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Abstract

Economists widely agree that a Pigouvian fee on emissions is the first best option to

correct for the un-priced externality of climate change. However, scientific estimates

of future global costs of climate change are varying. So are estimates of future carbon

uptake and climate forcing as well as the estimated probability, timing and size of tipping

points. Integrated assessment models are highly sensitive to these parameters and as a

result are limited in their ability to precisely derive optimal policy choice. This study

discusses the impact of multiple uncertainties in policy optimisation models on climate

mitigation policy choice and suggests an alternative approach to IAM policy optimization,

introducing an exogenous emission target in the place of carbon uptake and damage

functions. This approach shifts model dependency on unknown parameters of the climate

function to a dependency on parameters that are more frequently discussed in the policy

context. Drawing from the general closed economy setting of Golosov et al, a fossil energy

tax formula is developed that demonstrates that the optimal tax rate given a dynamic

emissions target can be expressed as a function of the target, energy intensity of the

economy, technology levels of the energy sectors, and substitutability of energy inputs,

among others.
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1. Introduction

Warming of global climate is unequivocal, and there is scientific consensus it is anthropo-

logically caused. Scholars can explain mechanisms of atmospheric greenhouse gas (GHG)

uptake with increasing detail, and there is good evidence for quantifying lifespans of

different greenhouse gases and their radiative effects. There is understanding for patterns

of past climates, and there are improving estimates of how different levels of climate

change will impact our planet over time. While these estimates vary, they all call for direct

and targeted action at a global scale. The 2016 ratified Paris Agreement aims to raise

global ambitions, and parties to the agreement have submitted Nationally Determined

Contributions (NDCs) as voluntary, self-determined targets for national emissions levels

in 2030 and beyond. As of now, there is no enforcement mechanism in place and it is left

to national governments to take action.

There exists a range of suitable policies that governments can implement in order to

achieve emissions reductions on the national level. The IPCC, among others, classified

the main climate change mitigation policies as economic instruments (carbon pricing

schemes, subsidies, related border tax adjustments), regulatory approaches (regulations

and standards), information policies, government provision of public goods and services

(R&D support, infrastructure, management of public goods such as forests and oceans)

and facilitation of voluntary action [27]. Due to varying local circumstances, objectives

and constraints, optimal policy choice and alignment of policies varies across countries,

and tailored policy packages are necessary [2].1 Nevertheless, there is strong consent

among policy experts that carbon pricing mechanisms need to be at the core of all climate

policy packages to achieve significant reductions while minimizing total welfare cost [57].2

Economists widely agree that a Pigouvian price on greenhouse gas emissions is the first

best policy option to address the related externality.

Carbon pricing mechanisms can take various forms and can apply to all or only selected

greenhouse gases. Common approaches can be classified as either emissions trading schemes

(ETS) or carbon taxes, but hybrid forms exist.3 Both types have similarities as well as

distinct advantages and climate policy instrument choice is subject to substantial economic

1This is the case only where other market imperfections limit the policy instrument and pareto optimal
conditions will not be obtained (”second-best theory”). Many economists have called for caution when
applying a mix of policy instruments as a first-best response (see for example Fankhauser et al 2010 [53]
and Lehmann and Gawel 2013 [30])

2Climate policy commonly refers to policy for climate change mitigation and climate adaptation. The
focus here is on the former solely.

3An Emission trading scheme introduces a ceiling for emissions within a defined market and distributes
a corresponding amount of emissions allowances to market participants. Participants can trade allowances
to compensate for excessive emissions or be rewarded for additional mitigation results. A carbon tax is a
monetary levy on a good based on the good’s emission intensity. It may be applied at point of production
or consumption. Both instruments introduce an explicit carbon price.
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literature [29]. A full list of active pricing schemes can be found in the appendix.

While global coverage of GHG covered by pricing schemes is increasing, global levels

of carbon taxes and average prices of emission certificates are far below what researchers

suggest as social cost of carbon (SCC) and hence optimal carbon price, following Pigou [40].

Scholars have identified political economy constraints as main causes for this science policy

disconnect, including distributional consequences of pricing mechanisms, lobbying pressure,

international policy coordination and near-time costs to consumers [28]. Additionally,

uncertainty is an important barrier to policy implementation. In contrast to other public

policy domains, climate policy decisions must be made in the face of uncertainty that

interacts with highly nonlinear environmental cost functions, important irreversibilities

and very long time horizons [49]. One result of these key uncertainties is that policy

optimization models deliver wide ranges of ”optimal” future carbon levels and hence

wide ranges for the optimal time path of policy interventions, leaving policy makers with

unclear recommendations.

Integrated assessment models (IAMs) were developed for the purpose of quantifying the

social cost of carbon, quantifying the costs of climate change mitigation and to explain how

policy measure can impact different elements of the economy. Today, IAMs are mainstream

instruments in climate change economics, but their use for policy optimization is heavily

criticized. A famous opponent of IAMs is Robert Pindyck, who not just highlights model

shortcomings, but states that these models can be ”highly misleading” as they suggest an

illusory level of knowledge and precision of results and he claims that ”climate change

policy can be better analyzed without the use of IAMs” [46].

The Paris Agreement (PA) is the most important recent milestone of the global commu-

nity in uniting efforts to limit climate change in the future. It is built around a collective

target of limiting climate change to well below 2 degrees Celsius above pre-industrial

temperature levels, aiming for only 1.5 degrees Celsius warming (Decision 1/COP21).

Importantly, member parties to the PA are required to submit Nationally Determined

Contributions (NDCs). NDCs are nationally determined, voluntary commitments to an

individual national mitigation target and national adaptation measures and are accessible

to the public. NDCs commonly use national levels of annual greenhouse gas emissions to

quantify national mitigation targets, expressed in absolute terms, as shares of historic

emission levels or as improvement against some defined business-as-usual (BAU) scenario.

This emissions centered approach has strongly impacted international discussion on track-

ing progress towards implementation of the Paris Agreement (Global Stocktake) as well

as related fields such as international climate finance, national policy setting or abatement

efforts of the private sector, where aggregated tons of CO2 equivalent (CO2e) have become

the central unit for measuring outcomes. A policy focus on CO2e outcomes has the

benefit of being measurable (within limitations of accounting challenges), internationally
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observable and it is, indisputably, closely linked to climate outcomes.

There is and has been since decades a vivid scholarly debate on the needs for policy

action [56, 60], optimal instrument choice [29, 2, 20] and, most prominently, on estimating

the social cost of carbon to inform optimal policy choice given uncertainty [56, 57, 40].

There is furthermore a rich literature discussing shortcomings of climate change policy

modelling approaches [47, 46, 3, 51]. Fewer work has been conducted identifying barriers to

policy implementation and explaining this science policy disconnect [28, 20] or discussing

the integration of targets into policy optimisation [37, 13].

This thesis analyses the existing suite of economic models for climate policy optimisa-

tion from a policy makers perspective. It summarises key shortcomings of IAMs, the class

of models most frequently used for policy analysis and optimisation. It then suggests an

alternative application of existing CGE modelling work that addresses some of these short-

comings, linking modelling efforts closer to the current status quo of international climate

change cooperation, a debate centered on emission outcomes. Under the assumption that

high uncertainty around parameters characterising the damage function and high model

complexity limit the relevance of a model to policy makers, this approach aims to provide

an example for a simple explanation of the impact of a carbon tax on the emissions from

the energy sector of a closed economy. This thesis argues that there should be a richer

set of models that explicitly aim to inform policy makers in their decisions, taking into

account their need for clarity, reduced uncertainty and a focus on annual emissions as

central outcome.

Following the setting of the DSGE model for optimal carbon taxes for fossil fuels of

Golosov et al. 2012 [40], I demonstrate how introducing emission targets to a reduced

general equilibrium setting can replace the damage function and result in a simplified

but clear model for carbon taxes for emission targets. With this approach, a given target

emissions pathway can be directly translated into a corresponding tax pathway over

time, requiring only input of common parameters for characterising the economy such as

elasticity of substitution of production parameters and fuel intensity of sectors. Other

than the baseline model and other policy optimisation models, this approach therefore

does not identify the optimal tax level over time but identifies the path towards any

selected emissions level. While this method can be applied to other existing CGE policy

optimisation models, the author is not aware of an existing similar model with this

approach. Furthermore, this study as a whole aims to support voices that quest for

innovative yet practical policy optimization models.

This study is structured as follows. Section 2 provides context by exploring the decision

makers perspective on policy choice and the status quo in global climate policy. Section 3

provides a comprehensive background for and overview of different approaches to climate
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change externality modelling. It explains what the main shortcomings of latest modelling

efforts are and discusses arguments of both critics and advocates. Section 4 then expands

on the motivation and hypothesis of this paper. Section 5 introduces the case study, a

baseline model following Golosov, Hassler, Krusell and Tsyvinski 2014, and demonstrates

suggested modifications, as well as presenting details of calibration and solution method.

Subsequently, section 6 presents results and discusses policy implications, limitations and

the validity of this modelling approach. Section 7 concludes.
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2. Background: A policy makers perspective on cli-

mate change policy setting

2.1. National incentives

There is a growing momentum for climate change policy uptake, and policy makers as

well as the public debate make the topic of optimal instrument choice one of increasingly

high importance. The toolbox of policy makers for climate mitigation policy is extensive,

including economic instruments such as carbon pricing schemes and related border tax

adjustments, subsidies (and fossil subsidy removal), regulatory approaches including

regulations and standards, information policies, government provision of public goods

and services(R&D support, infrastructure, management of public goods such as forests

and oceans)and facilitation of voluntary action [27]. A policy maker evaluates the option

against a large set of potentially competing evaluation criteria. Most commonly analysed

are economic efficiency, defined as aggregate net benefits, cost effectiveness, distributional

effects (regional, demographic, socio-economic, among others), political feasibility, political

credibility (management of market expectations) and policy related risk of excessive or

insufficient abatement imposing high cost on the economy, which is closely linked to

uncertainty around instrument design [20]. Any evaluation of policy instruments needs to

be clear about the choice of criteria against which the analysis is conducted.

Uncertainty is an unavoidable aspect of policy choice and therefore not unique to

mitigation policy choice. However, climate policy decisions are made in the face of

uncertainty that interacts with highly nonlinear environmental cost functions, important

irreversibilities and very long time horizons [49]. It is therefore crucial to consider

an instrument’s robustness to various uncertainties as well as the speed at which the

instrument can adjust to new information as the information becomes available. Section 3

discusses key uncertainties affecting optimal policy choice and how modelling approaches

develop around these. The aspect of uncertainty around policy optimisation is central to

this study and discussed in various aspects.

Following elementary economic theory, the Pigouvian principle suggests that negative

externalities of pollution should be internalised by pricing pollution at its marginal cost to

the economy. It follows that to achieve maximal cost-effectiveness, all agents should face

an equal price on emissions. Under perfect information and fully competitive markets,

carbon pricing would be the first best policy choice with regards to the decision criteria

economic efficiency and cost effectiveness, and revenue spending of pricing revenues could

furthermore mitigate unwanted distributional effects of the policy. Where markets are

incomplete and in the presence of policy constraints, this may no longer be the case. This
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study focuses on policy optimisation via introduction of a carbon pricing scheme only, but

acknowledges the variety of instruments and their respective implications and strengths.

Policy choice is not only a question of instrument choice, but also a question of

instrument calibration. Calibration is especially key for carbon pricing schemes that

require a decision on the price or total quantity of emissions in carbon tax schemes and

cap and trade schemes respectively. Required inputs for both calibrations are estimates

for the social cost of carbon (SCC), and in addition calibrating an ETS requires estimates

for the marginal abatement cost curve of the economy.

2.2. International climate policy context

The climate is a global public good. According to theory, a successful international climate

agreement should be based on three principles: universality ( all countries and regions

participate ), efficiency (the reduction objective should be achieved at least cost), and

equity (efforts must be shared according to a uniformly accepted principle)[15]. A uniform

global carbon tax would be consistent with these three principles. However, international

climate negotiations are subject to real-world constraints and an unanimous agreement of

all countries seems not feasible given current negotiation outcomes.

The Paris Agreement has therefore adopted a ”polycentric” approach, combining

diverse, voluntary policy efforts at multiple levels and thereby overcoming the challenge

of formulating a rule of ”fair effort sharing”. Furthermore, the polycentric approach

diversifies risks related to instrument choice, as a multitude of employed instruments

prevents dependence on a single instrument whose failure would have large consequences.

Part of this polycentric approach built into the PA is the requirement for parties to

submit Nationally Determined Contributions (NDCs). NDCs are nationally determined,

voluntary commitments to an individual national mitigation target and national adaptation

measures. NDCs are accessible to the public and progress against the specified targets

can be tracked, but there are no formal enforcement mechanisms in place. Most NDCs

refer to national levels of annual greenhouse gas emissions in order to quantify national

mitigation targets, expressed in absolute terms, as shares of historic emission levels or as

improvement against some defined BAU scenario.

While this international policy focus on CO2e outcomes has the benefit of being

observable to a certain degree and is closely linked to climate outcomes, it comes along

with significant challenges of accountability of emissions [22]. When discussing emissions

levels as a central outcome of climate policy, it is necessary to note that there are significant

challenges and disputes around the topic of consistent and comparable accounting that

require careful design of standards and ongoing updates.
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2.3. Status quo

As of 2018, 88 parties to the Paris Agreement have indicated in their NDC that they

are planning or considering to implement carbon pricing as an instrument to meet their

nationally determined target [7]. In 2018, the total value of implemented pricing schemes

globally was USD 82 billion, 56% above the market size of 2017. 47 national and sub-

national carbon pricing initiatives were implemented end of 2018, covering 14% of global

annual GHG emissions. If all pricing schemes that are scheduled come into implementation,

this share could reach over 20% of global annual GHG emissions, covered by 51 initiatives

by 2020.4 Especially Asia and the Americas have recently seen the introduction of a

number of initiatives.

