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Abstract

This thesis investigates properties of the returns of catastrophe bonds and their risk di-
versification potential in portfolios. Ideas from existing literature, such as modeling the
evolution of the outstanding principal as a compound Poisson process, are extended to
take into account the times of occurrence of the loss events, which are important for
the returns of catastrophe bonds with certain types of payment structure. Monte Carlo
sampling of joint returns is used for optimization of risk measures such as value-at-risk
and conditional value-at-risk, where a special method for rendering standard nonlin-
ear optimization techniques applicable is developed. Numerical results performed for
illustrative purposes showcase key characteristics of portfolios augmented by a single
catastrophe bond as well as one exclusively consisting of catastrophe bonds.

Keywords: Catastrophe bonds, Poisson processes, portfolio theory, risk diversification, value-at-
risk, conditional value-at-risk.
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Chapter 1

Introduction

With the currently ongoing climate changes, natural catastrophes are occurring with
increasingly higher frequency. In 2017, hurricanes in the Atlantic ocean alone caused
damageworth over 280 billion USD and insured losses of over 80 billion USD [3]. If left
unmanaged, the risks associated with such catastrophic events would be overwhelming
for insurance companies, and as a consequence contracts are often written with so called
reinsurance companies in order to relieve parts of these risks in exchange for a premium.
Reinsurance is a central part of the risk management of insurance companies and have
traditionally been handled by large global reinsurance companies such as Munich Re,
Swiss Re and Hannover Re.

In recent years, however, a type of financial product known as insurance-linked
securities (ILSs) has gained popularity in serving a similar purpose. ILSs are broadly
defined as financial instruments whose values are driven by insurance loss events, and a
particular type of ILSs are catastrophe bondswhich are triggered by catastrophic events
such as earthquakes or hurricanes. From the perspective of an investor, the risk associ-
ated with a catastrophe bond is vastly different in nature compared to that of e g stocks,
bonds or options due to a highly skewed return distribution in which tail events are the
main drivers of the bond price. As a consequence, parameters in loss models are often
hard to estimate with satisfactory certainty, which makes accurate pricing hard.

Due to the fundamental independence between trigger events of catastrophe bonds
and other market events, it is often claimed that catastrophe bonds are efficient in di-
versifying portfolio risks [23] and, furthermore, can form successful portfolios entirely
on their own. Given this independence, it is perhaps not surprising that there is a gain
from including the possibility of taking positions in one or multiple catastrophe bonds,
but quantifying this gain will require modeling of their losses and risks.
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1.1 Catastrophe bonds
1.1.1 Preliminaries
In 1984, the Swedish state-owned corporation Svensk Exportkredit launched what can
be considered as the earliest known instance of a catastrophe bond [5]. This took the
form of a private placement of earthquake bonds which were immediately redeemable
if a major earthquake hit Japan, and Japanese insurers bought these and agreed to accept
coupons with relatively low rate as premium for the right to put the bonds back to the
issuer at face value should an earthquake occur [5]. Ever since then, catastrophe bonds
have been issued in many different formats, varying in perils, trigger mechanisms, pay-
ment structures, etc. Unlike e g corporate bonds, which behave similarly as catastrophe
bonds with the event of default analogous to that of a catastrophe occurring, the returns
of catastrophe bonds cannot be replicated by only ordinary bonds and stocks and thus
cannot be hedged by primitive instruments.

Starting with formalities, the issuer of a catastrophe bond—that is, the party whose
risks are to be relieved, typically an insurance or reinsurance company—is called the
sponsor, and a counterparty buying the bond and assuming the specified risk is called
an investor. When issuing a catastrophe bond, a contract size is decided by the sponsor,
which is the desired amount of cash to be raised from the capital market. There is,
however, no guarantee that this amount will be met—this will depend on the market’s
interest in the specific contract. An investor buying the bond pays an amount called
the original principal at the time of the purchase, and the degree of participation of one
investor is given by the ratio between the original principal and the contract size [10].

The money raised from the market is placed in a special purpose vehicle (SPV),
which can be seen as a third party whose sole purpose is to manage themoney and handle
eventual payments to the sponsor and the investors. The SPV, in turn, puts the money
in a collateral account, usually consisting of low-risk investments such as government
bonds. For the investors, the SPV comprises a protection from risks such as that of the
sponsor going bankrupt, whereas for the sponsor, it has the effect of ear-marking the
money in the collateral account. During the term of the bond, coupon payments are paid
regularly to the investors from the SPV. If one ormultiple catastrophic events whichmeet
the criteria of the contract occur, the sponsor withdraws corresponding amounts from the
collateral account. The remaining amount in the collateral account at a given time during
the term of the bond is called the outstanding principal. At maturity, the outstanding
principal, if any remaining, is repaid to the investors, and the SPV is closed. Of special
importance is the fact that in most cases, the coupon payments are proportional to the
outstanding principal [14, 10].

For each catastrophe bond issued, there is a legal document defining the circum-
stances under which money may be withdrawn from the SPV by the sponsor and how
the severity of these circumstances translate into the size of the instrument loss. Typ-
ically, each catastrophe bond has a specific peril—that is, a type of catastrophe trig-
gering the bond, such as earthquakes, hurricanes or windstorms—and a risk exposure
area—that is, the geographic area in which catastrophes may lead to instrument losses,
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such as “US east coast”, “Japan” or “northern Europe”. For the calculation of the ac-
tual instrument loss associated with a certain event, there are different types of trigger
mechanisms. In the case of an indemnity trigger, actual losses for the sponsor are deter-
mined with respect to definitions and standards stated in the contract (which may be a
tedious process); for a modeled loss trigger, the instrument losses are instead based on
statistics such as earthquake magnitude regardless of the actual losses incurred for the
sponsor; for a parametric trigger, the instrument losses are determined from a formula
based on continuous measurements of metrics such as air pressure or wind speed; and
for an industry loss index trigger, the instrument losses are instead based on an index of
the losses of the insurance industry following an event. The probability that instrument
losses are incurred at all is usually called the attachment probability, and the probabil-
ity that the outstanding principal is zero at maturity is called the exhaustion probability
[14, 10].

Figure 1.1: Illustration of cash flows in a typical catastrophe bond contract. (1) shows the payment
of the initial principal by the investors, (2) shows the coupon (and interest) payments to the in-
vestor, (3) shows the eventual repayment of the outstanding principal at maturity and (4) shows
the eventual payments from the SPV to the sponsor.

1.1.2 Restrictions
Due to the vast amount of different payment structures for catastrophe bonds in the mar-
ket today, it is not possible to analyze losses and risks without first making some restric-
tions. In this thesis, only catastrophe bonds with coupons of constant rate and propor-
tional to the outstanding principal at the time of payment will be considered. Eventual
interest yields from the collateral account (which are normally paid forward to the in-
vestors) will be disregarded and joined with the coupons, and the canonical payment
structure will be that demonstrated in Example 1 below. Each event qualified as a catas-
trophe according to the contract terms will be assumed to incur an immediate instrument
loss—that is, an immediate reduction of outstanding principal—although other ways of
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loss calculation, such as annual aggregation of catastrophe event severities, are common
[14]. Also, all types of transaction costs will be disregarded.

1.1.3 Examples of catastrophe bonds
Example 1 is taken from [14] and illustrates typical cash flow scenarios for an investor
of a catastrophe bond, where it is showcased that both the degrees of severity of the
catastrophes and their times of occurrence are important. Example 2 is also taken from
[14] and is a real-world example of how the terms of a cat bond may be specified. Ex-
ample 3 is a catastrophe bond with somewhat different and more complex properties,
taken from [5].

Example 1 (Cash flow). Consider a one-year catastrophe bond with original principal
100 and quarterly coupon payments, where the coupon rate is 10 % per annum, quar-
terly compounded. If no catastrophe occurs, the outstanding principal is constantly
equal to 100 over the whole term, and the cash flow for the investor is as in Table 1.1
below. The nominal net cash flow is 10.

Table 1.1: Cash flow for investor if no catastrophe occurs.

t (years) 0 0.25 0.5 0.75 1
Cash flow −100 2.5 2.5 2.5 102.5

If, instead, a catastrophe occurs at t = 0.6 such that the sponsor immediately withdraws
the whole original principal from the collateral account, the cash flow would be as in
Table 1.2 below. The nominal net cash flow is −95.

Table 1.2: Cash flow for investor if a large catastrophe occurs.

t (years) 0 0.25 0.5 0.75 1
Cash flow −100 2.5 2.5 0 0

Lastly, consider the case of a smaller catastrophe occurring at t = 0.6 leading to a re-
duction of the outstanding principal by 50. Since the coupon payments are proportional
to the outstanding principal, the cash flow would be as in Table 1.3. The nominal net
cash flow is 42.5.

Table 1.3: Cash flow for investor if a smaller catastrophe occurs.

t (years) 0 0.25 0.5 0.75 1
Cash flow −100 2.5 2.5 1.25 51.25
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Example 2 (Calypso Capital II Ltd). The following catastrophe bond is a real-world ex-
ample with the following specifications [14]:

Table 1.4: Specifications of the Calypso Capital II Ltd catastrophe bond.

