network 12.50 0.13 0.403 8.72 0.70 0.000 3.78 -0.58 0.000

Random Forest 13.15 0.78 0.000 7.16 -0.86 0.000 6.00 1.65 0.000

Note: The test set comprises 41,491 households. Standard errors are clustered at the district level.

Indonesia

(1) (2) (3)

Total Diff. Excl. Diff. Incl. Diff.

Error to OLS p-value Error to OLS p-value Error to OLS p-value

Ord. Least Squares 15.75 - - 11.65 - - 4.10 - -

Penalized Regression 15.92 0.17 0.372 11.63 -0.02 0.890 4.29 0.19 0.163

Neural Network 16.13 0.38 0.239 13.40 1.75 0.000 2.72 -1.37 0.000

Random Forest 16.03 0.28 0.352 12.28 0.63 0.000 3.75 -0.35 0.274

Note: The test set comprises 14,056 households. Standard errors are clustered at the district level.

The results for the time stability analysis are displayed in Table 9. As expected, the

error rates are higher in this analysis compared to Section 5.2, where the models are

both trained and evaluated on the second-round surveys. Surprising is rather, that the

difference is less than 2 percentage points across all models although more than five years

lie between the surveys. This suggests that not only poverty is chronic, but also the

characteristics that predict poverty do not fundamentally change over time.

For India, the exclusion errors have slightly decreased, while the inclusion errors have in-

creased. A reason for this might be that the average consumption level in the first survey

round after adjusting for inflation is still lower than the one in the second survey round.

This means that we tend to underestimate consumption and thus include more ineligible

households in the program. For Indonesia, we find no clear pattern when comparing
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inclusion and exclusion error rates to the second round. Overall, we do not observe large

differences in aggregate error rates when comparing the targeting of the models against

each other. OLS has the lowest total error rate of all the models in both data sets, but

in all cases besides the random forest model for India, the error rates of the other models

do not differ significantly from each other. This suggests that the methods do not differ

strongly in their ability to capture patterns between consumption and household char-

acteristics over time. This is confirmed by the respective subgroup results, reported in

Sections A.2.5 and A.2.6 of the Appendix.

8 Discussion

Several discussion points arise from our results. First of all, we notice that no method

performs consistently better in all analyses. Neural networks seem to be slightly more

precise in many cases, penalized regressions and random forests are comparable in pre-

cision to OLS. The differences between all methods are often not statistically significant

and always economically small. Nevertheless, little improvements in aggregate misclassifi-

cation rates can have a big impact for individual families as receiving a legal entitlement

for participating in an anti-poverty program can be crucial for concerned households.

Hence, if program directors have sufficient time and resources at hand, they might try

out different methods in an out-of-sample validation process to find out which method

works best for a given setting, as has been done in this thesis. However, in practice, time

and budget constraints exist and most likely prevail.

Nonetheless, we recommend to use random forests to select the best variables to include in

the household surveys. As pointed out before, only short questionnaires are used in prac-

tice when it comes to surveying the entire population. We have shown that reducing the

number of questions from 42 for the Indian survey and 35 in the Indonesian survey to 16

and 15 respectively increases the error rates only slightly. Thus, we consider the variable

selection process of the random forest as effective and applicable in practice. This would

also allow researchers to explore data sets with even larger number of variables effectively.

Overall however, it seems clear to us that, given the current restrictions on data availabil-

ity for proxy means tests, no complex statistical method is able to reduce the substan-

tial misclassification rates to negligible numbers. Under this impression, it seems more

promising to explore approaches that do not solely rely on these methods for targeting.

For example, Alatas et al. (2016) investigate a combination of proxy means test and

self-targeting mechanisms in Indonesia. The authors show that introducing a small but

significant application cost before conducting the proxy means test can lead to better

targeting outcomes than pure proxy means tests. This is because non-poor households

do not even apply as they are unlikely to become eligible. Similar mechanisms could also

be used in combination with universal entitlements which theoretically ensure that no

households are excluded (Slater, 2011).

Our selection of variables might actually be a limiting factor, as we stick close to the
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literature and use the same variables for all models in order to get a strong and represen-

tative OLS benchmark. Yet, given one of the main advantages of the machine learning

tools is to capture non-linear functional forms and interactions, we speculate that there

are not enough sensible patterns and combinations of variables that can be distilled from

the data sets. It might have been fruitful to consider other variables that researchers

have not yet tried out as well. Here, the field might benefit from continued research and

the evaluation of the methods against each other for different types of variables. This

would need to be combined with research on survey design. For instance, researchers

might try to integrate more questions like “Do you have access to a public tap?”. This

could be relevant and hence good for predicting consumption for poor households, as a

public tap represents a cheap and healthy source of water. For households in the upper

income percentiles however, this will most likely be irrelevant as they have private taps

installed in their homes.

Additionally, we want to emphasize the ambiguity of using machine learning tools for

predictions in poverty targeting. As pointed out by several authors (Cameron and Shah,

2013; Lavallée et al., 2010), one disadvantage of using proxy means tests for poverty

targeting is that regression analysis is difficult to explain. We believe that this problem

would be aggravated in the case of using, for instance, a neural network as its predictions

are even harder to explain than those generated by OLS. Consequently, the perceived

fairness and acceptance of such a method might be even lower. However, not having a

simple linear scoring model also bears a significant advantage. It makes it harder for lo-

cals to hide assets or underreport other characteristics that can be identified as the most

important ones for the classification decision (Camacho and Conover, 2011). As recom-

mended by Blumenstock (2018), further applied research is needed to assess whether the

advantages outweigh the disadvantages when applying machine learning to poverty tar-

geting.

Another limitation is the definition of the metrics we used for calculating the misclassifi-

cation rates, which we kept simple to make them easily accessible and interpretable. Yet,

when doing the robustness check with the reduced poverty line, we witness the short-

comings of our metrics. The misclassification rates plummet, making it hard to compare

results across countries with different poverty lines. The drop could wrongly be inter-

preted as an improved targeting performance but is actually due to the lower poverty

line, as discussed in Section 6.1. More complex evaluation metrics such as undercoverage

and leakage rates used by McBride and Nichols (2016) can overcome these limitations.

Also, our approach to weigh inclusion error and exclusion equally to compute the total

error rate might be subject to criticism. As poverty lines themselves are controversial,

other authors have tried using poverty rates for their targeting approaches instead (Brown

et al., 2016). However, this discussion is not critical for the specific purpose of our thesis,

as our metrics still allow a valid comparison of the four methods.

Furthermore, we do not discuss poverty outcomes in our thesis. Assessing the actual

impact on poverty of the slight targeting improvements we found would be helpful to
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make a better cost-benefit assessment of machine learning tools in poverty targeting.