Prices in implemented explicit carbon pricing initiatives vary between below USD 1

per ton CO2e to USD 139 CO2e. However, less than 25% of emissions covered by pricing

schemes are priced above USD 12. A price below this threshold can be considered too

low for the policy to effectively support low carbon transition efforts of covered sectors.

Carbon pricing schemes are frequently implemented incorporating phased approaches.

This is to allow for adjustments to the system design, infrastructure development and

piloting phases.

In summary, there is continued progress on carbon pricing, and initiatives are covering

parts of all world regions. Despite large additions to the number of pricing schemes in

recent years, global coverage of GHG emissions remains low. In addition, the majority of

carbon pricing schemes prices carbon at a cost that is assessed as too low to be effective

by experts [39]. Table 5 in the appendix provides a long list of carbon pricing schemes

that are currently active or near implementation, as well as the current prices where these

are available, and lists them next to the countries’ NDC ambitions.

4Conflicting estimates of the share of global GHG emissions covered by ETS or carbon taxes exist.
This paragraph draws from the State and Trends of Carbon Pricing 2018 Report, higher estimates can be
found for example in the I4CE Global panorama of carbon prices 2017 [39].
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3. Background: Introduction to climate change exter-

nality modelling

3.1. Scientific consensus and uncertainties on climate forcing

To understand the aim, challenges, and limitations of climate change externality models

it is necessary to review facts and unknowns on climate change and its impact over time.

The following section mainly draws from the updated version of the 2014 Climate Change

Synthesis Report of the Intergovernmental Panel on Climate Change (IPCC) [25] as well

as their 2018 Special Report on the impacts of global warming of 1.5° above pre-industrial

levels [...] [26]. The IPCC is the international body for the continuous assessment of

climate change, aiming to provide a clear scientific view on the current state of knowledge

in climate change and its potential environmental and socio-economic impacts, reflecting

the global range of views and expertise of thousands of contributing scientists.

There is clear evidence that the climate system has warmed over the last decades,

and that this change has anthropogenic causes. Observed magnitude and speed of

changes in atmosphere temperature, ocean temperature, polar ice sheets and sea levels

are unprecedented over decades. The increase in globally averaged combined land and

ocean surface temperature between 1880 and 2012 can be narrowed down to lie between

0.65°C and 1.06°C with a likelihood of 90%, and every coming decade is estimated to

add between 0.1°C and 0.3°C due to past and current emissions [25, 26]. With the same

confidence it can be stated that global mean sea level rose by between 0.17m and 0.21m

since 1901, and that oceanic uptake of carbon dioxide (CO2) has resulted in a 26% increase

in acidity. Over 90% of the increase in energy stored in the climate system is accumulated

in the oceans, and ocean warming is largest near the surface. There is mixed evidence on

precipitation trends for different latitudes. Atmospheric concentrations of CO2, methane

and other greenhouse gases today are with high confidence unprecedented for at least

800 000 years. With high confidence, fossil fuel combustion and industrial processes

accounted for about 78% of the total GHG emissions increases in recent decades. The

IPCC Fifth Assessment Report furthermore concludes that it is extremely likely that this

anthropogenic increase in atmospheric GHG concentrations has caused more than half

of the observed warming of global surface temperatures since 1951, and it has possibly

caused all observed warming over this period. It has very likely contributed to increases

in ocean temperature and global mean sea level rise since 1970[25].

Emissions of CO2 into the atmosphere are the strongest driver of climate change.

Atmospheric CO2 alters the energy budget of the earth, as it has the property of allowing

sunlight to pass through more easily than infrared radiation, while most of the outflow of
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energy from earth is infrared radiation. As a consequence, heat accumulates and increases

the temperature on earth, causing higher outflow of energy until a new equilibrium energy

balance occurs at warmer overall temperature. Other, less prevalent greenhouse gases

like methane and nitrous oxide show different levels of absorption of infrared radiation,

potential indirect effects and persist for a different length of time in the atmosphere. In

order to be able to compare and aggregate different greenhouse gases, CO2 has been chosen

as reference gas, with a global warming potential (GWP) normalized to one (applied to

units of mass, measured over 100 years). GWP values of all known greenhouse gases are

published and regularly updated by the IPCC. CO2e, carbon dioxide equivalent, is the

related metric measure. Greenhouse gases are not the only anthroprogenic climate forcers,

but the most important one.

Observed climate change has already shown impacts on natural and human systems,

and we can measure changes in extreme weather events. There is strong evidence of

widespread impacts of climate change on wildlife, and hydrological systems are clearly

affected by changing precipitation and melting ice. Impacts on human systems can also

be identified, with negative impacts on crop yields as most commonly cited immediate

effects. Since 1950, we observed a decrease in cold temperature extremes, and increases in

high temperature extremes and incidents of strong precipitation, which all are very likely

caused by human influence.

There are large unknowns concerning key drivers of future climate and characteristics

of future climate system changes. Analyzing a wide range of concentration pathways and

mitigation scenarios, the IPCC finds that the scenarios jointly suggest a strong, consistent

and almost linear relationship between aggregated CO2 emissions and corresponding

expected temperature changes over time. There is no certainty on the factor translating

cumulative emissions over time to temperature pathways. ”Multi-model” results are

frequently used in this context, for example to define thresholds for cumulative CO2

emissions that would limit human-induced warming to 2°C relative to pre-industrial levels

with defined levels of probability. Future increases of global mean surface temperature or

reductions in glaciers and permafrost will depend largely on the emissions pathway until

then, but earth system models can project differences in average changes by region.

Finally, future risks, feedback effects, irreversibility and tipping points remain difficult

to model. Climate change will amplify existing risks, and resulting damage on human and

natural systems will depend on their ability to adapt. While we know that various tipping

points exist, that are thresholds of temperature increases that would trigger sudden large

and irreversible change in natural systems, the precise levels of warming that will trigger

these are uncertain. Furthermore, we know that current changes in natural systems

such as the loss of some ecosystems will continue even if anthropogenic CO2 emissions

and global warming were to stabilize, and most of these changes are irreversible on a
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multi-century time horizon. Technologies that are able to remove large amounts of CO2

from the atmosphere could, however, possibly revert the warming trend.

The scientific community has defined 1.5°C of global warming above pre-industrial

levels as ambitious target and likely threshold to more critical changes. Different pathways

to achieve no overshoot of this target see global anthropogenic CO2 emissions reach net

zero between 2045 and 2055, and estimate the remaining carbon budget for this target to

lie between 420 GtCO2 and 770 GtCO2 depending on various assumptions and chosen

level of certainty to reach the target. International negotiations on climate targets will be

further discussed in section 3.5.

In summary, clear upward trends in atmospheric greenhouse gas concentrations, global

warming and related changes in the ecosystem can be observed. We are able to produce

more precise estimates for correlations than ever before, but there are large uncertainties

related to future outcomes. Table 1 provides an overview of parameters most relevant to

modelling climate change, classified in 3 categories (own classification), and respective

scientific certainty.

Table 1: Parameters for climate change externality modelling and uncertainty

Category Example parameters Level of certainty Sources

Technological

progress and

feasibility

a. technological progress on car-

bon capture and storage & decar-

bonization of transport, availabil-

ity of scarce natural resources for

renewable energy roll out;

b. feasibility of alternative, not

yet existing technologies (eg solar

radiation modification)

a. medium

b. unknown
various

Carbon uptake

and climate forc-

ing

a. lifespan of potent greenhouse

gases, relative global warming po-

tential per gas;

b. climate response to GHG emis-

sions, non-anthropogenic GHG

emissions, remaining carbon bud-

get by target, ocean carbon cycle

a. relatively

certain but can

change over

time;

b. substantial

uncertainties

EPA,

IPCC

Scale and charac-

teristics of dam-

age from climate

change

damage function over time, re-

gional and sectoral distribution of

damages, secondary effects, feed-

back effects, tipping points

substantial

uncertainties

IPCC,

various

Source: Author, based on IPCC Synthesis Reports (multiple years)
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3.2. Development and use of climate scenarios

The research community develops and uses scenarios to understand and analyze uncertain future in-

teractions and outcomes of complex and interlinked climate, natural and human systems. Importantly,

scenarios do not try to predict the future, but the goal of working with scenarios is to understand

consequences of uncertainty and to take informed decisions based on a range of possible futures [54]. As

such, scenarios reflect expert judgments regarding plausible pathways. Scenario modelling only became

mainstream in the early to late 1980s, when sustainable development scenarios gained wider attention (see,

for example, Häferle et al. [62]). Starting in 1990, the IPCC commissioned emissions and climate scenarios

as a central component of its work. Today, the broad array and large number of scenarios available allow

for comprehensive multi-model assessment of climate scenarios [25]. The research community coordinates

scenario and modelling efforts to a certain extent by identifying and agreeing on important characteristics

of scenarios, for example the level of radiative forcing in 2100, and then producing scenarios that can be

compared along these key metrics. In climate change research, especially emissions scenarios, climate

scenarios, environmental scenarios and vulnerability scenarios play an important role (see, for example,

[4] for details).

Scenarios of this kind are both informed by and used in Integrated Assessment Models (IAMs), which

will be discussed in more detail in the following subsection. Emissions scenarios, for example, commonly

use input from integrated assessment models to evaluate patterns of economic and population growth,

land use change or technological progress. At the same time, some integrated assessment models will be

calibrated to match emission pathways as suggested in emissions scenarios.

Over the last years and decades, scenarios have strongly contributed to our understanding of plausible

climate and socio-economic futures. They also provide an important means for increasing clarity,

transparency and comparability of research and aim to increase collaboration across different groups of

researchers and disciplines [4]. It is of uttermost importance to interpret results from scenarios as what

they are - plausible pathways - rather than mistake them for predictions. The role of scenarios in climate

change policy optimization will be discussed further in the following section.

3.3. Introduction to Integrated Assessment Models

Modelling the economics of climate change requires a framework for simultaneously analyzing its physical

and socio-economic effects over time. In addition, as N. Stern put it [56], economic analysis of climate

change must be global, deal with long time horizons, incorporate the economics of risk and uncertainty

and include the possibility of sudden and major change. Figure 1 provides an overview of key elements of

climate change models: projections of future emissions from the economy under varying assumptions,

projections of resulting atmospheric CO2e concentrations, projections of induced changes in the climate

system, projections of damage (can depend on adaptation success)[14, 46].

Frameworks attempting to provide economic analysis of climate change policy, drawing from findings

in multiple disciplines, are named Integrated Assessment Models.5 In addition to the elements listed in

5The term Integrated Assessment Model is frequently, but not always, used in the context of environ-
mental analysis. Nordhaus (2013) uses a more broader definition for IAMs, defining them as ”approaches
that integrate knowledge from two or more domains into a single framework”. This discussion of IAMs
relates to climate IAMs only.
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Figure 1: Foundation of an integrated economic climate change model

Source: Author’s depiction, based on Dowlatabadi 1995, Pindyck 2013

Figure 1, most IAMs include assumptions about social utility, the rate of time preference and estimates of

emission abatement cost (related to projections of technical change) to be able to produce estimates of the

social cost of carbon. All these inputs are modelled global or disaggregated, deterministic or stochastic

and determined endogenously or exogenous. Since the first wave of IAMs in climate change analysis

more than two decades ago, they are central to the scientific debate, serving as the key tool of economic

assessment of climate policy around the world and forming the base of much of the work of the IPCC

and its network of experts [3].

The earliest IAMs for climate change were published in the years after the newly created IPCC

published its first Assessment Report in 1990 (though some earlier work may be counted, too, such as

Nordhaus 1979 [42]). These pioneer models were limited by computational power and lower precision of

available estimates for key parameters. They were similar in the sense that they all built on classical

economic growth theory applying computable general equilibrium models (CGE) (for example DICE

[43]; MERGE [34]; RICE [45]), and they had the common goal of explaining and interpreting dynamic

relationships of key variables in a coherent way [3] . Some of these, most importantly DICE (Dynamic

Integrated Climate and Economy, aggregated optimal growth model by Nordhaus 1994 [43]), RICE

(Regional Integrated Climate and Economy, aggregated optimal growth model by Nordhaus an Yang 1996

[45]), PAGE (Policy Analysis of the Greenhouse Effect, aggregated simulation model by Hope et al. 1993

[23]) and FUND (Climate Framework for Uncertainty, Negotiation and Distribution, aggregated optimal

growth model by Tol 1997 [58]) became reference models and were updated and reviewed multiple times.

Today, building and using IAMs has become a ”growth industry”, as Pindyck describes it [46], that even

has its own journal (The Integrated Assessment Journal). The IPCC, acting as a direct link between

participating governments and scientists, assesses available literature on IAMs on a recurring basis and

publishes summary reports.