SPV: Calypso Capital II Ltd, class A
Sponsor: AXA Global P&C
Trigger mechanism: Industry loss index
Peril: European windstorm
Size: 185 million EUR
Risk period: Jan 1, 2014–Dec 31, 2016
Annual attachment probability: 1.45 %
Annual exhaustion probability: 0.61 %

Example 3 (Winterthur windstorm bonds). In 1998, the Swiss insurance company Win-
terthur, named after the city in which it is based, issued three-year annual coupon bonds
with face value 4 700 Swiss francs. The coupon rate of 2.25 % was subject to the risk of
windstorm damage of automobiles owned by the company’s insurance customers during
a specified period each year—if the number of automobile windstorm claims during the
period exceeded 6 000, the coupon for the corresponding year was not paid. Further-
more, at maturity, each bond was convertible to five shares of Winterthur common stock.
The deal was described in the trade press and was valued in an article in 1999 [5].

1.2 Catastrophe bonds in portfolios
1.2.1 Comparison with equity and bond market
Given the risk diversification benefits of taking positions in catastrophe bonds for insur-
ance and reinsurance companies, it is natural to investigate whether they are also able to
benefit “ordinary” investors in terms of return and risk. The market has grown steadily
over the years, with about 32 billion USD of public deals outstanding as of 2018 [22].
An overview of the returns from the catastrophe bondmarket after 2006 is seen in Figure
1.2, where catastrophe bond market indices are compared to equity and bond indices.
The dark blue line shows the Swiss Re Global Cat Bond Total Return Index, which is a
market-value weighted index of cat bonds, excluding life and health bonds. The yellow
line is the Eurekahedge ILS Advisers Index, which is an equally weighted index of 31
constituent funds, designed to provide a broad measure of the performance of underly-
ing hedge fund managers who explicitly allocate to insurance-linked investments. The
light blue line is the MSCI World Net Total Return Index, representing the equity mar-
ket, and the green line is the Bloomberg Barclays Capital Global Aggregate Bond Index,
representing the bond market. Figures 1.3, 1.4 show, respectively, descriptive statistics
and cross-correlations.
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Figure 1.2: Comparison of returns for two market indices for catastrophe bonds (dark blue and
yellow) against those for equity and bonds, 2006–2019 [22]

Figure 1.3: Comparison of descriptive statistics for two market indices for catastrophe bonds
against those for equity and bonds [22].
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Figure 1.4: Cross-correlations between two market indices for catastrophe bonds and those for
equity and bonds [22].

By inspection of the figures provided, it is easy to see that catastrophe bonds present
appealing alternatives for investors. First, Figure 1.2 shows higher as well as less volatile
returns for the catastrophe bond market, which is confirmed in Figure 1.3 where Sharpe
ratios of 2.39 and 1.69 are contrasted to 0.45 and 0.69. Second, Figure 1.4 provides
evidence of low correlations between catastrophe bond returns and the equity and bond
markets, which motivates their often claimed diversification potential.

1.2.2 Literature review
The topic of the risk diversification benefits of catastrophe bonds in portfolios, either
as complement to other assets or entirely on their own, has been addressed in numerous
published studies as well as online articles. A general discussion of the topic is done in
[23], as well as a review of the contemporary literature on catastrophe bond pricing and
risk modeling. A more technical study of the quantitative effects of including catastro-
phe bonds in portfolios is done in [21]. [11], [4] and [22] provide short presentations of
the topic accessible for the general reader and illustrate clearly why catastrophe bonds
are interesting from an investor’s perspective.

In particular, a variety of valuation models for catastrophe bonds have been pro-
posed since the early 2000s. [12] studied in 1999 the general concept of catastrophe
bonds from a quantitative finance perspective. Soon thereafter, [5] developed in 2000
a pricing model based on a term structure model and certain probability features for the
catastrophe risk exposure, which became one of the most frequently cited papers on the
subject. Many authors have focused on the problem of finding relevant factors and de-
veloping some regression model for the price. For example, a model based on factors
such as interest rate, credit rating and expected loss is proposed in [15], and an analysis is
done in [2] based on a series of least-squares regressions corrected for heteroskedasticity
and autocorrelation, where significances of additional factors such as covered territory,
sponsor and reinsurance cycle are determined. [7] investigated the effect of a major
catastrophic event, such as the hurricane Katrina, on catastrophe bond prices, and [16]
also examined the impact of financial market volatility. For a thorough evaluation of
similar models in literature, see e g [13] and [18].
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Although the majority of the existing literature has been focused on evaluating the
significance of price determinants, other authors have addressed the modeling of the
probability distributions of catastrophe occurrences and their influence on the price and
risk of catastrophe bonds. A simplistic yet illustrative model is developed in [1] based
on somewhat different assumptions than those used in this thesis, where the possibility
of one catastrophic event occurring is modeled by a Poisson-distributed stopping time.
Amore sophisticated pricing model is presented in [20], based on a Cox–Ingersoll–Ross
interest rate and an aggregated loss specified as a compound Poisson process with log-
normal jumps; these authors, however, also use a somewhat different payoff structure
than in this thesis, although the underlying loss process is almost identical to that used
here. Poisson processes also occur in the loss models in [14].

Other miscellaneous topics on catastrophe bonds addressed in literature include
moral hazard issues between the sponsor and the investors [20, 6] and role of credit
rating classes [9].

1.3 Aim and research questions
The thesis at hand aims to investigate the risk diversification potential of catastrophe
bonds in equity and bond portfolios, as well as the performance of portfolios only con-
sisting of catastrophe bonds. More precisely, by developing a loss model for catastrophe
bonds and optimizing on risk measures such as value-at-risk and conditional value-at-
risk in a one-period portfolio optimization problem, the risk diversification effect is
quantified for given model parameters. Focus will be on theoretical and computational
aspects of the models rather than on making inferences from real-world data. The thesis
is based on the following research questions:

• How can one model the return of a catastrophe bond given specifications of the
distributions of catastrophe frequency and severity?

• How can one minimize the risk associated with a portfolio of ordinary assets
and/or catastrophe bonds subject to some mean return constraint?

• How is the tradeoff between mean return and risk affected by the inclusion of a
catastrophe bond in a portfolio of ordinary assets?

• What are the characteristics of portfolios consisting of only catastrophe bonds?
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Chapter 2

Theoretical framework

In order to precisely describe the models used in this thesis, it is necessary to first ac-
quaint the reader to some of the necessary mathematical theory. The following sections
are brief summaries of chosen topics and are by no means exhaustive of all theory used
in this thesis.

2.1 General mathematical notation
A set S with elements s1, ..., sn is denoted by S = {s1, ..., sn}, for which we shall often
use the shorthand notation S = {si}n

i=1. Similarly, a collection {X(t) : t ∈ R, t ≥ 0}
will be denoted by {X(t)}t≥0. A vector v with components v1, ..., vn will be denoted by
v = (v1, ..., vn)T, where the superscriptT indicates transpose and where the convention
is that vectors are column vectors. Similarly, a matrix A where Aij is the component
in row i and column j will be denoted by A = (Aij)i,j . For a vector v, diag v is the
matrix with the components of v on its diagonal and zero elsewhere. The one-vector
e = (1, ..., 1)T and the identity matrix I = diag e are often used when formulating
problems on vector form.

For a multivariate, scalar-valued, twice differentiable function f : Rn → R written
as f(x), the gradient

∂f(x)
∂x

=
(

∂f(x)
∂x1

, ..., ∂f(x)
xn

)T

is a vector collecting all partial derivatives, and the Hessian

∂2f(x)
∂x2 =

(
∂2f(x)
∂xi ∂xj

)n

i,j=1

is the matrix collecting all second partial derivatives. If f(x) = (f1(x), ..., fm(x))T is
vector-valued, the Jacobian ∂f(x)/∂x is the matrix

∂f(x)
∂x

=
(

∂fi(x)
∂xj

)m,n

i,j=1
.

12



In calculations, it is often convenient to introduce the indicator function 1(A), which
takes the value 1 if the predicate A is true and 0 otherwise—in particular, we have the
Kronecker delta δij = 1(i = j).

2.2 Probability theory
The following is a short summary of the most important parts—for a thorough mathe-
matical treatment of probability theory, see e g [19].

2.2.1 Probability spaces and random variables
A probability space is a triplet (Ω, F , P), where Ω is the sample space, a set containing
all possible events, where F is the associated σ-algebra, consisting of subsets of Ω,
and where P : F → [0, 1] is a probability measure, assigning for each event A ∈
Ω a probability P A. σ-algebras and the probability measures have to satisfy certain
properties (see [19] for details). Of particular interest is the Borel σ-algebra B, defined
as the smallest σ-algebra on R containing all open intervals.

A real-valued random variable on a probability space (Ω, F , P) is a function X :
Ω → R such that X−1(B) = {ω : X(ω) ∈ B} ∈ F for each B ∈ B. Its distribution
is described by the cumulative distribution function (cdf) FX(x) = P(X ≤ x), which
is non-decreasing and ranges from 0 to 1. If FX(x) is differentiable, the distribution of
X is also determined by the probability density function (pdf) fX(x) = ∂FX(x)/∂x.
Else, if X only takes values in a discrete set S, its distribution can also be described by
the probability mass function (pmf) pX(x) = P(X = x), x ∈ S. Two random variables
X, Y are independent if and only if their joint cdf FX,Y (x, y) = P(X ≤ x, Y ≤ y) can
be written as FX,Y (x, y) = FX(x)FY (y).