Given our results and the limitations above, we can discuss the external validity of this

thesis. With India and Indonesia, our analysis is based on data from two countries in

South and Southeast Asia. Hence, our results could differ in other developing countries,

for example, in South America or Sub-Saharan Africa. However, the data restrictions

regarding the number of variables used and the sample size of households available for

calibration are likely to be similar in other settings. As witnessed in McBride and Nichols

(2016), the sample sizes in practice range rather between 1,500 and 12,000 observations

than around 40,000 as in the India data set we use. The work by McBride and Nichols

(2016) can also be seen as an indicator of how well our analysis could translate to other

settings, as they analyze three countries from South America, Sub-Saharan Africa and

Southeast Asia and find error rates comparable to ours. Therefore, we do not have any

indication that our research question would be answered differently for proxy means tests

in other developing countries.

However, other researchers have shown that machine learning tools can be successfully

applied to important problems in development economics. Jean et al. (2016) use high-

resolution satellite images and nighttime light intensity data on over 300,000 locations

and convolutional neural networks to predict poverty accurately on a local level, where

on average 30 households are clustered to a local unit. Another example is Blumenstock

et al. (2015), who use mobile calls and transfer data on more than 1,000,000 unique users

in Rwanda to shed light on consumption smoothing mechanisms in the aftermath of nat-

ural disasters. This suggests that using larger data sets for PMTs might yield different

results as machine learning tools are expected to extract information from large data sets

particularly well (Varian, 2014).

Overall, machine learning tools can be successfully applied for out-of-sample prediction

tasks in data-rich settings in business and economics (Desai et al., 1996; Einav and Levin,

2014; Mullainathan and Spiess, 2017). However, as the no free lunch theorem states, no

learning and prediction tool is best suited for every problem which creates the need for

further empirical research (Wolpert, 1996). Apart from prediction tasks, there is an

increasing amount of research on the application of machine learning tools to estimate

causal effects, for example, in the context of instrument variables (Hartford et al., 2017)

or synthetic control methods (Athey and Imbens, 2017). Nevertheless, as Blumenstock

(2018) discusses, machine learning tools not only need to fulfill certain data requirements

but also need to be applied carefully to overcome their pitfalls, such as bias in the algo-

rithm or lack of regulation and transparency.

9 Conclusion

In this thesis, we compare the out-of-sample prediction performance of different statistical

methods in the context of proxy means tests. Specifically, we assess whether penalized

regressions, neural networks or random forests can be more accurate than ordinary least
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squares in identifying which households become eligible for anti-poverty programs.

To do so, we use two multi-topic, panel household surveys for India and Indonesia which

we randomly split into training and test sets. The former are used to develop the opti-

mal models which, in turn, predict the consumption levels of the households in the test

sets. This way, we can assess the out-of-sample prediction performance of the different

methods. For this purpose, we compare their total, exclusion and inclusion error rates

using official national poverty lines. Additionally, we investigate whether the methods

target important subgroups differently, such as certain consumption percentiles, rural

households, households whose head is female or households in certain states/provinces.

Finally, we analyze if any method offers significant advantages when predicting consump-

tion using training data from previous periods.

Overall, we find that there is little difference in the prediction accuracy of the four meth-

ods. Neural networks yield the lowest total error rates in eight of our ten analyses.

However, the difference is statistically significant only for two out of these settings and

even then, the differences are small in an economic sense. Our analyses reveal no sys-

tematic differences across methods when it comes to targeting important socio-economic

or geographic subgroups. This pattern is robust to settings with a short set of variables,

a poverty line at half the official level and holds over time. Surprisingly, all methods do

very well in predicting consumption for the second survey round, even though the data

they are trained with was collected more than five years earlier.

We draw one important policy recommendation from our results. We propose using

random forests to optimize the surveys on which program eligibility is determined in

targeting programs. Our results in Section 6.2 suggest that they are well-suited to iden-

tify the variables with the highest prediction power as the total error rate drops by 2.1

percentage points at most despite only using half the number of characteristics. As the

length of a survey is an important determinant of the cost of collection and the quality

of data, this tool can be helpful in improving a program’s efficiency.

Our research suffers from several limitations. We explore the methods only for data sets

of two countries from South and Southeast Asia and thus cannot ensure that our re-

sults will hold for other developing countries. Also, we restrict our comparison to four

methods and keep our study concise by defining only simple outcome metrics. Future re-

search could also take full advantage of the machine learning methods by including other

non-traditional variables connected with consumption through non-linear relationships.

Consequently, it might be fruitful to optimize the surveys accordingly and assess whether

further improvements are possible. And finally, it is crucial to consider the impact of

machine learning methods on transparency and misreporting concerns. Hence, future

research should also discuss the costs and benefits of having models that might be more

precise but are also harder to communicate to the public compared to traditional methods.

Machine learning techniques have become powerful tools with significant advantages over
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traditional econometric methods in data-rich settings. Studies like the ones by Blumen-

stock et al. (2016) or Jean et al. (2016) have shown that there are also successful applica-

tions of machine learning in development economics, for instance, for estimating poverty

levels on a local level or explaining consumption patterns. Unfortunately, proxy means

tests currently do not represent such data-rich settings in practice and the application of

machine learning methods can consequently only lead to marginal improvements.
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A Appendix

A.1 Data and Methodology

In this Subsection of the Appendix, we present all materials that serve as supplements

to better understand the data used and methodology applied.

A.1.1 Descriptive Statistics

We split both the Indian and the Indonesian data set into training and test sets, as

explained in Section 4. To make sure this randomized split has worked and we do not

have different population groups in the two parts, we do provide tables to compare the

means of the training and test sets for the first round surveys. Table A1 refers to the

Indian data set. Column (1) depicts the mean of the training set and Column (2) the mean

of the test set. Column (3) shows the difference in means and Column (4) the p-value

of a t-test for difference in means. We can infer that all variables are not significantly

different between the training and test set. The same is done for the Indonesian data set

in Table A2, with the same result that the training and test set are balanced.
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Table A1: Balance of Training and Test Set - India

