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Abstract 

Real-time pricing (RTP) of electricity avoids the market inefficiencies caused by flat-rate pricing and 
can help to integrate a greater share of renewable energies. However, RTP for household consumers 
has met fierce opposition, often on the grounds that it will have adverse redistributional effects. 
Modelling the British electricity market under RTP while accounting for the merit-order effect of 
renewable energies, we use hourly data on the electricity consumption by households from 17 
different socio-economic groups to estimate the short-run impact of a mandatory switch to RTP on the 
welfare of these groups. For households from all groups we find only negligible changes in welfare. 
Moreover, we find little differences in the welfare impact of RTP across socio-economic groups, 
contrasting with the commonly expressed worry that RTP will negatively affect already disadvantaged 
consumers, thereby exacerbating energy poverty. 
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Notation 

𝐴௛  Anchor of aggregate demand at hour ℎ 
𝑄௛  Traded volume of electricity at hour h ℎ 
𝑝௛ Electricity price at hour ℎ 

𝐷௛(𝑝௛) Aggregate electricity demand at price 𝑝௛  
𝜀 Absolute price elasticity of demand 

𝑀𝐶(𝑄௛) Marginal cost of generating quantity 𝑄௛   
𝑝̅ Flat rate price of electricity 
𝑤ഥ  Weighted average marginal cost of electricity 
𝑟̅ Constant surcharge 𝑟̅ covering fixed costs and transmission charges 

𝑤𝑒𝑒𝑘𝑙𝑦𝑝𝑎𝑡𝑡𝑒𝑟𝑛௚(𝑡) Mapping function for weekly pattern of group 𝑔 at hour 𝑡 of the week 
𝑎௚௧௪ Standardized anchor for a representative household in group g for hour t in 

week number 𝑤 
𝑎ത௚௪ Weekly arithmetic mean of anchor series for a representative household in 

group 𝑔 
𝑎തௗ௪ Weekly arithmetic mean of anchor series for the average domestic 

household 
𝜎௚௪ Weekly standard deviation from the mean of anchor series for a 

representative household in group 𝑔 
𝜎ௗ௪ Weekly standard deviation from the mean of anchor series for the average 

domestic household 
𝛼௚௪ Parameter for week number 𝑤 capturing the ratio of the group-wise weekly 

arithmetic mean of the anchor series for a representative household in group 
𝑔 with respect to weekly arithmetic mean of the anchor series for the 
domestic average 

𝛽௚௪ Parameter for week number 𝑤 capturing the ratio of the group-wise weekly 
standard deviation of the anchor series for a representative household in 
group 𝑔 with respect to weekly standard deviation of the anchor series for 
the domestic average 
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1 Motivation  

1.1 The Case for Real Time Pricing 

The value of electricity varies throughout the day because large-scale power storage remains 
technologically unfeasible. Whereas prices for end consumers are generally time-invariant, marginal 
costs faced by the generators vary every instant, as supply is adjusted to meet demand. Since marginal 
benefit and marginal cost align only by chance, the market suffers from chronic over- and under-
consumption compared to the social optimum (Jessoe & Rapson, 2015). This market inefficiency 
results in substantial deadweight loss, estimated at 5-10% of the Californian wholesale electricity 
market during the early 2000s (Borenstein, 2005). In the short run, electricity retailers thus subsidize 
the high marginal costs of peak-time generation via higher overall flat-rate prices. In the long run, 
avoiding blackouts during peak hours requires excess investment in generation and transmission 
capacity.1  

Load volatility may increase further in the coming years, thus exacerbating the market inefficiency 
problem. On the demand side, the spread of electric cars and individual heat pumps could increase 
household electricity use. If this electricity is drawn during the peak consumption times hours due to 
missing price signals, demand volatility will be exacerbated (Møller Andersen, Baldini, Hansen, & 
Jensen, 2017). Moreover, the growing share of non-dispatchable renewables in the form of solar and 
wind energy introduces increasing supply-side volatility, which translates into more volatile residual 
demand for dispatchable generation (Ambrosius, Grimm, Sölch, & Zöttl, 2018). 

In recent years, many economists have called for the introduction of electricity real-time pricing (RTP), 
whereby retail prices vary hourly to accurately reflect scarcity, as the clear “first best policy” 
(Borenstein, 2005; Jessoe & Rapson, 2015; Joskow & Wolfram, 2012). In some jurisdictions, notably 
Spain and Illinois, retail companies have started offering RTP to domestic customers on a voluntary 
basis (Fernández, Payán, Santos, & García, 2017; The Citizens' Utility Board & The Environmental 
Defense Fund, 2017).  

Assuming non-zero price elasticity on the part of end consumers, RTP should reduce demand volatility, 
lowering both short-term costs (by shifting the electricity mix towards lower-marginal-cost baseload 
generation) and long-run costs (by reducing the generation and transmission capacity needed to meet 
peak demand) (Ambrosius, Grimm, Sölch, & Zöttl, 2018; Borenstein & Holland, 2005). 

 

1.2 Potential Issues with RTP 

At the same time, regulators and the wider population have expressed reservations about RTP, 
centered around two main concerns.  

The first concern relates to the potential for price shocks, namely that customers may receive a much 
larger bill than they budgeted for after consuming large amounts of electricity during a time when 
prices skyrocket (Borenstein, 2007). However, the fact that customers budget for electricity on a bi-

                                                             
1 Of course, rather than making costly investments in mostly idle backup capacity, countries could choose instead 
to tolerate some number of blackouts. However, most developed countries have a strong aversion even to rare 
electricity blackouts, due to their immense economic cost (Jessoe & Rapson, 2015). 
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weekly or monthly basis insulates them somewhat from volatility in hourly prices. Borenstein (2007) 
also shows that simple hedging products can eliminate 80% of volatility of the seasonally-adjusted 
monthly bill. Finally, electricity consumers can avoid such extreme periods with relative ease if 
generation companies provide them with prior warnings, since such periods tend to be of short 
duration, and because they are based on day-ahead prices which are known by the afternoon of the 
previous day.2  

The second concern is that RTP may have unfair redistributive effects (Borenstein, 2007; Dutta & Mitra, 
2017). Such concerns are growing increasingly pertinent amid rising policy awareness of the adverse 
consequences of energy poverty on households’ health and wellbeing (EU Energy Poverty Observatory, 
2019). In 2016, the UK government considered 11.1% of English household to be living in energy 
poverty (Department for Business, Energy, and Industrial Strategy, 2018a). At the same time, most 
residential electricity consumption goes towards basic needs: 57% of electricity consumed by an 
average German three-person household goes towards refrigeration, washing/drying, cooking, light, 
and dishwashing (Nier, 2019). Since electricity is a necessity, its share in household expenditures is 
much higher for lower income groups; changes in electricity prices therefore have a larger impact on 
the poor (Centre for Competition Policy, 2018). The widespread adoption of RTP would inevitably 
produce winners and losers, as it would remove the cross-subsidies currently received by those who 
consume disproportionately large quantities during periods when wholesale prices are high 
(Borenstein & Holland, 2005). Removing this subsidy may be socially unjust if already disadvantaged 
consumers are particularly hard-hit. This may be the case if disadvantaged customers have a less elastic 
demand, or if they tend to disproportionately consume during peak hours (Dutta & Mitra, 2017). The 
purpose of this paper will be to address the latter concern. 

 

1.3 Research Question and Outline 

Understanding who stands to benefit or lose from mandatory RTP should allow policy-makers to avoid 
unintended policy consequences and introduce accompanying measures when needed, for instance in 
the form of targeted lump-sum aid to the losing groups. It should also prove helpful in building a 
coalition to support more widespread adoption of RTP, which governments have been loath to 
embrace due to the perceived political risks (Wolak, 2011).  

Against this backdrop, we extend the existing literature on the welfare effects of RTP by estimating the 
magnitude and direction of the consumer surplus change resulting from a switch from flat-rate pricing 
to RTP for consumer groups with dissimilar demand patterns, and comparing the differences in this 
welfare effect across groups in the short-run. 

We begin our discussion by outlining the existing literature on the topic in section 2, followed by a 
detailed description of the data we use in section 3. Since mandatory RTP has never been implemented 
for domestic electricity consumers, a simulation of equilibrium under RTP must precede the analysis 
of heterogeneity in consumption patterns. We do this by using a model of electricity generation based 
on demand and generation cost data from Great Britain, outlined in section 4. Having constructed 
                                                             
2 For instance, ComEd, the electric utility monopolist in Northern Illinois, offers warnings via text message, e-mail, 
or automated phone call as part of its RTP tariff (ComEd, 2019). Such an arrangement involves low costs, while 
benefitting both generation companies (by allowing them to maintain less back-up capacity to meet peak 
demand) and households (by helping them to avoid high-cost periods). 
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simulated RTP prices, we turn to calculating demand patterns for different consumer groups in section 
5. Combining our model of the British electricity market with the demand curves for various consumer 
groups, obtained in section 4 and 5 respectively, we calculate the impact of RTP on the consumer 
surplus of these distinct groups. A discussion and interpretation of the results is provided in section 6. 
Finally, section 7 discusses the limitations of our analysis, while section 8 contains concluding remarks. 
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2 Literature  

Although there is a growing literature on dynamic pricing in general and RTP in particular, surprisingly 
little attention has been paid to how heterogenous demand patterns across different subpopulations 
may affect the assessed benefits from RTP. Many papers do acknowledge that load patterns might 
systematically vary with socio-economic group – implying that the costs and benefits of RTP would be 
concentrated in certain sections of society (Borenstein, 2005; Joskow & Wolfram, 2012). Without 
accompanying compensating measures, introducing RTP could thus lead to unintended redistributions. 
However, this interaction of demand heterogeneity and RTP is often only considered briefly, on the 
basis of intuitions. In part, this is explained by the lack of hourly data on household electricity 
consumption until the recent proliferation of cheap smart metering technology (The Citizens' Utility 
Board & The Environmental Defense Fund, 2017). Another likely factor is the persistence of flat-rate 
retail pricing and resulting scarcity of RTP field studies.  

This paper contributes to the literature by allowing for heterogeneity in demand patterns and 
estimating the impact of RTP on different subsections of society. Importantly, demand patterns are 
extracted from real-world household consumption data that includes socio-economic characteristics 
of the households in question. We believe that this approach allows for a more nuanced view on the 
benefits from RTP. Moreover, understanding how RTP impacts different segments of society will 
provide a basis for policy measures to accompany the introduction of RTP. 

Finally, despite the fact that intermittent renewables have a growing impact on wholesale costs, and 
although several authors have noted that RTP can help integrate a much larger share of intermittent 
renewables, only a handful of papers explicitly account for renewables when modelling dynamic 
pricing (Dütschke & Paetz, 2013; Joskow & Wolfram, 2012). By accounting for intermittent renewable 
generation, our model better reflects the realities of the contemporary hourly wholesale prices which 
provides the basis for real-time. 