IAMs can be built to answer different questions, and in fact there is no common overarching definition

of this class of models. As they are a truly interdisciplinary class of models, with scholars from the fields

of economics, engineering, sociology, biological sciences or earth sciences publishing alongside each other,

there is no single aim that connects all IAMs. The 3rd Assessment Report of the IPCC [24] in 2001
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provided a categorization in two subcategories: policy optimization models (POMs) and policy evaluation

models (PEMs), that is commonly applied since. PEMs evaluate a given policy intervention in terms of

its cost-effectiveness against a mitigation target by simulation. In general, these models tend to include a

high level of detail in the physical component as well as high sectoral detail. They often do not include

practical limitations such as geopolitical borders. POMs, on the other hand, have originally tended to

reduce the level of detail in order to be able to perform computationally challenging optimization methods.

Today, computational limitations have shifted and both POMs and PEMs use varying levels of detail, but

the trends remain. Related to the emergence of common standards for scenario development, the strongly

growing number of IAMs - especially the number of PEMs has increased exponentially - has caused the

need to adopt common standards and abatement scenarios. POMs have become standard instruments in

climate policy setting and they are the primary focus of this section.

Policy optimization models include a damage function, which maps changes in the climate system

to damages to the economy. This characteristic enables us to use POMs to estimate the social cost of

CO2, the estimate that is core to climate change policy optimization. Nevertheless, damage functions

are highly simplified and often do not provide sectoral detail. Note that the parameters used in damage

functions are calibrated to match available estimates of economic cost of unprecedented temperature

increases, for which by definition no data exists. It is not surprising but important to note that damage

functions vary significantly across different POMs (see Figure 2)[17].

Figure 2: Annual GDP loss in 2100 resulting from temperature change as estimated in
the three most used POMs: DICE, PAGE, FUND

Source: EPA 2010 [17]

The three POMs depicted in Figure 2 significantly differ in the scale of damage they attribute to

different levels of temperature change and also provide different level of sectoral detail of the damage.

FUND includes a series of sector specific, regionally weighted damage functions resulting from sea level

and temperature changes. Non-market damages are translated to monetary estimates of the related

welfare loss. FUND estimates overall welfare gains from temperature change of less than 3°C [58]. PAGE

differentiates economic and non-economic impacts, takes into account discontinuity impacts and sets a

time varying cap for total damage (maximum vulnerability of an economy). The famous DICE model

builds on the Ramsey growth model, and emission concentrations are considered negative natural capital

[43]. The damage function in DICE directly reduces output.
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Another possible categorization of existing IAMs is between models focused on cost-benefit analysis

(for example DICE, FUND, MERGE) and other IAMs with less focus on economics but a stronger

emphasis for the physical processes in both the natural system and the economy [4]. The former typically

strongly simplify the carbon cycle and climate system, while the latter, focusing more on physical processes,

tend to have more detail in the representation of climate and carbon cycle and often even are linked with

more complex earth system models. Results from detailed process IAMs can inform and calibrate the

simpler benefit-cost IAMs, and also hint to shortcomings where there are discrepancies [61].

IAMs have been constructed to estimate the social cost of carbon and to evaluate abatement pathways,

and they have become a well-used tool in policy evaluation and optimization. They provide large flexibility

and can be strongly simplified when needed. IAMs furthermore seem to have large potential. They can

be extended to model more direct climate impacts and increased sectoral detail, and increasing quality

of available data will naturally increase precision of model outputs. Nevertheless, they also have severe

shortcomings. Recent years have seen more critical mention than positive, and some of the harshest

critiques came from modellers and users themselves [46, 55]. The following section summarizes main

limitations of these models and challenges for their application.

3.4. Challenges and critique of IAMs

It is striking that various IAMs evaluating abatement policies are built of the same ”building blocks”, but

come to drastically different conclusions regarding the social cost of carbon and optimal policy pathway.

Two famous extremes are Nordhaus 2008 [41], suggesting only limited immediate action consistent with

social cost of $20 per ton of CO2e and Stern 2007 [56], who concluded one year earlier that the same

number was as high as $200. This discrepancy originates from a number of model limitations, of which

five are discussed in this section.

There is vast literature discussing the limitations of available IAMs and calling for caution when

interpreting their results. This chapter summarizes key arguments brought up by scholars, with an

emphasize on how these aspects influence suitability of policy optimization IAMs for policy making in

the real world.

3.4.1 The discounted utility framework

IAMs are derived from economic theory, where the problem of aggregating over time benefits that are

arising from a set of choices of representative agents is commonly solved by the concept of utility. The

generic framework of IAMs is to maximize the (expected) discounted utility of one or more representative

agents stretching into very distant future:

max E
∞

∫
0

e−ρt U[c(t)] dt (1)

where c(t) is consumption at time t, U is the utility function, determining how much utility is derived

from consumption, and ρ is the rate of time preference. Evidently, the choice of discount factor directly

impacts the SSC derived from any IAM in that form. Any ρ >0 implies an unequal weighing of generations,

but is a necessary assumption for the integral in equation 1 to converge. Setting ρ >0.02, corresponding
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to an annual discount rate of nearly 2 percent or higher, on the other hand, would result in a model that

does not support high or even moderate mitigation policy. There are alternative formulations of discount

formulas, but they all require some subjective rate of time preference, while economists have not yet

solved the paradox and fundamental empirical challenge that ”plausible” parameters of such equations

commonly do not match discount rates observed in the market (see, for example, Mehra and Prescott

2003 [36]).

The choice of discounting factor is a common underlying topic in political debate and plays a key

role in all public investment decisions with long time horizons and non-monetary benefits. More than an

economic question, choice of discount factor is a philosophical problem and not further discussed here.

See [6] for a detailed summary of arguments.

3.4.2 Modeller’s choice of inputs and form

Related to the choice of utility discounting, there is a problematic degree of freedom of the modeller in

choosing the functional form of the model as well as in calibrating the model and choosing model inputs

[3]. It is equally decisive what a model is build to include, and what it is built to leave out.

Take, for example, the choice between endogenous and exogenous technical change. By design, a

model with exogenous hence predictable, inexorable technological change will suggest to limit early

abatement action, as future emissions reductions will come at lower cost. In contrast, one that models

technical progress as a function of investment level or demonstration effects may suggest drastic early

policy action [1]. In addition, the rate of productivity growth strongly impacts any resulting optimal

carbon tax path over time. Other modelling choices strongly affecting results are the option to include

possible negative emissions in the future, speed of depreciation of capital, curvature of the utility function

or the choice of (assumed future) elasticity of substitution between different energy sources. This list can

be continued (see Barrage 2013 for an extensive sensitivity analysis of an exemplary IAM [8]).

As in any economic model, the modeller has to first select the model structure and simplifying

assumptions he makes, before calibrating the model by selecting parameter inputs. It is needless to

say that both stages are decisive for model outputs. IAMs have the characteristic of very long time

horizons as well as notably strong uncertainty around key parameters, increasing the decisive effects of

modellers choices. Calel and Stainforth 2017 provide a detailed comparison of physical assumptions of

three influential IAMs by running each model with parameter values that reflect the physical assumptions

implicit in the other models [11]. This approach disentangles effects of parameters and structure and

demonstrates the importance for IAMs to include baseline assessments with standardized physical

parameter values to facilitate broad comparison of results.

3.4.3 Uncertainty

While the debate about social discounting, choice of assumptions and parameter choice is common to

economic growth models, IAMs are particular in that they all include two key and uncertain, exogenous

elements: climate sensitivity , translating increases in CO2e concentration to temperature effects, and the

damage function, translating temperature change to welfare losses (or gains). As discussed in section 2,

there is deep uncertainty about the relevant physical mechanisms driving both effects.
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The most discussed metric in this context is equilibrium climate sensitivity (ECS), defined as global

mean temperature increase in new equilibrium of the climate system resulting from an anthropomorphic

doubling of atmospheric CO2e concentration (see IPCC for a detailed definition [24]). Physical science

literature has a strong focus on equilibrium climate sensitivity that is reflected in the design of relevant

IAMs. In their latest assessment report 2014 (AR5) the IPCC has narrowed the ECS down to likely

lie between 1.5°C -4.5°C( with a probability of >66 percent) [25]. However, this does not rule out the

possibility that climate sensitivity lies dramatically higher. Complex feedback effects and tipping points

causing extreme feedback have been identified to exist, but little is known about their magnitude and

warming levels that will trigger major disruptions. Fat tailed probabilities cause ”expectations” to be of

limited informational value [3, 51]. In fact, there is little certainty regarding the upper bound of climate

sensitivity. Pindyck argues that the IPCC might understate our uncertainty over climate sensitivity in

their assessment [46], and other scholars even claim that climate sensitivity cannot be assessed at all [5].

The social cost of carbon (SCC) does not just depend on the equilibrium temperature response,

but also on the rate of temperature change, especially in the case of high climate sensitivities. The

corresponding standardized concept is called Transient Climate Response (TCR) and considers the global

average temperature change that would occur at the time of doubling if CO2 levels increase by exactly 1

percent (compounded) per year until they double. This concept is related to the ECS, but by always

lower - the AR5 compares a wide range of studies and assesses the TCR as likely to be 1°C to 2.5°C [25].

Marten 2011, among others, demonstrated that due to oversimplification of the TCR, SCC estimates of

DICE, PAGE and FUND do not match SCC estimates derived using more realistic upwelling diffusion

energy balance models [35].

An equally - if not more - discussed concept under high uncertainty in integrated assessment modelling

is the damage function, discussed in the following section.

Uncertainty challenges both parts of the climate policy model, the physical systems and the (socio-

)economic systems. This section and table 1 in section 2.1 have summarized uncertainties in physical

systems. IAMs furthermore share uncertainties of economic growth models, first and foremost (but not

exclusively) regarding technological change.

A common approach to handling uncertainty is to assign probability distributions to uncertain

parameters and to then conduct Monte Carlo simulations. This is more problematic, the more unknown

the correct probability distributions are, and naturally results for expected outcomes vary largely for

different distributions applied (see Pindyck 2013 [46] for a demonstration of this effect).

3.4.4 The damage function: Uncertainty, fat tails, non-monetary values

and aggregation effects

The damage function is translating temperature changes into economic cost over time. The design of the

damage function is difficult for at least three reasons (based on [3, 1]):

1. Predicting the very unknown: The scale of temperature increases that IAMs are assessing is

outside of historical human experience. The climate system is furthermore a nonlinear system too

complex to be described by any model, making predictions on significant temperature changes

necessarily indeterminate. Scholars have agreed to apply best guesses. Consensus is stronger for

smaller temperature increases and for sector specific, short-term effects where literature is large and
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growing, but such insights do not facilitate calibration of overarching, long-term damage functions

as used within IAMs [46].

2. Pricing of non-monetary values: Evaluating the cost of future damage from changing climate - or

evaluating the benefits of mitigation measures today - requires us to assign monetary value to all

spheres that we expect to be impacted, such as ecosystems, human health, civil conflicts or quality

of life. This dilemma affects all cost-benefit analysis, and it is especially not new to policy analysis.

A multitude of approaches from different disciplines exist to come up with surrogate prices, but

there is no ”right answer” to the problem.

3. Aggregating inhomogenously distributed benefits and costs: Both costs and benefits of global

climate change are distributed unevenly geographically and across time. FUND, among other

IAMs, assumes that aggregated effects of global climate change of less than 3°C in 2100 are

significantly positive (see Figure 2 above), and IAMs agree that a large share of damage from

climate change will occur in the distant future. Furthermore, climate change will most drastically

and most immediately affect a small percentage of global population. While some IAMs provide

sector specific or regional damage functions, they all are eventually informing a single estimate for

the social cost of carbon today and do not take into account equity between population groups or

intergenerational fairness.

4. Including ”tail risks”6 of unknown probability and scale: Catastrophic climate outcomes are

expected to occur after tipping points in temperature increases of unknown level are reached.

Such catastrophic climate outcomes would severely impact GDP, yet the temperature threshold of

tipping points and the scale of resulting damage are unknown [31].

In addition to these limiting factors, the design of the damage function and its interaction with the

larger model is a source of debate and differences in model outcomes. Various literature has expanded on

integrating unknown feedback effects and stochastic damage shocks into the model ([31]). The damage

function is furthermore commonly set to affect either GDP levels or GDP growth rates or both (Pindyck

2011 [47] provides an analysis of policy implications of this functional decision).

One can state that it is easier to quantify the costs of mitigation occurring today, than to quantify

the future cost of not taking mitigation action today. As a consequence, it is commonly assumed that

estimates of the social cost of carbon are skewed in this regard and provide a lower bound rather than an

upper bound.

3.4.5 Appropriate use of IAMs and model transparency

Given these modelling challenges, any IAM that explicitly estimates the SCC comes with significant

limitations around the aspects listed. A key point of critique towards ”traditional” IAMs is a common

lack of clarity about these limits, which in consequence leads to misinterpretation or misuse of the

model and its results. Any presentation of results that does not clearly highlight the model’s sensitivity

towards modeler’s choices and uncertainty would be strongly misleading, and in this sense a misuse of the

model. Therefore, communication around both the modelling process and results is a key factor ensuring

appropriate use, and should be given appropriate prioritisation by modellers [38].

6‘Fat tails’ in the extremes of probability distributions arise when probability of extreme events is
higher than they would be in a normal distribution.
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Early models linking findings of climate science with social welfare considerations nearly three decades

ago were built at a time when developing an understanding of the key interconnections between parameters

in policy choice was key to inform first policy efforts, and the argument that IAMs are valuable models to

help explain the need for policy action is brought forward until today. However, policy optimisation IAMs

today largely claim that their application is not limited to explanation, and that their quantitative results

can inform policy decisions [40, 43, 58, 23]. Pindyck 2017 [48], among others, argues that a model that is

well suited to explain interconnections in a coherent way, is not necessarily well suited for forecasting or

quantitative analysis.

