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Abstract

The gender education gap has reversed, women today account for the majority of
college graduates. At the same time, skill-biased technological change strongly re-
wards highly-educated workers through the increased skill premium. In this thesis,
I analyze the implications of combining these two facts through a heterogeneous
agent model using U.S. data from 1964 to 2018, in which agents differ in terms of
gender and education. Extending the model of Caselli and Coleman (2006), I first
investigate how firms shift their production towards more skilled-labor-efficient
technologies over time. I find that a decrease of the relative price of skilled labor
productivity over time is needed to generate a skill premium growth. Next, I show
that the model fits the data on labor supply and both intra- and inter-household
earnings inequality very well. Then, four potential explanations for the sharp
increase of female labor supply in the last century are tested: Decreasing home
production hours, assortative matching, rising female education and skill-biased
technological change. The results show that the great changes in time use, en-
abled in larger part by more effective home production technology, are the most
important factor for female labor supply and intra-household inequality. Lastly,
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1 Introduction
The increasing educational attainment of women in industrialized countries is one of
the most striking phenomena anyone analyzing microdata encounters. Within just 50
years, women have overtaken men in terms of college graduation rates (Flood, King,
Rodgers, Ruggles, & Warren 2018), described as the reversal of the gender education gap.
Furthermore, female labor supply has experienced significant growth on both the extensive
and the intensive margin since the 1960s. Another trend evident in the data and widely
discussed in public is the increasing income inequality within developed countries. One
important cause of this inequality in the U.S., as noted by Katz and Autor (1999), is skill-
biased technological change. This term describes the increasing relative productivity of
skilled compared to unskilled workers, and can explain why the relative wage for highly-
educated workers, called the skill premium, has risen tremendously over the last few
decades. Learning about these important trends regarding gender, education, inequality,
and skill-biased technological change motivated me to connect them in a quantitative
economic model in order to better understand how they are related.

In particular, the scope of this thesis is to examine different candidates that could explain
the observed time trends in female labor supply and earnings inequality, both within
and between households. Hence, the research question I will answer is two-fold: What
are the drivers behind the large increases of female labor supply in the U.S., and how
do these changes affect earnings inequality between and within households? In order to
investigate these questions, I set up a structural partial equilibrium model, consisting of
heterogeneous households and a representative firm. My model enables me to test how
well each of the four different candidates – the reduction in home production time, changes
in spousal matching, increase in female education and skill-biased technological change –
can replicate the empirical trends.

One of the main features of my model is to allow for household heterogeneity. While this
complicates the quantitative analysis considerably compared to the standard assumption
of the representative household underlying most macroeconomic models, it is necessary for
answering my research question. This argument is supported by Doepke and Tertilt (2016)
who note that abstracting from household heterogeneity becomes particularly problematic
when the differences between households are subject to changes over time. As I will
present in the following chapters, there have been major changes to female labor supply
and educational attainment in the U.S. over the last six decades (Flood et al. 2018),
which strongly suggests that modeling multiple-member households is vital for analyzing
aggregate labor supply and consumption inequality.

My structural model is based on Caselli and Coleman (2006), one of the most noteworthy
works published on skill-biased technological change. One of the main contributions of
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this thesis is to embed the production function from Caselli and Coleman (2006), who
only model the production side of the economy, into a model with heterogeneous agents,
while adding gender as a second dimension of differentiation besides skill level. Therefore,
I extend the Caselli and Coleman model by incorporating both households and gender,
which to my knowledge constitutes the first attempt at doing so while maintaining skill
heterogeneity. In addition, instead of analyzing firms’ production technology for one year
across countries as Caselli and Coleman (2006) do, I consider the U.S. over a period of
54 years, using data from the IPUMS-CPS (2018) and the IPUMS-AHTUS (2018), for
the purpose of replicating the stylized facts regarding female labor supply and earnings
inequality in the U.S.

The further contributions of this thesis consist of determining the decrease of the relative
price of skilled labor productivity over time for the U.S., as well as examining different
candidates for explaining female labor supply and determining their effect on earnings
inequality. My main finding is that the reduced time spent by women working in the
household compared to previous decades, enabled for example through more efficient
technologies and changing social norms incentivizing men to participate in household
work, is by far the most important driving force behind the changes in female labor
supply and earnings inequality. Thus, my thesis supports the findings of Greenwood,
Seshadri, and Yorukoglu (2005) and underlines the great importance of freeing up time
for women in increasing their labor market attachment.

This thesis is organized as follows: Chapter 2 provides an overview of the extensive liter-
ature on female labor supply and skill-biased technological change. Chapter 3 illustrates
the main facts motivating the quantitative analysis, which will begin in chapter 4 with
the introduction of a structural heterogeneous agent model. Chapter 5 describes how the
model is parameterized and solved in MATLAB. Chapter 6 presents the model results, in-
cluding a discussion on how to quantitatively incorporate skill-biased technological change
into the model. Chapter 7 provides counterfactual analyses in order to examine different
candidates for explaining female labor supply changes, as well as to determine the model
results and fit for the subsample of unmarried, cohabiting households. In the end, I will
conclude my thesis with a brief summary of the results and a discussion of the limitations
of my work as well as possible extensions of the model to overcome these.

2 Literature Review
This thesis is combining two features: The changes in female labor market and educa-
tional attachment on the one hand and skill-biased technological change on the other,
each of them affecting earnings inequality. Therefore, I will provide an overview of both
strands of literature and subsequently discuss how they are connected. While I cannot

2



claim that examining the relationship between these two fields is a novel approach, the
research on this topic is still fairly young. Notable work includes Greenwood, Guner,
Kocharkov, and Santos (2016), Cerina, Moro, and Rendall (2017), Rendall (2017), Ngai
and Petrongolo (2017) and Cortes, Jaimovich, and Siu (2018), which I will accentuate in
detail after presenting both research areas individually. This chapter is concluded with
summarizing evidence on the role of female labor supply and skill-biased technological
change for earnings inequality in the U.S.

To begin with, there exists an extensive literature on the properties of female labor supply
in the US and the driving forces behind its shifts over time. In order to provide a structured
overview of the multifaceted work done on female labor force participation (LFP) over
the last decades, I present the most decisive factors for its development in the following
order: The changes in the division of household labor, the compatibility of motherhood
and working for women, the increasing returns to labor market experience, child care
and parental leave policies, the taxation of married couples, cultural and social norms,
intra-household bargaining, the effects of changing household composition in the U.S.
(especially assortative matching), the increased educational attainment of women, and
the effects of the increasing skill-premium caused by skill-biased technological change and
sectoral transformation.

One of the most notable changes over the past decades is how considerably different the
day of an average American woman in 2019 looks from one in the 1960s. Despite being
only two generations apart, the everyday life of a housewife in the 1960s, dominated by
hard manual housework, seems extremely outdated today. However, since then shifts in
the division of labor within the household and technological innovations have freed up
time for women to work in the labor market, as a vast literature on time use in the U.S.
documents. Aguiar and Hurst (2007) study time use by gender in the U.S. between 1965
and 2003 and find that men substituted part of their reduced market work hours with
home production, whereas women used some of the time gained by reduced household
work to participate in the labor market.

Analyzing the American Heritage Time Use Study (AHTUS), Fisher, Egerton, Gershuny,
and Robinson (2007) support these results by showing that leisure increased for both
genders, while work hours of men and women converged over time. Furthermore, Ramey
and Francis (2009) provide evidence that the rise in female compensated the decline in
male working hours almost perfectly, such that the average prime age individual today
spends as much time working in the labor market as in 1900.

These far-reaching shifts in time use over the last 100 years raise more questions than they
answer. While the overall patterns in the data are well-documented, identifying the drivers
behind these changes proves to be much more difficult. One possible explanation is put
forward by Greenwood et al. (2005) who argue that advances in home appliances increased
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female LFP by reducing the time married women had to devote to home production. Their
main result is that the model reproduces both the increasing female LFP and the declining
household work time by women found in the data. According to Greenwood et al., the
narrowing of the gender pay gap on the other hand was not as important for increasing
female LFP, since women could not have allocated enough time to working in the market
without more efficient household appliances granting them more time to allocate outside
of the household.

Contradicting these results, Jones, Manuelli, and McGrattan (2015) find that household
technology improvements cannot explain the rise of married female LFP after World War
II. They attribute their deviating results to Greenwood et al. (2005) using a Leontief pro-
duction function for the home good and assuming female labor to be indivisible, meaning
Greenwood et al. do not consider part-time work despite it constituting a significant part
of the female work force (Jones et al. 2015). Instead, Jones et al. come to the conclusion
that even small decreases in the gender pay gap can explain both the increase of married
and the stagnation of single female LFP after World War II in the U.S.

Besides household production, the other important reason for women spending more time
on non-market work than men, and one that cannot be divided between partners as
easily as doing the dishes or buying groceries, is having children. From pregnancy over
child birth to raising children, having children exerts a significant time (and subsequently
monetary) cost that is still mostly born by women. This is in part due to unchangeable
biological reasons, but also to social norms and expectations as well as preferences. The
degree of (in)compatibility between having children and participating in the labor market
is therefore particularly important for female labor supply on both the extensive and the
intensive margin.

Accentuating the significance of fertility for female LFP, Erosa, Fuster, and Restuccia
(2016) show that the impact of children on female labor supply explains about half of
the divergence in hourly wages over the life-cycle between men and women. This huge
effect is caused mainly by mothers’ lower expected employment rate and working hours
due to having children. The remainder of the gender pay gap can be attributed to women
working around 10% less than men when employed, regardless of whether they have
children (Erosa et al. 2016). Bertrand, Goldin, and Katz (2010) study the gender pay gap
for MBA graduates and find that having children comes with a huge earnings penalty,
especially after the first year after giving birth. Interestingly, this effect is reversed for
fathers, who earn more than childless men (Bertrand et al. 2010). In addition, work hour
differences, which are also mainly due to having children, can explain a large part of the
gender difference in pay (Bertrand et al. 2010).

While less debated, in addition to the gender wage gap, there is also a wage gap between
mothers and childless women called the family gap. Waldfogel (1998) finds that a woman’s
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average wage decreases by 4.6% for the first child, while Erosa, Fuster, and Restuccia
(2010) estimate that the average wage of a women with children is only 89% of that of a
women without children.

Concerned with the link between education and fertility, Hazan and Zoabi (2015) illustrate
that fertility and education are related in a U-shape, meaning that low- and high-educated
women have the most children. While they state that fertility is usually decreasing in ed-
ucation and income within a country, which can explain the high fertility of low-educated
women, the reason for fertility increasing again for high-educated women is unclear. Their
explanation for this phenomenon is that highly educated women purchase market sub-
stitutes for home production such as child care and housekeeping that allow them to
combine high fertility and market work. Mothers with low education (and low income)
on the other hand do not marketize household production as much and engage in most of
the child-raising themselves. In addition, Hazan and Zoabi also find that highly educated
women invest more in their children, for instance in the quality of their education, which
increases the growth of economic inequality over time.

Moreover, similar to household labor, technological progress has affected the time re-
quirement of raising children. Albanesi and Olivetti (2016) provide an example for this
by showing that the increasing diffusion of infant formula between the 1930s and 1960s
allowed mothers to combine market work and child care more easily. Together with ad-
vances in maternal health, this allowed female LFP to increase alongside a fertility rise.
In addition, medical progress has fundamentally reduced the uncertainty fertility imposes
on female education and labor supply decisions. Goldin and Katz (2002) present evidence
that oral contraceptives introduced in the 1970s have increased the returns to female ed-
ucation, as they reduced the costs of investing into a long-term professional career and
made planning a career easier. This in turn increased their labor market participation
later on when married.

Another significant channel of how a woman’s fertility decision affects her labor market
outcome, besides the direct time cost, is through the immense importance of work expe-
rience in today’s world and the subsequent loss of it which working mothers inevitably
incur. The earnings benefit of having accumulated job market experience is being referred
to as the returns to experience and can be estimated empirically. A noteworthy study
doing exactly this has been conducted by Olivetti (2006), who finds that the returns to
experience overall have risen between the 1970s and 1990s, but that this increase was
more distinct for women than for men. This in turn raised women’s opportunity costs of
temporarily dropping out of the labor force during motherhood and of working less hours
during child-rearing, contributing to their LFP increase (Olivetti 2006).

Moreover, using abortion legislation as an instrument for fertility, Bloom, Canning, Fink,
and Finlay (2009) estimate the reduction of a mother’s lifetime labor supply associated
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with having one child to be almost two years. Combining this with the increasing returns
to experience for women found by Olivetti, the detrimental and long-lasting effect of
dropping out of the labor force for two years due to motherhood on women’s careers are
evident.

As the significance of returns to experience demonstrates, reducing the length of the
career interruption associated with fertility is crucial in ensuring that women can combine
motherhood with working in the labor market. Two important instruments to facilitate
this are child care and maternal leave policies, and the effects of both have been examined
extensively by economists.

Erosa et al. (2010) analyze the impact of parental leave policies on fertility and labor
supply using a search and matching model with human capital accumulation on the job.
Their main result is that voluntary parental leave policies have no effect or can even
reduce the time women spend on child-rearing, whereas mandatory parental leave policies
lead to increases in both the fertility rate and female participation. Domeij and Klein
(2012) examine whether child care can raise welfare by allowing mothers to work and find
that half-subsidizing day care almost doubles LFP among mothers with small children.
Likewise, Bick (2016) also finds large positive effects of subsidized child care on mother’s
labor supply using German data, in particular for part-time-working mothers of children
aged zero to two. Ragan (2013) considers cross-country data and notes that day care
subsidies are crucial in explaining the high levels of female labor market participation in
Sweden, as day care increases market hours while reducing hours spent on non-market
work at home. Guner, Kaygusuz, and Ventura (2014) underline the importance of child
care subsidies for female LFP, particularly for less-educated women who on average have
more children than college graduates. They estimate that introducing a fully subsidized,
universal child care program in the U.S. would raise female participation rates as well as
hours worked.

The effectiveness of child care and maternal leave policies in raising female LFP depends in
large part on their accessibility. Mart́ınez and Iza (2004) relate the increased availability
and affordability of child care services in the U.S. to the rising demand for high-skilled
labor induced by skill-biased technological change. They argue that as the demand and
therefore the wages for skilled relative to unskilled labor (the skill premium) grow, the
relative cost of child care, which does not require highly-educated workers, decreases. This
in turn made purchasing market child care more affordable for women, allowing them to
allocate more time to working in the labor market. Hazan and Zoabi (2015) also find that
the costs of child care relative to female wages have decreased, opening it up to women
who were previously not able to afford it to the same extent. However, unlike Mart́ınez
and Iza, Hazan and Zoabi note that this relative cost decrease only applies to highly
educated women, and that child care has in fact become more expensive for less-educated
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women.

Besides child care and parental leave subsidies, the taxation of labor income for mar-
ried couples also plays an important role for female LFP. This is proven by Bick and
Fuchs-Schündeln (2017), who investigate differences in aggregate labor supplies of mar-
ried couples across the U.S. and selected European countries. Their results show that
the cross-country differences in female labor supply within Europe can be explained by
variations in tax systems. Namely, joint taxation of married couples, as practiced in the
U.S. and Germany, increases the marginal tax rate faced by the second earner (mostly the
wife) and hence disincentivizes her from working (the so-called marriage penalty), whereas
separate taxation systems like in Sweden do not exert a negative effect on second-earner
employment. The result of Apps and Rees (2004) that individual taxation of couples
increases both female LFP and fertility supports this.