 

2.1 Literature Review  

As far as we are aware, the only paper that focuses on heterogeneous consumer benefits from RTP is 
a 2017 empirical study simulating how 344,717 flat-rate customers of northern Illinois’ electricity 
generation and retail monopolist would have fared if they had chosen the companies’ RTP tariff instead 
(The Citizens' Utility Board & The Environmental Defense Fund, 2017). The study exposes significant 
heterogeneity in households’ load patterns. Assuming consumption remains the same, fully 95% of 
households would have saved money under the RTP tariff, with the top 5% saving an average 31% on 
their bill, and only the bottom 3% losing money. However, this remarkable result can be explained by 
the fact that the flat-rate offered was much higher than the weighted average real-time price, thereby 
forcing consumers to pay a large premium for the security of their flat-rate tariff. 

Several authors have simulated or measured the impact of residential RTP on average consumer 
surplus; all find a positive effect amounting to a few percentage points of consumer surplus. Borenstein 
(2005) simulates the long-run impact of RTP on consumer surplus, using Californian consumption data 
between 1999 and 2003. He concludes that switching 99.9% of consumers to RTP increases total 
annual consumer surplus by several hundred million dollars, equivalent to several percentage points 
of the total bill (the exact increase in consumer surplus depends on the assumed demand elasticities). 
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Evaluating the first program to offer residential RTP in the US, Alcott (2011) finds that, in the short-
run, participating households enjoy a small increase in consumer surplus, amounting to 1-2% of yearly 
electricity costs on average. Interestingly, although households reduce consumption during expensive 
peak hours, they do not significantly increase consumption during off-peak hours. Adapting the model 
that also provided the basis for Borenstein’s 2005 paper, Holland and Mansur (2006) simulate RTP for 
the PJM electricity market that covers parts of Pennsylvania, Delaware, New Jersey, and Maryland 
between 1998 and 2000. They find a modest increase in consumer surplus of 2.5% in the short-run. 
Simulating the impact of universal RTP adoption for a single year, the New York Systems Operator 
found market-based customer cost savings in the range of 2–5% (Faruqi, 2010). Wolak (2011) 
compares consumer responses to RTP, critical peak pricing and peak rebate pricing during a pilot 
project in Washington DC, confirming that households do respond to RTP and suggesting that 
households that heat with electricity are more responsive.  

Although we are not aware of any paper that investigates the interaction of RTP and heterogenous 
load patterns, there are some papers that consider heterogenous load patterns in related contexts. A 
2010 whitepaper sponsored by the Edison Foundation’s Institute for Electric Efficiency, a charitable 
organization primarily backed by investor-owned utilities, found that low-income consumers benefit 
from dynamic pricing, based on  four pilot studies of various simpler dynamic pricing schemes in the 
US, including critical peak pricing (CPP), critical peak rebates (CPR) and time-of-use pricing (TOU) 
(Faruqui, Sergici, & Palmer, 2010).  

Crucially, the authors’ bill impact simulation implies that 65-79% of low-income customers would 
benefit from CPP or CPR even without changing their consumption. This is because low income 
customers tend to have flatter-than average load curves (implying that, under flat-rate pricing, low 
income customers in fact subsidize others with ‘peakier’ load patterns). Assuming all consumers have 
the same demand elasticity, low-income consumers should therefore benefit from RTP. 

McLoughlin, Duffy, and Conlon (2015) employ unsupervised clustering algorithms to group Irish 
electricity consumers into ten common types according to their load shapes. They then link each type 
to a wide range of household characteristics using multinomial logistic regression. However, the links 
between household characteristics and consumption type often are not statistically significant. 
Nonetheless, the authors find peakier-than-average demand to be associated with a greater number 
of bedrooms, more electricity-intensive household appliances like dishwashers and tumble dryers, and 
middle-aged or old people. These findings suggest that flat-rate pricing may in fact subsidize mostly 
better-off households.  

To summarize then, the literature on the consumer welfare effects of RTP generally finds a modest but 
positive impact, both in the short-run and in the long-run. Moreover, some papers considering the 
relationship between income and demand patterns suggest that peakier-than-average demand 
patterns may be associated with better-off households.  
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3 Data 

The critical inputs for our electricity market model are demand elasticity and hourly load profile, as 
well as costs and capacities of the various generation technologies. In order to model load pattern 
heterogeneity, we also rely on household level data on load and socioeconomic background.  

 

3.1 Electricity Market Data 

We focus on the electricity bidding zone of Great Britain (“GB BZN”), comprising England, Wales, and 
Scotland. As an island, Britain has relatively few interconnectors for exports or imports. Domestically 
produced power therefore covers almost all of Britain’s electricity loads, allowing us to abstract from 
exports and imports.3 Furthermore, Britain’s electricity mix includes significant quantities of all major 
generation technologies (nuclear, coal, gas, solar, and wind) with the exception of reservoir 
hydropower, which is extremely difficult to model correctly (Staffel & Green, 2015b).4 This provides a 
varied composition of the supply-side. Finally, we have access to power consumption patterns from a 
sample of households that are categorized into one of 17 socio-economic groups of the UK, which 
becomes the basis for introducing heterogeneity, thereby making it possible to generalize their 
demand patterns across the UK. We consider the timeframe spanning from the 1st of January 2013 to 
the 31st of December 2017.   

The electricity supply stack is defined by the capacity and marginal cost of different generation 
technologies. We take installed capacities from chapter 5.7 of the Digest of UK Energy Statistics (DUKES 
5.7) and group them into 11 distinct generation types, based on underlying fuel sources and 
technologies. We update generation capacity on a yearly basis to account for the substantial changes 
in the capacity mix that took place during our period of interest, primarily to replace coal with wind 
and CCGT generation. Due to scheduled and unscheduled outages, installed generation capacity is 
significantly greater than the available capacity at any point in time. We de-rate installed capacity 
accordingly, based on assumed breakdown rates from Parsons Brinckerhoff (2013), except pumped-
storage generation, for which we draw data from the National Grid ESO (2017). A detailed description 
of the methodology on construction of generation types can be found in Appendix A.  

To obtain marginal costs associated with our eleven generation types, we use yearly average fuel and 
emissions permit prices to update estimations of marginal costs in 2010 from Staffel and Green 
(2015a). A more detailed explanation is provided in Appendix B. 

The non-dispatchable capacity between 2015 and 2017 is given by the actual generation from wind 
and solar generation at any given hour, as sourced from the Open Power System Data (OPSD, 2018) 
based on data from the European Network of Transmission System Operators for Electricity (ENTSO-
E, 2019). Actual generation data for intermittent renewables is not available for previous years. For 
2013, we therefore simulate hourly generation from non-dispatchable sources by combining data on 
installed renewable capacities from chapter 5.7 of the Digest of UK Energy Statistics (DUKES 5.7), as 

                                                             
3 Net imports accounted for 4.2% of electricity supplied in 2017 (Department for Business, Energy, and Industrial 
Strategy, 2018b).  
4 Peak-shaving models of reservoir hydro-power deployment, whereby reservoir hydro plants are assumed to 
have a reservation price above which they enter the generation market, have proven rather inaccurate (Staffel 
& Green, 2015b).  
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well as capacity factors estimated based on historical weather patterns from OPSD (Pfenninger & 
Staffell, 2017). For further explanations see Appendix C. 

To estimate the aggregate hourly demand curve, we require prices and associated aggregate demand 
in the baseline flat-rate scenario, as well as an estimate of demand elasticity. Aggregate demand under 
flat-rate pricing is given by the actual hourly load in the British day-ahead market, sourced from the 
OPSD and based on data from ENTSO-E.  

Average flat-rate prices for domestic consumers are taken from the Department for Business, Energy, 
and Industrial Policy (2018e).  

 

3.1.1 Price Elasticity of Demand 

As already mentioned, the two main factors determining how RTP affects individual households are 
the price elasticity of demand and the load pattern throughout the day. More price-elastic households 
are better able to take advantage of RTP.5  

In experimental studies of critical peak pricing (CPP) and time-of-use pricing (TOU), some authors find 
low-income customers to be more responsive (Faruqui & Palmer, 2012; Wolak, 2011). Others, 
however, suggest the opposite (Wang, Biviji, & Wang, 2011). Evaluating four pilot studies on various 
CPP, CPR, and TOU programs, a whitepaper by the industry-funded Edison Foundation’s found that 
low-income customers’ degree of price-responsiveness relative to the average varies across the 
programs reviewed, with lower income customers are either equally or less-responsive. 

Since there is no clear consensus on the price elasticity of low-income consumers relative to the price 
elasticity of the average consumer, and a significant share of papers find that the price elasticity of 
low-income consumers is not statistically significantly different from the average, we choose to assume 
that households are homogenous with regards to their price elasticity. However, we conduct our 
analysis using a range of different elasticities. Hence, we also obtain estimates of consumer surplus 
changes for low-income consumers under lower price elasticities.  

The level of the short-run price elasticity of electricity is likewise much debated in the literature, 
however, few estimates of the very-short-run price elasticity exist that are relevant for RTP. Estimates 
of the price elasticity of electricity are further complicated by the fact that it varies with the use of 
electric cooling or heating, as well as enabling technologies such as in-home displays of energy prices 
and smart appliances (Gottwalt, 2011; Lijesen, 2007; Faruqui, Sergici, & Akaba, 2014). Summarizing 
the literature on elasticity in Time-of-Use (TOU) electricity prices, Lijsen (2007) finds estimates ranging 
between 0.013 and 0.158. Given the technologies for demand response available at the time, 
Borenstein (2005) considers various short-run price elasticities ranging in a similar range; in his central 
scenario price elasticity is 0.1. Simulating the short-run welfare impact of RTP, Holland and Mansur 
(2006) likewise assume a constant price elasticity of demand of 0.1. For our model, we also assume a 
central scenario with a constant price elasticity of 𝜀 = 0.1 across all consumer types. However, we also 

                                                             
5 Note however that consumer surplus does not increase linearly in elasticity: Borenstein (2005) suggests that 
consumers experience diminished returns from increased elasticity. 
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conduct our analysis on elasticities ranging from 0.025 to 0.150 in order to cover the full range of 
common elasticity estimates.  