3.5. A new wave of models - recent models

The previous section provided an overview of frequently discussed limitations of IAMs. Recent models aim

to present improvements in one or more of the above aspects. Three classes of recent models are discussed

here, following Farmer et al and Rezai et al ( [3, 52]: dynamic stochastic general equilibrium (DSGE)

models, agent-based models (ABM), and models that turn to increased parsimony. The challenges that

IAMs face are partly challenges that other economic modelling disciplines face similarly, so it is not

surprising that novel modelling approaches developed in finance or monetary policy are being adopted in

climate policy economics.

DSGE models for climate change differ from traditional IAMs in that they explicitly introduce

uncertainty by adding stochastic shocks to outcomes such as output or climate damages. Frequently,

these models build on existing general equilibrium based IAMs and introduce stochastic elements and

Bayesian inference. In the most traditional application, a forward looking representative agent maximises

expected utility over a future that includes stochastic shocks.The fact than DSGE models can draw from

previous work enabled fast progress of models of this type. At the same time, the DSGE approach to

modelling, as the name suggests, shares restrictive assumptions with conventional general equilibrium

models, so important critique around homogeneous agents, market clearing and the concept of equilibrium,

among others, continue to apply. DSGE models have been built with regional or sector level detail,and

technological change can be modelled endogenously. Furthermore, the design of the utility function allows

to also model more complex agent behaviour, such as loss aversion or recursive preferences [18, 10].

Agent-based models allow for a large number of heterogeneous agents and thereby produce a more

differentiated characterisation of complex socio-economic systems. ABMs with growing complexity are

seeing increased application across many fields of economic and financial research as computing power

and numerical algorithms are developing, a necessary prerequisite for solving extensive ABMs. ABMs

applied to climate change economics can produce agent specific market outcomes for a large number of

agent groups with different characteristics, reflecting distributional effects of climate change and policy

measures, as well as incorporating behavioural aspects including bounded rationality. Similar to DSGE

models, ABMs can introduce uncertainty in the form of stochastic events to agents forward-looking utility

functions. Crucially, ABMs model the behaviour of multiple heterogeneous agents in a way that does not

necessarily lead to equilibrium conditions or a unique equilibrium, leaving the modeller more flexibility

to include empirical detail into the model.7 ABMs enable the user to analyze dynamics that lead to a

given equilibrium, investigate how model parameters can effect changes to these and what likelihood a

given outcome has. The detail in ABMs comes at the cost of high computational complexity. As a result,

7Frequently, DSGE models introduce assumptions specifically so that the model can be solved in
closed form with the instruments currently available. See, for example GKHT 2012 (introducing limited
oil reserves of a known size)[40] and Traeger 2015 (damage function follows modelling needs)[12]
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on the one hand model outcomes loose the traceability and intuition that simpler IAMs provide to a

non-technical audience. On the other hand, ABMs become more susceptible to flawed computation as

model complexity increases exponentially.

A third trend in recent modelling approaches is a return to parsimonious models. This could be, as

described by (Farmer et al. [3]) a set of ”little models”, that aim to explain separate insights in partial

equilibrium analysis and thereby inform experts to take policy decisions. Rezai and Van der Ploeg 2016

[52] estimate the welfare loss that may arise from implementing a policy patch derived from a ”simple

rule” for the optimal carbon tax rather than the first-best model, which the authors define as Nordhaus’

DICE. Even for extreme scenarios, Rezai and Van der Ploeg argue that these welfare losses are negligible.

Pindyck takes an even more drastic point of view and argues that expert opinions should be higher valued,

to avoid false reliance on model outputs and instead go back to the ”plausible”, expert estimates [46].

Pizer et al. [50] similarly suggest that formal external expert review should be considered for estimating

the SCC, but this should be incorporated in a model-based process for finding the SCC, together with

a clear plan for regular updates to the estimation strategy. Other calls for simpler models include, for

example, Bijgard et al 2016 [9] and Ackerman et al 2009. [1].

In addition to these developments, there are also voices that call for closer linkages between IAMs and

and complex biophysical climate models such as MAGICC-6, HadSCCCM1 or Bern2.5CC for improved

characterisation of climate forcing and the carbon cycle [59]. IAMs can also integrate full earth system

model (ESM) simulations to improve detail, but uncertainties of course remain.

3.6. Contributions of IAMs

The scientific debate on IAMs also highlights their contributions. Carbon pricing measures, may they be

implemented through a carbon tax or an ETS, require the quantification of the social marginal cost of

greenhouse gas emissions. Policy makers therefore ask for models that deliver a clear numerical value for

the SCC and according confidence intervals. Clearly, the ”true” value of the SCC is not zero, and there

are benefits from producing better and better estimates for the SCC based on scientific methods available.

IAMs - in a wide definition - are producing these estimates based on the best scientific inputs available.

Metcalf and Stock argue that given fundamental uncertainties around key inputs, the SCC should

not be understood as one number (or range) that can be calculated, but rather as a process towards

constantly improving preliminary estimates of this value [38]. The fundamental uncertainties around

parameters in IAMs are unlikely to change in the near future. IAMs therefore are needed to continue to

improve and to adjust to new information as it becomes available. Metcalf and Stock furthermore argue

that therefore the public debate on optimal climate policy needs to be at a higher level of sophistication

than other debates.

IAMs have been central to the development of official SCC ranges by the IPCC, most prominently

FUND. The Assessment Reports of the IPCC in turn inform policy decisions globally. Some governments

explicitly apply IAMs themselves, for example the Interagency Working Group in the United States, which

used FUND, PAGE and DICE models and 3 different discount rates to arrive at it’s official estimates.

It is important to highlight that the contribution of IAMs to climate change policy optimisation is of

course not limited to estimating a static SSC. IAMs are used to investigate full pathways of cost-effective

emission reduction, contrast and optimise instrument choice and to evaluate the economic impacts of

selected policy instruments over time [59].
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In summary, IAMs are not created to generate new insights on climate science, but their aim is to

explain and project interactions between the economic system and our climate system. They are built

to represent mean outcomes of comprehensive climate models, while exploring economic implications of

these analyses. IAMs are strongly limited by large uncertainty around key inputs, as well as - related to

this - their dependency on modellers choice of form and inputs. Recent developments introduce existing

frameworks of ABMs and DSGE models to the setting, delivering improvements on the aspects agent

heterogeneity, detail of results and treatment of uncertainty at the cost of increased model complexity

and reduced transparency.

3.7. Models for optimal carbon tax with explicit emission tar-

gets

Cap and trade schemes by definition set the quantity of emissions that may occur on the regulated market

in a given period, while a carbon tax sets the price. There is a trade off between control over either

outcome, and hybrid forms exist that aim to minimise this loss of control[29]. Hybrid instruments add

one or more element of a price instrument to a quantity instrument or vice versa. Cap and trade schemes

with price floors and/or ceilings are the most commonly implemented example of hybrid policy.

The equivalent hybrid form of a carbon tax is a carbon tax with ex-post adjustments to attain a

predefined target. Under the assumption that greater emissions certainty under a carbon tax increases

it’s attractiveness to policy makers, Hafstead, Metcalf and Williams 2017 [21] design a mechanism they

call Tax Adjustment Mechanism for Policy Pre-Commitment (”TAMPP”). The aim is to ensure that

emission reduction targets are met, at the cost of (potentially) frequent tax adjustments. The authors do

not evaluate the economic efficiency of such an approach, but explain how the mechanism could achieve

its aim. In it’s simplest form, the mechanism consists of a time profile of tax rates, a final emissions

target and intermediate benchmarks. When emissions deviate sufficiently from the benchmark at a given

benchmark point in time, the tax rate is adjusted according to a pre-defined adjustment rule. The Swiss

Carbon Tax Law, among others, includes a variation of a ”TAMPP” mechanism, and comparable elements

are frequently found in recent policy proposals [21]. However, to my knowledge research on TAMPPs

has been limited to the authors named above, and no evaluations of economic efficiency or numerical

simulations of such approaches have been conducted to date.

A simpler but related challenge to the design of a ”TAMPP” mechanism is modelling emissions as a

function of the carbon tax rate introduced. Inherently, such a link can then be used to express carbon

tax as a function of a set emissions target. While most climate-economy models endogenously define

the occurrence of emissions in an economy in order to conduct cost benefit analysis of mitigation and

are therefore suited for this analysis, establishing a link between a set emissions level and the resulting

required tax rate does not seem to be in focus of the scholarly debate.
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4. Theoretical framework and hypothesis

4.1. Integrated Assessment Models in a political context

G. Metcalf and J. Stock 2015 argue that, from a policy setters perspective, IAMs for policy optimisation

should strive for scientific credibility, public acceptance and political and legal viability [38]. No approach

exists to date that fulfills all of these criteria, but improvements on one or more aspects are possible.

In this sense, there are different ways to evaluate Integrated Assessment Models for climate policy

optimisation. We can evaluate their accuracy in describing and quantifying linkages between policy choice

and future development of the climate system and the economy. Sections 3.4 and 3.5 above provided an

overview of key arguments in this debate. Another angle lies in evaluating IAMs by identifying their

success in informing the broader public debate as well as national and supranational policy decisions.

While IAMs have become mainstream in policy evaluation and policy optimization around the world,

global levels of carbon prices are significantly below the lower end of the range of suggested social cost of

carbon, also for countries with relatively ambitious mitigation targets outlined in the country NDC [7](see

table 5 of the Appendix for a list of pricing schemes and respective NDC targets). From this angle, there

is an argument that IAMs should aim to further improve accessibility to policy makers and a non-expert

audience.

A policy maker that decides to introduce a carbon tax to the economy has several methods to choose

from for assigning a value to carbon, of which setting the price for carbon equal to an estimate for

the social cost of carbon, is only one. Other options are setting a price based on observations from a

functional emissions trading scheme, or calculating it based on the marginal abatement costs given a

certain (optimal) target level of emissions [13]. All three options require direct or indirect inputs on the

social cost of carbon. Under complete information (including an ETS with an optimal level of emissions

allowance) and perfect competition, the three methods arrive at the same price for carbon.8

In absence of these conditions, however, the three approaches suggest different results. Since

uncertainty conflicts precise calculation of social cost of carbon, this value remains an estimate. The total

emissions allowance within an ETS is informed the same modelling approaches, requiring inputs in both

marginal abatement costs curves and the SCC. Existing ETS are furthermore designed around political

considerations and operational constraints and cover only certain sectors and regions, resulting in region

and sector specific carbon prices at best. In addition, the assumption of perfect competition does not

necessarily hold within the ETS or the economy, adding further discrepancy between results.

The third option for setting a carbon tax is calculating it based on the marginal abatement costs

given a specific (optimal) target level of emissions. For this approach to result in optimal emissions

levels, the target must be set similar to the emission cap in an optimal cap and trade scheme. Again,

climate-economic modelling is required to identify the optimal target level of emissions, and assumptions

on marginal abatement costs are necessary to translate the target to a tax rate.9

8This is the case as in optimum, MAC=SCC. A fully comprehensive ETS covering all emissions and
capped at the optimal emissions level would be in equilibrium at p=MAC, corresponding to each agent
being indifferent between abating more or buying one more unit of allowance.

9Abatement cost are commonly defined as the additional operating cost less potential cost savings (for
example, from reduced energy consumption) resulting from reducing emissions from a certain source by
one unit. Abatement cost can be presented in a cost curve where the x axis represents quantity and the y
axis cost of abatement, and abatement potential by activity is presented ordered by cost from very low
(negative cost) to very high (see McKinsey 2007 [16]).
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4.2. Hypothesis and approach

A multitude of constraints on climate policy design result in global levels of carbon pricing that are far

below what is suggested as optimal by most models. While traditional approaches to optimal policy

choice are designed to deliver Pareto optimal results based on present-valued assessment of abatement

cost and benefits, real-world constraints can limit policy choice long before the Pareto optimal level

[28]. Consistent with the theory of second best [32], alternative policy design approaches can bring

improvements to the current, constrained status quo.

Given significant uncertainties around the social cost of carbon, and international climate negotiations

that focus on emissions as key outcome on national level, I argue that formulating a carbon tax rule for

emissions targets results in a tool for policy advice that takes into account the political reality of policy

makers. While parameters determining the social cost of carbon are uncertain, emission targets have

been set by countries based on individual decision criteria and can as such be taken to inform ”optimal”

policy choice given the constraints of predefined ambition. Under the assumption that uncertainty in

current IAMs is a key factor limiting policy uptake, this approach can deliver an insightful instrument for

policy makers and a simplified modelling framework that is well suited to explain economic linkages to a

wider audience.

To demonstrate this approach and the resulting changes in factors determining optimal carbon tax

levels, a case study is introduced. Following the specifications of the DSGE model for optimal carbon taxes

for fossil fuels of Golosov et al. 2012 [40], I demonstrate how introducing emission targets to a reduced

general equilibrium setting can replace the damage function and result in a simplified but clear model

for carbon taxes to reach pre-specified emission targets. With this approach, a given target emissions

pathway can be directly translated into a corresponding tax pathway over time, requiring only input

of common parameters for characterising the economy such as elasticity of substitution of production

parameters and fuel intensity of sectors. This is not an improvement to the optimisation model but an

alternative application, and results have to be interpreted in a distinct way. GHKT explicitly aim at

deriving the optimal tax on fossil fuel. The model presented here does not identify the optimal tax level

but identifies the tax required to reach any - optimal or not optimal - selected emissions level. The aim

of introducing an emissions target is to build a model that can explain a different set of linkages and

that is more applicable to the optimisation problem of a national policy maker as discussed in section 2.