India

Variable Training Test Diff. p-Value

cons 957.78 947.00 10.78 0.353
urb 0.36 0.35 0.01 0.288

edu oldest 7.56 7.55 0.02 0.79

nfarm 0.75 0.78 -0.03 0.087
person 5.2 5.19 0.00 0.877

cow 0.29 0.29 0.00 0.97

buffalo 0.26 0.25 0.00 0.706
bike 0.55 0.55 0.00 0.906

motorbike 0.19 0.19 0.00 0.784

fan 0.64 0.64 0.00 0.932
telephone 0.17 0.17 0.00 0.776

cell 0.09 0.09 0.00 0.618

fridge 0.18 0.18 0.00 0.863
size loan 18,920.60 18,531.00 389.60 0.685

size 2.59 2.59 0.00 0.799
elec 0.78 0.78 -0.01 0.263

incfarm 8,372.90 7,410.00 962.90 0.075

tv 0.54 0.54 0.00 0.759
d water2 0.46 0.46 0.00 0.834

d water3 0.24 0.24 0.00 0.56

d water4 0.27 0.27 0.00 0.459
d water5 0.01 0.01 0.00 0.235

own2 0.09 0.09 0.00 0.376

own3 0.02 0.02 0.00 0.091
floor 0.58 0.58 0.00 0.678

wall 0.62 0.63 0.00 0.609

toilet 0.46 0.46 0.00 0.996
roof 0.51 0.51 0.00 0.878

wood 0.68 0.68 0.00 0.88
person sq 33.12 33.33 -0.22 0.629

gov hh 0.35 0.34 0.00 0.536

medical 0.48 0.47 0.00 0.687
kitchen2 0.61 0.61 0.00 0.845

kitchen3 0.2 0.2 0.00 0.429

caste2 0.17 0.17 0.00 0.954
caste3 0.34 0.34 0.00 0.414

caste4 0.2 0.2 0.00 0.657

caste5 0.08 0.08 0.00 0.532
caste6 0.11 0.11 0.00 0.619
caste7 0.02 0.02 0.00 0.963

caste8 0.02 0.02 0.00 0.47
sex 1.1 1.1 0.00 0.706

age 47.15 46.91 0.24 0.123
edu head 5.52 5.5 0.02 0.775

children 0.47 0.48 -0.01 0.345

dratio 0.74 0.73 0.00 0.672
nschool 1.35 1.34 0.02 0.312

disabled 0.11 0.11 0.00 0.936
age sq 2,404.13 2,381.00 23.13 0.134
widow 0.1 0.1 0.00 0.805

married 0.87 0.87 0.00 0.957

d occ2 0.04 0.04 0.00 0.347
d occ3 0.01 0.01 0.00 0.896

d occ4 0.05 0.05 0.00 0.906
d occ5 0.02 0.01 0.00 0.195
d occ6 0.04 0.04 0.00 0.304

d occ7 0.18 0.19 -0.01 0.066
d occ8 0.12 0.12 0.00 0.524

d occ9 0.06 0.06 0.00 0.703

d occ10 0.05 0.05 0.00 0.779

Observations 31,117 10,371 41,484 41,484
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Table A2: Balance of Training and Test Set - Indonesia

Indonesia

Variable Training Test Diff. p-Value

cons 1,298,908.00 817,418.00 481,490.00 0.214
floor 0.52 0.51 0.01 0.22

wall 0.73 0.73 0.00 0.945

urb 0.54 0.53 0.01 0.32
elec 0.96 0.96 0.00 0.254

borrow 0.88 0.89 -0.01 0.058

person 5.34 5.28 0.06 0.346
children 0.41 0.42 -0.01 0.617

person sq 37.47 37.22 0.25 0.804

dratio 1.36 1.38 -0.02 0.467
age 43.52 43.36 0.16 0.633

sex 0.81 0.82 -0.01 0.424

age sq 2,122.73 2,108.00 14.73 0.636
farm dummy 0.28 0.27 0.01 0.302

farm size 4,990.20 4,235.00 755.20 0.759
clinic distance 18.25 18.24 0.01 0.996

posyandu distance 9.31 8.85 0.46 0.577

clinic knowledge 0.89 0.89 0.00 0.96
posyandu knowledge 0.78 0.78 0.00 0.977

size per capita 22.97 19.18 3.79 0.3

toilet type2 0.09 0.1 -0.01 0.103
toilet type3 0.14 0.13 0.01 0.47

toilet type4 0.02 0.02 0.00 0.458

toilet type5 0.00 0.00 0.00 0.864
water type2 0.51 0.51 0.01 0.611

water type3 0.09 0.09 0.00 0.88

water type4 0.01 0.01 0.00 0.037
water type5 0.17 0.16 0.01 0.34

water type6 0.00 0.00 0.00 0.748
cook type2 0.18 0.17 0.01 0.131

cook type3 0.41 0.42 -0.01 0.346

cook type4 0.35 0.36 -0.01 0.602
cook type5 0.04 0.04 0.00 0.81

own type2 0.19 0.2 -0.01 0.408

own type3 0.11 0.12 0.00 0.961
marstat type2 0.78 0.8 -0.01 0.248

marstat type3 0.01 0.01 0.00 0.558

marstat type4 0.02 0.02 0.00 0.776
marstat type5 0.10 0.10 0.01 0.305
occ type2 0.28 0.28 0.00 0.674

occ type3 0.01 0.01 0.00 0.613
occ type4 0.10 0.10 .000 0.594

occ type5 0.00 0.00 0.00 0.116
occ type6 0.05 0.05 0.00 0.831

occ type7 0.17 0.17 0.00 0.918

occ type8 0.04 0.04 0.01 0.144
occ type9 0.01 0.01 0.00 0.567

occ type10 0.17 0.18 -0.01 0.385
occ type11 0.00 0.00 0.00 0.564
work type2 0.43 0.42 0.01 0.228

work type3 0.07 0.07 -0.01 0.12

work type4 0.25 0.24 0.00 0.625
work type5 0.1 0.1 0.00 0.555

edulev head2 0.4 0.38 0.02 0.068
edulev head3 0.15 0.16 -0.01 0.231
edulev head4 0.35 0.36 0.00 0.879

nschool 0.69 0.67 0.02 0.384
edulev hhm2 0.15 0.14 0.01 0.079

edulev hhm3 0.21 0.22 -0.01 0.217

edulev hhm4 0.63 0.63 0.00 0.889
dratiodum 0.95 0.96 0.00 0.643

tvdum 0.74 0.73 0.01 0.233

fridgeown 0.40 0.39 0.01 0.522
fridgeused 0.28 0.27 0.00 0.789

Observations 8,723 2,908 11,631 11,631
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A.1.2 Cross Validation

Cross validation as a concept for accuracy estimation and model selection in statistics

has already been explored in the 1990s (Kohavi et al., 1995). In recent years, it has

become a popular tool for optimizing hyperparameters in machine learning (Chollet,

2018). In this particular context, it is often referred to as k-fold cross validation. For an

intuitive explanation, we heavily rely on Varian (2014), who uses five steps to explain the

algorithm. Suppose, we want to find the optimal value for the parameter α of model m

on a given data set D. Then the k-fold cross validation will work as follows:

1. The algorithm splits the data into k equal subsets, called folds. They are labeled

s = 1, ..., k, where s = 1 is the starting value.