 

3.2 Household Data 

The data we rely on to model heterogeneity is taken from the London Data Store (2014) and covers a 
representative sample of 4,372 households throughout the year 2013. It includes half-hourly 
consumption for each household, as well as their Acorn group. Acorn is a segmentation tool that 
divides the UK households into five broad categories, subdivided into 17 socio-economic groups (CACI, 
2013). Each group is assigned a letter, listed along with the relevant group’s share of UK households in 
the year 2013 and the broader category it belongs to in Table 1. 
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Table 1: Acorn groups and their share of the UK population 

AFFLUENT ACHIEVERS – very wealthy, large dwellings 
Share 

A Lavish Lifestyles  middle-aged/older entrepreneurs/ professionals 1.31% 
B Executive Wealth  middle-aged, combining job and family 12.48% 
C Mature Money  old and usually retired  8.92% 

RISING PROSPERITY – prosperous, smaller dwellings  

D City Sophisticates  young singles/ couples, childless  3.26% 
E Career Climbers  young singles/ couples/ families 6.10% 

COMFORTABLE COMMUNITIES – average income  
 

F Countryside Communities  older, working in skilled trades/ agriculture 6.38% 
G Successful Suburbs  families, average-sized dwellings 6.12% 
H Steady Neighborhoods  middle-aged, both families and empty nesters 8.32% 
I Comfortable Seniors  older, usually retired empty nesters 2.54% 
J Starting Out  younger couples starting a family or career 4.05% 

FINANCIALLY STRETCHED – low income & smaller houses 
 

K Student Life  Students/ recent graduates living in halls/ flats 2.53% 
L Modest Means  singles/ families/ single parents in small housing, 

above-average unemployment 
7.53% 

M Striving Families  Families with often high number of kids, above-
average unemployment 

8.11% 

N Poorer Pensioners  Retired and living in social housing 4.46% 

URBAN ADVERSITY – the most deprived areas in UK  

O Young Hardship  younger, singles/ couples with/without children,  5.25% 
P Struggling Estates  Many children, and single parents, above-average 

unemployment 
7.89% 

Q Difficult Circumstances  Many single parents, above-average 
unemployment, many with health issues  

4.76% 

 

Since the period of interest only spans five years, and because we find no reason to assume a 
substantial change in the composition of British society throughout this time, we assume that the 
above-listed shares remain constant from 2013 to 2018.  

For calculating the number of households in each Acorn group, we refer to annual data on the number 
of households living in Britain by the Office of National Statistics (2018). In order to avoids large jumps 
in the assumed number of households from one year to the next, we linearly interpolate the number 
of households, assuming a constant change throughout each year. To find the number of British 
households per group, we take the product of Acorn group shares with the total number of households 
interpolated for any given hour.  
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3.3 Selection of Years for Research 

Our data set on hourly household consumption by Acorn groups covers the year 2013. We therefore 
begin by estimating the impact of RTP on different household types during that year.  

However, the share of non-dispatchable renewables grew significantly in the following years, 
increasing from 8.16% in 2013 to 17.41% in 2017.6 Since intermittent renewable generation increases 
the volatility of residual demand and hence marginal costs, and because its ability to dampen such 
volatility is one of the major arguments advanced in favor of RTP, we are also interested in modelling 
the effect of RTP on different household types when the share of intermittent generation is higher. In 
a second step, we therefore extrapolate from consumption patterns observed in 2013 to obtain 
hypothetical demand patterns for each Acorn group for the years 2015 to 2017. We skip the year 2014 
due to a change in the way load data was recorded, and because data on actual hourly generation from 
renewables is only available from 2015 onwards. We do not consider the years after 2017 because 
some of the data mentioned above is not available due to publication lags. 

Hence, we obtain two sets of estimates of the impact of RTP on household welfare: estimates for 2013 
using actual household load data, and estimates for 2015 – 2017, using projected household load.  

 

 

 

 

  

                                                             
6 Own calculations based on data from the Department for Business, Energy, and Industrial Strategy (2018c; 
2019c). 
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4 Simulating Real-Time Prices 

Our modelling proceeds in two steps. First, we construct aggregate demand and supply curves in order 
to retrospectively simulate hypothetical real-time prices in the British retail market for the years 2013 
and 2015 – 2017. This step is necessary because observed loads during our period of interest were 
obtained under flat-rate pricing. In the second step, outlined in section 5, we introduce heterogeneity 
with regards to consumers’ demand profiles, followed by a calculation of different consumer groups’ 
consumer surplus under RTP in section 6.  

Our paper builds on previous work by Borenstein (2005) in two respects. First of all, we adopt the same 
constant elasticity of demand curve. Secondly, we follow Borenstein in assuming that the flat-rate tariff 
faced by consumers in the base-line scenario can be decomposed into the weighted average marginal 
cost of generation per hour and a constant surcharge per hour. 

We apply our model to the electricity market in the British bidding zone (GB BZN) for the years 2013 
and 2015 through 2017, with the aim of calculating consumer surpluses under RTP for distinct 
customer groups. Buyers and sellers in the spot market for electricity submit their bids 24 hours ahead 
of delivery, with prices set at an hourly basis. After the market closes at 15:30, prices and trade volumes 
for the next day are known (Epex Spot, 2019).  

The British spot market for electricity is peculiar insofar it uses half-hourly rather than hourly pricing; 
as a consequence, original trading volumes are published in kWh per half hour. However, we use data 
from OSDP, which lists trading volumes on an hourly basis for the sake of comparability with other 
countries. We therefore model the British spot market assuming that in the retail market, prices are 
set on an hourly basis.  

 

4.1 Modelling Supply  

We approximate the electricity supply stack using a supply curve that increases in steps according to 
the marginal generation cost, 𝑀𝐶, of electricity. Our supply curve can be decomposed into time-
invariant and time-varying components, reflecting the difference between dispatchable and non-
dispatchable sources of generation.  

 

4.1.1 Dispatchable Supply  

The time-invariant component of the supply curve comprises all dispatchable generation technologies. 
Combining data on the marginal cost and installed capacity of these different technologies, we can 
construct the marginal cost curve for dispatchable generation. We group individual technologies into 
eleven generation types on the basis of similar marginal costs. In order of ascending marginal cost, 
these are: nuclear, biomass, conventional steam generation I, conventional steam generation II, 
conventional steam generation III, combined-cycle gas turbine (CCGT) I, CCGT II, CCGT III, pumped 
storage, Open Cycle Gas Turbine (OCGT), and oil generation. As already noted in section 3.1, we 
therefore abstract from reservoir hydropower generation and imports. Conventional steam and CCGT 
generation are divided into three tranches of increasing efficiency, to reflect the resulting differences 
in marginal cost. (For a more detailed explanation, see Appendix A.) We abstract from further 
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heterogeneity within generation types, as well as technological start-up and ramping restrictions. 
Hence, throughout each year, the marginal cost of production is constant for any given generation 
type. Moreover, in assuming generation is dispatched in order of marginal cost, we assume that 
generation companies do not intentionally withhold lower-marginal cost generation from the market 
in order to deploy a price-setting generation unit with a higher marginal cost. 

The time-invariant component of the supply curve therefore takes on its characteristic stepped 
appearance, where each step corresponds to a distinct generation type such that its function value 
reflects marginal cost and its length reflects installed capacity (Figure 1). Following the UK Competition 
and Markets Authority (2016a), we also add 1,000MW of demand side response (DSR) at the end of 
the stack. The conventional component of our electricity supply curve therefore has eleven steps, 
compared to three steps for the supply curve set out by Borenstein (2005). 

Note that the resulting marginal cost curve gives rise to discontinuities whenever a perceptible price 
increase is necessary for the next-least-expensive generation unit to enter the market, i.e. whenever 
the next-least-expensive unit is of a different generation type. However, these discontinuities pose no 
problems for finding the intersection of supply and demand: the supply curve simply becomes vertical 
as generating companies raise prices to ensure supply equals demand (Szekeres, 2008).     
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We model aggregate supply as the sum of dispatchable generation (which is constant throughout all 
hours of the year) and non-dispatchable generation (which varies by hour). Hence, the aggregate 
supply curve at hour ℎ (blue) is simply equal to the supply curve for non-dispatchable generation (red), 
shifted outwards by the amount of non-dispatchable energy generated during that hour.  

 

4.1.2 Non-Dispatchable Supply  

The time-varying component of our supply curve accounts for non-dispatchable generation, namely 
solar and wind power. These differ from dispatchable generation sources, not only due to their 
intermittency, but also due to their negligible marginal costs. The addition of renewable generation 
capacities over the last two decades has caused a merit-order effect, whereby conventional 
generations is displaced by renewable generation with lower marginal costs. Holding demand 
constant, a new unit of cheap generation entering the market may cause the most expensive unit 
currently dispatched to leave the market. Consequently, price may fall. From 2010 to 2018, the share 
of solar and wind in the UK’s electricity mix rose from 2.7% to 21% (Department for Business, Energy, 

Figure 1: Electricity supply curve with and without non-dispatchable generation 
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and Industrial Strategy, 2019c). In contrast to many older papers, this merit-order effect from 
renewable generation has become too large to ignore.  

In the case of additional dispatchable generation like biomass, we can simply model the merit-order 
effect of renewables by inserting the newly installed capacity at the appropriate place in the merit 
order stack. This approach does not work for intermittent renewables, since only a small, constantly 
fluctuating fraction of installed capacity can actually generate electricity at any point in time. 

The most common approach to model the impact of intermittent renewables on electricity prices is to 
work with residual load instead. Under this modelling approach, demand is first stilled by zero-marginal 
cost renewables. Conventional generators are assumed to face only the remaining residual demand, 
which can then be modelled in the usual way (Sensfuß, Ragwitz, & Genoese, 2018; Wagner, 2014).  

However, since we are interested in consumer surplus, we chose to preserve the original total demand 
curve, and directly account for the merit order effect on the supply stack. We do this by inserting hourly 
generation from wind and solar before baseload capacity for every hour in our dataset. As a result, our 
supply curve shifts inwards or outwards hourly, according to the current generation from solar and 
wind (see Figure 1). For the years 2015–2017, we simply use actually observed wind and solar infeed; 
for the year 2013, we simulate wind and solar generation, since data on actual generation is 
unavailable (for further details on simulating solar and wind generation see Appendix C).  

 

4.2 Modelling Demand 

We adopt the demand curve for our base simulation from Borenstein (2005). For any given hour ℎ, 
aggregate electricity demand 𝐷௛(𝑝௛) is given by a constant elasticity of demand function:  

𝐷௛(𝑝௛) = 𝐴௛𝑝௛
ିఌ  

Given the level of price elasticity 𝜀 = 0.1 and the constant-price elasticity functional form, demand is 
thus fully specified by the hourly scale parameter 𝐴௛. Following Borenstein’s parlance, we refer to it 
as ‘anchor’. Note that the price elasticity of demand 𝜀 remains constant both along the hourly demand 
curve and across hours (as reflected by the fact that 𝜀 does not have an ℎ subscript). 

By adjusting 𝐴௛, we can ensure that the demand curve goes through a given price/quantity pair. In our 
data set, 𝐴௛  is therefore defined by the actually observed consumption at hour ℎ and the average flat-
rate 𝑝௛തതത for domestic consumers in Britain during the relevant year (see Figure 2).7 These defining price-
load data points for each hour are referred to as anchor points. In contrast to Borenstein, we forego 
modelling long-run dynamics by endogenizing firms’ capacity choices. Instead, we simply set the flat-
rate price 𝑝̅ equal to the observed average electricity flat-rate for British consumers in a given year.  

                                                             
7Although 𝑝̅௛ does not change hourly, we include a time subscript to reflect the fact that it changes yearly. 
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Figure 2: Illustration of inverse hourly demand curves at two different times   

 

Demand 𝐷௛(𝑝௛) = 𝐴௛𝑝௛
ିఌ varies hourly according to the hourly scale parameter 𝐴௛ . Given the constant 

price elasticity of demand functional form and assumed elasticity 𝜀, we can construct 𝐴௛, and therefore 
𝐷௛, using a single observation on price and the associated quantity demanded at that hour. The price-
quantity pairs we rely on consist of the observed flat-rate price 𝑝̅ and the observed demand, given 𝑝̅, 
during the hour of interest. 