In contrast to these quantifiable policy instruments, much more difficult to measure, yet
nonetheless crucial factors for female labor supply are social norms and values. Notewor-
thy studies on this challenging matter include Fernández, Fogli, and Olivetti (2004), who
argue that the cultural transmission of social attitudes towards working women is passed
on across generations. Notably, men obtaining their preference for marrying either a work-
ing or a stay-at-home wife from their mother’s behavior leads to an increase in female
LFP over time. Similar to this study, Fernández (2013) assumes that attitudes towards
working married women are passed on to the next generation and finds that especially
the perceived long-run costs of working for women are vital in this process. In the model
of Fogli and Veldkamp (2011), women learn about the effects of fertility on female LFP
through the number of working women in society. This results in accumulating effects, as
more women working implies a larger growth of female LFP.

Closely related to social norms and values, intra-household bargaining models also serve
as prominent explanations for the increase of female LFP in the literature. For instance,
Eckstein and Lifshitz (2015) assume that households can be one of two types: In clas-
sical households, the husband sets his own optimal labor supply, while the wife treats
his decision as given (non-cooperative bargaining). On the contrary, spouses in modern
households play a symmetric Nash game (cooperative bargaining). Eckstein and Lifshitz
find that in modern households, women work about 10% more, while male labor supply
is not affected. Therefore, if one assumes a shift in social norms over the last decades
that led to more households being of the modern type, the model of Eckstein and Lifshitz
provides a good explanation for both the rise in female and stagnation in male labor
supply.

Besides through household bargaining, the fact that married women’s labor supply is
influenced by spousal decision making is further reflected in the fact that civil status is an
important factor for explaining female LFP. For instance, Browning, Chiappori, and Weiss
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(2014) note that the pattern of hours and wages between married and single individuals
is reversed between genders: While married men both work more hours and earn higher
wages than single men, single women work and earn more than married women. According
to Browning et al., two effects can explain this pattern: The division of household labor
within married couples, where women typically do the majority of chores, and a marriage
selection bias caused by mostly high-wage men and low-wage women being able and willing
to enter marriage. However, Browning et al. state that these wage differences by marital
status are less pronounced for recent cohorts, since married women today participate more
in the labor market which makes their wages converge to those of males.

Further, one of the most influential factors shaping both male and female labor supply is
assortative matching, meaning that people tend to choose partners with characteristics
similar to their own, in particular regarding education. Notably, according to Browning
et al., the share of couples with equal schooling is relatively constant at about 50% of
married couples in the U.S. On the contrary, the share of couples in which the wife is higher
educated has surpassed that of couples with a higher educated husband for couples with
husbands born in 1960 and later (Browning et al. 2014). This marks the reversal of the
educational gap between men and women, and assessing its implications for labor supply
and income inequality will be part of my quantitative analysis. Nonetheless, Browning
et al. also demonstrate that, while there is a strong correlation of 0.7 between spouses’
school years, the correlation of their log wages is considerably lower with a correlation
coefficient of only 0.3 (although it has been increasing from 0.2 in the 1970s). This
indicates that the convergence of female to male school years does not perfectly translate
to wage convergence.

A significant channel of how this changing household composition matters for labor supply
is through household insurance against labor market shocks. Choi and Valladares-Esteban
(2016) study the role of household insurance through spousal income against labor market
shocks under a system of publicly provided unemployment insurance (UI). By examining
the effects of these shocks on single and married households, they demonstrate large
effects of self insurance. Notably, in their model UI does not improve the welfare of
married households, who are self-insured through the pooling of household earnings, joint
savings and the added worker effect. In consistence with this result, Blundell, Pistaferri,
and Saporta-Eksten (2016) report strong evidence for the importance of family insurance
within two-earner households in smoothing wage shocks, especially for poor families that
do not hold assets. Furthermore, Shore (2015) studies couples’ income dynamics and finds
that the volatility of spousal incomes is positively correlated, which could be explained
through assortative matching.

As Browning et al. (2014) note, the remarkable rise of the share of couples with a more
educated wife cannot be fully explained by changing preferences in spousal matching.
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Rather, the increased educational attainment of women is a core driver behind the shifts
in household composition. The fact that women today are obtaining more education
than men is referred to as the reversal of the gender education gap, and it is particularly
relevant for female labor supply and earnings because of the growing skill premium, which
describes that the monetary returns (in terms of future labor income) of being more
educated have been starkly increasing in recent decades. For instance, Albanesi and
Prados (2017) argue that the skill premium rise during the 1990s led to huge increases
of the top incomes for (college-educated) men, which subsequently caused a decline in
the LFP of their wives through a household income effect. According to Albanesi and
Prados, this effect was amplified by the increase of assortative matching and can explain
why female LFP flattened in the 1990s.

Mulligan and Rubinstein (2008) attribute the reduction of the gender wage gap in the U.S.
since the 1970s to unobservable changes in the composition of the female workforce. They
describe that the increased demand for skilled labor caused women to invest more into
their education. Subsequently, it became more expensive for these well-educated women
to remain out of the labor force due to the large opportunity costs, which increased female
LFP particularly for high-skilled women. In line with these findings, Chiappori, Iyigun,
and Weiss (2009) also show that the overall returns to schooling have increased more for
women than for men. They state that through positive assortative matching, investing
in their education not only generates a labor market, but also a marriage market return
for women. The reason for this is that being more educated grants women a larger share
of the martial surplus, both because their outside option improves and because they can
generate a larger household income upon marriage. Chiappori et al. argue that the lower
educational investment of women compared to men in the past was mostly due to house-
hold work, which decreased the returns from education after marriage. Nowadays, while
the market return to schooling has increased for both genders, according to Chiappori et
al., women invest more in education than men because the reduction in household hours
due to technological progress has increased their marriage return to education.

The main reason for the steep increase of the returns to education (the skill premium) is
skill-biased technological change, meaning that the relative productivity of skilled com-
pared to unskilled labor has increased rapidly since the 1970s. Early important work in
this field includes Katz and Murphy (1992) who show the increase of the college wage
premium in the U.S., and Katz and Autor (1999) who also find that the wage difference
between college and high school graduates has increased sharply after an initial drop in
the 1970s. In addition, according to Acemoglu (1998) firms choose their production tech-
nology endogenously depending on the relative supplies of skilled and unskilled labor,
which he calls the ”directed technology effect”. However, as technologies are fixed in the
short-run, an increased availability of skilled labor initially reduces the skill premium due
to the supply effect, which can explain the college wage premium decrease in the U.S.
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during the late 1960s and 1970s (Acemoglu 1998).

Caselli and Coleman (2006) examine cross-country differences in production with skilled
and unskilled labor being imperfect substitutes in a model where firms choose an optimal
production technology based on the availability of both types of labor. Their results
indicate that rich countries use skilled labor more efficiently than poor countries because
firms in these countries choose technologies favoring skilled labor, as it is available in
abundance. Moreover, Caselli and Coleman find that the ratio of skilled to unskilled
labor productivity is larger in more developed countries, and grows over time, generating
skill-biased technological change. Interestingly, they show that the variation in labor
productivities accounts for 40% of cross-country variation in income.

Combining these findings with the shifts in female labor supply, matching and education
documented above, it becomes evident that skill-biased technological change affects female
labor supply and earnings in particular. One of the main reasons for this is that it implies
a sectoral shift to services where women have a comparative advantage over men, as
many authors have illustrated. In the following, I will therefore present noteworthy work
highlighting how female labor supply and skill-biased technological change are related.

An early paper on this is written by Galor and Weil (1996), who study potential causes of
the growing demand for female labor. They show that technological innovations increased
the returns to skilled-labor occupations, in which women have a biological comparative
advantage over men in contrast to physically demanding manual labor jobs. Further, they
find that this factor, together with the increasing labor market participation of women,
explains why the gender gap in wages has been decreasing over time. Consistent with these
findings, Black and Juhn (2000) show that the rising demand for skilled labor contributed
to the rise in skilled female LFP. According to them, the additional demand for skilled
labor was primarily served by women, since most skilled men were already participating
in the labor market. These well-educated women subsequently mostly switched from non-
participation or low-skill jobs to positions in need of high-skilled labor, increasing female
LFP along both margins.

However, Blau and Kahn (2007) argue that skill-biased technological change, while in-
creasing the demand for skilled female labor, would not boost female LFP any further, but
rather increase women’s wages relative to men. They base this prognosis on an estimated
drop of female wage elasticity by 50-56%, meaning that higher wages would not imply
further female labor supply growth. Herrmann and Machado (2012) measure the selection
of men and women into jobs using high school test scores which serve as a measure of
cognitive ability before entering the labor market. Their results show that the gender
wage gap cannot be explained by the job selection of women into either high- or low-
paying job. Herrmann and Machado find no relationship between ability (as measured
by the test score) and full-time work participation, proving that working women are not
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self-selected exclusively from either end of the skill distribution.

In addition, Greenwood et al. (2016) examine two exogenous trends, the technological
progress in household production and the wage changes over time due to the increasing
skill premium and decreasing gender wage gap. They show that these two can explain
the patterns of marriage and divorce and female LFP present in the data. According
to Greenwood et al., technological improvements in household production constitute the
most important factor for the increase of married female LFP, followed by the narrow-
ing of the gender wage gap. The rise of income inequality between households on the
other hand can be attributed in large part to the growing college skill premium, which is
strengthened by the prevalence of assortative matching implying that high-earning men
are matched with high-earning women. However, Greenwood et al. note that the effect of
assortative matching on inequality is only effective when women are working, as otherwise
the inequality between households is the same as between men.

Furthermore, Cerina et al. (2017) examine employment polarization in the U.S., which
describes the increase of LFP rates (the extensive margin of labor supply) at the bot-
tom and top of the skill distribution, while employment in the center declines. They
show that that this pattern is mostly caused by women, whose employment polarization
is driven by skill-biased technological change after 1980, causing high-skilled women to
substitute household production hours with market work. In order to spend less time in
the household, these high-skilled women purchase market substitutes for home production
(for instance helpers, cleaners and nannies), and these substitutes are mostly provided by
low-skilled women. Subsequently, the LFP rates of women at the top and bottom ends
of the skill distribution increase, while women at the center of the distribution are less
likely to work.

Moreover, Rendall (2017) studies women’s comparative advantage under two labor de-
mand shifts, a standard skill-biased one and a brain-biased one where brain inputs become
more productive than brawn inputs in both high- and low-skilled jobs. Most notably, her
model offers a good explanation for the narrowing of the gender wage and education
gaps in the U.S. since the 1980s. According to Rendall, these effects can mostly be
explained through a brain-biased labor demand shift, which can also be interpreted as
a gender-biased shift due to the comparative advantage of women in brain-biased jobs.
Interestingly, she finds that this brain demand shift was especially pronounced in the
unskilled sector.

Likewise, Ngai and Petrongolo (2017) examine the effects of the growing service sector
share on the gender gaps in hours and wages, assuming that women have a comparative
advantage in producing services. Their results show that the growing dominance of the
service sector increases women’s relative wages and hours worked. They provide two ex-
planations for why women may have a comparative advantage in services. The first reason
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states that women have a clear disadvantage against men in brawn-intensive occupations,
while the second argues that women have superior communication and interpersonal skills
compared to men, and these skills are irreplaceable by automation. Ngai and Petrongolo
argue that this female advantage in the tertiary sector is reflected in wages, since the rise
of the service sector share is associated with growing female relative wages.

The last paper I present regarding skill-biased change and gender is that of Cortes et
al. (2018), who investigate why the share of college-educated men working in cognitive,
high-wage occupations has been decreasing, whereas the share of women in these jobs has
grown. Similar to Ngai and Petrongolo, they bring up the argument that the demand
for female-oriented (social) skills in high-wage occupations is increasing relative to other
occupations, which introduces a female bias. According to Cortes et al., this growing
demand for social skills is the main reason for the observed gender reversal in these
occupations, which cannot be explained by the increasing female share among college
graduates alone.

To conclude this chapter, I summarize relevant studies on how the increased female labor
market attachment has affected pay inequality. For example, Acemoglu, Autor, and Lyle
(2004) estimate the effect of female LFP on the wage structure in the U.S. utilizing the
state-level variation in military mobilization during World War II, since women worked
more after the war in states with high mobilization due to the greater number of fallen
men. They find that higher female LFP lowered the wages of both genders, although
the stronger decrease of female wages indicates that male and female labor are imperfect
substitutes. Furthermore, states with greater female LFP saw increased earnings inequal-
ity between high- and low-skilled men, which Acemoglu et al. attribute to the low level
of female education at the time, meaning that women competed mostly with low-skilled
men, in turn increasing the returns to education for men.

Furthermore, positive assortative matching reinforces inequality, as several studies have
demonstrated. Hyslop (2001) finds that female labor supply can explain much of the rise
in family and in female earnings inequality in the early 1980s. Moreover, he estimates
that positive assortative matching can explain about 25% of the increase in permanent
family earnings inequality. In support of this, Fernández and Rogerson (2001) as well as
Greenwood et al. (2016) also show that increased assortative matching raises household
income inequality. Gihleb and Lifshitz (2016) indicate that the share of couples in which
the woman is more educated is increasing, and that women in these couples are more
likely to work than women who married a more educated husband. They argue that this
furthers inequality between households and is much more important for inter-household
inequality than positive assortative matching.

In addition, Card and Hyslop (2018) study why earnings inequality among women has
declined since the 1960s. They report a decreasing relevance of family factors like the
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number of children and spousal income for female labor supply, which contributed a major
part to female earnings inequality in the past. Heathcote, Storesletten, and Violante
(2010) investigate the effects of increasing wage inequality on overall welfare and find
that today’s higher relative wages for college graduates and for women have led to more
schooling and a more even division of household work between genders. Moreover, while
gender- and especially skill-biased technological change increased average welfare, the
household type consisting of two low-skilled (high school graduate) partners incurred a
welfare loss caused by the rising skill premium.

To summarize, female labor supply, education, wages and earnings in the U.S. have all
seen tremendous changes over the past decades, which in turn has affected household
composition and inequality. The next chapter is therefore dedicated to illustrating these
trends using empirical U.S. data.

3 The Facts
Before introducing my model, I present empirical trends and patterns regarding female
labor supply, time use, spousal matching, education, wages, skill-biased technological
change and earnings inequality in the U.S. These stylized facts provide evidence of huge
shifts in many key variables over the last decades, such as the increasing returns to
education and stronger attachment of women to the labor market. Since these findings
motivate my analysis of female labor supply under skill-biased technological change and
set the stage for the quantitative part of this thesis, it is important to know of the main
trends in the data before commencing any quantitative study.

For my analysis, I use U.S. microdata obtained from IPUMS for the Current Population
Survey (CPS) from 1964 to 2018 (Flood et al. 2018) and the American Heritage Time
Use Study (AHTUS) from 1965 to 2012 (Fisher, Gershuny, Flood, Roman, & Hofferth
2018). The main reason for using the U.S. Current Population Survey over the decennial
U.S. census data (IPUMS-USA), which is also available on IPUMS and widely used in
the literature to show long-term trends of female labor supply, is its annual availability.
Furthermore, the early time use surveys contained in the AHTUS were conducted in 1965,
1975, 1985 and 1995, whereas the census data was gathered every ten years from 1790.
Hence, for better comparability of household survey and time use data, I use the CPS.