The expectation E X of a random variable X is given by the Lebesgue–Stieltjes
integral (for the precise meaning of this, see e g [19])

E X =
ˆ ∞

−∞
x dFX(x) =

ˆ ∞

−∞
xfX(x) dx,

where the latter is well-defined only if fX(x) exists. The variance Var X of X is given
by

Var X = E
[
(X − E X)2

]
= E[X2] − E[X]2,

and the covariance Cov[X, Y ] between two random variables X , Y is given by

Cov[X, Y ] = E [(X − E X)(Y − E Y )] = E[XY ] − E X E Y .

If X = (X1, ..., Xn)T is a vector, E X is the componentwise expectation E X =
(E X1, ..., E Xn)T. The covariance matrix Var X = (Var X)n

i,j=1 is defined compo-
nentwise by (Var X)ij = Cov[Xi, Xj ] or in vector form by Var X = E[XXT] −
E[X] E[X]T.
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2.2.2 Common distributions
Below are some common distributions of random variables, described by their cdf’s and
pdf’s/pmf’s.

Definition 1 (Uniform). A random variable X is uniformly distributed on the interval
(a, b), denoted X ∼ U(a, b), if

FX(x) =


0, x < a,
x − a

b − a
, a ≤ x ≤ b,

1, x > b,

and

fX(x) =


0, x < a, x > b,

1
b − a

, a ≤ x ≤ b.

Definition 2 (Normal). A scalar-valued random variable X is normally distributed with
mean µ and variance σ2, denoted X ∼ N(µ, σ2), if

FX(x) = 1
2

(
1 + erf

(
x − µ

σ
√

2

))
and

fX(x) = 1
σ

√
2π

exp
(

−(x − µ)2

2σ2

)
.

A vector-valued random variable X is multivariate normal with mean µ and covariance
matrix Σ, denoted by X ∼ N(µ, Σ), if aTX ∼ N(aTµ, aTΣa) for all a.

Definition 3 (Log-normal). A random variable X is log-normally distributed with mean
µ and variance σ2, denoted X ∼ LN(µ, σ2), if

FX(x) = 1
2

(
1 + erf

( ln x − µ

σ
√

2

))
and

fX(x) = 1
σx

√
2π

exp
(

−(ln x − µ)2

2σ2

)
.

In particular, a scalar-valued random variable X is LN(µ, σ2) if and only if ln X ∼
N(µ, σ2), and a vector-valued random variable X is LN(µ, Σ) if and only if ln X ∼
N(µ, Σ).

Definition 4 (Binomial). A random variable X is binomially distributed with parameters
n ∈ N and 0 < p < 1, denoted X ∼ Bin(n, p), if

FX(x) =


0, x < 0,
⌊x⌋∑
k=0

(
n

k

)
pk(1 − p)n−k, x ≥ 0,
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and

pX(k) =
(

n

k

)
pk(1 − p)n−k, k ∈ N ∪ {0}.

Definition 5 (Poisson). A random variable X is Poisson distributed with rate λ, denoted
X ∼ Po(λ), if

FX(x) =


0, x < 0,

e−λ
⌊x⌋∑
k=0

λk

k!
, x ≥ 0,

and
pX(k) = e−λ λk

k!
, k ∈ N ∪ {0}.

Definition 6 (Exponential). A random variable X is exponentially distributed with rate
λ, denoted X ∼ Exp(λ), if

FX(x) =
{

0, x < 0,
1 − e−λx, x ≥ 0,

and

fX(x) =
{

0, x < 0,
λe−λx, x ≥ 0.

2.2.3 Poisson processes
A Poisson process can be thought of as a counting process of events which occur with
constant rate and independently of each other. Due to its convenient properties and
relatively weak assumptions, it is widely used for modeling stochastic phenomena in
numerous areas in science and engineering. Over time, it is nondecreasing and piecewise
constant, with discontinuities at certain jump points.

Example 4 (Bicycle counter). Consider a bridge on which a bicycle counter has been
installed, displaying the number of bicycles that have crossed the bridge that day. Dis-
regarding the fact that the bicycle traffic is likely to be heavier at certain times of the
day, e g rush hour, and assuming that the event of one cyclist crossing the bridge is
independent of those of all other cyclists crossing, we can model the count at each time
of the day as a Poisson process.

Formally, Poisson processes are defined as follows:

Definition 7 (Poisson process). APoisson process with rateλ is a time-indexed collection
{M(t)}t≥0 of random variables such that

(i) M(0) = 0,
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(ii) for each finite collection 0 = t0 < t1 < t2 < ..., the increments {M(ti+1) −
M(ti)}i≥0 are independent, and

(iii) M(t) ∼ Po(λt) for all t.

Poisson processes havemany interesting properties, one of which ismemorylessness
in the sense that at any given time, the distribution of the time of the next jump does not
depend on the time since the last jump. Letting 0 = t0 < t1 < t2 < ... be the times of
the jumps, i e {ti}i≥1 = {t ≥ 0 : M(t−) ̸= M(t+)}, and letting ∆ti = ti − ti−1 for
all i, we have that

P(∆ti > t + t′ | ∆ti > t′) = P(∆ti > t).

One can prove that the interarrival times {∆ti}i≥0 are in fact independent and identi-
cally Exp(λ)-distributed, where λ is the rate of the Poisson process. Furthermore, we
have the following property about the distribution of {ti}i≥1, which will be important
for sampling Poisson processes:

Theorem 1. Let T > 0, let N ∼ Po(λT ) for some constant λ > 0, and let {τi}N
i=1

be conditionally independent given N and U(0, T )-distributed. Then the collection
{M(t)}t∈[0,T ], where

M(t) =
N∑

i=1
1(τi ≤ t)

for each t, is a Poisson process with rate λ on [0, T ].

Proof. Properties (i) and (ii) in Definition 7 are trivially satisfied due to the indicator
functions. For (iii), note that M(t) | N = n ∼ Bin(t/T , n) since the event M(t) = k
amounts to finding k of the τi below and n − k above t. Hence, by the tower property,
direct calculation of the pmf gives

pM(t)(k) = P(M(t) = k)
= E [P(M(t) = k | N)]

= E
[(

N

k

)(
t

T

)k (T − t

T

)N−k
]

=
∞∑

n=0

(
n

k

)(
t

T

)k (T − t

T

)n−k (λT )n

n!
e−λT

= e−λT (λt)k

k!

∞∑
n=k

(λ(T − t))n−k

(n − k)!

= e−λt (λt)k

k!
,

which is identified as the pmf of a Po(λt) distribution.
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As a generalization of the Poisson process, which only counts the number of jumps
until a certain time, the compound Poisson process has variable jumps which are iid
random variables. The compound Poisson process can be defined as follows:

Definition 8 (Compound Poisson process). Let {M(t)}t≥0 be a Poisson process with
rate λ. A compound Poisson process with rate λ is a collection {P (t)}t≥0 of random
variables defined by

P (t) =
M(t)∑
i=1

Di

for each t, where {Di}i≥1 are iid random variables independent of {M(t)}t≥0.

Note that by virtue of Theorem 1, we can write

M(t) =
M(T )∑
i=1

1(τi ≤ t)

for each t, {τi}M(T )
i=1 being conditionally independent givenM(T ) andU(0, T )-distributed.

The process {P (t)}t∈[0,T ] can then be represented as

P (t) =
M(T )∑
i=1

Di1(τi ≤ t)

for each t, where {Di}M(T )
i=1 are conditionally independent given M(T ), independent of

{τi}M(T )
i=1 and identically distributed. This will be important for simulating compound

Poisson processes.

2.3 Portfolio theory and risk valuation
This section briefly summarizes some of the most important parts from standard portfo-
lio theory and risk valuation—for an introduction to the topic, see e g [17].

2.3.1 Preliminaries
Let [0, T ] be a given time period, and consider n risky assets with prices {Sj(t)}n

j=1 and
a risk-free asset with price S0(t) for 0 ≤ t ≤ T . Writing S(t) = (S1(t), ..., Sn(t))T, a
position in these assets—a portfolio—is represented by a vector

h(t) = (h1(t), ..., hn(t))T

and a scalar h0(t), where the investor is hi(t) units long in asset j at time t for each j,
and where the total portfolio value V (t) at time t is given by

V (t) =
n∑

j=0
hj(t)Sj(t) = h0(t)S0(t) + h(t)TS(t).
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Here, a negative value of hj(t) represents a short position.
For the purposes of this thesis, we will assume that the positions are fixed during the

whole time period and write h(t) = h and h0(t) = h0—in other words, we will restrict
ourselves to solve the one-period optimal asset allocation problem. Without loss of
generality, suppose that the initial value V (0) of the portfolio is 1. It is often convenient
to let wj = hjSj(0) for each j and write V (t) on the form

V (t) =
n∑

j=0
wj

Sj(t)
Sj(0)

= w0R0(t) + wTR(t),

where R0(t) = S0(t)/S0(t) and

R(t) =
(

S1(t)
S1(0)

, ..., Sn(t)
Sn(0)

)T

is the vector of (geometric) returns over the period [0, t] and where
∑n

i=0 wi = 1.