 

Of course, the flat-rate for all customers in the market is not actually equal to the average flat-rate 
faced by domestic consumers. Domestic consumption accounts for only a third of electricity 
consumption in Britain and commercial, state, and industrial users often pay significantly lower prices 
(Department for Business, Energy, and Industrial Strategy, 2018b).8 Ceteris paribus, assuming a higher 
flat-rate price 𝑝̅ implies a higher anchor 𝐴௛. Since we are ultimately interested in calculating consumer 
surplus for domestic households, we choose to calculate the anchors for aggregate consumption based 
on the flat-rate faced by household consumers. However, as Borenstein argues, the main contribution 
of his demand model lies in accurately modelling the shape of the demand distribution over time; 
assumptions on the level of the retail flat-rate are therefore of secondary importance (Borenstein, 
2005).  

Having chosen 𝑝̅ and 𝜀 = 0.1, we calculate the time-series of anchors {𝐴௛} to obtain aggregate 
demand functions for every hour. Note that by assuming hourly demand functions are additively 
separable over time, we implicitly assume that cross-price elasticities are zero.  

 

                                                             
8 For instance, real electricity prices per MWh for the industrial sector are around £30 lower than the prices 
faced by domestic throughout our period of interest (Department for Business, Energy, and Industrial Strategy, 
2018e; 2019a).  
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4.3 Simulating Prices and Load under RTP 

In order to calculate RTPs, we first need to identify the difference between wholesale marginal costs 
of electricity generation and RTP as charged towards end-consumers. Based on observed consumption 
and yearly average retail flat-rates for domestic consumers, we can calculate the surcharge imposed 
under flat-rate pricing to cover transmission charges, reimburse fixed costs, etc. We begin by following 
Borenstein (2005) in assuming that the retail flat-rate can be decomposed into a the sum of the 
weighted average marginal cost of electricity, 𝑤ഥ , and a constant surcharge, 𝑟̅, covering fixed costs and 
transmission charges. The flat-rate 𝑝̅ for any given year is therefore  

𝑝̅ = 𝑤ഥ + 𝑟̅  where  𝑤ഥ =
∑ ொ೓ெ஼(ொ೓)೓

∑ ெ஼(ொ೓)೓
 

Since we only model the short-run welfare effects of RTP, we simply set the flat-rate 𝑝̅ paid by 
consumers equal to the yearly average flat-rate actually observed during our period of interest. The 
surcharge 𝑟̅ in our model therefore also accounts for taxes and any potential profits. The surcharge 
calculated from subtracting weighted average wholesale costs from observed retail flat-rates are listed 
in Table 2 below.   

 

Table 2: Actual flat-rate, weighted average marginal cost, and surcharge during the years of interest 

Year 𝒑ഥ in £/MWh9 𝒘ഥ  in £/MWh 𝒓ത in £/MWh 

2013 147.2 32.11 115.09 
2014 - - - 

2015 150.5 30.14 120.36 

2016 150.5 27.41 123.09 

2017 151.0 32.64 118.36 

 

Following Borenstein (2005), we assume that the retail surcharge 𝑟̅ remains the same under the RTP 
regime. The real-time price for end consumers at any given hour is therefore simply the sum of 
marginal generation costs and the surcharge.  

Combining our demand and supply function, and accounting for the retail surcharge, we therefore 
obtain hourly consumption and consumer prices under RTP. 

 

4.4 Discussion of Simulated RTP  

The minimum price in 2013 was £139.79/MWh, and the maximum price was £158.61/MWh, 
representing only moderate deviations from the 2013 flat-rate price of £147.2/MWh. Between 2015 – 
2017, prices ranged from £113.86/MWh to £154.5/MWh, compared to yearly flat-rates of around 
£150.50/MWh. The household-demand weighted average RTP was £146.94/MWh for 2013 and 

                                                             
9 Source: Department for Business, Energy, and Industrial Strategy (2018e) 
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£150.60/MWh for the years 2015 – 2017. Hence, demand-weighted average real-time prices deviated 
only negligibly from the flat-rate prices for those years.  

This very modest range of RTP results from the fact that Britain did not suffer from pronounced 
capacity shortages during the periods of interest, combined with the British electricity supply curve’s 
relative flatness around mid-merit generation types. These results contrast with results obtained by 
Borenstein (2005) in modelling the California electricity market, as he finds that the highest demand 
hour would account for fully 4.2% of the annual electricity bill (also assuming a price elasticity of 
demand of 0.1). 

 
Table 3: Overview of RTP prices (values in £ per MWh) 

 
2013 2015 – 2017 

Household-demand weighted average 146.93 150.60 
First quartile 142.00 148.53 
Third quartile 144.21 150.93 
Minimum 139.79 118.36 
Maximum 158.61 154.50 
Standard deviation 5.61 2.18 

 

Figures 2 and 3 display the scatter plots of hourly RTP in 2013 and 2015 – 2017, respectively, with 
yearly average flat-rate prices indicated in orange. The price levels at which observations are clustered 
correspond to the marginal costs of the price-setting generation technologies (mainly conventional 
steam II-III and CCGT I-II). The observations scattered in between correspond to the vertical sections 
of the supply curve. Higher RTPs occur mostly during winter months; the volatility in RTP is also greater 
during these months. These observations can be explained by the greater overall level and variability 
of demand during winter months, respectively. Moreover, the range of RTP falls significantly in 2016 
and 2017, as increases in the marginal cost of coal generation and favorable gas prices reduce the price 
differences between the various types of conventional steam and gas generation. By contrast, RTP in 
2013 and 2015 are more volatile around the flat-rate price. Hence, demand pattern heterogeneity may 
beget bigger winners and losers compared to the flat-rate base scenario in 2013 and 2015.  

The resulting cumulative distribution functions of RTP for 2013 and 2015 – 2017, respectively, are 
displayed in Figures 4 and 5. Note that the cumulative distribution function for 2015 – 2017 has a 
greater number of steps due to the fact that marginal costs are assumed to vary by year in order to 
account for changes in fuel and emissions prices.  

In summary then, our simulation does not buttress widespread fears of extreme price spikes during 
peak-demand hours under RTP-schemes. The exception are a few negative outliers with unusually low 
prices due to very high levels of zero-marginal-cost solar and wind generation. The lower range of RTP 
implies a smaller price signal price signal from RTP, but it also significantly limits the potential increase 
of customer bills from unfavorable demand patterns. 
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Figure 3: Simulated equilibrium RTP (black) & actual household flat-rate (red) (2013) 

 

Simulated equilibrium RTP in 2013 cluster at certain price levels, corresponding to the horizontal 
sections of the electricity supply curve. RTP peak during winter weeks at the beginning and the end of 
the year; conversely, the lowest RTP are observed during summer weeks.  

 

Figure 4: Simulated equilibrium RTP (black) & actual household flat-rate (red) (2015 – 2017) 

 
Note: For better visibility, this plot is curtailed at £140/MWh, omitting six instances where RTP was below this 
price. 
 
Again, for 2015 – 2017, RTP peak during winter weeks at the beginning and the end of the year; 
conversely, the lowest RTP are observed during summer weeks during the middle of the year. 
Equilibrium RTP are noticeably more volatile during 2015. 
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Figure 5: Cumulative distribution function for RTP (2013) 

 

In 2013, simulated RTP were lower than or equal to the observed flat-rate prices during ca. 80% of all 
hours. Simulated RTP displays relatively low variance throughout the year (see Table 3 for exact 
figures). 

 

Figure 6: Cumulative distribution function for RTP (2015 – 2017) 

 

Throughout 2015 – 2017, simulated RTP were lower than or equal to the observed flat-rate prices 
during ca. 45% of all hours. Simulated RTP does not displays frequent and large price spikes, the 
maximum simulated RTP is only £154.50/MWh, compared to flat-rates of around £150.50/MWh (see 
Table 3 for exact figures).  
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5 Modelling Household Groups 

In this section, we develop our unique specification that outlines the modelling of heterogeneous 
household groups. Differences in the hourly demand functions across groups are entirely due to 
differences in these groups’ anchor series (since we assume that groups are homogenous with respect 
to their price elasticity, as discussed in section 3.1.1). To capture demand heterogeneity for different 
socio-economic groups, we therefore construct of these separate anchor series for all time-periods of 
our analysis.  

For every time-period, we are interested in anchor series at two levels of granularity. At the group-
wise level, for each of the seventeen groups, the “representative household” anchor series simply 
reflects the average demand per household within that group. The “aggregate household” series is 
extracted from the representative household series and scaled up by the number of households in a 
group, as calculated using the methodology described in section 3.2. 

Finally, we also consider the UK domestic sector as a whole, irrespective of socio-economic groups. By 
summing up the 17 group-wise anchors across for each hour, we obtain the “aggregate domestic 
demand” anchor series. Dividing by the total number of households yields the “average domestic 
demand” anchor series. 

 

5.1 Forming the 2013 Group-Wise Anchor Series 

From the London Data Store 2013 data on 4,372 households, we calculate the anchor series for each 
group, averaged by the number of households in that group. Hence we obtain seventeen group-wise 
representative household series for the year 2013. Taking the product of these series with the number 
of households in the respective group yields the aggregate group-wise anchor series. Summing the 
aggregate household series across groups leads us to the series of aggregate domestic anchors. 
Dividing this series by the total number of households generates the average domestic anchor series 
(i.e. the series of anchors for an average household in the domestic sector). 

 

5.2 Extrapolation of the 2015 – 2017 Group-Wise Anchor Series 

The construction of the 2015 – 2017 group-wise anchor series is less straightforward than that of the 
2013 series due to the unavailability of microdata. We extrapolate the 2015 – 2017 group-wise anchor 
series from the 2013 series using an adaptive mapping approach, described in the following sub-
section. 

The 2013 representative household anchor series for all groups are modelled as following a normal 
distribution. They are decomposed to obtain a base pattern captured by the standardized anchor 
series. These standardized anchor series are eventually reassembled through the reverse of 
standardization process using correctly estimated contemporary means and standard deviations, 
which represent level and scale effects respectively. 

This sub-section first explores the key features of the 2013 group-wise anchor series that help design 
the mapping approach, then describes the model used in the adaptive mapping into second time-
period, and finally presents justifying comments, robustness checks and a discussion on the household 
anchor patterns. 
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It suffices to extrapolate only the representative household series from 2013 to 2015 – 2017, since 
other three kinds of series can be derived from this. Hence, the entire extrapolation process addresses 
the representative household series. 