Following Mulligan and Rubinstein (2008), who also utilize the CPS to study female
labor supply and wages, I impose an age restriction of 25 to 55 years. Restricting on the
minimum age of 25 ensures that most individuals will have completed their undergraduate
college education, which is imported since education enters my model exogenously. The
maximum age is set to 55 to mitigate the effects of retirement on labor supply and time
use. Additionally, like Mulligan and Rubinstein (2008) and Herrmann and Machado
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(2012), I restrict the sample to non-Hispanic whites to avoid changing demographics over
time being the driver behind patterns in the data. One example for this would be that
black women, especially when young, work more in the labor market than white women
(Fernández 2013), meaning that an increasing share of African Americans would increase
female labor supply ceteris paribus, without any changes in individual behavior. In line
with Mulligan and Rubinstein (2008) and Herrmann and Machado (2012), I also drop all
military personnel, as they do not report hours worked.

Moreover, since households in my model are composed of opposite-sex couples, I restrict
the sample to men and women living with or married to a partner of the other gender.
In addition, since one of the assumptions of my model is that the husband is always
working, I only consider households where the male partner is working for pay for any
positive amount of hours. This also allows for better comparability between households,
as the household production time of both partners would differ when the husband is
unemployed. Therefore, unless stated otherwise, all trends presented in the following
referring to CPS and AHTUS data are for this sample of heterosexual couples in which
the male partner is working and receives non-zero earnings. A full description of the data,
the number of observations, the sample restrictions I imposed and how I constructed the
key variables can be found in the Data Appendix A.

Regarding educational attainment, I follow the skill-level distinctions by Cortes et al.
(2018) and Greenwood et al. (2016) and consider an individual with four or more years
of college education (the typical duration of most undergraduate degree programs in the
U.S.) as high-skilled, and everyone with less than four years of college education as low-
skilled. Hence, the sample consists of four different household types: Two in which both
partners are equally educated, and two in which either the male or female partner is the
only one with a college degree.

This chapter is organized in five sections presenting time trends of the key variables
most important for my quantitative analysis. First, I will outline the increase of female
labor force participation, especially for skilled women, as well as the tremendous decrease
in time spent on household production by women. Subsequently, I show patterns of
spousal matching based on education and of the share of cohabiting (non-married) couples.
Following this, I present the reversal of the gender education gap caused by the increasing
educational attainment of women. Since skill-biased technological change is one of the
core forces in my model, I will then demonstrate the growing skill premium through
plotting the development of real wages over time by gender. I conclude this chapter by
showing the growing earnings inequality between U.S. households as well as the declining
earnings inequality within households.
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3.1 Trends in Labor Supply and Time Use
First of all, female labor force participation (LFP) has increased greatly since the 1960s,
especially for married/cohabiting women. This trend is evident on both the extensive
margin (the percentage of women in the labor force, called the LFP rate) and the inten-
sive margin, typically measured by annual hours worked. Figure 3.1 shows the immense
increase of labor market participation on both margins of married/cohabiting women over
time. Both the female LFP rate and the average annual hours worked were computed us-
ing the individual-level survey weight ASECWT over all women in the sample, including
both full-time and part-time working women.

Figure 3.1: Labor Force Participation Rate and Average Annual Hours Worked of
Women

Note: Aged 25 to 55, non-Hispanic whites, living with a working partner
Source: Author’s rendering of IPUMS-CPS data (2018)

As can be seen in figure 3.1, both measures have increased starkly since the 1960s. The
female LFP rate has more than doubled from 33% in 1964 to 75% in 2018, meaning three
in four married/cohabiting women are working today. Even more distinctively, annual
hours worked have almost tripled from 464 to 1,385. Interestingly, an almost identical
growth pattern can be observed in both variables. After a steep increase over the late
1960s, the 1970s, and 1980s, both measures begin to stagnate in the mid-1990s, and this
stagnation has lasted until today. Both rates display a modest rise starting in 2012, with
the relative growth being larger for annual hours worked. From 1995 to 2018, annual
hours grew by 13% in total, while the LFP rate increased by only 5%. This indicates
that, in addition to more women entering the labor market, the already working women
have increased their working hours over the last 20 years.
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While the increase of female labor market attachment (especially in annual work hours)
is tremendous, it is important to note that women are still working significantly less than
men, whose average annual hours worked have stagnated at around 2300 hours since the
1960s. The main reason for this big gap between male and female hours worked is that,
despite the consistently high female LFP rate of around 75% since the 1990s, most women
do not work full-time. Some of the reasons for this, such as child care and differences in
home production between genders, have been discussed in the literature review.

Figure 3.2 depicts the survey weight-adjusted shares of married/cohabiting women who
are working full-time full-year (FTFY, defined as having worked for pay at least 50 weeks
last year and at least 35 hours last week), part-time (all other working women), and not
at all. Within each year, these three fractions sum up to 100%, denoting all women in
the sample.

Figure 3.2: Fractions of Women by Work Status

Note: Aged 25 to 55, non-Hispanic whites, living with a working partner
Source: Author’s rendering of IPUMS-CPS data (2018)

It is evident that the main shifts over time are the sharp decrease of the share of women
living with a working partner but not working themselves and the rising fraction of FTFY
working women, which has reached an all-time maximum of 49% in 2018. The share of
part-time working women on the other hand has only increased moderately since the
1960s and, after plateauing in the 1980s and 1990s, has been slightly declining since 2000.

A well-known, interesting fact is that female LFP differs greatly by educational attain-
ment, and has always been higher for more educated women. As figure 3.3 illustrates,
female LFP rates for college and non-college graduated women comove almost perfectly
over time, with the exception of the current decade, which has seen a steep increase of
LFP for college graduates coupled with stagnating LFP for lower educated women. The
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gap between the two rates has been relatively consistent at around ten percentage points
until the end of the 20th century. This mirrors in part the higher expected wages for
college-educated women, but also captures endogenous factors such as different fertility
rates, preferences, and social attitudes between the two groups. Interestingly, figure 3.3
proves that college-educated women constitute the driving force behind the recent increase
in overall female LFP depicted in 3.1.

Figure 3.3: Labor Force Participation Rate of Women by Education

Note: Aged 25 to 55, non-Hispanic whites, living with a working partner
Source: Author’s rendering of IPUMS-CPS data (2018)

At the same time, a married or cohabiting women’s decision of whether to work is not
only influenced by her own education, but also by her partner’s education and resulting
labor market opportunities. As mentioned in the beginning of this chapter, the sample
of married or cohabiting couples consists of four different household types depending on
each partner’s education: Non-college & non-college, college & non-college, non-college &
college, and college & college. Figure 3.4 shows that female LFP has increased in a similar
pattern over time regardless of household type: First, female LFP grew throughout the
1960s, 1970s, and 1980s, which was then followed by almost 30 years of plateauing since
around 1990. The only exception to this are college-educated women living with an also
college-educated partner, whose LFP rate has risen by almost 10% since 2010. Hence,
the increase of college-educated women’s LFP illustrated in figure 3.3 can be attributed
to women living with an equally educated partner, since the LFP rate of college-educated
women living with less-educated men has been quite stable for the past 25 years.
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Figure 3.4: Labor Force Participation Rate of Women by Household Type

Note: Aged 25 to 55, non-Hispanic whites, living with a working partner
Source: Author’s rendering of IPUMS-CPS data (2018)

Women living with a more educated partner have always shown the lowest labor force
participation, while women more educated than their partner have been most likely to
work at all times. This is not only in line with the findings of Gihleb and Lifshitz (2016),
but also follows basic economic intuition. A rational division of labor in the household
would predict the more educated (and potentially higher-earning) partner to participate
in the labor market, while the less educated partner takes over household duties like chores
or childcare. Interestingly, female LFP is not the same for the two types of assortatively
matched couples with equally educated partners, but has been larger in most years for
couples in which both partners hold a college degree. At first glance, this seems to
contradict the basic economic theory of leisure as a normal good, which would predict
that women in non-college & non-college households should work more due to the lower
household earnings exerting a positive income effect on hours worked. However, one
potential explanation for this paradox is the marketization of home production. More
educated couples, through their higher household income, can afford to substitute home
production with market services such as household helpers and day care, making it easier
for the woman in these households to work (Cerina et al. 2017). In addition, as noted
above, differences in women’s preferences and fertility decisions between these two groups
also have to be considered.

In conclusion, as the evidence for the sample of married/cohabiting women shows, a
greater number of these women are working today than ever before in the past 50 years,
and the women who participate in the labor market are working more hours than ever
before. A core driving force behind these tremendous changes are the large shifts in
the division of labor within the household that have been occurring since the 1960s.
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Combining the CPS data with the American Heritage Time Use Study, the most extensive
and harmonized set of U.S. time use data available from 1965, allows for comparing both
time worked in the labor market and in the household over time. I define household work
as the sum of unpaid domestic work, which includes all chores, child care, and adult care.
I do not consider time spent on personal care and sleep to be part of home production,
as they are individual activities mostly to ones own benefit, unlike the core activities
necessary for maintaining the household that are considered as production of a public
good. As the AHTUS only records the respondent’s, but not their partner’s education
level, there is no way to distinguish time worked in the household by household type. In
addition, the AHTUS is not available annually like the CPS. However, comparing labor
market and household time use over the last decades for men and women by the two
education levels (college and non-college) already yields highly interesting results, as can
be seen in figure 3.5.

Figure 3.5: Hours per Week Spent Working in the Labor Market and in the
Household by Gender and Skill

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018) and IPUMS-AHTUS data (2018)

The patterns of male and female time use are very similar between the two educational
groups. Women have substituted a significant share of their household hours with working
in the labor market. Whereas in 1965, a woman without a college degree was on average
almost spending as much time on household production as the equally educated man spent
working in the labor market, female market and non-market work have converged over
the years, in particular for college-educated women. Figure 3.5 indicates that for these
women hours worked have recently started to exceed hours spent on home production.
However, since the AHTUS data ends in 2012, this cannot be backed by the data until
the AHTUS gets updated.
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Conversely, the labor market hours of men are relatively stable at around 45 hours per
week over the past 50 years. This stagnation persists almost regardless of education; only
college-educated men display a decrease in average work hours of almost 3 hours since
the turn of the century. On the contrary, men of both educational groups have increased
their participation in household work by about 50% over the last decades, which together
with the constant work hours indicates that men have sacrificed leisure time to support
their partners in doing household work. While this seemingly contradicts the findings of
Aguiar and Hurst (2007) that male market work hours have decreased significantly since
the 1960s such that they enjoy more leisure today, this difference can be attributed to
different sample restrictions, as Aguiar and Hurst consider all men, married and single.
Nonetheless, the increase of male household labor of about 5 additional hours per week
today compared to 1965 does not compensate for the large reduction in women’s household
production hours, which indicates that less time needs to be allocated to maintaining a
household today than in the 1960s, e.g. due to the improvements in technology mentioned
by Greenwood et al. (2005). Moreover, the increase of male household labor hours came
to a halt at the end of the 20th century. For the latest set of time use data ranging from
2003 to 2012, men’s household hours are fluctuating around their 2003 values of about 15
hours per week.

To summarize, this section has not only demonstrated the tremendous changes in female
labor supply and time use over the past 54 years, but also the important role of education,
both of the woman herself and of her partner, in shaping female labor decision. Thus,
the next two sections are dedicated to the changing composition of households and the
remarkable growth of female educational attainment.

3.2 Matching and Marriage
As indicated by figure 3.4, female LFP differs by household type, which underlines the
importance of examining changes in household composition for understanding female labor
supply. Besides the well-known facts of decreasing marriage and increasing divorce rates
and a rising share of single households in the U.S. (Doepke & Tertilt 2016), there have also
been shifts within couples over the past decades. In order to analyze these, I again use
my sample of married/cohabiting couples with a working male. All descriptive statistics
in this section have been computed using the ASEC household weight ASECWTH.

Firstly, considering the four household types in the sample based on education, it is
evident that the share of couples consisting of two non-college graduates has declined
continuously since the 1960s, as depicted in figure 3.6. This is mainly driven by the
increasing educational attainment of both genders, which will be presented in the following
section 3.3 on education. The share of couples with a more educated male is relatively
stable over time at about 10%. On the other hand, a slow rise of couples where the woman

20



has a higher education than her partner can be observed. This is due to the reversal of
the gender education gap, which also will be shown in the next section. One of the most
striking facts is the steep growth of the fraction of strictly college graduate couples from
5% in 1964 to 38% in 2018, making it the predominant household type for the first time
in 2018.

Figure 3.6: Fractions of the Four Different Household Types by Education

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

In addition, figure 3.6 illustrates that in terms of education, the share of women ”marrying
up” by selecting a more educated partner has fallen below the share of women ”marrying
down” in 2007, again because of the now overall higher education of women compared to
men. As the fractions of exclusively non-college and college graduate couples evolved in
opposing directions, it is not evident how the share of equally matched couples with part-
ners of equivalent education progressed over time. A closer look at the data reveals that
the share of couples with similar levels of schooling (below college or college education)
has decreased slightly from approximately 88% in 1964 to 75% in 2018. This does how-
ever not indicate a decrease in assortative matching over time, as it is driven by the great
decline of strictly non-college graduate couples due to the general increase in education.
The growth of the share of college-educated women selecting an equally educated partner
has in fact far exceeded that of college-educated women living with a non-college man.

Further, alongside the decreasing share of married-couple households in the whole U.S.
population documented by Doepke and Tertilt (2016), the civil status of couples has also
been changing steadily over the past decades. Luckily, the CPS provides information on
cohabiting couples through the category ”unmarried partner” in the variable RELATE,
albeit only from 1995 onwards. Comparing the share of legally married and unmarried
cohabiting couples in my sample in figure 3.7 reveals that the share of unmarried couples
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has been slowly increasing during the past 20 years and is now exceeding 10% of all
couples.

Figure 3.7: Fractions of Households by Civil Status

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

Nonetheless, it has to be noted that this sample excludes subgroups of the population
like younger couples (due to the age restriction of 25 to 55) and student couples (as I
only consider couples with employed men) for which living together unmarried is more
common. Notwithstanding, an ever-increasing share of cohabiting couples, even of only
10%, raises the question of why most research focused on household labor supply only
distinguishes between single individuals and married couples. I deviate from this by
including unmarried couples into my sample where possible (from 1995 to 2018), and
later on conduct a counterfactual analysis using my model by restricting the sample on
cohabiting and on married couples to determine whether their characteristics are different
enough to considerably alter my results.

3.3 The Reversal of the Gender Education Gap
As pointed out in the previous section, the increased educational attainment of women has
disrupted the composition of household types in the U.S. and consequently impacted both
male and female labor supply. Before turning to the increasing monetary payoff of being
well-educated in terms of earnings, I present the main trend in educational investment in
the U.S. of the last decades: The reversal of the gender education gap, which describes
that women have overtaken men in terms of obtained education.

In order to show the reversal of the gender education gap in my sample, I first plot the
shares of college graduates by gender relative to all men or women, respectively in figure

22



3.8a. It can be seen that, while the college-educated shares grew tremendously for both
genders over time, the increase is far steeper for women. Whereas initially the gender
education gap was more than 7 percentage points in favor of men in 1964 and remained
relatively constant at first, it started to narrow at the end of the 1980s. Between 2006
and 2007, both lines intersect, and since then the share of college-educated women has
exceeded that of men in the sample. Moreover, it has been widening since its reversal and
stands at more than 5 percentage points in the benefit of women today.