2. A value for the parameter α is chosen (consider that for picking this value, we

might have different strategies, such as random search, grid search, .... as outlined

in Section 4.2).

3. The model m is fitted on all k − 1 subsets other than s.

4. The model is applied on subset s and evaluated by computing a validation score.

5. The count of s is increased by 1 and steps 1-4 are repeated until s = k

After this procedure, k values of the parameter α and the associated validation scores

can be observed and used to choose the optimal parameter. Through this validation

procedure, models optimized with cross-validation usually do very well in predicting out-

of-sample.

A.1.3 Model Development

For OLS, Table A3 and A4 depict the regional-specific coefficients of the second-step re-

gressions for the first-round data, where Tables A5 and A6 contain the states/provinces

of each region. As outlined in Section 4.2, we optimize the hyperparameters for the penal-

ized regressions, the random forests and the neural networks. For each of the parameters

of each method, we define a choice space within which the algorithm operates. That

means, for a given method, it takes the choice space and tries out different hyperparam-

eters. The hyperparameter is chosen which yields the lowest error rate on the validation

set. The choice spaces for all our methods are depicted in the second column from the left

of Tables A7 to A9. In the columns on the right, we have depicted the hyperparameters

chosen by hyperas. Table A7 depicts choice space and hyperparameters for the penalized

regressions, Table A8 for the random forests and Table A9 for the neural networks.
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Table A3: Second-Step OLS Regressions - India

India

Variable Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

eduoldest 0.0115*** 0.0197*** 0.0103*** 0.00699*** 0.00528***

(0.00197) (0.00262) (0.00156) (0.00229) (0.00191)

nfarm 0.0300*** 0.0222*** 0.0468*** 0.0237*** 0.0266***

(0.00511) (0.00524) (0.00670) (0.00601) (0.00585)

person -0.186*** -0.289*** -0.178*** -0.177*** -0.217*** -0.180***

(0.00706) (0.0189) (0.00744) (0.00716) (0.00901) (0.00608)

buffalo 0.0401*** 0.0308*** 0.0378*** 0.0250***

(0.00519) (0.00657) (0.0122) (0.00658)

bike 0.0489*** 0.0925*** 0.0482*** 0.0518***

(0.0138) (0.0224) (0.0137) (0.0136)

motorbike 0.136*** 0.122*** 0.255*** 0.162*** 0.160*** 0.110***

(0.0166) (0.0332) (0.0226) (0.0220) (0.0186) (0.0173)

fan 0.0633*** -0.0476 0.158*** 0.104*** 0.181*** 0.108***

(0.0174) (0.0297) (0.0172) (0.0194) (0.0212) (0.0159)

telephone 0.151*** 0.314*** 0.102*** 0.212*** 0.142*** 0.240***

(0.0167) (0.0388) (0.0287) (0.0242) (0.0205) (0.0181)

cell 0.222*** 0.274*** 0.201*** 0.193*** 0.221*** 0.209***

(0.0192) (0.0503) (0.0306) (0.0277) (0.0243) (0.0218)

fridge 0.121*** 0.0762** 0.0883*** 0.246*** 0.112*** 0.149***

(0.0165) (0.0357) (0.0290) (0.0263) (0.0214) (0.0212)

sizeloan 6.11e-07*** 1.56e-06*** 1.68e-06*** 2.12e-07*** 3.68e-07*** 6.31e-07***

(6.33e-08) (3.17e-07) (1.31e-07) (5.84e-08) (7.11e-08) (5.29e-08)

size 0.0380*** 0.00903** 0.0255*** 0.0451*** 0.0165***

(0.00390) (0.00427) (0.00434) (0.00599) (0.00467)

tv 0.117*** 0.131*** 0.135*** 0.174*** 0.0833*** 0.0972***

(0.0161) (0.0288) (0.0174) (0.0192) (0.0176) (0.0142)

own2 0.175*** 0.110*** 0.160*** 0.152*** 0.0958*** 0.132***

(0.0227) (0.0407) (0.0284) (0.0222) (0.0236) (0.0178)

floor 0.0264* 0.0541*** 0.0675***

(0.0152) (0.0194) (0.0152)

wall 0.0341** 0.0948*** 0.0310** 0.0385**

(0.0165) (0.0279) (0.0149) (0.0182)

wood -0.0359** -0.140*** -0.0778*** -0.135***

(0.0156) (0.0210) (0.0202) (0.0168)

personsq 0.00577*** 0.0133*** 0.00588*** 0.00528*** 0.00847*** 0.00513***

(0.000372) (0.00151) (0.000407) (0.000434) (0.000573) (0.000356)

govhh 0.0995*** 0.0791*** 0.156*** 0.123*** 0.0993*** 0.103***

(0.0127) (0.0237) (0.0156) (0.0152) (0.0136) (0.0122)

caste2 0.0482*** 0.0767**

(0.0141) (0.0328)

caste6 0.0719*** -0.0413*

(0.0206) (0.0219)

age 0.00741*** 0.0199*** 0.0106*** 0.00791*** 0.00933***

(0.00273) (0.00486) (0.00292) (0.00284) (0.00278)

eduhead 0.00590*** 0.00617*** 0.0108*** 0.00619***

(0.00194) (0.00234) (0.00169) (0.00197)

children -0.0359*** -0.0218** -0.0312***

(0.00953) (0.00964) (0.0107)

dratio -0.0328*** -0.0450*** -0.0369*** -0.0514*** -0.0370***

(0.00721) (0.00721) (0.00763) (0.00701) (0.00664)

nschool 0.0212*** 0.0169* 0.0172*** 0.0241*** 0.00759 0.0157***

(0.00557) (0.00891) (0.00598) (0.00577) (0.00684) (0.00591)

agesq -5.77e-05** -0.000187*** -8.52e-05*** -6.64e-05** -8.85e-05***

(2.64e-05) (4.88e-05) (2.91e-05) (2.84e-05) (2.76e-05)

widow -0.107*** -0.141***

(0.0375) (0.0379)

married -0.0876*** -0.109***

(0.0334) (0.0332)

Note: Table continued on next page.
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India