 

5.2.1 Base (or Weekly) Patterns 

Each of the groups’ representative household anchors are standardized by subtracting the mean of 
anchors within that week and then dividing the result by the standard deviation of anchors in that 
week. It is observed for all groups that the standardized anchor series throughout the year 
approximately follows the same weekly patterns, with little deviations. The weeklypattern is a mapping 
function, which records, for all 168 (=24×7) hours of the week, the averages of all 53 weeks of the year. 
For each of the 168 hours, indexed by 𝑡, the weekly pattern is defined as: 

𝑤𝑒𝑒𝑘𝑙𝑦𝑝𝑎𝑡𝑡𝑒𝑟𝑛௚(𝑡) =
∑ 𝑎௚௧௪

ହଷ
௪ୀଵ

53
 

Where 𝑔 is the subscript for group and 𝑤 is the subscript for week number. 𝑎௚௧௪ is the standardized 
anchor for a representative household in group g for hour t in week number 𝑤. 

Our procedure is illustrated using the example of Acorn Group H – Steady Neighborhoods, which is 
one of the largest household groups and displays fairly typical demand pattern. The shape of the 
demand pattern is remarkably similar across Acorn groups; however, the extent to which this pattern 
is pronounced varies. 

 

Figure 7: Weekly pattern of standardized anchor for representative household in group H 

 

The figure above displays the standardized anchor series for group H along with deviations represented 
using the 95% confidence intervals (red area), interquartile ranges (blue area) and full ranges (grey 
area). The areas are very tightly wrapped around the weekly pattern, indicating that there is little 
deviation from the weekly pattern across weeks. As expected, the consumption for representative 
household in group H peaks in the early evening, reaches its lowest level in the early morning, and is 
higher during the usual working hours on weekends. Similar trend is noticeable for all groups. For some 
groups like J – “Starting Out” and P – “Struggling Estates”, the peak is observed later in the evenings. 

The weekly patterns of standardized anchors from 2013 are stored to be later reconstructed using the 
features of 2015 – 2017 overall anchor series. We believe that these base patterns are fairly resistant 
to changes over short periods of time, unless there are structural changes in the demography or 
domestic power usage. 
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5.2.2 Weekly Downsampling for Mean and Standard Deviation Extraction 

In order to reconstruct the group-wise anchor curves in 2015 – 2017, we require the weekly means 
and standard deviations of standardized anchors that we would expect to observe in 2015 – 2017. 
Although these may be correlated with the group-wise weekly means and standard deviations from 
2013, using the latter to model the former would be a naïve approach and would capture all of the 
noise from 2013. Instead, we relate the group-wise mean and standard deviation series with the 
contemporary average domestic means and standard deviations. It must be noted that the average 
domestic anchor series for both time periods of observation represent the group composition as 
observed in all of UK data using Acorn shares reported in Table 1 rather than those observed in sample 
data from London Data Store. Thus, we maintain comparability between the time-periods of 2013 and 
2015 – 2017. 

Since we are interested in means and standard deviations for each week, we start by weekly 
downsampling the original (not standardized) 2013 anchor series for each group, that is, recording one 
mean and one standard deviation for each of the 53 weeks, which are the within-week averages. We 
compare these with average domestic weekly-downsampled means and standard deviations 
respectively. We indeed find a high degree of correlation for both statistics, as recorded in Table 4. 

 

Table 4: Correlation coefficients for the representative household and average domestic statistics 
for 2013 

Group 

Correlation between weekly 
means of average groups with 
domestic average 

Correlation between weekly standard 
deviations of average groups with 
domestic average 

A 0.99 0.99 
B 0.88 0.94 
C 0.99 0.99 
D 0.99 0.98 
E 0.99 0.98 
F 1.00 0.98 
G 0.99 0.99 
H 0.99 0.99 
I 0.98 0.98 
J 0.98 0.96 
K 0.99 0.97 
L 0.99 0.99 
M 0.99 0.98 
N 0.99 0.98 
O 0.96 0.93 
P 0.96 0.84 
Q 1.00 0.99 

 

The high coefficients of correlation can also be intuitively expected because representative households 
behave similar to the overall average domestic. All events that result in a certain shift of demand curve 
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for average domestic must also be impacting individual households for all groups to a substantial 
extent in the same direction. 

 

5.2.3 Extrapolation Methods 

Our intention is to link group-wise representative household weekly means and standard deviations 
with the domestic average means and standard deviations respectively. One approach is to record the 
ratio of representative household statistic to average domestic statistic from 2013 and replicate the 
series of those ratios in 2015 – 2017. However, such translation risks passing on the noise from 2013 
as well. 

 

5.2.3.1 Denoising  

In order to leave behind the noise transferred from 2013, we use a simplified process to smoothen the 
weekly mean and standard deviation series for the average domestic and all seventeen representative 
households. The denoising process uses a rolling window of five weeks, meaning that each observation 
is replaced with the moving average of the two previous, two following and the observation itself. 
Figures 7 and 8 illustrate the denoised weekly mean and standard deviation series for all groups, while 
highlighting the average domestic and representative household from our example group H. 

 

Figure 8: Denoised weekly means of group-wise anchors 
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Figure 9: Denoised weekly standard deviations of group-wise anchors 

 

 

The following ratios are defined using observed values from 2013: 

 

𝛼௚௪ =
𝑎ത௚௪

ௗ௘௡௢௜௦௘ௗ

𝑎തௗ௪
ௗ௘௡௢௜௦௘ௗ

 

 

𝛽௚௪ =
𝜎௚௪

ௗ௘௡௢௜௦௘ௗ

𝜎ௗ௪
ௗ௘௡௢௜௦௘ௗ

 

 
Where 𝑎ത௚௪ is the weekly arithmetic mean of anchor series for a representative household in group 𝑔, 
𝑎തௗ௪ is the weekly arithmetic mean of anchor series for average domestic household,  𝜎௚௪ is the weekly 
standard deviation from the mean of anchor series for a representative household in group 𝑔 and 𝜎ௗ௪ 
is the weekly standard deviation from the mean of anchor series for average domestic household.  As 
before, the average domestic household is composed of all of UK’s Acorn group proportions. The 
superscript 𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 refers to series that have been smoothened using a moving average of five 
observations. 

These ratios represent the level and scale effect parameters respectively, and their weekly values are 
assumed to remain the same over years. Thus, each weekly parameter is replicated for each group for 
both moments. 

 

5.2.3.2 Reconstructing the Group-Wise Anchor Series 

The 𝛼௚௪ and 𝛽௚௪  observed in 2013 are extracted to calculate the representative household weekly 
means and standard deviations for 2015 – 2017. We assume that the ratio between representative 
household moments and average domestic moments remains the same for same week numbers across 
the years. While we used denoised statistics in 2013 to calculate the ratios, in 2015 – 2017 we use the 
original weekly downsampled series. We use the following to calculate weekly statistics for 
representative households:  

 
𝑎ത௚௪

௣௥௘ௗ௜௖௧௘ௗ
= 𝛼௚௪ ∗ 𝑎തௗ௪  
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𝜎ത௚௪
௣௥௘ௗ௜௖௧௘ௗ

= β௚௪ ∗ 𝜎ௗ௪ 
 
The superscript 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 refers to estimated variables. 

As already mentioned, 𝛼௚௪ and 𝛽௚௪ take on the same values as observed in the denoised 2013 series. 
Before the extrapolation of the 2015 – 2017 representative household series is completed, we do not 
have the 2015 – 2017 values for 𝑎തௗ௪  and 𝜎ௗ௪. Instead of actual extrapolated values, we use a 
“placeholder” anchor series of the average domestic for 2015 – 2017. A detailed description and 
derivation of the placeholder series is discussed in the following sub-section. 

Finally, we finish the mapping process by estimating the hourly anchor series for each group’s 
representative household using: 

 

𝑎௚௛
௣௥௘ௗ௜௖௧௘ௗ

= 𝑤𝑒𝑒𝑘𝑙𝑦𝑝𝑎𝑡𝑡𝑒𝑟𝑛௚(ℎ mod 168) ∗ 𝜎௚௪
௣௥௘ௗ௜௖௧௘ௗ

+ 𝑎ത௚௪
௣௥௘ௗ௜௖௧௘ௗ  

 
Where ℎ is one of the 8,760 hours of the year. 

 

5.2.4 Constructing the Placeholder Average Domestic Anchor Series for 2015 – 2017 

As previously discussed, in the calculation of 𝛼 and 𝛽 group-wise weekly parameters of 2013, the 
weekly statistics series for the average domestic represent all of UK’s Acorn domestic consumer 
segment, excluding other consumer segments like industry, services and transportation. A comparable 
base, which excludes other consumer segments, is required for calculation of representative 
household weekly statistics series. Hence, we derived the average domestic series for 2015 – 2017 
using a similar process. 

We used the calculated aggregated domestic anchor series from 2013 as previously mentioned  and 
recorded the ratio of domestic anchor to overall (all consumer segments) anchor for every hour. We 
transferred this domestic ratio series to 2015 – 2017 by weekly downsampling and translating the 
weekly statistics series using the exact same methodology as we adopted while extrapolating 
representative household anchor series. From the transferred domestic ratios in 2015 – 2017, we 
recovered the total domestic anchor series using the observed overall anchor series of 2015 – 2017. 
This domestic anchor series was then divided by the total number of households in each hour to obtain 
average domestic anchor series for 2015 – 2017. 

 

5.2.5 Model Justification 

There are some conspicuous reasons why we adopt the model specification explained above. 

The observation that households follow the same weekly patterns over the weeks with very little 
deviations makes it tempting to exploit the similarity. Although there are also strong inter-group 
similarities (as noted in section 5.2.2), we choose not to use that as the basis for our modelling. Doing 
so would be contradicting with our intention to analyze heterogeneity across groups. 
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Moreover, when extrapolating from 2013 to 2015 – 2017, there is a large risk of transferring the noise 
from 2013. A naïve approach would have been to draw out the ratio for each hour, and replicate that 
ratio to the following years for each of the 8,760 hours of those years. Another approach would be to 
estimate a single ratio of representative household series to average domestic series for the entire 
year, which would miserably fail to account for the fact that demand patterns of consumers develop 
differently over the year. 

However, our current model is robust to such risk using double layer. First layer is using weekly 
patterns, such that within-week noise is controlled. Second layer is the denoising of weekly 
downsampled statistics series, such that noise across weeks is diminished.  

A comment is in order regarding the selection of weekly granularity for downsampling. In the alternate 
scenario, if downsampling was monthly, we would overcontrol for the noise and fail to observe the 
weekly seasonal patterns of the series. On the other hand, any downsampling of higher than weekly 
granularity, but less than daily granularity, would fail to capture variation over the week, for example, 
that households have slightly different consumption patterns between weekdays and weekends. 
Finally, daily downsampling will allow too much noise to be transferred – what if the second Saturday 
of January 2013 hosted a large convention for students, and none of the students were home to 
consume electricity? We refuse to assume that the convention will occur exactly on second Saturdays 
of January for all of the following years! 

 

5.2.6 Robustness Checks 

First, we investigate robustness of using weekly pattern of standardized anchors as the base series. 
Table 5 below records the group-wise cross-validated Mean Squared Errors (“MSE”) of weekly pattern 
series. For the MSE calculations, we use training periods of eleven months and test periods of one 
month. The calculations are iterated over each hold-out month and each of the 12-fold MSEs are 
averaged to calculate the final cross-validated MSE score of weekly patterns. 