Browning et al. (2014) offer two explanations for why women may have acquired less
schooling than men in the past: First, they received a lower expected return from invest-
ing into their education in the labor market due to discrimination. This was particularly
the case for the 1960s, 1970s and 1980s and can explain why the gender education gap per-
sisted during these years. Second, married women back then have also had a significantly
lower expected return from schooling due to their larger role in child care, both because
of social norms and for biological reasons, creating large breaks in women’s employment
histories. With an increasing contribution of men to child care and household work, as
shown in figure 3.5, and changing social norms, this effect has weakened over time and
incentivized more women to obtain tertiary education.

Figure 3.8: Fractions of College Graduates Relative to All Men or Women,
Respectively, for Different Age Groups

(a) Aged 25 to 55 (b) Aged 25 to 29
Note: Non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

However, one has to take into consideration that the actual reversal of the gender educa-
tion gap occurred prior to the intersection point in figure 3.8a. The reason for this is that
considering the whole sample will only provide a lagged representation of actual college
graduation trends, as it also includes preceding cohorts up to the maximum restricted
age of 55. Thus, changes in educational attainment take several years to materialize on
the level of the whole population. One way to overcome this, as done by Heathcote et al.
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(2010), is to focus on a sample of 25-29-year-olds. They find that the gender education
gap reversed in the late 1980s among 25-29-year-olds Heathcote et al. (2010), whereas
in my sample the reversal is recognizable more than a decade later in the early 2000s as
depicted in figure 3.8b. This difference is mostly due to my sample having the minimum
age of 25 also imposed on women, while Heathcote et al. use a CPS sample of married
households in which only the husband need to be 25 to 59 years old. By only restricting
the husband’s age, the sample of Heathcote et al. includes a large number of women below
the age of 25 due to men typically marrying younger women. This leads to an underrep-
resentation of young women in my sample compared to theirs, causing the reversal of the
gender education gap to occur delayed.

Nonetheless, figure 3.8b shows that for younger people, the college-educated share of
women has been comparable to that of men throughout the 1990s. Most importantly, the
persistent female education advantage in the 25-29-year-olds sample since the 2000s has
important implications for the complete sample. Namely, as older cohorts with a larger
male college share drop out, the education gap continues to widen, which is exactly what
can be seen in figure 3.8a over the last years.

The ever-increasing education of women directly affects their labor supply. As women
invest more time and money into their human capital accumulation, it becomes more
expensive for highly-educated women to stay out of the labor force, for example in order
to raise children. This is due to increased opportunity costs of not working faced by
well-educated and potentially high-earning women, and has been shown empirically by
Olivetti (2006). Hence, one would expect a larger share of college-educated women among
FTFY compared to part-time and non-working women, and figure 3.9 confirms this.

Figure 3.9: Fractions of Female College Graduates by Work Status, Respectively

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)
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To conclude the section on education and as a follow-up on the increasing share of co-
habiting couples shown in figure 3.7, figure 3.10 provides insight into the composition of
married and unmarried couples in 2018 by both partners’ education.

Figure 3.10: Fractions of the Four Different Household Type by Education over
Civil Status in 2018

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

It is evident that the skill distribution within couples differs greatly by their civil status.
While the shares of unequally-skilled couples are similar, strictly non-college educated cou-
ples are far more prevalent in the cohabiting sample, whereas the college-college household
type fraction is greater among married couples. One possible reason for this could be a
preference towards marriage among the more educated. Furthermore, my sample excludes
a large number of young cohabiting college & college couples in which the male is not
working, for example due to attending graduate school, or in which the woman has a
college degree but is younger than 25 years old. Nevertheless, the different household
composition by civil status combined with an increasing share of unmarried couples is
a strong argument for taking these trends into consideration when analyzing household
behavior, as I will demonstrate later using my model.

3.4 Wages and Skill-Biased Technological Change
Before examining the wage differences between non-college and college graduates, it is
important to note the difference in wages between genders. One way to illustrate this is
by plotting the female relative wage, which is defined as the ratio of the average female
to average male hourly wage. Since the share of part-time workers is significantly higher
among women, I restrict the analysis to full-time full-year (FTFY) workers, again defined
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as working more than 50 weeks a year for at least 35 hours per week. Otherwise the
part-time penalty, meaning that not working full-time results in a lower hourly wage,
would considerably lower the female-to-male wage ratio. Figure 3.11 presents how female
relative wages of FTFY workers evolved over time and shows that female relative wages
have increased immensely over time.

Figure 3.11: Relative Female Wage (Female to Male Average Hourly Wage Ratio)
for FTFY Workers

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

Most of the growth can be attributed to the 1980s and the past decade. Overall, female
wages increased from 61% in 1964 to more than 78% of male wages in 2018. The reasons
for today’s gender wage gap of about 22% in this sample are multifarious and include
lower labor market experience due to childbirth breaks, different occupational choices
and working less hours.

Furthermore, the previous section has shown that women are obtaining more education
than men, and this education pays off increasingly well due to skill-biased technological
change, which describes that the productivity of high-skilled labor is increasing overpro-
portionally compared to that of unskilled labor. One way this can be observed in the data
is through the growing wage ratio of skilled to unskilled workers called the skill premium.
Most commonly used in this context is the ratio of college to non-college graduates, the
college wage premium. Heathcote et al. (2010) for example find that the male college wage
premium declined during the 1970s, but has been growing since then. Katz and Autor
(1999) come to the same result, namely that the wage difference between college and high
school graduates has increased sharply after an initial drop in the 1970s. Acemoglu (1998)
explains the decreasing skill premium in the 1970s with technologies being fixed in the
short-run, while the greater supply of skilled labor lowered the college wage premium.
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Liu (2017) offers a concrete explanation for the larger supply of skilled workers in the
1970s: The U.S. government raising financial aid for college students through the Basic
Education Opportunity Grant Program. In his dissertation, Liu extends the model of
Caselli and Coleman (2006) with agents’ choosing whether to obtain a college education
or not. One of the findings of his model is a negative relationship between the (financial)
availability of college and the skill premium. As financial support for students was raised
in the 1970s, more people could afford higher education in the U.S. The huge scale of this
grant program is reflected in it constituting 29% of total tuition fee revenue in the U.S. in
1980 (McPherson & Schapiro 1991). This increased the supply of skilled labor and reduced
the skill-premium in the short-run, until skill-biased technological change increased the
demand for skilled labor during the 1980s sufficiently to raise the skill premium again
(Liu 2017).

My sample shows the same patterns, as presented in figure 3.12. In addition, displaying
the overall and the female college wage premium reveals that the peak of the total premium
in the late 2000s was driven by males. Interestingly, the female college wage premium
exceeds the male college premium in 2018 and stands at an all-time high of 1.68. This
implies that today, obtaining a college degree offers on average a stronger relative wage
increase for women than it does for men.

Figure 3.12: College Premium (College to Non-College Average Hourly Wage
Ratio) for FTFY Workers, Overall and by Gender

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)
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3.5 The Rise of Earnings Inequality
Concluding the chapter on empirical facts, I show how wage and earnings inequality
between different subgroups of the population developed over time. This draws on the
trends in female labor supply, matching, education, gender pay differences, and college
wage premium presented in the previous sections, since they all affect inequality between
and within households. All monetary variables depicted here have been adjusted for
inflation using CPI data (United States Bureau of Labor Statistics 2019) and are expressed
in constant 2010 US-Dollars. Figure 3.11 has already demonstrated the differences in
hourly wages between genders, yet there are also large wage differences within genders.
Figure 3.13a represents the development of wage inequality among FTFY working men
and women, measured as the log ratio of the 90th percentile to the 10th percentile hourly
wage, called the 90-10 ratio. Taking the log of the 90-10 ratio means that it can be
interpreted as the difference between the 90th and 10th percentile log wage. Another
popular measure of inequality is the log 90-50 ratio comparing the 90th percentile log
wage to the median log wage, presented in figure 3.13b.

Figure 3.13: Hourly Wage Inequality of FTFY Workers by Gender

(a) Log 90-10 Ratio (b) Log 90-50 Ratio

Note: Aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

While the 90-10 ratio is obviously greater than the 90-50 ratio, the pattern of both is
quite comparable. Notably, the male wage dispersion has been higher than the female
one in most years, especially when comparing the 90th to the 10th percentile log wage.
One of the reasons for this is the great gender disparity at top-paying jobs, as supported
by Albanesi and Olivetti (2009) who find that the gender wage gap is greatest within
management and sales occupations. This causes the male 90th percentile wage to be
considerably higher than the female one at all times, while the gender gap is smaller at
the bottom of the wage distribution. In addition, the big gaps between the male and
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female ratios in the 2000s can be attributed to the much higher college wage premium for
men in this period depicted in figure 3.12.

Besides hourly wages, another important factor for earnings inequality is the amount of
hours worked, as mentioned by Heathcote et al. (2010). Figure 3.14 illustrates the variance
of log annual hours worked within both genders and shows that male annual hours variance
has been fairly constant over the decades. This is in support of the stagnating weekly
market work hours of men found in 3.5, as they have always been mostly working FTFY,
regardless of their education and spousal matching. On the contrary, the variance of
log female annual hours worked has decreased significantly, which can be linked to the
changing composition of the female work force presented in 3.2. As the share of FTFY
working women typically working 40 hours a week grows, the variance of their annual
work hours converges to that of men.

Figure 3.14: Variance of Log Annual Hours Worked by Gender

Note: FTFY and part-time workers, aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

Combining the trends in wage and hours dispersion, there are two different levels of
earnings inequality to be considered in my sample: Intra-household inequality between
partners and inter-household inequality between the different types of households. Firstly,
within-household inequality can be depicted through the ratio of a woman’s earnings to
her partner’s. As one would expect, this ratio varies greatly depending on both partners’
education levels. Figure 3.15 shows the development of the average ratio over time for
the four household types in my sample, with a ratio of one meaning that both partners
have the same labor income. First, the ratio is greater than one for couples in which
the woman is more educated, proving that the higher education compared to her partner
reflects in larger relative earnings. The enormous fluctuations of this curve in the 1960s
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and 1970s can be explained by the small sample size, as non-college & college households
constituted less than 5% of the sample in these years (see figure 3.6). In contrast, the
relative earnings ratio is lowest for households with a more educated male. One interesting
fact to note is that the distance of both non-college & college and college & non-college
relative earnings from one are practically the same in 2018, indicating that education
relative to the partner is almost perfectly mirrored in earnings today and documenting
the narrowing of the gender pay gap (at least for the sample of couples living together).

Figure 3.15: Average Female to Male Annual Earnings Ratio by Household Type

Note: FTFY and part-time workers, aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

For couples with equally educated partners, a ratio of one would indicate perfect intra-
household earnings equality, and both of these household types (strictly non-college and
strictly college) have been converging towards that. The ratio for couples of two college
graduates has even slightly surpassed one in 2017 and 2018, proving that college-educated
women earn more on average than their also college-educated partner. These patterns
therefore support an overall reduction of intra-household inequality over time, with po-
tential causes being the narrowing gender wage gap (figure 3.11) as well as the increasing
female market hours (figure 3.5) and changing work status of women towards FTFY jobs
(3.2).

In contrast, calculating inter-household inequality reveals a tremendous dispersion of earn-
ings between households. Figure 3.16 considers household earnings as the sum of both
partners’ annual earnings for the different household types. It can be seen that household
earnings were relatively equal in the 1960s for the three household types in which at least
one partner has a college degree. Over time, household earnings dispersed, in particu-
lar for the college & college household type, whose average annual earnings were almost
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double of the non-college & non-college type in the 2000s.

Figure 3.16: Average Annual Household Earnings by Household Type in Constant
2010 USD

Note: FTFY and part-time workers, aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

This pattern translates into an increasing Gini coefficient over time, as presented in fig-
ure 3.17a. Notably, the 1980s and late 1990s saw the largest inter-household inequality
increase. Quite surprisingly, inequality has been reduced in my sample over the last 10
years. This is indicated by a decrease of the Gini coefficient following the Great Recession
in the late 2000s, but also shows in declining average household earnings of households
with a college-educated male in figure 3.16. Furthermore, the Gini coefficient of individual
earnings depicted displays the same pattern.
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Figure 3.17: Gini Coefficients over Time

(a) Gini Coefficient of Average Annual
Household Earnings by

Household Type

(b) Gini Coefficient of Average Annual
Individual Earnings for Men and

Women in Households of Two
College Graduates

Note: FTFY and part-time workers, aged 25 to 55, non-Hispanic whites, couples with a working male
Source: Author’s rendering of IPUMS-CPS data (2018)

To identify the driver behind this drop in inequality, I plot the Gini coefficients of the
average individual earnings of men and women in the college & college household type
in figure 3.17b. The result demonstrates that men’s Gini coefficient dropped from 0.41
in 2006 to 0.31 in 2014, while earnings inequality among women in this household type
have been decreasing over the past decades, as described by Card and Hyslop (2018).
This indicates that the Great Depression caused men’s earnings to become more equal
in my sample of working men, in particular affecting college-educate men who have both
reduced their weekly work hours (figure 3.5) and faced a lower wage premium over non-
college educated men (figure 3.12) in recent years.

In conclusion, this chapter has illustrated an overview of the great shifts in female labor
supply, household composition, education, wages and earnings over the past 54 years in
the U.S. Taking all these changes into account, I will now introduce a heterogeneous
household model in order to quantitatively examine how they have affected female labor
supply and earnings inequality.

4 Introducing a Structural Model

4.1 Model Setup
In order to determine the effects of skill-biased technological change on consumption
inequality, I introduce a static partial equilibrium model of a production economy with
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endogenous wages and heterogeneous two-person households. In this model, households
maximize the unitary CES utility function from Heathcote et al. (2010), extended with
time spent on household production for each partner. This type of utility function assumes
that partners have the same preferences and jointly maximize household utility, with both
partners having individual labor supply and wages but consuming goods as a household.

On the contrary, in a collective model both partners maximize their own utility, and
household utility is then formed as a weighted sum of the individual spousal utilities. The
main reason for why I set up a unitary household model instead of a collective one is that
it does not require the specification of how partners’ utilities are weighted. This simplifies
the analysis, since there is no household bargaining in my model such that the bargaining
power of each partner (and hence their utility weight) is ambiguous. In any case, simply
assuming an equal distribution of power within the household and weighting both utilities
with 0.5 would mean that the collective model effectively becomes unitary. Nonetheless,
it has to be noted that partners having the same preferences is a significant abstraction
from reality, where partners most likely have individual preferences (Chiappori 1992).

Another approach employed in the literature (Bick 2016) is to abstract from male labor
supply and just solve the female partner’s optimization problem. This however is not an
option for my analysis, since gender differences in labor supply are a crucial part of this
thesis. Moreover, incorporating individual labor supplies while leaving consumption on
the household level is sufficient for the purpose of this thesis, where the focus is on labor
supply and income inequalities. Analyzing consumption inequality would require a more
complex collective model with public and private consumption goods and some kind of
sharing rule.