Variable Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

docc2 0.131*** 0.104*** 0.101*** 0.0930***

(0.0278) (0.0354) (0.0302) (0.0316)

docc3 0.164*** 0.174** 0.223*** 0.113** 0.0993*

(0.0488) (0.0684) (0.0724) (0.0521) (0.0519)

docc7 -0.107*** -0.106*** -0.0627*** -0.0857*** -0.0801***

(0.0223) (0.0171) (0.0170) (0.0183) (0.0146)

docc8 -0.0436**

(0.0187)

docc9 -0.0941*** -0.0624*** -0.120***

(0.0205) (0.0233) (0.0323)

docc10 -0.0427* -0.122***

(0.0259) (0.0282)

urb 0.0678** 0.0846*** 0.0510** 0.0390***

(0.0269) (0.0180) (0.0206) (0.0147)

cow 0.0627*** 0.0116* 0.0178*** 0.0146**

(0.0132) (0.00614) (0.00641) (0.00673)

elec 0.157*** 0.0721***

(0.0317) (0.0227)

toilet 0.117*** 0.0559*** 0.0431** 0.0632***

(0.0392) (0.0181) (0.0168) (0.0152)

caste8 0.469*** 0.193*** 0.0935***

(0.0868) (0.0542) (0.0253)

docc4 0.0659* 0.0497

(0.0372) (0.0304)

incfarm 7.40e-07*** 1.08e-06** 4.64e-07*** 4.53e-07***

(2.81e-07) (4.78e-07) (1.39e-07) (8.12e-08)

roof 0.0651***

(0.0155)

caste3 -0.0560*** -0.0758***

(0.0158) (0.0180)

caste4 -0.0715*** -0.0721***

(0.0183) (0.0194)

caste5 -0.282*** -0.239*** -0.0936***

(0.0251) (0.0249) (0.0239)

caste7 0.165** -0.256**

(0.0792) (0.104)

kitchen2 0.0684***

(0.0133)

dwater2 0.0785*** -0.190***

(0.0176) (0.0593)

dwater3 -0.164***

(0.0610)

dwater4 -0.154**

(0.0619)

dwater5 -0.595*** 0.164***

(0.0940) (0.0501)

sex -0.0593** -0.00633

(0.0233) (0.0176)

docc5 -0.0975*

(0.0585)

medical -0.0435***

(0.0115)

disabled 0.0855***

(0.0130)

Constant 7.111*** 7.012*** 6.771*** 6.284*** 7.013*** 6.929***

(0.0767) (0.131) (0.0819) (0.0762) (0.0983) (0.0917)

State FE Yes Yes Yes Yes Yes Yes

Observations 6,621 1,521 5,923 5,083 4,133 7,843

R-Squared 0.565 0.659 0.608 0.663 0.619 0.509

Note: Standard errors in parentheses.∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A4: Second-Step OLS Regressions - Indonesia

Indonesia

Variable Region 1 Region 2 Region 3

floor 0.214*** 0.215*** 0.239***

(0.0536) (0.0271) (0.0554)

urb 0.00624 -0.0210

(0.0288) (0.0435)

elec 0.221**

(0.0948)

borrow 0.0919** 0.214***

(0.0374) (0.0726)

person -0.206*** -0.261*** -0.291***

(0.0220) (0.0133) (0.0248)

children 0.0594***

(0.0226)

personsq 0.00524*** 0.00898*** 0.0108***

(0.00127) (0.000809) (0.00162)

dratio -0.0437***

(0.0104)

age 0.0219***

(0.00485)

agesq -9.81e-06 -0.000232***

(1.59e-05) (4.83e-05)

farmdummy 0.0529*

(0.0302)

posyanduknowledge -0.158***

(0.0324)

sizepercapita 0.00315*** 8.53e-05* 0.00296***

(0.000590) (4.39e-05) (0.000533)

toilettype2 -0.134 -0.0686*

(0.0824) (0.0415)

watertype2 -0.166*** -0.0987***

(0.0435) (0.0306)

watertype3 -0.162***

(0.0545)

watertype5 0.0979** 0.383***

(0.0382) (0.0670)

cooktype2 0.251***

(0.0326)

cooktype5 0.554*** 0.372***

(0.139) (0.0589)

owntype2 -0.131*** -0.0495

(0.0302) (0.0588)

marstattype4 -0.592*** -0.215***

(0.151) (0.0731)

marstattype5 -0.236***

(0.0394)

edulevhead4 0.152***

(0.0321)

nschool 0.0927*** 0.0944*** 0.0880***

(0.0223) (0.0162) (0.0228)

edulevhhm4 0.148***

(0.0307)

tvdum 0.206*** 0.151*** 0.291***

(0.0513) (0.0306) (0.0484)

fridgeown 0.107***

(0.0367)

fridgeused 0.274*** 0.306*** 0.396***

(0.0548) (0.0409) (0.0506)

Note: Table continued on next page.
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Indonesia

Variable Region 1 Region 2 Region 3

wall 0.147***

(0.0477)

toilettype4 -0.302**

(0.145)

cooktype4 -0.334***

(0.0505)

edulevhhm2 -0.202***

(0.0699)

dratiodum -0.231**

(0.111)

sex 0.163***

(0.0536)

farmsize 3.94e-06*

(2.08e-06)

toilettype3 -0.256***

(0.0555)

owntype3 0.329***

(0.0829)

marstattype3 -0.329

(0.259)

Constant 13.49*** 12.67*** 13.95***

(0.869) (0.147) (0.816)

State FE Yes Yes Yes

Observations 1,775 5,176 1,772

R-squared 0.396 0.428 0.456

Note: Standard errors in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A5: Regions of India for Second-Step OLS regressions

Region States Included

Region 1 Chandigarh, Delhi, Haryana, Himachal Pradesh,
Jammu & Kashmir, Punjab, Rajasthan

Region 2 Arunachal Pradesh, Assam, Manipur,
Meghalaya, Mizoram, Nagaland, Sikkim

Region 3 Chhatishgarh, Madhya Pradesh, Uttaranchal,
Uttar Pradesh

Region 4 Bihar, Jharkhand, Orissa, West Bengal

Region 5 Daman & Diu, Dadra & Nagar, Haveli,
Goa, Gujarat, Maharashtra

Region 6 Andhra Pradesh, Karnataka, Kerala,
Pondicherry, Tamil Nadu
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Table A6: Regions of Indonesia for Second-Step OLS regressions

Region Provinces Included

Region 1 Bangka-Belitung, Kepulauan Riau, Lampung, Riau,
Sumatera Barat, Sumatera Selatan, Sumatera Utara

Region 2 Banten, Jakarta Raya, Jawa Barat,
Jawa Tengah, Jawa Timur, Yogyakarta

Region 3 Bali, Kalimantan Selatan, Kalimantan Tengah,
Kalimantan Timur, Nusa Tenggara Barat,
Sulawesi Barat, Sulawesi Selatan, Sulawesi Utara
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A.2 Results

In this subsection of the Appendix, we present supplementary graphs for our baseline

results, all subgroup analyses but the baseline one, which can already be found in Section

5.1, and discuss our state and province analyses in detail. As all subgroup analyses are in

line with the results from Section 5.1, we refrain from including them in the main body

of the thesis. For consistency, we refer to Indonesian provinces from here on as states in

order to use the same terminology as in the analyses for India.