 

Table 5: 12-fold cross-validated MSEs of weekly patterns 

Group Cross-validated 
MSE score 

 
Group Cross-validated 

MSE score 
A 0.1028 

 
J 0.2872 

B 0.2190 
 

K 0.0910 

C 0.0903 
 

L 0.0664 

D 0.0807 
 

M 0.1043 

E 0.0942 
 

N 0.0904 

F 0.0594 
 

O 0.1296 

G 0.0951 
 

P 0.1667 

H 0.0589 
 

Q 0.0607 

I 0.1824 
   

 



27 
 

Compared with the range of standardized anchor weekly pattern series, the MSE scores for all groups 
are very small, although there is some inter-group variation. For example, for group H, they range from 
-1.45 to 1.70. The MSE score of 0.0589 is rather small compared with this range. An extreme example 
is group J where the MSE score is 0.2872 and the range is similar to that of group H. However, the MSE 
score is still contained within substantially small bounds. 

The low MSE scores imply that weekly pattern retention form 2013 standardized anchor series is highly 
generalizable to unseen months. 

Next, we comment on the goodness of fit for the entire model specification. Table 6 below records the 
coefficient of determination (“R2”) on the training set of hourly anchor series from 2013. 

 

Table 6: R² of reconstructed anchor series on training data 

Group R2 
 

Group R2 

A 0.9246 
 

J 0.8470 

B 0.8174 
 

K 0.9223 

C 0.9241 
 

L 0.9385 

D 0.9385 
 

M 0.9198 

E 0.9357 
 

N 0.9216 

F 0.9477 
 

O 0.8820 

G 0.9277 
 

P 0.8725 

H 0.9466 
 

Q 0.9424 

I 0.8620 
   

 

It is worth noting that these R2s are based on the observed weekly mean and standard deviation series 
of 2013, resulting in optimistically high R2s. When the model is transferred to 2015 – 2017 time-period, 
the representative household anchor series will be estimated based on weekly patterns together with 
the representative household weekly statistics series of 2015 – 2017. Since the latter are themselves 
predicted using parameters estimated in 2013 and the modelled weekly statistics of average domestic, 
the R2s are expected to be slightly lower in 2015 – 2017. This is motivated by the fact that, as evaluated 
above, the weekly patterns seem to generalize well to new unseen data. The remaining controllable 
parts of our model are the weekly means and standard deviations. Since these signals are denoised, 
we are focusing on capturing and only transferring the high-level patterns of these, not short-lived 
variation. Therefore, by assuming that the pattern of weekly statistics of the group-wise representative 
household series is roughly aligned with that of the average domestic, we believe that the model in 
entirety will generalize well to unseen year 2015 – 2017. 

Figure 9 below illustrates the observed and predicted representative household anchor series for 
group H for three evenly selected weeks from 2013. 
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Figure 10: Comparison between observed and predicted values for group H 

 

 

5.2.7 Discussion of Household Anchor Patterns 

As expected, the standard deviation of anchors around the weekly mean increases in the mean, both 
across groups and across time. As a consequence, demand variability is greater during winter months 
and for households with higher demand, particularly households from Acorn groups A to D. 
Households from higher socio-economic classes, who tend to consume more, also tend to have 
demand that varies more throughout the year and week, with particularly pronounced peak 
consumption. This suggests that household belonging to higher socio-economic classes will likely be 
harder-hit by RTP (as their peak-time consumption is currently subsidized by households with less 
pronounced peak consumption).  
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6 Results  

To identify the welfare effects experienced by different household groups after moving from flat-rate 
pricing to RTP, we calculate the implied changes in consumer surplus.  

We use a constant-elasticity demand function, for which consumer surplus is undefined. However, 
changes in consumer surplus can be calculated between two finite prices. For every hour ℎ, the change 
in consumer surplus is thus given by 

 

∆𝐶𝑆௛ =
𝑎𝑛𝑐ℎ𝑜𝑟௛

1 − 𝜀
 ൣ𝑝̅௛

ଵିఌ −  𝑝௛
ଵିఌ൧ 

 
where 𝑎𝑛𝑐ℎ𝑜𝑟௛  is a placeholder for the relevant anchor. (Apart from changes in the relevant anchor, 
the functional form of the demand function remains the same; hence  we can use the same formula 
to calculate consumer surplus changes for both the average household and aggregate consumer 
surplus for each group, as well as the consumer surplus for all domestic consumers.) 

Note that the size of a representative household varies across groups. For example, Group K – “Student 
Life” comprises mostly single households, whereas Group M – “Striving Families” might contain three 
to five family members. Since we have no data on average household sizes for different Acorn groups, 
we cannot compare consumer surplus changes per individual. Hence the magnitude of consumer 
surplus changes is not comparable across groups. Likewise, the magnitudes of aggregate consumer 
surplus change cannot be compared across groups because different groups contain different numbers 
of households. 

We find that the overall consumer surplus changes resulting from a change to RTP are of negligible 
magnitude (cf. section 6.1) and that the impact of RTP on consumer surplus does not vary significantly 
across socio-economic groups (cf. section 6.2). That is, we find no evidence for consumer welfare gains 
from RTP, nor do we find significant redistributive effects. 

 

6.1 Overall Welfare Effects of RTP   

Summed over all hours, the aggregate household consumer surplus changes going from flat-rate prices 
to RTP add up to negative £9.6 million in 2013 and an average of £3.8 million per year for 2015 – 2017. 
This corresponds to only 0.13% and 0.05% of the average yearly bill under flat-rate pricing, 
respectively, implying that either positive consumer surplus changes for some groups are cancelled 
out by negative consumer surplus changes for other groups, or that consumer surplus changes are very 
low for all groups.  

Figures 10 and 11 below record the hourly changes in aggregate household consumer surplus for the 
years 2013 and 2015 – 2017. Although monthly or quarterly consumer surplus is what ultimately 
matters to consumers, considering hourly changes in consumer surplus illustrates the way in which 
RTP impacts consumer surplus across time. This in turn should allow policy-makers to better identify 
measures improving consumer surplus under RTP.  

For both time-periods, except for the year 2017, large negative spikes in aggregate consumer surplus 
tend to be more common and of even greater magnitude than large upward spikes, especially during 
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the winter months. This can be explained by the greater overall and peak-time demand during winter 
months. Reducing peak-time consumption during winter months, e.g. by reducing reliance on electric 
space heaters for additional heating, should help to reduce demand volatility and therefore peak-time 
RTP, which in turn should increase consumer surplus during winter. The fact that the aggregate change 
in consumer surplus for 2013 is slightly negative can be explained in this context: significant decreases 
in consumer surplus during the peak hours in winter are not fully compensated for by the more modest 
increases throughout the year. 

The variance of consumer surplus is much higher in 2013 and 2015. This is because deviations of RTP 
– and hence consumer surplus – from the flat-rate depend largely on difference in marginal costs for 
different generation technologies. Large differences in marginal costs of least expensive production 
technologies, coupled with unusually low demand anchors results in huge positive consumer surplus 
changes in some hours.  

 

Figure 11: Hourly changes in aggregate household consumer surplus (2013) 

 



31 
 

Figure 12: Hourly changes in aggregate household consumer surplus (2015 – 2017) 
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6.2 Welfare Effects of RTP on Different Socio-Economic Groups  

Table 7 presents the group-wise simulated yearly consumer surplus changes going from flat rate price 
to RTP if 𝜀 = 0.1, both for the average household in each group and for the total number of households 
in each group (note that the number and size of households differ across groups).  

 

Table 7: Yearly consumer surplus changes by Acorn group for 𝜺 = 𝟎. 𝟏 (in £) 
 

Group name Representative household Aggregate of households 

2013  2015/16/17  2013  2015/16/17  

A Lavish Lifestyles -1.19 0.17 -401,755.47 61,392.79 
B Executive Wealth -0.51 0.07 -1,656,596.46 225,770.71 
C Mature Money -0.91 -0.02 -2,101,699.67 -24,767.81 
D City Sophisticates -1.30 -0.06 -1,099,947.29 -43,011.37 
E Career Climbers -0.47 0.19 -735,902.13 313,795.79 
F Countryside Communities -0.35 0.11 -579,347.10 194,513.22 
G Successful Suburbs -0.83 0.05 -1,308,808.04 77,782.88 
H Steady Neighborhoods -0.56 0.06 -1,204,839.94 129,742.02 
I Comfortable Seniors -0.92 -0.05 -602,117.64 -32,863.45 
J Starting Out -0.04 0.43 -35,767.97 453,312.93 
K Student Life -0.33 0.11 -216,977.90 75,789.55 
L Modest Means -0.40 0.07 -778,149.15 153,483.69 
M Striving Families -0.66 0.07 -1,380,500.37 150,853.30 
N Poorer Pensioners -0.39 0.07 -452,298.74 79,789.04 
O Young Hardship -0.11 0.13 -146,772.81 178,414.61 
P Struggling Estates  1.47 0.77 3,005,966.89 1,573,141.72 
Q Difficult Circumstances 0.08 0.18 100,163.44 231,901.87  

Weighted1 average -0.37 0.14 - -  
Sum - - -9,595,350.37 3,799,041 

1Weighted by the proportion of households in the overall household sector. 
 

Across all Acorn groups, the short-run change in consumer surplus that would result from a switch to 
RTP is very low, of the order of less than £1.50 per year. The differences in demand patterns across 
Acorn groups do no translate into significant redistributions of consumer surplus. The fact that none 
of the 17 Acorn groups experiences any significant losses of consumer surplus should alleviate fears 
that introducing RTP might significantly harm certain consumer groups.  

At the same time, we do not find significant welfare gains from a switch to RTP for any socio-economic 
group. Concentrating on the short-run impact of RTP thus fails to make a case for RTP from the 
consumer perspective, especially considering the costs of smart meters10 and the widespread 
psychological aversion to RTP.  

                                                             
10 The cost to electricity companies of installing a smart-meter in a UK household is estimated to be around £100 
(UK Power, 2018). Since smart-meters have been shown to aid consumers in identifying wasteful consumption 
patterns, the benefits of smart-meters go beyond enabling RTP, i.e. investments in smart-meters do not solely 
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The magnitude of the consumer surplus changes resulting from a switch to RTP remains negligible 
when we consider elasticities that differ from our central scenario of 𝜀 = 0.1. In line with the range of 
estimates that can be found in the literature, we also estimate consumer surplus changes per 
representative households for elasticities ranging from 0.025 to 0.15. Results for the year 2013 can be 
found at the end of this section in Table 8.  

The observation that both the magnitude of consumer surplus changes for different groups, as well as 
the difference in consumer surplus changes across these group is very small can be explained by the 
shape of the British electricity supply curve over our periods of interest. The latter features relatively 
low marginal cost differentials and large capacities of mid-merit (i.e. conventional steam and gas) 
generation. Variations in load and residual load brought about by variations in household demand and 
non-dispatchable energy generation, respectively, therefore cause only limited variations in marginal 
cost.  