Individuals are heterogeneous in terms of their gender and skill level, which is assigned
exogenously. In the model economy, the number of male and female individuals is equal
and they are all living together with one individual of the other gender, meaning there
are no singles. Agents can be of two types of skill-level, high- and low-skilled, which
correspond to high school graduates (including those with some college education) and
college graduates holding at least an undergraduate degree. While Caselli and Coleman
(2006) note that there are other possible skill level thresholds, like for instance completed
primary education, using completed college education is the most appropriate for my
analysis as it is motivated by the increase of female college graduation rates observed in
the data (figure 3.8). Hence, there are four different types of individuals in my model:
skilled and unskilled males and skilled and unskilled females.

The household utility function is a version of the one presented in Heathcote et al. (2010),
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extended with household production time:

U(ci,j, li,j,m, li,j,f ) =
c1−η
i,j

1− η + ψ
(1− li,j,m − hi,j,m)1−σ

1− σ + ψ
(1− li,j,f − hi,j,f )1−σ

1− σ (4.1)

In the utility function, i = {u, s} and j = {u, s} denote the skill levels of the male and
female partner (unskilled or skilled). ci,j is the joint consumption of the household, while
li,j,m and li,j,f denote male and female labor supply respectively. Hence, both consumption
and individual labor supplies depend on the skill level of both partners. In particular,
it is necessary that individual labor supply not only depends on one’s own, but also on
the partner’s skill level in order to more accurately depict the labor decisions within the
household. Time spent on home production is given by hi,j,m and hi,j,f for each partner
and is treated as a gender- and skill-specific fixed time cost parameter rather than a
choice variable in order to simplify the analysis. This means that home production is
part of the utility function and time constraint, but cannot be varied by households.
Making this assumption captures the fact that some amount of time has to be dedicated
to necessary tasks like doing chores, shopping or taking care of children. In the following
analysis, household work hours will be reduced over time according to the data in order
to model increased household productivity. Finally, the parameters η, σ and ψ denote the
coefficient of relative risk aversion (CRRA), the substitution parameter for leisure (the
elasticity of substitution between male and female leisure is therefore 1

σ
) and the utility

weight of leisure.

Every individual is endowed with one unit of time which – after working the fixed amount
of time hi,j,m/f in the household – they can allocate between working in the market (li,j,m/f )
and enjoying leisure (di,j,m/f ). All three time uses depend on the skill distribution within
the household. Hence, the household time constraint is given by:

di,j,m + di,j,f = 2− li,j,m − li,j,f − hi,j,m − hi,j,f (4.2)

The household’s consumption expenditure ci,j, with the price of the consumption good
normalized to 1, is financed through the individual labor incomes from allocating time to
market work, which gives the following household budget constraint:

ci,j = wili,j,m + wjli,j,f (4.3)

The household’s consumption is therefore determined by how much labor it supplies. Note
the absence of the gender subscript on the wages, which resembles the assumption that
firms do not differentiate between genders and only hire with regards to skill level. This
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implies that there is no gender discrimination in my model, meaning that equally skilled
people get paid identical wages. While this is a broad simplification of reality in which
employers might have a gender bias in hiring, especially in the earliest time periods of the
model in the 1960s, the focus of this thesis on skill-bias and the reversal of the gender
education gap justifies this abstraction. Hence, wi denotes the male and wj the female
wage.

Since individuals are heterogeneous across two dimensions (gender and skill), the economy
consists of four different household types – skilled-skilled, skilled-unskilled, unskilled-
skilled, and unskilled-unskilled, the first skill level referring to the male – with varying
labor supplies and consumption. In order to abstract from modeling a marriage market,
I impose the matching of couples and their educational attainment exogenously based on
the empirical distribution of household types, following the definition used in section 3.2.

Another important part of my analysis is the distinction between married couples and
couples living in cohabitation. In the literature on household labor supply, households are
mostly defined as married couples. However, as shown by Doepke and Tertilt (2016) and
illustrated in figure 3.7, declining marriage and increasing divorce rates together with a
growing share of unmarried couples in the U.S. over recent decades call for an updated
definition that better reflects the reality of how couples in the U.S. are living today.
Alongside following the standard approach of focusing on married couples only, I will
therefore also extend this definition to include unmarried couples living in cohabitation,
which has become an increasingly widespread household type in the U.S. (figure 3.7). In
my analysis, I am comparing the results obtained by using both the strictly married as
well as the married or living in cohabitation definition and discuss the differences.

On the production side of the economy, there is a continuum of competitive firms of
measure 1 that demand the labor supplied by the households, turning the model into
a production economy in partial equilibrium with endogenous wages. The production
function of the representative firm is taken from Caselli and Coleman (2006) and extended
with gender:

y = kα
[
(AuLu)θ + (AsLs)θ

] 1−α
θ , (4.4)

where Lu = φu,u((lu,u,m + lu,u,f ) + φu,slu,s,m + φs,uls,u,f (4.5)

and Ls = φs,s(ls,s,m + ls,s,f ) + φu,s,f lu,s,f + φs,uls,u,m (4.6)

As explained above, the key assumption is that firms do not regard gender in their hiring
decisions, only skill level. Therefore, while unskilled labor Lu and skilled labor Ls are
composed of weighted male and female labor supplies by household type, the firm only
hires labor with respect to Lu and Ls and does not observe their composition. An inter-
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pretation of this assumption would be that firms are receiving anonymized applications
that only reveal the skill level (the education) of the applicant. Lu and Ls represent the
link between the labor supplied by the households and the labor employed by the firm.
As I will explain in the next chapter, the weights φi,j are obtained from the data.

Furthermore, capital k is exogenous, but is not important for the equilibrium as shown in
the next section. The ratio As

Au
models the relative productivity of skilled to unskilled labor,

where an increase of this ratio over time indicates skill-biased technological change. The
elasticity of substitution between high- and low-skilled labor is 1

1−θ , so θ → 0 resembles
the Cobb-Douglas case. α denotes the weight of capital in production.

Like in the model of Caselli and Coleman, firms determine the level of skilled-labor-
intensitivity of their production technology by choosing As and Au from a set of available
technologies, which is defined as:

(As)ω + γ(Au)ω ≤ B (4.7)

ω, γ and B are all strictly positive, exogenous parameters the firm takes as given. ω and
γ determine the trade-off between the two labor productivities, while B fixes the upper
ceiling of all possible technology sets.

4.2 Equilibrium
The model equilibrium is characterized by labor market clearance, households maximizing
their utility and firms maximizing profits. Solving the model therefore requires deriving
the optimality conditions for both the households and the firm. Starting with the first,
households maximize their utility (4.1) subject to the budget (4.3) and time (4.2) con-
straints by choosing consumption and labor supplies, which yields:

wi
wj

=
(

1− li,j,m − hi,j,m
1− li,j,f − hi,j,f

)−σ

(4.8)

The detailed derivation of the optimality condition (4.8) is explained in the Mathematical
Appendix B.1. As the optimality condition shows, the ratio of the male wage wi to the
female wage wj within each household, both depending on the respective skill level, is a
function of both partners’ labor supplies li,j,m/f , household production hours hi,j,m/f and
the substitution parameter between male and female leisure σ.

Turning to the other agent, the representative firm maximizes profits subject to the pro-
duction function (4.4) and the technology constraint (4.7). Its choice variables consist
of the productivities Au and As, the capital stock K, and the labor inputs Lu and Ls.
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Hence, wages are endogenously determined. The firm has three optimality conditions:
One relating labor supplies, one relating productivities, and one for capital. As in Caselli
and Coleman (2006), the first-order condition for capital is irrevelant for my analysis and
will not be considered. Therefore, I will only derive the other two optimality conditions.

Starting with labor supply, combining the firm’s first-order conditions for Ls and Lu yields
the ratio of the skilled to the unskilled wage, the skill premium:

ws
wu

=
(
As
Au

)θ (Ls
Lu

)θ−1
(4.9)

This is the first firm optimality condition. The second, capturing the firm’s trade-off
between the productivity levels Au and As, is:

(
As
Au

)ω−θ
= γ

(
Ls
Lu

)θ
(4.10)

Again, the detailed derivations of both conditions are documented in Appendix B.2. Given
equations (4.9) and (4.10), solving the model is then simply a matter of combining the
household and firm optimality conditions by aggregating the household labor supplies and
assuming labor market clearance.

First, as my model is aimed at predicting female labor supplies, equation (4.8) needs
to be solved for female labor supply li,j,f for each of the four different household types
(skilled-skilled, skilled-unskilled, unskilled-skilled, and unskilled-unskilled). As shown in
Appendix B.1, this yields:

li,j,f = 1− hi,j,f − (1− li,j,m − hi,j,m)
(
wi
wj

) 1
σ

(4.11)

Since I assume that wages only depend on skill level, solving this for the two equally
skilled households s-s and u-u is straight-forward. This is because in these households,
the partners’ wage ratio wi

wj
is equal to 1, as both can expect to be paid the same hourly

wage in the market. Hence, equation (4.11) simplifies to:

lu,u,f = lu,u,m + hu,u,m − hu,u,f (4.12)
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for the unskilled-unskilled and

ls,s,f = ls,s,m + hs,s,m − hs,s,f (4.13)

for the skilled-skilled household. Due to the identical wages, both partners will enjoy the
same amount of leisure in these household types, meaning female labor market hours will
be pinned down by male labor supply as well both partners’ home production hours.

For households with heterogeneously skilled partners earning different wages, female labor
supply will also depend on the wage ratio (the skill premium). For households with a
higher skilled male, this gives female labor supply as:

ls,u,f = 1− hs,u,f − (1− ls,u,m − hs,u,m)
(
ws
wu

) 1
σ

(4.14)

For couples consisting of a skilled female living with an unskilled male, female labor supply
is determined by:

lu,s,f = 1− hu,s,f − (1− lu,s,m − hu,s,m)
(
wu
ws

) 1
σ

(4.15)

The next chapter is dedicated to illustrating how the model is solved in MATLAB, using
the same CPS (Flood et al. 2018) and AHTUS (Fisher et al. 2018) data presented in
chapter 3. I will explain in detail the aggregation of individual labor supplies, the param-
eterization of the model, the wage-setting mechanism, and how the representative firm
chooses its optimal production technology.

5 Solving the Model

5.1 Prerequisites
The previous chapter outlined the model and showed the derivation of its equilibrium.
Now, the next step in order to solve the model is to link the household and the firm
problem. For this, the eight individual labor supplies (male and female for each of the
four household types) need to be aggregated and expressed as functions of only the wage
ratio ws

wu
. The goal is to obtain Ls(wswu ) and Lu(wswu ), which can then be combined with the

firm’s optimality condition (5.1).

To do so, I use the equations (4.12) to (4.15) derived in the previous chapter. I then
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obtain the male labor supplies, male household hours and female household hours for
each household type from the CPS and AHTUS data by computing the average hours per
week within each household type per year. I assume each individual to have 100 hours
of productive time per week that can divided between working in the market, working in
the household, and enjoying leisure. Hence, I divide each of these values by 100 to obtain
li,j,m, hi,j,m and hi,j,f for each household type. Unfortunately, as the AHTUS data only
covers the years 1965, 1975, 1985, 1995, 1998 and 2003 to 2012, my analysis is limited to
these years, since the AHTUS data provides the time spent on household production. A
detailed explanation of the sample selection and all data manipulations can be found in
the Data Appendix A.

As equations (4.12) and (4.13) show, this already explicitly determines two of the four
female labor supplies, lu,u,f and ls,s,f , while the remaining two can both be expressed as
functions of the skill premium, ls,u,f (wswu ) and lu,s,f (wswu ) (the latter by taking the inverse of
the wage ratio wu

ws
). The fractions of the four household types – φu,u, φu,s, φs,u and φs,s –

are also taken from the data for each year, and are the same as depicted in figure 3.6.

Thus, following equations (4.5) and (4.6), I obtain the two aggregates of unskilled labor
Lu(wswu ) and skilled labor Ls(wswu ) as functions of the skill premium. These can be plugged
into the firm’s optimality condition:

ws
wu

=
(
As
Au

)θ (Ls(wswu )
Lu(wswu )

)θ−1

(5.1)

5.2 Parameterization
The next step is to set the four parameters required for solving the model: The substitu-
tion parameter between male and female leisure in the utility function σ, the substitution
parameter between skilled and unskilled labor in the production function θ, and ω and
γ determining the trade-off between As and Au that the firm faces when choosing a pro-
duction technology. As I will explain in the following, I obtain all four parameters from
the literature.

Regarding σ, I follow Heathcote et al. (2010) who set it equal to 3 and argue that this yields
reasonable Frisch elasticities of 0.48 for men and 1.46 for women. Using σ = 3 implies
an elasticity of substitution between male and female leisure of 1

3 . This is consistent
with Attanasio and Weber (1995), who find elasticities of 0.34 and 0.48 depending on the
sample. Other researchers find larger estimates such as 0.66 (Domeij & Flodén 2006), 0.7
(Pistaferri 2003) and 0.67 (Attanasio, Low, & Sánchez-Marcos 2008), which imply a lower
CRRA coefficient. However, changing σ exerts only a very marginal effect on the model
results, hence I maintain the value of 3 from Heathcote et al. (2010).
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Yet, the model is much more sensitive to changes in θ. Here I take the value from Caselli
and Coleman (2006), as my model is an extended version of theirs. Caselli and Coleman
set 1

1−θ , the elasticity of substitution between low- and high-skilled labor, to 1.4, implying
θ = 0.286. In doing so, they approximate the value set by Katz and Murphy (1992) of

1
1−θ = 1.41, which is also used by Heathcote et al. (2010).

For ω, I also follow Caselli and Coleman and set ω = 0.41. They state that ω > θ/(1− θ)
is a necessary condition for a symmetric equilibrium, meaning that the representative
firm will never set Au = 0 or As = 0 and employ only one of the two types of labor.
Rearranging this inequality condition, one obtains that ω > θ, which is fulfilled by setting
θ = 0.286 and ω = 0.41.

Caselli and Coleman (2006) obtain the final parameter γ by taking the natural logarithm of
the second firm optimality condition (4.10) and then regressing log(As/Au) on log(Ls/Lu).
However, this requires knowledge of As/Au. Caselli and Coleman obtain this ratio through
the firm’s optimality condition with respect to labor supplies:

ws
wu

=
(
As
Au

)θ (Ls
Lu

)θ−1
(5.2)

By taking both labor supplies and the wage ratio from the data, they determine As/As
through this equation. Nonetheless, this is not applicable to my model if I want to
maintain endogenous wages. Therefore, I take γ from Liu (2017), who extends the same
model by Caselli and Coleman with an endogenous education choice and normalizes γ to
1. Table 5.1 summarizes the external parameter values.

Table 5.1: External Parameter Values
Parameter Description Source Value
σ Substitution between male and female

leisure
Heathcote et al. 2010 3

θ Substitution between skilled and un-
skilled labor

Caselli and Coleman 2006 0.286

ω Technology trade-off parameter Caselli and Coleman 2006 0.41
γ Technology trade-off parameter Liu 2017 1

5.3 Solution Method
To solve the model in MATLAB, I first normalize both the wage wu and the productivity
Au of low-skilled workers to 1. This leaves two variables for the firm to set in order to
maximize its profit in each period: As and ws. The main difference between the model
of Caselli and Coleman and my extended version is that there are no households in their

40



model, meaning both the labor supplies and the wage ratio are derived from the data. In
my model on the other hand, the firm practically solves two problems by both deciding
how much labor to employ at what wages and which production technology to choose.