With reduced uncertainty, a level or range for the level of required tax can be determined that will be

necessary to reach a selected target.

This model discusses solely optimal tax on emissions from the energy sector, but findings of this case

study should be understood as exemplary for multi-sectoral models alike.
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5. Method: A reduced DSGE model

5.1. Golosov et al 2014

With the aim of deriving a simple formula for the marginal externality damage of CO2 emissions from

the energy sector, Golosov, Hassler, Krusell and Tsyvinski (hereafter GHKT) develop their 2014 dynamic

stochastic general-equilibrium model for an economy that utilises fossil energy for production [40]. From

a global perspective, the size of the externality of fossil energy corresponds to the optimal tax level on

fossil fuels in their simplified setting.

Based on four important assumptions, a tax formula is derived that defines the optimal tax level over

time, independent of future technology, productivity or the future energy mix. Key assumptions are

1. utility is logarithmic in consumption

2. damages from emissions are proportional to output and can be defined as a function of total

atmospheric carbon concentration

3. carbon levels can be expressed as a constant function of past and current emissions

4. consumers savings rate is constant.

The model is stochastic, in that it is possible to introduce a stochastic damage function and state

dependent Arrow-Debreu prices. The former is applied to reflect the characteristics of potential damage

from climate change, including fat tails and tipping points. The latter is a standard formal specification

that representative agents can make state (and price) dependent decisions. These model characteristics

define how GHKT treat uncertainty in their model.

Rationale for all assumptions is provided in GHKT 2014 and further discussed by Barrage 2014 [8] .

In addition to these assumptions, the GHKT model requires the standard IAM parameter decisions on

discounting, the scale of damage from climate impacts as well as the lifespan of CO2 in the atmosphere.

For computational simplification, the authors furthermore introduce finite global oil reserves that will be

used up within the next hundred years.

GHKT conclude that the time-path of oil extraction has only marginal importance for climate

outcomes, while management of coal resources is key, due to the large availability of the latter. Second,

they find that assumptions on technology, in particular on substitutability of energy forms, are key

determinants of the cost of policy inaction, defined as the difference in total outputs over time between

a taxed economy and a laissez-faire economy. Third, and most prominently, GHKT find that in their

setting the optimal carbon tax, if implemented as a per-unit tax on units of emissions, can be expressed

as a fraction of GDP over time.

Their general model is a multi-sector neoclassical growth model that includes a representative

household consuming a final good, produced by a final-goods sector. Energy is the only intermediate

good, produced by a number of intermediate-goods sectors, energy firms. Energy firms can be producing

renewable energy or fossil fuel powered energy; energy units from these firms have distinct emission

intensities and are not perfect substitutes. Output of the final-goods sector is a function of the inputs

capital, labor and energy, but is also negatively affected by the amount of carbon in the atmosphere, which

is assumed to be a sufficient proxy for temperature change in the economy. Carbon partly depreciates

from the atmosphere each year and the current stock of carbon in the atmosphere is the only determinant

for damage to output in year t. In equilibrium, the production factors capital, labor, and energy are
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allocated fully across sectors.

In the most general specification, assuming assumptions 1-3 hold, the marginal externality damage in

GHKT’s 2014 model, Λst , is

Λst = Et
∞
∑
j=0

βjCt
Yt+j
Ct+j

γt+j (1 − dj) (2)

where β ∈ (0, 1) is the discount factor, Ct is consumption, Yt is output, γt the time dependent damage

parameter, and 1 − dj the share of carbon that will not have depreciated after j periods. Assuming a

constant savings rate s (Assumption 4) and taking into account that Ct = sYt this simplifies to

Λst = Yt
⎡⎢⎢⎢⎣
Et

∞
∑
j=0

βjγt+j (1 − dj)
⎤⎥⎥⎥⎦

(3)

Equation 3 is an interesting consequence of previous assumptions, as it states that the marginal externality

cost of emissions as a share of GDP can be expressed as a function of the discount factor, the damage

parameter (may be state and time contingent) and the carbon cycle. Equation 3 thereby suggests that

future productivity or output does not affect marginal costs of emissions today. While future damages

are defined as a share of output, the logarithmic utility function causes perfect offsets between higher

(lower) damages from higher (lower) levels of output and lower (higher) marginal utility of output due to

decreasing marginal utility of consumption. Following Pigou, the expression for the marginal externality

cost of emissions also represents the optimal tax on carbon emissions, which incentivises the consumer to

internalize the externality.10

The authors first compare their result for the optimal tax rate with findings of comparable models,

for example Nordhaus and Boyer 2000 [44] or Stern 2007 [56], and find that they arrive at comparable

estimates to Nordhaus and Boyer after making similar parameter choices than they did, while this is not

the case for Stern 2007. The authors then use their optimal tax rate result to evaluate current policies in

different jurisdictions, where they find that the EU ETS emission price in 2010-2012 corresponds relatively

well with their result, assuming ”standard” discount rates. Furthermore, it is possible to compute paths

for key variables output, energy consumption by source and climate damage for a business-as-usual

scenario and compare it to outcomes of an economy with optimal taxes on emissions. If the full model is

laid out in this way, it is possible to translate the optimal carbon tax into optimal quantity restrictions

over time, as would be applied in an emissions trading scheme.

In contrast to calculating the marginal damage from emissions, calculating the future path of the

economy under both settings requires detail on characteristics of all endogenous variables in the model, for

example extraction costs, substitutability of energy sources and technological change, and all exogenous

parameters matter. In this context, the authors argue that it is an important advantage of their optimal-

tax formula that it can be computed without these detailed assumptions, and that this advantage is

furthermore an argument for using taxes over using quantity restrictions in climate policy. Table 2 gives

an overview of all assumptions required to calculate the optimal tax rate in GHKT 2014 on the one hand,

and the optimal level of emissions, again following GHKT, on the other hand.

10GHKT acknowledge that this does only hold in the absence of distortionary taxation and other market
limitations. The topic of optimal carbon taxes with prior distortions has been analysed by Goulder 1995
[19], among others.

24



Table 2: Parameters required for calculating optimal policy choice for price and quantity
mechanisms, based on the example of GHKT 2014

Policy type Required parameters Model outputs

Optimal carbon

tax

Discount factor

Damage parameter

Carbon cycle

Optimal tax on fossil fuel emissions

as a share of GDP for all t E (0, inf)

Optimal quan-

tity regulation

(ETS)

Discount factor

Damage parameter

Carbon cycle

Initial stocks of fossil resources

Productivity of all sectors

Availability of labor

Relative productivity of energy sources

Degree of substitutability of energy forms

(not exhaustive)

Optimal emission pathway over time

and corresponding predicted out-

put, temperature, energy use and

resource depletion

Source: Author, based on GHKT 2014

5.2. New assumptions and rationale for introducing an emis-

sion target

The multi-sector neo-classical growth model setting by GHKT can be used to demonstrate how the

introduction of an emissions target in the place of the damage function changes parameter sensibility and

moves the source of uncertainty from the damage function to characteristics of the economy. Taking a

highly stylised approach, the following model abstracts from important economic characteristics of the

economy. However, a high level of abstraction also facilitates understanding of model behaviour and

increases the focus on key aspects analysed.

Figure 3 provides a schematic overview of the framework under GHKT less the carbon cycle and

corresponding climate feedback to the economy. A fixed emissions target (highlighted in black) is added

to this framework. The carbon tax rate is set so that the economy in equilibrium produces emissions as

set in the target.

This modelling approach requires a number of changes to the GHKT setting. First, it is necessary

to solve for the decentralised solution of the deterministic time infinite horizon problem of a economy

in general equilibrium with taxes on fossil energy rather then solving the social planners problem, as

the First and Second Welfare theorems no longer hold in the presence of a distorting tax. Second, an

emissions target is introduced so that the tax can be calibrated against it.

Furthermore, a number of simplifications are introduced that do not reduce the explanatory power of

the results in the context of this study: Energy producing sectors do not require capital or energy for

production. Therefore, labor is the only shared factor between the output firm and all energy producers.

Secondly, the economy is reduced to only include 2 energy sectors, of which one produces fossil energy,

subject to a unit tax on the energy output, and one produces renewable energy, not subject to the

tax. The fossil energy sector is not resource constrained. The argument for this adjustment is that, as

demonstrated by GHKT and others, oil is not a key determinant of the long-run emission intensity of an
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Figure 3: Schematic of the theoretical framework introduced by GHKT and introduction
of an emissions target informing the tax rate (black)

Source: Author’s depiction
(*)Simplified depiction. 3 distinct energy production sectors (emission intensive energy producers,

emission intensive energy producers and clean energy producers) produce 3 energy types that are not
perfect substitutes.

economy as it is being depleted in the short run. For the case of this argument it is therefore sufficient to

introduce only one exemplary fossil energy sector with available resource that is sufficiently large to not

be fully exhausted in the long run. For simplification, stochastic elements of the GHKT model are not

included here.

5.3. Characterisation

The following section details an adjusted specification of the theoretical framework presented by GHKT.

For details on the GHKT general model see GHKT 2014 [40].

The representative consumer has preferences for consumption Ct and maximises

max
{Ct}∞t=0

∞
∑
t=0
βtln (Ct)

subject to
∞
∑
t=0
Ct +Kt+1 =

∞
∑
t=0

(1 + rt − δ)Kt +wtNt + Tt +Π

where Kt denotes the aggregate capital stock in the economy, rt is the interest due on capital, δ denotes

annual depreciation and wt the wage paid for labour Nt. In addition to capital and wage income, the

representative household receives a lump-sum tax rebate of Tt and accumulated profits from all sectors Π.

There are two boundary conditions on the resource constraint, K0 = k0 and the transversality condition.
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The final output firm maximises

Π0 ≡ max
{Kt,N0,t,Et}∞t=0

∞
∑
t=0
βtF (Kt,N0,t,Et) − rtKt −w0,tN0,t −

2

∑
i=1
pi,tEi,t)

= max
{Kt,N0,t,Et}∞t=0

∞
∑
t=0
βt(A0,tK

α
t N

1−α−ν
0,t Eνt − rtK0,t −w0,tN0,t −

2

∑
i=1
pi,tEi,t)

subject to non-negativity constraints. Ai,t is an exogenous, sector and time specific technology parameter,

Et denotes energy consumed by the final output firm. The two energy types have distinct prices pi,t. The

final output firm operates under perfect competition, output is priced at unity. Et is an energy composite

of fossil and clean energy:

Et = (κ1Eρ1,t + κ2E
ρ
2,t)

1/ρ

and ∑2
i=1 κi = 1. ρ < 1 is the parameter for elasticity of substitution between energy sources, κi measures

relative efficiency.

A representative fossil energy firm maximises

Π1 ≡ max
{N1,t}∞t=0

∞
∑
t=0
βt((p1,t − τt)E1,t −w1,tN1,t)

The fossil energy firm is not resource constrained and produces with labour as its only input.

E1,t = A1,tN1,t

A representative renewable energy firm maximises

Π2 ≡ max
{N2,t}∞t=0

∞
∑
t=0
βt(p2,tEi,t −w2,tN2,t)

The renewable energy firm is not resource constrained and produces with labour as its only input.

E2,t = A2,tN2,t

E1,t, fossil energy, is expressed in units of carbon content, the introduced tax τt is a per unit tax on

carbon units. E2,t, renewable energy has a carbon content of 0 and is normalised so that it’s relative

productivity to the fossil energy unit is unity (κ1 = κ2). Labour is constrained and normalised. There is

no total labour growth, but labour growth could be introduced.

N0,t +N1,t +N2,t = N = 1

Aggregate profits are defined as

Π =
2

∑
i=0

Πi

but in perfect competition only ownership of the scarce resource brings profits. There is a government

transfer of

Tt = τ1,tE1,t

There is a set target for emissions E1,t by time period, denoted by

Zt = zt

27



5.4. Solving the model

5.4.1 Markets clear

Each production input is valued at its marginal productivity.

w0,t = F ′
N0,t

(Kt,N0,t,Et)

rt = F ′
Kt(Kt,N0,t,Et)

p1,t = F ′
E1,t

(Kt,N0,t,Et)

p2,t = F ′
E2,t

(Kt,N0,t,Et)

It follows that wage w0,t can be expressed as

w0,t =
(1 − α − ν)F (Kt,N0,t,Et)

N0,t
(4)

interest rt paid on capital as

rt =
αF (Kt,N0,t,Et)

Kt
(5)

and the respective energy inputs are priced at their marginal productivity,

p1,t =
κ1νE

ρ−1
1,t F (Kt,N0,t,Et)

Et
(6)

p2,t =
κ2νE

ρ−1
2,t F (Kt,N0,t,Et)

Et
(7)

Total energy produced is equal to total energy consumed in any period.

E1,t = A1,tN1,t (8)

E2,t = A2,tN2,t (9)

Furthermore, in equilibrium, marginal productivity of labour is equal across all 3 sectors under

optimal labour allocation.

w0,t = w2,t = w3,t (10)

5.4.2 First-order conditions of representative agents

The Lagrangian for the optimisation problem of the consumer becomes

L =
∞
∑
t=0
βt[ln(Ct) + λt[(1 + rt − δ)Kt +wtNt + Tt +Π −Ct −Kt+1]]
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. Combining the first-order conditions with respect to Ct and Kt+1 generates the Euler equation.