2.3.2 Mean-variance analysis
Inmean-variance analysis, the aim is to find the optimal allocation (w0, w) of resources
such that the expected portfolio valueE V (T ) at the end of the time period is maximized
and such that the variance Var V (T ) is minimized. The latter can be interpreted as a
quantification of the risk carried by the investor. This fundamental tradeoff between the
two objectives can be illustrated by drawing an efficient frontier in a plot of

√
Var V (T )

against E V (t)—that is, a curve on which each point is optimal in the sense that one
cannot improve one objective without worsening the other. Such an efficient frontier
can be produced by solving multiple optimization problems minimizing the variance
subject to a constraint on the mean return, varying the latter between suitable values.

Consider first the case when all assets are risky, which corresponds to the restric-
tion w0 = 0. Letting µ = E R(T ) be the mean return vector of the risky assets and
Σ = Var R(T ) = E[R(T )R(T )T] − µµT be the covariance matrix of returns, we have
E V (T ) = wTµ and Var V (T ) = wTΣw, so our optimization problem may be formu-
lated as

minimize
w

wTΣw

subject to µTw ≥ µreq,
eTw ≤ 1,

(2.1)

where µreq is the required minimum mean return and e is the one-vector. The constraint
eTw ≤ 1 rather than eTw = 1 is due to the possibility that one might not want to invest
all initial capital if no risk-free asset is available. The solutions to (2.1) are given by the
following result [17]:

Theorem 2. All solutions to (2.1) can be written on the form

w = 1
λ

Σ−1
(

µ − max{eTΣ−1µ − λ, 0}
eTΣ−1e

e

)
,
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where λ > 0 is a parameter.

In a graph with
√

Var V (T ) =
√

wTΣw on the horizontal axis and E V (T ) = wTµ
on the vertical axis, one can see from this that for λ ≥ eTΣ−1µ, the efficient frontier is
a straight line, whereas for λ < eTΣ−1µ, the frontier curves down as a hyperbola (see
Figure 2.1). The point for which λ = eTΣ−1µ (marked with a hollow circle in Figure
2.1) corresponds to the minimum-variance portfolio where the mean return constraint
is ignored completely, and the straight line beyond it can be interpreted as discarding a
fraction of the initial capital.

Now, introducing a risk-free asset with rate r0 and return er0T over [0, T ], we have
instead E V (T ) = w0er0T + wTµ (the variance is unchanged) and are to solve

minimize
w0,w

wTΣw

subject to w0er0T + µTx ≥ µreq,
w0 + eTw = 1.

(2.2)

Similarly, one can show the following [17]:

Theorem 3. All solutions to (2.2) are on the form

w = 1
λ

Σ−1
(
µ − er0T

)
, w0 = 1 − eTw.

Thus, it is easy to see that the entire efficient frontier is now a straight line. Comparing
this to the previous efficient frontier (dashed line in Figure 2.1), it is not surprising to
see that the opportunity to invest in a risk-free asset improves the efficient frontier. It
can be shown that the dashed line is always tangent to the solid curve, and the tangency
point corresponds to what is called the tangency portfolio. The dashed line is sometimes
called the capital market line, and different points on this line correspond to different
risk-aversion preferences. In particular, only the ratio of capital invested in risk-free
assets and capital invested in risky assets is changed, while the relative capital allocation
of the risky assets remains the same.

19



Figure 2.1: Schematic plot of an efficient frontier with (dashed) and without (solid) a risk-free
asset, with standard deviation on the horizontal axis and mean return on the vertical axis. The
solid dot is the tangency portfolio and the hollow dot is the minimum-variance portfolio.

2.3.3 Stock processes and geometric Brownian motions
Stock processes are commonly modeled by geometric Brownian motions, implying log-
normal marginal distributions of returns. The model is crude but standard due to its
relatively weak assumptions and the existence of closed formulas, and is used in e g
Black-Scholes option pricing. Below is a brief outline of the underlying theory—for a
more rigorous treatment, see [8].

Consider n stocks with prices S(t) = (S1(t), ..., Sn(t))T for t ∈ [0, T ]. Built on
the idea that the relative increment of S(t) at each time should be split into a drift term
and a volatility term, we write

dSi(t) = Si(t) (µi dt + σi dWi(t))

for 1 ≤ i ≤ n, where µ = (µ1, ..., µn)T and σ = (σ1, ..., σn)T are constant param-
eters and where {W (t)}t∈[0,T ] = {(W1(t), ..., Wn(t))T}t∈[0,T ] is a multidimensional
Brownian motion on Rn with correlation E[dWi(t) dWj(t)] = ϱij dt. We then have the
following:

Theorem 4. The return R(T ) = (S1(T )/S1(0), ..., Sn(T )/Sn(0))T is distributed as

R(T ) ∼ LN
((

µ − 1
2

diag(σ)σ
)

T , diag(σ)ϱ diag(σ)T
)

Proof. By Itô’s lemma, we have

d ln Si(t) =
( 1

Si(t)
Si(t)µi − 1

2
1

Si(t)2 Si(t)2σ2
i

)
dt + 1

Si(t)
Si(t)σi dWi(t)

=
(

µi − 1
2

σ2
i

)
dt + σi dWi(t)
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or, integrating over [0, T ],

ln Ri(T ) = ln Si(T )
Si(0)

=
(

µi − 1
2

σ2
i

)
T + σiWi(T ).

On vector form, this amounts to

ln R(T ) =
(

µ − 1
2

diag(σ)σ
)

T + diag(σ)W (T ),

and the result follows by noting that W (T ) ∼ N(0, ϱT ).

2.3.4 Risk measures
In classical mean-variance analysis, variance or standard deviation is used to quantify
the risk associated with the return of a portfolio. Being simply the expected squared
deviation from the mean, however, the variance does not differentiate between positive
and negative deviations and only works in principle when the distribution of the return
is completely parametrized by its mean and variance, e g in the case of a normal dis-
tribution. This motivates the use of more sophisticated risk measures, which can take
into account tail risks and highly skewed return distributions. Formally, we have the
following:

Definition 9 (Risk measure). Let X ∈ X be the return at t = T of a portfolio for some
linear vector space X of random variables. A risk measure is a function ρ : X →
R ∪ {∞}, assigning a (possibly infinite) real number to each X representing the risk
associated with X .

The number ρ(X) can be interpreted as the minimum amount of capital that needs
to be invested in the risk-free asset in order to make the position X acceptable. Equiv-
alently, for our purposes, it might be convenient to instead consider the discounted loss
L = 1−V (T )e−r0T where V (0) = 1 and V (T ) = x0R0(T )+xTR(T ) are the portfolio
values at t = 0 and t = T , respectively. The following is a list of desirable properties
of a risk measure:

1. Translation invariance. ρ(X + cer0T ) = ρ(X) − c for all c ∈ R. The interpreta-
tion of this is that adding an amount of c in risk-free investments will reduce the
risk by the same amount.

2. Monotonicity. If X1 ≥ X2, then ρ(X1) ≤ ρ(X2). That is, if some position surely
has higher return than another, then the first position is considered less risky.

3. Convexity. ρ (λ1X1 + λ2X2) ≤ λ1ρ(X1) + λ2ρ(X2) for all λ1, λ2 ≥ 0 such that
λ1 + λ2 = 1.

4. Normalization. ρ(0) = 0. This tells us that not investing anything will also imply
zero risk.

21



5. Positive homogeneity. ρ(λX) = λρ(X) for all λ ≥ 0. That is, if we scale the
size of the position by a factor λ ≥ 0, the risk will be scaled by the same amount.

6. Subadditivity. ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

There are numerous commonly used risk measures, some of which are more so-
phisticated than others and each having its own advantages and disadvantages. For a
thorough presentation of different examples of risk measures and their properties, see e
g [17]. In this thesis, the study of risk measures will be restricted to value-at-risk (VaR)
and conditional value-at-risk (CVaR).

Definition 10 (Value-at-risk). The value-at-risk at level α ∈ (0, 1) of a portfolio X with
loss L is defined as

VaRα(X) = inf {x ∈ R : FL(x) ≥ 1 − α} ,

where FL(x) is the cdf of L. In particular, if F −1
L exists, then one can write VaRα(X)

more conveniently as
VaRα(X) = F −1

L (1 − α).

The VaR can be interpreted as the smallest amount of money required to be invested
in the risk-free asset at t = 0 such that the probability of a positive loss at t = T is
at most α. In practical applications, one commonly sets α to 0.01, 0.05 or 0.1. The
VaR captures to some extent information about the right tail of the distribution of L—
that is, loosely speaking, optimizing on VaR corresponds to controlling the presence of
abnormally large losses. It is easy to show that VaR is translation-invariant, monotonous,
and positive homogeneous; however, it is neither convex nor subadditive, which is one
of its drawbacks. Another serious drawback is that VaR ignores the right tail ofL beyond
the 1 − α level quantile, which makes it possible to miss risks which are highly unlikely
but very large in magnitude. This is especially relevant in the context of catastrophe
bonds, where tail risks make up the main characteristics of the instrument.

As an improvement of VaR, one can instead use CVaR:

Definition 11 (Conditional value-at-risk). The conditional value-at-risk at levelα ∈ (0, 1)
of a portfolio X with loss L is defined as

CVaRα(X) = 1
α

ˆ α

0
VaRα′(X) dα′.

The motivation behind CVaR that it, instead of measuring where the “boundary” to the
α-level upper tail lies, measures the mean in the whole tail. Indeed, when FL(x) is
continuous, it is easy to show that

CVaRα(X) = E [L | L ≥ VaRα(X)] .