The way I model this is as a sequential decision process solved through a guess & iterate
algorithm in MATLAB. First, the firm (or rather I) takes an initial guess of the production
technology ratio As/Au, which due to normalizing Au consists of setting some As. Given
this production technology, the firm then solves its first optimality condition:

ws
wu

=
(
As
Au

)θ (Ls(wswu )
Lu(wswu )

)θ−1

(5.3)

By plugging in the initial guess of As, the parameter θ, and the aggregated labor supplies
derived as described in section 5.1, the only remaining unknown is the skilled-labor wage
ws. Thus, the firm will choose the optimal ws through this condition. For the two
heterogenous household types (skilled-unskilled and unskilled-skilled), female labor supply
depends on the wage ratio. Therefore, women in these two households will observe the
wage ratio ws/wu offered by the firm and adjust their labor supply accordingly through
equations (4.14) and (4.15).

Subsequently, given the now explicit aggregate labor supplies Lu and Ls, the firm chooses
a new optimal As through its second optimality condition:

(
As
Au

)ω−θ
= γ

(
Ls
Lu

)θ
(5.4)

After obtaining As, the firm again determines ws via equation (5.3), which yields new
labor supplies by the households, leading to a new As. This process is repeated until the
optimal As set by the firm is within close distance of the previous iteration’s value. This
final optimal As will be the equilibrium value and pin down the equilibrium skilled wage
ws and labor supplies Ls and Lu, as well as the individual female labor supplies.

6 Results

6.1 Basic Model
Simulating the model as described, taking the data inputs from the CPS and AHTUS
microdata and the parameters as noted in table 5.1, the model outputs the skilled labor
productivity As, the skilled wages ws and the aggregate labor supplies Lu and Ls for each
model period. The results are plotted in figure 6.1.
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Figure 6.1: Results of the Basic Model with Fixed γ = 1

(a) Productivity Ratio As/Au (b) Skill Premium ws/wu

(c) Aggregate Labor Supplies Ls and Lu

These first results indicate that the model is able to generate an endogenous growth of
the productivity ratio As/Au over time (figure 6.1a), which is particularly pronounced
after the turn of the century. This is caused by the availabilities of aggregated skilled and
unskilled labor (Ls and Lu) in each period (figure 6.1c). As figure 3.6 showed, more than
80% of the CPS sample consisted of unskilled-unskilled households in the 1960s. Hence,
firms during this time choose a production technology that more efficiently utilizes the
vastly available unskilled labor, because the technology constraint (4.7) imposes a trade-
off between the two productivities. This results in a tremendously low ratio of skilled to
unskilled productivity (As/Au) close to zero during the early model periods.

However, as more skilled labor becomes available due to the increasing share of college
graduates (especially women) and the decreasing time spent in the household freeing up
hours for working in the labor market, firms set a more skilled-labor-intensive technology,
increasing As/Au. A valuable insight is that the immense growth of As/Au in the 2000s
and the current decade cannot be explained by changes in time use, as figure 3.5 showed
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that male labor supply and both genders’ home production hours have remained fairly
constant since 2000. Rather, the huge rise of highly-educated women, which is reflected
in the increasing shares of skilled-skilled and unskilled-skilled households shown in figure
3.6, boosts the supply of skilled labor. Firms then adapt to this by choosing a more
skilled-labor efficient production technology.

The skill premium (equivalent to the college wage premium due to my skill level definition)
depicted in figure 6.1b on the other hand does not develop as expected. While figure 3.12
illustrated a sharp increase of the college premium since the end of the 1970s from 1.3 to
1.7 today, the skill premium in my model decreases over time, approaching unity. This
can again be explained by the relative availability of skilled and unskilled labor shown
in figure 6.1c: Since skilled labor is extremely scarce during the early period, firms are
willing to pay a premium to skilled workers by setting a relatively high skilled wage ws
despite producing with a more unskilled-labor-efficient technology. Over time, as more
skilled labor becomes available, firms no longer have to pay this premium in order to
attract skilled workers, which is reflected in the skill premium decrease in figure 6.1b.

Interpreting these results, it is evident that the endogenous growth of the productivity
ratio As/Au is not strong enough to generate even a modest skill premium rise. Even
changing the parameter values σ, θ and ω does not change this anomaly. While reducing
ω flattens the skill premium decrease, it is bounded by ω > θ/(1 − θ), as Caselli and
Coleman (2006) note, in order to rule out asymmetric equilibria, implying ω > 0.4. In
any case, I could not generate a skill premium increase for any combination of parameters
while keeping γ fixed to one. In order to gain insight into what growth pattern of the
productivity ratio As/Au would be required to replicate the skill premium growth found
in the data, I next compute the implied productivity level set by the firm given wages and
labor supplies. This abstracts from the double-decision problem of the firm and is exactly
what Caselli and Coleman (2006) do by plugging the ratio of wages and labor supplies
from the data into equation (4.9).

6.2 On Skill-Biased Technological Change
In order to estimate the As/Au growth consistent with the skill premium increase in the
data, I first need to obtain the college wage premium for each model period. To do
so, I take the average skilled and unskilled CPI-adjusted hourly wage of all individuals
reporting positive hours worked in the week before the survey across gender for each year
from the CPS (Flood et al. 2018). It is crucial to compute the wage of all workers, not
just full-time full-year workers, because most women in the model will be working part-
time. In addition, despite the labor supply decision only being modeled for women, I
take the average wage across the whole sample due to my assumption of no gender wage
discrimination. Thus, there are only two wages, ws and wu, irrespective of gender.
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As my model includes households unlike the model of Caselli and Coleman, it is sufficient
to only obtain the college wage premium ws/wu from the data, since this will endoge-
nously determine the individual and aggregate labor supplies through the households’
utility maximization. Hence, I compute the firm’s optimal As given wages by solving the
following equation for each model period:

ws
wu

=
(
As
Au

)θ (Ls(wswu )
Lu(wswu )

)θ−1

(6.1)

It has to be noted that this method of course merely yields the labor productivity ra-
tios that perfectly reproduce the skill premium growth. If one were to subsequently use
the obtained As, this would be equivalent to not modeling a firm at all and exogenizing
wages by substituting ws and wu into the female labor supply conditions (4.12) to (4.15).
Hence, this analysis only serves the illustrative purpose of comparing the required pro-
ductivity growth to the one obtained endogenously in figure 6.1a. The resulting skilled
labor productivity growth path is presented in figure 6.2.

Figure 6.2: Productivity Ratio As/Au Required to Replicate Skill Premium
Growth of the Data

It can be seen that the overall growth pattern is strikingly similar to the endogenous one
depicted in figure 6.1a. After a modest increase during the 20th century, the growth of
As/Au accelerates from 1998. Subsequently, following a marginal decline in 2005, the
growth continues until 2012, before the ratio decreases again in 2012. However, the
main difference between the endogenous and exogenous growth of relative skilled-labor
productivity is that the latter is far steeper. While the initial ratio in 1965 is relatively
comparable (0.02 in the endogenous and 0.05 in the exogenous case), the growth rate is
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considerably higher for the exogenous ratio, which reaches a maximum of 3.6 in 2011.

This implies that firms in reality choose production technologies that are much more
geared towards skilled labor than they do in my model. Examining a potential cause for
why my model fails to reproduce this result requires a reconsideration of constraint (5.1),
which defines the set of available production technologies:

(As)ω + γ(Au)ω ≤ B (6.2)

Here, γ can be interpreted as the relative price of the productivity of unskilled workers
(Au) compared to that of skilled workers (As), as noted by Liu (2017). Furthermore,
Liu explains that a decrease in γ over time would represent unskill-biased technological
change, and provides the example of the invention of the assembly line making it cheaper
for firms to increase the productivity of unskilled workers (Au). Liu models this by
slightly altering the technology choice constraint to δ(As)ω + γ(Au)ω ≤ B and defining
δ = 0.668/γ. In this notation, a decrease of δ would indicate skill-biased technological
change. In contrast, in my (or Caselli and Coleman’s) notation without δ, skill-biased
technological change would be represented by an increase of γ.

As noted in section 5.2, I obtained γ from Liu who fixes it at 1. This is because Caselli
and Coleman (2006) do not report their values for γ, only stating that γ differs between
countries, while ω is constant across countries. In their static model, more developed
countries have already moved along the technology frontier, which describes the set of
available technologies. Firms in these countries have shifted their production towards
more skilled-labor-efficient technologies than firms in less-developed countries, where the
technology set incurs a larger relative cost on As for the firms. This greater cost of skilled
labor productivity is modeled via a lower γ for more-developed countries in Caselli and
Coleman, which means that the relative price of unskilled labor productivity Au is lower.

Applying this relationship to my model is equivalent to letting γ vary between the years,
as the U.S. moves along the technology frontier through skill-biased technological change.
Hence, while skill-biased technological change is reflected in an increasing skilled labor
productivity ratio As/Au in my model, its root lies in a growing γ over time. This makes
it less costly for firms to increase the relative productivity of skilled labor (As). A possible
reason for this, as noted by Liu (2017), is the advent of computers, which have made it
much easier for the firm to enhance the productivity of their top-educated workers.

My initial result in figure 6.1 therefore indicates that when facing a constant γ every year,
firms do not choose a high enough skill-biased productivity growth – given the available
labor supplies – to increase the skill premium over time. Thus, the next step is to estimate
how γ would have to evolve over time such that my model yields the greater growth of As
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presented in figure 6.2. This is achieved through the second firm optimality condition:

(
As
Au

)ω−θ
= γ

(
Ls
Lu

)θ
(6.3)

Solving this for γ, taking the wage ratio ws/wu (the skill premium) from the data and
the productivity ratio As/Au obtained as described above through equation (6.1), yields
the growth path of γ depicted in figure 6.3:

Figure 6.3: γ Required to Replicate Skill Premium Growth of the Data

Additionally assuming this γ growth effect therefore enhances the modest growth of As/Au
generated solely by the increased availability of skilled labor Ls over time in the initial
model (figure 6.1a). Both effects, the exogenous γ growth and the increased availability
of skilled labor, combined are needed in order to generate the growth path of As/Au
necessary to replicate the skill premium development found in the data. This relation
is also found by Liu (2017), who states that the skill premium is greater when the cost
of the skill-biased technology (As in my model) is relatively cheaper, meaning when γ is
larger. This is because a greater γ, resembling a higher relative cost of unskilled labor
productivity, incentivizes firms to gear their production technology towards skilled labor,
resulting in a skill premium rise and a distinct increase of As/Au over time.

To summarize, the results presented here suggest that firms utilize a more skill-biased
technology over time (reflected in a higher As/Au ratio) as the supply of skilled labor
increases, which is amplified by the introduction of new technologies driving down the
relative price of skilled workers’ productivity. These combined effects together cause
firms to select more skill-biased technologies over time. Skill-biased technological change
in my model is therefore endogenous in the sense that firms choose to shift production
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towards more skilled-labor-efficient technologies as γ increases over time.

In the following, I will analyze female labor supply and earnigns inequality while treating
the determined γ growth path as exogenous. As noted above, this is equivalent to omitting
the firm and exogenizing wages, since estimating γ or As/Au myself will always yield the
ratio that perfectly reproduces the skill premium. However, assuming an exogenously
growing γ is a necessary step in order to ensure the model fit, given the lack of data on
As/Au for the U.S. over time. Hence, while I keep the firm in my model, by imposing the
γ development shown in figure 6.3, it will always select just the right As/Au ratios each
year to reproduce the skill premium from the data, which de facto exogenizes wages.

6.3 Updated Model
Now I simulate the same model as in section 6.1, again using the guess & iterate algorithm
described in section 5.3. The only difference is the implementation of the time-invariant
γ estimated as described.
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Figure 6.4: Results of the Updated Model with Time-Varying γ

(a) Productivity Ratio As/Au (b) Skill Premium ws/wu

(c) Aggregate Labor Supplies Ls and Lu (d) Aggregate Female Labor Supply
Source: Data from IPUMS-CPS (2018) and IPUMS-AHTUS (2018)

Comparing the results of the updated model depicted in figure 6.4 to those of the initial
model in figure 6.1, it is evident that adding the exogenously growing γ has altered the
growth paths of the productivity ratio (6.4a) and the skill premium (6.4b). As expected,
the productivity ratio develops exactly as in figure 6.2, since γ was calibrated to replicate
the skill premium growth, just as As was in the beginning of chapter 6.2. Likewise, the
skill premium replicates the data perfectly due to exogenizing γ, showing a steep increase
from 1975 followed by a decline since the mid 2000s, consistent with figure 3.12.

As figure 6.4c demonstates, having γ grow over time does not change aggregate labor
supplies relative to the basic model. Rather, it functions as a scale factor on the produc-
tivity ratio As/Au, which affects the skill premium through equation (6.1). It can be seen
that the total amount of unskilled labor employed decreases slightly, while aggregated
skilled labor grows almost continuously. This reflects the increased demand for skilled
labor over time caused by the shift in production technology used by the firms. As both
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γ and the share of educated workers in the sample grow, firms adapt their technology to
utilize skilled labor more efficiently and employ more skilled workers. The fact that the
rise of Ls dominates the decrease of Lu implies that employment has increased overall.
Interestingly, this illustrates the increasing female labor force participation, since hours
worked by men have been stagnating and since all men in the sample are working. Hence,
the aggregate labor supply increase can be attributed to women both entering the labor
force and increasing their work hours.

In support of this finding, figure 6.4d depicts the aggregate female labor supply, both as
predicted by the model and as found in the CPS data (average weekly hours worked for
women in each year). It can be seen that female labor supply in the model displays the
same pattern as the data, namely a stark increase that flattens during the 1990s. While
the model slightly overpredicts female labor supply compared to the data, the overall
model fit regarding female labor supply is satisfactory. In order to interpret figure 6.4d, it
has to be noted that aggregate female labor supply in the model is derived as the weighted
sum of the individual female labor supplies for each household type:

Lf = φu,ulu,u,f + φu,slu,s,f + φs,uls,u,f + φs,sls,s,f (6.4)

Hence, the interpretation of figure 6.4c is straight-forward: Aggregate female labor supply
Lf is the weekly labor supply of an average woman, where a value of for instance 0.2
denotes 20 hours of market work per week. Therefore, the average work hours of women
in my model have increased from just over 10 to almost 30 hours per week, whereas the
actual increase in the data is slightly less pronounced, only reaching close to 26 hours
in 2012. One potential reason for this is that women in my model receive the same
wage as men of the identical skill level, making them earn more than in practice due my
abstraction from the gender wage gap. Furthermore, omitting the time cost of fertility in
my model also leads to overpredicting average female hours worked.

The aggregate labor supplies by skill level, Ls and Lu, presented in figure 6.4c can however
not be interpreted the same way, as the population weights in equations (4.5) and (4.6)
do not add up to one. This is because Ls and Lu not only depend on the average amount
of hours worked of each (skilled or unskilled) individual, but also on the distribution of
skill levels within the sample. The share of women in the sample on the other hand is
constant at 0.5 in each year, allowing for the direct interpretation of Lf .

Besides female labor supply, the other economic variable I will analyze using this model is
earnings inequality. In particular, I distinguish between intra-household inequality, mea-
sured by the average ratio of women’s weekly earnings relative to their male partners, and
inter-household inequality, denoted by the Gini coefficient of weekly household earnings
(the sum of male and female earnings within each household). The results are presented
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in figure 6.5, compared to the data equivalents obtained from the CPS. Note that the
values for the data curves have been calculated for the complete sample in Stata and have
only been imported into MATLAB in order to illustrate them side by side with the model
estimates.