It should be noted that consumer surplus from switching to RTP are likely to be significantly higher in 
the long run, since generation companies should pass on the savings from capacity reduction to 
consumers in the form of lower surcharges. However, note that by reducing demand volatility, RTP 
discourages investments in peak-time generation with high marginal and low fixed costs to the benefit 
of renewable, baseload, and mid-merit generation with lower marginal and higher fixed costs. Holding 
demand patterns constant, significant heterogeneity in the welfare changes implied by a switch to RTP 
should therefore only arise if there is a greater range in the marginal costs of the final generation 
technologies dispatched to meet demand. This could happen, for instance, if the share of generation 
technologies with very low marginal costs (i.e. wind, solar, and nuclear energy) becomes great enough 
that conventional steam and gas generation is not dispatched for a large number of hours.  

  

                                                             
depend on RTP for profitability. The UK government has set a goal of installing a smart meter in every home by 
2020; one quarter of British households already have a smart-meter (UK Power, 2018).  
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Table 8: Sensitivity Analysis for Different Demand Elasticities 𝜺 

Group name Consumer surplus change by Acorn group for different 𝜺  
(in £, over the year 2013) 
𝜺 =0.025 𝜺 =0.050 𝜺 =0.075 𝜺 =0.100 𝜺 =0.125 𝜺 =0.150 

A Lavish Lifestyles -1.32 -1.27 -1.23 -1.19 -1.14 -1.10 
B Executive Wealth -0.59 -0.56 -0.54 -0.51 -0.49 -0.46 
C Mature Money -1.00 -0.97 -0.94 -0.91 -0.88 -0.86 
D City Sophisticates -1.40 -1.37 -1.33 -1.30 -1.27 -1.24 
E Career Climbers -0.54 -0.51 -0.49 -0.47 -0.45 -0.42 
F Countryside Communities -0.41 -0.39 -0.37 -0.35 -0.33 -0.31 
G Successful Suburbs -0.90 -0.87 -0.85 -0.83 -0.81 -0.78 
H Steady Neighborhoods -0.64 -0.61 -0.58 -0.56 -0.54 -0.51 
I Comfortable Seniors -0.98 -0.96 -0.94 -0.92 -0.89 -0.87 
J Starting Out -0.11 -0.08 -0.06 -0.04 -0.01 0.01 
K Student Life -0.40 -0.38 -0.35 -0.33 -0.31 -0.29 
L Modest Means -0.47 -0.44 -0.42 -0.40 -0.38 -0.36 
M Striving Families -0.73 -0.70 -0.68 -0.66 -0.64 -0.61 
N Poorer Pensioners -0.45 -0.43 -0.41 -0.39 -0.37 -0.35 
O Young Hardship -0.16 -0.14 -0.13 -0.11 -0.09 -0.07 
P Struggling Estates  1.44 1.45 1.46 1.47 1.48 1.49 
Q Difficult Circumstances 0.03 0.05 0.07 0.08 0.09 0.11 
Weighted* average -0.44 -0.42 -0.39 -0.37 -0.35 -0.33 

*Weighted by the proportion of households in the overall household sector. 
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7 Limitations  

For ease of modelling and reasons of data availability, the above analysis abstracts from several 
important features of the electricity market. Below, we will list some of the limitations of our analysis 
as well as the mechanisms we abstract from, and discuss their impact on our analysis.  

One limitation of our analysis arises from seeming inaccuracies of our supply stack model. Compared 
to actual data on electricity production by generation type from ENTSO-E, our model implies much less 
frequent deployment of pumped storage generation under flat-rate prices. Whereas ENTSO-E records 
suggests that (albeit small) capacities of pumped storage generation are deployed for a few hours 
almost every day, our model suggests that under flat-rate pricing, pumped-storage is only deployed 
sporadically.  

There are several possible explanations for this shortcoming. Since the British electricity zone does not 
allow locational pricing, our model requires that all cheaper units of electricity are already deployed 
before pumped storage generation is dispatched. In reality, pumped storage generation in location A 
may be deployed even though generation capacity with lower marginal costs is available at a faraway 
location B even without explicit locational pricing, e.g. due to transmission line congestion. 
Alternatively, such a phenomenon could arise because firms exert market power by purposefully 
refusing to dispatch a cheaper unit of generation in order to increase the wholesale price (which is set 
by the generation unit with the highest marginal cost). By contrast, since we abstract from such 
behavior in the wholesale market, we assume that all available generation is dispatched in order of 
marginal cost. 

Since there is a noticeable jump in marginal cost from conventional steam/ gas generation to peak (i.e. 
pumped-storage, OCGT, and oil) generation, our model supply curve is likely less steep than the real 
supply curve. As a consequence, our model may somewhat understate the bill differences across 
different consumer groups under RTP. Under the real, steeper supply curve, consumer groups with 
peakier-than-average demand pay for much pricier pumped storage; by contrast, consumers with 
flatter-than-average demand patterns can realize greater savings compared to the flat-rate, since they 
are no longer forced to subsidize much more expensive peak generation. Given that lower-income 
customers in our sample tended to have flatter-than-average demand, however, we do not believe 
this limitation will substantially alter our conclusions. 

On the demand side, we make the simplifying assumption that elasticities are the same for all hours. 
However, although studies of price elasticity under time-of-use pricing schemes vary with respect to 
their estimated elasticities, they almost unanimously suggest that elasticity is greater in peak hours 
and lower during off-peak hours (Lijesen, 2007). Since the savings from RTP compared to flat-rate 
pricing come primarily from reduced peak-time demand, our analysis therefore likely understates the 
benefits from RTP (Borenstein, 2005).  

Moreover, as explained in detail in section 3.1.1, we assume that the price elasticity of demand is the 
same for all household groups, since a substantial portion of the literature suggests that price elasticity 
of demand does not vary with income, while a significant minority of papers imply that low income 
customers are either less or more price elastic than the average consumers. If already disadvantaged 
socio-economic groups have lower than average demand elasticity, their welfare gains from RTP will 
be lower. Partly to address this issue, we have calculated the group-wise welfare impact of RTP for 
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different elasticities ranging from 0.025 to 0.15. We found that even at lower elasticities, consumer 
surplus changes for low-income groups remain negligible. Nonetheless, further research into the 
relationship between socio-economic group and RTP is necessary to gain an understanding of the 
relationship between household income and price-elasticity, and thus a more holistic picture of its 
impact on various social groups.  

We also make the simplifying assumption that demand is additively separable across hours, implying 
that cross-price elasticities are zero. This assumption significantly reduces the computational 
complexity of our model by abstracting from intertemporal substitution of consumption. However, the 
literature suggests that cross-price elasticities for electricity are dwarfed by own-price elasticities 
(Alcott, 2011; Holland & Mansur, 2006). Moreover, holding own-price elasticity constant, allowing 
positive cross-price elasticity will further decrease peak-time consumption when peak-time prices rise 
(Borenstein, 2005). Conversely, it will increase off-peak consumption. Positive cross-price elasticity 
should therefore increase the benefits from RTP.  

In extrapolating household demand patterns (as defined by the relevant series of anchors), we assume 
that no structural changes in demand patterns or the relative size of groups have occurred throughout 
our period of study. Since our household consumption data was compiled for a balanced sample of the 
London population, it has limited generalizability to drawing conclusions on the impact of RTP on 
different segments of the British population in general. Members of a given Acorn group living in 
London are likely to differ from members of the same Acorn group in e.g. a small town. Our calculations 
of the consumer surplus changes for the UK domestic sector as a whole were only intended to deliver 
rough estimates. To gain a nuanced view of the impact of RTP on different socio-economic groups, 
further research incorporating potential variation of demand patterns across geographical areas is thus 
necessary 

Finally, the extrapolation methodology for the weekly pattern series from 2013 to 2015 – 2017 
assumes that standardized anchors follow a normal distribution. However, some of the representative 
household series are very slightly positively skewed. This could have been controlled for by introducing 
other factors that can explain some of the remaining signal. 
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8 Conclusion & Outlook 

Economic theory suggests that RTP is the most efficient way to price electricity and that it can 
contribute to a reduction in emissions by enabling a greater share of intermittent renewable 
generation. Nonetheless, real-time electricity pricing has been met with strong opposition from policy-
makers, on the grounds that it may have adverse redistributional effects, reducing the welfare of 
already disadvantaged consumers. So far, such theoretical concerns have not been put to test 
empirically. Combining simulations of the British electricity market under RTP with actual and 
simulated electricity demand for households from various socio-economic groups, we have estimated 
the short-run welfare effects of RTP on these different groups. We emphasize upon two important 
findings, namely that RTP in general only has a negligible effect on consumer welfare and that the 
welfare changes resulting from a switch to RTP do not vary to any meaningful extent across socio-
economic groups. Our results therefore do not provide a strong case for RTP in Britain in the short run, 
however, nor does it confirm the widespread concerns over unfair distributional effects of RTP.  

This paper provides only first investigations into potential differences in the welfare impact of RTP 
across different socio-economic groups. Further research should account for the long-run welfare 
effects of RTP by endogenizing generation firms’ capacity decisions. By focusing on the short-run 
effects of RTP, we assume that the merit order stack remains unchanged after switching from flat-rate 
pricing to RTP and ignore the changes in the capacity mix that would likely result from mandatory RTP 
in the long run. Reduced volatility of residual demand for dispatchable generation should lead 
generation companies to disinvest peaker capacity, characterized by high marginal and low fixed costs. 
In the long run, RTP should therefore remove idle peak capacity. Competitive pressures should 
translate the resulting fall in fixed costs into lower surcharges 𝑟̅.  

Our paper also abstracts from several other factors with the potential to cause different welfare 
impacts across groups. In particular, future research should incorporate potential heterogeneity in the 
price elasticity across hours and consumer groups.  

Finally, it should be noted that the differences in welfare changes (or lack thereof) across groups largely 
results from the flatness of the British supply curve during our period of interest. Considerations of the 
redistributional effects of RTP in other parts of the world must therefore take into account differences 
in the relevant capacity mix.  
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Appendix A – Constructing Conventional Generation Types  

Data on installed generation capacities in Great Britain for the years 2013-2018 is taken from chapter 
5.7 of the Digest of UK Energy Statistics (DUKES 5.7) (Department for Business, Energy, and Industrial 
Strategy, 2018f).  

DUKES 5.7 lists capacities installed at the end of December of each year; for data availability reasons, 
we use them for modelling the following calendar year. For instance, we assume that generation 
capacities throughout the year 2013 are equal to the capacities recorded by DUKES 5.7 at the end of 
December of 2012.  

The DUKES 5.7 distinguishes between six types of dispatchable generation, namely nuclear, 
conventional steam (primarily coal), CCGT, ‘other renewables’ (mainly biomass), pumped storage, and 
OCGT/oil. To better reflect heterogeneity in production technologies, we further split these categories 
according to different marginal costs. We abstract from hydro natural flow generation, as well as 
imports and exports. Moreover, we de-rate capacities to account for planned and unplanned outages 
(cf. section A1.7). The construction of our model’s generation capacities and the underlying DUKES 5.7 
categories summarized in Table 9 with more detailed explanations given below. 