1

Ct
= 1

Ct+1
βα

F (Kt+1,N0,t+1,Et+1)
Kt+1

Assuming a constant savings rate following GHKT, the Euler equation is solved by

Kt+1 = αβF (Kt,N0,t,Et) (11)

Replacing Et with the definition of the energy composite and setting κ1 = κ2 = 0.5 = κ, the optimisation

problem of the final good producer becomes

max
{Kt,N0,t,Et}∞t=0

∞
∑
t=0
βt[A0,tK

α
t N

1−α−ν
0,t ((κEρ1,t + κE

ρ
2,t)

1/ρ)ν − rtK0,t −w0,tN0,t − p1,tE1,t − p2,tE2,t]

Deriving the FOCs with respect to E1,t, E1,t:

p1,t = νA0,tK
α
t N

1−α−ν
0,t κEρ−11,t (κEρ1,t + κE

ρ
2,t)

ν
ρ−1 (12)

p2,t = νA0,tK
α
t N

1−α−ν
0,t κEρ−12,t (κEρ1,t + κE

ρ
2,t)

ν
ρ−1 (13)

Similarly, the FOCs of the energy sectors with respect to N1,t and N2,t, respectively:

w1,t = (p1,t − τt)A1,t (14)

w2,t = p2,tA2,t (15)

Equilibrium in this economy is described by the optimal allocation of labour between the three sectors

and corresponding production levels of energy and output.

5.4.3 Solution

The aim is to express emissions in year t, E1,t, as a function of the carbon tax in order to then be able to

express the carbon tax as a function of a set emissions target, E1,t = Zt, and all necessary characteristics

of the economy.

E1,t = G(τt,A1,t,A2,t,A0,t,Kt, ρ, ν, α) (16)

τt∗ = G(Zt,A1,t,A2,t,A0,t,Kt, ρ, ν, α) (17)

From equations 12, 13 it follows that

E2,t = E1,t (
p2,t

p1,t
)

1
ρ−1

(18)

Filling in for E2,t, p1,t and p2,t from equations 18, 14 and 15 in equation 12 then results in

Eρ−11,t (κEρ1,t + κ(E1,t(
A1,twt

A2,twt +A1,tA2,tτ
)

1
ρ−1 )ρ)

ν
ρ−1

=
wt
A1,t

+ τ
νA0,tKα

t N
1−α−ν
0,t κ

(19)
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where wt is the equilibrium wage across all sectors:

wt =
(1 − α − ν)A0,tK

α
t N

1−α−ν
0,t ((κEρ1,t + κE

ρ
2,t)1/ρ)ν

N0,t

E1,t = A1,tN1,t (20)

E2,t = A2,tN2,t (21)

N0,t +N1,t +N2,t = N = 1 (22)

Together with equations 20-22, we have established an equation system in 5 equations and 5 unknowns

(E1,t,E2,t,N0,t,N1,t,N2,t) that can be solved computationally. Kt follows an earlier defined path (equation

11) based on the assumption of a constant savings rate.

Intuitively, the carbon tax τt appears as an increasing factor for the market price of the fossil energy

input, and also as a decreasing factor for the relative size of fossil energy in the economy.

5.5. Calibration

This model can be calibrated as follows. α, ν, and δ are standard parameters in economic modelling

and can be calibrated based on usual considerations. In this taxed economy setting β, the discount

rate, is only required for finding the savings rate of the consumer. The savings rate could itself be

treated as a parameter, in order to avoid calibrating for a discount rate. For the elasticity of substitution

between fossil and renewable energy, ρ, various metastudies are available. Given a long-run elasticity σ, ρ

can be obtained as σ = 1/(1 + ρ). K0 is calibrated to a selected net rate of return (capital returns less

depreciation) and furthermore depends on annual GDP, so that K0 = α(GDP )
r+δ .

Finally, the normalisation of energy units needs to be considered when calibrating for productivity

parameters. Starting with average extraction cost of one MWh-equivalent of coal or a representative

fossil energy composite, A1,0 can be derived since p1 = w
A1

in the absence of a tax. Similarly, A2,0 is then

derived based on the average cost of generating one MWh renewable energy. Productivity growth in all

sectors is exogenously defined and can be calibrated in line with standard choices for productivity growth,

or aligned to a model of comparison.
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6. Results

6.1. Main Results

From equation 19 it is possible to conclude that given the model specifications, the formula for a carbon

tax given an emission target has the following form.11

τt∗ = G(Zt,A1,t,A2,t,A0,t,Kt, ρ, ν, α) (23)

In addition to the parameters listed above, the theoretical calibration exercise in Section 5.5 showed

indirectly required parameters such as cost of energy generation. Table 3 presents a comparison of

required parameters for calculating an optimal carbon tax following GHKT, as well as the set of required

parameters under a target-to-tax scheme as demonstrated here.

Table 3: Parameters required for calculating optimal policy choice for price and quantity
mechanisms, based on the example of GHKT 2014

Policy type Required parameters Model outputs

Optimal carbon

tax

Discount factor

Damage parameter

Carbon cycle

Optimal tax on fossil fuel emis-

sions as a share of GDP for all

t E (0, inf)

Carbon tax

given a (dy-

namic) emission

target

Emission target (annual)

Relative productivity of production factors

Discount factor or savings rate

Degree of substitutability of energy forms

Productivity of all sectors

Productivity growth of all sectors

Relative prices of energy sources (generation costs)*

GDP*

Net rate of capital return*

(list extends with increasing modeling detail. for

example: Availability of labor, Initial stocks of fossil

resources (if applicable))

Required (unit) tax on fos-

sil fuel emissions necessary to

reach a specified target under

given assumptions

Source: Author

(*) Parameter does not appear in equation but is required for calibration.

It is clear that the number or required parameters expands for a target-to-tax scheme as compared

to the optimal tax of GHKT. In fact, under identical model characterisation, the formula for a carbon

tax given an emission target is a function of all parameters that are also required for optimal quantity

choice, except for the damage parameter, the carbon cycle, and the depreciation rate appears in a less

decisive role. GHKT argue that the possibility to estimate the optimal carbon tax based on only the

discount factor, the damage parameter and the carbon cycle is a clear advantage of the carbon tax as an

instrument over quantity based cap and trade instruments [40]. Contrasting the longlist of parameters

required for a target-to-tax scheme to the three required input parameters for optimal carbon tax, it is

11Note that κ still appears in equation 19 for formal reasons. It has however been set to 0.5, as
renewable energy units are normalised accordingly.
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clear that the former -with exception of the emissions target- all belong to a parameter set that is more

standard in economic modelling and that is easier to access and test.

The two modelling approaches require distinctively different inputs and solve separate problems, and

should therefore not be understood as competing models. It was demonstrated that reduced uncertainty

in the modelling framework can be gained at the cost of giving up Pareto optimality of outcomes. This

result is only valuable in the context of emissions targets that are discussed independently of optimal

policy choice and that are not strictly informed by climate-economy models. Emission targets as set in

NDCs could provide this context.

In a perfect information setting, the optimal emission pathway would be available and the reduced

target-to-tax approach would be identical to the full IAM optimisation for the optimal carbon tax.

Without perfect information, the full IAM optimisation is subject to severe uncertainty, while the carbon-

to-tax mechanism is, in addition to relatively less severe uncertainty, blind to the risk of applying an

inefficient target and the related costs of wrong policy choice. However, this risk may be negligible where

climate politics do not discuss long run economic efficiency and long run optimisation as much as current

constraints and political interests. In this sense, a target-to-tax mechanism may achieve better results, as

it increases accountability and - once the target has been set - all required considerations can be limited to

a near term time horizon. Figure 4 illustrates the key results of the two modelling approaches. On the left

hand side, the optimal tax over time as a share of GDP is presented as resulting from the GHKT model

under baseline assumptions. On the right hand side of Figure 4, the result of a target-to-tax approach,

expressed as an annual level of a unit tax on carbon emissions, is depicted under equal assumptions,

based on the optimal emissions pathway derived in GHKT.

Figure 4: Comparison of key outputs of reference model (left) and target-to-tax approach
(right) under a baseline scenario

Source: Author’s depiction, left Figure based on GHKT 2012/Barrage 2012 [40, 8]
(*)This depiction assumes a baseline case of logarithmic utility, constant factor productivity and full

depreciation over the 10 year time period. Emission targets in the target-to-tax case are assumed to be
set optimal (in line with results of reference model).

What is presented here is only an exemplary case for re-framing an existing climate-economy model.

Similar applications are possible for the whole class of sector specific DSGE and ABMs modelling sufficient

detail of the economy. While this paper is likely not the first one to frame the carbon tax policy setting

problem in this way, it is the first one to discuss and contrast this approach to policy optimisation under

standard integrated assessment models.
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6.2. Limitations

Eliminating the damage parameter from the policy optimisation model comes at the cost of model reliance

to other assumptions, most importantly technological change, and elasticity of substitution between

different sources of energy. Barrage conducted a detailed sensitivity analysis of GHKT 2014 to a set of

parameters including total factor productivity, depreciation rate and the discount factor, and highlights

large sensitivities around all three. Similarly, an extended sensitivity analysis on parameters in the

target-to-tax framework would be necessary to be able to fully assess what drives results in this framework

and how drivers change across the two settings.

A key limitation of the target-to-tax approach is that it is blind to potential for policy improvement.

By definition, the resulting tax rate is not necessarily the optimal tax rate, and the model does not tell

us what the cost are of not achieving the optimum.

The carbon-to-tax approach may or may not be closely linked to science. It is not ruled out that

the emissions target is derived from climate economy models, but it is also not prescribed. There is a

clear model reliance on an emissions target as input. In this sense, the model does not try to stand on its

own but fits into the existing model landscape, being assessed next to ”sister” models it draws from. It

is worth noting that not all emissions targets that are formulated are formulated based on cost benefit

optimisation thoughts. Targets may also result from the design of an ”avoid” scenario, where a target is

set to prevent unwanted outcomes. In the face of policy choice that is not solely centered around economic

efficiency, conventional policy optimisation is constrained and a richer set of target-to-tax approaches

would be of use.

The argumentation in this study is relying on the assumptions that uncertainty is a limiting factor to

policy uptake. While there is evidence that this is the case, there remains room for research on barriers to

climate policy uptake and their respective importance. A survey based case study of environmental policy

choice under scientific uncertainty by Di Lucia et al. 2012 conducted in the European Union identified

three common approaches to policy choice under uncertainty: Neglecting uncertain knowledge, treating

uncertain knowledge as certain, and precaution [33]. It remains to be verified if this is the case in the

context of climate policy, and if so, what factors determine which approach is taken by policymakers. The

target-to-tax model can serve well as tool for policy makers choosing either of the two latter approaches

to policy choice under uncertainty. The first approach (neglecting uncertain knowledge) corresponds to

the observation of low climate mitigation policy uptake globally.

This study did not cover any carbon tax design elements other than tax level. Neither are policy

linkages discussed. Nevertheless, carbon tax design elements around carbon leakage prevention, equity

effects, policy interaction, or trade effects, to name a few, are key for policy success and their importance

for a coherent an effective climate policy landscape is acknowledged.

6.3. Policy implications

6.3.1 Carbon tax with emissions target versus carbon market

Carbon tax with emission targets and carbon markets (emissions tradings systems) may appear related

from a design perspective, but are very distinctive concepts. While both mechanisms are designed with

respect to a target, a target-to-tax policy as discussed here will not necessarily result in emission levels that
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match the suggested carbon targets, unless a TAMPP is proposed[21]. In the absence of a tax adjustment

mechanism, the standard instrument characteristics apply and the target-to-tax approach results in price

certainty only, while an ETS results in quantity certainty [29]. The benefit of a target-to-tax approach

over a common carbon tax approach is not certainty over emissions quantities, but rather that it can

support transparency of ambition and accountability in the moment of policy choice. When comparing

the target-to-tax approach to an ETS, most arguments of the debate over pricing instrument choice apply

unchanged, with the exception of arguments around required parameter inputs.

6.3.2 Current gaps in research

To my knowledge, there has not been prominent research conducted on the topic of discussing emissions

targets alongside carbon tax optimisation. While this approach is not novel, it has benefits for model

transparency, model clarity and policy explanation that have not received substantial attention.

This study discussed the trade-off between global optimisation and second best options as achieved

through a target-to-tax approach. There are interesting avenues for research around quantifying these trad-

offs in a multidimensional way, including sensitivities to parameter selection, implementation constraints,

and risks and costs of inefficient policy choice.

Furthermore, as discussed earlier, there appears to be a lack of analysis combining results of economic

models with the perspective of policy makers. Such analysis would approach the problem of optimal policy

choice centered around policy makers incentives and constraints. Related to this, future research could

potentially expand on existing hypotheses regarding current barriers to climate change policy uptake.

7. Conclusion

This study aimed to analyse the existing suite of economic models for climate policy optimisation from a

policy makers perspective, with a focus on uncertainty of input parameters. This is important as global

levels of carbon pricing remain low, despite economists agreeing on the urgent need for policy measures.

Uncertainty is assumed to be a contributing factor to low policy uptake globally. An alternative application

of existing CGE modelling work was then suggested that addresses identified short-comings around major

uncertainties by linking modelling efforts with existing national emission targets as submitted by countries

under the UNFCCC.