A.2.1 Supplementary analysis - Baseline

Figure A1 and A2 are supplementary graphs for our baseline analysis and correspond

to Figures 4 and 5 in the main body of the thesis. In both graphs, we only depict

the reference line, perfect classification and the targeting accuracy of the most precise

methods, neural networks, and our benchmark, OLS. In order to analyze whether the

smoothed graphs shown in Section 5.1 are actually significantly different from another,

we plot only the 95%-confidence intervals of both methods. As can be seen in both

figures, the confidence intervals of OLS, represented by the red, dashed lines, constantly

overlap with the gray shaded areas that represent the confidence intervals of the neural

networks. Hence, we conclude that although the neural network models seem to estimate

consumption to be lower for all households throughout the consumption distribution

compared to the other methods, the methods do not differ significantly.

Figure A1: Percentile Targeting OLS vs. NN (incl. 95% CI) - India, Baseline
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Figure A2: Percentile Targeting OLS vs. NN (incl. 95% CI) - Indonesia, Baseline

A.2.2 Subgroup analysis - Second Round

Figure A3 and A4 depict the targeting accuracy for the different methods along the con-

sumption distribution. All models follow the same patterns besides the random forests’

which slightly overestimate consumption for both India and Indonesia. This leads to a

line that lies below the other three as households are less likely to be categorized poor

which also translates into the aggregate error rates in Table 5 where the random forest

models have higher exclusion and lower inclusion error rates.

The subgroup analysis for urban vs. rural households and those with a female vs. male

head is shown in Table A11. The only statistically significant coefficient on a 5%-level

is the interaction between the urban dummy and the neural network. However, with a

magnitude of 0.8 percentage points compared to a constant of 13.8 percent, the effect is

economically not significant. Additionally, visual inspection of the corresponding maps,

Figures A5 and A6, does not suggest that the methods target certain states differently

accurate. For an econometric analysis on the different states, please see Section A.2.6.

Overall, the subgroup analysis for the data sets of the second round is in line with our

findings in Section 5.1 for the baseline.
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Figure A3: Targeting along Consumption Percentiles - India, Second Round

Figure A4: Targeting along Consumption Percentiles - Indonesia, Second Round
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Table A11: Total Error Rates for Inspected Subgroups - Second Round

India Indonesia

(1) (2) (3) (4)

Urban x PR −0.002 0.008
(0.002) (0.005)

Urban x NN −0.008∗∗∗ 0.007
(0.003) (0.010)

Urban x RF −0.004 0.006
(0.005) (0.013)

Female x PR 0.003 0.007
(0.003) (0.007)

Female x NN 0.007∗ −0.007
(0.004) (0.015)

Female x RF −0.001 0.010
(0.005) (0.017)

Constant 0.138∗∗∗ 0.119∗∗∗ 0.174∗∗∗ 0.136∗∗∗

(0.007) (0.005) (0.012) (0.008)

Method FE Yes Yes Yes Yes
Urban FE Yes No Yes No
Female FE No Yes No Yes

Observations 41,480 41,480 14,056 14,056

Note: Standard errors are clustered at the district level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(1) and (3): Urban vs. Rural Households
(2) and (4): Female vs. Male Head of Household
PR: Penalized Regression, NN: Neural Network, RF: Random Forest

Figure A5: Total Error Rates across States - India, Second Round
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Figure A6: Total Error Rates across Provinces - Indonesia, Second Round

A.2.3 Subgroup analysis - Rob. Check: Half Poverty Line

Figure A7 and A8 depict the targeting accuracy for the different methods along the

consumption distribution. Due to the very low poverty lines that only classify around 5

percent of the households each country as poor, all models follow the perfect classification

line for most of the consumption distribution. The two neural network models seem to be

the most precise in terms of classifying the poor correctly, however, even they often clas-

sify more than half of the poorest percentiles as non-poor. However, as shown in Table

6 in the main body, the differences are not significant on aggregate for the total error rate.

The subgroup analysis for urban vs. rural households and those with a female vs. male

head is shown in Table A12 and does not include any interaction that is significant on

a 5%-level. Additionally, visual inspection of the corresponding maps, Figures A9 and

A10, does not indicate that the methods target certain states differently accurate. It is

interesting to note however, that the error rates for Indian states, despite being small on

aggregate, can be substantial for some states such as Chhattisgarh. For an econometric

analysis on the different states, please see Section A.2.6. Overall, the subgroup analysis

for our robustness check using a smaller poverty line confirms our findings for the baseline

in Section 5.1.
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Figure A7: Targeting along Consumption Percentiles - India, Half Poverty Line

Figure A8: Targeting along Consumption Percentiles - Indonesia, Half Poverty Line
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Table A12: Total Error Rates for Inspected Subgroups - Half Poverty Line

India Indonesia

(1) (2) (3) (4)

Urban x PR −0.001∗ 0.000
(0.001) (0.002)

Urban x NN 0.002 0.005
(0.002) (0.004)

Urban x RF 0.002 −0.004
(0.002) (0.004)

Female x PR 0.001 −0.005
(0.001) (0.005)

Female x NN 0.0004 −0.001
(0.002) (0.009)

Female x RF −0.00002 −0.003
(0.002) (0.005)

Constant 0.047∗∗∗ 0.038∗∗∗ 0.061∗∗∗ 0.0367∗∗∗

(0.004) (0.003) (0.005) (0.004)

Method FE Yes Yes Yes Yes
Urban FE Yes No Yes No
Female FE No Yes No Yes

Observations 41,484 41,484 11,632 11,632

Note: Standard errors are clustered at the district level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(1) and (3): Urban vs. Rural Households
(2) and (4): Female vs. Male Head of Household
PR: Penalized Regression, NN: Neural Network, RF: Random Forest

Figure A9: Total Error Rates across States - India, Half Poverty Line
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Figure A10: Total Error Rates across Provinces - Indonesia, Half Poverty Line

A.2.4 Subgroup analysis - Rob. Check: Short Vector

Figure A11 and A12 depict the targeting accuracy for the different methods along the

consumption distribution. All models follow the same patterns besides the neural net-

works’ which slightly underestimate consumption for both India and Indonesia. This

leads to a line that lies above the other three as households are more likely to be cate-

gorized poor which translates into the aggregate error rates in Table 7 where the neural

network models have lower exclusion and higher inclusion error rates.