It is intuitive that measuring the mean tail loss better incorporates extreme loss events.
Furthermore, one can show that CVaR, as opposed to VaR, is also subadditive and con-
vex apart from being translation-invariant, monotonous and positive homogeneous.
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2.4 Numerical methods
2.4.1 Monte Carlo sampling
Apart from in very special cases, for a general portfolio with value X at t = T , the
expression for ρ(X) is analytically intractable and not possible to evaluate directly. In-
stead, the standard way to proceed is by Monte Carlo sampling of the returns, from
which ρ(X) can be estimated. In particular, suppose that we have independent and
identically distributed (iid) realizations {Xi}N

i=1 of X , which we may obtain if the dis-
tribution of X is known. For a portfolio with weight vector w and known joint distribu-
tion of the return vector R(T ) corresponding to the asset values {Sj(T )}n

j=0 at t = T ,
we can obtain iid samples {Ri}N

i=1 of R(T ) where Xi = w0er0T + wTRi for each i.
In turn, letting {Li}N

i=1 be such that Li = −Xie
−r0T for each i, the cdf FL(x) of the

discounted loss L may be estimated by the empirical cdf

F emp
L (x) = 1

N

N∑
i=1

1(Li ≤ x).

Note that with this, we may estimate the VaR of X as

VaRα(X) ≈ inf{x ∈ R : F emp
L (x) ≥ 1 − α}

and the CVaR of X as

CVaRα(X) ≈ 1
α

ˆ α

0
inf{x ∈ R : F emp

L (x) ≥ 1 − α′} dα′.

We shall, however, refrain from presenting details of explicitly computing these, as an
arguably better method will be presented in Section 3.2.

Next, let R = (Rij)i,j be an N ×(n+1) matrix of sampled returns, whereRij is the
return of asset j for the ith realization for all 0 ≤ j ≤ n and 1 ≤ i ≤ N—that is, each
row Ri is the outcome of a realization of the return vector (R0(T ), R(T )) including the
risk-free asset. Thus, the components of ℓ = e − e−r0T Rw, where we have included
w0 in w, can be seen as outcomes of iid realizations of L with the resource allocation w,
and the corresponding risk may be estimated by a function ρ(ℓ). For convenience, we
shall adopt a slight abuse of notation and use ρ(ℓ) and ρ(X) interchangeably, where the
former is the sample estimated risk measure and the latter a random variable defining
the risk measure.

2.4.2 Optimization
In principle, we are now ready to state our main optimization problem formulation. The
inherent tradeoff between a low estimated risk ρ(ℓ) and a high estimated expected return
eTRw can be visualized by computing an efficient frontier similar to that in the case of
mean-variance analysis. Again, we choose to optimize on the risk measure subject to
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a minimum mean return constraint eTRw ≥ µreq and repeating for different values of
µreq. The main optimization problem is thus stated as follows:

minimize
w

ρ
(
e − e−r0T Rw

)
subject to

1
N

eTRw ≥ µreq,

eTw = 1.

(2.3)

The problem (2.3) is a nonlinear optimization problem and typically solved numer-
ically using some optimization solver package. For the purposes of this thesis, we shall
use the fmincon function in MATLAB, which by default implements an interior-point
algorithm. In short, the interior-point algorithm casts a generic nonlinear optimization
problem

minimize
x

f(x)

subject to h(x) = 0,
g(x) ≤ 0

to an approximate problem

minimize
x

f(x) − µT ln s

subject to h(x) = 0,
g(x) + s = 0,

for all µ > 0, where s is a vector of slack variables and the logarithmic term is called the
barrier function. At each iteration, the algorithm attempts to minimize a merit function
on the form

f(x) − µT ln s + ν
(
h(x)Th(x) + (g(x) + s)T(g(x) + s)

)
,

where violation of the constraints is taken into account by the ν-term. The algorithm
relies on specifying the objective function and its gradient—in particular, one must be
able to easily compute the gradient ∂ρ/∂w, which is not the case for the above defini-
tions of VaR and CVaR. This issue is addressed in detail and resolved in Section 3.2.
For more on optimization theory in general, see e g [24].
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Chapter 3

Main work

The main contribution of this thesis is twofold: the loss modeling of catastrophe bonds
and the method of direct gradient-based optimization of value-at-risk and conditional
value-at-risk. As for loss modeling, we present first a simplistic model—referred to
as the discontinuous uniform model—intended to showcase the main characteristics of
catastrophe bond returns, and then amore advancedmodel—referred to as the compound
Poisson model. The former is mainly a special case of the two-point Kumaraswamy
model outlined in [14], whereas the latter takes into account the possibility of multiple
catastrophic events (which is highly probable for e g bonds with parametric or industry
index loss trigger) and the influence of their times of occurrence on the total return of
the bond.

As for the direct gradient-based optimization on VaR and CVaR, we are solving
the problem of both being computationally intractable in the sense that they are dis-
continuous and nondifferentiable in their empirical forms, preventing the application of
standard optimization algorithms for which a gradient to the function must be supplied.
Numerous methods of circumventing this problem are used in literature, such as the one
described in the original article [25] in which CVaRwas first introduced where the prob-
lem is cast into a linear programming form; [14], for example, uses the Lagrangian dual
of this formulation. In this thesis, the problems are overcome by the introduction of an
auxiliary (fictional) measurement noise making VaR as well as CVaR smooth with eas-
ily computable gradients. The method is equivalent to the technique of kernel density
estimation and resembles the work in [26].

3.1 Loss modeling of cat bonds
3.1.1 Discontinuous uniform model
Consider Example 2 and, in particular, the fact that the attachment and exhaustion prob-
abilities are given. As a crude initial attempt at modeling the return distribution of a
catastrophe bond, we shall exploit this information and divide the outcome at maturity
into three distinct cases: (i) the outstanding principal equals the original principal, (ii)
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the outstanding principal is non-zero but smaller than the original principal, and (iii) the
outstanding principal is zero. Denoting by pa and pe, respectively, the attachment and
exhaustion probabilities, (i) occurs with probability 1 − pa, (ii) with probability pa − pe
and (iii) with probability pe.

Let t ∈ [0, T ] be the term of a catastrophe bond and r0 the risk-free rate, where we
are interested in the (nominal) value V (T ) at maturity of a portfolio containing only the
catastrophe bond and the risk-free asset. Suppose that the original principal is 1 and that
the position in the risk-free asset is 0 at t = 0, and assume continuous compounding and
continuous coupon yield with rate c. Furthermore, in order to keep the model as simple
as possible, suppose that at most one catastrophe may occur during the term and that, if
it occurs, it occurs immediately after the contract has been entered (that is, at t = 0+).
Finally, suppose that given (ii), the principal reduction due to the catastrophe is U(0, 1).
The model built on these assumptions will be referred to as the discontinuous uniform
model.

For (iii), it is clear that V (T ) = 0 since the bond loses all of its value as soon as
the collateral account is exhausted. For (i), note that the continuously paid coupons
are constant in nominal value over the whole term. During each infinitestimal interval
[t, t + dt), a coupon of c dt is received and immediately invested in the risk-free asset,
the value of which will be cer0(T −t) dt at t = T . Integrating, we get that V (T ) in this
case will amount to

V (T ) = 1 +
ˆ T

0
cer0(T −t) dt = 1 + c

r0

(
er0T − 1

)
,

where the added 1 is the repayment of the whole original principal. Similarly, for (ii), if
the outstanding principal after the catastrophe and at maturity is P (T ), we have that

V (T ) = P (T )
(

1 + c

r0

(
er0T − 1

))
.

In other words, in terms of the random variableP (T ), whereP(P (T ) = 1) = 1−pa,
P(P (T ) = 0) = pe and P (T ) | 0 < P (T ) < 1 ∼ U(0, 1), the cdf FV (T )(x) of V (T )
may be written as

FV (T )(x) =


0, x < 0,

pa − pe
1 + cχ(0, T )

x + pe, 0 ≤ x < 1 + cχ(0, T ),

1, x ≥ 1 + cχ(0, T ),

where we have introduced the function χ(t1, t2), defined for 0 ≤ t1 < t2 ≤ T as

χ(t1, t2) =
ˆ t2

t1

er0(T −t) dt = er0(T −t1) − er0(T −t2)

r0
.

In particular, we have the following:
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Proposition 1. The expected value E V (T ) at maturity of a catastrophe bond as defined
in the discontinuous uniform model with unit original principal is given by

E V (T ) = (1 + cχ(0, T ))
(

1 − pa + pe
2

)
.

Proof. Direct calculation gives

E V (T ) = (1 + cχ(0, T )) E P (T )
= (1 + cχ(0, T )) (0pe + 1(1 − pa) + E[P (T ) | 0 < P (T ) < 1](pa − pe))

= (1 + cχ(0, T ))
(

1 − pa + pe
2

)
,

using the fact that E[P (T ) | 0 < P (T ) < 1] = E U(0, 1) = 1/2.

For illustration, a plot of the cdf of V (T ) for parameters T = 1, r0 = 0.05, c = 0.25,
pa = 0.4 and pe = 0.2 is shown in Figure 3.1, where E V (T ) ≈ 0.88.
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Figure 3.1: Plot of the cdf of V (T ) for the discontinuous uniform model with parameters T = 1,
r0 = 0.05, c = 0.25, pa = 0.4 and pe = 0.2.