 

Table 9: DUKES generation types & corresponding types in our model 

DUKES 5.7 Generation Type Capacity category in our model 
 

Nuclear Nuclear  
Other renewables* Biomass  
Conventional Steam Stations** 
 

Conventional Steam I 

Conventional Steam II 

Conventional Steam III 

CCGT CCGT I  
CCGT II 
CCGT III 

Pumped Storage Pumped storage 
OCGT and oil generation OCGT 

Oil     
- Demand side response (DSR) 

*primarily biomass 
**mainly coal, also includes CHP electric generation capacity 

 
 

A.1 Nuclear Generation 

In the case of nuclear power generation, we simply preserve the original category from DUKES 5.7 
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A.2 Biomass Generation 

Marginal cost of biomass generation varies substantially by generation plant and type of input used 
(E4Tech, 2010). Unfortunately, we do not have access to more detailed data in the installed capacities 
and marginal costs of different types of biomass generation. However, biomass generation directly 
precedes coal in the merit order stack (Competition and Markets Authority, 2016b). We therefore 
make the simplifying assumption that biomass has the same marginal cost as the most efficient tranche 
of conventional steam generation.  

This assumption should not much impact market prices in our model. Over our period of interest, 
biomass capacity represents at most one half of the conventional generation tranche I capacity. Thus, 
the cheapest units of biomass are so low on the merit order stack that only rarely they will be the final 
unit dispatched. Consequently, biomass generation will rarely set the market price in our model. 

 

A.3 Conventional Steam & CCGT Generation 

Following Staffel & Green (2015b), we split both conventional steam generation and CCGT generation 
into three efficiency tranches. Efficiencies of the different tranches are taken from the same source, 
and reflect the mean ± one standard deviation, respectively. The tranches are assumed to stand in a 
fixed 25:50:25 ratio to one another, with the following associated efficiencies. 

 

Table 10: Assumed relative efficiencies of different tranches of conventional steam and CCGT 
generation  

DUKES 5.7 
Generation Type 

Tranche Efficiency 
(LHV)* 

Efficiency relative to 
average efficiency 

Conventional Steam Conventional Steam I 0.3350 0.9178 
Conventional Steam II 0.3650 1.0000 
Conventional Steam III 0.3950 1.0822 

CCGT CCGT I  0.5050 0.9528 
CCGT II 0.5300 1.0000 
CCGT III 0.5550 1.0472 

*LHV (Lower heating value) efficiency is the standard measure of electrical generation efficiency in Europe, in 
contrast to HHV (higher heating value) efficiency commonly used in the US. 

 

The marginal cost of tranche II is just the average marginal cost of the relevant generation type. The 
marginal cost of tranches I and III are assumed to be equal to the marginal costs of tranche II, multiplied 
by the corresponding relative efficiency. By increasing marginal cost – as opposed to fuel costs only – 
according to decreases in efficiency, we assume that variable O&M costs are proportional to efficiency. 
We choose to make this assumption because less efficient plants tend to be older, increasing costs for 
supervision and management.  
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A.4 Pumped-storage generation 

Pumped storage generation represents a distinct category in our merit order stack, since its marginal 
costs are significantly higher than those of upper-mid-range generation, and significantly lower than 
those of fossil oil. We hence retain the separate category for pumped storage from DUKES 5.7. 

 

A.5 Demand-side response (DSR)  

The UK’s demand-side response scheme compensates mainly large industrial users for reducing their 
electricity consumption in order to balance the grid during times of extremely high load. Again 
following the UK Competition and Markets Authority, we add 1000MW of demand side response at 
the end of the merit order stack (2016a). 

 

A.6 OCGT & Oil Generation 

Since OCGT and oil generation have vastly different marginal costs, we also split the “OCGT and oil 
category” found in DUKES 5.7 into two separate categories. To do so, we rely on data from the ENTSO-
E Transparency Platform (2019), which lists installed generation capacity by fuel type. We subtract 
installed capacity of oil generation as listed int ENTSO-E from DUKES 5.7 category “OCGT & oil 
generation”, in order to obtain separate categories for OCGT and oil generation, respectively.11 Note 
that, according to ENTSO-E, no oil generators were in service from 2018 onwards. 

 

A.7 De-rating Capacities 

To account for the effect of planned and unplanned plant outages on available capacity, we de-rate 
installed capacity. That is, we multiply installed capacity for a given generation type by that type’s 
average availability throughout the year, in order to obtain available capacities. Estimates of 
availability vary somewhat across the literature. This is because availability is influenced by weather, 
plant type and age, etc. We draw availability estimates mainly from Parsons Brinckerhoff estimations 
for the UK’s Department of Energy and Climate Change (Parsons Brinckerhoff, 2013). Assumptions on 
availability are summarized in Table 10. 

                                                             
11For the year 2018, we can compare the OCGT capacity suggested by our own approach with that recorded in a 
list including all British OCGT plants from DUKES 5.11 (Department for Business, Energy, and Industrial Strategy, 
2018d). Our own approach suggests an installed OCGT capacity of 1590 MW at the beginning of 2018, compared 
to 1489 MW in May of 2018, according to DUKES 5.11. 
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Table 11: Plant availability by generation type 

Generation technology Availability  Source 
Nuclear  91.0 % Parsons Brinckerhoff, 2013, p. 44 
Biomass 90.0 % Parsons Brinckerhoff, 2013, p. 47 
Conventional Steam  90.0 % Parsons Brinckerhoff, 2013, p. 36 
CCGT 92.8 % Parsons Brinckerhoff, 2013, p. 31 
Pumped Storage*  98.0 % National Grid, 2017, p. 30 
OCGT  94.7 % Parsons Brinckerhoff, 2013, p. 46 
Oil 94.7 % National Grid, 2017, p. 30 

*Availability estimates for pumped storage are based on summer 2016 only. Firms often schedule maintenance 
for summer when demand in the UK is lower; hence the cited figure may somewhat understate actual average 
availability throughout the year. 
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Appendix B – Estimating Marginal Generation Costs 

Whereas the literature abounds with papers estimating the levelized costs of electricity (LCOE) for 
various generation types, estimates of the marginal costs, which are necessary to estimate the supply 
curve, are much harder to come by. To our best knowledge, relevant marginal cost estimates for our 
period of interest are not available. We therefore calculate marginal costs by updating the marginal 
costs for 2010 as calculated in Staffel & Green (2015a) with current fuel and carbon prices. For coal 
and gas generation, we use their estimates for large plants, since during our period of interest the 
capacities of small plants amount to only a negligible share of total generation within their respective 
type (Department for Business, Energy, and Industrial Strategy, 2018d). 

For coal-based, gas, and oil generation, we use yearly average prices of fuels purchased by major UK 
power producers as published in QEP 3.2.1 (Department for Business, Energy, and Industrial Strategy, 
2019a). For carbon prices we calculate yearly averages based on price data from Sandbag.org.uk 
(2019). The prices underlying our marginal cost calculations are listed below in Table 12 (rounded to 
two decimal points for ease of presentation). 

 

Table 12: Average cost of electricity generation fuels and CO2, by year 

Fuel 
(in £/MWh) 

2013 2014 2015 2016 2017 2018 

Coal  8.42 7.79 6.69 7.47 10.16 10.56 
Natural Gas 44.89 40.53 27.03 23.93 30.83 38.56 
Oil  22.99 18.90 15.86 12.76 15.24 19.25 
CO2 4.46 6.00 7.69 5.35 5.84 16.03 

 

Taking into account the different efficiencies associated with different tranches of conventional steam 
and gas generation, the above fuel and emission certificate prices allow us to estimate he marginal 
cost of conventional steam, CCGT, oil, and biomass generation. 

We assume that the marginal cost of nuclear energy remains constant at Staffel & Green’s (2015a) 
estimation of £5/MWh. 

In estimating the marginal cost of pumped storage, we rely on the UK Competition and Markets 
Authority’s (2016a) assumption that the marginal cost of pumped storage is equal to the marginal cost 
of the least efficient CCGT plant, plus 5%. We therefore set the marginal cost of pumped storage equal 
to the marginal cost of CCGT tranche III generation, plus four times the standard deviation, increased 
by 5%. Finally, we also follow the Competition and Markets Authority (2016a) in assuming the cost of 
DSR is £250/MWh. 
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We obtain the following marginal costs (rounded to two decimal points in the table below for ease of 
presentation). 

 

Table 13: Marginal cost of generation, by generation type and year 

MC in £/MWh 2013 2014 2015 2016 2017 2018 
Nuclear 5.00 5.00 5.00 5.00 5.00 5.00 
Biomass 24.70 24.56 23.53 23.35 29.53 38.45 
Conventional Steam I 24.70 24.56 23.53 23.35 29.53 38.45 
Conventional Steam II 26.91 26.76 25.64 25.44 32.17 41.90 
Conventional Steam III 29.12 28.96 27.75 27.53 34.82 45.34 
CCGT I  41.47 36.23 32.53 27.37 31.03 40.16 
CCGT II 43.52 38.03 34.14 28.73 32.57 42.15 
CCGT III 45.57 39.82 35.75 30.08 34.10 44.14 
Pumped storage 50.87 47.46 42.61 35.85 40.65 52.60 
OCGT 76.03 65.07 57.27 46.76 54.31 72.44 
Oil     149.92 138.03 98.37 86.81 108.29 141.11* 
DSR 250 250 250 250 250 250 

*Marginal costs for oil generation would have jumped to £141.11/MWh in 2018, however, no oil 
generation capacity was operational that year 

 

Note that in 2017 and 2018, the merit order changes, and some tranches of coal generation become 
more expensive than gas generation.  

 

B.1 Discussion of Own Marginal Cost Estimates Compared to the Literature 

The Energy Market Investigation Final Report from the UK CMA (2016b) censors marginal cost data to 
protect competition in the market; however, it provides a graph of the British merit order stack in the 
winter of 2013. Marginal costs are broadly in line with our own estimates for 2013, although generally 
somewhat higher for conventional steam and coal generation. Finally, Charles River Associates (2016) 
suggests marginal costs for CCGT vary between £42.3/MWh for newer types and £46.3/MWh for older 
types, and £64.7/MWh for OCGT. 
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Appendix C – Simulating Non-Dispatachable Generation for 2013 

Data on actual generation from solar and wind sources is only available from 2015 onwards. In order 
to create a supply curve for the year 2013 that accounts for the merit order effect of intermittent 
renewables, we rely on simulated hourly wind and photovoltaics capacity factors from OPSD 
(Pfenninger & Staffell, 2017). These hourly capacity factors were calculated based on historical 
weather and satellite data. They describe what fraction of installed capacity was available for electricity 
generation at any point in time. Since we assume that wind and solar generation have the lowest 
marginal cost, and because available renewable generation is dwarfed by load in all hours of 2013, we 
assume that all available generation capacity was used at any hour. We can therefore simulate wind 
and photovoltaics generation for every hour by multiplying hourly capacity factors from OPSD with 
installed capacities as listed in DUKES 5.7. Note that, since listed generation capacities of small solar 
and wind power generators were de-rated according to assumed average availability throughout the 
year, we first have to undo this de-rating in order to obtain actual installed capacities.  

 