It was demonstrated how model dependency on uncertain parameters in policy optimisation such as

future damage from climate change and climate sensitivity can be shifted by introducing exogenously

set emissions targets to the modelling framework. This is valuable as it results in a simple and intuitive

framework that can serve as basis for discussion, depends on parameters that are more frequently discussed

in other policy optimisation contexts, and that has a clear focus on emissions, as emissions levels have

become central to the successful coordination of international policy efforts. Under the assumption that

high uncertainty around parameters characterising the damage function and high model complexity limit

the relevance of a model to policy makers, this target-to-tax approach can be a second-best option.

Importantly, quantity focused target-to-tax approaches are not improving efficiency of results as

compared to IAMs. Instead, they add insights to the debate that can potentially facilitate policy uptake
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in a setting where first-best policy choice is not feasible. The two modelling approaches require different

inputs and solve distinct problems, and should therefore not be understood as competing models.

This study argues that there should be a richer set of models that explicitly aim to inform climate

policy makers in their decisions, taking into account their need for clarity, reduced uncertainty and a

focus on annual emissions as central outcome.
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Appendix A - NDCs and carbon tax levels by party

to the Paris Agreement

The Paris Agreement required all nations that joined to declare NDCs. A NDC is a pledge to commit to

emission reduction targets and other actions, and NDCs are to be renewed every five years. Contributions

are voluntary in the sense that there is currently not a mechanism in place that ensures compliance, but

the recently adopted Paris Rulebook (COP24) includes an improved common framework for reporting

and reviewing progress. The first round of NDCs includes targets at least up to 2025, and the second

round of NDCs, due by 2020, will require parties to state targets for the period up to 2030 at a minimum.

Developed countries (Annex I parties) were asked to pledge economy-wide, absolute (including a basket

of greenhouse gases) emissions targets, while developing countries (Non-Annex I) countries were given

freedom to select targets appropriate to national circumstances. Table 4 provides a summary of most

commonly applied mitigation targets in the firs round of NDCs. Table 5 provides a full list of NDC

pledges and also lists the according explicit carbon pricing initiatives as reported in the World Bank

Carbon Pricing Dashboard as of February 2019.

A large number of parties to the PA has decided to set mitigation targets relative to an emissions

baseline (“baseline targets”) in their NDC. Baseline targets define the mitigation contribution target of a

party relative to a counterfactual business-as-usual baseline scenario (BAU). This practice requires clear

and transparent baseline scenarios to avoid double-counting [22].

Table 4: Classification of NDCs by type of mitigation target (First NDC submission)

Type of mitigation target in NDC
Country NDCs with this

target

Share of global GHG emis-

sions

Absolute emission reduction 83 44,1%

Relative emission reduction 56 14,2%

Carbon intensity reduction 9 35,5%

Peak of carbon emissions 3 1,2%

Policies and actions 30 3,0%

Source: IGES NDC database, Version 6.3, April 2019; IEA 2018
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Table 5: Overview of NDCs and carbon pricing initiatives by country

Summary 1st NDC Policy summary

Country Mitigation Type Mitigation Target
Baseline

Year

Target

Year

NDC

Cover-

age

% of

global

GHG

2015

ETS (Region,

US$/tCO2)

Carbon tax

(Region,

US$/tCO2)

Afghanistan
Relative emission re-

duction
13,6% BAU 2030

Economy-

wide
N/A

Afghanistan
Relative emission re-

duction
13,6% BAU 2030

Economy-

wide
N/A

Albania
Relative emission re-

duction
11,5% BAU 2030 Sectoral 0,02%

Algeria
Relative emission re-

duction
7-22% BAU 2030

Economy-

wide
0,49%

Andorra
Relative emission re-

duction
37% BAU 2030

Economy-

wide
N/A

Angola
Relative emission re-

duction
50% BAU 2030

Economy-

wide
0,29%

Antigua and

Barbuda
Policies and actions N/A 2006

2020

and

2030

Economy-

wide
N/A

Argentina
Relative emission re-

duction

18% unconditional,

37% conditional
BAU 2030

Economy-

wide
0,78% Argentina, 10

Armenia
Peak of carbon emis-

sions

<663MtC02e and

189 tonnes per

capita

N/A 2030
Economy-

wide
0,02%

Australia
Absolute emission

reduction
26 to 28% 2005 2030

Economy-

wide
1,27% Australia, n/a

Azerbaijan
Absolute emission

reduction
35% 1990 2030

Economy-

wide
0,11%

Bahamas
Relative emission re-

duction
30% BAU 2030

Economy-

wide
N/A

Bahrain Policies and actions N/A N/A 2030 Sectoral 0,08%

Bangladesh
Relative emission re-

duction

20% (5% uncondi-

tional, 15% condi-

tional)

BAU 2030
Economy-

wide
0,45%

Barbados
Relative emission re-

duction
21% and 23% 2008

2025

and

2030

Economy-

wide
N/A

Belarus
Absolute emission

reduction
28% 1990 2030

Economy-

wide
0,22%

Belize Policies and actions
85% renewable en-

ergy increase
BAU 2030

Economy-

wide
N/A

Benin
Absolute emission

reduction

16.7% (3.62% uncon-

ditional, 12.55% con-

ditional)

2012 2030
Economy-

wide
0,03%

Bhutan
Absolute emission

reduction

Remain carbon neu-

tral
N/A N/A

Economy-

wide
N/A

Bolivia Policies and actions N/A N/A 2030
Economy-

wide
0,12%

Bosnia and

Herzegovina

Absolute emission

reduction

2% below BAU

unconditional, 23%

conditional

1990 2030
Economy-

wide
0,06%

Botswana
Absolute emission

reduction
15% 2010 2030

Economy-

wide
0,03%

Brazil
Absolute emission

reduction

37% by 2025, 43%

by 2030 (indicative)
2005 2025

Economy-

wide
2,51%

under consider-

ation

under consider-

ation

Brunei

Darussalam
Policies and actions

63% of energy con-

sumption reduction
BAU 2035 Sectoral 0,02%

Burkina

Faso

Absolute emission

reduction

6.6% unconditional,

11.6% conditional
2007 2030

Economy-

wide
N/A

Burundi
Absolute emission

reduction

3% unconditional,

20% conditional
2005 2030

Economy-

wide
N/A

Cambodia
Absolute emission

reduction
27%

Baseline

emis-

sions

of

11,600

Gg

CO2eq

2030
Economy-

wide
0,07%

Cameroon
Absolute emission

reduction
32% 2010 2035

Economy-

wide
0,09%

Canada
Absolute emission

reduction
30% 2005 2030

Economy-

wide
1,69%

various regional

ETS, 15.7-22.9

Alberta,

22.9; British

Columbia, 26.7
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Cape Verde Policies and actions

30% renewable en-

ergy target, 100%

with international

support

N/A 2025
Economy-

wide
N/A

Central

African

Republic

Absolute emission

reduction

5% by 2030 and 25%

by 2050
2010 2030

Economy-

wide
N/A

Chad
Absolute emission

reduction

18.2% uncondi-

tional, 71% condi-

tional

2010 2030
Economy-

wide
N/A

Chile
Carbon intensity re-

duction

30% unconditional

emission intensity

reduction, 35-45%

conditional

2007 2030
Economy-

wide
0,24% Chile, n/a Chile, 5

China
Carbon intensity re-

duction

60-65% carbon in-

tensity reduction
2005 2030

Economy-

wide
26,50%

various regional

pilots, 1.1 -4.4

Colombia
Relative emission re-

duction

20% unconditional,

30% conditional
BAU 2030

Economy-

wide
0,35% Colombia, n/a Colombia, 5.3

Comoros
Absolute emission

reduction
84% 2030 2030

Economy-

wide
N/A

Congo

(Democratic

Republic of)

Absolute emission

reduction
17% 2000 2030

Economy-

wide
0,27%

Congo (Re-

public of)

Absolute emission

reduction
48% and 55% 2000

2025

and

2035

Economy-

wide
0,04%

Cook Is-

lands
Policies and actions

100% renewable en-

ergy share
2006 2020

Economy-

wide
N/A

Costa Rica
Relative emission re-

duction
44% BAU 2030

Economy-

wide
0,03%

Côte

d’Ivoire

Absolute emission

reduction
28% 2012 2030

Economy-

wide
0,06%

Côte d’Ivoire,

n/a

Cuba Policies and actions
Renewable energy

share increase
N/A 2030 Sectoral 0,10%

Djibouti
Absolute emission

reduction

40% unconditional,

60% conditional
2000 2030

Economy-

wide
N/A

Dominica
Absolute emission

reduction

17.9% by 2020;

39.2% by 2025; and

44.7% by 2030.

2014

2020,

2025

and

2030

Economy-

wide
N/A

Dominican

Republic

Absolute emission

reduction
25% 2010 2030

Economy-

wide
0,08%

Ecuador
Absolute emission

reduction

9% unconditional,

20.9% conditional

(for USCUSS sector,

4% unconditional,

20% conditional)

2010

(2008

for the

US-

CUSS

sector)

2025
Economy-

wide
0,14%

Egypt Policies and actions N/A N/A 2030
Economy-

wide
0,66%

El Salvador
Relative emission re-

duction

46% unconditional

and 61% conditional
BAU 2025

Economy-

wide
0,02%

Equatorial

Guinea

Absolute emission

reduction
20% 2010 2030

Economy-

wide
N/A

Eritrea
Relative emission re-

duction

12% unconditional

and 38.5 % condi-

tional

2010 2030
Economy-

wide
0,01%

Ethiopia
Relative emission re-

duction
64% BAU 2030

Economy-

wide
0,31%

European

Union

(EU)** The

EU member

States have

submitted a

joint INDC

Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
8.97%

EU&Norway,

25.1

Austria
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,17%

EU&Norway,

25.1

Belgium
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,26%

EU&Norway,

25.1

Bulgaria
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,12%

EU&Norway,

25.1

Croatia
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,05%

EU&Norway,

25.1

Cyprus
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,02%

EU&Norway,

25.1

Czech Re-

public

Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,26%

EU&Norway,

25.1
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Denmark
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,10%

EU&Norway,

25.1
Denmark, 26.9*

Estonia
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,04%

EU&Norway,

25.1
Estonia, 2.3

Finland
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,14%

EU&Norway,

25.1
Finland, 71.1*

France
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,92%

EU&Norway,

25.1
France, 51.1

Germany
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
1,86%

EU&Norway,

25.1

Greece
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,20%

EU&Norway,

25.1

Hungary
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,13%

EU&Norway,

25.1

Ireland
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,13%

EU&Norway,

25.1
Ireland, 22.9

Italy
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,86%

EU&Norway,

25.1

Latvia
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,03%

EU&Norway,

25.1
Latvia, 5.2

Lithuania
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,05%

EU&Norway,

25.1

Luxembourg
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,02%

EU&Norway,

25.1

Malta
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,00%

EU&Norway,

25.1

Netherlands
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,41%

EU&Norway,

25.1

Netherlands,

n/a

Poland
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,82%

EU&Norway,

25.1
Poland, 0.1

Portugal
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,14%

EU&Norway,

25.1
Portugal, 14.6

Romania
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,22%

EU&Norway,

25.1

Slovakia
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,09%

EU&Norway,

25.1

Slovenia
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,04%

EU&Norway,

25.1
Slovenia, 19.8

Spain
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,70%

EU&Norway,

25.1

Spain, 17.2;

Catalonia, n/a

Sweden
Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
0,13%

EU&Norway,

25.1
Sweden, 129.7

United

Kingdom

Absolute emission

reduction
At least 40% 1990 2030

Economy-

wide
1,04%

EU&Norway,

25.2
UK, 23.5

Fiji
Relative emission re-

duction

30% CO2 emission

reduction in the en-

ergy sector

BAU 2030
Economy-

wide
N/A

Gabon
Absolute emission

reduction
At least 50% 2000 2025

Economy-

wide
0,03%

Gambia
Absolute emission

reduction
44.4% and 45.4% 2010

2025

and

2030

Economy-

wide
N/A

Georgia
Relative emission re-

duction

15% unconditional

and 25% conditional
BAU 2030

Economy-

wide
0,03%

Ghana
Relative emission re-

duction

15% unconditional,

45% conditional
BAU 2030

Economy-

wide
0,08%

Grenada
Absolute emission

reduction

30% by 2025, 40%

by 2030
2010

2025

and

2030

Economy-

wide
N/A

Guatemala
Absolute emission

reduction

11.2% uncondi-

tional, 22.6% condi-

tional

2005 2030
Economy-

wide
0,07%

Guinea
Absolute emission

reduction
13% 1994 2030

Economy-

wide
N/A

Guinea-

Bissau
Policies and actions N/A N/A N/A

Economy-

wide
N/A

Guyana Policies and actions
100% share of renew-

able energy
N/A 2025

Economy-

wide
N/A

Haiti
Relative emission re-

duction

5% unconditional,

26% conditional
BAU 2030

Economy-

wide
0,03%

Honduras
Relative emission re-

duction
15% BAU 2030

Economy-

wide
0,04%

Iceland
Absolute emission

reduction
40% 1990 2030

Economy-

wide
0,01% Iceland, 32.2

India
Carbon intensity re-

duction

33 to 35% carbon in-

tensity reduction
2005 2030

Economy-

wide
6,70%

Indonesia
Relative emission re-

duction

29% unconditional,

41% conditional
BAU 2030

Economy-

wide
1,93%
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Iran (Is-

lamic

Republic

of)

Relative emission re-

duction

4% unconditional,

8% conditional
BAU 2030

Economy-

wide
1,67%

Iraq
Relative emission re-

duction

2% conditional and

13% unconditional
BAU 2035 N/A 0,49%

Israel
Carbon intensity re-

duction
26% 2005 2030

Economy-

wide
0,17%

Jamaica
Relative emission re-

duction
7,80% BAU 2030

Economy-

wide
0,02%

Japan
Absolute emission

reduction
26% 2013 2030

Economy-

wide
2,75%

Japan, n/a;

Saitama, 6;

Tokyo, 5.9

Japan, 2.6

Jordan
Relative emission re-

duction

14% (1.5% uncondi-

tional, 12.5% condi-

tional)

BAU 2030
Economy-

wide
0,06%

Kazakhstan
Absolute emission

reduction

15% unconditional -

25% conditional
1990 2030

Economy-

wide
0,72%

Kazakhstan,

n/a

Kenya
Relative emission re-

duction
30% BAU 2030

Economy-

wide
0,16%

Kiribati
Relative emission re-

duction

12.8% unconditional

- 49% conditional
BAU 2030

Economy-

wide
N/A

Korea (Dem.