3.1.2 Compound Poisson process
In this model, we shall try to take into account the times of occurrence of the underlying
catastrophe events more carefully than for the discontinuous uniform model. Since the
coupons are central for the profitability of owning the bond and are affected by the arrival
times of the events, as illustrated in Example 1, it is important not only to incorporate
the possibility that several catastrophic events may occur but also model their arrival
time distributions. Furthermore, it is reasonable to assume that the catastrophic events
vary in degree of severity.
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Let {P (t)}t∈[0,T ] be the outstanding principal process over the term [0, T ] of a catas-
trophe bond with unit original principalP (0) = 1. Motivated by the above, suppose that
{P (t)}t∈[0,T ] follows a compound Poisson process with rate λf , where {M(t)}t∈[0,T ] is
the associated Poisson process with the same rate counting the numberM(t) of catastro-
phes that have occurred in the time interval [0, t] for each t ∈ [0, T ]. Suppose, further-
more, that the catastrophes (M(T ) in total) can be represented by pairs {(τi, Di)}M(T )

i=1 ,
where the τi are the arrival times of the catastrophes and Di are the corresponding
reductions in outstanding principal (severities) of the catastrophes. Finally, suppose
that the severities {Di}M(T )

i=1 are conditionally independent given M(T ) and identically
Exp(λs)-distributed.

Just as for the discontinuous uniform model, we seek the nominal value V (T ) of
a portfolio only containing the catastrophe bond and the risk-free asset, with initial
value V (0) = 1 all invested in the former. Note that the {τi}M(T )

i=1 are the (not nec-
essarily sorted) jump times in the processes {M(t)}t∈[0,T ] and {P (t)}t∈[0,T ], which by
the properties of the Poisson process are conditionally independent given M(T ) and
U(0, T )-distributed. We can thus for each t ∈ [0, T ] write M(t) and P (t) as

M(t) =
M(T )∑
i=1

1(τi ≤ t)

and

P (t) = max

1 −
M(T )∑
i=1

Di1(τi ≤ t), 0

 ,

which leads to the following:

Proposition 2. Letting 0 = τ(0) ≤ τ(1) ≤ ... ≤ τ(M(T )) ≤ τ(M(T )+1) = T be the sorted
arrival times, we can write

V (T ) = max

1 −
M(T )∑
j=1

Dj , 0

+ c

M(T )∑
i=0

max

1 −
i∑

j=1
D(j), 0

χ
(
τ(i), τ(i+1)

)
.

Proof. In each interval
[
τ(i), τ(i+1)

)
, 0 ≤ i ≤ M(T ), the outstanding principal is con-

stantly P (τ(i)), and in each infinitesimal interval [t, t+dt) ⊂
[
τ(i), τ(i+1)

)
we have that

the contribution to V (T ) due to coupon yield is cP
(
τ(i)
)

er0(T −t) dt, where c is the con-
tinuously compounded coupon rate. Integrating and summing over all subintervals, we
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get that

V (T ) = P (T ) +
M(T )∑
i=0

ˆ τ(i+1)

τ(i)

cP
(
τ(i)
)

er0(T −t) dt

= P (T ) + c

M(T )∑
i=0

P
(
τ(i)
)

χ
(
τ(i), τ(i+1)

)

= max

1 −
M(T )∑
j=1

Dj , 0

+ c

M(T )∑
i=0

max

1 −
i∑

j=1
D(j), 0

χ
(
τ(i), τ(i+1)

)
,

where P (T ) is added as the repayment of the outstanding principal at maturity.

Mainly due to the positive part operators x 7→ max{x, 0}, even the expectation
of V (T ) is intractable, but it is on the other hand easy to sample from V (T ) since all
distributions are well-defined. In practice, a realization of V (T ) is obtained by the
following procedure:

1. Draw M(T ) ∼ Po(λfT ).

2. Draw {τi}M(T )
i=1 as iid realizations of a U(0, T )-distributed variable and sort in

increasing order to obtain {τ(i)}
M(T )
i=1 .

3. Draw {Di}M(T )
i=1 as iid realizations of a Exp(λs)-distributed variable.

4. Compute V (T ) according to the above.

3.2 Gradient-based optimization on VaR and CVaR
3.2.1 Variance as risk measure
In order to demonstrate the problem with optimizing directly on VaR and CVaR with
their current definitions, consider the case when variance is used as “risk measure”—
that is,

ρ(ℓ) = 1
N − 1

N∑
i=1

(
ℓi − 1

N

N∑
i′=1

ℓi′

)2

= 1
N − 1

ℓT
(

I − 1
N

eeT
)

ℓ.

The gradient ∂ρ(ℓ)/∂ℓ with respect to ℓ is given by

∂ρ(ℓ)
∂ℓ

=
(

∂ρ(ℓ)
∂ℓ1

, ..., ∂ρ(ℓ)
∂ℓN

)T
= 2

N − 1

(
I − 1

N
eeT

)
ℓ,

and by the chain rule, the gradient ∂ρ(ℓ)/∂w with respect to the portfolio weights w is
given by

∂ρ(ℓ)
∂w

= ∂ℓ

∂w

∂ρ(ℓ)
∂ℓ

= − 2er0T

N − 1
RT

(
I − 1

N
eeT

)
ℓ,
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using the Jacobian ∂ℓ/∂w = −er0T RT. Hence, for each ℓ, both the function value ρ(ℓ)
and its gradient ∂ρ(ℓ)/∂w are easily computed, which is necessary for using the interior-
point algorithm. Moreover, it is apparent that ρ(ℓ) is convex and infinitely differentiable
in w, guaranteeing that the algorithm will be well-behaved.

For VaR and CVaR, however, we do not have this convenience. In fact, since the
empirical cdf F emp

L (x) is discontinuous and piecewise constant, both VaR and CVaR
are discontinuous functions of w and nowhere differentiable. This is a serious problem
since it makes it impossible to proceed with well-established gradient-based nonlinear
optimization algorithms. Instead, one has to resort to more or less ad hoc methods such
as that first presented by [25], where one introduces auxiliary variables to transform the
optimization problem into linear programming form (which can be more computation-
ally expensive).

3.2.2 Smoothing by auxiliary noise
In this thesis, we shall employ a somewhat different approach to overcome this problem.
Noting that the discontinuities and general intractabilities of VaR and CVaR arise as a
consequence of F emp

L (x) being piecewise constant, we seek a way of “smoothing out”
the function and making its properties more mathematically convenient—in particular,
ideally, we would like our estimate of the cdf to be infinitely differentiable and strictly
increasing everywhere, guaranteeing the existence of a corresponding pdf. Note that
estimating FL(x) by F emp

L (x) is equivalent to exchanging L with a discrete random
variable Ldisc with possible outcomes {ℓi}N

i=1 with P(L = ℓi) = 1/N for each i.
Now, instead of replacing L by Ldisc, we shall replace L by L′ = Ldisc + ε where

ε ∼ N(0, ϵ2) is some normally distributed noise independent of Ldisc. The role of
F emp

L (x) is thus replaced by the cdf FL′(x) of L′, which is given by

FL′(x) = P(L′ ≤ x)

=
ˆ ∞

−∞
P(L′ ≤ x | ε = x′)fε(x′) dx′

=
ˆ ∞

−∞

1
N

N∑
i=1

1(ℓi + x′ ≤ x)k(x′) dx′

= 1
N

N∑
i=1

ˆ x−ℓi

−∞
k(x′) dx′

= 1
N

N∑
i=1

K(x − ℓi).

Here, k(x) and K(x) are the pdf and the cdf, respectively, of a N(0, ϵ2)-distributed
random variable. Note that with this, FL′(x) becomes infinitely differentiable and ev-
erywhere strictly increasing, and, in particular, one also has a corresponding pdf

fL′(x) = ∂FL′(x)
∂x

= 1
N

N∑
i=1

k(x − ℓi)
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which satisfies fL′(x) > 0 for all x ∈ R. All of these properties will turn out to
be important in the following. The above smoothing step amounts to making a kernel
density estimation using a Gaussian kernel with bandwidth ϵ, and illustrations of the
effect of this are shown in Figures 3.2, 3.3.

For convenience, we shall in the following use L and L′ interchangeably as the
discounted loss associated with X , eliminating the use of eventual approximation signs.
For sufficiently small noise variances ϵ2, one can argue that the addition of the noise ε
has little effect on the loss distribution.

Figure 3.2: Illustration of the effect of kernel density estimation compared to the histogram
method, with data drawn from a N(±1, 1/2) mixture distribution. Note the smooth nature of
the KDE estimate.
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Figure 3.3: Comparison between the empirical cdf and the kernel density estimated cdf with the
same data as in 3.2. Again, note the smooth nature of the latter.
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For VaR, as a direct consequence of FL′(x) being everywhere strictly increasing, its
inverse exists and we have VaRα(ℓ) = F −1

L′ (1 − α). One can thus in a straightforward
fashion evaluate VaRα(ℓ) numerically, e g by the Newton-Raphson algorithm, and it
turns out that once this has been done the gradient is also easily evaluated. This is
shown in the following:

Proposition 3. Using L′ as substitute for L, VaRα(ℓ) is the unique solution to the equa-
tion

1
N

N∑
i=1

K(VaRα(ℓ) − ℓi) = 1 − α.

Furthermore, for each 1 ≤ i ≤ N , we have

∂VaRα(ℓ)
∂ℓi

= k(VaRα(ℓ) − ℓi)
N∑

i′=1
k(VaRα(ℓ) − ℓi′)

.