Figure 6.5: Intra- and Inter-Household Earnings Inequality

(a) Average Female to Male Weekly
Earnings Ratio Within

Households

(b) Gini Coefficient of Weekly Household
Earnings

Source: Data from IPUMS-CPS (2018)

As can be seen, the model fits the intra-household earnings inequality very well, in par-
ticular in recent years, while there exists a persistent gap between the two during the
1970s and 1980s in which the model predicts relative female earnings to be greater than
in the data. As male working hours in the model are taken from the data, and as female
working hours are very close to the actual values (figure 6.4d), this indicates that wages
as the only other determinant of weekly earnings are responsible for the poorer model fit
in the early model periods. Noting that one of the limitations of my model is its lack of
the gender wage gap, this finding reflects that the gender wage gap was more pronounced
during there years. Hence, in the model where the (un)skilled wage is the average wage
earned by (un)skilled male and female workers, women earn a larger wage than they ac-
tually do in practice. This effect is reversed for men, whose hourly wage in the model is
lower compared to the data, as it is driven down by women.

For the inter-household earnings inequality, the model results share the same pattern as
the data, but are considerably lower. This can be explained by the lack of earnings disper-
sion in the model. As there are only four distinct household types, there are consequently
only four different household earnings values in each model period. Keeping in mind that
the Gini coefficient measures the area below the Lorentz curve, the lack of data points
(distinct household earnings) in the model leads to a lower Gini coefficient. This is the
case in particular at the right tail end of the earnings distribution, where a large share
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of total earnings in the economy is concentrated. The model does not consider this, as it
only outputs one value per household type.

Due to its good fit for female labor supply and reasonable replication of both the patterns
in both measures earnings inequality, this updated version of the model with exogenous
γ growth will function as the baseline for the ensuing analysis, which all other results will
be compared against. In the next chapter, I will use the model to test different candidates
that could explain the rapid increase of female labor supply over the last decades of the
20th century shown in figure 6.4d.

7 Counterfactual Analyses
This chapter is concerned with conducting two sets of counterfactual analyses. First, I
test four different empirical trends for their impact on female labor supply and earnings
inequality. Second, I investigate whether the model results differ notably between married
and cohabiting households and how well the model fits the data on cohabiting households.

7.1 Female Labor Supply Candidates
Using the model set up as adjusted in chapters 4 to 6, I test four candidates for explaining
the increase of female labor supply from the 1960s to the 1970s: The decreasing time
women spend on home production, the rise of assortative matching, the rising female
educational attainment and skill-biased technological change increasing the skill premium.
The goal is determine which of these factors caused women to participate more in the
labor market, both on the extensive and the intensive margin.

To test the importance of these four candidates, there are two possible approaches: Either
one could take model with the values for 1965 and change one of the four candidates over
time according to the data, leaving everything else constant at the 1965 level, or one
could change all values except for the variable of interest over time. I will utilize the
latter method, as this allows for the interaction of the remaining variables changing over
time. As the purpose of this thesis is to investigate female labor supply and earnings
inequality under skill-biased technological change, I plot the productivity ratio As/Au

chosen by the firms, aggregate female labor supply, intra-household inequality and inter-
household inequality for each candidate, and compare them to the data. It is important
to note that close resemblance of the model estimates to the data therefore occurs when
assuming a candidate to not change from its 1965 value barely affects the result. In such
a case, this provides evidence for a candidate being rather insignificant in explaining the
trends in the data.
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7.1.1 Home Production
Starting with home production, I simulate the model as in section 6.3, with the only
exception being that both female and male weekly household hours remain on their 1965
levels of 44 hours on average for women and 10 hours for men. This represents the case
where home production technologies have not become more efficient, meaning everyone
is forced to keep using the laundry machines, stoves, vacuum cleaners etc. that were
available in 1965. Furthermore, assume that men do not increase their participation in
household work and child care over time, but continue to only spend a fourth of their
wife’s time in the household.

Figure 7.1: Counterfactual Analysis with Constant 1965 Household Hours

(a) Productivity Ratio As/Au (b) Aggregate Female Labor Supply

(c) Average Female to Male Weekly
Earnings Ratio Within Households

(d) Gini Coefficient of Weekly Household
Earnings

Source: Data from IPUMS-CPS (2018) and IPUMS-AHTUS (2018)

The results of this model economy are presented in figure 7.1. First, as one would expect,
confining women to their role of a 1965 housewife absolutely suppresses their labor supply.
Figure 7.1b shows that the aggregate female labor supply under constant household hours
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stagnates and never exceeds 13 hours a week. Hence, women today would be as scarce
on the labor market as in the 1960s if they still had to spend an average of 44 hours in
home production as full-time housewives.

Turning to intra-household, women’s relative earnings also show almost no increase over
time, despite the growing skill premium. This is due to their constant labor supply over
time, which keeps their earnings low, while men’s earnings are fixed in the model due to
obtaining male working hours from the data. Therefore, when spending the same amount
of hours in the household as in 1965, women’s weekly earnings continue to be around a
quarter of men’s.

Lastly, the inter-household inequality is barely affected by keeping home hours constant.
This indicates that the role of women in reducing households earnings inequality is very
limited to begin with, as the same pattern persists when women are barely working.

7.1.2 Assortative Matching
In order to assess the effects of different matching patters over time, I change the popula-
tion weights φi,j,m/f in each model period. First, I calculate the shares of both unskilled
and skilled women living with an either equally or differently skilled partner in 1965.
For instance, of the 92.1% unskilled women in 1965, 89% live with an unskilled and 11%
with a skilled partner, while of the 7.9% skilled women in 1965, only 32% live with an
unskilled opposed to 68% with a skilled man. I then apply these ratios to the shares of
skilled and unskilled women in each year. Doing so leaves the education level of women
unchanged and only imposes the matching ratios present in 1965 by effectively keeping
male education levels at their 1965 values.
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Figure 7.2: Counterfactual Analysis with Constant 1965 Matching

(a) Productivity Ratio As/Au (b) Aggregate Female Labor Supply

(c) Average Female to Male Weekly
Earnings Ratio Within Households

(d) Gini Coefficient of Weekly Household
Earnings

Source: Data from IPUMS-CPS (2018) and IPUMS-AHTUS (2018)

The results are illustrated in figure 7.2 and indicate that the productivity growth is less
pronounced than in the baseline model, meaning the firm chooses a more unskilled-labor
intensive production technology. This is due to the constant education level of men
keeping the supply of skilled workers relatively low. Surprisingly, female labor supply
and inter-household inequality are unchanged compared to the baseline model. This can
be attributed to the fact that while men influence female labor supply through their
working and households hours, these do not differ too much between skilled and unskilled
men. Furthermore, due to the data limitations of the AHTUS, female household hours do
not depend on their partners’ education. Intra-household inequality is slightly reduced
compared to the baseline model, as expected when keeping male education at the low 1965
level. Overall, these results indicate that changing matching patterns over time cannot
explain the trends in the data, as omitting them does not alter the model results.
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7.1.3 The Increase of Female Education
Regarding the rising education of women, figure 7.3 depicts the model results for when
women would have kept the same education levels over time as they had in 1965. I
obtained these by again changing the population weights, now applying the ratio of skilled
(92%) to unskilled (8%) women in 1965 to all other model periods.

Figure 7.3: Counterfactual Analysis with Constant 1965 Female Education Level

(a) Productivity Ratio As/Au (b) Aggregate Female Labor Supply

(c) Average Female to Male Weekly
Earnings Ratio Within Households

(d) Gini Coefficient of Weekly Household
Earnings

Source: Data from IPUMS-CPS (2018) and IPUMS-AHTUS (2018)

Firstly, the productivity ratio changes distinctively. While it still displays a shift towards
more skilled-labor-efficient productivities over time, this effect is very weak, as indicated
by the low maximum value of 0.2 of As. This is caused by the lower supply of skilled
labor due to the lack of high-educated women. Therefore, firms have a lower incentive to
utilize skilled labor more efficiently. The fact that female labor supply in this case is still
growing strongly shows that these overwhelmingly unskilled women are still employed,
albeit in unskilled jobs.
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This relationship is also evident in the intra-household inequality. In earlier model peri-
ods, where firms use more unskilled-labor-efficient production technologies, female relative
earnings exceed the values found in the data. However, as firms (although only slightly)
shift production towards skilled labor, female relative earnings no longer grow and stag-
nate below the model ratio. Finally, the lack of female education growth has almost no
influence on inter-household inequality compared to the baseline model, which could be
explained by the difficulty to accurately estimate household earnings dispersion between
households when there are only 4 representative household types with no within-group
earnings variance.

7.1.4 Skill-Biased Technological Change
At last, I assume a lack of skilled-labor productivity growth by holding As constant at
the 1965 equilibrium value of 0.0478.

Figure 7.4: Counterfactual Analysis with Constant 1965 Productivities

(a) Productivity Ratio As/Au (b) Aggregate Female Labor Supply

(c) Average Female to Male Weekly
Earnings Ratio Within Households

(d) Gini Coefficient of Weekly Household
Earnings

Source: Data from IPUMS-CPS (2018) and IPUMS-AHTUS (2018)
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A different way to model the lack of skill-biased technological change is to keep γ fixed
over time. However, as this has already been discussed extensively when solving the basic
model in section 6.1, I maintain the exogenous growth in γ and instead fix As. Note
that this causes the skill premium ws/wu to decrease monotonically over time from 1.4 in
1965 to 0.5 in 2012. This is because, as explained in section 6.2, skill-biased technological
change needs to consist of both As/Au and γ increasing over time.

The results, shown in figure 7.4, illustrate that the lack of skill-biased technological change
also does not exert a large effect on female labor supply and on intra-household inequality.
Only the development of intra-household inequality over time is slightly lower than in the
baseline model in the past two decades, as women do not benefit from the reversal of
the gender education gap without skill-biased technological change. Instead of the usual
pattern of a slight but continuous increase, the Gini coefficient in this case decreases at
first, meaning that the overall inequality decreases. This indicates that the increase in
between-household inequality from 1975 to 1985 can be attributed to the skill premium
growth.

7.2 On Married and Cohabiting Households
The final part of my analysis consists of comparing the model results for cohabiting to
those of married households in order to determine whether the civil status of couples
changes the model results. As the CPS sample consists of 1,343,031 married and only
41,546 cohabiting individuals, one has to note the issue of the small sample size for
cohabiting observations. Furthermore, due to how married couples are defined in the
CPS, identifying them is only possible from 1995, as noted in the Data Appendix A.

As the results for strictly married couples look almost identical to the full sample, due
to the low share of cohabiting households, one can compare the results for cohabiting
households in figure 7.5 to those in figures 6.4 and 6.5. It can be seen that the patterns
in female labor supply and earnings inequality for cohabiting couples differ greatly from
those for married couples, with the model again displaying a good fit to the data. While
the erratic behavior of female labor supply in figure 7.5b is due to the small scale of
the y axis, the fluctuations of intra-household earnings inequality in the data graph in
figure 7.5c can be attributed to the low sample size. An interesting result is that the
average female to male earnings ratio is close to unity, much larger than for the sample
of married households. This indicates that women living in cohabitation have earnings
more similar to their partners’ than married women. Finally, inter-household inequality is
fairly constant over time due to the relatively small time frame of 23 years, but is greatly
underpredicted by the model.
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Figure 7.5: Counterfactual Analysis with Only Cohabiting Households

(a) Productivity Ratio As/Au (b) Aggregate Female Labor Supply

(c) Average Female to Male Weekly
Earnings Ratio Within Households

(d) Gini Coefficient of Weekly Household
Earnings

Source: Data from IPUMS-CPS (2018) and IPUMS-AHTUS (2018)

8 Conclusion
To summarize, I set up a heterogeneous agent household model in which wages are deter-
mined endogenously by including firms which in addition choose their production tech-
nology as in Caselli and Coleman (2006). As the first results showed, this model failed
to replicate the increase of the skill premium found in the data, because the implied en-
dogenous shift towards more skilled-labor-efficient production technologies was not strong
enough. By introducing an external decrease of the relative price of skilled-labor produc-
tivity, I ensured that firms shift their production further towards skilled labor, such that
skill premium growth from the data is replicated. The resulting model, while de facto
having exogenous wages, fits the data on female labor supply as well as both intra- and
inter-household inequality very well.
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Subsequently, I used this model to analyze four different explanations for the steep growth
of female labor supply from the 1960s to the 1990s: The reduction in household time,
the rise of assortative matching, the increased educational attainment of women, and the
growing skill premium over time. In line with Greenwood et al. (2005), I found that the
reduction in household time exerts by far the greatest effect on female labor supply and
subsequently on intra-household earnings inequality. Assortative matching, the increase
of female education and the rise of the skill-premium, at least in my sample, barely
change the results compared to the baseline model. This finding could be due to having
exogenized wages. Whereas reduced household hours have a direct effect on the agents’
time constraint, leading to more hours worked, the other three effects mostly function
through higher wages, which my model cannot depict accurately.

Lastly, I simulated the model using a sample consisting of only cohabiting households.
While this sample is rather small and only available for more recent years, the results
show that the model again fits the data reasonably well. Comparing the results of the
cohabiting to the complete sample, one observes that women in cohabiting couples work
more and have earnings closer to their partners’.

It has to be noted that my model is built on many assumptions which serve to simplify
the analysis. This naturally creates numerous possible extensions to the model for future
research. An obvious one would be endogenizing the agents’ education choice, rater than
imposing the shares of non-college- and college-educated individuals exogenously like I did.
This would require making the model dynamic, for example by setting up an OLG model
in which individuals accumulate human capital over time, similar to the groundbreaking
model by Ben-Porath (1967). Agents would then decide based on their productivity level
and expected wages, whether they would obtain a college degree or not. The results of
this analysis would yield valuable insights into causes for the growing female educational
attainment in the context of increasing skill-biased technological change.

In addition, another factor not included in my model that heavily influences female labor
supply, as explained in chapter 2, is fertility. In my Bachelor’s thesis, I have modeled
this as another element in the woman’s utility function, such that women derive utility
from consumption, leisure, and having children. This would allow to analyze the trade-off
between working and having children that women often face in reality. A simple way of
incorporating the effects of fertility on female labor supply would be to have women bear
a fixed time cost of motherhood, a forced reduction of their available time they cannot
avoid, similar to Erosa et al. (2010). Moreover, by also modeling that women face a
quantity-quality trade-off regarding their children as done by Galor and Weil (2000), one
could study intergenerational effects. For instance, Guryan, Hurst, and Kearney (2008)
find that higher educated women spend more time on their children. This would would
probably translate into an amplifying effect on earnings inequality, as high education
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would be transmitted to the next generations.

Besides the education and fertility decision, my model also does not consider women’s
decision of entering the labor market by only focusing on the intensive margin of labor
supply. In reality, most of the growth of female labor supply can be attributed to increases
along the extensive margin of labor supply (Attanasio et al. 2008), as more and more
women entered the labor market. By only considering the average hours worked of women
in each household type, my model does not account for this decision.