The subgroup analysis for urban vs. rural households and those with a female vs. male

head is shown in Table A13 and does not include any interaction that is significant on

a 5%-level. Additionally, visual inspection of the corresponding maps, Figures A13 and

A14, does not indicate that a single method targets certain states differently accurate

compared to the others. One small difference that can be noted is that in the case of

India, the models of OLS and penalized regression, target the states of Madhya Pradesh

and Bihar slightly worse. We investigate whether this could be a systematic difference in

an econometric analysis together with the other analyses in Section A.2.6. Overall, the

subgroup analysis for our robustness check using a short set of input variables confirms

our findings for the baseline in Section 5.1.
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Figure A11: Targeting along Consumption Percentiles - India, Short Vector

Figure A12: Targeting along Consumption Percentiles - Indonesia, Short Vector
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Table A13: Total Error Rates for Inspected Subgroups - Short Vector

India Indonesia

(1) (2) (3) (4)

Urban x PR −0.003 0.003
(0.003) (0.003)

Urban x NN 0.008 0.004
(0.005) (0.008)

Urban x RF 0.003 −0.002
(0.006) (0.011)

Female x PR 0.005 0.004
(0.004) (0.003)

Female x NN 0.002 −0.011
(0.008) (0.010)

Female x RF 0.006 −0.009
(0.010) (0.008)

Constant 0.211∗∗∗ 0.193∗∗∗ 0.207∗∗∗ 0.165∗∗∗

(0.007) (0.008) (0.009) (0.007)

Method FE Yes Yes Yes Yes
Urban FE Yes No Yes No
Female FE No Yes No Yes

Observations 41,484 41,484 11,632 11,632

Note: Standard errors are clustered at the district level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(1) and (3): Urban vs. Rural Households
(2) and (4): Female vs. Male Head of Household
PR: Penalized Regression, NN: Neural Network, RF: Random Forest

Figure A13: Total Error Rates across States - India, Short Vector
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Figure A14: Total Error Rates across Provinces - Indonesia, Short Vector

A.2.5 Subgroup analysis - Time Stability

Figure A15 and A16 depict the targeting accuracy for the different methods along the

consumption distribution. All models follow the same patterns besides the neural net-

works’ which slightly overestimate consumption for Indonesia. This leads to a line that

lies below the other three as households are less likely to be categorized poor. This trans-

lates into the aggregate error rates in Table 9 where the neural network models have

higher exclusion and lower inclusion error rates, evening out in the total error rate that

is not statistically significantly different.

The subgroup analysis for urban vs. rural households and those with a female vs. male

head is shown in Table A14. The only statistically significant coefficient on a 5%-level

is the interaction of the urban dummy and the neural network in the Indonesia data

set. However, with a magnitude of 1.4 percentage points compared to a constant of

19.1 percent, the effect is arguably economically not significant. Additionally, visual

inspection of the corresponding maps, Figures A17 and A18, does not indicate that the

a single method targets certain states differently accurate compared to the others. Note

however, that both machine learning tools seem to target the small Indonesian state

Sulawesi Barat badly. We investigate whether this could be a systematic difference in

an econometric analysis together with the other analyses in Section A.2.6. Overall, the

subgroup analysis for our time stability setting confirms our findings for the baseline in

Section 5.1.
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Figure A15: Targeting along Consumption Percentiles - India, Time Stability

Figure A16: Targeting along Consumption Percentiles - Indonesia, Time Stability
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Table A14: Total Error Rates for Inspected Subgroups - Time Stability

India Indonesia

(1) (2) (3) (4)

Urban x PR −0.001 −0.004
(0.001) (0.003)

Urban x NN 0.0003 −0.014∗∗∗

(0.002) (0.005)
Urban x RF 0.004 0.002

(0.003) (0.006)
Female x PR −0.001 −0.002

(0.001) (0.005)
Female x NN 0.001 −0.001

(0.003) (0.008)
Female x RF −0.007∗ −0.002

(0.004) (0.007)
Constant 0.145∗∗∗ 0.123∗∗∗ 0.191∗∗∗ 0.145∗∗∗

(0.005) (0.005) (0.007) (0.005)

Method FE Yes Yes Yes Yes
Urban FE Yes No Yes No
Female FE No Yes No Yes

Observations 165,964 165,964 56,224 56,224

Note: Standard errors are clustered at the district level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(1) and (3): Urban vs. Rural Households
(2) and (4): Female vs. Male Head of Household
PR: Penalized Regression, NN: Neural Network, RF: Random Forest

Figure A17: Total Error Rates across States - India, Time Stability
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Figure A18: Total Error Rates across Provinces - Indonesia, Time Stability

A.2.6 State and Province analysis

The maps, which depict the total error rates in the different states and provinces, have

given little proof that our four methods target certain states differently compared to each

other. While there is variance in the total error rate across states, no state seems to be

consistently targeted worse or better by one method across all analyses. To confirm this

visual evidence, we analyze the total error rates in a regression setting. We bundle all

but the six most populous states in each country together to obtain large enough sample

sizes and then check using the regression depicted in equation 4 for differences in means

across the largest states and the different methods. The results for all five of our analyses

are depicted in Table A15 and A16.

For India, we see that there are between zero and three coefficients per analyses that are

significant at a 5%-level. For example, for our robustness check using a poverty line at

50 percent of the official level, the penalized regression model leads to 1 percentage point

higher total error rates in West Bengal compared to the other methods and all other

states that are not specifically included as dummies in the regression. Although this

might seem small in size, it represents an increase of more than 25 percent from the mean

value of 3.7 percent. Hence, it could be considered economically significant. However,

while we observe some similar significant coefficients across the different analyses, they

are not robust across all analyses.

This pattern is mirrored in the results for the state analyses on the Indonesian data

sets. There are between zero and four statistically significant coefficients in the analysis,

at a 5%-level, with the robustness check using a short vector being the one with the

most ones. However, there is no interaction term for which the coefficient is constantly
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significant across all analyses. Hence, we conclude that the econometric analysis supports

our hypothesis of no systematic discrimination against certain states by any particular

method.
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Table A15: Test for Differences across the Largest States - India

India

(1) (2) (3) (4) (5)

PR x Uttar Pradesh 0.009 0.001 −0.002 0.010∗ 0.002
(0.008) (0.003) (0.002) (0.006) (0.003)

PR x Maharashtra 0.016 −0.007 0.001 0.009∗ −0.00001
(0.010) (0.008) (0.001) (0.005) (0.004)

PR x Bihar 0.002 0.003 0.001 −0.006 0.002
(0.007) (0.004) (0.001) (0.005) (0.002)

PR x West Bengal 0.015∗ 0.001 0.010∗∗∗ 0.020∗∗∗ 0.003
(0.009) (0.003) (0.003) (0.007) (0.003)