Proof. Differentiation with respect to ℓi gives

0 = ∂

∂ℓi

1
N

N∑
i′=1

K(VaRα(ℓ) − ℓi′)

= 1
N

N∑
i′=1

k(VaRα(ℓ) − ℓi′)
(

∂VaRα(ℓ)
∂ℓi

− δii′

)

= ∂VaRα(ℓ)
∂ℓi

1
N

N∑
i′=1

k(VaRα(ℓ) − ℓi′) − 1
N

k(VaRα(ℓ) − ℓi)

or
∂VaRα(ℓ)

∂ℓi
= k(VaRα(ℓ) − ℓi)

N∑
i′=1

k(VaRα(ℓ) − ℓi′)
,

where the denominator is clearly always positive as k(x) > 0 for all x.

As for CVaR, we may proceed similarly. The main result is summarized in the
following:

Proposition 4. Using L′ as substitute for L, we have

CVaRα(ℓ) = 1
αN

N∑
i=1

(
ℓiK(ℓi − VaRα(ℓ)) + ϵ2k(ℓi − VaRα(ℓ))

)
and

∂CVaRα(ℓ)
∂ℓi

= 1
αN

K(ℓi − VaRα(ℓ))

for each 1 ≤ i ≤ N .
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Proof. By using the representation

CVaRα(ℓ) = 1
α

ˆ α

0
F −1

L′ (1 − α′) dα′ = 1
α

ˆ ∞

VaRα(ℓ)
xfL′(x) dx,

where the last step is by substituting 1−α′ = FL′(x), we can integrate by parts to obtain

CVaRα(ℓ) = 1
α

(
x(FL′(x) − 1)

∣∣∣∣∞
VaRα(ℓ)

−
ˆ ∞

VaRα(ℓ)
(FL′(x) − 1) dx

)

= 1
α

(
0 − VaRα(ℓ)(1 − α − 1) + 1

N

N∑
i=1

ˆ ∞

VaRα(ℓ)
K(ℓi − x) dx

)

= VaRα(ℓ) − 1
αN

N∑
i=1

(
(ℓi − x)K(ℓi − x) + ϵ2k(ℓi − x)

) ∣∣∣∞
VaRα(ℓ)

= VaRα(ℓ) + 1
αN

N∑
i=1

(ℓi − VaRα(ℓ))K(ℓi − VaRα(ℓ))

+ ϵ2

αN

N∑
i=1

k(ℓi − VaRα(ℓ))

= 1
αN

N∑
i=1

(
ℓiK(ℓi − VaRα(ℓ)) + ϵ2k(ℓi − VaRα(ℓ))

)
.

Here, we have used the fact that ∂(xK(x) + ϵ2k(x))/∂x = K(x) as a property of k
and K and that FL′(VaRα(ℓ)) = 1 − α. Moreover,

∂CVaRα(ℓ)
∂ℓi

= 1
αN

N∑
i′=1

δii′K(ℓi′ − VaRα(ℓ))

+ 1
αN

N∑
i′=1

ℓi′k(ℓi′ − VaRα(ℓ))
(

δii′ − ∂VaRα(ℓ)
∂ℓi

)

− ϵ2

αN

N∑
i′=1

ℓi′ − VaRα(ℓ)
ϵ2 k(ℓi′ − VaRα(ℓ))

(
δii′ − ∂VaRα(ℓ)

∂ℓi

)
= 1

αN
K(ℓi − VaRα(ℓ)) + 1

αN
VaRα(ℓ)k(ℓi − VaRα(ℓ))

− 1
αN

∂VaRα(ℓ)
∂ℓi

VaRα(ℓ)
∑
i′

k(ℓi′ − VaRα(ℓ))

= 1
αN

K(ℓi − VaRα(ℓ)),

where we have used ∂k(x)/∂x = −(x/ϵ2)k(x) and substituted in the expression for
∂VaRα(ℓ)/∂ℓi.
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Thus, once VaRα(ℓ) is obtained, both the function value and the gradient of CVaRα(ℓ)
are easily computed. It is worth noting that the partial derivative ∂CVaRα(ℓ)/∂ℓi comes
out surprisingly clean despite the somewhat cumbersome expression for ∂VaRα(ℓ)/∂ℓi.

As a side note, one can also show that the convexity of CVaRα(ℓ) is preserved by
exchangingLwithL′. This is important for practical reasons as it guarantees uniqueness
of the global minimum of the function, which is not the case for VaR and which is one
of the main benefits with using CVaR.

Proposition 5. CVaRα(ℓ) is a convex function in ℓ.

Proof. It is easy to show that CVaRα(ℓ) is twice differentiable in ℓ, and it is well-known
that such a function is convex if and only if its Hessian is positive semi-definite. Com-
ponentwise, we have

∂2CVaRα(ℓ)
∂ℓi ∂ℓi′

= 1
αN

k(ℓi − VaRα(ℓ))
(

δii′ − ∂VaRα(ℓ)
∂ℓi′

)
= 1

αNeTκ

(
eTκκiδii′ − κiκi′

)
,

where κ = (κ1, ..., κN )T = (k(ℓ1 − VaRα(ℓ)), ..., k(ℓN − VaRα(ℓ)))T, so for each
ξ ∈ RN ,

ξT ∂2CVaRα(ℓ)
∂ℓ2 ξ = 1

αNeTκ
ξT
(
eTκ diag(κ) − κκT

)
ξ

= 1
αNeTκ

((
eTκ

) (
ξT diag(κ)ξ

)
− ξTκκTξ

)
= 1

αNeTκ

(
∥e∥2∥ξ∥2 − |⟨e, ξ⟩|2

)
≥ 0,

showing positive semi-definiteness. The last inequality is due to Cauchy–Schwarz using
the inner product ⟨ξ1, ξ2⟩ = ξT

1 diag(κ)ξ2 and corresponding norm ∥ · ∥, which is well-
defined as κi > 0 for all i.
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Chapter 4

Numerical results

We present here a selection of numerical results obtained for different settings of portfo-
lio assets. In order to solve multiple problems on the form (2.3) for varying values of the
minimum expected return µreq to produce efficient frontiers and corresponding optimal
solutions, a short program was built in MATLAB R2017b. The built-in nonlinear con-
strained optimization solver fmincon, implementing an interior-point algorithm, was
used to solve the optimization problems numerically. For all of the setup cases below, a
Monte Carlo sample size ofN = 50000 was used to form the empirical return matrixR,
and the auxiliary noise ε ∼ N(0, ϵ2) was assumed to have variance ϵ2 = 0.052. In the
assumed absence of transaction costs, short-sellings were treated as negative positions.

4.1 Mean-variance analysis of stock portfolio
In order to test the validity of the algorithm before proceeding with more advanced
setups, we first tried to reproduce the efficient frontiers in Figure 2.1 where variance
was used as portfolio risk measure. The stocks {Si(t)}n

i=1 were assumed to follow a
multidimensional geometric Brownian motion on the form

dS(t)
S(t)

= b dt + s dW (t),

where {W (t)}t∈[0,T ] is a Brownian motion, yielding log-normal marginal distributions
of returns (the quotient on the left-hand side is taken componentwise). For our purposes,
we used n = 10 stocks with parameter values

b = (0.0100, 0.0133, 0.0167, 0.0200, 0.0233, 0.0267, 0.0300, 0.0333, 0.0367, 0.0400)T,
s = (0.0800, 0.0844, 0.0889, 0.0933, 0.0978, 0.1022, 0.1067, 0.1111, 0.1156, 0.1200)T

and

ϱ =


1 0.5 . . . 0.5

0.5 1 . . . 0.5
...

... . . . ...
0.5 0.5 . . . 1


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where ϱ is such that Var dW (t) = ϱ dt. By Theorem 4, the return vector R(T ) satisfies

R(T ) ∼ LN(µ, Σ)

where µ = (b − (1/2) diag(s)s)T and Σ = diag(s)ϱ diag(s)T , from which we can
easily sample. Marginal distributions of returns for this setup are shown in Figure 4.1.

Figure 4.2 shows the efficient frontiers obtained from this setup, where the maturity
was set to T = 3 and where the risk-free rate was assumed to be r0 = 0.001. One can
see that the behaviour described in Section 2.3.2 is indeed reproduced. In particular, the
tangency portfolio shows at a minimum mean return of around 1.3—in fact, this rather
low value of r0 was used only to make the tangency portfolio show in the plot window.

0 0.5 1 1.5 2 2.5 3

Return

0

0.5

1

1.5

2

2.5

p
d

f

Return marginal distributions for stock portfolio

Figure 4.1: Plot of the pdf’s of the marginal distributions of returns for the given stock portfolio,
all log-normal.
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Figure 4.2: Plot of obtained efficent frontiers for the above described setup, with and without the
possibility of investing in a risk-free asset. Note especially the tangency portfolio occurring at a
minimum mean return of around 1.3.

4.2 Single catastrophe bond in stock portfolio
4.2.1 Discontinuous uniform model
Consider the same stock portfolio as in Section 4.1 and maturity T = 3, but with a more
realistic risk-free rate of r0 = 0.02 and parameters

b = (0.0100, 0.0167, 0.0233, 0.0300, 0.0367, 0.0433, 0.0500, 0.0567, 0.0633, 0.0700)T,
s = (0.1000, 0.1056, 0.1111, 0.1167, 0.1222, 0.1278, 0.1333, 0.1389, 0.1444, 0.1500)T.