Furthermore, my simplifying assumption of gender-unbiased wages is debatable, as figure
3.11 has presented a 22% gender gap in hourly wages of FTFY workers. While this
measure does not control for work experience, occupational choices, hours worked and
many other factors that can explain part of the gender wage gap, there always remains an
unexplained gender wage gap even after considering gender differences in these variables.
Blau and Kahn (2007) estimate the unexplained gender wage gap to be 9% for the U.S.
This difference could for example be due to taste discrimination by employers. One way
to incorporate this into my model would be by letting wages not only differ by skill level,
but also by gender. For instance, one could introduce a wedge (1 + τ) between male and
female wages, which could be interpreted as a tax firms need to pay for hiring women or
as a disutility they obtain from employing women.

The inherent weakness of my model due to its unitary framework is explained by Knowles
(2013), who argues that since households are not rational agents, the unitary model
overstates how aggregate labor reacts to relative wage changes. As a solution to this,
he suggests modeling household bargaining, which would improve the model predictions.
However, doing so considerably complicates my model, which is why I have refrained from
it. One possible method of implementing this is to incorporate a collective rather than
a unitary model by weighting the utilities of both spouses and then varying the weights
over time, as done by Fernández and Wong (2014). The main difficulty in doing so is
estimating the spousal bargaining powers, which are unobserved. A possible way to do
this is to use the relative spousal wages as a proxy for bargaining power, thereby modeling
that women’s power in household decision making has grown.

A final extension popular in the literature that I have not incorporated is to endogenize
assortative matching by modeling a marriage (and divorce) market, similar to Gihleb and
Lifshitz (2016) and Greenwood et al. (2016). This could be combined with including
household bargaining, where being single provides an outside option and would allow for
a better understanding of decisions on the household level.
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A Data Appendix
For my analysis, I use two customized microdata extracts obtained from the Integrated
Public Use Microdata Series (IPUMS): One of the U.S. Current Population Survey (CPS)
by Flood et al. (2018) and one of the American Heritage Time Use Study (AHTUS) by
Fisher et al. (2018).

A.1 CPS
The CPS is a monthly household labor force survey conducted in the U.S. and covers the
period from 1964 to 2018. I use the public IPUMS version of the CPS (IPUMS-CPS),
because the data is harmonized for comparisons over time. More specifically, I work
with the Annual Social and Economic (ASEC) supplement, also referred to as March
Supplement, due to the monthly surveys only being available from 1976. For generating
descriptive statistics on the individual and household level, I apply the provided ASEC
sample weights ASECWT and ASECWTH respectively.

First of all, I impose an age restriction of 25 to 55 years, similar to the one used by Mulligan
and Rubinstein (2008). The lower bound is set to 25 years because of education being
exogenous in my model. Hence, 25 ensures that most individuals will have completed any
undergraduate university education. The upper bound is set to 55 such that retirement
does not effect the labor supplies and home production hours.

Furthermore, following Mulligan and Rubinstein (2008) and Herrmann and Machado
(2012), I restrict the sample to non-Hispanic whites in order to mitigate the effects of
changing demographics. For example, Fernández (2013) notes that black women have
higher labor force participation early on in their lives compared to white women. While
restricting on whites can be done for all years using the RACE variable, identifying His-
panics is much more difficult because they are not assigned their own category in race,
but rather coded as whites in the data. The variable HISPAN solves this, but is only
available from 1971. Therefore, it was only possible to drop Hispanic individuals from
the data for all years from 1971. Moreover, I drop military personnel (who do not report
hours worked in any case), again following Mulligan and Rubinstein (2008) and Herrmann
and Machado (2012).

As my analysis focuses on couples, I only keep observations which reported being either the
household head, spouse, or unmarried partner. The latter category was only introduced
in 1995. Before, it included ”partner/roommate”, which not necessarily constitutes a
cohabiting romantic partner. Thus, identifying cohabiting couples (and subsequently
distinguishing them from married ones) is only possible from 1995.

To keep the results comparable across households, I only consider households where the
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male partner is working for income (reporting non-zero earnings and hours worked). Sub-
sequently, I restrict the sample on heterosexual couples by dropping couples consisting of
same-sex partners.

Labor earnings are only reported as the wage and salary income of the previous calender
year (INCWAGE). In order to compute hourly wages, I therefore need to adjust the yearly
earnings with the weeks and usual weekly hours worked of the previous year. Before doing
so, two problems of missing data need to be solved: Firstly, weeks worked in the year
before the survey are only available accurately from 1976 on. Prior to 1976, weeks worked
last year were reported in six intervals and must therefore be imputed. To do so, I follow
United States Bureau of Labor Statistics (1993) and take the average by gender of each
interval in 1976 (where discrete weeks were being reported for the first time), using the
sample weight ASECWT. I then assign these gender-hour averages to each of the six
intervals in 1964 to 1975.

The second case of missing data concerns the usual hours worked per week in the preceding
calender year, which are also missing from 1964 to 1975. Again, I use the same method
as United States Bureau of Labor Statistics (1993) and construct the missing work hours
as the product of a dummy variable for having worked last year and the actual work
hours reported for the week before the survey. For the case that an individual has worked
last year (as indicated by the dummy variable), but has not worked the week before the
survey, I impute the hours worked last year to be 40.

I construct hourly wages from the reported annual earnings by dividing INCWAGE by
the weeks and usual weekly hours worked last year. For individuals who report earnings,
but do not report weeks or hours worked, I impute weeks worked last year to be 52 and
hours worked last year to be either hours worked last week or 40. As is common in the
literature, for example in Herrmann and Machado (2012) and Attanasio, Battistin, and
Ichimura (2007), I take a 1% sample of earnings and wages by using the sample weight to
generate the percentiles for each year and dropping the top and bottom 1%. The reason
for doing this is both to deal with outliers and earnings being top-coded. In addition, I
deflate earnings and wages using CPI data obtained from United States Bureau of Labor
Statistics (2019) and expressing them in constant 2010 U.S. Dollars. Household earnings
are constructed as the sum of the trimmed and deflated earnings of both partners. I
calculate annual hours worked as the product of weeks worked in the previous year and
the hours worked in the week before the survey, because this is the only continually
available hours measure in the CPS, as Ngai and Petrongolo (2017) note.

Regarding the skill level cut-off, I follow the definition of Cortes et al. (2018) and Green-
wood et al. (2016) and consider individuals with at least four years of college as high-skilled
and the remainder as low-skilled. Using four years of college rather than graduating from
college is necessary because the education variable in the CPS (EDUC ) is made up of the
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variables HIGRADE for all years prior to 1992 and EDUC99 for the following years. Un-
like EDUC99, HIGRADE only contains the highest grade the respondent has completed.
As 4 years is the usual duration of an undergraduate degree in the U.S., I use at least 4
years of college education for defining high-skilled individuals.

To obtain the shares of the four different household types (u-u, s-u, u-s and s-s), I generate
the proportion of each household type within each year, applying the household weight
ASECWTH. I use the same procedure to obtain the share of married and cohabiting
couples for each year. Table A.1 lists the number of individual observations left in the CPS
data after imposing the aforementioned sample restrictions. The number of households in
each year is exactly half of the number of observations due to the restriction on married
and cohabiting heterosexual couples.

Table A.1: Number of Observations in the CPS Data per Year After Sample Restrictions
Year Obs. Year Obs.
1964 15,646 1992 24,002
1965 15,422 1993 23,830
1966 30,872 1994 23,520
1967 19,730 1995 24,724
1968 30,086 1996 21,656
1969 30,452 1997 21,592
1970 29,012 1998 20,874
1971 23,706 1999 20,906
1972 22,122 2000 20,738
1973 20,752 2001 37,046
1974 21,310 2002 36,280
1975 22,234 2003 35,480
1976 22,126 2004 34,208
1977 26,000 2005 33,148
1978 24,740 2006 31,770
1979 24,358 2007 30,960
1980 28,396 2008 29,982
1981 28,274 2009 29,132
1982 24,486 2010 28,194
1983 24,402 2011 26,968
1984 24,842 2012 26,242
1985 25,302 2013 25,916
1986 24,930 2014 24,910
1987 24,800 2015 24,344
1988 25,438 2016 22,162
1989 24,284 2017 21,966
1990 25,554 2018 20,882
1991 24,700 Total 1,405,408
Source: Flood et al. 2018
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A.2 AHTUS
The only variable needed for my quantitative analysis that is not included in the CPS is
the amount of time spent in home production. I obtain this variable from the American
Heritage Time Use Study (AHTUS) provided by IPUMS (Fisher et al. 2018). The IPUMS-
AHTUS contains U.S. time use data for the years 1965, 1975, 1985, 1995, 1998 and 2003 to
2012, based on time-diary samples and harmonized by the Centre for Time Use Research(
CTUR) at the University of Oxford. For each year, respondents were asked to track their
time use over 24 hours in a diary and report their activities in minutes spent during those
24 hours. People could report multiple days per year, but unlike for the CPS, only one
person per household reports their own time use.

Using the AHTUS-X data extract builder, I created a custom time use variable containing
the sum of the reported unpaid domestic work (0400), child care (0500) and adult care
(0640). This constitutes what I refer to as home production. I explicitly do not include
time spent on personal care and sleep, as these do not generate mutual benefits to the
household to the same extent as doing chores and taking care of children and adults.

Consistent with the CPS, I impose the same restrictions on age (25-55) and ethnicity
(non-Hispanic whites). The only limitation here is the ethnicity variable ETHNIC2 not
being available in 1985, but given the scarcity of time use data I keep the 1985 data
regardless of this issue. Furthermore, I restrict the sample on married and unmarried
people, which is done through the variable CIVSTAT, where ”married” includes both
legally married and cohabiting people. I drop observations with missing education data
as well as all men who are not working. Respondents also report the employment status
of their partner in EMPSP, which allows me to also drop all women whose partner is not
working.

For generating the average hours spent on home production for the different subgroups
for each year, I apply the recommended sample weight RCWGHT. Same as in the CPS,
I consider all individuals with at least four years of college education as high-skilled.
Unfortunately, the AHTUS does not provide data on the partner’s education. Therefore,
due to only having one respondent per household, it is not possible to determine average
household production hours by household type. Hence, home production hours will only
differ by gender and own skill level, rather than the skill level of the partner.

Finally, I convert the weighted means of the home production time for each gender-skill
combination from minutes per day to hours per week by dividing by 60 and multiplying
by 7. The sample weights I applied automatically adjust for over- and undersampling of
certain weekdays.

Table A.2 lists the number of record 24-hour time diary observations in the AHTUS data
after the sample restrictions. These numbers are not equivalent to individuals, but to
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days recorded, as repondents could report multiple days in a year.

Table A.2: Number of Observations in the AHTUS Data per Year After Sample
Restrictions

Year Obs.
1965 1,059
1975 1,474
1985 1,073
1995 358
1998 870
2003 6,743
2004 4,549
2005 4,208
2006 4,012
2007 3,838
2008 3,776
2009 3,772
2010 3,585
2011 3,284
2012 3,297
Total 45,898
Source: Fisher et al. 2018
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B Mathematical Appendix

B.1 Household Problem
The household optimization problem can be formulated as:

max
ci,j ,li,j,m,li,j,f

U(ci,j, li,j,m, li,j,f ) =
c1−η
i,j

1− η + ψ
(1− li,j,m − hi,j,m)1−σ

1− σ + ψ
(1− li,j,f − hi,j,f )1−σ

1− σ

s.t. ci,j = wili,j,m + wjli,j,f

di,j,m + di,j,f = 2− li,j,m − li,j,f − hi,j,m − hi,j,f

As consumption is determined by the household’s labor income, the optimization problem
can be rewritten by substituting ci,j in the utility function for the budget constraint:

max
li,j,m,li,j,f

U(li,j,m, li,j,f ) =(wili,j,m + wjli,j,f )1−η

1− η + ψ
(1− li,j,m − hi,j,m)1−σ

1− σ

+ ψ
(1− li,j,f − hi,j,f )1−σ

1− σ

Since this leaves the household with only two choice variables (li,j,m and li,j,f ), solving the
optimization problem yields two first-order conditions with respect to male and female
labor supply:

(1) : ∂U

∂li,j,m
= wi(wili,j,m + wjli,j,f )−η − ψ(1− li,j,m − hi,j,m)−σ != 0

(2) : ∂U

∂li,j,f
= wj(wili,j,m + wjli,j,f )−η − ψ(1− li,j,f − hi,j,f )−σ != 0

By dividing (1)
(2) , I obtain the gender wage ratio as a function of both labor supplies:

(1)
(2) ⇒

wi
wj

=
(

1− li,j,m − hi,j,m
1− li,j,f − hi,j,f

)−σ

From this equation, I can then derive individual female labor supply as a function of both
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partners’ wages, household hours, and male labor supply:

(
wi
wj

)− 1
σ

= 1− li,j,m − hi,j,m
1− li,j,f − hi,j,f

⇔
(
wi
wj

) 1
σ

= 1− li,j,f − hi,j,f
1− li,j,m − hi,j,m

⇔ (1− li,j,m − hi,j,m)
(
wi
wj

) 1
σ

= 1− li,j,f − hi,j,f

⇔ li,j,f = 1− hi,j,f − (1− li,j,m − hi,j,m)
(
wi
wj

) 1
σ

B.2 Firm Problem
The firm maximizes profits subject to the production function and the technology con-
straint:

max
Au,As,Lu,Ls,k

π(Au, As, Lu, Ls, k) = y − wuLu − wsLs − rk

s.t. y = kα
[
(AuLu)θ + (AsLs)θ

] 1−α
θ

(As)ω + γ(Au)ω ≤ B

This can be solved by substituting the production function into the profit function for y,
and then setting up the Lagrangian with the second (technology set) constraint:

L = kα
[
(AuLu)θ + (AsLs)θ

] 1−α
θ − wuLu − wsLs − rk + λ [B − (As)ω − γ(Au)ω]

The resulting first-order conditions (excluding the one for capital, which is irrelevant for
my analysis) are:

∂L
∂Lu

= kα
1− α
θ

[
(AuLu)θ + (AsLs)θ

] 1−α−θ
θ θAθuL

θ−1
u − wu

!= 0

∂L
∂Ls

= kα
1− α
θ

[
(AuLu)θ + (AsLs)θ

] 1−α−θ
θ θAθsL

θ−1
s − ws

!= 0

∂L
∂Au

= kα
1− α
θ

[
(AuLu)θ + (AsLs)θ

] 1−α−θ
θ θAθ−1

u Lθu − λγω(Au)ω−1 != 0

∂L
∂As

= kα
1− α
θ

[
(AuLu)θ + (AsLs)θ

] 1−α−θ
θ θAθ−1

s Lθs − λω(As)ω−1 != 0
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Dividing the second by the first and simplifying yields the firm’s first optimality condition,
pinning down the skill premium:

ws
wu

=
(
As
Au

)θ (Ls
Lu

)θ−1

Likewise, the second optimality condition can be obtained by dividing the fourth by the
third first-order condition and simplifying:

(
As
Au

)ω−θ
= γ

(
Ls
Lu

)θ
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C Codes
I have used Stata to clean the CPS and AHTUS data, both for the chapter on empirical
facts and to obtain the average labor supplies, household hours, wages and population
shares by gender and skill level to be put into my model. Solving the model, testing the
female labor supply candidates, and the counterfactual analysis of married and cohabiting
households was done in MATLAB. Both the Stata and MATLAB codes are available upon
request.
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