PR x Madhya Pradesh 0.002 0.001 −0.001 0.0005 0.0003
(0.006) (0.004) (0.002) (0.004) (0.002)

PR x Tamil Nadu 0.018∗∗ −0.001 −0.001 0.008 0.002
(0.007) (0.008) (0.002) (0.008) (0.002)

NN x Uttar Pradesh 0.007 0.001 0.001 0.016 0.012∗∗

(0.010) (0.008) (0.002) (0.014) (0.005)
NN x Maharashtra −0.027∗∗ −0.019 −0.002 −0.033∗ 0.012

(0.013) (0.022) (0.003) (0.017) (0.011)
NN x Bihar −0.021 0.001 0.003 −0.015 0.007

(0.015) (0.011) (0.002) (0.015) (0.008)
NN x West Bengal −0.021∗ 0.005 −0.006 −0.018 0.005

(0.011) (0.008) (0.010) (0.016) (0.006)
NN x Madhya Pradesh 0.011 −0.004 −0.0001 0.006 0.006∗

(0.013) (0.009) (0.004) (0.011) (0.003)
NN x Tamil Nadu 0.008 0.008 −0.001 0.003 0.009∗∗∗

(0.010) (0.010) (0.002) (0.012) (0.003)
RF x Uttar Pradesh 0.009 −0.005 −0.001 0.003 0.035∗∗∗

(0.011) (0.008) (0.002) (0.012) (0.009)
RF x Maharashtra −0.008 0.001 −0.002 −0.029∗ −0.018∗

(0.017) (0.020) (0.003) (0.017) (0.011)
RF x Bihar −0.015 −0.011 0.002 −0.010 −0.003

(0.013) (0.014) (0.002) (0.018) (0.005)
RF x West Bengal −0.013 0.007 −0.007 −0.038∗∗∗ 0.005

(0.017) (0.011) (0.011) (0.014) (0.006)
RF x Madhya Pradesh 0.003 0.002 −0.001 −0.012 −0.004

(0.011) (0.007) (0.002) (0.011) (0.004)
RF x Tamil Nadu 0.027∗ 0.011 0.0005 0.004 0.002

(0.015) (0.010) (0.001) (0.010) (0.003)
Constant 0.148∗∗∗ 0.096∗∗∗ 0.037∗∗∗ 0.163∗∗∗ 0.097∗∗∗

(0.008) (0.005) (0.004) (0.008) (0.004)

Method FE Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes

Observations 41,484 41,480 41,484 41,484 165,964

Note: Standard errors are clustered at the district level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(1) Baseline, (2) Second Round, (3) Robustness Check: Half Poverty Line, (4) Robustness
Check: Short Vector, (5) Time Stability.
Six chosen states counting for 37.5 percent of the population for (1),(3),(4).
Six chosen states counting for 38.8 percent of the population for (2).
Six chosen states counting for 38.6 of population for (5).
PR: Penalized Regression, NN: Neural Network, RF: Random Forest
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Table A16: Test for Differences across the Largest Provinces - Indonesia

Indonesia

(1) (2) (3) (4) (5)

PR x Jawa Barat 0.003 −0.013 −0.001 0.004∗ 0.013∗∗

(0.012) (0.017) (0.003) (0.002) (0.006)
PR x Jawa Timur 0.018 −0.015∗ −0.001 0.009∗ −0.003

(0.013) (0.008) (0.003) (0.006) (0.004)
PR x Jawa Tengah −0.003 −0.001 −0.001 0.002 −0.007

(0.010) (0.007) (0.004) (0.003) (0.005)
PR x Sumatera Utara −0.017 0.006 −0.001 0.004 −0.003

(0.014) (0.008) (0.003) (0.005) (0.006)
PR x Banten −0.004 −0.005 −0.003 0.007∗∗ 0.001

(0.016) (0.008) (0.007) (0.003) (0.005)
PR x Jakarta Raya 0.003 −0.001 −0.001 0.004∗ −0.004

(0.008) (0.005) (0.003) (0.002) (0.005)
NN x Jawa Barat 0.001 −0.015 −0.005 0.027∗∗∗ 0.025∗∗∗

(0.020) (0.018) (0.004) (0.008) (0.007)
NN x Jawa Timur 0.002 0.004 −0.005 0.030∗∗ 0.003

(0.019) (0.012) (0.004) (0.014) (0.007)
NN x Jawa Tengah 0.007 0.004 −0.011∗∗ 0.019 −0.005

(0.016) (0.013) (0.006) (0.014) (0.008)
NN x Sumatera Utara 0.024 0.027∗∗ 0.001 0.018 0.018∗

(0.021) (0.013) (0.009) (0.016) (0.010)
NN x Banten −0.024 0.006 −0.010 −0.003 0.004

(0.018) (0.010) (0.007) (0.009) (0.008)
NN x Jakarta Raya 0.007 −0.0002 −0.005 0.026∗∗ 0.002

(0.028) (0.020) (0.004) (0.011) (0.011)
RF x Jawa Barat −0.009 −0.026 −0.003 0.016 0.010

(0.017) (0.019) (0.003) (0.021) (0.009)
RF x Jawa Timur −0.009 0.005 −0.003 −0.001 0.010

(0.012) (0.016) (0.003) (0.018) (0.007)
RF x Jawa Tengah −0.005 0.006 −0.001 0.007 0.006

(0.014) (0.011) (0.005) (0.010) (0.008)
RF x Sumatera Utara 0.015 0.037∗∗ −0.003 −0.004 0.017∗∗∗

(0.023) (0.016) (0.003) (0.020) (0.006)
RF x Banten −0.011 0.026∗ −0.001 −0.003 0.014∗

(0.015) (0.015) (0.007) (0.017) (0.008)
RF x Jakarta Raya −0.019 −0.008 −0.003 −0.001 −0.004

(0.019) (0.027) (0.003) (0.027) (0.013)
Constant 0.156∗∗∗ 0.149∗∗∗ 0.042∗∗∗ 0.174∗∗∗ 0.157∗∗∗

(0.011) (0.009) (0.006) (0.007) (0.007)

Method FE Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes

Observations 11,632 14,056 11,632 11,632 56,224

Note: Standard errors are clustered at the district level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(1) Baseline, (2) Second Round, (3) Robustness Check: Half Poverty Line, (4) Robustness
Check: Short Vector, (5) Time Stability.
Six chosen states counting for 59.8 percent of the population for (1),(3),(4).
Six chosen states counting for 57.6 percent of the population for (2).
Six chosen states counting for 58.1 of population for (5).
PR: Penalized Regression, NN: Neural Network, RF: Random Forest
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