People’s

Rep. of)

Relative emission re-

duction

40.25% (8% uncondi-

tional, 32.25% condi-

tional)

BAU 2030
Economy-

wide
0,12%

Korea (Re-

public of)

Relative emission re-

duction
37% BAU 2030

Economy-

wide
1,41% Korea, 22.9

Kuwait Policies and actions
INDC under analy-

sis
N/A 2035 N/A 0,25%

Kyrgyzstan
Relative emission re-

duction

11.49 to 13.75% un-

conditional - 29 to

30.89% conditional

BAU 2030
Economy-

wide
0,04%

Lao People’s

Dem. Rep.
Policies and actions

30% share of renew-

able energy in en-

ergy consumption

N/A

2020

and

2025

Economy-

wide
N/A

Lebanon
Relative emission re-

duction

15% unconditional -

30% conditional
BAU 2030

Economy-

wide
0,06%

Lesotho
Relative emission re-

duction

10% unconditional,

35% conditional
BAU 2030

Economy-

wide
N/A

Liberia
Relative emission re-

duction

10% by 2030, carbon

neutrality by 2050
BAU

2030

and

2050

Sectoral N/A

Libya N/A INDC not submitted N/A N/A N/A 0,14%

Liechtenstein
Absolute emission

reduction
40% 1990 2030

Economy-

wide
N/A

Liechtenstein,

96.7

Macedonia
Relative emission re-

duction

30% unconditional,

36% conditional
BAU 2030

Economy-

wide
0,02%

Madagascar
Relative emission re-

duction
32% BAU 2030

Economy-

wide
N/A

Malawi Policies and actions N/A N/A 2030
Economy-

wide
N/A

Malaysia
Carbon intensity re-

duction

35% unconditional

plus 10% condi-

tional

2005 2030
Economy-

wide
0,64%

Maldives
Relative emission re-

duction

10% unconditional -

24% conditional
BAU 2030

Economy-

wide
N/A

Mali
Relative emission re-

duction

29% reduction for

agriculture, 31% for

energy and 21% for

forests

BAU 2030
Economy-

wide
N/A

Marshall Is-

lands

Absolute emission

reduction

32% by 2025, 45%

by 2030 - indicative

target of 58% by

2035, net zero by

2050

2010
2025,

2030

Economy-

wide
N/A

Mauritania
Absolute emission

reduction

22.3% (88% of which

is conditional)
2010 2030

Economy-

wide
N/A

Mauritius
Relative emission re-

duction
30% BAU 2030

Economy-

wide
0,01%

Mexico
Relative emission re-

duction

25% unconditional,

40% conditional
BAU 2030

Economy-

wide
1,52% Mexico, n/a Mexico, 0.4-3

Micronesia

(Federated

States of)

Absolute emission

reduction

28% unconditional,

35% conditional
2000 2025

Economy-

wide
N/A

Moldova

(Republic

of)

Absolute emission

reduction

64/67% uncon-

ditional, 78%

conditional

1990 2030
Economy-

wide
0,02%

Monaco
Absolute emission

reduction
50% 1990 2030

Economy-

wide
N/A
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Mongolia
Relative emission re-

duction
14% BAU 2030

Economy-

wide
0,09%

Montenegro
Absolute emission

reduction
30% 1990 2030

Economy-

wide
0,00%

Morocco
Relative emission re-

duction

42% (17% uncondi-

tional, 25% condi-

tional)

BAU 2030
Economy-

wide
0,17%

Mozambique Policies and actions N/A N/A 2030
Economy-

wide
0,13%

Myanmar Policies and actions
30% increase in re-

newable energies
N/A 2030

Economy-

wide
0,30%

Namibia
Relative emission re-

duction
89% BAU 2030

Economy-

wide
0,03%

Nauru Policies and actions N/A N/A 2030
Economy-

wide
N/A

Nepal Policies and actions

20% increase in

renewable energies,

50% reduction in

dependency to fossil

fuels

N/A

2020

and

2050

Economy-

wide
0,09%

New

Zealand

Absolute emission

reduction
30% 2005 2030

Economy-

wide
0,17%

Nicaragua N/A INDC not submitted N/A N/A N/A 0,04%

Niger
Relative emission re-

duction

3.5% unconditional,

34.6% conditional
BAU 2030

Economy-

wide
0,07%

Nigeria
Relative emission re-

duction

20% unconditional

and 45% conditional
BAU 2030

Economy-

wide
0,66%

Niue Policies and actions

38% share of renew-

able energy uncon-

ditional, 80% condi-

tional

N/A

2020

and

2025

Economy-

wide
N/A

Norway
Absolute emission

reduction
40% 1990 2030

Economy-

wide
0,14%

EU&Norway,

25.1

Oman
Relative emission re-

duction
2% N/A 2030 Sectoral 0,21%

Pakistan
Relative emission re-

duction
20% BAU 2030

Economy-

wide
0,84%

Palau Policies and actions

22% energy sector

emissions reduc-

tions, 45% Renew-

able Energy, 35%

Energy Efficiency

2005 2025
Economy-

wide
N/A

Palestine
Relative emission re-

duction

24.4% conditional;

12.8% unconditional
BAU 2040

Economy-

wide
N/A

Panama Policies and actions
30% renewable en-

ergy target
2010 2050

Economy-

wide
0,03%

Papua New

Guinea

Absolute emission

reduction
Carbon neutrality 2010 2030

Economy-

wide
N/A

Paraguay
Relative emission re-

duction

10% unconditional

and 20% conditional
BAU 2030

Economy-

wide
0,08%

Peru
Relative emission re-

duction

20% unconditional,

30% conditional
BAU 2030

Economy-

wide
0,18%

Philippines
Relative emission re-

duction
70% BAU 2030

Economy-

wide
0,41%

Qatar Policies and actions N/A N/A 2030 Sectoral 0,34%

Russian Fed-

eration

Absolute emission

reduction
25-30% 1990 2030

Economy-

wide
4,56%

Rwanda Policies and actions N/A BAU 2030
Economy-

wide
N/A

Saint Kitts

and Nevis

Relative emission re-

duction

22% by 2025, 35%

by 2030
BAU

2025

and

2030

Economy-

wide
N/A

Saint Lucia
Relative emission re-

duction

16% by 2025 and

23% by 2030 (both

conditional)

BAU

2025

and

2030

Economy-

wide
N/A

Saint Vin-

cent and the

Grenadines

Relative emission re-

duction
22% BAU 2025

Economy-

wide
N/A

Samoa Policies and actions
100% Renewable en-

ergy target
2007 2025 Sectoral N/A

San Marino
Absolute emission

reduction
20% 2005 2030

Economy-

wide
N/A

Sao Tome

and

Principe

Absolute emission

reduction
24% 2005 2030

Economy-

wide
N/A

Saudi Ara-

bia

Relative emission re-

duction

up to 130 million

tons of CO2 emis-

sion avoidance

N/A 2030 Sectoral 1,43%
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Senegal
Relative emission re-

duction

5% unconditional

and 21%
BAU 2030

Economy-

wide
0,04%

Serbia
Absolute emission

reduction
9,80% 1990 2030

Economy-

wide
0,14%

Seychelles
Relative emission re-

duction
21.4% and 29% BAU

2025

and

2030

Economy-

wide
N/A

Sierra Leone
Peak of carbon emis-

sions

Emissions will not

exceed 7.58 MtCO2e
N/A 2035

Economy-

wide
N/A

Singapore
Carbon intensity re-

duction
36% 2005 2030

Economy-

wide
0,12% Singapore, 3.7

Solomon Is-

lands

Absolute emission

reduction

12% by 2025 and

30% by 2030
2015

2025

and

2030

Economy-

wide
N/A

Somalia Policies and actions N/A N/A N/A Sectoral N/A

South

Africa

Peak of carbon emis-

sions

Emissions peak be-

tween 398 and 614

Mt CO2–eq

N/A

2025

and

2030

Economy-

wide
1,14%

South Africa,

n/a

South Su-

dan
Policies and actions N/A N/A 2030 Sectoral 0,00%

Sri Lanka
Relative emission re-

duction

7% unconditional,

23% conditional
BAU 2030

Economy-

wide
0,08%

Sudan Policies and actions
20% renewable en-

ergy target
BAU 2030 Sectoral 0,32%

Suriname Policies and actions

Above 25% of re-

newable energies by

2025 plus forestry

commitments

N/A 2025
Economy-

wide
0,01%

Swaziland(Eswatini)Policies and actions

100% increase of

renewable energy

share

2010 2030
Economy-

wide
N/A

Switzerland
Absolute emission

reduction

35% by 2025, 50%

by 2030
1990

2025

and

2030

Economy-

wide
0,11% Switzerland, 5.2

Switzerland,

96.7

Syria N/A INDC not submitted N/A N/A N/A 0,09%

Tajikistan
Absolute emission

reduction

80-90% uncondi-

tional - 65-75%

conditional

1990 2030
Economy-

wide
0,03%

Tanzania

(United

Republic of)

Relative emission re-

duction
10-20% BAU 2030

Economy-

wide
0,19%

Thailand
Relative emission re-

duction

20% unconditional

and 25% conditional
BAU 2030

Economy-

wide
0,83%

under consider-

ation

under consider-

ation

Timor-

Leste (East

Timor)

Policies and actions N/A N/A N/A
Economy-

wide
N/A

Togo
Relative emission re-

duction

11.14% uncondi-

tional, 31.14%

conditional

BAU 2030
Economy-

wide
0,02%

Tonga Policies and actions
50% of renewable en-

ergy share
N/A 2020

Economy-

wide
N/A

Trinidad

and Tobago

Relative emission re-

duction
15% BAU 2030

Economy-

wide
0,13%

Tunisia
Carbon intensity re-

duction

41% carbon inten-

sity (13% uncondi-

tional, 28% condi-

tional)

2010 2030
Economy-

wide
0,08%

Turkey
Relative emission re-

duction
21% BAU 2030

Economy-

wide
1,07% Turkey, n/a

Turkmenistan
Absolute emission

reduction

Stablisation of

greenhouse gas

emissions

2000 2030
Economy-

wide
0,25%

Tuvalu
Absolute emission

reduction

60% economy wide,

100% from electric-

ity generation sector

2010 2025
Economy-

wide
N/A

Uganda
Relative emission re-

duction

22% reduction of

GHG in 2030 as

compared to BAU

BAU 2030
Economy-

wide
N/A

Ukraine
Absolute emission

reduction
40% 1990 2030

Economy-

wide
0,62% Ukraine, n/a Ukraine, 0.4

United Arab

Emirates
Policies and actions

Increase of clean en-

ergy to 24%
N/A 2021 Sectoral 0,48%

United

States of

America

(USA)

Absolute emission

reduction
26-28% 2005 2025

Economy-

wide
12,91%

California, 15.7;

Massachusetts,

n/a, Virginia,

n/a; Washing-

ton, n/a
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Uruguay
Carbon intensity re-

duction

24% (CO2), 57%

(CH4) and 48%

(N2O)

1990 2025
Economy-

wide
0,10%

Uzbekistan
Absolute emission

reduction
10% 2010 2030

Economy-

wide
0,34%

Vanuatu
Relative emission re-

duction

100% reduction for

the power sector,

30% reduction for

the energy sector as

a whole

BAU 2030
Economy-

wide
N/A

Venezuela
Relative emission re-

duction
20% BAU 2030

Economy-

wide
0,52%

Viet Nam
Relative emission re-

duction

8% unconditional -

25% conditional
BAU 2030

Economy-

wide
0,69% Vietnam, n/a

Yemen
Relative emission re-

duction

1% unconditional,

13% conditional
BAU 2030 Sectoral 0,08%

Zambia
Absolute emission

reduction

25% unconditional,

47% conditional
2010 2030

Economy-

wide
0,13%

Zimbabwe
Carbon intensity re-

duction

33% carbon inten-

sity reduction
BAU 2030

Economy-

wide
0,06%

Source: IGES NDC database, Version 6.3, April 2019; IEA 2018; World Bank Carbon Pricing Dashboard

Note: Nominal prices, February 2019. Prices are not necessarily comparable between countries and

initiatives as numbers of sectors covered and allocation methods applied differ.

(*) indicates strong sector limitation, reported to WB dashboard.
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