We investigate the effect of also including a cat bond specified by the discontinuous uni-
formmodel, with a coupon rate of c = 0.08 and exhaustion and attachment probabilities
pe = 0.03, pa = 0.07. By Proposition 1, the mean return of this catastrophe bond over
[0, 3] is 1.1850, which lies in the middle of the mean marginal returns of the stock given
by

(1.0316, 1.0521, 1.0727, 1.0951, 1.1172, 1.1386, 1.1627, 1.1854, 1.2107, 1.2361)T,

although higher than the return e0.02·3 = 1.0618 of the risk-free asset. Figure 4.3 shows
the return profile of this catastrophe bond in comparison to those of the stocks.

We optimize on this portfolio using VaR at level α = 0.05 as risk measure. Fig-
ure 4.4 shows the evolution of portfolio weights for the risk-free asset, the stocks and
the catastrophe bond as the minimum mean return increases. One can see that after a
minimum mean return of around 1.2, less is invested in the risk-free asset and more in
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the catastrophe bond. Furthermore, Figure 4.5 shows efficient frontiers with respect to
VaR0.05 and CVaR0.05 and compares risks before and after introducing the possibility
of investing in the catastrophe bond. Perhaps not very surprisingly, the efficient frontiers
are shifted outwards by the catastrophe bond, showing that it adds value to the portfolio.
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Figure 4.3: Comparison of return profiles between catastrophe bond (red) and stocks (black).
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Figure 4.4: Plot of portfolio weights for risk-free asset, stocks, and catastrophe bond when varying
minimum mean returns.
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Figure 4.5: Plot of efficient frontiers for VaR0.05 (solid) and CVaR0.05 (dashed), before and after
including a catastrophe bond.

4.2.2 Compound Poisson model
Wecan repeat the above using the same stock portfolio but the compound Poissonmodel.
We set r0 = 0.02 andT = 3. In order to reflect the contrast between themodels, suppose
that the catastrophe bond triggers relatively often but with relatively small instrument
losses each time—more precisely, we use λf = 0.5 and λs = 5, which amounts to
the assertion that a catastrophe occurs once every two years on average and that each
catastrophe incurs an instrument of 0.2 on average. These are arguably reasonable as-
sumptions for e g a catastrophe bond with parametric trigger. In compensation, we also
set a relatively high coupon rate of c = 0.2. This gives a mean return over [0, 3] of
1.2458, comparable to that of the stock with the highest mean return. The return profile
is compared to those of the stocks in Figure 4.6.

As above, we optimize on this portfolio using VaR at levelα = 0.05 as risk measure.
Figure 4.7 shows the evolution of portfolio weights for the risk-free asset, the stocks and
the catastrophe bond as the minimum mean return increases. One can see that after a
minimum mean return of around 1.1, less is invested in the risk-free asset and more in
the catastrophe bond. Furthermore, Figure 4.8 shows efficient frontiers with respect to
VaR0.05 and CVaR0.05 and compares risks before and after introducing the possibility
of investing in the catastrophe bond. Again, the efficient frontiers are shifted outwards
by the catastrophe bond.
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Figure 4.6: Comparison of return profiles between catastrophe bond (red) and stocks (black).
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Figure 4.7: Plot of portfolio weights for risk-free asset, stocks, and catastrophe bond when varying
minimum mean returns.
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Figure 4.8: Plot of efficient frontiers for VaR0.05 (solid) and CVaR0.05 (dashed), before and after
including a catastrophe bond.

4.3 Catastrophe bond portfolio
As a concluding experiment, we try the case of a portfolio only consisting of catastrophe
bonds and a risk-free asset. More precisely, we use the compound Poisson model on n
independent catastrophe bonds with coupon rates all equal to 0.2 and frequency/severity
rates (λf , λs) given according to

(λf , λs) ∈
{(

0.1 + 0.4 i − 1
n − 1

, 1 + 4 i − 1
n − 1

)}n

i=1
.

For example, if n = 5, catastrophe bond i would be such that the mean frequency of
catastrophes is 0.1i per year and that the mean severity is 1/i for each 1 ≤ i ≤ 5. Again,
we use r0 = 0.02 and T = 3.

Figure 4.9 shows efficient frontiers with respect to CVaR0.05 for portfolios consist-
ing of n = 2, 4, 6, 8, 10 catastrophe bonds, testing for minimum mean returns between
0.8 and 2.0. One can observe outward shifting of the efficient frontier when n increases,
which is expected since the catastrophe bond returns are all independent. Figure 4.10
shows, perhaps more interestingly, return profiles of the optimal portfolios correspond-
ing to a minimum mean return of 1.4 for varying n. From a highly skewed distribution
for n = 2, the estimated pdf becomes more symmetric and Gaussian-like as n increases.
Indeed, this can be made rigorous by the central limit theorem, although some care is
required as the returns are not identically distributed (more precisely, one can use the
Lyapunov version of the central limit theorem).
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Figure 4.9: Plot of efficient frontiers for CVaR0.05 for different numbers of independent catastro-
phe bonds.
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Figure 4.10: Plot of return profiles of optimal portfolios corresponding to a minimummean return
of 1.4 for varying n.
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Chapter 5

Discussion

In this thesis, the risk diversification potential of catastrophe bonds in portfolios as well
as the performance of portfolios exclusively consisting of catastrophe bonds have been
investigated. We account here for the main points treated, discuss the novelty of the
findings and give suggestions for further work.

5.1 Summary and conclusions
For the loss modeling, while the discontinuous uniform model was used to showcase es-
sential characteristics of the return of catastrophe bonds, the compound Poisson model
was developed to also take into account the times of occurrence of the underlying losses.
In particular, given specifications of the distributions of catastrophe frequency and sever-
ity, a compound Poisson process with exponentially distributed increments was em-
ployed to model the evolution of the outstanding principal during the term. With the
assumed coupon payment structure of constant coupon rate, proportionality to the out-
standing principal and continuous coupon yield, the total return over the term for the
catastrophe bond could be computed given each realization of the compound Poisson
process.

With fully specified joint return distributions of all assets, we used Monte Carlo
sampling to obtain the return matrix R on which all optimization was based. Standard
optimization techniques on risk measures such as value-at-risk and conditional value-at-
risk were made applicable by the introduction of an auxiliary noise variable, mathemat-
ically equivalent to kernel smoothing. This rendered value-at-risk as well as conditional
value-at-risk continuously differentiable, enabling derivations of explicit and compu-
tationally tractable formulas for objective function values and gradients. As such, the
implementation in code was straightforward and the computation times were relatively
short.

Numerical results demonstrated the risk diversification value of a catastrophe bond
in a hypothetical portfolio of correlated stocks. This was done with both the discon-
tinuous uniform and compound Poisson models, where the former case was intended
to reflect a catastrophe bond triggering very seldomly and the latter a catastrophe bond
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triggering more often but with relatively small instrument losses. For both cases, the
expected outward shift of the efficient frontiers with respect to value-at-risk and con-
ditional value-at-risk was confirmed. Moreover, it was shown that the return profile of
a portfolio exclusively consisting of catastrophe bonds is highly skewed for few assets
but converges to a normal distribution when the number of assets increases, which is
also expected.

5.2 Novelty and impact
The main contributions of this thesis are related to the compound Poisson model for the
return distribution of a catastrophe bond and the formulas for function values and gradi-
ents of risk measures derived from introducing an auxiliary noise. As for the former, al-
though models accounting for the possibility of multiple independent catastrophe events
by a compound Poisson outstanding principal process have been previously mentioned
in literature [20, 14], they address catastrophe bonds with somewhat different payment
structure where the arrival of the catastrophe events do not matter. The model presented
here thus combines the time aspect of the assumed payment structure with these jump
process models of the outstanding principal, which to the best of the author’s knowl-
edge is novel in literature. For the formulas for risk measures, despite the fact that it is
well-known that kernel smoothing renders VaR differentiable by virtue of the implicit
function theorem, derivations of explicit formulas have not been accounted for in exist-
ing literature. Instead, the work here is mainly based on that done in [26], which uses
the same idea but in an essentially different setting.

On the other hand, the impact of the results are not as obvious. This is mainly due to
the lack of real-world data used in the test cases, which was intentional due to the limited
scope of the project. Instead, the numerical tests were solely performed in the purpose
of demonstrating the validity of the portfolio optimization procedure and illuminating
key features of the loss models. Although the tests successfully fulfill this purpose,
further inferences cannot bemade as to, for instance, how themodels compare to existing
ones and how real-world catastrophe bond portfolios perform in comparison to other
portfolios. However, it is believed that the developedmethod of applying gradient-based
optimization of VaR and CVaR will be an interesting alternative to current standard
approaches.

5.3 Further work
A natural extension of the work in this thesis would be to apply it to realistic examples, e
g by using historical data on stock returns and the events underlying catastrophe bonds,
which would strengthen the impact. Furthermore, the compound Poisson model could
be adapted to other types of payment structures, which is straightforward given the cor-
responding specifications. The impact of this thesis work would be further strengthened
by some comparison to other existing catastrophe bonds loss models. Lastly, the use-
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fulness of the method of gradient-based optimization could be evaluated by comparing
e g behavior and computational times to other standard methods.
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